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Abstract Mooring systems ensure the safety of structures near the shore like float-
ing breakwaters and aquaculture cages by keeping them in position. Their design has
to either provide enough flexibility to allow large displacements or enough strength
to withstand the hydrodynamic loads while restraining the structural motion. The ac-
curate determination of the motion of the moored-floating structure and the resulting
tension forces in the cables is, therefore, of high significance to produce a safe and
economical design. At the same time, the dynamics of the cables can be neglected
in the early design process due to their minor contribution to the forces acting on the
structure. Hence, an analytical solution for the cables can be found, which provides a
fast solution to the problem. The mooring model is implemented in the open-source
CFD model REEF3D. The solver has been widely used to study various problems
in the field of wave hydrodynamics. It solves the incompressible Reynolds-averaged
Navier–Stokes equations for two-phase flows using a finite-difference method and a
level set method to model the free surface between water and air. Floating structures
are represented by an additional level set function. Its motion is calculated from the
Newton and Euler equations in 6DOF and in a non-inertial coordinate system. The
fluid–structure interaction is solved explicitly using an immersed boundary method
based on the ghost cell method. The application shows the accuracy of the solver
and effects of mooring on the motion of a floating structure.
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1 Introduction

Coupled fluid–structure interaction plays a major role in the fields of coastal and
ocean engineering. Most applications require the solution of a two-phase problem
as well as an accurate determination of rigid body dynamics. Some examples are
floating breakwater, aquaculture cages or ship motion prediction. As a first attempt,
fluid–structure interaction problems based on theNavier–Stokes equations have been
calculated with Arbitrary Lagrangian–Eulerian methods [18]. In this approach, the
interface between solid and fluid is tied to the numerical mesh for which reason the
mesh needs to be adjusted dynamically. The re-meshing procedure can have a detri-
mental effect on the numerical accuracy and stability, especially for more arbitrary
solid body movements. A way to avoid constant re-meshing is the usage of dynamic
overset grids. The method consists of a Eulerian mesh for the fluid and a overset
mesh which follows the movement of the solid and overlaps with the base mesh. A
stable scheme for establishing the connections between the overset mesh points and
the underlying grid points in the overlapping region has to be introduced (see, e.g.
[7]). As an alternative, a direct forcing immersed boundary method was developed
for describing the fluid–structure interaction [26]. This immersed boundary method
requires just one Eulerian grid, and the interaction is incorporated by an additional
forcing term in the Navier–Stokes equations. Special attention was also given to the
field extension method [24], which accounts for solid cells becoming fluid cells and
vice versa. With the field extension, unphysical values for the pressure and the ve-
locities are avoided. More recently, [6] presented a level set-based two-phase flow
solver for the simulation of floating structures. In this work, an extension of the local
directional immersed boundary method [2] using the field extension method is pre-
sented. The geometry of the solid is described by a level set function. Hence, forces
and moments can be calculated without explicitly defining the intersections between
the surface mesh and the grid of the flow domain. Like other immersed boundary
methods, the solid body is immersed into the fluid and re-meshing or overset grids
are avoided. The presented results are all obtained with a weakly coupled scheme. In
combination with the robust two-phase flow solver REEF3D [4], this results in a sta-
ble fluid–structure interaction model. If the motion of the floating structure is large,
mooring dynamics can have a significant impact on the response of the structure. The
general solution for the dynamics of mooring systems has to be found numerically
due to the underlying nonlinear system of equations. Several discretisation methods
have been developed, like the finite differences [13] and finite element-based meth-
ods [1] or the lumped mass method [12]. A general overview of the methods can be
found in [9]. For structures with small responses in mild environmental conditions,
a quasi-static mooring model is suitable. By neglecting the dynamic effects of the
mooring system, dependencies of mass, damping and fluid acceleration on the sys-
tem are omitted. The mooring line shape and tension can then be found analytically
as shown by [10]. It has the advantage of computational efficiency and simplicity
of implementation. Therefore, the analytical approach is taken into account in this
paper as a starting point for more advanced models in further research. In Sect. 2,
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the CFD model REEF3D is shortly described. Afterwards, details about the imple-
mented 6DOF algorithm and mooring model are given in Sects. 2.1 and 2.2. The
application of the solver is presented in Sect. 3. Final remarks and prospects for
further developments can be found in Sect. 4.

2 Numerical Model

The basic equations of the numerical model arise from the conservation law of
mass and momentum for incompressible fluids. Using tensor notation, the resulting
equations read for a whole-domain formulation

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ u j
∂ui
∂x j

= − 1

ρ

∂p

∂xi
+ ∂

∂x j

(
ν ·

(
∂ui
∂x j

+ ∂u j

∂xi

))
+ gi , (2)

with ui the velocity components, ρ the fluid density, p the pressure, ν the kinematic
viscosity and g the gravity acceleration vector. Here, the Reynolds-averaged Navier–
Stokes (RANS) equations are solved by replacing the fluid properties with time-
averagedvalues and add turbulent viscosity to ν. The additional viscosity is calculated
with a modified k-ω model as given in [4].

The spatial domain is discretised by a finite-difference method (FDM) on a Carte-
sian grid. System (1), (2) is solved on a staggered grid to avoid decoupling of pressure
and velocity. Convection terms are evaluated in a non-conservative form because the
violation of the mass conservation during an explicit solution procedure might cause
numerical instabilities in a conservative formulation [21]. For this purpose, the fifth-
order accurate weighted essentially non-oscillatory (WENO) scheme of [15] adapted
to non-conservative terms by [27] is applied. The discretised system is solved using
Chorin’s projection method for incompressible flows [8]. The pressure is calculated
from a Poisson equation and by applying the fully parallelised BiCGStab algorithm
[23]. For progressing in time, the third-order accurate Total Variation Diminishing
(TVD) Runge–Kutta scheme [20] is employed. Adaptive time stepping controls the
time stepping according to the required CFL condition.

The location of the free water surface is represented implicitly by the zero level set
of a smooth signed distance function Φ(x, t) which is defined as the closest distance
to the interface [16]. Its motion can be described by the advection equation

∂Φ

∂t
+ u j

∂Φ

∂x j
= 0. (3)

The convection term in (3) is discretised by the fifth-order accurate Hamilton–
Jacobi WENO method of [14]. In order to conserve the signed distance property,
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the level set function is reinitialised after each time step. Here, the PDE-based reini-
tialisation equation of [21] is taken into account. The material properties of the two
phases are finally determined for thewhole domain in accordancewith the continuum
surface force model of [5] (see [4] for details).

2.1 6DOF Algorithm

The geometry of the rigid body is described by a primitive triangular surface mesh
neglecting connectivity. For this purpose, the intersections of the surface mesh with
the underlying Cartesian grid are determined with the ray-tracing algorithm of [25].
It efficiently provides inside–outside information and, for each grid point, the short-
est distance along the coordinate axis to the body describing triangles. Afterwards,
the mentioned reinitialisation algorithm of [17] is applied to obtain signed distance
properties for a level set function in the vicinity of the solid body. This has the advan-
tage that the intersections of the surface mesh with the underlying grid do not have to
be calculated explicitly. The obtained level set function can be used for calculating
the six force and moment components of the fluid on the body as given by [3].

Any point relating to a rigid body can be described by the location of the centre
of gravity and orientation of the body in the inertial coordinate system. Here, the
orientation is described by Euler angles which results in the position vector

x = (
x1, x2, x3, x4, x5, x6

)T
, (4)

where the first three components are the coordinates of the centre of gravity and the
last three components are the Euler angles φ, θ and ψ . The calculation of the motion
of a body in the inertial system would include several time derivatives of moments
which can be avoided by applying a coordinate transformation to the Euler equations.
The rotation components in the principal coordinate system of the body reads then

ξ = (
ξ1, ξ2, ξ3

)T
. (5)

In this paper, it is assumed that the principal axes of the body are known. Thus,
the inertia tensor reduces to the three principal moments of inertia which yields

I =
⎡
⎣Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦ =

⎡
⎣mr2x 0 0

0 mr2y 0
0 0 mr2z

⎤
⎦ , (6)

withm the mass of the body and rx , ry and rz the distances of a point from the centre
of gravity along the x-, y- and z-direction. Since the fluid flow is calculated in the
inertial system, the acting moments in this systemMx have to be transformed to the
non-inertial system by applying the transformation [11]
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Mξ = (
M1,ξ , M2,ξ , M3,ξ

)T = J−1
1 · Mx, (7)

withMξ the moments in the system of the body and J−1
1 the rotation matrix (s stands

for sin and c for cos)

J1 =
⎡
⎣cx6cx5 −sx6cx4 + cx6sx5sx4 sx6sx4 + cx6cx4sx5
sx6cx5 cx6cx4 + sx4sx5sx6 −cx6sx4 + sx5sx6cx4
−sx5 cx5sx4 cx5cx4

⎤
⎦ . (8)

Hence, the dynamics of the rigid body can be described by the three equations of
translational motion

⎛
⎝ẍ1
ẍ2
ẍ3

⎞
⎠ = 1

m
·
⎛
⎝Fx1,x

Fx2,x

Fx3,x

⎞
⎠ , (9)

where Fx are the acting forces in the inertial system and the three Euler equations in
the non-inertial system are [11]

Ix ξ̈1 + ξ̇2ξ̇3 · (Iz − Iy) = M1,ξ ,

Iy ξ̈2 + ξ̇1ξ̇3 · (Ix − Iz) = M2,ξ ,

Iz ξ̈3 + ξ̇1ξ̇2 · (Iy − Ix ) = M3,ξ . (10)

The position of the body can be calculated analytically by integrating (9) twice.
System (10) is solved explicitly with the second-order accurate Adams–Bashforth
scheme which reads for a generic variable in the new time step q(n+1)

q̇(n+1) = q̇(n) + Δt

2
· (
3q̈(n+1) − q̈(n)

)
, (11)

q(n+1) = q(n) + Δt

2
· (
3q̇(n+1) − q̇(n)

)
. (12)

The Euler angles in the body system cannot be calculated from the body angular
velocities due to missing physical interpretation [11]. Instead, the angular velocities
are transformed back using the rotation matrix [11] (s stands for sin, c for cos and t
for tan)

J2 =
⎡
⎣1 sx4t x5 cx4 + cx6t x5
0 cx4 −sx4
0 sx4/cx5 cx4/cx5

⎤
⎦ . (13)

Afterwards, the necessary Euler angles are calculated from (12) in the inertial
frame. It might be noticed that (13) has a singularity at x5 = ±π

2 . In practice, this
angle does not occur for typical floating structures in ocean engineering.
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In this paper, the fluid–structure coupling is arranged in a weak form without sub-
iterations. First, acting forces are calculated from the fluid, and the body position is
determined as described above. Afterwards, the fluid properties are updated to the
new time level using the ghost cell immersed boundary method [2] for incorporating
the boundary conditions of the solid. For both the velocities and the pressure, these
conditions are calculated from the motion of the body with respect to its centre of
gravity [3]. Even though the weak coupling has been reported to lead to numerical
stability problems for complex cases (e.g. [6] or [7]), the current implementation
shows good numerical stability throughout the range of application. However, pres-
sure oscillations can occur in the vicinity of the solid body because of solid cells
turning into fluid cells. The fresh fluid cells lack physical information about veloci-
ties from previous time steps. It is solved by implementing the field extensionmethod
of [22, 24] adapted to the ghost cell immersed boundary method.

2.2 Mooring Model

The mooring systems considered in this paper consist of a number of cables which
are attached to the floating structure at arbitrary points. Their lower ends are anchored
at the seabed. In order to avoid high vertical forces on the anchor, a part of the cable
lies on the bottom and damps the vertical motion of the structure. An illustration
of this configuration can be seen in Fig. 1. The general equations describing the
unsteady motion of a cable are nonlinear and have to be solved numerically. For
practical purposes, an analytical solution can be found if static conditions and no
current forces are assumed. Following the derivation of [10], a catenary equation,
describing the shape of a line, arises as

z(x, y) = Fh

w
·
(
cosh

(
w

Fh
·
√
x2 + y2

))
, (14)

with Fh the horizontal force, which is constant along the cable, and w the weight per
unit length of the cable in water. The tension forces Ft are calculated as

x

z

Anchor point

Mooring point

dz

dxy

Fh

Fig. 1 Definition of a mooring line in two dimensions



Simulation of Floating Bodies in Waves and Mooring … 679

Ft (z) = Fh + wdz + (z − dz) · (w + ρgA), (15)

where g is the acceleration due to gravity and A is the cross-section area of the cable.
The area is assumed to be constant; i.e. elasticity of the material is neglected. In the
current algorithm, the effect of the mooring lines on the dynamics of the structure is
taken into account explicitly in a weakly coupledmanner. For this purpose, the forces
of each cable acting on the structure have to be calculated from the known distance
dxy from the time-invariant anchor point to the current position of themooring point.
The corresponding equation is written as [10]

dxy =
√
dx2 + dy2 = l − dz ·

√
1 + 2 · Fh

wdz
+ Fh

w
cosh−1

(
1 + wdz

Fh

)
, (16)

which provides a function transcendental in Fh . A solution can be determined using
the Newton–Raphson algorithm

F (k+1)
h = F (k)

h − f (F (k)
h )

f ′(F (k)
h )

, k = 1, 2, . . . . (17)

Once, a converged solution for Fh has been found, the forces at each mooring
point X,Y, Z result from

X = Fh cos

(
tan−1

(
dy

dx

))
, (18)

Y = Fh sin

(
tan−1

(
dy

dx

))
, (19)

Z = Fhdz ·
√
1 + 2Fh

wdz
, (20)

andmoments by multiplication with the appropriate distances to the centre of gravity
of the body.

x

z

20 m
1.93 m 3.87 m

7 m

0
.8

m

Fig. 2 Setup for the test case of a 2D barge in waves
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3 Results for a 2D Barge in Waves

The capability of the presented 6DOF algorithm is presented for a rigid floating barge
in two dimensions under the effect of waves with and without mooring. The results
are compared to the experimental data of Ren et al. [19]. The laboratory experiment
was performed in a wave flume of 20m length, 0.8m height and 0.44mwidth, which
is modelled with the numerical wave tank of REEF3D [4]. The barge is 0.30m long
and 0.2m high. Since the gap between body and flume walls is small, the case can
be considered as 2D, with surge, heave and pitch motion. The initial position of the
barge is defined by its centroid at (x, z) = (7.0m, 0.4m) (see Fig. 2). Its density
is 500 kg/m3. The water depth in the tank is d = 0.4m. The incoming waves are
regular and have a height of 0.04m, a period of T = 1.2 s andwavelength of 1.936m.
In the calculations, these are modelled using a second-order Stokes wave theory. A
numerical beach is applied in order to avoid wave reflections at the outlet. For the
discretisation, a cell size of 0.005m is chosen which equals 640,000 cells.

3.1 Free-Floating Condition

The results from the free-floating simulation are comparedwith the experiment for the
period between t/T = 6.36s and t/T = 12 s. The wave elevation shown in Fig. 3a
shows a good agreement with the experimental data, which confirms the chosenwave
theory formodelling thewaves. In accordancewith the quality of the incomingwaves,
the distribution of the pitch motion predicts accurate results for the most part of the
simulation. Small undershoots are given which correspond to underpredicted wave
troughs at t/T = 9.3 and t/T = 11.3 (see Fig. 3b). Also, underresolved damping
effects from vortex detaching at the immersed edges might influence the accuracy
of the pitch motion. The frequency of the heave motion follows the frequency of
the experimental data accurately. However, the amplitudes of this motion are 10%
smaller in the simulations. This might be caused by the coupled physics of heave and
pitch motion. In contrast, the surge motion is predicted much better, showing a good
accordance of the drift with the experiments. This drift is mainly caused by inertia
effects driven by the wave motion which is accurately predicted here (Fig. 3b).

3.2 Moored Condition

The effect of mooring and capability of the presented mooring model are shown for
the 2D barge in waves. For this purpose, two mooring lines are fixed to the body at
z = 0.4m (Fig. 4). The cables are 1.6m long, 0.01m thick and have a weight per unit
length of w = 4kg/m in water. A comparison to the motion from above is ensured
by increasing the weight of the free-floating body resulting in the same draft as the



Simulation of Floating Bodies in Waves and Mooring … 681

(a) Wave elevation at x = 5.5 m. (b) Pitch motion.

(c) Heave motion. (d) Surge motion.

Fig. 3 Numerical results of the two-dimensional barge in comparison to the experiment data

Fig. 4 Tension force distribution in the mooring cables during a wave trough situation
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(a) Heave Motion. (b) Surge motion.

Fig. 5 Numerical results of the free-floating and moored-floating two-dimensional barge

initial condition. As result, the heave and surgemotions over time are shown in Fig. 5.
The vertical motion of the structure is significantly damped by installing the mooring
system. Further, surging is prevented almost completely.

4 Conclusion

This paper gives an overview of the implementation of a weakly coupled 6DOF
algorithm in the open-source CFD code REEF3D. The floating body is represented
by the combination of a surfacemesh, a level set function and the ghost cell immersed
boundarymethod. This results in amethod that does not require re-meshing or overset
grids. In addition, a simple mooring model is presented which provides analytical
solutions for the shape and forces of mooring systems. The application confirms the
accuracy of REEF3D in modelling fluid–structure interactions. The mooring model
is able to provide the damping effects on the motion of floating bodies. However, for
more advancedmooring applications, like tension-leg platforms and extremeweather
situations, a dynamic model is preferable.
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