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Abstract. The aim of this paper is to classify the performance grades of binders
for NCHRP 90-07 using fuzzy equivalence clustering via Minkowski, Maha-
lanobis, Cosine, Chebychev and Correlation distance function. The perfor-
mances of binders were graded in terms of high specific and equal stiffness
temperature at three different parameters. The five distance functions namely
Minskowski w ¼ 2ð Þ, Mahalonobis, Cosine, Chebychev and Correlation are
successfully applied in the clustering methodology to achieve a better separation
analysis. The clusters are discovered by all five distances and distinguished for
suitable value of membership grade. We also include a theoretical comparison
between the clustering performances by these distances. The Mahalonobis dis-
tance function trialed first time in the equivalence fuzzy clustering methodology
and accomplished the desirable objectives. The core effectuations of
Mahalonobis and Chebychev distance over other four distances on the clustering
performance of binders are investigated.
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1 Introduction

Clustering is a data analysis method which is used regularly in the strategy formulation,
study of market and business system planning. Partition of commodities is a conven-
tional issue in the inventory control and management. In most industries, there are
different types of materials and components of machine or other apparatus to be
managed for achieving desired goal. In order to enrich the efficiency of material
management, an expert idea is to sort different materials into groups. However, dif-
ferent enterprises have different requirements in this area. Hence, the precision-based
cluster analysis may not be practical. Furthermore, a clustering method based on fuzzy
equivalence relation can comfortably tackle the separation analysis under fuzzy envi-
ronment. The conventional clustering is aimed to assign each data point to only one
cluster. But the fuzzy clustering assigns different degree of satisfaction to each level
where the membership of a level is shared among various clusters. In this paper we are
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proposing the fuzzy equivalence class clustering using Minkowski, Mahalanobis,
Cosine, Chebychev and Correlation distance function on the performance grading of
different binders used in Turner–Fairbank Highway Research Center Polymer Research
Program [19]. It was observed by Shenoy in his research that the super pave specifi-
cation parameter G�j j= 1

Sind

� �
is not tolerable in classification polymer modified binders

for high temperature performance grading of paving asphalts. It was a matter of con-
cern to subtilize this parameter to gain more consciousness in the pavement perfor-
mance and also detect other latent parameters that may better relate the rutting
resistance. The refined super pave specification parameter, namely, G�j j= 1� 1

tand:Sind

� �
has the highest merit for possible use. It is a viable alternative for getting the high
temperature specification, such that it becomes more sensitive to field performance.
Owing to the variations in the phase angle d, the parameter G�j j=ð1� 1

tand:sind

� �
can

easily attain its efficiency as compared to the original super pave specification
parameter. Another alternative would be to first define an equal stiffness temperature
Te �Cð Þ, when the complex shear modulus G�j jð Þ takes a specific value of 50 kPa. This
takes care of the rheological contribution coming from one portion of the term

G�j j= 1� 1
tand:Sindð Þ

h i
. The result in terms of high specification temperature T�

THC
� �

being defined as Te �Cð Þ= 1� 1
tand:Sindð Þ

h i
and it is more meaningful to achieve eminent

high specification temperature. To get the better discrimination between the perfor-
mances of bindersat different membership grades with specification parameter

G�j j= 1
:sind

� �
, G�j j=ð1� 1

tand:sind

� �
and T�

e C
� �

= 1� 1
tand:Sindð Þ

h i
, the fuzzy equivalence

class clustering is proposed. Cluster analysis is one of the leading approaches to
acknowledge the patterns. In order to get better classification of objects, the idea of
fuzzy clustering was represented by many researchers. In this direction, they made
significant contributions in the development of making a decision in existence of
fuzziness, incomplete information. The first fuzzy clustering approach was initiated by
Bellman et al. [1] and Ruspini [2] then Dunn [3] explained the Well-Separated Clusters
and Optimal Fuzzy Partitions. Tamura et al. [4] figure out an n-step procedure using
max-min fuzzy compositions (max-min similarity relation) and achieved a multi-level
hierarchical clustering. Now fuzzy clustering has been extensively examined and
practiced in multifarious areas by Bezdek et al. [5], Bezdek [6], Aldenderfer et al. [7],
Trauwaert et al. [8], and Yang et al. [9–11]. Groenen [12] used Minskowski distance
function to get fuzzy cluster analysis. Yang et al. [13] concentrated on Cluster analysis
based on fuzzy relations and a clustering algorithm is created for the max-t similarity
relation matrix. Then three critical max-t (max-min, max-prod and max-Δ) composi-
tions are compared. Liang et al. [14] determined the best number of cluster using a
cluster validity index by taking suitable k cut value. At first, the trapezoidal fuzzy
numbers is defined based on subject’s attributes rating. The distance between two
trapezoidal fuzzy numbers is computed subsequently to obtain the compatibility rela-
tion then the categorization of objects was done by fuzzy equivalence relation. Then
Recently, Gustafson et al. [15], Fu et al. [17] and Kumam et al. [18] concentrated on
fuzzy clustering analysis based on equivalence class and illustrated the desirable
cluster. Bataineh et al. [16] compared the performances of fuzzy C-mean clustering
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algorithm and subtractive clustering algorithm according to their capabilities. The aim
of this paper is to classify the binder’s performances using fuzzy equivalence clustering
via Minkowski Cosine, Chebychev, Correlation and a new (Mahalanobis) distance
function. The reliability and adequacy of the Mahalonobis distance on the clustering
performance of Binders is examined over Minkowski and other distance functions.

2 Clustering Analysis Method

2.1 Mathematical Preliminaries

In this paper, some primal attributes of fuzzy cluster analysis are reviewed. First, we
recapitulate the basics of fuzzy sets and fuzzy relations.

Definition 1. Let X be an universal space then a fuzzy set on X, is defined by ~A ¼
fðx; l~AðxÞÞjx 2 X and l~AðxÞ ! ½0; 1�g where l~A xð Þ is the membership function or
grade defined in X which gets values in the range [0, 1].

Definition 2. Let ~A and ~B are two fuzzy sets, defined on universal spaces X and Y then
a fuzzy relation on X� Yð Þ, is defined by ~R ¼ x; yð Þ; l~R x; yð Þ½ �j x; yð Þ �X� Y

� �
where

l~R x; yð Þ�minfl~AðxÞ; l~BðxÞg

Definition 3. Let ~R1 on X� Yð Þ and ~R2 on Y� Zð Þ be two fuzzy relations then the

max-min composition ~R1 � ~R2 is defined by ~R1 � ~R2 ¼ x; zð Þ;max
y2Y

min l~R x; yð Þ;����

l~R y; zð Þgg�jx �X; y � Y ; z � Zg.
Definition 4. Let ~R be a fuzzy relations on X� Xð Þ then
(1) ~R is called reflexive if l~R x; xð Þ ¼ 1; 8x 2 X
(2) ~R is called e-reflexive if l~R x; xð Þ	 e; 8x 2 X
(3) ~R is called weakly reflexive if l~R x; yð Þ� l~R x; xð Þ and l~R y; xð Þ� l~R x; xð Þ8x 2 X.

Definition 5. A fuzzy relation ~R is called symmetric if l~R x; yð Þ ¼ l~R y; xð Þ8x; y 2 X.

Definition 6. A fuzzy relation ~R is called transitive if l~R x; zð Þ	 max
y2Y

fminfl~R x; yð Þ;
l~R y; zð Þgg; 8x; y; z 2 X.

Definition 7. A fuzzy relation ~R on X is said to be compatible on X if it is reflexive and
symmetric.

Definition 8. A fuzzy relation ~R on X is said to be transitive on X if it is reflexive,
symmetric and transitive.
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2.2 The Construction of a Fuzzy Compatible and Equivalence Relation

To obtain the Fuzzy cluster analysis through equivalence class, the distances between
the crisp data sets is required here we are proposing the Mahalonobis, Chebychev,
Minkowski, Cosine and Correlation metric distance respectively on crisp data. Let X be
an universal space and Xi k and Xj k 2 X then the Minkowski metric distance on crisp
data is defined as

Dw i;jð Þk ¼
Xn

k¼1
Xik � Xj k

�� ��wh i1
w ð1Þ

The Minkowski’s measure holds for w 2 1;1½ Þ. For the special case of w = 1, it
becomes Hamming distance, and when w = 2, it is Euclidean distance.

The Mahalonobis distance is defined as

Md i;jð Þk ¼ ðXi�XjÞTV�1ðXi�XjÞ
	 
� �1=2 ð2Þ

where V is the sample covariance matrix. If the covariance matrix V is the identity
matrix, then the Md i;jð Þ reduce to the Euclidean distance. If V is diagonal, then the
determined distance measure is called a normalized Euclidean distance defined as

Md i;jð Þk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1
Xi k�Xj kj j2
V

r
.

The Cosine distance is defined as

Dcos i;jð Þk ¼ 1�
Pn

k¼1 Xi k:Xj kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXi kÞ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXj kÞ2

q ð3Þ

The Correlation distance is defined as

Dcorr i;jð Þk ¼ 1�
Pn

k¼1ðXi k � Xi kÞ:ðXj k � Xj kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXi k � Xi kÞ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXj k � Xj kÞÞ2

q ð4Þ

Where Xi k ¼ 1
n

Pn
k¼1 Xi k and Xj k ¼ 1

n

Pn
k¼1 Xj k .

And the Chebychev distance is defined as

Dmax i;jð Þ ¼ maxk Xi k � Xj k

�� �� ð5Þ

According to the distances, the fuzzy compatible relation matrix is yielded. For
Minkowski class (w = 2) the relation matrix is

~R Xi;Xj
� � ¼ 1� d

Xn

k¼1
Xi k � Xj k

�� ��2h i1
2

Where d ¼ max
Xn

k¼1
Xi k � Xj k

�� ��2h i1
2
:

� ��1

ð6Þ
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And the Fuzzy compatible relation matrix for Mahalonobis distance is generated by

~R Xi;Xj
� � ¼ 1� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi�Xj
	 �T

S�1ðXi�XjÞ�
q� �

:

Where k ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi�Xj
	 �T

S�1ðXi�XjÞ�
q� ��1

ð7Þ

The Fuzzy compatible relation matrix for Cosine distance is

~R Xi;Xj
� � ¼ 1� c 1�

Pn
k¼1 Xi k:Xj kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1ðXi kÞ2
q

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1ðXj kÞ2
q

8><
>:

9>=
>;

Where c ¼ max 1�
Pn

k¼1 Xi k:Xj kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXi kÞ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXj kÞ2

q
8><
>:

9>=
>;

8><
>:

9>=
>;

�1

ð8Þ

The Fuzzy compatible relation matrix for Correlation distance is

~R Xi;Xj
� � ¼ 1� q 1�

Pn
k¼1ðXi k � Xi kÞ:ðXj k � Xj kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1ðXi k � Xi kÞ2
q

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1ðXj k � Xj kÞÞ2
q

8><
>:

9>=
>;

Where q ¼ max 1�
Pn

k¼1ðXi k � XikÞ:ðXj k � Xj kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXi k � Xi kÞ2

q
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðXj k � Xj kÞÞ2

q
8><
>:

9>=
>;

8><
>:

9>=
>;

�1

ð9Þ

The Fuzzy compatible relation matrix for Chebychev distance is

~R Xi;Xj
� � ¼ 1� r maxk Xi k � Xj k

�� ��� �
Where r ¼ max maxk Xi k � Xj k

�� ��� �� ��1 ð10Þ

After the fuzzy compatible relation matrix, the Fuzzy transitive closures were
constructed for each matrix. If ~R � ~R
~R then ~R � ~R ¼ ~R2

T is said to be transitive closure
of ~R for k ¼ 1. If ~R � ~Rˆ~R then construct ~R2 � ~R2. If ~R2 � ~R2
~R2 then ~R4

T is said to be
transitive closure of ~R2 for k ¼ 2. If there are n-elements in the universal space then the
fuzzy transitive closure is achieved until 2k 	 n� 1.

The a-cut relation can be obtained from a transitive fuzzy relation by taking the
pairs which have membership degrees no less than a.

~Ra ¼ x; yð Þ; l~R x; yð Þ	 a½ �j x; yð Þ �X� Y
� �

: ð11Þ
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3 Experimental Data

The experimental data used was taken from the research [19] under NCHRP (National
Co-operative Highway Research Program) and TFHRC (Turner–Fairbank Highway
Research Center).

4 Result

Using descried methodology, the performance grades of binders were targeted for
Mahalonobis metric, Minkowski (w = 2) metric, Chebychev matric, Cosine matric and
Correlation metric distances. The fuzzy compatible relation matrices and transitive
closure are derived for each distance (Figs. 1, 2, 3, 4 and 5).

Fig. 1. Graphical representation of results
achieved by Minskowski distance.

Fig. 2. Graphical representation of results
achieved by Mahalonobis distance.

Fig. 3. Graphical representation of results
achieved by Cosine distance.

Fig. 4. Graphical representation of results
achieved by Chebychev distance.
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5 Analysis

All the binders are separated according to their performances at different level of a by
using Minkowski, Mahalonobis, Cosine, Correlation and Chebychev distance differ-
ently. It is observed by Fig. 6 that Binder x1 = flux (B6224) is detached first at

Fig. 5. Graphical representation of results
achieved by Correlation distance.

Fig. 6. Clustering tree by Minkowski distance

Fig. 7. Clustering tree by Mahalonobis
distance.

Fig. 8. Clustering tree by Correlation
distance.

Fig. 9. Clustering tree by Chebychev
distance.

Fig. 10. Clustering tree by Cosine distance.
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a ¼ 0:68, then Polymer-modified binder x5 = Elvaloy No. 1 (B6228) is separated at
a ¼ 0:77 and after that x2 = unmodified base (B6225) separated at a ¼ 0:85. Similarly
x16; x13. . .; x12 are clustered successively at different high degree of a. The desired
clusters are also identified from clustering tree for suitable value of a for example if
a ¼ 0:90, then the clusters are: x1f g; x5f g; x2f g; x16f g; x13f g; x3f g; x4; x6; x7; x8;ff
x14; x15g; x9; x10; x11; x12; x17f gg.

The total number of clusters can be obtained from clustering tree by Minkowski
metric distance for different alpha and they are described as: If a 2 00:68½ � then
N(c) = 1, If a 2 0:680:77ð � then N(c) = 2. Similarly if a 2 0:770:85ð �; N(c) = 3. If
a 2 0:850:86ð �; N(c) = 4.

If a 2 0:860:88ð �; N(c) = 5. If a 2 0:880:89ð � N(c) = 6. If a 2 0:890:93ð �,
N(c) = 7.

If a 2 0:930:94ð �, N(c) = 8. If a 2 0:940:95ð �, N(c) = 9. If a 2 0:950:96ð �,
N(c) = 11.

If a 2 0:960:97ð �; N(c) = 13. If a 2 0:971ð � N(c) = 17.
According to the Clustering tree by Mahalonobis metric distances, it is observed by

Fig. 7 that the binder x1 = flux (B6224) is detached first at a ¼ 0:49, then Polymer-
modified binder x5 = Elvaloy No. 1 (B6228) is separated at a ¼ 0:54. After that
x16 = B6252 is separated at a ¼ 0:64: similarly x15; x2. . .; x8 are clustered successively
at different high degree of a. The desired clusters are also identified for suitable value of
a. If the a ¼ 0:90, then the binders are separated differently as compared to Minkowski
and other distances and the clusters are: x1f g; x5f g; x16f g; x15f g; x2f g; x13f g; x3f g;f
x10f g x4; x11; x14f g; x9; x12g; fx6; x7; x8f gg.

The total number of clusters can be obtained from clustering tree by Mahalonobis
metric distance or different alpha and they are described as: If a 2 00:49½ � then
N(c) = 1. If a 2 0:490:54ð � then N(c) = 2. Similarly If a 2 0:540:61ð �, N(c) = 3. If
a 2 0:610:73ð �, N(c) = 4.

If a 2 0:730:75ð �, N(c) = 5. If a 2 0:750:84ð �, N(c) = 6. If a 2 0:840:85ð �,
N(c) = 7. If a 2 0:850:86ð �, N(c) = 8. If a 2 0:860:87ð �, N(c) = 9. If a 2 0:870:88ð �,
N(c) = 10. If a 2 0:880:90ð �, N(c) = 11. If a 2 0:900:91ð �, N(c) = 12. If
a 2 0:910:93ð �, N(c) = 14. If a 2 0:930:94ð �, N(c) = 15. If a 2 0:940:96ð �, N(c) = 16.
If a 2 0:961ð �, N(c) = 17.

According to the Clustering tree by Correlation distances it is observed by Fig. 8
that Binder x1 = flux (B6224) is detached first at a ¼ 0:87, then Polymer-modified
binder x5 = Elvaloy No. 1 (B6228) is separated at a ¼ 0:96. Similarly remaining
binders are clustered into two groups after a ¼ 0:99. The desired clusters are also
identified from clustering tree for suitable value of a for example if a ¼ 0:90, then the
clusters are: x1f g; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12; x13; x14; x15; x16; x17f gf g.

The total number of clusters can be obtained from clustering tree by Correlation
distance for different alpha and they are described as: If a 2 00:87½ � then N(c) = 1, If
a 2 0:870:96ð � then N(c) = 2. Similarly if a 2 0:960:99ð �, N(c) = 3. If a 2 0:99 1ð �,
N(c) = 4.
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According to the Clustering tree by Chebychev distances. It is observed by Fig. 9
that Binder x1 = flux (B6224) is detached first at a ¼ 0:66, then Polymer-modified
binder x5 = Elvaloy No. 1 (B6228) is separated at a ¼ 0:73 and after that
x16 = polymer-modified Ethylene–Styrene–Inter polymer No. 2 (B6252) is separated at
a ¼ 0:79 Similarly x2; x3. . .; x9 are clustered successively at different high degree of a.
The binders are separated differently as compared to the Mahalonobis Cosine and
Correlation distances but the separation is quite similar to the Minskowski metric
distance. The desired clusters are also identified from clustering tree for suitable value
of a for example if a ¼ 0:90, then the clusters are: x1f g; x5f g; x16f g; x2f g; x3f g; x13f g;f
x4; x6; x7; x8; x9; x10; x11; x12; x14; x15; x17f gg.

The total number of clusters can be obtained from clustering tree by Chebychev
distance for different alpha and they are described as: If a 2 00:66½ � then N(c) = 1, If
a 2 0:660:73ð � then N(c) = 2. Similarly if a 2 0:73 0:79ð �, N(c) = 3. If
a 2 0:79 0:84ð �, N(c) = 4.

If a 2 0:84 0:86ð � N(c) = 5. If a 2 0:86 0:87ð � N(c) = 6. If a 2 0:87 0:92ð �,
N(c) = 7.

If a 2 0:92 0:94ð �, N(c) = 8. If a 2 0:94 0:95ð �, N(c) = 12. If a 2 0:95 0:96ð �,
N(c) = 13.

If a 2 0:96 0:97ð �, N(c) = 15. If a 2 0:97 1ð � N(c) = 17.
According to the Clustering tree by Cosine distances it is observed by Fig. 10 that

no binder is separated till a ¼ 0:91 and after a ¼ 0:91 two binders x5 = Elvaloy No.1
(B6228) and x16 = polymer-modified Ethylene–Styrene–Inter polymer No. 2 (B6252)
are detached together as a one cluster. After the a ¼ 0:93 binder x5; x16 and binder
x1 = flux (B6224) are detached separately. Similarly remaining binders are clustered
successively at different high degree of a. The desired clusters are also identified from
clustering tree for suitable value of a.

The total number of clusters can be obtained from clustering tree for different alpha
and they are described as: If a 2 00:91½ � then N(c) = 1, If a 2 0:91 0:93ð � then
N(c) = 2. Similarly if a 2 0:93 0:98ð �; N(c) = 4. If a 2 0:980:99ð �; N(c) = 5. If
a 2 0:99 1ð Þ, N(c) = 6. If a ¼ 1 N(c) = 9.

The following graph shows the number of clusters achieved by Mahalonobis,
Chebychev, Minskowski w ¼ 2ð Þ, Cosine, and Correlation distance with respect to
different membership grade. The all distances illustrate the same number of cluster
(N(c) = 1) till membership grade a ¼ 0:49. After the a ¼ 0:49, there exits significant
difference in the number of cluster by all five distance functions. The Mahalonobis
distance quantize more number of cluster than other four distances function for each
a 2 0:49 0:97ð �. The clustering performance achieved by Chebychev distance function
is quite better than Minskowski w ¼ 2ð Þ distance and substantially finer than Cosine
and Correlation distance function. The Mahalonobis, Chebychev, and Minskowski
w ¼ 2ð Þ demonstrate the same number of cluster (N(c) = 17) for each a 2 0:97 1ð �.
Overall the Mahalonobis distance shows the viable feasibility as compared to
Chebychev, Minskowski w ¼ 2ð Þ, Cosine, and Correlation distance function in terms
of desired number of clusters (Fig. 11).
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6 Conclusion

In this paper a Comparative fuzzy equivalence class clustering of binders based on their
performance, is proposed. The performances of binders were graded in terms of high
specific temperature at three different parameters. Five distance functions namely
Minskowski (w = 2), Mahalonobis, Cosine, Chebychev and Correlation are applied in
the separation methodology and it is a first attempt where the Mahalonobis distance
function is used for equivalence fuzzy clustering. The fuzzy compatible relation
matrices and transitive closures are derived for each distance function. Then the sep-
arate cluster analysis is done for Minskowski, Malonobis, Cosine, Chebychev and
Correlation distance function and the desired clusters are identified for suitable value of
membership grade. It was observed that the overall clustering performance of binders
by Mahalonobis distance function is better than the performance by Minskowski and
other distance function. The overall Performance achieved by Chebychev distance
function is quite better than Minskowski w ¼ 2ð Þ distance and substantially finer than
Cosine and Correlation distance function. Mahalonobis distance function produce more
number of cluster at most of the a-level. The separation stages by Mahalonobis distance
are also extensively better than other distance. So the fuzzy cluster analysis by
Mahalonobis distance function can provide effective grip in the separation analysis and
strategy formulation.
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