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Abstract In this chapter, we discuss the general convergence methods in orthogonal
metric space. Also we study the applications of fixed point theorems to obtain the
existence of a solution of differential and integral equations in orthogonal metric
spaces.

1 Introduction

The concept of orthogonality in normed linear spaces has been studied by Birkhoff
[1–6] among others. Themost natural notion of orthogonality arises in the casewhere
there is an inner product < ., . > compatible with the norm ||.|| on a space X. In this
case,⊥ is defined by x ⊥ y if and only if< x, y >= 0. Some of the major properties
of this relation are as follows:

(1) x ⊥ x if and only if x = 0 for all x ∈ X,

(2) x ⊥ y implies αx ⊥ y for all x, y ∈ X,α ∈ R (Homogeneity),
(3) x ⊥ y implies y ⊥ x for all x, y ∈ X (Symmetry),
(4) x ⊥ y and x ⊥ z implies x ⊥ (y + z) for all x, y, z ∈ X (Additivity),
(5) For every x, y ∈ X, x �= 0, there exists a real number γ such that x ⊥ (γx + y).

For general normed linear spaces (X, ||.||), Birkhoff [1] and James [5, 6] formulated
definitions of orthogonality which did not require the existence of an inner product
as follows:

(B) Birkhoff Orthogonality [1, 5, 6]: (x ⊥ y)(B) provided ||x || ≤ ||x + λy|| for
all x, y ∈ X,λ ∈ R,

(P) Pythagorean Orthogonality [4]: (x ⊥ y)(P) provided ||x − y||2 = ||x ||2 +
||y||2 for all x, y ∈ X,
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(I) Isosceles Orthogonality [4]: (x ⊥ y)(I ) provided ||x − y|| = ||x + y|| for all
x, y ∈ X,

(α) α-Orthogonality [7]: If α �= 1, (x ⊥ y)(α) provided
(1 + α2)||x − y||2 = ||x − αy||2 + ||αx − y||2 for all x, y ∈ X ,

((α,β)) (α,β)-Orthogonality [8]: If α,β �= 1, (x ⊥ y)(α,β) provided
||x − y||2 + ||αx − βy||2 = ||x − βy||2 + ||y − αx ||2 for all x, y ∈ X.

It should be noted that Pythagorean and isosceles orthogonalities are particular cases
ofα-orthogonality, which is in turn a special case of (α,β)-orthogonality. An ordered
triples of the form (X, ||.||,⊥), where X is a real linear space, ||.|| is a norm on X,

and ⊥ is an orthogonality relation on X which has the properties (1)–(5), is an inner
product space if there is an inner product < ., . > on X such that < x, x >= ||x ||2
for all x ∈ X and x ⊥ y if and only if < x, y >= 0 for all x, y ∈ X.

Proposition 1.1 ([3, Theorem I]) If any of (x ⊥ y)(P), (x ⊥ y)(I ), (x ⊥ y)(α) or
(x ⊥ y(α,β)) implies that x ⊥ y, then (X, ||.||,⊥) is an inner product space. If
dimX ≥ 3 and (x ⊥ y)(B) implies that x ⊥ y, then (X, ||.||,⊥) is an inner product
space.

Definition 1.2 ([3]) The relation ⊥ is said to satisfy the norm invariance prop-
erty (NIP) provided the conditions x ⊥ y, ||x || = ||z||, ||y|| = ||w||, and ||x − y|| =
||z − w|| imply z ⊥ w.

Definition 1.3 ([3]) The relation⊥ is said to satisfy the rotation invariance property
(RIP) provided the following conditions hold

(R1) If x ⊥ y, ||x || = ||y|| then (ax − by) ⊥ (ax + by) for all a, b ∈ R,

(R2) If ||x || = ||y|| then ||γ(x, y)x + y|| = ||γ(y, x)y + x ||, where γ(x, y) and
γ(y, x) are respective real numbers from (5) such that x ⊥ (γ(x, y)x + y)
and y ⊥ (γ(y, x)y + x).

Lemma 1.4 ([3, Theorem III]) (X, ||.||,⊥) is an inner product space if and only if
⊥ satisfies NIP or RIP.

Lemma 1.5 ([3, Lemma 1.1]) If x, y ∈ X, x, y �= 0, and x ⊥ y, then x and y are
independent.

We define a function γ : X × X → R by

γ(x, y) =
{

0, if x = 0;
the unique γ such that x ⊥ (γx + y), if x �= 0.

From definition, we see that γ(x, y) = 0 if and only if x ⊥ y. Also γ(x, y) have the
following properties:
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Lemma 1.6 ([3, Lemma 1.3])

(i) γ(x, 0) = γ(0, x) = 0 for all x ∈ X,

(ii) γ(x,λy) = λγ(x, y) for all x, y ∈ X,λ ∈ R,

(iii) γ(λx, y) = 1
λ
γ(x, y) for all x, y ∈ X,λ ∈ R,λ = neq0,

(iv) γ(x, y) = 0 if and only if γ(y, x) = 0,
(v) γ(x, y + z) = γ(x, y) + γ(x, z) for all x, y, z ∈ X.

2 Orthogonal Set

The notion of orthogonal set and orthogonalmetric spacewas introduced byGordji et
al. [9]. They gave an extension of Banach’s fixed point theorem in this new structure
and applied their results to prove the existence of a solution of an ordinary differential
equation. Applications of fixed point theorem in orthogonal metric spaces we refer
[10–12].

Definition 2.1 ([9]) Let X be a non-empty set and ⊥⊆ X × X be a binary relation.
If ⊥ satisfies the following condition

∃x0 : (∀y, y ⊥ x0) or (∀y, x0 ⊥ y)

then it is called an orthogonal set (written as O-set). We denote the orthogonal set
by (X,⊥). The element x0 is called an orthogonal element of X.

Definition 2.2 Let (X,⊥) be an orthogonal set. Any two elements x, y ∈ X are said
to be orthogonally related if x ⊥ y.

Example 2.3 Let X = Z. Define x ⊥ y if there exists p ∈ Z such that x = py. We
see that 0 ⊥ x for all x ∈ Z. Hence (X,⊥) is an O-set.

Example 2.4 Let X be a non-empty set. Consider P(X) is the power sets of X. We
define ⊥ on P(X) as A ⊥ B if A ∩ B = φ. We have φ ∩ A = φ for all A ∈ P(X).

Then (P(X),⊥) is an orthogonal set. Similarly we can define ⊥ on P(X) as A ⊥ B
if A ∪ B = X. Then (P(X),⊥) is also an orthogonal set.

Example 2.5 Let X = [3,∞) and define x ⊥ y if x ≤ y. Taking x0 = 3, (X,⊥) is
an orthogonal set.

Example 2.6 Let X = [0,∞) and define x ⊥ y if xy ∈ {x, y}. By taking x0 = 0 or
x0 = 1 (X,⊥) is an orthogonal set.

Example 2.7 Let (X, d) be a metric space and T : X → X be a Picard operator;
i.e., there exists z ∈ X such that lim

n→∞ T n(y) = z for all y ∈ X. Define x ≤ y if

lim
n→∞ d(z, T n(y)) = 0. The (X,⊥) is an orthogonal set.
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The following example shows that the orthogonal element x0 is not unique.

Example 2.8 SupposeMm is the set of allm × mmatrices and Y is a positive definite
matrix. Define the relation ⊥ on Mm by A ⊥ B ⇔ ∃X ∈ Mm such that AX = B. It
is easy to see that I ⊥ B, B ⊥ O and

√
Y ⊥ B for all B ∈ Mm, where I and O are

the identity and zero matrices in Mm, respectively. Then this orthogonal relation is
reflexive and transitive, but it is antisymmetry.

Example 2.9 For any D ∈ Mm, consider the orthogonal relation ⊥D on Mm with
respect to D defined by

A ⊥D B ⇔ tr(ABD) = tr(DBA).

We have D ⊥D X for all X ∈ Mm . Then this orthogonal relation is reflexive, transi-
tive, and symmetry.

Example 2.10 If 0 < α ≤ 1, let �α([0, 1]) be the space of Hölder’s continuous
functions of the exponent α in [0, 1], i.e., f ∈ �α([0, 1]) if and only if || f ||�α

< ∞,

where

|| f ||�α
= | f (0)| + sup

x,y∈[0,1],x �=y

| f (x) − f (y)|
|x − y|α .

For all 0 < α ≤ 1, define λα([0, 1]) to be the set of f ∈ �α([0, 1]) such that

lim
x→y

| f (x) − f (y)|
|x − y|α = 0 for all x, y ∈ [0, 1].

For all α,β ∈ [0, 1], we define λα([0, 1]) ⊥ λβ([0, 1]) if and only if λα−β
2

([0, 1]) is
an infinite dimensional closed subspace of � α−β

2
([0, 1]). Hence (λα([0, 1]),⊥) is an

orthogonal set.

Definition 2.11 ([9]) Let (X,⊥) be an orthogonal set. A sequence (xn) in X is called
an orthogonal sequence (O-sequence) if

xn ⊥ xn+1 or xn+1 ⊥ xn,∀n.

Definition 2.12 A mapping d : X × X → [0,∞) is called a metric on the orthog-
onal set (X,⊥), if the following conditions are satisfied:

(O1) d(x, y) = d(y, x) for any x, y ∈ X such that x ⊥ y and y ⊥ x,
(O2) d(x, y) = 0 if and only if x = y for any x, y ∈ X such that x ⊥ y and y ⊥ x,
(O3) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X such that x ⊥ y, y ⊥ z and

x ⊥ z.

Then the ordered triple (X,⊥, d) is called an orthogonal metric space.

Example 2.13 Let X = Q. The orthogonal relation on X is defined x ⊥ y if and
only if x = 0 or y = 0. Then (X,⊥) is an orthogonal set, and with the Euclidean
metric, (X,⊥, d) is an orthogonal metric space.
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Let X be an orthogonal set and d : X × X → [0,∞) be a mapping. For every x ∈ X
we define the set

O(X, d, x) =
{
(xn) ⊂ X : lim

n→∞ d(xn, x) = 0 and xn ⊥ x,∀n ∈ N

}
. (1)

Definition 2.14 Let (X,⊥, d) be an orthogonal metric space. A sequence (xn) in X
is said to be

(i) an orthogonal convergent (in short O-convergent) to x if and only if (xn) ∈
O(X, d, x),

(ii) an orthogonal Cauchy (in short O-Cauchy) if and only if lim
n,m→∞ d(xn, xm) = 0

and xn ⊥ xm or xm ⊥ xn,∀n,m ∈ N.

Remark 2.15 In an orthogonal metric space (X,⊥, d), an orthogonal convergent
sequence may not be an orthogonal Cauchy.

Definition 2.16 ([9]) An orthogonal metric space (X,⊥, d) is said to be an orthog-
onal complete (O-complete) if every orthogonal Cauchy sequence converges in X.

Remark 2.17 It is easy to see that every completemetric space is orthogonal complete
but the converse is not true. For this remark, see the following examples.

Example 2.18 Let X = Q.Define x ⊥ y if and only if x = 0 or y = 0. Then (X,⊥)

is an orthogonal set. It is clear that Q is not a complete metric space with respect to
the Euclidean metric, but it is orthogonal complete. If (xn) is any orthogonal Cauchy
sequence inQ, then there exists a subsequence (xnk ) of (xn) for which xnk = 0 for all
k ≥ 1. Then (xnk ) converges to 0 ∈ X. We know that every Cauchy sequence with a
convergent subsequence is convergent, so (xn) is convergent.

Example 2.19 Let X = [0, 1) and define the orthogonal relation on X by

x ⊥ y ⇔
{
x ≤ y ≤ 1

4 ,

or x = 0.

Then (X,⊥) is an orthogonal set. We have X is not a complete metric space with
respect to Euclidean metric but it is orthogonal complete. Consider (xn) is an orthog-
onal Cauchy sequence in X. Then there exists a subsequence (xnk ) of (xn) for which
xnk = 0 for all k ≥ 1, or there exists a monotone subsequence (xnk ) if (xn) for which
xnk ≤ 1

4 for all k ≥ 1. We see that (xnk ) converges to a point x ∈ [0, 1
4 ] ⊆ X. We

know that every Cauchy sequence with a convergent subsequence is convergent, so
(xn) is convergent in X.

Definition 2.20 ([9]) Let (X,⊥, d) be an orthogonal metric space. A function f :
X → X is said to be an orthogonal continuous (O-continuous or ⊥-continuous) at a
point x0 in X if for each orthogonal sequence (xn) in X converging to x0 such that
f (xn) → f (x0). Also f is said to be orthogonal continuous on X if f is orthogonal
continuous at each point on X.
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Remark 2.21 It is easy to see that every continuous mapping is orthogonal continu-
ous. The following examples show that the converse is not true in general.

Example 2.22 Let X = R. Define the orthogonality relation on X by x ⊥ y if and
only if x = 0 or y �= 0 in Q. Then (X,⊥) is an orthogonal set. Define a function
f : X → X by

f (x) =
{
2, if x ∈ Q,

0, if x ∈ Q
c.

Then f is an orthogonal continuous but f is not continuous on Q.

Example 2.23 Let X = R. Define x ⊥ y if x, y ∈ (
q + 1

7 , q + 2
7

)
for some q ∈ Z

or x = 0.Then (X,⊥) is an orthogonal set. Define a function f : X → X by f (x) =
[x]. Then f is an orthogonal continuous on X. Because for an orthogonal sequence
(xn) in X converging to x ∈ X, then we have

Case-I: If xn = 0 for all n, then x = 0 and f (xn) = 0 = f (x).
Case-II: If xn0 �= 0 for some n0, then there exists k ∈ Z such that xn ∈ (

k + 1
7 ,

k + 2
7

)
for all n ≥ n0. Then x ∈ [

q + 1
7 , q + 2

7

]
and f (xn) = k = f (x). It follows

that f is orthogonal continuous on X but it is not continuous on X.

If X = R
n be a standard inner product space, then the Remark 2.21 is false. It follows

from the following theorem.

Lemma 2.24 ([13]) Let X = R
n be a standard inner product space and T : X → X

be a mapping, where T (x) = (Ti (x), T2(x), . . . , Tn(x)) for all x ∈ X, and each
Ti is a mapping from R

n to R for all i = 1, 2, . . . , n. Then T is continuous at
y = (y1, y2, . . . , yn) if and only if Ti is continuous at y for each i = 1, 2, . . . , n.

Theorem 2.25 ([14, Theorem 2.1]) Let (X,⊥,< ., . >) be an orthogonal inner
product space, where X = R

n,< ., . > denotes the standard inner product space and
⊥ is an orthogonal relation on X defined by x ⊥ y if < x, y >= 0 for all x, y ∈ X.

Then f : X → X is orthogonal continuous on X if and only if f is continuous on
X.

Proof Given that (X,⊥,< ., . >) is an orthogonal inner product space, where X =
R

n. The orthogonality relation ⊥ on X is defined by x ⊥ y if < x, y >= 0. Suppose
(xk) be a Cauchy orthogonal sequence converging to x,where xk = (xk1 , x

k
2 , . . . , x

k
n )

and x = (x1, x2, . . . , xn).Suppose that f : X → X is anorthogonal continuous func-
tion at x . To show that f is continuous at x .

For any x, y ∈ X, the distance function d(x, y) induced by the inner product is
given by

d(x, y) =
[

n∑
i=1

(xi − yi )
2

] 1
2

.

Since f is orthogonal continuous at x then for any orthogonal sequence (xk) con-
verging to x, we have



Applications of Fixed Point Theorems and General Convergence … 29

lim
k→∞ d( f (xk), f (x)) = 0

⇒ lim
k→∞

[
n∑

i=1

( fi (xk) − fi (x))
2

] 1
2

= 0

⇒ lim
k→∞ ( fi (xk) − fi (x))

2 = 0, for each i

⇒ fi (xk) → fi (x), for each i, as k → ∞
⇒ fi is continuous at x, for each i = 1, 2, . . . n

⇒ f is continuous at x, (Lemma 2.24).

Since x is arbitrary, so f is continuous on X.

Conversely, if f is continuous on X, it is easy to show that f is orthogonal
continuous on X.

3 Orthogonal Contractions

Definition 3.1 ([9]) Let (X,⊥, d) be an orthogonal metric space and 0 < K < 1.
A mapping T : X → X is called an orthogonal contraction (O-contraction or
⊥-contraction) with Lipschitz constant K , if for all x, y ∈ X with x ⊥ y then
d(T x, T y) ≤ Kd(x, y)

Remark 3.2 It is clear that every contraction is orthogonal contraction but the con-
verse is not true.

Example 3.3 Let X = [0, 10) and d be the Euclidean metric on X. Define x ⊥ y if
xy ≤ x or y. Let F : X → X be a map defined by

F(x) =
{

x
4 , if x ≤ 4,
0, if x > 4.

Let x ⊥ y and xy ≤ x then we have
Case:1 If x = 0 and y ≤ 4 then F(x) = 0 and F(y) = y

4 .

Case:2 If x = 0 and y > 4 then F(x) = F(y) = 0.
Case:3 If y ≤ 3 and x ≤ 4 then F(y) = y

4 and F(x) = x
4 .

Case:4 If y ≤ 1 and x > 4 then x − y > y, F(y) = y
4 , ad F(x) = 0.

Therefore we have |F(x) − F(y)| ≤ 1
4 |x − y|, and hence, F is an orthogonal

contraction.But F is not a contraction, because for each K < 1 then |F(5) − F(4)| =
1 > K = K |5 − 4|.
Example 3.4 Let X = [0, 1) and d be the Euclidean metric on X. Define x ⊥ y if
xy ∈ {x, y} for all x, y ∈ X. Let F : X → X be a mapping defined by

F(x) =
{

x
2 , if x ∈ Q ∩ X,

0, if x ∈ Q
c ∩ X.
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Then F is an orthogonal contraction on X but it is not a contraction.

Definition 3.5 ([9]) Let (X,⊥, d) be an orthogonal metric space. A mapping T :
X → X is said to be an orthogonal preserving (or ⊥-preserving or O-preserving) if
x ⊥ y implies T x ⊥ T y for all x, y ∈ X.

Definition 3.6 ([9]) Let (X,⊥, d) be an orthogonal metric space. A mapping T :
X → X is said to be a weakly orthogonal preserving (or weakly ⊥-preserving or
weakly O-preserving) if x ⊥ y implies T x ⊥ T y or T y ⊥ T x for all x, y ∈ X.

Example 3.7 ([9]) Let X be the set of all peoples in the world. We define x ⊥ y if
x can give blood to y. According to the following table, if x0 is a person such that
his/her blood type is O−, then we have x0 ⊥ y for all y ∈ X. Then (X,⊥) is an
orthogonal set. In the following, we see that in this orthogonal set x0 is not unique.

Type You can give blood to You can receive blood from
A+ A+, AB+ A+, A−, O+, O−
O+ O+, A+, B+, AB+ O+, O−
B+ B+, AB+ B+, B−, O+.O−
AB+ AB+ Everyone
A− A+.A−, AB+, AB− A−, O−
O− Everyone O−
B− B+, B−, AB+, AB− B−, O−
AB− AB+, AB− AB−, B−, O−, A−

Remark 3.8 We have every orthogonal preserving mapping is weakly preserving,
but the converse is not true.

For this let (X,⊥) be an orthogonal set defined in the Example 3.7. Let O1 in X be
a person with blood type O−; P1 be a person with blood type A+. Define a mapping
F : X → X by

F(x) =
{

P1, if x = O1,

O1, if x ∈ X − {O1}.

Let O2 ∈ X − {O1} be a person with blood type O−. Then we get O1 ⊥ O2 but we
do not have F(O1) ⊥ F(O2). Therefore F is not an orthogonal preserving but it is
weakly orthogonal preserving.

Theorem 3.9 ([9, Theorem 3.11]) Let (X,⊥, d) be an orthogonal complete metric
space (not necessarily complete metric space) and 0 < k < 1. Let T : X → X be
an orthogonal continuous, orthogonal contraction with Lipschitz constant k, and
orthogonal preserving. Then T has a unique fixed point x̄ ∈ X. Also T is a Picard
operator, i.e., lim

n→∞ T n(x) = x̄ for all x ∈ X.
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Proof Given that (X,⊥, d) is an orthogonalmetric space. Therefore by the definition
of orthogonality, there exists an element x0 ∈ X such that x0 ⊥ y or y ⊥ x0 for all
y ∈ X.

It follows that x0 ⊥ T x0 or T x0 ⊥ x0. Let

x1 = T x0, x2 = T x1 = T 2x0, . . . , xn+1 = T xn = T n+1x0,∀n ∈ N.

Since T is orthogonal preserving, (xn) is an orthogonal sequence in X. Also since T
is an orthogonal contraction, so we have

d(xn, xm) ≤ knd(x0, x1),∀n ∈ N.

If m, n ∈ N and m ≥ n we get

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

≤ knd(x0, x1) + kn+1d(x0, x1) + · · · + km−1d(x0, x1)

≤ kn

1 − k
d(x0, x1).

Since 0 < k < 1 and d(x0, x1) is fixed, d(xn, xm) → 0 as m, n → ∞. Therefore
(xn) is an orthogonal Cauchy sequence in X. Since X is orthogonal complete, there
exists x̄ ∈ X such that xn → x̄ . Again since T is orthogonal continuous, therefore
T (xn) → T (x̄) and T (x̄) = lim

n
(T xn) = lim

n
xn+1 = x̄ . Hence x̄ is a fixed point of

T .

Next we prove that the uniqueness of x̄ . Let ȳ be another fixed point of T . Then
we have T n(x̄) = x̄ and T n(ȳ) = ȳ for all n ∈ N. By the definition of orthogonality,
we have

x0 ⊥ x̄ and x0 ⊥ ȳ

or
x̄ ⊥ x0 and ȳ ⊥ x0.

Since T is orthogonal preserving, we have

T n(x0) ⊥ T n(x̄) and T n(x0) ⊥ T n(ȳ)

or
T n(x̄) ⊥ T n(x0) and T n(ȳ) ⊥ T n(x0), ∀n ∈ N.

Now by triangular inequality, we have

d(x̄, ȳ) = d(T n(x̄), T n(ȳ))

≤ d(T n(x̄), T n(x0)) + d(T n(x0), T
n(ȳ))
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≤ knd(x̄, x0) + knd(x0, ȳ)

→ 0 as n → ∞.

This shows that x̄ = ȳ.
Finally let x ∈ X be arbitrary. Similarly we have

x0 ⊥ x̄ and x0 ⊥ x

or
x̄ ⊥ x0 and x ⊥ x0.

Since T is orthogonal preserving, we have

T n(x0) ⊥ T n(x̄) and T n(x0) ⊥ T n(x)

or
T n(x̄) ⊥ T n(x0) and T n(x) ⊥ T n(x0), ∀n ∈ N.

Thus for all n ∈ N we have

d(x̄, T n(x)) = d(T n(x̄), T n(x))

≤ d(T n(x̄), T n(x0)) + d(T n(x0), T
n(x))

≤ knd(x̄, x0) + knd(x0, x)

→ 0 as n → ∞.

This completes the proof.

Corollary 3.10 (Banach’s Contraction Principle) Let (X, d) be a complete metric
space and T : X → X be a mapping such that for some k ∈ (0, 1), d(T x, T y) ≤
kd(x, y) for all x, y ∈ X. Then T has a unique fixed point in X.

Proof Suppose that
x ⊥ y ⇔ d(T x, T y) ≤ d(x, y).

For fix x0 ∈ X. Since T is a contraction, so for all y ∈ X, x0 ⊥ y. Hence (X,⊥) is
an orthogonal set. It is clear that X is an orthogonal complete and T is an orthogonal
contraction, orthogonal continuous, and orthogonal preserving. Then by Theorem
3.9, T has a fixed point in X.

The following example shows that Theorem 3.9 is a real extension of Banach’s
fixed point theorem.

Example 3.11 Suppose that (X = [0, 9),⊥, d) and T : X → X is defined by

T (x) =
{

x
3 , if x ≤ 3,
0, if x > 3.
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Then X is orthogonal complete (but not complete), and T is orthogonal continuous
(not continuous on X ), orthogonal contraction, and orthogonal preserving on X.

Therefore by Theorem 3.9 T has a fixed point in X. However T is not a contraction
on X , so by Banach’s contraction principle, we cannot find any fixed point of T on
X.

4 Applications to Ordinary Differential Equations

We apply Theorem 3.9 to prove the existence of a solution for the following differ-
ential equation:

{
u′(t) = f (t, u(t)), a.e. t ∈ I = [0, T ]
u(0) = a, a ≥ 1

, (1)

where f : I × R → R is an integrable function satisfying the following conditions:

(C1) f (s, x) ≥ 0 for all x ≥ 0 and s ∈ I,
(C2) there exists α ∈ L1(I ) such that

| f (s, x) − f (s, y)| ≤ α(s)|x − y|

for all s ∈ I and x, y ≥ 0 with xy ≥ x or y.

It is clear that the function f : I × R → R is not necessarily Lipschitz from the
condition (C2). We consider the function

f (s, x) =
{
sx, if x ≤ 1

3 ,

0, if x > 1
3 .

which satifies the conditions (C1) and (C2) but f is not continuous and monotone.
For s �= 0 we have

∣∣∣∣ f
(
s,

1

3

)
− f

(
s,

2

5

)∣∣∣∣ = s
1

3
> s

1

15
= s

∣∣∣∣13 − 2

5

∣∣∣∣ .
Theorem 4.1 ([9, Theorem 4.1])Under the conditions (C1) and (C2), for all T > 0,
the differential equation (1) has a unique positive solution.

Proof Let X = {u ∈ C(I,R) : u(t) > 0,∀t ∈ I }. We consider the orthogonality
relation in X as

x ⊥ y ⇔ x(t)y(t) ≥ x(t) or y(t), ∀t ∈ I.

Let S(t) = ∫ t
0 |α(s)|ds. Then we have S′(t) = |α(t)| for almost every t ∈ I. Define
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||x ||A = sup
x∈I

e−S(t)|x(t)|, d(x, y) = ||x − y||A,∀x, y ∈ X.

It is easy to show that (X, d) is a metric space.
We show that X is an orthogonal complete (not necessarily complete) metric

space. Consider (xn) is an orthogonal Cauchy sequence in X. It is easy to show that
(xn) is convergent to a point x ∈ C(I ). It is enough to show that x ∈ X. For t ∈ I
by the definition of ⊥ we have

xn(t)xn+1(t) ≥ xn(t) or xn+1(t) for each n ∈ N.

Since xn(t) > 0 for each n ∈ N, there exists a subsequence (xnk ) of (xn) for which
xnk (t) ≥ 1 for each k ∈ N. By the convergence of this sequence to a real number,
x(t) implies that x(t) ≥ 1. Since t ∈ I is arbitrary, so we have x ∈ X.

Define a mapping F : X → X by

F(u(t)) =
∫ t

0
f (s, u(t))ds + a.

The fixed point of F is the solution of the Eq. (1). For this, we need to prove the
following steps.

Step-I: F is orthogonal preserving: For all x, y ∈ X with x ⊥ y and t ∈ I we have

F(u(t)) =
∫ t

0
f (s, u(t))ds + a ≥ 1

which implies that Fx(t)Fy(t) ≥ Fx(t) and so Fx ⊥ Fy.
Step-II: F is orthogonal contraction: For all x, y ∈ X with x ⊥ y and t ∈ I, the

condition (C2) implies that

e−S(t)|Fx(t) − Fy(t)| ≤ e−S(t)
∫ t

0
| f (s, x(s)) − f (s, y(s))|ds

≤ e−S(t)
∫ t

0
|α(s)|eS(s)e−S(s)|x(s) − y(s)|ds

≤ e−S(t)

(∫ t

0
|α(s)|eS(s)ds

)
||x − y||A

≤ e−S(t)(eS(t) − 1)||x − y||A
≤ (1 − e−||α||1)||x − y||A,

so we have
||Fx − Fy||A ≤ (1 − e−||α||1)||x − y||A.

Since 1 − e−||α||1 < 1, so F is an orthogonal contraction.
Step-III: F is orthogonal continuous: Let (xn) be an orthogonal sequence in X con-
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verging to a point x ∈ X. So we see that x(t) ≥ 1 for all t ∈ I and hence xn ⊥ x for
all n ∈ N. By condition (C2) we have

e−S(t)|Fxn(t) − Fx(t)| ≤ e−S(t)
∫ t

0
| f (s, xn(s)) − f (s, x(s))|ds

≤ 1 − e−||α||1 ||xn − x ||A,∀n ∈ N and t ∈ I.

Hence
||Fxn − Fx ||A ≤ (1 − e−||α||1)||xn − x ||A,∀n ∈ N.

Therefore Fxn → Fx .
The uniqueness of the solution follows from Theorem 3.9. This completes the

proof.

5 Generalized Metric

A mapping D : X × X → [0,∞] is called a generalized metric on a non-empty set
X, if the following conditions are satisfied:

1. D(x, y) = D(y, x) for x, y ∈ X,

2. D(x, y) = 0 ⇔ x = y for x, y ∈ X,

3. D(x, z) ≤ D(x, y) + D(y, z) for x, y, z ∈ X considering that if D(x, y) = ∞
or D(y, z) = ∞ then D(x, y) + D(y, z) = ∞.

Then the pair (X, D) is called a generalized metric space.

Definition 5.1 [15]Amapping D : X × X :→ [0,∞] is called a generalizedmetric
on the orthogonal set (X,⊥), if it satisfy the following conditions:

(GO1) D(x, y) = D(y, x) for any points x, y ∈ X such that x ⊥ y and y ⊥ x,
(GO2) D(x, y) = 0 ⇔ x = y for any points x, y ∈ X, x ⊥ y and y ⊥ x,
(GO3) D(x, z) ≤ D(x, y) + D(y, z) for any points x, y, z ∈ X, x ⊥ y, y ⊥ z, and

x ⊥ z, considering that if D(x, y) = ∞ or D(y, z) = ∞ then D(x, z) = ∞.

Then the ordered triple (X,⊥, D) is called generalized orthogonal metric space.

The concept of completeness of a generalized orthogonal metric space is defined
in the usual way.

Theorem 5.2 ([15, Theorem 3.2]) Let (X,⊥, D) be a generalized orthogonal com-
plete metric space. Let T : X → X be an orthogonal preserving and orthogonal
continuous map such that
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(1) D(T x, T y) ≤ λD(x, y) for any points x, y ∈ X such that x ⊥ y and0 < λ < 1,
(2) For any x ∈ X there exists n0 such that for (T,⊥)-orbit (T nx)∞n=0 we have

D(T n0x, T n0+1x) < ∞,

(3) If x ⊥ y, T x = x and T y = y then D(x, y) < ∞.

Then there exists a unique fixed point x̄ of the map T and lim
n→∞ T nx = x̄ for any

x ∈ X.

Proof Consider the (T,⊥)-orbit (T nx)∞n=0 of an arbitrary point x ∈ X. Suppose that

x ⊥ T x, T x ⊥ T 2x, T 2x ⊥ T 3x, . . . , T nx ⊥ T n+1x, . . . .

By the given condition (2), we find n0 such that D(T n0x, T n0+1x) < ∞. Then for
n ≥ n0 we have

D(T nx, T n+1x) ≤ λD(T n−1x, T nx)

≤ λ2D(T n−2x, T n−1x)

≤ λ3D(T n−3x, T n−2x)

...

≤ λn−n0D(T n0x, T n0+1x)

and

D(T nx, T n+mx) ≤ D(T nx, T n+1x)+D(T n+1x, T n+2x) + · · · + D(T n+m−1x, T n+mx)

≤ λn−n0D(T n0 x, T n0+1x) + · · · + λn+m−1−n0D(T n0 x, T n0+1x)

=
[
λn−n0 + λn+1−n0 + · · · + λn+m−1−n0D(T n0 x, T n0+1x)

]

≤ λn−n0

1 − λ
D(T n0 x, T n0+1x).

Therefore the (T,⊥)-orbit (T nx)∞n=0 is a Cauchy sequence in X , and by the com-
pleteness of X, it converges to a point x̄ ∈ X. Since T is an orthogonal continuous,
so x̄ is a fixed point of T . Suppose that x ⊥ y, T x = x and T y = y, then by the
given condition (3) we have D(x, y) < ∞, and by condition (1) we get

D(x, y) = D(T x, T y) ≤ λD(x, y)

which is a contradiction. So the fixed point is unique, This completes the proof.

Definition 5.3 ([16]) Let (X,⊥) be an orthogonal set. A sequence (xn) in X is called
a strongly orthogonal (SO-orthogonal) if

xn ⊥ xn+m or xn+m ⊥ xn,∀n,m ∈ N.
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Remark 5.4 Every strongly orthogonal sequence is an orthogonal sequence, but the
converse is not true.

Example 5.5 Let X = Z. Define the orthogonal relation on X by x ⊥ y if and only
if xy ∈ {x, y}. Consider a sequence (xn) in X as follows

xn =
{

3, if n = 2k, for some k ∈ Z,

1, if n = 2k + 1 for some k ∈ Z.

Then we have xn ⊥ xn+1 for all n ∈ N, but x2n is not orthogonal to x4n. So (xn) is
an orthogonal sequence but not a strongly orthogonal sequence.

Definition 5.6 An orthogonal metric space (X,⊥, d) is called strongly orthogonal
complete (SO-complete) if every strongly orthogonalCauchy sequence is convergent.

Remark 5.7 Every complete metric space is strongly orthogonal complete, but the
converse is not true.

Example 5.8 Consider X = {x ∈ C([0, 1],R) : x(t) > 0,∀t ∈ [0, 1]}.Then X is an
incomplete metric space with the supremum norm ||x || = sup

t∈[0,1]
|x(t)|. Define the

orthogonal relation ⊥ on X by

x ⊥ y ⇐⇒ x(t)y(t) ≥ max
t∈[0,1]{x(t), y(t)}.

Then X is strongly orthogonal complete. If (xn) is a strongly orthogonal Cauchy
sequence in X, then for all n ∈ N and t ∈ [0, 1], xn(t) ≥ 1. Since C([0, 1],R) is a
Banach space with the supremum norm, so we can find an element x ∈ C([0, 1],R)

for which ||xn − x || → 0 as n → ∞. Since uniformly convergent implies the point-
wise convergent. Thus x(t) ≥ 1 for all t ∈ [0, 1] and hence x ∈ X.

Remark 5.9 Every orthogonal complete metric space is strongly orthogonal com-
plete, but the converse is not true.

Example 5.10 Suppose X = [1,∞) with the Euclidean metric and the orthogonal
relation on X is defined by x ⊥ y ⇐⇒ xy ∈ {x, y}. Let (xn) be a strongly orthog-
onal Cauchy sequence in X, by the definition of ⊥ we have xn = 1 for all n ∈ N.

Therefore (xn) converges to 1. Consider a sequence

xn =
{

0, if n = 2k, for some k ∈ Z,

k + 1, if n = 2k + 1 for some k ∈ Z.

Then (xn) is an orthogonal sequence but it is not convergent to any element in X.

Definition 5.11 ([16]) Let (X,⊥, d) is an orthogonal metric space. A mapping T :
X → X is called strongly orthogonal continuous (SO-continuous) at x0 ∈ X, for each
strongly orthogonal sequence (xn) in X if xn → x0 then T (xn) → T (x0). Also T is
called strongly orthogonal continuous on X if it is strongly orthogonal continuous
at each point of X.
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Remark 5.12 Every continuousmapping is orthogonal continuous and every orthog-
onal continuous mapping is strongly orthogonal continuous, but the converse is not
true; i.e., every continuous mapping is strongly orthogonal continuous but the con-
verse is not true.

Example 5.13 Let X = R with the Euclidean metric. Suppose the orthogonal rela-
tion ⊥ as x ⊥ y ⇐⇒ xy ∈ {x, y}. Define a function T : X → X by

T (x) =
{

1, if x ∈ Q,
1
x2 , if x ∈ Q

c.

Then T is not continuous, but T is strongly orthogonal continuous, because we
consider xn ∈ Q for enough large n. Then we have T (xn) = 1 → x = 1. Now we
consider a sequence

xn =
{

1, if n = 2k, for some k ∈ Z,√
2
k , if n = 2k + 1 for some k ∈ Z.

Then we see that xn → 0 but the sequence (T (xn)) is not convergent to T (0). So T
is not orthogonal continuous.

Definition 5.14 Let (X,⊥, d) be a strongly orthogonal complete metric space. A
mapping T : X → X is called strongly orthogonal Meir–Keeler contraction if for
every ε > 0 there exists δ(ε) > 0 such that

x �= y, x ⊥ y and ε ≤ d(x, y) < ε + δ(ε) =⇒ d(T x, T y) < ε. (1)

Theorem 5.15 Let (X,⊥, d) be a strongly orthogonal complete metric space (not
necessarily complete) with an orthogonal element x0. Suppose that T : X → X
is orthogonal preserving, strongly orthogonal continuous such that satisfying the
strongly orthogonalMeir–Keeler contraction. Then T has a unique fixed point z ∈ X.

Also T is a Picard operator, i.e., for all x ∈ X, the sequence (T n(x)) is convergent
to z with respect to the metric d.

Proof By the definition of orthogonality, we have

x0 ⊥ y or y ⊥ x0,∀y ∈ X.

It follows that x0 ⊥ T x0 or T x0 ⊥ x0. Put

x1 = T x0, x2 = T (x1) = T 2(x0), . . . , xn+1 = T (xn) = T n+1(x0),∀n ∈ N.

We have
x0 ⊥ xn or xn ⊥ x0,∀n ∈ N.

Since T is orthogonal preserving, so we get
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xm = Tm(x0) ⊥ Tm(xn) = xn+m or xn+m = Tm(xn) ⊥ Tm(x0) = xm, ∀n,m ∈ N.

This gives that (xn) is a strongly orthogonal sequence.
We divide the proof in the following steps:
Step-I: To show that lim

n→∞ d(xn+1, xn) = 0.

If there exists m0 ∈ N, xm0 = xm0+1 then the result is obvious. Let xn �= xn+1 for
all n ∈ N. Then by the Meir–Keeler condition, we have

d(xn+1, xn) < d(xn, xn−1),∀n ∈ N.

This shows that the sequence (d(xn+1, xn)) is strictly decreasing and it converges.
Put lim

n→∞ d(xn+1, xn) = t. We prove that t = 0. Suppose that t > 0. Using the Meir–

Keeler condition for t > 0, we can find δ(t) > 0 such that

x �= y, x ⊥ y and t ≤ d(x, y) < t + δ(t) =⇒ d(T x, T y) < t.

Since lim
n→∞ d(xn+1, xn) = t, then there exists m0 ∈ N such that

t ≤ d(xm0 , xm0−1) < t + δ(t) =⇒ d(T xm0 , xm0−1) < t.

This implies that d(xm0+1, xm0) < t , and it contradicts the assumption lim
n→∞ d(xn+1,

xn) = t. Therefore t = 0.
Step-II: To prove that (xn) is a strongly orthogonal Cauchy sequence.
Suppose that (xn) is not a strongly orthogonal Cauchy sequence. There exist ε > 0

and two sequences (mk) and (nk) such that mk > nk ≥ m0

d(xmk , xnk ) ≥ ε and d(xmk−1 , xnk ) < ε (2)

To prove the result (2), we suppose that

Sk = {m ∈ N : ∃nk ≥ m0, d(xm, xnk ) ≥ ε,m > nk ≥ m0}.

Clearly Sk �= φ and Sk ⊆ N, then by the well-ordering principle, the minimum ele-
ment of Sk is denoted by mk , and clearly the result (2) holds. Then there exists
δ(ε) > 0 (which can be chosen as δ(ε) ≤ ε) satisfy the result (1). Then by Step-I, we
show that there exists m0 ∈ N such that d(xm0 , xm0+1) < δ(ε). Then for fix k ≥ m0

we have

d(xmk−1, xnk−1) = d(xmk−1, xnk ) + d(xnk , xnk−1)

< ε + δ(ε).

Now we consider the two cases:
Case-I: Suppose that d(xmk−1, xnk−1) ≥ ε.
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Since xnk−1 and xmk−1 are orthogonal comparable, using the condition (1) we get

ε ≤ d(xmk−1, xnk−1) < ε + δ(ε) =⇒ d(xmk , xnk ) < ε.

Case-II: Suppose that d(xmk−1, xnk−1) < ε.
Since xmk−1 and xnk−1 are orthogonal comparable, then by (1) we get

d(xmk , xnk ) < d(xmk−1, xnk−1) < ε.

Hence in each case we get d(xmk , xnk ) < ε which contradicts the condition (2).
Hence (xn) is a strongly orthogonal Cauchy sequence. Since X is strongly orthogonal
complete, then there exists y0 ∈ X such that xn → y0.So d(xn, y0) → ∞ as n → ∞.

Also since T is a strongly orthogonal continuous, then for any ε > 0 there exists
m0 ∈ N such that

d(xm0+1, y0) <
ε

2
and d(T xm0 , T y0) <

ε

2
.

Now

d(T y0, y0) ≤ d(T y0, T xm0) + d(T xm0 , y0)

≤ ε

2
+ ε

2
= ε.

It follows that T y0 = y0. Hence T has a fixed point in X.

Now we prove that T is a Picard operator. Let x ∈ X be arbitrary. By the choice
of x0, we have

x0 ⊥ y0 and x0 ⊥ x

or
y0 ⊥ x0 and x ⊥ x0

Since T is orthogonal preserving, it implies that

xn ⊥ y0 and xn ⊥ T nx

or
y0 ⊥ xn and T nx ⊥ xn,∀n ∈ N.

Now we show that the sequence (d(T nx, xn)) converges to zero. For some m0 ∈ N,

if Tm0x = xm0 then d(T nx, xn) = 0 for all n ≥ m0.

Let T nx �= xn for all n ∈ N. TheMeir–Keeler condition implies that the sequence
(d(T nx, xn)) is strictly decreasing. Using the same argument in Step-I, we get
lim
n→∞ d(T nx, xn) = 0. For all n ∈ N we obtain that
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d(T nx, y0) ≤ d(T nx, xn) + d(xn, y0) = 0 as n → ∞.

Therefore T nx → y0.
Finally we prove that the fixed point y is unique. Let ȳ ∈ X be another fixed point

of T, then T n ȳ = ȳ for all n ∈ N. It follows from T is a Picard operator that ȳ = y0.

6 Applications to Integral Equations

Westudy the existence and uniqueness of a solution of the following integral equation

u(t) =
∫ t

0
es−t

(∫ b

0
e−τ g(s, τ , u(τ ))dτ

)
ds (1)

Let p > 0, g be a function from [0, p] × [0, p] × X into X and � : [0, p] × [0, p]×
[0, p] → R

+ be an integrable function for which

(P1) (i) g : (t, ., x) : s → g(t, s, x) is an integrable function for every x ∈ X and
for all t ∈ [0, p]
(ii) g(t, s, .) : x → g(t, s, x) is d-continuous on X for all t, s ∈ [0, p].

(P2) (i) g(t, s, x) ≥ 0 for all x ≥ 0 and for all t, s ∈ [0, p]
(ii) g(t, s, x)g(t ′, r, y) ≥ g(t, t ′, xy) for each x, y ∈ X with xy ≥ 0 and for all
t, t ′, r, s ∈ [0, p].

(P3) There existsγ > 0 such that d(g(t, s, x), g(t, s, y)) ≤ γd(x, y) for all (t, s, x),
(t, s, y) ∈ [0, p] × [0, p] × X with xy ≥ 0.

(P4) d(g(t, s, x), g(v, s, x)) ≤ �(t, v, s) for all (t, s, x), (v, s, x) ∈ [0, p] × [0, p]
× X and

lim
t→∞

p∫
0

�(t, v, s)ds = 0

uniformly for all v ∈ [0, p].
We consider B = C([0, p], X) the space of all continuous function from [0, p] into
X . It is a complete metric space with the metric

db(u, w) = sup
t∈[0,p]

e−bt |u(t) − w(t)|, where b ≥ 0.

We define the operators T and S on B by

Tu(t) =
∫ p

0
e−sg(t, s, u(s))ds

Su(t) =
∫ t

0
es−t T u(s)ds
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We have the fixed points of S are the solutions of the Eq. (1) and B is invariant under
T and S.

Theorem 6.1 Under the conditions (P1)–(P4), for all p ≥ 0 the integral equation
(1) has a unique solution in B.

Proof We consider the orthogonal relation on B as

u ⊥ w ⇐⇒ u(t)w(t) ≥ 0,∀t ∈ [0, p].

It is clear that B is a strongly orthogonal complete metric space. To complete the
proof, we need the following steps.

Step-I: S is an orthogonal preserving. For each u, w ∈ B with u ⊥ w, by the
hypothesis (P1)(i) and (P2)(ii) we have

Tu(t)Tw(t ′) =
∫ p

0
e−sg(t, s, u(s))ds

∫ p

0
e−rg(t ′, r, w(r))dr

=
∫ p

0

∫ p

0
e−(s+r)g(t, s, u(s))g(t ′, r, w(r))dsdr

≥
∫ p

0

∫ p

0
e−(s+r)g(t, t ′, u(s)w(r))dsdr, u(s)w(r) ≥ 0

≥ 0 for each t, t ′ ∈ [0, p].

Therefore Tu ⊥ Tw. By the definition of S we have Su ⊥ Sw.

Step-II: To prove that S is db-Lipschitz on orthogonal comparable elements. Let

M = {s0, s1, . . . , sk} be a subdivision of the interval [0, p]. Then we have
k−1∑
i=0

(si+1 −

si )e−si x(si ) is norm convergent and consequently db-convergent to
p∫
0
e−s x(s)ds inB,

when |M | = sup{|si+1 − si | : i = 0, 1, 2, . . . , k − 1} → 0 as k → ∞. Let u ⊥ w.

Then we have
∫ p

0
e−s(g(t, s, u(s)) − g(t, s, w(s)))ds

= lim
k→∞

k−1∑
i=0

(si+1 − si )e
−si (g(t, si , u(si )) − g(t, si , w(si )))

and
k−1∑
i=0

(si+1 − si )e
−si ≤

∫ p

0
e−sds = 1 − e−p < 1

by Fatou property and condition (P3). Now we have
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d(Tu(t), Tw(t)) ≤ lim inf
k−1∑
i=0

(si+1 − si )e
−si d(g(t, si , u(si )), g(t, si , w(si )))

≤ λ lim inf
k−1∑
i=0

(si+1 − si )e
−si d(u(si ), w(si ))

≤ λ lim inf
k−1∑
i=0

(si+1 − si )e
bsi db(u, w).

Therefore we get

e−btd(Tu(t), Tw(t)) ≤ λe−bt

(∫ p

0
ebsds

)
db(u, w)

≤ λ
ebp − 1

b
db(u, w).

Hence

db(Tu, Tw) ≤ λ
ebp − 1

b
db(u, w).

By definition of S gives that

db(Su, Sw) ≤ Ndb(u, w), where N = λ

b(b + 1)

(
1 − e−(b+1)p

) (
ebp − 1

)
.

Step-III: To show that S satisfies the Meir–Keeler condition.
We define

δ(ε) = {db(u, w) : db(Su, Sw) ≥ ε and u ⊥ w}.

Let 0 < N < 1 and ε > 0 be given. If u ⊥ w and db(Su, Sw) ≥ ε then by Step-II,
we have

db(u, w) ≥ N−1ε.

So δ(ε) ≥ N−1ε > ε. By using Theorem 1 of [17] we have S satisfies the Meir–
Keeler condition. Therefore by Theorem 5.15, S has a unique fixed point, which is
the solution of the integral equation (1).

7 Different Types of Convergence

The asymptotic density or density of a subset U of N, denoted by δ(U ), is given by

δ(U ) = lim
n→∞

1

n
|{k ≤ n : k ∈ U }|,
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if this limit exists, where |{k ≤ n : k ∈ U }| denotes the cardinality of the set {k ≤
n : k ∈ U }. Fast [18] and Steinhaus [19] independently introduced the notion of
statistical convergence with the help of asymptotic density, and later on Schoenberg
[20] reintroduced it. A sequence x = (xn) is said to be statistically convergent to
� if for every ε > 0, the set {n ∈ N : |xn − �| ≥ ε} has density zero. We call � the
statistical limit of x. The set of all statistically convergent sequences is denoted by
st.

The notion of ideal convergence is the dual (equivalent) to the notion of filter
convergence which was introduced by Cartan [21]. The filter convergence is a gen-
eralization of the classical notion of convergence of a sequence, and it has been an
important tool in general topology and functional analysis. Kostyrko et al. [22] and
Nuray andRuckle [23] independently discussed the ideal convergencewhich is based
on the structure of the admissible ideal I of subsets of natural numbersN. It was fur-
ther investigated by many authors, e.g., S̆alát et al. [24], and references therein. The
statistical convergence and ideal convergence for sequences of real-valued functions
were studied by Balcerzak et al. [25].

A non-empty class I of power sets of a non-empty set X is called an ideal on X
if and only if (i) φ ∈ I (ii) I is additive under union (iii) hereditary. An ideal I is
called non-trivial if I �= φ and X /∈ I. A non-empty class F of power sets of X is
called a filter on X if and only if (i) φ /∈ F (ii) F is additive under intersection (iii)
for eachU ∈ F and V ⊃ U, implies V ∈ F . A non-trivial ideal I is said to be (i) an
admissible ideal on X if and only if it contains all singletons (ii) maximal, if there
cannot exist any non-trivial ideal K �= I containing I as a subset (iii) is said to be a
translation invariant ideal if {n + 1 : n ∈ U } ∈ I, for any U ∈ I.

We recall that a real sequence x = (xn) is called ideal convergent (in short I-
convergent) to the number l (denoted by I- lim xn = l) if for every ε > 0, the set
{n ∈ N : |xn − l| ≥ ε} is in I. The set of all ideal convergent sequences denoted
by I.

A lacunary sequence θ = (kr ) is a non-decreasing sequence of positive integers
such that k0 �= 0 and hr : kr − kr−1 → ∞. The intervals determined by θ will be
denoted by Ir = (kr−1, kr ], and the ratio kr

kr−1
will be abbreviated as qr . We assume

that lim infr qr > 1. The notion of lacunary statistical convergence was introduced
and studied by Fridy and Orhan [26, 27]. A sequence (xn) in R is called lacunary
statistically convergent to x ∈ R if

lim
r→∞

1

hr
|{k ∈ Ir ; |xn − x | ≥ ε}| = 0,

for every positive real number ε. The set of all lacunary statistically convergent
sequences is denoted by stθ.

Connor and Grosse-Erdman [28] gave sequential definitions of continuity for real
functions callingG-continuity,where amethod of sequential convergence, or briefly a
method, is a linear functionG defined on a linear subspace of s, denoted by cG, intoR.

We refer [29] for sequential compactness and [30, 31] for G-sequential continuity.
A sequence x = (xn) is said to be G-convergent to � if x ∈ cG and G(x) = �. In
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particular, lim denotes the limit function lim x = limn xn on the linear space c, and
st − lim denotes the statistical limit function st − lim x = st − limn xn on the linear
space st and stθ − lim denotes the lacunary statistical limit function stθ − lim x =
stθ − limn xn on the linear space stθ. Also I − lim denotes the I-limit function
I − lim x = I − limn xn on the linear space I(R). A method G is called regular if
every convergent sequence x = (xn) is G-convergent with G(x) = lim x. A method
is called subsequential if whenever x is G-convergent with G(x) = �, then there is a
subsequence (xnk ) of x with limk xnk = �.

8 General Convergence

Let X be an orthogonal set and d : X × X → [0,∞) be a mapping. For every x ∈ X
we define the set

GO(X, d, x) =
{
(xn) ⊂ X : G − lim

n→∞ d(xn, x) = 0 and xn ⊥ x,∀n ∈ N

}
. (1)

Definition 8.1 Let (X,⊥, d) be an orthogonal metric space. A sequence (xn) in X
is said to be

(i) G-orthogonal convergent (in short GO-convergent) to x if and only if (xn) ∈
GO(X, d, x),

(ii) G-orthogonal Cauchy (in short GO-Cauchy) if and only if G − lim
n,m→∞ d(xn, xm)

= 0 and xn ⊥ xm or xm ⊥ xn,∀n,m ∈ N.

Theorem 8.2 Let (X,⊥,< ., . >) be an orthogonal inner product space, where
X = R

n, < ., . > denotes the standard inner product space and ⊥ is an orthogonal
relation on X defined by x ⊥ y if < x, y >= 0 for all x, y ∈ X. Let (xn) and (yn)
be two sequences in X with (xn) ∈ GO(X, d, x) and (yn) ∈ GO(X, d, y). Then

(a) (xn + yn) ∈ GO(X, d, x + y),
(b) < xn, yn >→G< x, y > .

Proof The proof is simple. The reader should prove the theorem on its own.

Definition 8.3 Let (X,⊥, d) be an orthogonal metric space. A function f : X → X
is said to be G-orthogonal continuous (GO-continuous) at a point x0 in X if for each
orthogonal sequence (xn) in X, G-converging to x0 such that f (xn) →G f (x0).Also
f is said to be G-orthogonal continuous on X if f is G-orthogonal continuous at
each point on X.

Definition 8.4 Let (X,⊥, d) be an orthogonal metric space and E ⊂ X . A function
f : E → X is said to be G-orthogonal sequentially continuous (GO-sequentially
continuous) at a point x0 in X if for eachorthogonal sequence (xn) ∈ E,G-converging
to x0 such that f (xn) →G f (x0).
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Theorem 8.5 Let G be a regular method and (X,⊥, d) an orthogonal metric space,
and f, g : X → X be functions on X. Then the following are satisfied.

(a) If f and g are GO-sequentially continuous, then so also is g f,
(b) If f and g are GO-sequentially continuous, then so also is f + g.

Proof (a) Let x be an orthogonal sequence in X such that G(x) = x0 ∈ X. Since f
is GO-sequentially continuous at x0, we get G( f (x)) = f (x0) and since g is GO-
sequentially continuous at f (x0) we have G(g( f (x))) = g( f (x0)). Therefore the
function g f is GO-sequentially continuous.

(b) Let x be an orthogonal sequence in X such that G(x) = x0 ∈ X. Since the
functions f and g are GO-sequentially continuous, so we have G( f (x)) = f (x0)
and G((x)) = g(x0). Therefore by the additivity of G we get

G(( f + g)(x) = G( f (x) + g(x)) = G( f (x)) + G(g(x)) = f (x0) + g(x0) = ( f + g)(x0)

i.e., f + g is GO-sequentially continuous.

Theorem 8.6 Let G be a method and (X,⊥, d) be an orthogonal metric space. Then
we have the following.

(i) If f : X → X is GO-sequentially continuous, then so also is a restriction fA :
A → X to a subset A,

(ii) The identity map J : X → X is GO-sequentially continuous,
(iii) For a subset A ⊆ X, the inclusion map f : A → X is GO-sequentially contin-

uous,
(iv) If G is regular, then the constant map C : X → X is GO-sequentially continu-

ous,
(v) If f is GO-sequentially continuous, then so also is − f,
(vi) The inverse function f : X → X; f (x) = −x is GO-sequentially continuous.

Proof (i) Let x be an orthogonal sequence of the terms in A with G(x) = x0. Since
f is GO-sequentially continuous, then we have G( f (x)) = f (x0).
(ii) Let G(x) = x0 for an orthogonal sequence x in X. Then G(J (x)) = G(x) =

x0 = J (x0) and so J is GO-sequentially continuous.
(iii) Follows immediately from (i) and (ii).
(iv) Let C : X → X be a constant map with C(x) = y0 and let x be an orthog-

onal sequence in X with G(x) = x0. Then C(x) = (y0, y0, . . .) which G-converges
to y0. Since G is regular G(C(x)) = y0 = C(x0). Therefore C is GO-sequentially
continuous.

(v) Let x be an orthogonal sequence in X with G(x) = x0. Since f is GO-
sequentially continuous G( f (x)) = f (x0). Therefore G(− f (x)) = −G( f (x)) =
− f (x0), and hence, − f is GO-sequentially continuous.

(vi) Follows immediately from (ii) and (v).

Corollary 8.7 LetG be a regularmethod andCGO(X) the class ofGO-sequentially
continuous functions. Then CGO(X) becomes a group with the sum of functions.
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Definition 8.8 Let (X,⊥, d) be an orthogonal metric space. Let A ⊆ X and x0 ∈ X.

Then x0 is in the GO-sequential closure of A (it is called GO-hull of A) if there is
an orthogonal sequence x = (xn) of points in A such that G(x) = x0. We denote
GO-sequential closure of a set A by ĀGO .We say that a subset A is GO-sequentially
closed if it contains all the points in its GO-sequential closure, i.e., if ĀGO ⊆ A. It

is clear that φ
GO = φ and X̄GO = X. If G is a regular method, then A ⊆ Ā ⊆ ĀGO ,

and hence, A is GO-sequentially closed if and only if ĀGO = A.

Definition 8.9 A subset A of an orthogonal metric space (X,⊥, d) is called GO-

sequentially open if its complement isGO-sequentially closed, i.e., X\AGO ⊆ X\A.

Definition 8.10 A function f is said to be GO-sequentially open if the image of
any GO-sequentially open subset of an orthogonal metric space (X,⊥, d) is GO-
sequentially open.

Definition 8.11 Let (X,⊥, d) be an orthogonal metric space. A function f is said
to be GO-sequentially closed if the image of any GO-sequentially closed subset of
X is GO-sequentially closed.

Theorem 8.12 Let (X,⊥, d) be an orthogonal metric space and G be a regular

method. A function f : X → X is GO-sequentially closed if f (B)
GO ⊆ f (B

GO
)

for every subset B.

Proof Let f : X → X be a function such that f (B)
GO ⊆ f (B

GO
) for any subset B.

Let A be a GO-closed subset. By assumption f (A)
GO ⊆ f (A

GO
). Since G is regular

B
GO = B and so we have f (B)

GO ⊆ f (B) and therefore f (B) is GO-sequentially
closed.

Theorem 8.13 Let (X,⊥, d) be an orthogonal metric space and G be a regular
method. If a function f is GO-sequentially continuous on X, then the inverse image
f −1(A) of any GO-sequentially open subset A of X is GO-sequentially open.

Proof Let f : X → X be any GO-sequentially continuous function and A be any
GO-sequentially open subset of X.Then X\A isGO-sequentially closed. By Lemma
8.12, f −1(X\A) is GO-sequentially closed. On the other hand

f −1(X\A) = f −1(X)\ f −1(A) = X\ f −1(A)

and so it follows that f −1(A) is GO-sequentially open. This completes the proof of
the theorem.

Definition 8.14 Let (X,⊥, d) be an orthogonal metric space. A point x0 is called
a GO-sequential accumulation point of a subset A of X (or is in the GO-sequential
derived set) if there is an orthogonal sequence x = (xn) of points in A\{x0} such that
G(x) = x0.
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Definition 8.15 Let (X,⊥, d) be an orthogonal metric space. A subset A of X is
called GO-sequentially countably compact if any infinite subset of A has at least one
GO-sequential accumulation point in A.

Theorem 8.16 Let (X,⊥,< ., . >) be an orthogonal inner product space, where
X = R

n, < ., . > denotes the standard inner product space and ⊥ is an orthog-
onal relation on X defined by x ⊥ y if < x, y >= 0 for all x, y ∈ X. Then any
G-orthogonal sequentially continuous function at point x0 if and only if it is contin-
uous at x0 in the ordinary sense.

Proof The proof follows from Theorem 2.25 and the definition.

Theorem 8.17 Let (X,⊥, d) be an orthogonal metric space. Suppose that G is
a regular method. Let f : X → X be an additive function on X. Then f is GO-
sequentially continuous at origin if and only if f is GO-sequentially continuous at
any point b ∈ X.

Proof Let the additive function f : X → X be GO-sequentially continuous at ori-
gin. So for an orthogonal sequence x = (xn) ∈ X such that G( f (x)) = 0, whenever
G(x) = 0. Let x be a sequence in X with G − lim x = b and b the constant sequence
b = (b, b, . . .). Since G is regular G(b) = b. Therefore the sequence x − b is GO-
convergent to 0. So by assumption G( f (x − b)) = 0. Since f and G are additive
G( f (x)) − G( f (b)) = 0. Since the constant sequence f (b) tends to f (b) and G is
regular, G( f (b)) = f (b). Therefore we have that G( f (x)) = f (b).

Theorem 8.18 Let G be a regular subsequential method. Then a subset of X is
GO-sequentially compact if and only if it is GO-sequentially countably compact.

Proof Let A be any GO-sequentially compact subset of X and B be an infinite subset
of A.We can choose an orthogonal sequence x = (xn) of different points of B. Since
A is GO-sequentially compact, so it implies that of B that the orthogonal sequence
x has a convergent subsequence y = (yk) = (xnk ) with G(y) = x0. Since G is a sub-
sequential method, y has a convergent subsequence z = (zk) of the subsequence
y with limk zk = x0. By the regularity of G, we obtain that x0 is a GO-sequential
accumulation point of B. Thus A is GO-sequentially countably compact.

Next we suppose that A is any GO-sequentially countably compact subset of X.

Let x = (xn) be an orthogonal sequence of points in A.Wewrite P = {xn : n ∈ N}. If
P is finite, then there is nothing to prove. If P is infinite, then P has a GO-sequential
accumulation point in A.Also each set Pn = {xk : k ≥ n}, for each positive integer n,

has aGO-sequential accumulation point in A.Then the intersection
⋂∞

n=1 Pn
GO �= φ.

So there is an element x0 of A which belongs to the intersection. Since G is a
regular subsequential method, x0 ∈ ⋂∞

n=1 Pn. Then it is not difficult to construct a
subsequence z = (zk) = (xnk ) of the sequence x with G(z) ∈ A. This completes the
proof.
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9 Orthogonal Sequential Compactness

We consider (X,⊥, d) is an orthogonal metric space.

Definition 9.1 A subset E of X is called an orthogonal sequentially compact if any
sequence (xn) in E has a G-convergent subsequence whose limit is in E .

Definition 9.2 A subset E of X is called GO-sequentially compact if any sequence
(xn) in E, there is subsequence y = (yk) = (xnk ) of (xn) such that G(y) = limk yk
in E .

Remark 9.3 Any sequentially compact subset E of X is also G-orthogonal sequen-
tially compact and the converse is not always true. For this, see the following example.

Example 9.4 Let (X = [0, 1),⊥, d) be an orthogonal metric space. Define the
orthogonal relation ⊥ on X by

x ⊥ y ⇔
{
x ≤ y ≤ 1

2 ,

or x = 0.

There exists a subsequence (yk) = (xnk ) of (xn) for which xnk = 0 for all k ≥ 1 or
there exists amonotone subsequence (xnk ) if (xn) for which xnk ≤ 1

2 for all k ≥ 1.We
see that (xnk ) isG-convergent to a point x ∈ [0, 1

2 ] ⊆ X. If we consider a subsequence
(yk) = (

1 − 1
k

)
of (xn), then limk yk is not in [0, 1

2 ].
Theorem 9.5 Every GO-sequentially closed subset of a GO-sequentially compact
subset of X is GO-sequentially compact.

Proof Let A be any GO-sequentially compact subset of X and B be a GO-
sequentially closed subset of A.Consider an orthogonal sequence x = (xn) of points
in B. Then x is a sequence of points in A. Since A is GO-sequentially compact,
there is a subsequence y = (yk) = (xnk ) of sequence x such that G(y) ∈ A. The sub-
sequence y is also a sequence of points in B. Since B is GO-sequentially closed,
so G(y) ∈ B. Thus x has a G-convergent subsequence, with G(y) ∈ B. Hence B is
GO-sequentially compact.

Theorem 9.6 LetG be a regular subsequentialmethod.EveryGO-sequentially com-
pact subset of X is GO-sequentially closed.

Proof Let A be any GO-sequentially compact subset of X. Take any x0 ∈ A. Then
there is an orthogonal sequence x = (xn) of points in A such that G(x) = x0. Since G
is a subsequential method, there is a subsequence y = (yk) = (xnk ) of the sequence
x such that limk xnk = x0. Since G is regular, so we have G(y) = x0. By the GO-
sequential compactness of A, there is a subsequence z = (zk) of the subsequence
y such that G(z) = x1 ∈ A. Since limk zk = x0 and G is regular, G(z) = x0. Thus
x0 = x1 and hence x0 ∈ A. Thus A is GO-sequentially closed.
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Corollary 9.7 Let G be a regular subsequential method. Then a subset of X is
GO-sequentially compact if and only if it is sequentially countably compact in the
ordinary sense.

Corollary 9.8 Let G be a regular subsequential method. Then a subset of X is GO-
sequentially compact if and only if it is countably compact in the ordinary sense.

Theorem 9.9 Every GO-sequential continuous image of any GO-sequentially com-
pact subset of X is GO-sequentially compact.

Proof Let f be any GO-sequentially continuous function on X and A be any GO-
sequentially compact subset of X. Consider an orthogonal sequence y = (yn) =
( f (xn)) of points in f (A). Since A is GO-sequentially compact, there exists a
subsequence z = (zk) = (xnk ) of the sequence x = (xn) with G(z) ∈ A. Then the
sequence f (z) = ( f (zk)) = ( f (xnk )) is a subsequence of the sequence y. Since f
is GO-sequentially continuous, so we have G( f (z)) = f (z0) ∈ f (A). Hence f (A)

is GO-sequentially compact.

Corollary 9.10 Let G be a regular subsequential method. Then every GO-
sequentially continuous image of any sequentially compact subset of X is sequen-
tially compact.
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