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Abstract Breakwaters are massive structures constructed to provide the required
tranquility within the ports. They are also used for safeguarding the beaches from
eroding due to the severe action of waves, especially during inclement weather.
In recent years, innovative structures such as Semi-circular and Quarter-circular
Breakwaters (QBW) are being evolved to fulfill the ever-increasing demand from
the coastal sector. QBW is a caisson with quarter circular surface towards incident
waves, with horizontal bottom and a vertical wall on its rear side placed on a rubble
mound foundation. In this paper, the experimental data collected at National Insti-
tute of Technology, Surathkal is used. The data collected is analysed by plotting the
non-dimensional graphs of reflection coefficient, reflected wave height and incident
wave height for various values of wave steepness. The values are used for predic-
tion of QBW adopting Multi-Layer Perceptron (MLP) and Radial Basis Function
(RBF) networks. Goodness-of-Fit (GoF) test using Kolmogorov–Smirnov (KS) test
statistic is applied for checking the adequacy of MLP and RBF networks to the
experimental data. The performance of these networks is evaluated by using Model
Performance Indicators (MPIs), viz. correlation coefficient, mean absolute error and
model efficiency. The GoF test results and values ofMPIs indicated theMLP is better
suited amongst two networks adopted for evaluation of hydrodynamic performance
of QBW.
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1 Introduction

Breakwater is a structure generally, used in coastal protection works and also for
creating tranquility in basin in harbors. Over the years, breakwater was of rubble
mound weighing in tons. In the latter part of nineteenth-century innovative structures
like tetrapods, tripods and other interlocking blocks are also evolved. Considering
the huge quantity of rock material required, at the beginning of twenty-first century
caisson type of breakwater were thought off. One such breakwater is Quarter-circular
Break Water (QBW), a new-type breakwater first proposed by Xie et al. [15] on the
basis of Semi-circular Break Water (SBW). The QBW is usually placed on rubble
mound foundation and its superstructure consists of a quarter circular surface facing
sea sides, a horizontal bottom and a rear vertical wall. The QBW structure is hollow,
hence, the weight and materials required are less and it is more suitable where the
foundation is relatively weak. The QBW is a prefabricated caisson, which can be
properly designed for handling stresses and can be transported and placed with more
precision at the desired location. Depending upon the purpose the Quarter-circle
breakwater may be fabricated as emerged or submerged type structure, with and
without perforation to dissipate the incident wave energy.

2 Literature Review

Jiang et al. [9] studied the performance of QBW by comparing the hydraulic per-
formances of SBW and QBW under similar hydraulic conditions. They conducted
2-Dimensional (2D) vertical wave numerical model and physical model studies, and
found that wave reflection of both QBW and SBW are closer to each other. They
stated that the wave reflection coefficient (Kr) remains almost same with values less
than 1.0 even when freeboard (hc) value becomes 2–3 times incident wave height
(Hi) for both types of breakwaters. During wave overtopping in submerged condi-
tion, they found high flow velocity and vortexes near the rear walls of QBW, which
may be due to the top sharp corner and sudden expansion of flow around QBW. They
described that the flow fields in front of both QBW and SBW are similar in both in
submerged as well as emerged conditions and this explains the closeness of reflection
coefficient values for both breakwaters.

Shi et al. [13] studied the hydrodynamic performance of QBW under both regular
and irregular wave conditions. Regular waves were generated by reciprocating wave
paddle at a constant speed, whereas irregular waves were generated by frequency
spectrum simulation with target spectrum of JONSWAP type. For analyzing the
wave reflection, two types of wave reflection coefficients were described by Shao
[12], viz. (i) Kr that describes the whole effect of wave reflection by breakwater and
(ii) Circular-surface reflection coefficient (Krc) that describes the reflective effect
by circular surface on the adjacent flow field in front of the breakwater. The study
revealed that at the same relative freeboard height (hc/Hi), the value of Kr was higher



Evaluation of Hydrodynamic Performance … 73

than Krc that indicates the entire reflective effect of QBW is stronger than that by the
circular surface on the adjacent flow field. To estimate the energy dissipation as the
wave passes over the breakwater wave energy loss parameter (KEloss) was described.
KEloss is the ratio of dissipated wave energy to the original gross wave energy within
the process of wave structure interaction. Based on the results obtained from the
study, it was found that the loss of wave energy for emerged breakwater is larger
than that for submerged breakwater.

Hegde andRavikiran [8] conducted experiments on the physicalmodel ofQBW in
2Dwave flumes to evaluate the reflection characteristics of QBW of different radii in
different submergence conditions. The models were made of galvanized iron sheets
and coatedwith a cement slurry to simulate concrete surface. For finding the variation
of Kr different graphs were plotted with the incident wave steepness (Hi/gT2) (where,
g is the gravitation and T is the wave period) for various submergence ratios (d/hc)
and different ranges of (R/Hi) (where, d is the depth of water and R is the breakwater
radius). For all values of d/hc and R/Hi, they found that Kr increases logarithmically
(best-fit) as incident wave steepness increases. The study revealed that whatever
may be the depth, caisson radius, height of structure crest (from seabed) steeper the
waves the more will be the reflection from breakwater. Hafeeda et al. [7] conducted
experiments in a 2Dmonochromaticwaveflumeon a seaside perforatedQBWmodel.
They analyzed the experimental data by plotting the non-dimensional graphs of Kr

(i.e., Hr/Hi) (where Hr is the reflected wave height) for various values of R/Hi. They
observed that the value of Kr increased with increase in wave steepness and when the
freeboard (hc) increased then the value of Kr also increased. They found that when
the height of the structure (hs) increases, a smaller height of the QBW portion of the
caisson is exposed to waves, which is the effect of the curvature is less pronounced
that tend to lesser dissipation and more reflection.

Binumol et al. [3] conducted physical model studies of QBWwith three different
radii and S/D (spacing to the diameter of perforations) ratio. Dimensional analy-
sis was carried out to find the non-dimensional parameters such as incident wave
steepness, depth parameter (d/gT2), height of structure, depth of water, wave run up
(Ru/Hi), wave rundown (Rd/Hi), etc., using Buckingham’s π-theorem. The exper-
imental data collected was analyzed by plotting the graph of dimensionless wave
run up and dimensionless wave rundown for various values of wave steepness and
different heights of structure to the depth of water. They observed that the value of
Ru/Hi increases with an increase in wave steepness for all values of hs/d and d/gT2.
This was because as wave height increases there is an increase in wave energy and
hence run up increases with an increase in wave steepness. For all values of hs/d and
d/gT2, the dimensionless wave rundownwas found to decrease with increase in wave
steepness for all values of hs/d and d/gT2 because as wave height increases there is an
increase in wave energy resulting in more run up and hence less rundown. Rd/Hi was
also found to increase with the increase in the depth parameter (d/gT2), because at
higher water depths the effect of curvature is more pronounced resulting in lower run
up and hence more wave rundown. Balakrishna and Hegde [2] investigated reflec-
tion coefficient (Kr) and dissipation (or loss) coefficient (KL) for physical models
of quarter circle caisson breakwater for different radii with constant S/D ratio. They



74 N. Ramesh et al.

observed that reflection coefficient was found to increase with wave steepness, which
was similar to all earlier studies. Dissipation coefficient decreased with the increase
in wave steepness. The study revealed that as wave period decreases the value of
loss coefficient decreases. The study also revealed that as hs/d increases, dissipation
increases which is a reverse trend in the case of reflection, this trend is found to be
true for all values of d/gT2 values.

Generally, computational intelligence techniques, viz., Artificial Neural Network
(ANN), Adaptive Neuro-Fuzzy Interface System (ANFIS), Support Vector Machine
(SVM) regression, genetic algorithm, etc., have been efficaciously proposed as an
efficient tool for modelling and predictions in coastal engineering problems [1].
Karthik and Rao [11] reviewed the study on the application of soft computing tech-
niques include ANN-based Multi-Layer Perceptron (MLP) and Radial Basis Func-
tion (RBF) networks, ANFIS, SVM and Fuzzy Logic in breakwater studies. In the
present study, MLP and RBF networks are used for prediction of the variables con-
sidered for evaluation of the hydrodynamic performance of QBW. Goodness-of-Fit
(GoF) test using Kolmogorov–Smirnov (KS) test statistic is applied for checking the
adequacy of MLP and RBF networks to the experimental (or observed) data. The
performance of these networks is evaluated by using Model Performance Indica-
tors (MPIs), viz., Correlation Coefficient (CC), Mean Absolute Error (MAE), and
Model Efficiency (MEF). This paper presents the procedures adopted in evaluating
the hydrodynamic performance of QBW using MLP and RBF networks with an
illustrative example.

3 Methodology

Artificial Neural Network (ANN) modeling procedures adapt to the complexity of
input–output patterns and accuracy goes on increasing asmore andmore data become
available. Figure 1 shows the architecture of ANN that consists of an input layer,
hidden layer, and output layer [14]. From ANN structure, it can be easily understood
that input units receive data from external sources to the network and send them to the
hiddenunits, in turn, the hiddenunits send and receive data only fromother units in the
network, and output units receive and produce data generated by the network, which
goes out of the system. In this process, a typical problem is to estimate the output as a
function of the input. This unknown functionmaybe approximated by a superposition
of certain activation functions such as tangent, sigmoid, polynomial, and sinusoid
in ANN. A common threshold function used in ANN is the sigmoid function (f(S))
expressed by Eq. (1), which provides an output in the range of 0≤ f(S)≤1.

f(S) � [
1 + exp(−Si)

]−1
and Si �

N∑

i�1

IiWij + Oi, j � 1, 2, 3, . . . ,M (1)
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Fig. 1 Architecture of ANN

where Si is the characteristic function of ith layer, Ii is the input (I) unit of ith layer,
Oi is the output (O) unit of ith layer, Wij is the synaptic weights between input (i) and
hidden (j) layers, N is the number of observations and M is the number of neurons
(or units) of hidden layer [10].

3.1 Theoretical Description of MLP Network

MLP network [6] is based on an architecture with a single hidden layer as shown
in Fig. 2. Gradient descent is the most commonly used training algorithm in MLP
in which each input unit of the training dataset is passed through the network from
the input layer to the output layer. The network output is compared with the target
output and output error (E) is computed using Eq. (2).

E � 1

2

N∑

i�1

(
Xi − X∗

i

)2
(2)

where Xi is the observed value of ith sample and X∗
i is the predicted value for ith

sample.

�Wij(M) � −ε
∂E

∂Wij
+ α �Wij(M − 1) (3)

where�Wij(M) is theweight increments between ith and jth layers duringMneurons
(units) and �Wij(M− 1) is the weight increments between ith and jth layers during
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Fig. 2 Structure of MLP
network

M − 1 neurons. In MLP, momentum factor (α) is used to speed up training in the
very flat region of the error surface to prevent oscillation in the weight and learning
rate (ε) is used to increase the chance of avoiding the training process being trapped
in local minima instead of global minima.

3.2 Theoretical Description of RBF Network

RBF network is supervised and three-layered feedforward neural network and pre-
sented in Fig. 3. The hidden layer of RBF network consists of a number of nodes
and a parameter vector called a “centre”, which can be considered the weight vector.
In RBF, the standard Euclidean distance is used to measure the distance of an input
vector from the center. The design of neural networks is a curve-fitting problem in a
high dimensional space in RBF [10].

Training the RBF network implies finding the set of basis nodes and weights.
Therefore, the learning process is to find the best fit to the training data. The transfer
function of the nodes is governed by nonlinear functions that are assumed to be
an approximation of the influence that data points have at the center. The transfer
function of an RBF is mostly built up of Gaussian rather than sigmoid. The Gaussian
function decrease with distance from the center. The transfer function of the nodes
is governed by nonlinear functions that is assumed to be an approximation of the
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Fig. 3 Structure of RBF
network

influence that data points have at the center. The Euclidean length is represented by
rj that measures the radial distance between the datum vector X(X1,X2, . . . ,XM)
and the radial center X(j) � (W1j,W2j, . . . ,WMj) can be written as:

rj � ∥∥X − X(j)
∥∥ �

[
M∑

i�1

(
Xi − Wij

)2
]1/2

(4)

where rj � ‖‖ is the Euclidean norm and �( ) is the activation function. A suitable
transfer function is then applied to rj to give �(rj) � �

∥∥X − X(k)
∥∥. Finally, the

output layer (k − 1) receives a weighted linear combination of �(rj).

X(k) � W0 +
N∑

j�1

c(k)j �(rj) � W0 +
N∑

j�1

c(k)j �
(∥∥X − X(j)

∥∥)
(5)

where, cj is the center of the neuron in the hidden layer and �(rj) is the response of
the jth hidden unit and W0 is the bias term [11].

3.3 Goodness-of-Fit Test

GoF test [5] involving, viz., Kolmogorov–Smirnov (KS) test statistic is applied for
checking the adequacy of applying MLP and RBF networks to the series of experi-
mental data. Theoretical description of the KS test statistic is as follows:

KSC � N
Max
i�1

(Fe(Xi) − FD(Xi)) (6)

where Fe(Xi)� (i − 0.35)/N is the Empirical Cumulative Distribution Function
(CDF) of Xi and FD(Xi) is the computed CDF of Xi by MLP and RBF.
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3.4 Model Performance Analysis

The performance of MLP and RBF networks used in prediction of the variables (KL,
Kr, and Kt) is evaluated by Model Performance Indicators (MPIs), viz., Correlation
Coefficient (CC), Mean Absolute Error (MAE) and Model Efficiency (MEF), and is
given as follows:

CC �
∑N

i�1

(
Xi − X

)(
X∗

i − X∗
)

√
(∑N

i�1

(
Xi − X

)2)
(

∑N
i�1

(
X∗

i − X∗
)2

)

MAE(%) �
(
1

N

N∑

i�1

∣∣Xi − X∗
i

∣∣
)

∗ 100

MEF(%) �
⎛

⎝1 −
∑N

i�1

(
Xi − X∗

i

)2

∑N
i�1

(
Xi − X

)2

⎞

⎠ ∗ 100 (7)

whereX is the average value of observed data andX∗ is the average value of predicted
data [4]. The network with high CC, less MAE, and better MEF is considered as best
suited amongst MLP and RBF networks adopted in the prediction of the variables
used for evaluation of the hydrodynamic performance of QBW.

4 Application

In this paper, a study on the comparison of the hydrodynamic performance of QBW
was carried out. The experimental data, viz., depth of water (d), wave period (T),
incident wave height (Hi), transmitted wave height (Ht), reflected wave height (Hr),
transmission coefficient (Kt), loss coefficient (KL), wavelength (L), reflection coef-
ficient (Kr), incident wave steepness (Hi/gT2), relative freeboard (hc/Hi) and relative
wave height (Hi/d) collected at National Institute of Technology, Surathkal, is anal-
ysed by plotting the non-dimensional graphs of reflection coefficient, reflected wave
height and incident wave height for various values of wave steepness. The values
were used for prediction of QBW adopting ANN-based MLP and RBF networks.

4.1 Description of Experimental Setup

The study was conducted in the regular wave flume available in the marine struc-
tures laboratory of the Department of Applied Mechanics and Hydraulics, National
Institute of Technology Karnataka, Surathkal. The experiments were performed in
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a wave flume with dimensions of 50 m long, 0.74 m wide and 1.1 m deep. Out of
50.0 m, 42 m length has a smooth concrete bed. It has a 6.3 m long, 1.5 m wide
and 1.4 m deep chamber at one end, where wave flap is hinged at the bottom gener-
ates waves. The flap is controlled by an induction motor of 11 kw, 1450 rpm and is
regulated by an inverter drive, 0–50 Hz rotating with a speed range of 0–1550 rpm.
This facility is able to generate regular waves of 0.08–0.24 m of periods 0.8–4 s.
A series of vertical asbestos sheets are spaced at about 10 cm distance from each
other and kept parallel to the length of the flume to dissipate the generated waves by
damping the disturbance caused by successive reflection and to smoothen them. The
QBW model is placed in the flume 28 m away from the wave flap, above the rubble
mound foundation (Fig. 4). The slope used for the rubble foundation is 1:2. Three
capacitance-type wave probes were used for measuring the incident and reflected
wave heights. The wave probes were placed at a distance of 4 m from the center of
the model.

In the present study, 75% of data was used for training (TRG) and 25% of data
for testing (TES). Table 1 presents the descriptive statistics (i.e., Average, Standard
Deviation (SD), Coefficient of Variation (CV), Coefficient of Skewness (CS), and
Coefficient of Kurtosis (CK)) of the observed data of the variables that are considered
for prediction for evaluation of the hydrodynamic performance of QBW.

Fig. 4 A schematic diagram of experimental setup

Table 1 Descriptive statistics of the observed data

Descriptive
statistics

KL Kr Kt

Data points
(1–27)

Data points
(28–36)

Data points
(1–27)

Data points
(28–36)

Data points
(1–27)

Data points
(28–36)

Average 0.519 0.609 0.154 0.079 0.823 0.772

SD 0.134 0.128 0.070 0.046 0.076 0.089

CV (%) 25.8 21.0 45.3 57.9 9.3 11.5

CS −0.205 −0.789 −0.110 0.537 −0.329 0.602

CK −1.139 −1.112 0.049 −0.430 −1.249 −1.238
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5 Results and Discussions

Statistical software, namely, SPSS (Statistical Package for the Social Sciences) is
used to predict the hydrodynamic characteristics of QBW such as refraction coeffi-
cient, reflection coefficient, and loss coefficient usingMLP andRBF. The experimen-
tal data was trained with MLP and RBF networks, which are used to determine the
optimum network architecture for the variables, viz., KL, Kr, and Kt. The determined
Optimum Network Architecture (ONA) with model parameters obtained from MLP
and RBF developed through REG was used for prediction of QBW.

5.1 Prediction of KL, Kr, and Kt Using MLP

The momentum factor (α) and learning rate (ε) were fixed as 0.65 and 0.08, while
optimizing the network architecture of MLP for KL, Kr, and Kt. The network data
was trained with ONA (i.e., 12-15-1) with one input layer with 12 units, one hidden
layer with 15 hidden units and one output layer with 1 unit. The network was tested
with model parameters for the prediction of the variables (KL, Kr, and Kt) to evaluate
the hydrodynamic performance of QBW.

5.2 Prediction of KL, Kr, and Kt Using RBF

By using the procedures of RBF, as described in Sect. 3.2, the experimental data
was trained with model parameters to determine the ONAs of KL, Kr, and Kt. The
ONAs were determined as 12-7-1 for KL whereas 12-10-1 for Kr and 12-4-1 for
Kt. The ONAs were used to test the network data of the variables considered in the
study. The time series plots of predicted values of the variables (KL, Kr and Kt) using
MLP and RBF networks together with observed data are presented in Figs. 5, 6 and
7. The scatter plots of observed and predicted variables with the model fit and R2

(Coefficient of determination) values are presented in Figs. 8, 9 and 10.
From Figs. 5, 6 and 7, it can be seen that the predicted values of the variables (KL,

Kr and Kt) usingMLP network gives better performance than RBF during the testing
period. From Figs. 8, 9 and 10, it can be seen that the R2 values obtained from fitted
model using MLP for KL, Kr and Kt variables are 0.970, 0.926 and 0.980, which
indicates that there is a perfect fit between the observed and predicted variables.
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Fig. 5 Time series plots of observed and predicted values of KL (using MLP and RBF)

Fig. 6 Time series plots of observed and predicted values of Kr (using MLP and RBF)
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Fig. 7 Time series plots of observed and predicted values of Kt (using MLP and RBF)

Fig. 8 Scatter plots of observed and predicted values of KL (using MLP and RBF)
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Fig. 9 Scatter plots of observed and predicted values of Kr (using MLP and RBF)

Fig. 10 Scatter plots of observed and predicted values of Kt (using MLP and RBF)
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5.3 Analysis Based on GoF Test

TheKS test statistic values ofMLP andRBF networks for the variables KL, Kr andKt

were computed and found to be varied between 0.125 and 0.210. These values were
noted to be less than of its theoretical value of 0.221 at 5% level, and at this level,
both MLP and RBF are found to be acceptable for prediction of the variables (KL,
Kr and Kt). The predicted variables were used for evaluation of the hydrodynamic
performance of QBW.

5.4 Performance Analysis Based on MPIs

The model performance of MLP and RBF networks used in predication of the vari-
ables was evaluated by MPIs and the results are presented in Table 2.

From Table 2, it may be noted that theMEF obtained fromMLP network is higher
than the corresponding values of RBF. The CC values obtained from MLP for the
predicted variables vary from 0.950 to 0.998. Also, from Table 2, it may be noted
that the percentages of MAE obtained from MLP for the predicted variables (KL,
Kr and Kt) during TRG and TET periods are less than the corresponding values of
RBF. From GoF test results using KS test statistic and model performance analysis
using MPIs values, it was found that the MLP network is better suited amongst two
networks adopted for prediction of the variables for evaluation of hydrodynamic
performance of QBW.

5.5 Analysis Based on Descriptive Statistics

In addition to MPIs, the overall performance of MLP and RBF networks used in
prediction of the variables (KL, Kr, and Kt) was analyzed through the descriptive
statistics (i.e., Average, Standard Deviation (SD), Coefficient of Variation (CV),
Coefficient of Skewness (CS) and Coefficient of Kurtosis (CK)), and the results are
presented in Table 3.

From the values of descriptive statistics of the variables, as given in Tables 1
and 3, the percentage of deviation on the average predicted value of KL using MLP
network with reference to the average observed value was computed as 0.6% and
0.2% for training and testing periods. Similarly, for Kr, the values were computed
as 1.9% (for training) and 1.3% (for testing). For Kt, the values were computed as
0.2% (for training) and 0.1% (for testing).
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6 Conclusions

The paper described the procedures involved in the prediction of the variables, viz.,
KL, Kr, and Kt adoptingMLP and RBF networks. The performance of these networks
was evaluated by GoF test using KS test statistic and model performance analysis
using MPIs. From the results of data analysis, the following conclusions were drawn
from the study:

(i) Optimum MLP network architecture, viz., 12-15-1 was used for training the
network.

(ii) KS test results supported the use of both MLP and RBF networks in evaluating
the hydrodynamic characteristics parameters.

(iii) Qualitative assessment through time series and scatter plots indicated that the
fitted curves using MLP is closer to the fitted curves of the experimental data.

(iv) Model performance analysis indicated the MLP is better suited amongst two
networks adopted for prediction of KL, Kr and Kt.

(v) For KL, the values of CC, MAE, and MEF given by MLP were found to be
0.994, 1.2% and 98.8% respectively during the testing period. Similarly, the
values of CC, MAE, and MEF were computed as 0.968, 0.9%, and 97.7%,
respectively, for Kr. For Kt, the values of CC, MAE, and MEF were computed
as 0.998, 0.5%, and 99.5%.

(vi) The study suggested that the predicted variable of KL, Kr and Kt by MLP
network could be considered for evaluation of the hydrodynamic performance
of QBW.
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