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Abstract In the support of all ocean-related activities, it is necessary to predict the
actual seawater levels as accurate as possible. The present work aims at forecasting
the water levels from 3 to 6 weeks in advance at three locations: Dauphin Island,
AL (Gulf of Mexico); Portland, ME (Gulf of Maine); and Cordova, AK (Gulf of
Alaska) of divergent oceanic environment along theUScoastline usingneuro-wavelet
technique (NWT) which is a combined approach of wavelet transform (WT) and
artificial neural network. For this, time series of water-level anomaly (difference
between the observed water level and harmonically predicted tidal level) was used to
develop the NWT models at respective stations to predict the water levels for three
different lead times from 3 to 6 weeks ahead. For this, hourly observed water levels
alongwith harmonic tideswere obtained from theNationalOceanic andAtmospheric
Administration of USA. The time series of water-level anomaly was decomposed
using discrete wavelet transform (DWT) into low (approximate) and high (detail)
frequency components. Further, these approximate coefficients were decomposed
up to the desired level of decomposition (third and fifth levels) by multiresolution
analysis of WT in order to provide more detailed and approximate components
which ultimately provides relatively smooth varying amplitude series to develop the
NWTmodels. Thus, the effect of autocorrelation in time series analysis was removed
by decorrelating it using WT. Neural networks were trained with these decorrelated
approximate and detailedwavelet coefficients. The outputs of networks during testing
were reconstructed back using inverse DWT. Network-predicted anomaly was then
added to harmonic tidal level to predict thewater levels. Performance ofNWTmodels
was judged by drawing the water-level plots and other error measures. The NWT
models performed reasonably well for all forecasting intervals at all the locations.
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1 Introduction

Accurate information of seawater levels and their variations is required for planning,
construction, operation, and maintenance works of various coastal as well as off-
shore structures. Generally, variations in seawater level are large enough to disturb
the day-to-day operations of different coastal structures in nearby areas, particularly
in shallowwater depth aswell as safety ofmaritime activities and human lives. It gen-
erates the necessity of accurate prediction of seawater levels. Traditionally, harmonic
analysis is used for tide predictions, but often the values of predicted tide and themea-
sured (observed) water levels are not identical [1]. In recent years as an alternative
modeling approach to overcome the drawbacks of traditional methods, researchers
have applied the domain of data-driven techniques in which applications of artificial
neural networks and genetic programming are predominant. Though these techniques
proved their efficiency in prediction accuracy when modeling using univariate time
series is concerned the competency of these techniques becomes a question as ‘phase
lag’ or ‘time lag’ occurs in most of all the forecasts. This can be attributed to the
‘effect of autocorrelation’ which inherently occurs in any univariate time series mod-
eling. Many researchers earlier have used the same ‘seawater anomaly’ to predict
the correct seawater-level anomaly, and from the predicted anomaly, further they had
predicted the tides. But the use of seawater-level anomaly as input tends toward the
univariate time series modeling and effect of autocorrelation plays its role which ulti-
mately results through a ‘time lag or phase lag’ in prediction and then tide prediction
exercise becomes ineffective one.

Captivating this as motivation, the present study aims in predicting the accurate
seawater levels by removing the prediction lag not only at short lead time intervals
but long as 3–6 weeks in advance at three locations: Dauphin Island, AL (Gulf
of Mexico); Portland, ME (Gulf of Maine); and Cordova, AK (Gulf of Alaska) of
divergent oceanic environment along theUS coastline using neuro-wavelet technique
(NWT) which is a combined approach of wavelet transform (WT) and artificial
neural network. For this, time series of water-level anomaly (difference between the
observed water level and harmonically predicted tidal level) was used to develop
the NWT models at respective stations to predict the water levels for different lead
times: 3 weeks (3w), 4 weeks (4w), 5 weeks (5w), and 6 weeks (6w) ahead. For
this, hourly observed water levels along with harmonic tides were obtained from the
National Oceanic andAtmospheric Administration of USA. The time series of water-
level anomaly was decomposed using discrete wavelet transform (DWT) into low
(approximate) and high (detail) frequency components. Further, these approximate
coefficients were decomposed up to the desired level of decomposition (third and
fifth levels) by multiresolution analysis of WT in order to provide more detailed
and approximate components which ultimately provides relatively smooth varying
amplitude series to develop the NWT models. Thus, the effect of autocorrelation
in time series analysis was removed by decorrelating it using WT. Neural networks
were trained with these decorrelated approximate and detailed wavelet coefficients.
The outputs of networks during testing were reconstructed back using inverse DWT.
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Network-predicted anomaly was then added to harmonic tidal level to predict the
water levels. Performance of NWT models was judged by drawing the water-level
plots and other error measures. The NWT models performed reasonably well for all
forecasting intervals at all the locations.

2 Study Area and Data

For the present work, three tidal stations, namely Dauphin Island, AL (Gulf of Mex-
ico); Portland,ME (Gulf ofMaine); andCordova,AK (Gulf ofAlaska), were selected
which are from different oceanic and meteorological environments and maintained
by theNationalWater Level Program (NWLP) of National Oceanic andAtmospheric
Administration (NOAA) of the USA. Hourly observed water-level data from the year
2000 to 2005 along with harmonic tidal data was used to train and test the model. The
locations of these stations are depicted in Table 1 and Fig. 1. It can be observed from
Fig. 1 that, station Dauphin Island is inside the Gulf of Mexico region which experi-
ences very severe hurricane events every year from June to November and where the
effect of hurricane winds will be of greater extent on water levels. On the other hand
station Portland, ME in Gulf ofMaine facing an open sea which experiences extreme
cold weather conditions along with wind forcing due to tropical storms. The differ-
ence between maximum and minimum tidal levels at these locations also indicates
that there is a large variation in water levels. The third station Cordova, AK, which
is in Gulf of Alaska experiences a diverse wind condition than the previous two sta-
tions as it is located in the different meteorological environments than those previous
stations. Thus, in the present work, the applicability of the neuro-wavelet technique
in various oceanic conditions will be judged characteristically for removing the lag
in prediction as well as for accurate prediction at higher lead time intervals. Readers
are directed to ‘http://tidesandcurrents.noaa.gov’ for further details.

Table 1 Location of tidal stations

Sr. No. Station Location Maximum
WL (m)

Minimum WL
(m)

Difference

1 Dauphin AL
8735180

30° 15′N,
88° 4.5′W

2.136 −0.405 2.541

2 Portland ME
8418150

43° 39.4′N,
70° 14.8′W

3.85 −0.948 4.798

3 Cordova AK
9454050

60° 33.5 N,
145° 45.1 W

5.172 −1.245 6.417

http://tidesandcurrents.noaa.gov
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Fig. 1 Study area (Gulf of Mexico, Gulf of Maine, and Gulf of Alaska)

3 Neuro-Wavelet Technique

As mentioned in the introduction, a neuro-wavelet technique (NWT) is the combi-
nation of artificial neural network and the discrete wavelet transform. The discrete
wavelet transform analyzes the frequency of the signal with respect to time at dif-
ferent scales. It decomposes time series into low (approximate) and high (detail)
frequency components. The decomposition of approximate can be carried out fur-
ther up to desired multiple levels in order to provide more detailed and approximate
components which provides relatively smooth varying amplitude series. The neural
network is thus trained with decorrelated approximate and detailed wavelet coeffi-
cients. The outputs of networks during testing are generally reconstructed back using
inverse DWT. Figure 2 shows the generalized algorithm for the neuro-wavelet model.
The total data set of observed water-level anomaly values is filtered into approximate
(CA1) and detailed (CD1) components at the first decomposition level. Further, first
approximate coefficient (CA1) is filtered into approximate (CA2) and detailed (CD2)
components in the second-level decomposition. At the third-level decomposition, the
second approximate coefficient (CA2) is again decomposed in approximation (CA3)
and detailed (CD3) components. Finally, for third-level decomposition system, three
detailed components and one approximate component are used to train the neu-
ral network (Fig. 3). This is called the multiple-level decomposition using wavelet
transform. As authors have successfully applied the NWT for forecasting the ocean
waves, readers are directed to Dixit et al. [2–4] for further details of neuro-wavelet
technique alongwith the details of artificial neural network (ANN) andwavelet trans-
forms (WTs). The choice of wavelet transformation is in fact an important part of
wavelet analysis and depends very much upon both the properties of the signal under
investigation and what the investigator is looking for.
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Fig. 2 Algorithm of NWT

Fig. 3 Multilevel
decomposition by wavelet
transform

Asmentioned earlier, instead of observedwater-level time series, the time series of
water-level anomaly (difference between the observed water level and harmonically
predicted tidal level) is used in the present work to develop the NWT models at
the respective stations to predict the water levels for different lead time intervals.
For this, time series of water-level anomaly was decomposed using discrete wavelet
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Fig. 4 Flowchart for water-level modeling

transform (DWT) into low (approximate) and high (detail) frequency components
as mentioned earlier up to third-level (3d) and fifth-level (5d) decomposition system
wherever necessary. This decomposition helps to remove the effect of autocorrelation
in the time series analysis to get the outputs. Thus, the network-predicted anomaly
was then added to harmonic tidal level to predict the water levels. This methodology
is elaborated further in Fig. 4 also.

It was noticed by the authors in earlier attempt of waves using NWT, that higher
order Daubechies wavelets gives better results for higher lead time intervals [2, 3],
to forecast the water level anomaly from 3 to 6 week ahead Daubechies wavelet
‘db35’ is used in the present work to develop all the models. Though the available
water-level anomaly series is of hourly basis, for the present study one time step
of 1 week is used for model development. The model for 3 weeks ahead forecast
consists of four values as inputs. The first input is the anomaly for the current time
step ‘t’, the second input is the anomaly obtained at 1 week behind the current time
step, i.e., ‘t − 1w’, and similarly, the third input is the anomaly obtained at 2 weeks
behind the current time step, i.e., ‘t − 2w’, while fourth input consists the anomaly
obtained at 3 weeks behind the current time step, i.e., ‘t − 3w’. Therefore, the four
inputs were: t, t −1w, t − 2w, and t − 3w where the output is the 3 weeks ahead
water-level anomaly, i.e., ‘t +3w’. Though the forecasting interval varies from 3 to
6 weeks specifically to judge the performance of NWT, a number of inputs were kept
the same while developing all the models. Thus, model for 4 weeks ahead forecast
consists the same inputs: t, t − 1w, t − 2w, t − 3w, and output will be 4 weeks ahead
water-level anomaly value; likewise, 5 weeks ahead and 6 week ahead also include
the same inputs, but output will be the 5 and 6 weeks ahead water-level anomaly
values. These inputs and outputs of the various models can be expressed as
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Input Output

For 3 weeks ahead model: t, t − 1w, t − 2w, t
− 3w

t+3w

For 4 weeks ahead model: t, t − 1w, t − 2w, t
− 3w

t+4w

For 5 weeks ahead model: t, t − 1w, t − 2w, t
− 3w

t+5w

For 6 weeks ahead model: t, t − 1w, t − 2w, t
− 3w

t+6w

Instead of taking serially values of water-level anomaly on hourly basis with
continuous time steps like ‘t, t − 1, t − 2 h…’ as inputs, here the specific time steps
as ‘t, t − 1w, t − 2w, t − 3w’were selected purposely as inputs which indirectly helps
to break the autocorrelation effect in removal of phase lag [5, 6]. The models were
calibrated with 70% of the total data, and the remaining data is used for the testing.
Separate models were developed for 3w, 4w, 5w, and 6w ahead forecasts. Separate
three-layered feedforward networks are developed for both approximate and detailed
components of thewave data alongwithLevenberg–Marquardt (LM) as an algorithm,
‘log-sigmoid’ and ‘linear’ as transfer functions. Ultimately, the performance of NWT
models was judged by drawing the water-level plots and other error measures like
correlation coefficient (CE), root-mean-squared error (RMSE), mean absolute error
(MAE), and scatter index (SI) between the observed and corrected water levels (after
adding/subtracting the predicted water-level anomalies from the tidal levels).

4 Results and Discussions

As mentioned earlier, all the developed models are tested with the unseen data sets
and their performance is judged by the traditional error measures like root-mean-
squared error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE),
scatter index (SI), and correlation coefficient ‘r’ along with the water-level plots and
scatter plots. Tables 2 and 3 showcase the results and error measures of Portland
and Cordova, respectively, where the third-level decomposition (3d) system was
used to predict the water-level anomaly from 3 to 6 weeks ahead in time. From
Table 2, it is clear that for Portland for all the four time intervals, i.e., from 3 to
6 weeks, ‘r’ values are above 0.99 which showcases the superiority of NWT over the
traditional techniques. Also, range of RMSE varies from 0.0987 to 0.1104 for 3–6w
ahead forecasts, whereas the range of MAE varies from 0.0093 to 0.1452 for 3–6 W
forecasts, respectively. Higher values of CE and lower values of SI again indicate the
good performance of developed NWmodels. Like Portland, NWTmodels developed
for Cordova also proclaimed better quality results for all the time intervals from 3 to
6 weeks (Table 3). Figures 5 and 6 present the observed and predicted water levels
at Portland and Cordova stations, respectively. From these figures, it is evident that
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Table 2 Results of Portland

Forecasting
interval

Decomposition
level

r RMSE MAE CE SI

3w 3d 0.999 0.0987 0.0093 0.99 0.001

4w 3d 0.998 0.1001 0.0998 0.98 0.099

5w 3d 0.995 0.1098 0.0121 0.978 0.095

6w 3d 0.992 0.1104 0.1452 0.971 0.0910

Table 3 Results of Cordova

Forecasting
interval

Decomposition
level

r RMSE MAE CE SI

3w 3d 0.999 0.0977 0.0089 0.99 0.001

4w 3d 0.999 0.0976 0.0092 0.99 0.001

5w 3d 0.998 0.0999 0.0105 0.97 0.009

6w 3d 0.994 0.1120 0.0113 0.96 0.010

Fig. 5 Six weeks ahead forecast at Portland by third-level decomposition

the phase lag is completely removed in the prediction and due to which prediction
accuracy is improvised up to 0.99: r at higher lead time interval also.

But at Dauphin, the results obtainedwere not in agreementwith these two stations.
It can be seen from Table 4 that when third-level decomposition (3d) system was
used, as the lead time interval increased from 3 to 6 weeks, ’r’ values decreased from
0.904 to 0.834, respectively. Therefore, to improvise the results for higher precision,
it was decided to decompose the input time series up to fifth-level decomposition
(5d) as higher-order decomposition facilitates more number of filters than the lower
one and thus helps to remove the autocorrelation effect in the input time series which
exactly helps to improve the prediction accuracy [3]. Table 4 also presents the ‘5d’
results for all the four lead time intervals from 3 to 6 weeks, and it can be said
from these results that ‘5d’ system had dominated the ‘3d’ system as values of ‘r’
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Fig. 6 Six weeks ahead forecast at Cordova by third-level decomposition

Table 4 Results of Dauphin Island

Forecasting
interval

Decomposition
level

r RMSE MAE CE SI

3w 3d 0.904 0.104 0.011 0.900 0.87

5d 0.989 0.080 0.002 0.970 0.36

4w
24 h

3d 0.890 0.115 0.018 0.893 0.92

5d 0.960 0.086 0.008 0.918 0.45

5w 3d 0.871 0.108 0.021 0.826 1.12

5d 0.952 0.089 0.011 0.896 0.76

6w 3d 0.834 0.210 0.028 0.743 1.20

5d 0.911 0.098 0.019 0.820 0.87

improved from 0.904 to 0.989 for 3w, 0.890 to 0.960 for 4w, 0.871 to 0.952 for 5w,
and 0.834 to 0.911 (6w) ahead forecasts. As not only ‘r’ values were improvised
but all other error measures values also improved with better range. This indicates
the competency of NWT in forecasting the water levels at comparatively longer lead
times from 3 weeks (504–1176 h or ¾th of a month) to 6 weeks (1176 h or 1½th of
a month). It is evident from all 5d results in Table 4 that the range of SI is decreased
from 3 to 5d level. Also, it can be said that as decomposition level increased the
model accuracy is increased at higher lead time intervals with reduced values of SI.
This authenticated the superiority of higher-level decomposition than the lower ones
in precise prediction a time series. Figures 7 and 8 represent the performance of 3 and
5d decomposition models and endorse the superiority of higher-level decomposition
on lower-level decomposition system clearly. Also, it is clear from all these figures
that phase lag is removed completely from prediction.

These all results depict the excellent performance of the developedNWTmodels at
each station. Though all the three stations Dauphin, Portland, and Cordovawere from
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Fig. 7 Six weeks ahead forecast at Dauphin by third-level decomposition

Fig. 8 Six weeks ahead forecast at Dauphin by fifth-level decomposition

different oceanic environments, NWT proved its proficiency at all the stations for all
the lead time intervals with ‘no phase lag’. Thus, NWT is successful in predicting
the accurate water levels at longer lead time as well as with highest precision with
all error measures.

Hence, it can be said that the application of NWT is proved to be worthy in the
diversified oceanic environments as well.

5 Conclusions

This paper presents the application of neuro-wavelet technique (NWT) for forecast-
ing seawater levels at a different lead time interval from 3 to 6 weeks ahead at three
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US coastline stations, namely Dauphin, Cordova, and Portland. The objective of the
work is to judge the performance of neuro-wavelet technique in removing the pre-
diction lag water-level forecasting and to improve the prediction accuracy at high
lead time intervals in three complete different environments.

Therefore, a combination of wavelet transform and artificial neural networks
(neuro-wavelet technique, NWT) when applied for seawater level at three US sta-
tions, it is observed that the phase lag in prediction is removed completely. NWT is
successful in maintaining the prediction accuracy at higher lead time intervals also. It
is confirmed that higher-level decomposition is quite useful for improvising the pre-
diction accuracy at higher lead time intervals. From all the above-mentioned results,
it can be said that the performance of neuro-wavelet technique is highly satisfactory
in different oceanic environments. As per authors’ best knowledge, NWT is applied
very first time to predict the seawater level in a view to remove the phase lag and
to improve the prediction accuracy as high lead time intervals up to 6 weeks ahead.
Taking into account all these facts, it can be said that the application of NWT for
accurate prediction of oceanic water levels is pretty useful and can be used in time
series predictions successfully as both the major impediments about the ‘timing lag’
problem and ‘prediction’ at higher lead can be overcome by neuro-wavelet technique.
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