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Abstract In the paper, we constructed a class of linear positive operators generaliz-
ing Picard integral operators which preserve the functions eμx and e2μx , μ > 0. We
show that these operators are approximation processes in a suitable weighted spaces.
The uniform weighted approximation order of constructed operators is given via
exponential weighted modulus of smoothness. We also obtain their shape preserving
properties considering exponential convexity.
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1 Introduction

According to P.P. Korovkin and H. Bohman theorem, the convergence of a sequence
(Ln)n≥1 of the linear positive operators to the identity operator is essentially con-
nected with the set {e0, e1, e2} with ei (t) = t i , i = 0, 1, 2. Since many classical
linear positive operators fix e0 and e1, their theorem is one of the most powerful and
spectacular criteria in approximation theory. It is known that for the study of con-
vergence of linear positive operators the set

{
e0, expμ, exp

2
μ

}
, with expμ (x) = eμx ,

μ > 0, also play an important role. For this purpose, recently in [1], the authors
introduced and investigated generalized Picard

(
P∗
n

)
n≥1 operators fixing e0 and exp

2
μ

given by (
P∗
n f

)
(x) = Pn

(
f ;α∗

n (x)
)
,

where

α∗
n (x) = x − 1

2a
ln

(
n

n − 4a2

)
, n > na,
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na = [
4a2

]
, [·] indicating the integer part function or so-called floor function and

(Pn)n≥1 classical Picard operators defined by

(Pn f ) (x) = Pn ( f ; x) =
√
n

2

∫

R

f (x + t) Kn (t) dt, x ∈ R (1.1)

where
Kn (t) = e−√

n|t | . (1.2)

(See [5].) In here, the function f is selected such that the integrals are finite. Note
that similar ideas for different linear positive operators were discussed in [2–4, 7].

In this paper, wewant to obtain a new construction of the classical Picard operators
fixing not only the function expμ but also the function exp

2
μ .We aim to show that the

new operators are positive approximation processes in the setting of large classes of
weighted spaces.Using a technique developed in [6] byT.Coşkunwhich is based on a
weighted Korovkin type theorem for linear positive operators acting on spaces which
have different weights, we obtain weighted uniform convergence of the operators.
Note that obtained asymptotic formulae for the new operators are different from
those given for the corresponding classical operators on the line group.

The modification of our interest in this paper is defined by

(
P∗∗
n f

)
(x) =

√
n

2

∫

R

e−μ(α∗∗
n (x)+t)eμx f

(
α∗∗
n (x) + t

)
Kn (t) dt, n > nμ, x ∈ R

(1.3)
where

α∗∗
n (x) = x − 1

μ
ln

(
n

n − μ2

)
(1.4)

μ > 0, nμ = [
μ2

] + 1 and Kn defined in (1.2).
Their close connection with the classical Picard operators is now displayed:

(
P∗∗
n f

)
(x) = expμ (x) Pn

(
f

expμ
;α∗∗

n (x)

)
.

It is obvious that
(
P∗∗
n

)
n>nμ

are positive and linear operators. On the other hand,
whereas Picard operators (Pn)n≥1 fix the functions e0 and e1, it can be checked easily
that the operators

(
P∗∗
n

)
n>nμ

reproduce expμ and exp2μ, i.e.

(
P∗∗
n expμ

)
(x) = expμ (x) (1.5)

and (
P∗∗
n exp2μ

)
(x) = exp2μ (x) . (1.6)
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2 Auxiliary Results

In this section, we will give some elementary properties of the generalized Picard
integral operators defined in (1.3).

By means of elementary calculations, we obtain:

Lemma 1 For each n > nμ and x ∈ R, the following identities hold:(
P∗∗
n e0

)
(x) = n2

(n−μ2)
2

(
P∗∗
n exp3μ

)
(x) = e3μx (n−μ2)

2

n(n−4μ2)
(
P∗∗
n exp4μ

)
(x) = e4μx (n−μ2)

3

n2(n−9μ2)

Lemma 2 For each n > nμ and x ∈ R, the following identities hold:(
P∗∗
n e1

)
(x) = n2

(n−μ2)
3

((
n − μ2

)
α∗∗
n (x) − 2μ

)
,

(
P∗∗
n e2

)
(x) = n2

(n−μ2)
4 [2

(
n + 3μ2

) + (
μ2 − n

) (
4μx − (

μ2 − n
)
x2

)

− 1
μ2

(
4μ2 + (

μ2 − n
)
μ

(
x + α∗∗

n (x)
))]

3 Approximation on Weighted Spaces

Now we recall the concept of weighted function and weighted spaces considered in
[6]. Let R denote the set of real numbers. A real-valued function ρ is called weight
function if it is continuous on R and

lim|x |→∞
ρ (x) = ∞, ρ (x) ≥ 1 for all x ∈ R. (3.1)

We consider the weighted spaces Cρ (R) and Bρ (R) of the real function defined
on real line defined by Bρ (R) := {

f : | f (x)| ≤ M f ρ (x) , x ∈ R
}
and Cρ (R) ={

f : f ∈ Bρ (R) , f continuous} . The spaces Bρ (R) and Cρ (R) are Banach spaces
endowed with the ρ-norm

‖ f ‖ρ = sup
x∈R

| f (x)|
ρ(x)

.

Nowwe give some properties of a linear positive operator acting between two spaces
with different weights.

(1) A positive linear operator Ln , defined on Cρ1 (R) , maps Cρ1 (R) into Bρ2 (R) iff

Lnρ1 ∈ Bρ2 (R) .

(2) Let Ln : Cρ1 (R) → Bρ2 (R) be a positive linear operator. Then

‖Ln‖Cρ1→Bρ2
= ‖Lρ1‖ρ2 .
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(3) For n ∈ N, let Ln : Cρ1 (R) → Bρ2 (R) be a positive linear operator. Suppose
that there exists M > 0 such that for all x ∈ R, ρ1(x) ≤ Mρ2(x). If

lim
n→∞ ‖Ln(ρ1) − ρ1‖ρ2 = 0,

then the sequence of norms ‖Ln‖Cρ1→Bρ2
is uniformly bounded.

Let ϕ1 and ϕ2 be two continuous functions, monotonically increasing on the real
axis such that

lim|x |→∞
ϕ1 (x) = lim|x |→∞

ϕ2 (x) = ±∞ and ρk (x) = 1 + ϕ2
k (x) , k = 1, 2.

TheoremA ([6]) Assume that ρ1 and ρ2 are weight functions satisfying the equal-
ity lim|x |→∞ ρ1(x)

ρ2(x)
= 0. If the sequence of linear positive operators Ln : Cρ1 (R) →

Bρ2 (R) satisfies the following three conditions

lim
n→∞ ‖Ln(ϕ

ν
1) − ϕν

1‖ρ2 = 0, ν = 0, 1, 2, (3.2)

then
lim
n→∞ ‖Ln( f ) − f ‖ρ2 = 0,

for all f ∈ Cρ1 (R) .

Now we show that Theorem A can be applied to our new operators
(
P∗∗
n

)
n>nμ

can be applicable to. Let ρ1 (x) = 1 + x2 and ρ2 (x) = 1 + x4 with ϕ1 (x) = x and
ϕ2 (x) = x2. In this case the test functions set is {1, e0, e2} . Using Lemma 1 and
(1.6) we have

(
P∗∗
n ρ1

)
(x) = (

P∗∗
n

(
e0 + e21

))
(x)

= n2
(
n − μ2

)2 + n2
(
n − μ2

)4
(
2

(
n + 3μ2) + (

μ2 − n
) (
4μx − (

μ2 − n
)
x2

)

− 1

μ2

(
4μ2 + (

μ2 − n
)
μ

(
x + α∗∗

n (x)
))

and thus there exists C > 0 such that the inequality

(
P∗∗
n ρ1

)
(x)

ρ2 (x)
≤ C

holds for n > nμ. Thus,
(
P∗∗
n

)
n>nμ

are linear positive operators acting from Cρ1 (R)

into Bρ2 (R). Also
(
P∗∗
n

)
n>nμ

is a uniformly bounded sequence of positive linear
operators from Cρ1 (R) into Bρ2(R). Now we check the conditions in (3.2). For
ν = 0, we see that
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lim
n→∞ ‖P∗∗

n e0 − e0‖ρ2 = sup
x∈R

1

1 + x4

[(
n

n − μ2

)2

− 1

]

= 0

For ν = 1, we have

lim
n→∞ ‖P∗∗

n e1 − e1‖ρ2 ≤ lim
n→∞ sup

x∈R
1

1 + x4

[
n2

(
n − μ2

)2 α∗∗
n (x) − x

]

≤ lim
n→∞ sup

x∈R
x

1 + x4

[
n2

(
n − μ2

)2 − 1

]

= 0

Similarly for ν = 2, we have

‖P∗∗
n e2 − e2‖ρ2 ≤ 2

(
n + 3μ2

)
n2

(
n − μ2

)4 + 4μn2
(
n − μ2

)3 sup
x∈R

x

1 + x4
+

(
n2

(
n − μ2

)2 − 1

)

sup
x∈R

x2

1 + x4

+ 4n2
(
n − μ2

)4 + n2

μ
(
n − μ2

)3 sup
x∈R

2x

1 + x4
.

Thus, we get
lim
n→∞ ‖P∗∗

n e2 − e2‖ρ2 = 0

Since all conditions of Theorem A are fulfilled, for all f ∈ Cρ1 (R), we have the
following theorem.

Theorem 1 Let P∗∗
n , n > nμ, be the operators defined by (1.3). For each f ∈

Cρ1 (R), the relation
lim
n→∞ ‖P∗∗

n f − f ‖ρ2 = 0

holds, where ρ1 (x) = 1 + x2 and ρ2 (x) = 1 + x4.

4 A Quantitative Result

The order of convergence of the operators
(
P∗∗
n

)
n>nμ

in an exponential weighted
space will be studied by using the following modulus of continuity. For function
f ∈ Cρ3 (R) , ρ3 (x) = eμ|x |, we consider the modulus of continuity defined in [8]:

ω̃ ( f ; δ) = sup
|h|<δ

e−μ|x | | f (x + h) − f (x)| , (4.1)

where δ > 0 and μ > 1. The weighted modulus of continuity has the following
properties:

ω̃ ( f ;λδ) ≤ (1 + λ) eλμδω̃ ( f ; δ) , λ > 0. (4.2)
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Similar weighted modulus of continuity was also given in [10].

Theorem 2 For function f ∈ Cρ3 (R), we have

∥∥P∗∗
n f − f

∥∥
ρ3

≤ ‖ f ‖ρ3

(
n2

(
n − μ2

)2 − 1

)

+ n

n − μ2

( √
n√

n − μ
+ 1

)
ω̃

(
f

expμ

;
√
n

(√
n − μ

)2

)

Proof Since
(
P∗∗
n ρ3

)
(x) ≤ eμ|x | n2

(
n − μ2

)2

(
1 +

√
n√

n − μ

)
,

P∗∗
n f is a sequence of linear positive operators acting Cρ3 (R) into itself. From

Lemma 1, we can write

(
P∗∗
n f

)
(x) − f (x) = f (x)

((
P∗∗
n e0

)
(x) − 1

)

+
√
n

2

∫

R

(
e−μ(α∗∗

n (x)+t)eμx f
(
α∗∗
n (x) + t

) − f (x)
)
e−

√
n|t |dt

Using (4.1), it is not difficult to deduce that

∣∣∣e−μ(α∗∗
n (x)+t) f

(
α∗∗
n (x) + t

) − e−μx f (x)
∣∣∣

≤
∣∣∣e−μ(α∗∗

n (x)+t) f
(
α∗∗
n (x) + t

) − e−μα∗∗
n (x) f

(
α∗∗
n (x)

)∣∣∣ +
∣∣∣e−μα∗∗

n (x) f
(
α∗∗
n (x)

) − e−μx f (x)
∣∣∣

≤ eμ|α∗∗
n (x)|ω̃

(
f

exp
; |t |

)
+

∣∣∣e−μα∗∗
n (x) f

(
α∗∗
n (x)

) − e−μx f (x)
∣∣∣

and then we conclude that from (4.2),

(
P∗∗
n f

)
(x) − f (x) = f (x)

((
P∗∗
n e0

)
(x) − 1

) + eμ|α∗∗
n (x)|

√
n

2

∫

R

ω̃

(
f

exp
; |t |

)
e−√

n|t |dt

+
∣∣∣e−μα∗∗

n (x) f
(
α∗∗
n (x)

) − e−μx f (x)
∣∣∣
(
P∗∗
n e0

)
(x)

= f (x)
((
P∗∗
n e0

)
(x) − 1

) + ω̃

(
f

exp
; δn

)
eμ|α∗∗

n (x)|
√
n

2

∫

R

(
1 + |t |

δn

)
eμ|t |e−√

n|t |dt

+
∣∣∣e−μα∗∗

n (x) f
(
α∗∗
n (x)

) − e−μx f (x)
∣∣∣
(
P∗∗
n e0

)
(x)

= f (x)
((
P∗∗
n e0

)
(x) − 1

) + n

n − μ2 ω̃

(
f

exp
; δ

)
eμ|x |

( √
n√

n − μ
+ 1

δn

√
n

(√
n − μ

)2

)

.

+
∣∣∣e−μα∗∗

n (x) f
(
α∗∗
n (x)

) − e−μx f (x)
∣∣∣
(
P∗∗
n e0

)
(x) .

Choosing δ =
√
n

(
√
n−μ)

2 , we have desired result. �
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5 Voronovskaya-Type Theorem

Using exponential moments, we shall prove the Voronovskaya-type theorem for(
P∗∗
n

)
n≥1.

Theorem 3 If f ∈ Cρ3 (R) has a second derivative at a point x ∈ R, then we have

lim
n→∞ n

(
P∗∗
n f

)
(x) − f (x) = f

′′
(x) − 3μ f

′
(x) + 2μ2 f (x) . (5.1)

Proof We can use Taylor formula in the form

f (x + t) = (
f ◦ logμ

) (
eμ(x+t)

)

= (
f ◦ logμ

) (
eμx

) + (
f ◦ logμ

)′ (
eμx

) (
eμ(x+t) − eμx

)

+1

2

(
f ◦ logμ

)′′ (
eμx

) (
eμ(x+t) − eμx

)2 + hx (t)
(
eμ(x+t) − eμx

)2
,

where hx (t) is a continuous function which vanishes at 0.
Replacing x with α∗∗

n (x) in above equality and applying the operator
(
P∗∗
n

)
n>nμ

,
one has

(
P∗∗
n f

)
(x) = f

(
α∗∗
n (x)

) (
P∗∗
n e0

)
(x) + (

f ◦ logμ

)′ (
eμα∗∗

n (x)
) ((

P∗∗
n expμ

)
(x) − eμα∗∗

n (x) (
P∗∗
n e0

)
(x)

)

+ 1

2

(
f ◦ logμ

)′′ (
eμα∗∗

n (x)
)

×
((

P∗∗
n exp2μ

)
(x) − 2eμα∗∗

n (x) (
P∗∗
n expμ

)
(x) + e2μα∗∗

n (x) (
P∗∗
n e0

)
(x)

)

+
(
P∗∗
n hx (t)

(
eμ(α∗∗

n (x)+t) − eμx
)2)

(x) .

This equality can be arranged as

(
P∗∗
n f

)
(x) = f (x)

(
P∗∗
n e0

)
(x) + [

f
(
α∗∗
n (x)

) − f (x)
] (

P∗∗
n e0

)
(x)

+
[(

f ◦ logμ

)′ (
eμα∗∗

n (x)
)

−
(
f ◦ logμ

)′ (
eμx

)]

×
((

P∗∗
n expμ

)
(x) − eμα∗∗

n (x) (
P∗∗
n e0

)
(x)

)

+
(
f ◦ logμ

)′ (
eμx

) ((
P∗∗
n expμ

)
(x) − eμα∗∗

n (x) (
P∗∗
n e0

)
(x)

)

+1

2

[(
f ◦ logμ

)′′ (
eμα∗∗

n (x)
)

−
(
f ◦ logμ

)′′ (
eμx

)]

×
((

P∗∗
n exp2μ

)
(x) − 2eμα∗∗

n (x)
(
P∗∗
n expμ

)
(x) + e2μα∗∗

n (x) (
P∗∗
n e0

)
(x)

)

+1

2

(
f ◦ logμ

)′′ (
eμx

)

×
((

P∗∗
n exp2μ

)
(x) − 2eμα∗∗

n (x)
(
P∗∗
n expμ

)
(x) + e2μα∗∗

n (x) (
P∗∗
n e0

)
(x)

)
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+
(
P∗∗
n hx

(
eμ(α∗∗

n (x)+t) − eμx
)2)

(x) .

Since

lim
n→∞ α∗∗

n (x) = x, lim
n→∞ n

(
eμα∗∗

n (x) − eμx
) = −μ2eμx

lim
n→∞ n

(
e2μα∗∗

n (x) − e2μx
) = −2μ2e2μx

and
lim
n→∞ n

((
P∗∗
n e0

)
(x) − 1

) = 2μ2,

we get

lim
n→∞ n

(
P∗∗
n f

)
(x) − f (x)

= 2μ2 f (x) + (
f ◦ logμ

)′ (
eμx

)
lim
n→∞ n

[(
P∗∗
n expμ

)
(x) − eμx

(
P∗∗
n e0

)
(x)

]

+1

2

(
f ◦ logμ

)′′ (
eμx

)

× lim
n→∞ n

[(
P∗∗
n exp2μ

)
(x) − 2eμx

(
P∗∗
n expμ

)
(x) + e2μx

(
P∗∗
n e0

)
(x)

]

+ lim
n→∞ n

(
P∗∗
n hx

(
eμ(α∗∗

n (x)+t) − eμx
)2

)
(x)

Using (1.5), (1.6) and Lemma 1, one finds that

lim
n→∞ n

[((
P∗∗
n expμ

)
(x) − eμx

(
P∗∗
n e0

)
(x)

)] = eμx lim
n→∞ n

[
1 − (

P∗∗
n e0

)
(x)

]

= −2μ2eμx

and

lim
n→∞ n

[(
P∗∗
n exp2μ

)
(x) − 2eμx

(
P∗∗
n expμ

)
(x) + e2μx

(
P∗∗
n e0

)
(x)

]

= e2μx lim
n→∞ n

[(
P∗∗
n e0

)
(x) − 1

] = 2μ2e2μx .

Since

(
f ◦ logμ

)′ (
eμx ) = e−μxμ−1 f

′
(x) and

(
f ◦ logμ

)′′ (
eμx ) = e−2μx

(
μ−2 f

′′
(x) − μ−1 f

′
(x)

)
,
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we have

lim
n→∞ n

(
P∗∗
n f

)
(x) − f (x) = f

′′
(x) − 3μ f

′
(x) + 2μ2 f (x)

+ lim
n→∞ n

(
P∗∗
n hx

(
eμ(α∗∗

n (x)+t) − eμx
)2

)
(x) .

The proof of the theorem will be over if we prove

lim
n→∞ n

(
P∗∗
n hx

(
eμ(α∗∗

n (x)+t) − eμx
)2

)
(x) = 0.

From Cauchy–Schwarz inequality, we can write

n

∣∣∣∣

(
P∗∗
n hx

(
eμ(α∗∗

n (x)+t) − eμx
)2

)∣∣∣∣ ≤
√(

P∗∗
n h2x

)
(x)

√
n2

(
P∗∗
n exp4μ,x

)
(x).

Since

(
P∗∗
n exp4μ,x

)
(x) = (

P∗∗
n exp4μ

)
(x) − 4eμx

(
P∗∗
n exp3μ

)
(x) + 6e2μx

(
P∗∗
n exp2μ

)
(x)

−4e3μx
(
P∗∗
n expμ

)
(x) + e4μx

(
P∗∗
n e0

)
(x)

= e4μx
( (

n − μ2
)3

n2
(
n − 9μ2

) − 4

(
n − μ2

)2

n
(
n − 4μ2

) + 2 + n2
(
n − μ2

)2

)

and
lim
n→∞ n2

(
P∗∗
n exp4μ,x

)
(x) = 24μ4e4μx ,

we have desired result. �

6 Shape Preserving Properties

In this section, we will present some shape preserving properties of the operator
(1.3). Also we will give the global smoothness preservation properties of mentioned
operators. First, we have the following simple results.

Let f ∈ C2
ρ3

(R), we consider the operators for x ∈ R, n ∈ N,

(
P∗∗
n f

)
(x)

eμx
=

√
n

2

∫

R

e−μ(α∗∗
n (x)+t) f

(
α∗∗
n (x) + t

)
Kn (t) dt.

With simple calculations, we have
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�h

(
P∗∗
n f

expμ

)

(x) =
√
n

2

∫

R

�h

(
f

expμ

)
(
α∗∗
n (x) + t

)
Kn (t) dt

and

�2
h

(
P∗∗
n f

expμ

)

(x) =
√
n

2

∫

R

�2
h

(
f

expμ

)
(
α∗∗
n (x) + t

)
K P

n (t) dt,

where�h ( f ) (x) = f (x + h) − f (x) and�2
h ( f ) (x) = f (x + 2h) − 2 f (x + h)

+ f (x) .

Thus from previous expression, since Kn (t) is positive for all t ∈ R, if f
expμ

is

increasing
(
�h

(
f

expμ

)
(x) ≥ 0

)
then�h

(
P∗∗
n f
expμ

)
(x) ≥ 0, and so P∗∗

n f
expμ

is also increas-

ing. If f
expμ

is convex
(
�2

h

(
f

expμ

)
(x) ≥ 0

)
, then �2

h

(
P∗∗
n f
expμ

)
(x) ≥ 0 and so P∗∗

n f
expμ

is

also convex.
We want to give the connection of the operators

(
P∗∗
n

)
n>nμ

with generalized con-
vexity. Now we recall the definition of generalized convexities with respect to the
functions expμ and exp2μ .

Definition 1 A function f defined onR is said to be convex with respect to
{
expμ

}
,

denoted by f ∈ F (
expμ

)
, if

∣∣∣∣
eμx0 eμx1

f (x0) f (x1)

∣∣∣∣ ≥ 0, x0 < x1.

f is said to be convex with respect to
{
expμ, exp

2
μ

}
, denoted by f ∈ F (

expμ, exp
2
μ

)
,

if ∣∣∣∣∣∣

eμx0 eμx1 eμx2

e2μx0 e2μx1 e2μx2

f (x0) f (x1) f (x2)

∣∣∣∣∣∣
≥ 0, x0 < x1 < x2.

Proposition 1 (see [4]) Let f ∈ C2
ρ3

(R). Then the following items hold.

(1) f ∈ F (
expμ

)
if and only if f/ expμ is increasing for x ∈ R,

(2) f ∈F (
expμ, exp

2
μ

)
if and only if f

′′
(x) − 3μ f

′
(x) + 2μ2 f (x) ≥ 0 for x ∈ R.

Using above proposition, we have

Theorem 4 Let f ∈ Cρ3(R). Then the following items hold.

(1) If f ∈ F (
expμ, exp

2
μ

)
, then

(
P∗∗
n f

)
(x) ≥ f (x) for x ∈ R,

(2) If f ∈ F (
expμ

)
, then

(
P∗∗
n f

) ∈ F (
expμ

)
for x ∈ R.

Theorem 5 Let f ∈ C2
ρ3

(R). Suppose that there exists n0 ∈ N such that

f (x) ≤ (
P∗∗
n f

)
(x) ≤ (Pn f ) (x) , for all n ≥ n0, x ∈ R. (6.1)



On Generalized Picard Integral Operators 167

Then
f

′′
(x) ≥ 3μ f

′
(x) − 2μ2 f (x) ≥ 0, x ∈ R. (6.2)

In particular, f
′′
(x) ≥ 0.

Conversely, if (6.2) holds with strictly inequalities at a given point x ∈ R, then
there exists n0 ∈ N such that for all n ≥ n0

f (x) ≤ (
P∗∗
n f

)
(x) ≤ (Pn f ) (x) .

Proof From (6.1), we have that

0 ≤ n
((
P∗∗
n f

)
(x) − f (x)

) ≤ n ((Pn f ) (x) − f (x)) .

We know from [9] that

lim
n→∞ n ((Pn f ) (x) − f (x)) = f

′′
(x) . (6.3)

Using (5.1) and (6.3), we have the desired result.
Conversely, if (6.2) holds with strict inequalities at a given point x ∈ R, using

again (5.1) and (6.3), we have

f (x) ≤ (
P∗∗
n f

)
(x) ≤ (Pn f ) (x)

for all n ≥ n0. �

By using the weightedmodulus of continuity defined by (4.1), the result regarding
global smoothness preservation properties for the operators of

(
P∗∗
n

)
n>nμ

will be
given as follows:

Theorem 6 Let δ > 0, we have

ω̃

(
P∗∗
n ( f )

expμ

; δ

)

≤
(

n

n − μ2

)
ω̃

(
f

expμ

; δ

)

. (6.4)

Proof For x ∈ R, we have

e−μ(x+h)P∗∗
n ( f ; x + h) − e−μx P∗∗

n ( f ; x)
=

√
n

2

∫

R

[
e−μ(α∗∗

n (x+h)+t) f
(
α∗∗
n (x + h) + t

) − e−μ(α∗∗
n (x+h)+t) f

(
α∗∗
n (x + h) + t

)]
Kn (t) dt



168 A. Aral

Thus, we have for n > nμ

e−μ|x | ∣∣e−μ(x+h)P∗∗
n ( f ; x + h) − e−μx P∗∗

n ( f ; x)∣∣

≤
(

n

n − μ2

) √
n

2

∫

R

e−μ|α∗∗
n (x)|

∣∣∣∣∣
f
(
α∗∗
n (x + h) + t

)

eμ(α∗∗
n (x+h)+t)

− f
(
α∗∗
n (x) + t

)

eμ(α∗∗
n (x)+t)

∣∣∣∣∣
Kn (t) dt

≤
(

n

n − μ2

)
ω̃

(
f

expμ

; ∣∣α∗∗
n (x + h) − α∗∗

n (x)
∣∣
)

≤
(

n

n − μ2

)
ω̃

(
f

expμ

; h
)

.

Thus, we get

ω̃

(
P∗∗
n ( f )

expμ

; δ

)

≤
(

n

n − μ2

)
ω̃

(
f

expμ

; δ

)

.

�
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