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Abstract In the present study, the wave interaction with floating thick elastic plate
is studied over changing bottom topography. The effect of flexible floating plates
is studied based on Timoshenko–Mindlin’s theory in finite water depth and shallow
water approximations. The hydroelastic analysis is performed at varyingwater depths
and plate sizes to get the behaviour of elastic plate under the action of ocean wave.
Different bottom topography cases are considered in the analysis of wave interac-
tion with floating thick elastic plate. A mathematical model considering the mode-
coupling relation along with the orthogonality condition is formulated to analyse the
wave scattering due to floating thick elastic plate with varying bottom topography.
The numerical results for the hydroelastic behaviour are obtained for wave interac-
tion with floating plate with free-edge condition in varying bottom topography. The
present analysis helps to understand the significance of rotary inertia and transverse
shear deformation for the floating elastic plates. The study provides an insight into
the effect of seabed profile over the wave interaction with floating thick elastic plate
in finite water depth.
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1 Introduction

There has been increasing demand for the exploration of the sea along the coastal
areas for land and energy. The construction of VLFS has been advantageous as com-
pared to traditional sea reclamation and bottom supported offshore structures. These
structures are huge in length as compared with the wavelength of the ocean waves,
and hence wave-induced rigid body motions are negligible. These structures are con-
sidered to be flexible, and hence the study of hydroelastic behaviour becomes more
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important than their rigid body motions. These structures are usually constructed
near shore, and hence the effect of sea bottom profile becomes significant. The sea
bottom is not flat throughout; there are various kinds of undulation which give rise
to wave refraction, shoaling and wave breaking. Most of the studies performed by
researchers have considered the structure to be thin for the hydroelastic analysis of
VLFS based on Euler–Bernoulli beam theory but these structures have an account-
able thickness, and hence Timoshenko–Mindlin’s plate theory is more realistic for
the analysis as formulated by Mindlin [16].

A significant study using theTimoshenko–Mindlin’s thick plate theorywas carried
out by researchers [2, 9, 11, 17] for wave interaction with sea ice and wave inter-
action with offshore floating structure. The scattering of waves for varying water
depth was analysed by Evans and Linton [8] transforming the problem into a uni-
form strip resulting in a variable free-surface boundary condition. Athanassoulis and
Belibassakis [1] derived a consistent coupled-mode theory for the propagation of
small amplitude water waves over variable bathymetry regions. Kyoung et al. [15]
considered an influence of sea bottom topography on the hydroelastic response of a
very large floating structure (VLFS). The finite element method based on the vari-
ational formulation is used to calculate the sea bottom effects in the fluid domain.
Karmakar and Sahoo [12] analysed the scattering of surface water waves by a semi-
infinite floating membrane due to an abrupt change in bottom topography. Further,
Karmakar et al. [13] studied the oblique flexural gravity-wave scattering by multi-
ple step bottom topography in finite water depth and shallow water approximations.
The energy relation is derived for the oblique flexural gravity-wave scattering due
to a change in bottom topography using the argument of wave energy flux. Bhat-
tacharjee and Soares [5] investigated diffraction of obliquely incident waves by a
floating structure near a wall with step-type bottom topography in finite water depth
and shallow water approximations. Eigenfunction expansion method was used to
obtain the solution of the problem under the potential flow approach. Karmakar and
Soares [14] performed the study on the interaction of oblique incident wave with a
moored floating membrane for both the cases of finite water depth and shallow water
approximation with changes in bottom topography. The energy relation was also
derived for the oblique gravity wave in the presence of floating membrane due to an
abrupt change in bottom topography for various cases using the law of conservation
of energy flux and alternately by the direct application of Green’s second identity.

The studies on the wave interaction with floating structures with change in
bathymetrywere performed by researchers to analyse the effect of bottom topography
in the wave transformation. Belibassakis and Athanassoulis [3, 4] and Belibassakis
et al. [6] extended the coupled-mode model applied to the hydroelastic analysis of
three-dimensional large floating bodies of shallow draft or ice sheets of small thick-
ness, lying over variable bathymetry regions. The hydroelasticmode series expansion
of the wave field is adopted, enhanced by an appropriate sloping bottommode to treat
thewave field beneath the elastic floating plate, down to the sloping bottom boundary.
Rezanejad et al. [18] analysed the effect on the efficiency by implementing a dual-
chamber oscillating water column (OWC) placed over the stepped bottom. Matched
eigenfunction expansion and boundary integral equation method (BIEM) was used
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to analyse the change in the topography on the power generation. Choudhary and
Martha [7] examined the diffraction of surface water waves by an undulating bed in
the presence of different kinds of thin vertical barriers.Gerostathis et al. [10] extended
the coupled-mode model applied to the hydroelastic analysis of three-dimensional
large floating bodies of shallow draft lying over variable bathymetry regions. A gen-
eral bathymetry is assumed, characterised by a continuous depth function joining
two regions of different depths.

In the present study, the wave scattering by a floating elastic plate is analysed
based on Timoshenko–Mindlin’s thick plate theory in finite water depth with vary-
ing bottom topography. The eigenfunction expansion method with mode-coupling
relation is applied to obtain the solution for the case of wave interaction with freely
floating articulated elastic plate. The free-free edge of the floating elastic plate is
considered in the analysis. The bottom topography is considered to be stepped type
topography and the effect of stepped bottom topography is analysed by varying the
water depth in wave transmitted region. The numerical computation is performed
to analyse the wave reflection, wave transmission and hydroelastic behaviour of an
elastic plate under the action of the incident wave with varying bottom topography.

2 Mathematical Formulation

The scattering of waves due to finite floating elastic plate based on Timoshenko
–Mindlin’s thick plate theory with changing bottom topography is analysed under
the assumption of linearised wave theory. The monochromatic wave is incident on
the thick floating elastic plate along the positive x-direction. A two-dimensional
coordinate system is considered in the analysis with x-axis being the horizontal
and the y-axis considered vertically downward positive as shown in Fig. 1. The fluid
domain in finite water depth is divided into three regions, upstream openwater region
at 0 < x < ∞, 0 < y < h1 as region 1, the finite thick floating elastic plate covering
the free surface of the fluid at −a < x < 0, 0 < y < h2 as region 2 and downstream
open water domain at −∞ < x < −a, 0 < y < h3 as region 3. The two edges of
the plate at x � 0 and x � −a are considered to satisfy free-free edge boundary
condition. The floating elastic plate is considered to be having considerable thickness
and modelled under the assumption of Timoshenko–Mindlin plate theory.

Under the assumption of linearized wave theory, the velocity potential, �j(x, y)
for j � 1, 2, 3 satisfies the Laplace’s equation given by

∇2�j(x, y) � 0 at − ∞ < x < ∞, 0 < y < hj, j � 1, 2, 3. (1)

The linearised kinematic boundary condition at the mean free surface is of the
form

ζjt � �jy, at y � 0. (2a)
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Fig. 1 Schematic diagram for thick floating elastic plate in changing bottom topography

The dynamic free-surface boundary condition is given by

ρ�jt − ρgζj � patm at y � 0, (2b)

where patm is the atmospheric pressure. The bottom boundary condition is given by

�jy � 0, at y � hj, j � 1, 2, 3. (3)

In the plate-covered region, it is assumed that the plate satisfies the Timoshenko
–Mindlin’s equation [9] which includes the effect of rotary inertia and transverse
shear deformation is of the form

(
∂2x − ρp

μGd
∂2t

)(
EI∂2x − ρpd3

12
∂2t

)
ζ2 + ρpd∂2t ζ2 � −

(
1 − EI

μGd
∂2x +

ρpd2

12μG
∂2t

)
p. (4)

where d is the plate thickness, ρp is the plate density, EI � Ed3
/
12(1 − ν2) is the

plate rigidity, E is the Young’s modulus, ν is the Poisson’s ratio, G � E
/
2(1 + μ)

is the shear modulus of the plate, p is the pressure and μ is the transverse shear
coefficient of the plate. Assuming that the wave elevation and the plate deflection are
simple harmonic motion in time with frequency ω, the velocity potential �j(x, y, t)
and the surface deflection ζj(x, t) can be written as �j(x, y, t) � Re

{
φj(x, y)

}
e−iωt

and ζj(x, t) � Re
{
ηj(x)

}
e−iωt , where Re denotes the real part. In the open water

region j � 1, 3, the linearized free-surface boundary condition is given by

∂yφj −
(

ω2

g

)
φj � 0, for x < −a and x > 0, (5)

The plate-covered boundary condition is obtained by combining the linearised
kinematic condition at the surface and Timoshenko–Mindlin’s equation as
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{
EI(

ρg − msω2
)∂4

x +

(
msω

2I(
ρg − msω2

) − S

)
∂2
x +

(
1 − msω

2IS

EI

)}
φ2y

+
ρω2(

ρg − msω2
)
{
1 − msω

2IS

EI
− S∂2

x

}
φ2 � 0, for − a < x < 0, (6)

where ρ is the density of water, ms is the mass of the plate, I � d2
/
12 is the rotary

inertia and S � EI/μGd is the shear deformation for the Timoshenko–Mindlin’s
equation. The continuity of velocity and pressure at the interface x � −a and x � 0,
0 < y < hj, j � 1, 2 is given by

φjx � φ(j+1)x andφj � φ(j+1) at x � −a and x � 0, 0 < y < hj. (7)

The floating elastic plate is considered to be freely floating, so the bendingmoment
and the shear force at the edges x � −a and x � 0, 0 < y < h2 satisfies the relation

∂3
yφ2(x, y) � 0 and ∂4

xy3φ2(x, y) � ℘∂2
xyφ2(x, y) for x � −a and x � 0 at y � 0,

(8)

with ℘ �
{

mω2(S+I )
EI

}
. The far-field radiation condition is given by

φj(x) �
⎧⎨
⎩
(
e−ik10x + R0eik10x

)
f10(y) as x → ∞,(

T0e−ik30x
)
f30(y) as x → −∞,

(9)

with R0 and T0 are the complex amplitudes of the reflected and transmitted waves
and kj0 for j � 1, 3 are the positive real roots that satisfy the dispersion relation given
by

kj0 tanh kj0hj − ω2
/
g � 0. (10)

In the next section, the solution procedure of the wave interaction with finite
floating elastic plate with changing bottom topography is presented and discussed in
detail.

3 Method of Solution

In this section, the scattering of waves due to the finite floating elastic plate over
varying bottom topography is analysed based on Timoshenko–Mindlin plate theory.

The boundary value problem for the scattering of wave by a finite floating elastic
plate over varying bottom topography with free-free edge condition is formulated.
The velocity potentials φj(x, y) for j � 1, 2, 3 satisfy the governing Eq. (1) along
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with the boundary condition (3), (5), (6) and (9) as defined in Sect. 2. The velocity
potentials φj(x, y) for j � 1, 2, 3 at the free surface and the plate-covered regions are
of the form

φ1(x, y) � (
I0e−ik10x + R0eik10x

)
f10(y) +

∞∑
n�1

Rne−κ1nxf1n(y) for x > 0, 0 < y < h1

φ2(x, y) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

II∑
n�0,I

(
Ane

−ik2nx + Bne
ik2nx

)
f2n(y)

+
∞∑
n�1

(
Ane

κ2nx + Bne
−κ2nx

)
f2n(y)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for − a < x < 0, 0 < y < h2

φ3(x, y) � T0e−ik30x f30(y) +
∞∑
n�1

Tneκ3nxf3n(y) for x < −a, 0 < y < h3

(11)

where Rn, n � 0, 1, 2 . . . ,An,Bn, n � 0, I , II , 1, 2 . . . and Tn, n � 0, 1, 2 . . . are the
unknown constants to be determined. The eigenfunctions fjn(y)’s are given by

fjn(y) � cosh kjn
(
hj − y

)
cosh kjnhj

for n � 0, I , II and fjn(y) � cos kjn
(
hj − y

)
cos kjnhj

for n � 1, 2, .. (12)

where kjn for j � 1, 3 and n � 0 are the eigenvalues. These eigenvalues satisfy the
dispersion relation in the open water region given by

kj0 tanh kj0hj − ω2
/
g � 0. (13)

with kjn � iκjn for n � 1, 2 . . . and the dispersion relation has one real root kj0 and
an infinite number of purely imaginary roots κjn for n � 1, 2 . . . In the plate-covered
region, the kjn for j � 2 satisfies the dispersion relation given by

(
α0 − α1k

2
jn + α2k

4
jn

)
kjn tanh kjnhj −

(
β0 − β1k

2
jn

)
� 0. (14)

where α0 � {
1 − msω

2
(
IS
EI

)}
, α1 �

{
msω

2I
(ρg−msω2)

− S
}
, α2 � EI

(ρg−msω2)
, β0 �

ρω2

(ρg−msω2)

(
1 − msω

2 IS
EI

)
, β1 � − ρω2S

(ρg−msω2)
, I � d2/12 is the rotary inertia. The

dispersion relation as in Eq. (14) has one real root kj0 and four complex roots
kjn for n � I , II , III , IV of the form ±α ± iβ. In addition, there are an infinite
numbers of purely imaginary roots κjn for n � 1, 2 . . .

It may be noted that the eigenfunctions fjn(y)’s in the openwater and plate-covered
region satisfy the orthogonality relation as given by

〈
fjm, fjn

〉
j�1,3 � 0 for m �� n,

C ′
n for m � n,

and
〈
fjm, fjn

〉
j�2 �

{
0 for m �� n,

C ′′ for m � n,
(15)

with respect to the orthogonal mode-coupling relation defined by
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〈
fjm, fjn

〉
j�1,3 �

hj∫
0

fjm(y)fjn(y)dy, (16a)

〈f2m, f2n〉 �
hj∫

0

f2m(y)f2n(y)dy − α1

Q(k2n)

{
f ′
2m(0)f

′
2n(0)

}

+
α2

Q(k2n)

{
f ′′′
2m(0)f

′
2n(0) + f ′

2m(0)f
′′′
2n (0)

}
+

β1

P(k2n)
f2m(0)f2n(0), (16b)

where C ′
n � 2kjnhj+sinh 2kjnhj

4kjn cosh2 kjnhj
, j � 1, 3.

C ′′
n � (α0 − α1k2jn + α2k4jn)2kjnhj + (α0 − 3α1k2jn + 5α2k4jn) sinh 2kjnhj + (4β1kjn cosh2 kjnhj)

(4kjn cosh2 kjnhj)(α0 − α1k2jn + α2k4jn)
.

P(k2n) � (
α0 − α1k22n + α2k42n

)
and Q(k2n) � (

β0 − β1k22n
)
.

The constant term C ′
n, C

′′
n , P(k2n) and Q(k2n) for n � 1, 2, . . . are obtained by

substituting kjn � iκjn for j � 1, 2, 3.
In order to determine the unknown coefficients, the mode-coupling relation (16b)

is applied on the velocity potentials φ2(0, y) and φ2(−a, y) with the eigenfunction
f2m(y). Using the orthogonal property of the eigenfunction f2m(y) as in Eq. (15) and
the expressions of velocity potentials as in Eq. (11) along with the continuity of
pressure as in Eq. (7) across the vertical interface x � 0,−a, 0 < y < h2 and also
applying the edge condition as in Eq. (8) yields

R0

hj∫
0

f10(y)f2m(y)dy +
N+2∑
n�1

Rn

hj∫
0

f1n(y)f2m(y)dy

+

⎧⎨
⎩

II∑
n�0,I

(An + Bn) +
N∑
n�1

(An + Bn)

⎫⎬
⎭
[

α2

Q(k2n)
f ′
2n(0)f

′′′
2m(0) − α1

Q(k2n)
f ′
2n(0)f

′
2m (0)

+
β1

P(k2n)
f2n(0)f2m(0) − δmn〈f2n , f2m 〉

]
� −I0

hj∫
0

f10(y)f2m(y) dy. (17)

T0e
ik30a

hj∫
0

f10(y)f2m(y)dy +
N+2∑
n�1

Tne
−κ3na

hj∫
0

f1n(y)f2m(y)dy +
N∑

n�0,I ,II

(
Ane

−ik2na + Bne
ik2na

)

[
α2

Q(k2n)
f ′
2n(0)f

′′′
2m(0) − α1

Q(k2n)
f ′
2n(0)f

′
2m (0) +

β1

P(k2n)
f2n(0)f2m(0) − δmn〈f2n , f2m 〉

]
� 0. (18)

where kjm � iκjm form � 1, 2, . . . and δmn �
{
1 form � n,

0 form �� n.
Again, applying the mode-coupling relation (16b) on φ2x(0, y) and φ2x(−a, y)

with the eigenfunction f2m(y) and using the orthogonal property of the eigenfunction
f2m(y) as in Eq. (15) and the expressions of velocity potentials as in Eq. (11) along
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with continuity of velocity across the vertical interface x � 0,−a, 0 < y < h2 as in
Eq. (7) and the edge condition as in Eq. (8) yields

ik10R0

hj∫
0

f10(y)f2m(y)dy − κ1n

N+2∑
n�1

Rn

hj∫
0

f1n(y)f2m(y)dy

+

{
ik2n

II∑
n�0,I

(An − Bn) − κ2n

N∑
n�1

(An − Bn)

}

[
α2

Q(k2n)

{
℘f ′

2n(0)f
′
2m(0) + f ′

2n(0)f
′′′
2m(0)

} − α1

Q(k2n)
f ′
2n(0)f

′
2m (0)

+
β1

P(k2n)
f2n(0)f2m(0) − δmn〈f2n , f2m 〉

]
� −ik10I0

hi∫
0

f10(y)f2m(y) dy. (19)

− ik30T0e
ik30a

hj∫
0

f30(y)f2m(y)dy + κ3n

N+2∑
n�1

Tne
−κ3na

ht∫
0

f3n(y)f2m(y)dy

+

{
ik2n

II∑
n�0,I

(Ane
−ik2na − Bne

ik2na) − κ2n

N∑
n�1

(Ane
κ2na − Bne

−κ2na)

}

×
[

α2

Q(k2n)

{
℘f ′

2n(0)f
′
2m(0) + f ′

2n(0)f
′′′
2m(0)

}

− α1

Q(k2n)
f ′
2n(0)f

′
2m (0) +

β1

P(k2n)
f2n(0)f2m(0) − δmn〈f2n , f2m 〉

]
� 0. (20)

for kjm � iκjm form � 1, 2, . . .
The infinite series sums of the algebraic equations as in (17), (18), (19) and (20)

are obtained and the linear equations are truncated up to a finite number of N terms
in order to solve the system of (4N + 12) equations. The expansion formulae for
each of the three regions as in Eq. (11) consists of (4N + 12) unknown coefficients
such as Rn,Tn, n � 0, 1, 2, . . .N ,N + 1,N + 2, An,Bn, n � 0, I , II , 1, 2, . . . ,N . On
solving the system of algebraic equation, the full solution is obtained in terms of the
potential functions with the reflection and transmission coefficients is given by

Kr � |R0| andKr �
∣∣∣∣k30 tanh k30h3k10 tanh k10h1

T0

∣∣∣∣. (21)

The reflection and transmission coefficients are observed to satisfy the energy

balance relation K2
r + χK2

t � 1 where χ � k30k210 sinh 2k10h1
k10k230 sinh 2k30h3

{
2k30h3+sinh 2k30h3
2k10h1+sinh 2k10h1

}
.



Wave Transformation Due to Floating Elastic Thick Plate … 425

4 Numerical Results and Discussions

The hydroelastic behaviour of the floating thick elastic plate under the action of
incident wave is analysed based onTimoshenko–Mindlin theory in finitewater depth.
The study is performed to analyse the reflection coefficient Kr , plate deflection ζj,
bending moment |M (x)|, shear force |W (x)| and strain on the plate |ε| for floating
elastic platewith varying bottom topography. The numerical computations are carried
out for different values of water depth hj/L, plate thickness d/L, Young’s modulus
E and wave frequency ω considering E � 5GPa, ρp/ρw � 0.9, ν � 0.3 and
g � 9.8ms−2. In this analysis, the parameters such as plate length L � 500m and
wave frequency ω � 3 s−1 are considered to be fixed unless otherwise mentioned.
The water depths in reflected and transmitted regions are considered to be h1 �
100m and h3 � 100m, respectively. The accuracy of the computed numerical results
are checked with the energy relation which satisfies K2

r + χK2
t � 1.

4.1 Reflection and Transmission Coefficients

The reflection and transmission coefficients are plotted at varying wave frequency.
The study shows the variations in reflected and transmitted waves due to the changes
in bottom topography with varying wave frequency at varying water depths over
plate-covered region as shown in Fig. 2a, b.

The zeros in the reflection coefficient indicate complete transmission of waves
through the plate. The reflection and transmission coefficients value equal to unity
implies that complete reflection or transmission of waves. It is observed that there is
an increase inwavewith the decrease inwater depthwhichmay be due to the increase
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Fig. 2 a Reflection and b transmission coefficient versus wave frequency for different values of
water depths
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Fig. 3 Plate deflection along the plate length at varying a plate thickness and b water depths with
changing bottom topography

in wave height at lower water depths. At lower frequencies, there is an increase in
reflected waves, whereas at higher frequencies, transmission of waves is found to be
higher.

4.2 Surface Deflection

The surface deflection along the length of the plate for varying plate thickness and
varying water depths over plate-covered region are shown in Fig. 3a, b.

It is clearly seen that the deflection increases at the edges of the plate and the
deflection decreases with increase in plate thickness. This is due to the fact that with
the increase in the plate thickness, the plate rigidity increases and as a result the
deflection decreases. It is also observed that there is an increase in deflection with
the decrease in water depth at 70 m and it is mainly due to the rise in wave height
and reduction in wavelength as the waves approach shallower water depth.

4.3 Wave-Induced Strain on Floating Plate

The strain induced in the floating elastic plate due to the action of ocean waves are
analysed for varying plate thickness and water depth along plate-covered region in
Fig. 4a, b. The wave-induced strain decreases with the increase in plate thickness
which is mainly due to an increase in the plate rigidity. The increase in the strain with
the decrease in water depth at 70 m may be due to rise in wave height and reduction
in wavelength as the waves approach shallow water depth.
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Fig. 4 Wave-induced strain versus plate length at varying a plate thickness and b water depths
with changing bottom topography
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Fig. 5 Bending moment along the length of the plate at varying a plate thickness and b water
depths with changing bottom topography

4.4 Bending Moment of Floating Plate

The bending moment resultants due to the wave interaction with the floating elastic
plate are plotted at varying plate thickness and water depth in plate-covered region
along the plate length in Fig. 5a, b. The bending moment resultant decreases with
an increase in plate thickness mainly due to an increase in plate rigidity. It is found
that bending moment increases with the decrease in water depth at 70 m due to rise
in wave height and reduction of wavelength as the wave approaches shallow water
depth.
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Fig. 6 Shear force along the length of the plate at varying a plate thickness and b water depths
with changing bottom topography

4.5 Shear Force on Floating Plate

The shear force resultants due to thewave interactionwith the floating elastic plate are
plotted at varying plate thickness and water depth along the plate length in Fig. 6a, b.
The shear force resultants decrease with an increase in plate thickness mainly due to
the increase in plate rigidity. The shear force is found to increase with the decrease
in water depth and may be due to rise in wave height as wave’s approaches shallow
water depth.

5 Conclusion

The hydroelastic behaviour of floating elastic plate based on Timoshenko–Mindlin’s
plate theory under the action of ocean waves in finite water depths is analysed for
changing bottom topography. The mathematical model using eigenfunction expan-
sion method is developed for the freely floating elastic plate over changing bottom
topography. The conclusions drawn from the present study are as follows:

• The increase in the wave transmission is observed in the case of finite water depth
for higher wave frequency.

• Completewave transmissions are observed at certain values ofwave frequency and
significant effect due to the change in water depth in the hydroelastic behaviour
of floating elastic plate is observed which is mainly due to rise in wave height and
reduction in wavelength.

• A steep increase in hydroelastic behaviour is observed at lower water depths
in plate-covered region may be mainly due to higher difference in water depth
between the mediums of interaction.

• The plate rigidity and plate thickness play an important role in the reduction of
the hydroelastic behaviour of the plate.
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• At lower wave frequency, there is an increase in the hydroelastic behaviour of the
plate, whereas no significant hydroelastic behaviour is observed at higher wave
frequencies.
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