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Abstract In the present work, our aim of this study is generalization and extension
of the theory of interpolation of functions to functionals or operators by means of
Urysohn-type nonlinear operators. In accordancewith this purpose, we introduce and
study a new type of Urysohn-type nonlinear operators. In particular, we investigate
the convergence problem for nonlinear operators that approximate the Urysohn-type
operator. The starting point of this study is motivated by the important applica-
tions that approximation properties of certain families of nonlinear operators have in
signal–image reconstruction and in other related fields. We construct our nonlinear
operators by using a nonlinear forms of the kernels together with the Urysohn-type
operator values instead of the sampling values of the function. As far as we know,
this will be first use of such kind of operators in the theory of interpolation and
approximation. Hence, the present study is a generalization and extension of some
previous results.
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Urysohn-type nonlinear Bernstein operators · Approximation.
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1 Introduction

For a function defined on the interval [0, 1], the Bernstein operators (Bn f ) , n ≥ 1,
are defined by

(Bn f ) (x) =
n∑

k=0

f

(
k

n

)
pn,k(x) , n ≥ 1, (1)
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where pn,k(x) =
(
n
k

)
xk(1 − x)n−k is the well-known Binomial distribution and

calledBernstein basis (0 ≤ x ≤ 1).These polynomialswere introduced byBernstein
[1] in 1912 to give the first constructive proof of the Weierstrass approximation
theorem.

The first main approximation result related to pointwise convergence of the
Bernstein polynomials reads; let f be a bounded function on [0, 1], then

lim
n→∞ (Bn f ) (x) = f (x)

holds at each point of continuity x of f (x) and that the relation holds uniformly on
[0, 1] if f (x) is uniformly continuous on the interval.

Undoubtedly that the most intensively studied discrete operator is the celebrated
Bernstein polynomial, which provides an elegant proof and example to the famous
Weierstrass first approximation theorem for continuous function defined on [0, 1].
For detailed approach to this operator, see the classical book of Lorentz [2].

It is worthwhile to note that the linear positive operators have been obtained by
starting from the following well-known properties of the probability density func-
tions; for discrete case

n∑

k=0

pn,k(x) = 1

and for continuous case
b∫

a

f (t)dt = 1

from the probability theory.
Now, in view of the theory of singular integrals, we will characterize the positive

linear operators in terms of the singular integrals.
In general, a singular integral may be written in the form

(Tn f ) (x) =
b∫

a

f (t) Kn (x, t) dt (2)

where Kn (x, t) is the kernel, defined for a ≤ x ≤ b, a ≤ t ≤ b, which has the prop-
erty that for functions f of a certain class and in a certain sense, (Tn f ) (x) converges
to f (x) as n → ∞.

The Bernstein polynomial (1) is a finite sum of a type corresponding to the integral
(2). It is easy to see that (1) and (2) are special cases of singular Stieltjes integrals
and hence (1) may be written in the form of a Stieltjes integral in the variable t as
follows:
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(Bn f ) (x) =
1∫

0

f (t) dt Kn (x, t)

with the kernel

Kn (x, t) =
∑

k≤nt

(
n

k

)
xk (1 − x)n−k , 0 < t ≤ 1

Kn (x, 0) = 0

which is constant in any interval k/n ≤ t < (k + 1) /n, k = 0, 1, . . . , n − 1.
At the beginning, the theory of approximation is strongly related to the linearity

of the operators. But, thanks to the approach of the famous Polish mathematician
Julian Musielak, see [3], and afterwards continuous works of C. Bardaro, G. Vinti
and their research group, this theory can be extended to the nonlinear-type operators,
under some specific assumptions on its kernel functions; see the fundamental book
due to Bardaro, Musielak and Vinti [4]. For further reading, please see [5–11] as well
as the monographs [12].

Especially, nonlinear integral operators of type

(Tλ f ) (x) =
b∫

a

Kλ(t − x, f (t)) dt, x ∈ (a, b) ,

and its special cases were studied by Bardaro, Karsli and Vinti [13, 14] and Karsli
[15, 16] in some functional spaces.

In view of the approach due to Musielak [3], recently, Karsli–Tiryaki and Altin
[17] introduced the following type nonlinear counterpart of thewell-knownBernstein
operators:

(N Bn f )(x) =
n∑

k=0

Pn,k

(
x, f

(
k

n

))
, 0 ≤ x ≤ 1 , n ∈ N, (3)

acting on bounded functions f on an interval [0, 1] , where Pn,k satisfy some suit-
able assumptions. They proved some existence and approximation theorems for the
nonlinear Bernstein operators. In particular, they obtain some pointwise convergence
for the nonlinear sequence of Bernstein operators (3) to some discontinuity point of
the first kind of f, as n → ∞.

Asa continuation of the very recent paper of the author [18], the author andhis PhD
student estimated a Voronovskaya-type formula for this class nonlinear Bernstein
operators on the interval [0, 1] (see [19]). Please see also very recent papers of the
author [20, 21].

The most important and frequently investigated integral equations in nonlinear
functional analysis are the Hammerstein equations
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x(t) = y(t) +
b∫

a

k(t, s) f (s, x(s))ds, t ∈ [a, b] ,

and the Urysohn equations

x(t) = y(t) +
b∫

a

k(t, s, x(s))ds, t ∈ [a, b] .

Consider the nonlinear operator equation

x = y + K (x)

where K is a completely continuous operator defined on a Banach space. An example
of such an operator K is the Urysohn integral operator with a kernel function

Kx(t) =
∫

�

k(t, s, x(s))ds, t ∈ �, x ∈ D

with a closed bounded region� inRm for somem ≥ 1, which includes the Fredholm
equations of the first and second kind.

In the present work, we will deal with the following Urysohn equation:

x(t) = y(t) +
b∫

a

k(t, s, x(s))ds, t ∈ [a, b]

and corresponding Urysohn operator

Ux(t) =
b∫

a

k(t, s, x(s))ds, t ∈ [a, b]

where k and y are known functions and x is the unknown function to be determined.
In the above equation, k(t, s, x) is called kernel function of the type of Green’s
function, which is defined on [a, b] × [a, b] × R into R.

The goal of this study is generalization and extension of the theory of interpolation
of functions to functionals and operators by introducing the Urysohn-type nonlinear
counterpart of the Bernstein operators. Afterwards, we investigate the convergence
problem for these nonlinear operators that approximate the Urysohn-type operator
in some functional spaces. The main difference between the present work and con-
vergence to a function lies in the use of the Urysohn type operator values instead of
the sampling values of a function.
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Let us consider a sequence N BF = (N BnF) of operators, which we call it
Urysohn-type nonlinear counterpart of the Bernstein operators, having the form

(N BnF)x (t) =
1∫

0

⎡

⎣
n∑

k=0

Pk,n

(
x(s), f

(
t, s,

k

n

))⎤

⎦ ds , 0 ≤ x(s) ≤ 1 , n ∈ N,

acting on bounded functions f on an interval [0, 1] , where Pk,n satisfy some suit-
able assumptions. In particular, we will put Dom N BF = ⋂

n∈N
Dom N BnF, where

Dom N BnF is the set of all functions f : [0, 1] → R for which the operator is well
defined.

Since the theory of approximation is quite different from its linear counterpart, in
same cases we can obtain only some estimates related to the convergence problems.
Actually, in some cases, it is not possible to obtain exact estimates for nonlinear
operators, because of the nonlinearity of their kernel functions.

2 Preliminaries and Auxiliary Results

This section is devoted to collecting somedefinitions and resultswhichwill be needed
further on.

Here we consider the following type Urysohn integral operator,

Fx(t) =
1∫

0

f (t, s, x(s))ds, t ∈ [0, 1] (4)

with unknown kernel f . If such a representation exists, then the kernel function
f (t, s, x) is called the Green’s function, which is strongly related to the function x .
For a constant function x(s) = a, we set Fa(t) := F(a).

Equation (4) was investigated by Urysohn in 1923–1924 in [22, 23]. This kind
of equations appears in many problems. For example, it occurs in solving problems
arising in economics, mathematics, engineering and physics (see [12, 24]).

It is well known that the solution of the following differential equation

DG(x, y) = δ(x − y),

represents a Green function G(x, y); here D is a differential operator, δ is the Dirac
Delta function satisfying a boundary condition. Note that

δ(x) = dH(x)

dx
,
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is true, where

H(x) =
{
1 , x ≥ 0
0 , x < 0

is the Heaviside function.
In view of these relations, we assume that continuous interpolation conditions

hold:

Fxi (t) =
1∫

0

f (t, s, xi (s))ds, t ∈ [0, 1] (5)

where xi (s) = i
n H(s − ξ); ξ ∈ [0; 1]; and i = 0, 1, 2, . . ..

The following equalities are well known:

∂Fxi (t)

∂s
= ∂F

(
i
n H(t − s)

)

∂s
= f (t, s, 0) − f (t, s,

i

n
), (6)

where xi (t) = i
n H(t − s); s ∈ [0; 1], and i = 0, 1, 2, . . ..

Say

F1

(
t, s,

i

n

)
:= ∂Fxi (t)

∂s
. (7)

According to the above definition together with (6) and (7), it is possible to construct
an approximation operator in order to generalization and extension of the theory of
interpolation of functions to operators.

In 2000, Demkiv [25] defined and investigated some properties of the following
type Bernstein operators, which is linear with respect to F defined by (5):

(BnF) x (t) =
1∫

0

n∑

k=0

f

(
t, s,

k

n

)
pn,k (x(s)) ds

In 2012, Makarov and Demkiv [26] considered the problem of approximation to the
Urysohn operator (4) by Stancu-type operators, which is based on Polya distribution
pα
n,k (x(s)), defined as:

(
Pα
n F
)
x (t) =

1∫

0

n∑

k=0

f

(
t, s,

k

n

)
pα
n,k (x(s)) ds,

where α ≥ 0.
In 2017, the author [21] defined the following Urysohn type Meyer-K önig and

Zeller operators:
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(MnF)x(t) =
1∫

0

[ ∞∑

k=0

f

(
t, s,

k

k + n

)
mn,k (x(s))

]
ds,

(MnF)1(t) = F1(t) = F(1),

where

mn,k (x(s)) =
(
n + k − 1

k

)
(x(s))k (1 − x(s))n,

n is a non-negative integer and 0 ≤ x(s) < 1, and obtained some positive results
about the convergence problem.

In view of (3) and (5), we introduce the following Urysohn-type nonlinear Bern-
stein operators:

(N BnF)x (t) =
1∫

0

[
n∑

k=0

Pk,n

(
x(s), f

(
t, s,

k

n

))]
ds, (8)

where n is a non-negative integer, Pk,n satisfy some suitable assumptions and 0 ≤
x(s) ≤ 1.

Now, we assemble the main definitions and notations which will be used through-
out the paper.

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1] →
R

+
0 = [0,∞).
Let � be the class of all functions ψ : R+

0 → R
+
0 such that the function ψ is

continuous and concave with ψ(0) = 0, ψ(u) > 0 for u > 0.
We now introduce a sequence of functions. Let

{
Pk,n
}
n∈N be a sequence functions

Pk,n : [0, 1] xR→ R defined by

Pk,n (t, u) = pk,n(t)Hn(u) (9)

for every t ∈ [0, 1], u ∈ R, where Hn : R → R is such that Hn(0) = 0 and pk,n(t)
is the Bernstein basis.

Throughout the paper, we assume that μ : N → R
+ is an increasing and contin-

uous function such that lim
n→∞μ(n) = ∞.

First of all, we assume that the following conditions hold:
(a) Hn : R → R is such that

|Hn(u) − Hn(v)| ≤ |u − v| ,

holds for every u, v ∈ R, for every n ∈ N. That is, Hn satisfies a strong Lipschitz
condition.
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(b) Denoting by rn(u) := Hn(u) − u, u ∈ R and n ∈ N, such that

lim
n→∞rn(u) = 0

uniformly with respect to u.

In other words, for n sufficiently large

sup
u

|rn(u)| = sup
u

|Hn(u) − u| ≤ 1

μ(n)
,

holds.
The symbol [a] will denote the greatest integer not greater than a .
At first we recall the following results.

Lemma 1 For (Bnts)(x), s = 0, 1, 2, one has

(Bn1)(x) = 1

(Bnt)(x) = x

(Bnt
2)(x) = x2 + x(1 − x)

n
.

For proof of this Lemma, see [2].
By direct calculation, we find the following equalities:

(Bn (t − x)2)(x) = x(1 − x)

n
, (Bn (t − x))(x) = 0 .

Lemma 2 For the central moments of order m ∈ N0

Tn,m(x) :=
n∑

k=0

(k − nx)m pk,n (x) .

One has for each m = 0, 1, . . . there is a constant Am such that

0 ≤ Tn,2m(x) ≤ Amn
m .

The presented inequality is the well-known bound for the moments of the Bernstein
polynomials, and it can be found in Chap.10 in [27].

Lemma 3 The first-order absolute moment for Bernstein polynomial is defined as

M1
(
pn,k, x(s)

) =
n∑

k=0

∣∣∣∣
k

n
− x(s)

∣∣∣∣ pn,k (x(s))

and satisfies the following inequality
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M1
(
pn,k, x(s)

) ≤
(
2x(s) (1 − x(s))

π

) 1
2 1√

n
+ B

n

1√
x(s) (1 − x(s))

,

where

B =
(π

2

) 5
2 + 4

π
+ π

9
2

54
√
2
o

(
1√
n

)
,

which can be found in [28]. Note that the above inequality can be written as

M1
(
pn,k, x(s)

) ≤
(
2x(s) (1 − x(s))

π

) 1
2 1√

n
+ o

(
1√
n

)
.

Remark 1 By (6), (N BnF) satisfies the following inequality:

|(N BnF)x (t)| ≤ |F(0)| +
∣∣∣∣∣∣

1∫

0

n∑

k=0

pk,n (x(s))
∂F
(
k
n H(t − s)

)

∂s
ds

∣∣∣∣∣∣
.

We can prove the above equality as follows:

(N BnF)x (t) =
1∫

0

[
n∑

k=0

Pk,n

(
x(s), f

(
t, s,

k

n

))]
ds

=
1∫

0

n∑

k=0

pk,n (x(s)) Hn

(
f

(
t, s,

k

n

))
ds

≤
1∫

0

n∑

k=0

pk,n (x(s))

∣∣∣∣ f
(
t, s,

k

n

)∣∣∣∣ ds

=
1∫

0

n∑

k=0

pk,n (x(s))

∣∣∣∣∣ f (t, s, 0) − ∂F
(
k
n H(t − s)

)

∂s

∣∣∣∣∣ ds

≤ |F(0)| +
∣∣∣∣∣∣

1∫

0

n∑

k=0

pk,n (x(s))
∂F
(
k
n H(t − s)

)

∂s
ds

∣∣∣∣∣∣
.

3 Convergence Property

We now introduce some notations and structural hypotheses, which will be funda-
mental in proving our convergence theorems.
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Here, as usual, we denote by C[0, 1] the Banach space of continuous functions
u : [0, 1] → R with norm

‖u‖ = sup{|u(x)| : x ∈ [0, 1]}

Let � be the set of all continuous, concave and non-decreasing functions
ϕ : R+

0 → R
+
0 with

ϕ (0) = 0,

ϕ (u) > 0 for all u > 0

and
lim

u→+∞ ϕ(u) = +∞

in the usual sense. Such function is called a ϕ-function.
Assume that the following condition holds:
f : [0, 1] × [0, 1] × [0, 1] → R is such that

| f (t, s, u) − f (t, s, v)| ≤ ψ (|u − v|) , ψ ∈ �,

holds for every u, v ∈ [0, 1] . That is, f satisfies a (L − �) Lipschitz condition with
respect to the third variable.

Let f ∈ C
(
[a, b]3

)
and δ > 0 be given. Then the modulus of continuity is given

by:
ω ( f ; δ) = ω (δ) = sup

|u−v|≤δ , t,s∈[a,b]
| f (t, s, u) − f (t, s, v)| . (10)

Recall that ω ( f ; δ) has the following properties:

(i) Let λ ∈ R
+, then ω ( f ; λδ) ≤ (λ + 1) ω ( f ; δ) ,

(ii) lim
δ→0+

ω ( f ; δ) = 0,

(iii) | f (t) − f (x)| ≤ ω (|t − x |) ,

(iv) | f (t) − f (x)| ≤
(

|t−x |
δ

+ 1
)

ω (δ).

We mention that some additional properties and applications of this modulus of
continuity given in [2] and some of its generalizations can be found in [4].

Definition 1 We will say that the sequence (Pn)n∈N is (ψ − α) −singular if the
following assumptions are satisfied:

(P.1) For every x ∈ I and δ > 0, there holds

ψ

⎛

⎝
∑

| k
n −x|≥δ

∣∣∣∣
k

n
− x

∣∣∣∣ pn,k (x)

⎞

⎠ = o
(
n−α
)

, (n → ∞) .
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(P.2) For every u ∈ R and for every x ∈ I , we have

lim
n→∞ nα

[
n∑

k=0

Pn,k(x, u) − u

]
= 0.

We are now ready to establish one of the main results of this study:

Theorem 1 Let F be the Urysohn integral operator with 0 ≤ x(s) ≤ 1. Then
(N BnF) converges to F uniformly in x ∈ C[0, 1]. That is,

lim
n→∞ ‖(N BnF)x (t) − Fx(t)‖ = 0.

Proof In view of the definition of the operator (8), by considering (5), (9), (6) and
(7), we have

|(N BnF)x (t) − Fx(t)| =
∣∣∣∣∣∣

1∫

0

⎡

⎣
n∑

k=0

Pk,n

(
x(s), f

(
t, s,

k

n

))⎤

⎦ ds − Fx(t)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1∫

0

[
n∑

k=0

pk,n (x(s)) Hn

(
f

(
t, s,

k

n

))]
ds −

1∫

0

[
n∑

k=0

pk,n (x(s)) Hn ( f (t, s, x(s)))

]
ds

∣∣∣∣∣∣

+
∣∣∣∣∣∣

1∫

0

[
n∑

k=0

pk,n (x(s)) Hn ( f (t, s, x(s)))

]
ds −

1∫

0

f (t, s, x(s))ds

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1∫

0

n∑

k=0

pk,n (x(s))

[
Hn

(
f

(
t, s,

k

n

))
− Hn ( f (t, s, x(s)))

]
ds

∣∣∣∣∣∣

+
1∫

0

n∑

k=0

pk,n (x(s)) |Hn ( f (t, s, x(s))) − f (t, s, x(s))| ds

: = I1 + I2.

By assumption (b), the second term, namely I2, tends to zero as n → ∞. In fact,
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I2 =
1∫

0

n∑

k=0

pk,n (x(s)) |Hn ( f (t, s, x(s))) − f (t, s, x(s))| ds

≤
1∫

0

n∑

k=0

pk,n (x(s))
1

μ (n)
ds

= 1

μ (n)
,

which tends to zero as n → ∞. Now, it is sufficient to evaluate the term I1. Using
the definition of the function F1 (t, s, x(s)) , we have

I1 ≤
1∫

0

n∑

k=0

pk,n (x(s))

∣∣∣∣ f
(
t, s,

k

n

)
− f (t, s, x(s))

∣∣∣∣ ds

=
1∫

0

n∑

k=0

pk,n (x(s))

∣∣∣∣ f (t, s, 0) − f (t, s, x(s)) −
[
f (t, s, 0) − f

(
t, s,

k

n

)]∣∣∣∣ ds

=
1∫

0

n∑

k=0

pk,n (x(s))

∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣ ds.

Let us divide the last term into two parts as:

I1 ≤ I1,1 + I1,2,

where

I1,1 =
1∫

0

∑

| k
n −x(s)|<δ

pn,k (x(s))

∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣ ds

and

I1,2 =
1∫

0

∑

| k
n −x(s)|≥δ

pn,k (x(s))

∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣ ds.

Since x ∈ C[0, 1], then clearly

∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣ < ε

holds true when
∣∣ k
n − x(s)

∣∣ < δ, and
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∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣ ≤ |F1 (t, s, x(s))| +
∣∣∣∣F1

(
t, s,

k

n

)∣∣∣∣
≤ 2M

holds true for some M > 0, when
∣∣ k
n − x(s)

∣∣ ≥ δ.

So

I1,1 =
1∫

0

∑

| k
n −x(s)|<δ

pn,k (x(s))

∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣ ds

≤ ε

1∫

0

∑

| k
n −x(s)|<δ

pn,k (x(s)) ds

≤ ε,

and

I1,2 =
1∫

0

∑

| k
n −x(s)|≥δ

pn,k (x(s))

∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣ ds

≤ 2M

1∫

0

∑

| k
n −x(s)|≥δ

pn,k (x(s)) ds

≤ 2M

1∫

0

⎡

⎣
∑

| k
n −x(s)|≥δ

(
k
n − x(s)

δ

)2

pn,k (x(s))

⎤

⎦ ds

= 2M

δ2

1∫

0

⎡

⎣
∑

| k
n −x(s)|≥δ

(
k

n
− x(s)

)2

pn,k (x(s))

⎤

⎦ ds

≤ 2M

δ2

1∫

0

[
n∑

k=0

(
k

n
− x(s)

)2

pn,k (x(s))

]
ds.

In view of Lemma2, we obtain

I1,2 ≤ 2M

δ2

A1

n
.
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Collecting these estimates, we have

|(N BnF)x (t) − Fx(t)| ≤ ε + 2MA1

nδ2
+ 1

μ (n)
.

That is,
lim
n→∞ ‖(N BnF)x (t) − Fx(t)‖C[0,1] = 0.

This completes the proof.

Theorem 2 Let F be the Urysohn integral operator with x ∈ C[0, 1], and 0 ≤
x(s) ≤ 1. Then for every ε > 0

|(N BnF)x (t) − Fx(t)| ≤ ψ (ε) + 2ω ( f ; δ) + 1

μ (n)

holds true, where δ = √
x(s) (1 − x(s)) /n.

Proof Clearly, one has

|(N BnF)x (t) − Fx(t)| ≤
1∫

0

⎡

⎣
n∑

k=0

pk,n (x(s))

∣∣∣∣ f
(
t, s,

k

n

)
− f (t, s, x(s))

∣∣∣∣

⎤

⎦ ds + 1

μ (n)

: = In,1 (x) + 1

μ (n)
, (11)

say. Since x ∈ C[0, 1] we can rewrite (11) as follows:

In,1 (x) ≤
1∫

0

∑

| k
n −x(s)|<δ

pn,k (x(s)) ψ

(∣∣∣∣x(s) − k

n

∣∣∣∣

)
ds

+
1∫

0

∑

| k
n −x(s)|≥δ

pn,k (x(s))

∣∣∣∣ f
(
t, s,

k

n

)
− f (t, s, x(s))

∣∣∣∣ ds

≤ ψ (ε) + In,1,2 (x) .

Taking into account that ω ( f ; δ) is the modulus of continuity defined as (10),
In,1,2 (x) can be written as

In,1,2 (x) =
1∫

0

∑

| k
n −x(s)|≥δ

pn,k (x(s))

∣∣∣∣ f
(
t, s,

k

n

)
− f (t, s, x(s))

∣∣∣∣ ds
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≤
1∫

0

ω ( f ; δ)
∑

| k
n −x(s)|≥δ

(∣∣ k
n − x(s)

∣∣
δ

+ 1

)
ds

≤ ω ( f ; δ)

⎧
⎨

⎩1 + δ−1

1∫

0

∑

| k
n −x(s)|≥δ

∣∣∣∣
k

n
− x(s)

∣∣∣∣ pn,k (x(s)) ds

⎫
⎬

⎭

≤ ω ( f ; δ)

⎧
⎨

⎩1 + δ−2

1∫

0

n∑

k=0

(
k

n
− x(s)

)2

pn,k (x(s)) ds

⎫
⎬

⎭

≤ ω ( f ; δ)

{
1 + A1

δ2n

}
.

If we choose

δ =
√

A1

n
,

then one can obtain the desired estimate, namely

|(MnF)x (t) − Fx(t)| ≤ ψ (ε) + 2ω ( f ; δ) + 1

μ (n)
.

Thus, the proof is now complete.

Theorem 3 Let F be the Urysohn integral operator with x ∈ C[0, 1], and 0 <

x(s) < 1. Then

|(N BnF)x (t) − Fx(t)| ≤ ψ

(
1√
n

(
1√
2π

+ BA

))
+ 1

μ (n)

holds true for constants A and B, for which

1∫

0

ds√
x(s) (1 − x(s))

= A < ∞,

and

B =
(π

2

) 5
2 + 4

π
+ π

9
2

54
√
2
.
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Proof Using the similar lines to the proof of Theorem 2, one has

|(N BnF)x (t) − Fx(t)| ≤
1∫

0

[
n∑

k=0

pk,n (x(s))

∣∣∣∣F1 (t, s, x(s)) − F1

(
t, s,

k

n

)∣∣∣∣

]
ds + 1

μ (n)

≤
1∫

0

[
n∑

k=0

pn,k (x(s)) ψ

(∣∣∣∣x(s) − k

n

∣∣∣∣

)]
ds + 1

μ (n)
.

By concavity of the function ψ, and using Jensen’s inequality, we obtain

|(N BnF)x (t) − Fx(t)| ≤ ψ

⎛

⎝
1∫

0

[
n∑

k=0

∣∣∣∣

(
k

n
− x(s)

)∣∣∣∣ pn,k (x(s))

]
ds

⎞

⎠+ 1

μ (n)

Since ψ is non-decreasing, we apply the inequality of the first absolutely moment
given in Remark 1; then we can write

|(NBnF)x (t) − Fx(t)| ≤ ψ

⎛

⎝
1∫

0

[(
2x(s) (1 − x(s))

π

) 1
2 1√

n
+ B

n

1√
x(s) (1 − x(s))

]
ds

⎞

⎠

≤ ψ

(
1√
n

(
1√
2π

+ BA

))
+ 1

μ (n)
.

So we get the desired estimate.

4 Practical Examples, Graphical Representations

In this section, we will apply the theory to the theory of interpolation of functions to
functionals or operators by means of Urysohn-type nonlinear operators.

We note that in Figs. 1 and 2, the graph with the red line belongs to the original
function, the graph with the green line to the operators with n = 2, and finally the
graph consisting of blue line to the operators with n = 10.

Example 1 Let us consider the operator Fx(t) =
1∫

0
x3(t)dt, and we take its corre-

sponding nonlinear Bernstein operator (N BnF)x (t); then one has for n = 2 and for
n = 10.

The corresponding numerical evaluation on the left-hand side yields numerically,
for n = 10, 20, 30, 40,

n = 10 n = 20 n = 30 n = 40
(N BnF) (0.3) 0.04674 0.03666 0.0333933 0.0317775

f (0.3) 0.027 0.027 0.027 0.027
,
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Fig. 1 Approximation of

Fx(t) =
1∫

0
x3(t)dt by

Urysohn-type nonlinear
Bernstein operator, for n = 2
and n = 10

Fig. 2 Approximation of

Fx(t) =
1∫

0
sin
[
x3(t) + 1

]
dt

by Urysohn-type nonlinear
Bernstein operator, for n = 2
and n = 10

n = 10 n = 20 n = 30 n = 40
(N BnF) (0.5) 0.1625 0.14375 0.1375 0.134375

f (0.5) 0.125 0.125 0.125 0.125
,

n = 10 n = 20 n = 30 n = 40
(N BnF) (0.8) 0.54944 0.53096 0.524693 0.52154

f (0.8) 0.512 0.512 0.512 0.512
.

Example 2 Let us consider the operator Fx(t) =
1∫

0
sin
[
x3(t) + 1

]
dt, and we take

its corresponding nonlinear Bernstein operator (N BnF)x (t); then one has for n = 2
and for n = 10.

Finally, numerically for n = 10, 20, 30, 40,

n = 10 n = 20 n = 30 n = 40
(N BnF) (0.3) 0.864157 0.860156 0.858726 0.857995

f (0.3) 0.855751 0.855751 0.855751 0.855751
,
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n = 10 n = 20 n = 30 n = 40
(N BnF) (0.5) 0.908705 0.906317 0.905157 0.904507

f (0.5) 0.902268 0.902268 0.902268 0.902268
,

n = 10 n = 20 n = 30 n = 40
(N BnF) (0.8) 0.9723 0.984958 0.98933 0.991542

f (0.8) 0.998272 0.998272 0.998272 0.998272
.

The situation is similar for other examples studied.
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