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Abstract This chapter consists of four sections. The first section is introductory in
which a concept (presumably new) of statistical deferred Cesàro summability mean
based on (p, q)-integers has been introduced and accordingly some basic termi-
nologies are presented. In the second section, we have applied our proposed mean
under the difference sequence of order r to prove a Korovkin-type approximation
theorem for the set of functions 1, e−x and e−2x defined on a Banach space C[0,∞)

and demonstrated that our theorem is a non-trivial extension of some well-known
Korovkin-type approximation theorems. In the third section, we have established a
result for the rate of our statistical deferred Cesàro summabilitymeanwith the help of
themodulus of continuity. Finally, in the last section, we have given some concluding
remarks and presented some interesting examples in support of our definitions and
results.
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1 Introduction

In the study of sequence spaces, classical convergence has got numerous applications
where the convergence of a sequence requires that almost all elements are to satisfy
the convergence condition. That is, all the elements of the sequence need to be in an
arbitrarily small neighborhood of the limit. However, such restriction is relaxed in
statistical convergence, where the validity of convergence condition is achieved only
for a majority of elements. The notion of statistical convergence was introduced by
Fast [13] and Steinhaus [29]. Recently, statistical convergence has been a dynamic
research area due to the fact that it is more general than classical convergence,
and such theory is discussed in the study of Fourier analysis, number theory, and
approximation theory. For more details, see [7, 9–11, 14, 15, 17, 21, 24, 26–28].

Let ω be the set of all real-valued sequences, and suppose any subspace of ω be
the sequence space. Let (xk) be a sequence with real and complex terms. Suppose
�∞ be the class of all bounded linear spaces, and let c, c0 be the respective classes
for convergent and null sequences with real and complex terms. We have

‖x‖∞ = supk |xk | (k ∈ N),

and we recall here that under this norm, the above-mentioned spaces are all Banach
spaces.

The notion of difference sequence space was initially studied by Kızmaz [18],
and then, it was extended to the difference sequence of natural order r (r ∈ N0 :=
{0} ∪ N) by defining

λ(�r ) = {
x = (xk) : �r (x) ∈ λ, λ ∈ (�∞, c0, c)

} ;
�0x = (xk); �r x = (�r−1xk − �r−1xk+1)

and

�r xk =
r∑

i=0

(−1)i
(
r

i

)
xk+i

(see [18]). Also, these are all Banach spaces under the norm defined by

‖x‖�r =
r∑

i=1

|xi | + supk |�r xk |.

For more interest in this direction, see the current works [6, 12, 16].
Let N be the set of natural numbers, and let K ⊆ N. Also let

Kn = {k : k ≤ n and k ∈ K }
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and suppose that |Kn| be the cardinality of Kn . Then, the natural density of K is
defined by

δ(K ) = lim
n→∞

|Kn|
n

= lim
n→∞

1

n
|{k : k ≤ n and k ∈ K }|,

provided the limit exists.
A given sequence (xn) is said to be statistically convergent to � if, for each ε > 0,

the set
Kε = {k : k ∈ N and |xk − �| ≥ ε}

has zero natural density (see [13, 29]). That is, for each ε > 0,

δ(Kε) = lim
n→∞

|Kε|
n

= lim
n→∞

1

n
|{k : k ≤ n and |xk − �| ≥ ε}| = 0.

In this case, we write
stat lim

n→∞ xn = �.

Now,wepresent an example to show that every convergent sequence is statistically
convergent, but the converse is not true in general.

Example 1 Let us consider the sequence x = (xn) by

xn =
{
n when n = m2, for all m ∈ N
1
n otherwise.

Then, it is easy to see that the sequence (xn) is divergent in the ordinary sense,
while 0 is the statistical limit of (xn) since δ(K ) = 0, where K = {m2, for all m =
1, 2, 3, . . .}.

In 2002,Móricz [22], introduced the fundamental idea of statistical (C, 1) summa-
bility and recently Mohiuddine et al. [20] has established statistical (C, 1) summa-
bility as follows.

Let us consider a sequence x = (xn); the (C, 1) mean of the sequence is given by

σn = 1

n + 1

n∑

k=0

xk,

and (xn) is said to be statistical (C, 1) summable to � if, for each ε > 0, the set

{k : k ∈ N and |σk − �| ≥ ε}

has zero Cesàro density. That is, for each ε > 0,

lim
n→∞

1

n
|{k : k ≤ n and |σk − �| ≥ ε}| = 0.
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In this case, we write

stat lim
n→∞ σn = � or C1(stat) lim

n→∞ xn = �.

Subsequently, with the development of q-calculus, various researchers worked on
certain new generalizations of positive linear operators based on q-integers (see [3,
5]). Recently,Mursaleen et al. [23] introduced the (p, q)-analogue of Bernstein oper-
ators in connection with (p, q)-integers, and later on, some approximation results for
Baskakov operators and Bernstein-Schurer operators are studied for (p, q)-integers
by [1].

We now recall some definitions and basic notations on (p, q)-integers for our
present study:

For any (n ∈ N), the (p, q)-integer [n]p,q is defined by,

[n]p,q =
{

pn−qn

p−q (n ≥ 1)

0 (n = 0)

where 0 < q < p ≤ 1.
The (p, q)-factorial is defined by

[n]!p,q =
{

[1]p,q [2]p,q . . . [n]p,q (n ≥ 1)

1 (n = 0).

The (p, q)-binomial coefficient is defined by,

[
n

k

]

p,q

= [n]!p,q
[k]!p,q [n − k]!p,q for all n, k ∈ N and n ≥ k.

We also recall that suppose 0 < q < p ≤ 1 and r be a nonnegative integer. Then,
the operator

�[r ]
p,q : ω → ω

is defined by

�[r ]
p,q(xn) =

r∑

i=0

(−1)i
[
r

i

]

p,q

xn−i .
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That is,

�[r]
p,q (xn) =

[
r

0

]

p,q
xn −

[
r

1

]

p,q
xn−1 +

[
r

2

]

p,q
xn−2 −

[
r

3

]

p,q
xn−3 + · · · + (−1)r

[
r

r

]

p,q
xn−r

= xn − [r ]p,q xn−1 + [r ]p,q [r − 1]p,q
[2]p,q ! xn−2 − [r ]p,q [r − 1]p,q [r − 2]p,q

[3]! xn−3 + · · · + (−1)r xn−r

= xn −
(
pr − qr

p − q

)
xn−1 +

(
(pr − qr )(pr−1 − qr−1)

(p − q)2(p + q)

)
xn−2

−
(

(pr − qr )(pr−1 − qr−1)(pr−2 − qr−2)

(p − q)3(p2 + pq + q2)(p + q)

)
xn−3 + · · · + (−1)mxn−r .

Now, we present an example to see that a sequence is not convergent; however, the
associated difference sequence is convergent.

Example 2 Let us consider a sequence (xn) = n + 1 (n ∈ N). It is clear that the
sequence (xn) is not convergent in the ordinary sense.

Also, we see that

�[3](xn) = xn − 3xn−1 + 3xn−2 − xn−3 (xn = n + 1)

converges to 0 (n → ∞).

For r = 3, we obtain that

�
[3]
p,q (xn) = xn − [3]p,q xn−1 + [3]p,q xn−2 − xn−3 (xn = n + 1)

= xn − (p2n + pnqn + q2n )xn−1 + (p2n + pnqn + q2n )xn−2 − xn−3

= n + 1 − (p2n + pnqn + q2n )n + (p2n + pnqn + q2n )(n − 1) − (n − 2) (xn = n + 1)

= 3 − (β2 + αβ + α2).

Clearly, depending on the choice of the values of p and q, the difference sequence
�[3]

p,q(xn) of third order has different limits. This situation is due to the definition of
(p, q)-integers. However, in order to obtain a convergence criterion for all values of p
and q, belonging to the operator�[r ]

p,q , we must have to overcome this difficulty. This
type of difficulties can be avoided in the following two ways. The first one is taking
p = q = 1, and thus, the operator reduces to the usual difference sequence. Next,
the second way is to replace p = pn and q = qn under the limits, limn qn = α and
limn pn = β (0 ≤ α,β ≤ 1) where 0 < qn < pn ≤ 1, for all (n ∈ N). Afterward,
the difference sequence �[3]

p,q(xn) of third order 3 converges to the value 3 − (β2 +
αβ + α2). Thus, if we take qn = (

n+1
n+1+s

)
<

(
n+1

n+1+t

) = pn such that 0 < qn < pn ≤
1 (s > t > 0), then limn qn = 1 = limn pn and hence �[3]

p,q(xn) → 0 (n → ∞).

Remark 1 If r = 1, limn qn = 1, and limn pn = 1, then the difference operator �[r ]
p,q

reduces to the �[1]. Also, if r = 0, limn qn = 1 and limn pn = 1, then the difference
operator �[r ]

p,q reduces to the general sequence (xn).

Here, we now present the notion of the statistical deferred Cesàro summability under
the generalized difference sequence of order r involving (p, q)-integers:
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Let (an) and (bn) be sequences of nonnegative integers such that (i) an < bn and
(ii) lim

n→∞ bn = ∞,

then the deferred Cesàro D(an, bn) mean based on (p, q)-integers is defined by,

Dp,q(an, bn) = Dp,q(xn) = 1

bn − an

bn∑

k=an+1

�[r ]
p,q(xk). (1)

It is well known that Dp,q(an, bn) is regular under conditions (i) and (ii) (see Agnew
[2]).

Remark 2 If p = q = 1, then the deferred Cesàro mean under (p, q)-integers
reduces to the deferred Cesàro mean (see [15]).

Let us now introduce the following definitions in support of our proposed work.

Definition 1 Let 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 <

α,β ≤ 1), and let r is a nonnegative integer. Also, let (an) and (bn) be sequences
of integers (nonnegative). A sequence (xn) is said to be statistical deferred Cesàro
summable to �with respect to difference sequence of order r based on (p, q)-integers
if, for every ε > 0, the set

{k : an < k ≤ bn and |Dp,q(xn) − �| ≥ ε}

has natural density zero, that is,

lim
n→∞

1

bn − an
|{k : an < k ≤ bn and |Dp,q(xn) − �| ≥ ε}| = 0.

In this case, we write

stat lim
n→∞ Dp,q(xn) = � or lim

n→∞ statp,qDC xn = �.

Clearly, above definition can be viewed as the generalization of some existing
definitions.

Remark 3 If an = n − 1, bn = n, and pn = qn = 1, then D(n − 1, n) reduces to
the identity transformation, and also, if an = 0, bn = n, and pn = qn = 1, then
D(0, n) reduces to (C, 1) transformation of xn , which is often denoted as σn . Further-
more, if an = n − 1, bn = n + t − 1, and 0 < qn < pn ≤ 1 such that limn qn = α
and limn pn = β (0 < α,β ≤ 1) and let r is a nonnegative integer, then

Dp,q(n − 1, n + t − 1) = σ
p,q
n,t =

(
t + n

t

)
σ
p,q
n+t−1 −

(n
t

)
σ
p,q
n−1, (2)

which is called the deferred delayed arithmetic mean. Finally, if an = n − 1, bn =
n + t − 1 and pn = qn = 1, then
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D(n − 1, n + t − 1) = σn,t =
(
t + n

t

)
σn+t−1 −

(n
t

)
σn−1,

which is called the delayed arithmetic mean (see [31], p. 80).

Definition 2 Let 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 <

α,β ≤ 1), and let r is a nonnegative integer. Also, let (an) and (bn) be sequences
of integers (nonnegative). A sequence (xn) is said to be statistical deferred delayed
arithmetic summable to � if, for every ε > 0, the set

{k : n − 1 < k ≤ n + t − 1 and |σ p,q
n,t − �| ≥ ε}

has zero natural density, that is,

lim
n→∞

1

t
|{k : n − 1 < k ≤ n + t − 1 and |σ p,q

n,t − �| ≥ ε}| = 0.

In this case, we write

stat lim
n→∞ σ

p,q
n,t = � or statp,qDAxn = �.

Now,we present below an example to show that a sequence is statistically deferred
Cesàro summable, whenever it is not statistically Cesàro summable.

Example 3 For limn qn = 1, limn pn = 1, an = 2n and bn = 4n (∀ n ∈ N), consider
a sequence x = (xn),

xn =

⎧
⎪⎪⎨

⎪⎪⎩

1
m2 (n = m2 − m,m2 − m + 1, . . . ,m2 − 1)

− 1
m3 (n = m2, m > 1)

0 (otherwise).

We have,

�[r]
p,q (xk) =

r∑

i=0

(−1)i
[
r

i

]

p,q
xn−i

=
{

xn −
[
r

1

]

p,q
xn−1 +

[
r

2

]

p,q
xn−2 −

[
r

3

]

p,q
xn−3 + · · · + (−1)r

[
r

r

]

p,q
xn−r

}

=
{
xn − [r ]p,q xn−1 + [r ]p,q [r − 1]p,q

[2]p,q ! xn−2 − [r ]p,q [r − 1]p,q [r − 2]p,q
[3]! xn−3 + · · · + (−1)r xn−r

}
.

Thus,

Dp,q(an, bn) = Dp,q(xn) = 1

4n − 2n

4n∑

k=2n+1

�[r ]
p,q(xk)
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which implies that

Dp,q(xn) → 0.

Hence, (xn) is not deferred Cesàro summable , even if it is statistical deferred Cesàro
summable under the difference operator of order r based on (p, q)-integers.

In the year 2012, Mohiuddine et al. [20] established statistical summability (C, 1)
and a Korovkin-type approximation theorem, and then, Jena et al. [15] investigated
a Korovkin-type approximation theorem for exponential functions via the statistical
deferred Cesàro summability of the real sequence. Very recently, Srivastava et al.
[26] has established generalized equi-statistical convergence of the deferred Nörlund
summability and its applications to associated approximation theorems, and then,
Srivastava et al. [27] established a certain class of weighted statistical convergence
and associated Korovkin-type approximation theorems for trigonometric functions.
Furthermore, Srivastava et al. [28] has proved some interesting results on deferred
weighted A-statistical convergence based on the (p, q)-Lagrange polynomials and
its applications to approximation theorems.

The main object of this chapter is to establish some important approximation
theorems over the Banach space based on statistical deferred Cesàro summability for
(p, q)-integers under difference sequence of order r which will effectively extend
and improve most (if not all) of the existing results depending on the choice of
sequences of the simple statistical deferred Cesàro means. Furthermore, we intend
to estimate the rate of our statistical deferred Cesàro summability and investigate
Korovkin-type approximation results.

2 A Korovkin-Type Approximation Theorem

Several researchers have worked on extending or generalizing the Korovkin-type
theorems in many ways and to several settings, including Function spaces, Banach
Algebras, Banach spaces. This theory is very useful in real analysis, functional anal-
ysis, harmonic analysis, measure theory, probability theory, and summability theory.
Recently, Jena et al. [15] have proved the Korovkin theorem via statistical deferred
Cesàro summability on C[0,∞) by using the test functions 1, e−x , and e−2x . In this
paper, we generalize the result of Jena, Paikray, and Misra via the notion of statisti-
cal deferred Cesàro summability based on difference sequence of order r including
(p, q)-integers for the same test functions 1, e−x , and e−2x . We also present an
example to justify that our result is stronger than that of Jena, Paikray, and Misra
(see [15]).

Let C(X), be the space of all real-valued continuous functions defined on [0,∞)

under the norm ‖.‖∞. Also, C[0,∞) is a Banach space. We have, for f ∈ C[0,∞),
the norm of f denoted by ‖ f ‖ is given by
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‖ f ‖∞ = sup
x∈[0,∞)

{| f (x)|}

with
ω(δ, f ) = sup

0≤|h|≤δ

‖ f (x + h) − f (x)‖∞, f ∈ C[0,∞).

The quantities ω(δ, f ) is called the modulus of continuity of f .
Let L : C[0,∞) → C[0,∞) be a linear operator. Then, as usual, we say that L is

a positive linear operator provided that

f ≥ 0 implies L( f ) ≥ 0.

Also, we denote the value of L( f ) at a point x ∈ [0,∞) by L( f (u); x) or, briefly,
L( f ; x).

The classical Korovkin theorem states as follows [19]:
Let Ln : C[a, b] → C[a, b] be a sequence of positive linear operators and let

f ∈ C[0,∞). Then

lim
n→∞ ‖Ln( f ; x) − f (x)‖∞ = 0 ⇐⇒ lim

n→∞ ‖Ln( fi ; x) − fi (x)‖∞ = 0 (i = 0, 1, 2),

where
f0(x) = 1, f1(x) = x and f2(x) = x2.

Now, we prove the following theorem by using the notion of statistical deferred
Cesàro summability based on (p, q)-integers.

Theorem 1 Let Lm : C[0,∞) → C[0,∞) be a sequence of positive linear opera-
tors. Then, for all f ∈ C[0,∞)

statp,qDC lim
m→∞ ‖Lm( f ; x) − f (x)‖∞ = 0, (3)

if and only if

statp,qDC lim
m→∞ ‖Lm(1; x) − 1‖∞ = 0, (4)

statp,qDC lim
m→∞ ‖Lm(e−s; x) − e−x‖∞ = 0 (5)

and

statp,qDC lim
m→∞ ‖Lm(e−2s; x) − e−2x‖∞ = 0. (6)

Proof Since each of fi (x) = {1, e−x , e−2x } ∈ C(X) (i = 0, 1, 2) is continuous, the
implication (3)=⇒(4)–(6) is obvious. In order to complete the proof of the theorem,
we first assume that (4)–(6) hold true. Let f ∈ C[X ], then there exists a constant
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K > 0 such that | f (x)| ≤ K, ∀ x ∈ X = [0,∞). Thus,

| f (s) − f (x)| ≤ 2K, s, x ∈ X. (7)

Clearly, for given ε > 0, there exists δ > 0 such that

| f (s) − f (x)| < ε (8)

whenever |e−s − e−x | < δ, for all s, x ∈ X .
Let us chooseϕ1 = ϕ1(s, x) = (e−s − e−x )2. If |e−s − x−x | ≥ δ, thenwe obtain:

| f (s) − f (x)| <
2K
δ2

ϕ1(s, x). (9)

From Eqs. (8) and (9), we get

| f (s) − f (x)| < ε + 2K
δ2

ϕ1(s, x),

⇒ − ε − 2K
δ2

ϕ1(s, x) ≤ f (s) − f (x) ≤ ε + 2K
δ2

ϕ1(s, x). (10)

Now since Lm(1; x) is monotone and linear, so by applying the operator Lm(1; x)
to this inequality, we have

Lm(1; x)
(

−ε − 2K
δ2

ϕ1(s, x)

)
≤ Lm(1; x)( f (s) − f (x)) ≤ Lm(1; x)

(
ε + 2K

δ2
ϕ1(s, x)

)
. (11)

Note that x is fixed and so f (x) is a constant number. Therefore,

−εLm(1; x) − 2K
δ2

Lm(ϕ1; x) ≤ Lm( f ; x) − f (x)Lm(1; x) ≤ εLm(1; x) + 2K
δ2

Lm(ϕ1; x). (12)

But

Lm( f ; x) − f (x) = [Lm( f ; x) − f (x)Lm(1; x)] + f (x)[Lm(1; x) − 1]. (13)

Using (12) and (13), we have

Lm( f ; x) − f (x) < εLm(1; x) + 2K
δ2

Lm(ϕ1; x) + f (x)[Lm(1; x) − 1]. (14)
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Now, estimate Lm(ϕ1; x) as,
Lm(ϕ1; x) = Lm((e−s − e−x )2; x) = Lm(e−2s − 2e−x e−s + e−2x ; x)

= Lm(e−2s; x) − 2e−x Lm(e−s; x) + e−2s Lm(1; x)
= [Lm(e−2s; x) − e−2x ] − 2e−x [Lm(e−s; x) − e−x ] + e−2x [Lm(1; x) − 1].

Using (14), we obtain

Lm( f ; x) − f (x) < εLm(1; x) + 2K
δ2

{[Lm(e−2s; x) − e−2s ] − 2e−x [Lm(e−s; x) − e−x ]
+e−2s [Lm(1; x) − 1]} + f (x)[Lm(1; x) − 1].

= ε[Lm(1; x) − 1] + ε + 2K
δ2

{[Lm(e−2s; x) − e−2x ] − 2e−x [Lm(e−s; x) − e−x ]
+e−2x [Lm(1; x) − 1]} + f (x)[Lm(1; x) − 1].

Since ε is arbitrary, we can write

|Lm( f ; x) − f (x)| ≤ ε+
(

ε + 2K
δ2

+ K
)

|Lm(1; x) − 1|

+ 4K
δ2

|Lm(e−s; x) − e−x | + 2K
δ2

|Lm(e−2s; x) − e−2x |

≤ B
(
|Lm(1; x) − 1| + |Lm(e−s; x) − e−x | + |Lm(e−2s; x) − e−2x |

)
,

(15)

where

B = max

(
ε + 2K

δ2
+ K,

4K
δ2

,
2K
δ2

)
.

Now replace Lm( f ; x) by

Dp,q(xn) = 1

bn − an

bn∑

m=an+1

�[r ]
p,q(Tm( f ; x))

in Eq. (15).
We have for a given r > 0, there exists ε > 0, such that ε < r . Then, by setting

�m(x; r) =
⎧
⎨

⎩
m : an < m ≤ bn and

∣∣∣∣∣∣

1

bn − an

bn∑

m=an+1

�
[r ]
p,q (Tm( f ; x)) − f (x)

∣∣∣∣∣∣
≥ r

⎫
⎬

⎭

and for i = 0, 1, 2,

�i,m(x; r) =
⎧
⎨

⎩
m : an < m ≤ bn and

∣∣∣∣∣∣

1

bn − an

bn∑

m=an+1

�[r ]
p,q (Tm( fi ; x)) − fi (x)

∣∣∣∣∣∣
≥ r − ε

3B

⎫
⎬

⎭
,
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we obtain

�m(x; r) ≤
2∑

i=0

�i,m(x; r).

Clearly,

‖�m(x; r)‖C(X)

bn − an
≤

2∑

i=0

‖�i,m(x; r)‖C(X)

bn − an
. (16)

Now, using the above assumption about the implications in (4)–(6) and by Defini-
tion1, the right-hand side of (16) is seen to tend to zero as n → ∞. Consequently,
we get

lim
n→∞

‖�m(x; r)‖C(X)

bn − an
= 0 (r > 0).

Therefore, the implication (3) holds true.
This completes the proof of Theorem1. �

Corollary 1 Let Lm : C[0,∞) → C[0,∞) be a sequence of positive linear opera-
tors, and let f ∈ C[0,∞). Then,

stat p,qDA lim
m→∞ ‖Lm( f ; x) − f (x)‖∞ = 0 (17)

if and only if

stat p,qDA lim
m→∞ ‖Lm(1; x) − 1‖∞ = 0, (18)

stat p,qDA lim
m→∞ ‖Lm(e−s; x) − e−x‖∞ = 0 (19)

and

stat p,qDA lim
m→∞ ‖Lm(e−2s; x) − e−2x‖∞ = 0. (20)

Proof By taking an = n − 1, ∀ n and, bn = n + k − 1, ∀ n and proceeding in the
similar line of Theorem1, the proof of Corollary1 is established. �
Remark 4 By taking pn = qn = 1 ∀ n in Theorem1, one can obtain the statistical
deferred Cesàro summability version of Korovkin-type approximation for the set of
functions 1, e−x , and e−2x established by Jena et al. [15].

Now we present below an illustrative example for the sequence of positive linear
operators that does not satisfy the conditions of theKorovkin approximation theorems
due to Jena et al. [15], Mohiuddine et al. [20], and Boyanov and Veselinov [8] but
satisfies the conditions of our Theorem1. Thus, our theorem is stronger than the
results established by Jena et al. [15], Mohiuddine et al. [20] and Boyanov and
Veselinov [8].
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Example 3 Let X = [0, 1] and consider the (p, q)-analogue of Bernstein operators
Bn,p,q( f ; x) on C[0, 1] given by (see [23])

Bn,p,q ( f ; x) = 1

p
n(n−1)

2

n∑

k=0

[
n

k

]

p,q
p

k(k−1)
2 xk

n−k−1∏

s=0

(ps − qs x) f

( [k]p,q
pk−n[n]p,q

)
(x ∈ [0, 1]).

Also, observe that

Bn,p,q ( f0; x) = 1, Bn,p,q ( f1; x) = e−x and Bn,p,q ( f2; x) = pn−1

[n]p,q e
−x + q[n − 1]p,q

[n]p,q e−2x .

Let us consider Ln : C[0, 1] → C[0, 1] be sequence of positive linear operators
defined as follows:

Ln( f ; x) = [1 + fn(x)]x(1 + xD)Bn,p,q( f ; x) ( f ∈ C[0, 1]), (21)

where the operator given by

x(1 + xD)

(
D = d

dx

)

was used earlier by Al-Salam [4] and, more recently, by Viskov and Srivastava [30]
(see also themonograph by Srivastava andManocha [25] for various general families
of operators of this kind). If we choose the sequence fn(x) of functions just as we
considered in Example2, then we have

Ln( f0; x) = [1 + fn(x)]x(1 + xD) · Bn,p,q( f0; x)
= [1 + fn(x)]x(1 + xD) · 1 = [1 + fn(x)]x,

Ln( f1; x) = [1 + fn(x)]x(1 + xD) · Bn,p,q( f1; x)
= [1 + fn(x)]x(1 + xD) · e−x = [1 + fn(x)]x(e−x − xe−x ),

and

Ln( f2; x) = [1 + fn(x)]x(1 + xD) · Bn,p,q ( f2; x)

= [1 + fn(x)]x(1 + xD) ·
{

pn−1

[n]p,q e
−x + q[n − 1]p,q

[n]p,q e−2x

}

= [1 + fn(x)]x
[

pn−1

[n]p,q e
−x + q[n − 1]p,q

[n]p,q e−2x − xe−x pn−1

[n]p,q − 2e−2x q(n − 1)p,q
[n]p,q

]

.
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So that, we obtain

statp,qDC lim
m→∞ ‖Lm(1; x) − 1‖∞ = 0,

statp,qDC lim
m→∞ ‖Lm(e−s; x) − e−x‖∞ = 0

and

statp,qDC lim
m→∞ ‖Lm(e−2s; x) − e−2x‖∞ = 0,

that is, the sequence Lm( f ; x) satisfies the conditions (4)–(6). Therefore, by Theo-
rem1, we have

statp,qDC lim
m→∞ ‖Lm( f ; x) − f ‖∞ = 0.

Hence, it is statistically deferred Cesàro summable under (p, q)-integers; however,
since (xm) is neither statistically Cesàro summable nor statistically deferred Cesàro
summable, so we conclude that earlier works under [15, 20] is not valid for the
operators defined by (21), while our Theorem1 still works.

3 Rate of Statistical Deferred Cesàro Summability

In this section, we study the rates of statistical deferred Cesàro summability based on
(p, q)-integers of a sequence of positive linear operators L( f ; x) defined on C[0,∞)

with the help of modulus of continuity.
We now presenting the following definition.

Definition 3 Let 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 <

α,β ≤ 1), and let r is a nonnegative integer. Also, let (an) and (bn) be sequences
of integers (nonnegative). Let (un) be a positive non-increasing sequence. A given
sequence x = (xm) is statistically deferred Cesàro summable to a number �with rate
o(un), if for every ε > 0,

lim
n→∞

1

un(bn − an)

∣∣{m : an < m ≤ bn and |Dp,q(xm) − �| ≥ ε
}∣∣ = 0.

In this case, we may write

xm − � = stat p,qDC − o(un).

We now prove the following basic lemma.
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Lemma 1 Let (un) and (vn) be two positive non-increasing sequences. Let x = (xm)

and y = (ym) be two sequences such that

xm − L1 = stat p,qDC − o(un)

and
ym − L2 = stat p,qDC − o(vn)

respectively. Then, the following conditions hold true

(i) (xm + ym) − (�1 + �2) = stat p,qDC − o(wn);
(ii) (xm − �1)(ym − �2) = stat p,qDC − o(unvn);
(iii) λ(xm − �1) = stat p,qDC − o(un) (for any scalar λ);
(iv)

√|xm − �1| = stat p,qDC − o(un),
where

wn = max{un, vn}.

Proof In order to prove the condition (i), for ε > 0 and x ∈ [0,∞), we define the
following sets:

An(x; ε) = ∣∣{m : an < m ≤ bn and |Dp,q(xm) + Dp,q(ym) − (�1 + �2)| ≥ ε
}∣∣ ,

A0,n(x; ε) =
∣∣∣
{
m : an < m ≤ bn and |Dp,q(xm) − �1| ≥ ε

2

}∣∣∣ ,

and

A1,n(x; ε) =
∣∣∣
{
m : an < m ≤ bn and |Dp,q(ym) − �2| ≥ ε

2

}∣∣∣ .

Clearly, we have

An(x; ε) ⊆ A0,n(x; ε) ∪ A1,n(x; ε).

Moreover, since
wn = max{un, vn},

by condition (3) of Theorem1, we obtain

‖Am(x; ε)‖∞
wn(bn − an)

≤ ‖A0,n(x; ε)‖∞
un(bn − an)

+ ‖A1,n(x; ε)‖∞
vn(bn − an)

. (22)

Now, by conditions (4)–(6) of Theorem1, we obtain

‖An(x; ε)‖∞
wn(bn − an)

= 0, (23)

which establishes (i). Since the proofs of other conditions (ii)–(iv) are similar, we
omit them. �



218 S. K. Paikray et al.

Further, we recall that the modulus of continuity of a function f ∈ C[0,∞) is
defined by

ω( f, δ) = sup
|y−x |≤δ:x,y∈X

| f (y) − f (x)| (δ > 0)

which implies that

| f (y) − f (x)| ≤ ω( f, δ)

( |x − y|
δ

+ 1

)
. (24)

Now, we state and prove a result in the form of the following theorem.

Theorem 2 Let [0,∞) ⊂ R, and let Lm : C[0,∞) → C[0,∞) be a sequence of
positive linear operators. Assume that the following conditions hold true:

(i) ‖Lm(1; x) − 1‖∞ = statp,qDC − o(un),
(ii) ω( f,λm) = statp,qDC − o(vn),

where
λm =

√
Lm(ϕ2; x) and ϕ1(y, x) = (e−y − x−x )2.

Then, for all f ∈ C[0,∞), the following statement holds true:

‖Lm( f ; x) − f ‖∞ = statp,qDC − o(wn), (25)

wn = max{un, vn}.
Proof Let f ∈ C[0,∞) and x ∈ [0,∞). Using (24), we have

|Lm( f ; x) − f (x)| ≤ Lm(| f (y) − f (x)|; x) + | f (x)||Lm(1; x) − 1|

≤ Lm

( |e−x − e−y |
λm

+ 1; x
)

ω( f,λm) + | f (x)||Lm(1; x) − 1|

≤ Lm

(
1 + 1

λ2m
(e−x − e−y)2; x

)
ω( f,λm) + | f (x)||Lm(1; x) − 1|

≤
(
Lm(1; x) + 1

λ2m
Lm(ϕx ; x)

)
ω( f,λm) + | f (x)||Lm(1; x) − 1|.

Putting λm = √
Lm(ϕ2; x), we get

‖Lm( f ; x) − f (x)‖∞ ≤ 2ω( f,λm) + ω( f,λm)‖Lm(1; x) − 1‖∞ + ‖ f (x)‖‖Lm(1; x) − 1‖∞
≤ M{ω( f,λm) + ω( f,λm)‖Lm(1; x) − 1‖∞ + ‖Lm(1; x) − 1‖∞},

where
M = {‖ f ‖∞, 2}.
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Thus,

∥∥∥∥∥∥

1

bn − an

bn∑

m=an+1

Lm( f ; x) − f (x)

∥∥∥∥∥∥∞

≤ M

⎧
⎨

⎩
ω( f,λm)

1

bn − an
+ ω( f,λm)

∥∥∥∥∥∥

1

bn − an

bn∑

m=an+1

Lm( f ; x) − f (x)

∥∥∥∥∥∥∞

⎫
⎬

⎭

+M

⎧
⎨

⎩

∥∥∥∥∥∥

1

bn − an

bn∑

m=an+1

Lm( f ; x) − f (x)

∥∥∥∥∥∥∞

⎫
⎬

⎭
.

Now, by using the conditions (i) and (ii) of Theorem2, in conjunction with Lemma1,
we arrive at the statement (25) of Theorem2.

This completes the proof of Theorem2. �

4 Concluding Remarks

In this concluding section of our investigation, we present several further remarks
and observations concerning to various results which we have proved here.

Remark 5 Let (xm)m∈N be a sequence given in Example3. Then, since

statp,qDC − lim
m→∞ xm → 0 on [0,∞),

we have

statp,qDC − lim
m→∞ ‖Lm( fi ; x) − fi (x)‖∞ = 0 (i = 0, 1, 2). (26)

Thus, we can write (by Theorem1)

statp,qDC − lim
m→∞ ‖Lm( f ; x) − f (x)‖∞ = 0, (i = 0, 1, 2), (27)

where
f0(x) = 1, f1(x) = e−x and f2(x) = e−2x .

However, since (xm) is not ordinarily convergent, and so also it does not converge
uniformly in the ordinary sense. Thus, the classical Korovkin theorem does not work
here for the operators defined by (21). Hence, this application clearly indicates that
our Theorem1 is a non-trivial generalization of the classical Korovkin-type theorem
(see [19]).
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Remark 6 Let (xm)m∈N be a sequence as given in Example3. Then, since

statp,qDC − lim
m→∞ xm → 0 on [0,∞),

so (26) holds true. Now by applying (26) and Theorem1, condition (27) holds true.
However, since (xm) does not statistical Cesàro summable, so Theorem2.1 of Jena
et al. (see [15]) does not work for our operator defined in (21). Thus, our Theorem1
is also a non-trivial extension of Theorem2.1 of Jena et al. [15] (see also [8, 19]).
Based on the above results, it is concluded here that our proposed method has suc-
cessfully worked for the operators defined in (21) and therefore it is stronger than
the classical and statistical version of the Korovkin-type approximation (see [8, 19,
20]) established earlier.

Remark 7 Let us suppose that we replace the conditions (i) and (ii) in Theorem2,
by the following condition:

|Lm( fi ; x) − fi | = DC1(stat) − o(uni ) (i = 0, 1, 2). (28)

Then, since

Lm(ϕ2; x) = e−2x |Lm(1; x) − 1| − 2e−x |Lm(e−x ; x) − e−x | + |Lm(e−2x ; x) − e−2x |,

we can write

Lm(ϕ2; x) ≤ M
2∑

i=0

|Lm( fi ; x) − fi (x)|∞, (29)

where
M = {‖ f2‖∞ + 2‖ f1‖∞ + 1}.

Now it follows from (28), (29) and Lemma1 that

λm =
√
Lm(ϕ2) = DC1(stat) − o(dn), (30)

where
o(dn) = max{un0 , un1 , un2}.

This implies
ω( f, δ) = DC1(stat) − o(dn).

Now using (30) in Theorem2, we immediately see that for f ∈ C[0,∞),

Lm( f ; x) − f (x) = DC1(stat) − o(dn). (31)
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Therefore, if we use the condition (28) in Theorem2 instead of (i) and (ii), then we
obtain the rates of statistical deferred Cesàro summability of the sequence of positive
linear operators in Theorem1.
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