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Abstract. In big data age, flexible cloud service greatly enhances pro-
ductivity for enterprises and individuals in different applications. When
cloud access is restricted, data owner could authorize a proxy to process
the data, and upload them to enjoy the powerful cloud storage service.
Meanwhile, outsourced data integrity breach becomes a serious security
issue for cloud storage. Identity Based Provable Data Possession (PDP)
as a critical technology, could enable each data owner to efficiently verify
cloud data integrity, without downloading entire copy and complicated
public key certificate management issue. But it remains a great challenge
for multiple data owners to efficiently and securely perform batch data
integrity checking on huge data on different storage clouds, with proxy
processing. Yu et al. recently proposed an Identity-Based Public Auditing
for Dynamic Outsourced Data with Proxy Processing (https://doi.org/
10.3837/tiis.2017.10.019), which tried to address this problem. In this
article, we first demonstrate that this scheme is insecure since malicious
clouds could pass integrity auditing without original data. Additionally,
malicious clouds are able to recover the proxys private key and thus
impersonate proxy to arbitrarily forge tags for any modified data. Sec-
ondly, in order to repair these security flaws, we propose an improved
scheme to enable secure identity based batch public auditing with proxy
processing. Thirdly, the security of our improved scheme is proved under
CDH hard problem in the random oracle model. The complexity analy-
sis of its performance shows better efficiency over identity-based proxy-
oriented data uploading and remote data integrity checking in public
cloud on single owner effort on a single cloud, which will benefit big data
storage if it is extrapolated in real application.
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1 Introduction

In the age of Big Data with critical Data that is big, powerful cloud storage
increasingly contributes to individuals life and enterprises business, by offering
flexible and accessible data management services. From IDG report, 127 billion
USD is spent globally on public cloud in 2017, with data storage size swelling to
trillion gigabytes in 2025 [1]. For infrastructure, application and business pro-
cessing service, cloud technology increasingly makes critical contribution, shift-
ing to approximately 28% of the total market revenue in 2021 [2]. By managing
huge data on different storage clouds, a great number of data owners enjoy cus-
tomized applications for their business or utilities. When the access to cloud
is restricted or owners’ mobile devices are of limited computation capacity, a
proxy with authorizations could perform data processing tasks before outsourc-
ing them to remote cloud. With some protections from privacy preserving tech-
nologies [3], data owners still have to confront with security risks of outsourcing
data integrity, due to system failures and external attacks. Meanwhile, cloud
storage providers might have the incentives to delete cloud data and keep the
accident news off their owners, for the sake of cost and reputations. Therefore,
it is imperative to enable secure and efficient remote integrity checking for mul-
tiple owners, especially for cloud data which is originally processed by owners
authorized proxy in the access restricted scenario.

Provable Data Possession (PDP) [4] as a critical technology, which is pro-
posed by Ateniese et al., could allow efficient data integrity checking without
having to download the entire data copy. Meanwhile, Shacham et al. designed
proof of retrievability [5] to allow polynomial time data recovering and integrity
checking. Based on Public Key Infrastructure (PKI), Wang et al. enabled cloud
data integrity public auditing [6] with third party auditor, by performing PDP
for single data owner in a privacy preserving manner. In [7,8], PDP is extended
to support integrity auditing for data with dynamic update. For scalability of
integrity checking tasks, Zhu et al. designed cooperative PDP for distributed
cloud data integrity [9], and Yang et al. made further effort of enabling the
multiple clouds’ data integrity auditing for the multiple data owners [10]. Some
works were designed to support data auditing with special features, such as mul-
tiple data storage replica [11] and group user data share [12] and revocation. For
recent years, continuous progress has been made on data auditing in [13–15].
However, these famous works were all built on PKI, where each owner’s public
key certificate is required to be transferred and verified.

To eliminate the complicated management issue of public key certificates,
Zhao et al. proposed the first identity-based public auditing scheme [16], to
enable PDP primi-tive with identity based cryptography [17], where the effi-
ciency is optimized from cryptosystem level. In 2015, Wang et al. designed the
identity based distributed PDP to support multi-cloud storage for single owner
[20]. In 2016, Liu et al. considered generic identity-based PDP construction [19]
by combining PKI based PDP and Identity Based Signature [18]. Later, Yu et
al. enabled zero knowledge privacy integrity checking for identity based PDP
in [21]. In the setting of restricted cloud access, Wang et al. for the first time
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proposed an identity based PDP scheme, called Identity-based proxy-oriented
data uploading and remote data integrity checking in public cloud (ID-PUIC),
to support single owners authorized proxy to process data for single cloud [22].
Spontaneously, security flaws were found in some classic designs but luckily were
repaired in [18,19,23]. So the challenging problem still remained to be unsolved,
i.e., how to efficiently perform multiple clouds data integrity checking for multi-
ple data owners with proxy processing data.

In 2017, Yu et al. designed an identity based batch public auditing scheme
[25], to facilitate secure data integrity checking on multiple clouds for multiple
owners, and support proxy data processing, without public key certificate man-
aging issue. Unfortunately, after careful analysis, this work is not able to address
the challenging problem of better efficiency and security simultaneously, when
coming across malicious behaviors.

Contributions: Firstly, we demonstrate that this work [25] is vulnerable to
data loss attack and proxy private key recovering attack. Especially, malicious
clouds are able to use masked data rather than original data to pass integrity
checking, and arbitrary two pairs of data and tags are sufficient to recover private
key of the authorized proxy. Secondly, we propose an improved scheme, which
could perform integrity checking and resist these above security flaws. Thirdly,
we prove security of our scheme in random oracle under CDH assumption. In the
end, our improved scheme illustrates better efficiency of complexity over identity-
based proxy-oriented data uploading and remote data integrity checking scheme
in public cloud [22] on single owner effort on single cloud, which will benefit big
data storage if extrapolated to real application.

Paper Organization: The rest of the paper starts with notations and reviews of
definition of identity-based batch public auditing with proxy processing scheme
(ID-BPAP) along with its system and security model in Sect. 2. After revisiting
of ID-BPAP scheme in Sect. 3, two security flaws are demonstrated in Sect. 4. We
present our improved scheme in Sect. 5, and formally prove its security in Sub-
sect. 5.1 under random oracle model. In Sect. 6, we compare our improved scheme
with Wang et al.s ID-PUIC, in the context of overheads based on complexity
analysis, to study the trend of efficiency for computation and communication.
Section 7 concludes our paper.

2 Preliminary

2.1 Notations and Computational Assumption

– G1 and G2 are two cyclic groups of same large prime order q, additive and
multiplicative groups respectively. e is a bilinear pairing mapping e : G1 ×
G1 → G2.

– (mpk,msk) are the Private Key Generator (PKG)’s master public and private
keys pair. ski is ith data owner’s corresponding identity-based private key.
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– There are no data owners, outsourcing N blocks on nJ clouds. F̃ijk is i-th
owner’s k-th block on cloud CSj , with proxy tag σijk from its masked Fijk

or encrypted F̂ijk.
– f is a pseudo random function (PRF) f : Zq ×{1, · · · , N} → Zq; π is a pseudo

random permutation π : Zq × {1, · · · , N} → {1, · · · , N}.
– chal is challenge token generated by third party auditor (TPA). chalj is the

specific challenge token for CSj . cij is challenged number of blocks for ith
owner and aij ∈ [1, cij ] further specifies index of each block as k = πvij,1(aij).

– C is the index set of challenged data picked by TPA. O is the index set of data
owner’s identities upon challenged blocks, and J is the index set of challenged
clouds, where |O| = n1 and |J | = n2. Pj is the proof of storage generated by
CSj .

CDH Problem on G1: Given g, ga, gb ∈ G1, to compute gab with a probabilistic
polynomial time (PPT) algorithm, without knowing random a, b ∈ Zq.

2.2 Definition of ID-BPAP

In this section, we will present the definition of Identity-Based Batch Public
Auditing scheme with Proxy Processing (ID-BPAP) from the original paper
[25], in the seven algorithms below.

1. Setup(1k)→ (params,mpk,msk) is initialized by PKG with security parame-
ter k. It outputs the public parameters params, master key pairs (mpk,msk).

2. Extract(params,msk, IDi)→ ski is executed by PKG with as input params,
master private key msk and data owner’s identity IDi, it outputs the private
key ski for the owner. It also extracts private key skp for proxy of IDp.

3. ProxyKeyGen(params, IDi, ski, IDp, skp)→ upi is run by proxy IDp with
interaction of data owner IDi. With input of parameters params and its
private key ski, data owner generates warrant and corresponding signature
to send to proxy. Then proxy outputs the proxy secret key upi with its private
key skp.

4. TagGen(params, IDi, skp, upi,mpk, {F̃ijk})→ {σijk} is run by proxy. It takes
as input parameters params, owner’s identity IDi, its individual private key
skp, corresponding secret key upi, master public key mpk and owners’ blocks
{F̃ijk} to be outsourced. Then proxy tags {σijk} of above blocks could be
generated.

5. Challenge({(i, j, k)})→ (chal, {chalj}) is executed by TPA. It takes as input
data index set {(i, j, k)} and selects some index as challenge token chal for
this instance. According to the specified indexes {j}, the challenge token chal
is further divided into a set of tokens {chalj} and only forwarding chalj to
the cloud CSj .

6. ProofGen(params, chalj , {IDi}, {σijk}, {F̃ijk})→ Pj is run by cloud CSj . It
takes as input the parameters params, the challenge token chalj , the specified
set of data owners’ identities {IDi}, the set of tags {σijk}, and the blocks
{F̃ijk}. Then the proof Pj is generated for challenge token chalj , and is sent
back to TPA.
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Fig. 1. Architecture of ID-BPAP

7. Verify(params, chal, {IDi}, {Pj},mpk)→ {0, 1} is executed by TPA. It takes
as input public parameters params, challenge token chal, specified set of data
owners’ identities {IDi}, set of proofs {Pj} from all challenged clouds, and
the master public key mpk. 1 will be output if the proofs are valid, otherwise
0 is output.

2.3 System Model

As it depicts in Fig. 1, there are five kinds of entities in an ID-BPAP scheme, i.e.,
the PKG, data Owners, Proxy, multiple Clouds, and a batch TPA. PKG initial-
izes the system parameters and extracts private keys for data owners and proxy
of their own identities. Data Owners delegate Proxy to process their massive
data before storing them in multiple clouds. Proxy of abundant computation and
bandwidth resource, helps data owners to generate proxy data tags and upload
them to clouds, with data owners’ special warrants. Multiple Clouds maintain
powerful storage and computation resources to provide storage service for data
owners. The batch TPA is a trusted third party auditor to offer the batch data
integrity verification on multiple clouds for the data owners.
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2.4 Security Model

In an ID-BPAP scheme, we assume PKG is trusted to execute the scheme, and
proxy honestly generates tags but may have management fault of data before tag
generation. Meanwhile, original data owners might generate data tag themselves
without the delegated proxy. Clouds could also hide data accident for the sake
of reputation and saving cost, and TPA is trusted but curious about the data
content. A secure ID-BPAP scheme should satisfy three properties:

(1) Proxy-protection: Data owners themselves are not able to masquerade as
proxy to generate tags. Only proxy with authorization warrant could generate
proxy tags.

(2) Unforgeability: It is infeasible to fabricate valid data storage proofs to pass
the auditing of TPA if any cloud data is modified or deleted.

(3) Privacy-preserving: Real data content will not be revealed during the process
of auditing.

According to the security requirements, we review the three formal definitions
as follows:

1. Definition of Proxy-Protection: The scheme is proxy-protected, if any prob-
abilistic polynomial time (PPT) data owner wins proxy Tag-Forge game with
negligible probability.
Setup: Challenger C1 in the role of PKG and TPA, first generates master pub-
lic/private key pair and system parameter. It runs Extract to generate private
key skp for proxy of IDp and keeps its secret. Those public and not secret
parameters could be sent to adversary A1 as data owner.
Queries: Besides all hash functions, A1 could adaptively query Extract for pri-
vate key ski for identity IDi except IDp. Denote index set of identities as S1

(p /∈ S1). It could also query proxy tag secret key up′ i for (IDp′ , IDi) except
for pair having IDp. Denote index set of pairs as S

′
1 ((p, i) /∈ S

′
1). Upon block

F̃ijk, A1 could also adaptively query proxy tag σp′ ijk with the same identity
requirement. Let us denote tuples set of indexes and corresponding block as
S

′′
1 , (p, i, j, k, F̃ijk) /∈ S

′′
1 .

Output: A1 wins the game if it creates a valid proxy tag σi∗j∗k∗ for data
block F̃i∗j∗k∗ by itself , for which it has neither extracted private key nor
proxy tag secret key for proxy IDp, i.e., where p /∈ S1, (p, i∗) /∈ S

′
1, and

(p, i∗, j∗, k∗, F̃i∗j∗k∗) /∈ S
′′
1 .

2. Definition of Unforgeability: The scheme is unforgeable if any PPT clouds
win the Proofs-Forge game below, with negligible probability.
Setup: Challenger C2 in the role of PKG and TPA, first generates master pub-
lic/private key pair and system parameter. It runs Extract to generate private
key skp for proxy of IDp and keeps its secret. Those public and not secret
parameters could be sent to adversary A2 as clouds.
First phase queries: Besides all hash functions, A2 could adaptively query
Extract for private key ski for identity IDi except IDp. Denote index set



Analysis and Improvement 127

of identities as S2 (p /∈ S2). It could also query proxy tag secret key up′ i

for (IDp′ , IDi) except for pair having IDp. Denote index set of pairs as S
′
2

((p, i) /∈ S
′
2). Upon block F̃ijk, A2 could also adaptively query proxy tag σp′ ijk

with the same identity requirement. Let us denote tuples set of indexes and
corresponding block as S

′′
2 , (p, i, j, k, F̃ijk) /∈ S

′′
2 .

Challenge: C2 generates challenge set chal with ordered number set {ci∗j∗}
to specify every block F̃i∗j∗k∗ on the j∗th cloud for owner of IDi∗ , where
{(p, i∗, j∗, k∗

n)| 1 ≤ n ≤ ci∗j∗}, i∗ �= p, (p, i∗) /∈ S
′
2, and (p, i∗, j∗, k∗

n, F̃i∗j∗k∗
n
) /∈

S
′′
2 . chal will be sent to A2.

Second phase queries: Similar to First phase queries, denote index set of iden-
tities for Extract private keys as S3, index set of identity pairs for proxy tag
secret key queries as S

′
3, tuple set of index and data for proxy tag queries as

S
′′
3 . We require that p /∈ S2 ∪ S3, (p, i) /∈ S

′
2 ∪ S

′
3, and (p, i∗, j∗, k∗

n, F̃i∗j∗k∗
n
) /∈

S
′′
2 ∪ S

′′
3 .

Output: A2 wins the game if it fabricates valid proofs {Pj∗} for the same
challenge chal on the specified set of blocks.

3. Definition of Privacy-Preserving: Proofs are privacy-preserving if TPA
cannot retrieve original value about the cloud data during the auditing.

3 Revisiting of ID-BPAP

In this section,we will revisit the ID-BPAP scheme of seven algorithms in [25].

1. Setup: PKG uses this algorithm to generate a bilinear map e : G1 ×G1 → G2

with two groups G1 and G2 of the same order q > 2k, where g is the generator
of G1 and k is security parameter. It also selects three cryptographic hash
functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Zq, H3 : Zq × {0, 1}∗ → Zq, a
pseudo permutation π : Zq ×{1, · · · , N} → {1, · · · , N} and a pseudo random
function f : Zq × {1, · · · , n} → Zq. It picks random x ∈ Zq as master private
key msk and computes gx as master public key mpk. The global parameters
are (e,G1, G2, g,mpk,H1,H2,H3, π, f).

2. Extract: Given identity IDi, PKG extracts the identity-based private key as
ski = H1(IDi)

x and returns to the data owner. For proxy, skp = H1(IDp)
x.

3. ProxyKeyGen: For data owner IDi, it picks up random ri ∈ Zq and creates
its proxy warrant ωi with its signature Ui = sk

riH2(ωi||Ri)
i , ξi = gri , where

Ri = H1(IDi)ri . (ωi, Ui, Ri, ξi) are sent to proxy, clouds and TPA. Upon
the warrant ωi, TPA and proxy could verify it with signature as e(Ui, g) =
e(RH2(ωi||Ri)

i ,mpk), e(Ri, g) = e(H1(IDi), ξi), and notify the data owner if
any equations does not hold. Proxy generates the proxy secret key as upi =
Ui ·skrpi

p = H1(IDi)xriH2(ωi||Ri) ·H1(IDp)xrpi by picking up random rpi ∈ Zq.
It also computes the not secret Rpi = H1(IDp)rpi , which is sent to TPA for
future verification.

4. TagGen: Data owner of IDi first divides original data F̃i into blocks {F̃ijk},
and computes each Fijk = F̃ijk + H2(F̃ijk). Data blocks {F̃ijk} are outsourced
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to corresponding clouds while masked {Fijk} are sent to proxy. Then proxy
generates proxy tag for each data block as

σijk = sk
H3(i||j||k,nameijk||timeijk)
p · u

Fijk

pi (1)

where nameijk is the name of block F̃ijk, and timeijk is the time stamp
when proxy generates the tag. All the tags {σijk} and not secret Rpi will be
transferred to corresponding clouds, which will not accept them and inform
the owner unless the warrant ωi and the proxy tag σijk could be verified by
having the following equations holds as

e(Ri, g) = e(H1(IDi), ξi), e(Ui, g) = e(RH2(ωi||Ri)
i ,mpk)

e(σijk, g) = e(H1(IDp)H3(i||j||k,nameijk||timeijk) · (RH2(ωi||Ri)
i · Rpi)Fijk ,mpk)

(2)
5. Challenge: For data owner of IDi on jth cloud’s data, TPA picks up number

of challenged blocks as cij and random vij,1 and vij,2 ∈ Zq. Denote Oj as
index set of identities for owners having data on jth cloud. It generates the
challenge token chalj = {(cij , vij,1, vij,2)}i∈Oj

, and sends it to the cloud.
6. ProofGen: According to the challenge token chalj = {(cij , vij,1, vij,2)}i∈Oj

,
cloud CSj first generates index set δij of challenged blocks for owner of IDi

where each index k = πvij,1(aij) (1 ≤ aij ≤ cij) with specified challenge
number cij and then the corresponding co-efficient hijk = fvij,2(i, j, k) ∈ Zq.
The proof of storage Pj includes aggregate tag T

′
j and masked data proof

{F
′
ij} for the data owners of identities with index set Oj :

T ′
j =

∏

i∈Oj

∏

k∈δij

σ
hijk

ijk , F ′
ij =

∑

k∈δij

hijk · Fijk (3)

where Fijk = F̃ijk + H2(F̃ijk). Pj = (T
′
j , {F ′

ij}i∈Oj
) will be sent to TPA.

7. Verify: After receiving all the proofs {Pj} from challenged clouds, TPA denotes
O = ∪j∈JOj as identity index set of all the challenged data owners from
challenge tokens {chalj = {(cij , vij,1, vij,2)}i∈Oj

}j∈J , and computes index set
of all challenged blocks by {k} = {πvij,1(aij)|1 ≤ aij ≤ cij} and co-efficient
set {hijk} = {fvij,2(i, j, k)}, as in ProofGen. With all valid set of warrant {ωi}
and corresponding signatures {(Ui, Ri, ξi)} from data owners, together with
blocks names and time stamps {(nameijk, timeijk)}, TPA is able to verify
data integrity as:

It will output 1 (valid) if the above equation holds and 0 (invalid) otherwise.
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4 On the Security of ID-BPAP

With security analysis in [25], Yu et al.’s ID-Batch Batch Public Auditing with
Proxy Processing (ID-BPAP) should satisfy security properties for data proof
with unforge-ability and tag generation with proxy-protection. However, their
proposed ID-BPAP in [25], may suffer from two security issues, as the analysis
in the following.

4.1 First Issue: Generating Valid Proof Without Original Data

In Yu et al.’s ID-BPAP scheme, the TPA utilizes masked data proof to evaluate
the original data integrity on the cloud. This design indeed helps to prevent TPA
obtain original data content, but also leaves the room for malicious clouds to
launch data attack as follows.

In the ProofGen, for the output Pj = (T
′
j , {F

′
ij}i∈Oj

), honest cloud takes
original data F̃ijk as input to get masked data Fijk = F̃ijk + H2(F̃ijk), and do
the combination with the fresh challenge co-efficient {hijk}, as F ′

ij =
∑

k∈δij
hijk ·

Fijk. That is to say, the data integrity proof, is generated by combining of fresh
challenge co-efficient and masked data, rather than directly with the original data
itself. Therefore, for malicious clouds, by pre-computing and storing masked data
Fijk, it is able to directly generate valid integrity proof Pj = (T

′
j , {F

′
ij}i∈Oj

),
without having to store the original data F̃ijk. In this way, malicious clouds
could modify original data F̃ijk as F̃ ∗

ijk or even delete it, and successfully pass
TPAs integrity checking.

4.2 Second Issue: Recovering Private Key of Proxy and Proxy Tag
Secret Key

With proxy-protection property, only proxy with authorization could generate
the data tags for integrity verification. As analysis below, we could find that it
is feasible to recover proxys private key and thus impersonate proxy to generate
data tag, for those who could access the data and tags.

In TagGen, for data F̃ijk, tag σijk = sk
H3(i||j||k,nameijk||timeijk)
p · uFijk

pi is gen-
erated by proxy, with its individual private key skp and proxy tag secret key upi,
and then uploads tag on the cloud. Afterwards, malicious clouds or curious data
owner of IDi, retrieve two arbitrary data blocks (F̃ijk1 , F̃ijk2) with corresponding
tags (σijk1 , σijk2), and do the computation:

Where Ep =
H3(i||j||k2,nameijk2 ||timeijk2 )H3(i||j||k1,nameijk1 ||timeijk1 )

Fijk1H3(i||j||k2,nameijk2 ||timeijk2 )−Fijk2H3(i||j||k1,nameijk1 ||timeijk1 )
, and

masked data (Fijk1 , Fijk2) = (F̃ijk1 + H2(F̃ijk1), F̃ijk2 + H2(F̃ijk2)). With the
recovered proxy private key skp and proxy tag secret key upi, three kinds of
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security problems could happen. First, for new block F̃ijk3 , the proxy tag could
be fabricated as σijk3 = sk

H3(i||j||k3,nameijk3 ||timeijk3 )
p · u

Fijk3
pi by the data owner

itself. This valid tag will keep Eqs. (2) (3) hold and finally help data to pass the
TPA auditing in Eq. (4). And thus proxy-protection security property cannot be
guaranteed. Second, if the original block is modified to F̃ ∗

ijk3
, malicious clouds

could generate valid tag as σ∗
ijk3

= sk
H3(i||j||k3,nameijk3 ||timeijk3 )
p · u

F ∗
ijk3

pi , where
F ∗

ijk3
= F̃ ∗

ijk3
+ H2(F̃ ∗

ijk3
), without awareness of data owner and proxy. Certainly

this modified data-tag pair will also keep Eqs. (2) (3) hold and help to generate
valid integrity proof in Eq. (4), but unforgeability property cannot be guaranteed
for falling to check data modification. Third, the digital property belonging to
proxy, will be in great risk of illegal access, due to the recovered proxy individual
private key by other entities.

5 Improved Scheme

1. Setup: PKG uses this algorithm to generate a bilinear map e : G1 ×G1 → G2

with two groups G1 and G2 of the same order q > 2k, where g is the generator
of G1and k is security parameter. It also selects four cryptographic hash
functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Zq, H3 : Zq × {0, 1}∗ → Zq,
H4 : {0, 1}∗ → G1, a pseudo permutation π : Zq × {1, · · · , N} → {1, · · · , N}
and a pseudo random function f : Zq × {1, · · · , n} → Zq. It picks random
x ∈ Zq as master private key msk and computes gx as master public key
mpk. The global parameters are (e,G1, G2, g,mpk,H1,H2,H3,H4, π, f).

2. Extract: Given identity IDi, PKG extracts the identity-based private key as
ski = H1(IDi)

x and returns to the data owner. For proxy, skp = H1(IDp)
x.

3. ProxyKeyGen: For data owner IDi, it picks up random ri ∈ Zq and creates
its proxy warrant ωi with its signature Ui = sk

riH2(ωi||Ri)
i , ξi = gri , where

Ri = H1(IDi)ri . (ωi, Ui, Ri, ξi) are sent to proxy, clouds and TPA. Upon
the warrant ωi, TPA and proxy could verify it with signature as e(Ui, g) =
e(RH2(ωi||Ri)

i ,mpk), e(Ri, g) = e(H1(IDi), ξi), and notify the data owner if
any equations does not hold. Proxy generates the proxy secret key as upi =
Ui ·skrpi

p = H1(IDi)xriH2(ωi||Ri) ·H1(IDp)xrpi by picking up random rpi ∈ Zq.
It also computes the not secret Rpi = H1(IDp)rpi , φpi = grpi , which are sent
to TPA for future verification.

4. TagGen: Data owner of IDi first divides original data F̃i into blocks {F̃ijk}.
To ensure the data privacy, each block is converted in to its cipher text
F̂ijk ∈ Zq by symmetric encryption. Cipher text blocks {F̂ijk} are outsourced
to corresponding clouds and sent to the proxy. For each data block, proxy
generates tag σijk = (Tijk, S) as

Tijk = (skp, upi)
H3(i||j||k,namei||timeijk) + F̂ijk ·H4(i||j||k, namei||timeijk||S)η , S = gη

(4)
where namei is the name of file F̃i, and timeijk is the time stamp when proxy
generates the tag. All the tags {σijk} and not secret Rpi will be transferred to
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corresponding clouds, which will not accept them and inform the owner unless
the warrant ωi and the proxy tag σijk could be verified by having the following
equations holds as e(Ri, g) = e(H1(IDi), ξi), e(Rpi, g) = e(H1(IDi), φpi),
e(Ui, g) = e(RH2(ωi||Ri)

i ,mpk)

e(Tijk, g) = e((H1(IDp) · (RH2(ωi||Ri)
i ·Rpi))

H3(i||j||k,namei||timeijk) + F̂ijk
,mpk)

·e(H4(i||j||k, namei||timeijk||S), S)

(5)
5. Challenge: For data owner of IDi on jth cloud’s data, TPA picks up number of

challenged blocks cij and random vij,1 and vij,2 ∈ Zq. Denote Oj as index set
of identities for owners having data on cloud CSj . It generates the challenge
token chalj = {(cij , vij,1, vij,2)}i∈Oj

, and sends it to the cloud.
6. ProofGen: According to the challenge token chalj = {(cij , vij,1, vij,2)}i∈Oj

,
cloud CSj first generates index set δij of challenged blocks for owner of IDi

where each index k = πvij,1(aij) (1 ≤ aij ≤ cij) with specified challenge
number cij and then the corresponding co-efficient hijk = fvij,2(i, j, k) ∈ Zq.
The proof of storage Pj includes aggregate tag T

′
j , S

′
and data proof {F

′
ij}

for the data owners of identities with index set Oj :

T ′
j =

∏

i∈Oj

∏

k∈δij

T
hijk

ijk , S
′
= S, F ′

ij =
∑

k∈δij

hijkF̂ijk (6)

Pj = (T
′
j , S

′
, {F ′

ij}i∈Oj
) will be sent to TPA.

7. Verify: After receiving all the proofs {Pj} from challenged clouds, TPA denotes
O = ∪j∈JOj as identity index set of all the challenged data owners from
challenge tokens {chalj = {(cij , vij,1, vij,2)}i∈Oj

}j∈J , and computes index set
of all challenged blocks by {k} = {πvij,1(aij)|1 ≤ aij ≤ cij} and co-efficient
set {hijk} = {fvij,2(i, j, k)}, as in ProofGen. With all valid set of warrant {ωi}
and corresponding signatures {(Ui, Ri, ξi)} from data owners, together with
files’ names and time stamps {(namei, timeijk)}, TPA is able to verify data
integrity as:

e(
∏

j∈J

T ′
j , g) = e(

∏

i∈O

((H1(IDp) · (RH2(ωi||Ri)
i · Rpi)))Li ,mpk)

·e(
∏

i∈Oj

∏

j∈J

∏

k∈δij

(H4(i||j||k, namei||timeijk||S′
))

hijk

, S
′
)

(7)

where Li =
∑

j∈J F
′
ij +

∑
j∈J

∑
k∈δij

hijk ·H3(i||j||k, namei||timeijk). It will
output 1 (valid) if the above equation holds and 0 (invalid) otherwise.

5.1 Security Analysis of Improved Scheme

Based on the formal definition of ID-BPAP scheme (Subsect. 2.2) and corre-
sponding system model (Subsect. 2.3) and security model (Subsect. 2.4), in this
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section, we prove security from proxy-protection of tag generation and unforge-
ability of proofs, in our improved scheme Sec-ID-BPAP. With data block out-
sourced in cipher text form by symmetric encryption, our Sec-ID-BPAP is
privacy-preserving in TPA auditing. Compared with [22]s security analysis, we
also utilize Corons random oracle model [24] to define the interactions between
adversary of our scheme and challenger.

Theorem 1 (Proxy-Protection). If there exists Probabilistic Polynomial Time
(PPT) adversary A1 who could generate valid proxy tag without proxy individ-
ual private key in our Sec-ID-BPAP, then our scheme is proxy-protective when
challenger C1 could solve CDH problem with non-negligibility within PPT time.

Proof: There are N̂ number of selected identities {IDi}i∈O having the proxy
IDp. The original data block {F̃ijk}i∈O,j∈J,k∈δij will be encrypted into corre-
sponding ciphertext blocks {F̂ijk} before being outsourced on clouds {CSj}j∈J .
Certainly, the integrity of ciphertext block is equivalent to integrity of original
block.

1. Setup: Simulator C1 plays in the role of PKG to choose random a ∈ Zq, then
the master private/public keys pair (msk,mpk) = (a, ga) upon generator
g ∈ G1. It also picks random b ∈ Zq. CDH instance is ga, gb ∈ G1, computing
gab. Although A1 is not allowed to query the target proxy tag secret keys upi,
the Rpi could be accessed as H1(IDp)rpi by C1 picking up rpi ∈ Zq.

2. C1 answers query by maintaining input and output list for every oracle.
3. Hash function Oracle: H2 and H3 work as normal hash functions.

(a) H1-oracle: C1 answers with gyi for yi ∈ Zq if i �= p, and yi = b for i = p.
(b) H4-oracle: C1 answers with gzijk for zijk ∈ Zq.

4. Extract-oracle: C1 answers ski = (ga)yi from H1, if i �= p; else aborts. Denote
index set of identities extracting private keys as S1(p /∈ S1).

5. ProxyKeygen-oracle: C1 answers up′ i = Ui · (ga)y
p

′ r
p

′
i from H1 and rp′ i ∈ Zq,

if i �= p; else aborts. Denote index pair set of identities as S
′
1 ((p, i) /∈ S

′
1).

6. Tag-oracle: C1 answers Tijk = ((ga)y
p

′ · up′ i)
H3,ijk + F̂ijk · S

zijk

ijk with Sijk ∈
G1 from H1,H4, if p

′ �= p; else aborts. Denote query input as set S
′′
1

((p, i, j, k, F̂ijk) /∈ S
′′
1 ).

Forgery Output: Finally A1 itself outputs a valid tag σi∗j∗k∗ = (Ti∗j∗k∗ , S
′
)

for data ciphertext block F̂i∗j∗k∗ generated by proxy IDp with warrant ωi∗ and
its signature (Ui∗ , Ri∗ , ξi∗). C1 looks up lists of all oracles. It will not abort and
terminate only when none of corresponding records exists, i.e., requiring IDi∗ �=
IDp, (p, i∗) /∈ S

′
1, (p, i∗, j∗, k∗, F̂i∗j∗k∗) /∈ S

′′
1 . If game could proceed, C1 keeps on

checking all hash function oracles and makes queries itself if there is no relative
record in their lists. Rpi∗ = H1(IDp)rpi∗ in Setup and Ui∗ = (ga)yi∗ ri∗ H2(ωi∗ ||Ri∗ )

for validity of warrant ωi∗ .
Since σi∗j∗k∗ = (Ti∗j∗k∗ , S

′
) satisfies Eq. (5) as valid tag, we will have a solu-

tion of CDH problem after simplification with corresponding records of oracles
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and properties of bilinear mapping:

gab = (Ti∗j∗k∗ · S
′−zi∗j∗k∗ · U

−H3(i
∗||j∗||k∗,namei∗ ||timei∗j∗k∗ )−F̂i∗j∗k∗

i∗ )
1
W

(8)

Where W = (1 + rpi∗)(H3(i∗||j∗||k∗, namei∗ ||timei∗j∗k∗) + F̂i∗j∗k∗).
Due to the limitation of space, we will give detailed analysis for the non-

negligible probability and polynomial of time in the full version.

Theorem 2 (Unforgeability). If there exists PPT time adversary A2 who could
forge valid proof of our Sec-ID-BPAP, then our scheme is unforgeable when
challenger C2 could solve CDH problem with non-negligibility within PPT time.

Proof: There are N̂ number of selected identities {IDi}i∈O having the proxy
IDp. The original data block {F̃ijk}i∈O,j∈J,k∈δij will be encrypted into corre-
sponding ciphertext blocks {F̂ijk} before being outsourced on clouds {CSj}j∈J .
Certainly, the integrity of ciphertext block is equivalent to integrity of original
block.

1. Setup: Like Theorem 1, C2 in the role of PKG, generates master private/public
keys pair (msk,mpk) = (a, ga) upon generator g, and CDH instance is ga,
gb ∈ G1, computing gab. It also allows A2 to access Rpi as H1(IDp)rpi where
rpi ∈ Zq.

2. H1-oracle, H2-oracle, H3-oracle,H4-oracle, Extract-oracle, ProxyKeygen-oracle,
TagGen-oracle remain the same as Theorem 1.

3. First phase queries: A2 could access all the hash oracles. Let us denote index set
{IDi} of private key extracting as S2 (p /∈ S2), index pair set of {(IDp′ , IDi)}
of proxy tag secret key query as S

′
2 ((p, i) /∈ S

′
2), the tuple set of index and

data for proxy tag query as S
′′
2 ((p, i, j, k, F̂ijk) /∈ S

′′
2 ).

4. Challenge phase: C2 generates challenge set chal with ordered {ci∗j∗} to specify
every cipher text block F̂i∗j∗k∗

n
on CSj∗ for IDi∗ , where {(p, i∗, j∗, k∗

n)| 1 ≤
n ≤ ci∗j∗}, and i∗ �= p, (p, i∗) /∈ S

′
2, (p, i∗, j∗, k∗

n, Fi∗j∗k∗
n
) /∈ S

′′
2 . chal will be

sent to TPA.
5. Second phase queries: A2 makes queries similar to First phase queries. Denote

index set of identities for Extract private key queries as S3, index set of identity
pairs for proxy tag secret key queries as S

′
3, tuple set of index and data for

proxy taga queries as S
′′
3 . We requires that p /∈ S2 ∪ S3, (p, i) /∈ S

′
2 ∪ S

′
3 and

(p, i, j, k, F̂ijk) /∈ S
′′
2 ∪ S

′′
3 .

Forgery Output: Finally, A2 itself outputs valid proof {Pj∗}j∗∈J for data
cipher text blocks {F̂i∗j∗k∗

n
}1≤n≤ci∗j∗ and tags generated by proxy IDp with

warrants {ωi∗}i∗∈O and signatures {(Ui∗ , Ri∗ , ξi∗)}i∗∈O. C2 looks up lists of all
oracles and it will abort and terminate unless none of corresponding records
exists. If game could proceed, C2 keeps on checking all hash function oracles and
makes queries itself if there is no relative record in their lists. Rpi∗ = H1(IDp)rpi∗

in Setup and Ui∗ = (ga)yi∗ ri∗ H2(ωi∗ ||Ri∗ ) for validity of warrant ωi∗ .
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Since {Pj∗}j∗∈J = {(T
′
j∗ , S

′
, {F

′
i∗j∗}i∗∈Oj

)}j∗∈J satisfies Eq. (7), the CDH
problem solution is obtained after simplification with corresponding records of
oracles and properties of bilinear mapping:

gab = (W
′
1 · W

′
2)

1∑
i∗∈O(1+ rpi∗ )Ei∗ (9)

where Ei∗ =
∑

j∗∈J F
′
i∗j∗ +

∑
j∗∈J

∑
n∈[1,ci∗j∗]

hi∗j∗k∗
n

· H3(i∗||j∗||k∗
n, namei∗

||timei∗j∗k∗
n
)

W
′
1 =

∏

j∗∈J

T
′
j · S

′−∑
i∗∈O

∑
j∗∈J

∑
n∈[1,ci∗j∗ ] zi∗j∗k∗

n
·hi∗j∗k∗

n

W
′
2 =

∏

i∗∈O

U
− ∑

j∗∈J (F
′
i∗j∗ +

∑
n∈[1,ci∗j∗ ] hi∗j∗k∗

n
·H3(i

∗||j∗||k∗
n,namei∗ ||timei∗j∗k∗

n
))

i∗

Due to the limitation of space, we will give detailed analysis for the non-negligible
probability and polynomial of time in the full version.

6 Efficiency Analysis

In this section, we compare cost of computation and communication of our
improved scheme Sec-ID-BPAP, with Wang et al. ’s ID-PUIC [22], summarized
in Tables 1, and 2, respectively.

Table 1. Computation cost comparison for multiple owners and multiple clouds

Schemes TagGen ProofGen Verify Security

ID-PUIC[22] 2NCexp cCexp 2n1n2Ce + (c + n1n2)Cexp Secure

Sec-ID-BPAP (2N + nO)Cexp cCexp 3Ce + (c + n1)Cexp Secure

Table 2. Communication cost comparison for multiple owners and multiple clouds

Schemes Challenge Proof Security

ID-PUIC[22] n1n2 log2 N + 2n1n2 log2 q n1n2G1 + n1n2 log2 q Secure

Sec-ID-BPAP n1n2 log2 N + 2n1n2 log2 q 2n2G1 + n1n2 log2 q Secure

1. Assume there are nO data owners storing N blocks {F̂ijk} on nJ clouds, by
only one-off TagGen and upload. To audit data integrity, periodical Challenge
and Verify will be executed between clouds and TPA, upon randomly selected
c data blocks and tags of n1 data owners on n2 clouds, element size of group
G1 is G1. The dominant cost of this scheme is mostly contributed by ProofGen
and Verify.
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2. Among all the operations, bilinear pairings Ce, exponentiation Cexp on group
G1, and hash Ch on blocks are most expensive, compared with multiplication
on G1 and G2, operations on Zq, and other hash operations, which are efficient
or can be done for only once. That is why we do not consider computation
cost of Challenge mostly relying on efficient operations. Additionally, since ID-
PUIC only offers single owner’s auditing on one cloud, we consider repeating
n1n2 loops of ID-PUIC instances, with N/n1n2 outsourced blocks and only
challenged c/n1n2 blocks per loop.

Analysis for Computation: In order to fully protect tags {σijk = (Sijk, Tijk)}
from being utilized to recover private keys by adversaries, nO data owners ini-
tially require (2N + nO)Cexp operation in TagGen. Luckily, these could be per-
formed off line for owners as one-off task, although a little bit expensive. In
ProofGen, computation is cCexp for all {Pj}. In Verify, to remedy security flaw,
i.e., private key recovery of ID-BPAP, we need 3 bilinear pairing computation
to allow batch auditing at one time, which thus achieves enhanced security and
still outperforms 2n1n2 pairings in Wang et al.’s ID-PUIC [22], if applied to the
multiple clouds and multiple owners scenario.

Analysis for Communication: Communication for Challenge remains the
same as ID-BPAP [25]. The total overhead of transmission is still smaller than
Wang et al.s ID-PUIC if applied to the multiple clouds and multiple owners set-
ting. Meanwhile, our improved scheme does not suffer from private key recovery
as ID-BPAP.

Above all, the enhanced efficiency will become demonstrative if applied to
huge data storage utilities like big data analysis. We will provide the analysis in
detail upon extensive simulation in the full version of paper.

7 Conclusions

In this paper, we revisited an identity-based batch public auditing scheme with
proxy processing (ID-BPAP) scheme designed by Yu et al. in [25], and demon-
strated that any cloud server could generate valid data integrity proof with-
out original data. Meanwhile, it is also feasible to recover Proxys private key
and generate valid proxy tags for any modified data without Proxys awareness.
Therefore, we propose our solution to repair the security flaws and thus enhance
the security, at the expense of reasonable overheads while still enjoying better
efficiency over Wang et al.’s scheme [22]. As a future work, we will keep on seek-
ing to improve the efficiency of our proposed scheme of enhanced security and
privacy, and evaluate it based on real-world multiple clouds storage system, with
sound security for data integrity.
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