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Abstract Let (pn) be a sequence of nonnegative numbers such that p0 > 0 and

Pn :=
n∑

k=0

pk → ∞ as n → ∞.

Let (sn) be a sequence of real and complex numbers. The weighted mean of (sn) is
defined by

tn := 1

Pn

n∑

k=0

pksk for n = 0, 1, 2, . . .

We obtain some sufficient conditions, under which the existence of the limit
lim sn = μ follows from that of st-lim tn = μ, where μ is a finite number. If (sn)
is a sequence of real numbers, then these Tauberian conditions are one-sided. If (sn)
is a sequence of complex numbers, these Tauberian conditions are two-sided. These
Tauberian conditions are satisfied if (sn) satisfies the one-sided condition of Landau
type relative to (Pn) in the case of real sequences or if (sn) satisfies the two-sided
condition of Hardy type relative to (Pn) in the case of complex numbers.
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1 Introduction

Let (sn) be a sequence of real or complex numbers and p = (pn) be a sequence of
nonnegative numbers such that

p0 > 0 and Pn :=
n∑

k=0

pk → ∞ as n → ∞. (1)

The weighted mean of (sn) is defined by

tn := 1

Pn

n∑

k=0

pksk for n ∈ N.

A sequence (sn) is said to be summable by the weighted mean method determined
by the sequence p toμ if (tn) converges to the same number.Weightedmeanmethods
are also calledRieszmethods or (N , p)methods in the literature. The (N , p) summa-
bility method is regular if and only if condition (1) is satisfied. In other words, every
convergent sequence is also (N , p) summable to the same number under condition
(1). However, the converse of this statement is not true in general. That the con-
verse of this statement holds true is possible under some suitable condition which is
so-called a Tauberian condition on the sequence. Any theorem stating that con-
vergence of a sequence follows from its (N , p) summability and some Tauberian
condition is said to be a Tauberian theorem for the (N , p) summability method. If
pn = 1 for all nonnegative integers n, then the (N , p) summability method reduces
to Cesàro summability method.

We now give the definition of natural density of K ⊂ N and present statistically
convergent sequences by using this concept. Let K ⊂ N be a subset of positive
integers and Kn = {k ∈ K : k ≤ n}. Then the set K has a natural density if the

sequence

( |Kn|
n

)
has a limit. In this case, we write δ(K ) = lim

n→∞
|Kn|
n

, where the

vertical bar denotes the cardinality of the enclosed set.
A sequence (sn) is said to be statistically convergent to μ if for every ε > 0, the set

Kε := {k ∈ N : |sk − μ| ≥ ε, k ≤ n} has natural density zero, i.e., for each ε > 0,

lim
n→∞

1

n + 1
|{k ∈ N : |sk − μ| ≥ ε, k ≤ n}| = 0. (2)

We denote the set of all statistically convergent sequences by st . In this case, we
write st − lim

n→∞ sn = μ if the limit (2) exists.

We write down that every convergent sequence is statistically convergent to the
samenumber since all finite subsets of the natural numbers have density zero.Accord-
ingly, the statistical convergencemay be considered as a regular summabilitymethod.
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However, the converse of this statement is not always true. For example, the sequence
(sn) defined by

sn =
{
n if n = k2; k = 0, 1, 2, . . .

0 otherwise

is statistically convergent to 0 since |{k ∈ N : |sk − 0| ≥ ε, k ≤ n}| ≤ √
n for every

ε > 0, but not convergent in the ordinary sense.
Recall that a sequence (sn) is called statistically (N , p) summable to μ if st −

limn→∞ tn = μ.
We write down that every statistically convergent sequence is also statistically

(N , p) summable to same number under the boundedness condition of the sequence
(cf. [1]).

At present, we define the concepts of slow decrease and slow oscillation relative
to (Pn), respectively. In pursuit of defining of these concepts, we mention about how
a transition exists between them.

We say that a sequence (sn) of real numbers is slowly decreasing relative to
(Pn) if

lim inf
m≥n→∞(sm − sn) ≥ 0 as 1 ≤ Pm

Pn
→ 1. (3)

Using ε’s and δ’s, (3) is equivalent to the following statement:
To every ε > 0, there exist δ > 0 and n0 ∈ N

0 such that

sm − sn ≥ −ε whenever m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ.

We say that a sequence (sn) of complex numbers is slowly oscillating relative to
(Pn) if

lim sup
m≥n→∞

|sm − sn| = 0 as 1 ≤ Pm
Pn

→ 1. (4)

Using ε’s and δ’s, (4) is equivalent to the following statement:
To every ε > 0 there exist δ > 0 and n0 ∈ N

0 such that

|sm − sn| ≤ ε whenever m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ.

We emphasize that if pn = 1 for all nonnegative integers n in (3) and (4), then
the concepts of slow decrease relative to (Pn) and slow oscillation relative to (Pn)
correspond to the concepts of slow decrease and slow oscillation, respectively (cf.
[2]). In addition to this, there is a similar relation between the concepts of slow
decrease relative to (Pn) and slow oscillation relative to (Pn) like the relation between
the concepts of slow decrease and slow oscillation In other words, if the sequence
(sn) is slowly oscillating relative to (Pn), then it is also slowly decreasing relative to
(Pn).
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We define the concepts of the one-sided condition of Landau type relative to (Pn)
and the two-sided condition of Hardy type relative to (Pn), respectively. In pursuit of
defining of these concepts, we mention about how a transition exists between them
and the concept defined previously.

We say that a sequence (sn) of real numbers satisfies one-sided condition of
Landau type relative to (Pn) if there exist positive constants n0 and C such that

sn − sn−1 ≥ −C
pn
Pn

whenever n > n0. (5)

We say that a sequence (sn) of complex numbers satisfies two-sided condition of
Hardy type relative to (Pn) if there exist positive constants n0 and C such that

|sn − sn−1| ≤ C
pn
Pn

whenever n > n0. (6)

We emphasize that if pn = 1 for all nonnegative integers n in (5) and (6), then
one-sided condition of Landau type relative to (Pn) and two-sided condition of Hardy
type relative to (Pn) correspond to one-sided condition of Landau type and two-sided
condition of Hardy type, respectively. We note that if the sequence (sn) satisfies
two-sided condition of Hardy type relative to (Pn), then it also satisfies one-sided
condition of Landau type relative to (Pn).

Additionally, it is easy to see that if the sequence (pn) satisfies condition (1),
then one-sided condition of Landau type relative to (Pn) implies condition of slow
decrease relative to (Pn) (cf. [3]).

As a matter of fact, we suppose that (pn) satisfies condition (1). Since one-sided
condition of Landau type relative to (Pn) is satisfied, there exist positive constants

n0 and C such that sn − sn−1 ≥ −C
pn
Pn

whenever n > n0. Let m ≥ n ≥ n0 and

1 ≤ Pm
Pn

≤ 1 + δ. Then we have for a given ε > 0,

sm − sn = (sm − sm−1) + (sm−1 − sm−2) + . . . + (sn+1 − sn)

=
m∑

k=n+1

(sk − sk−1)

≥ −C
m∑

k=n+1

pk
Pk

≥ −C

(
Pm
Pn

− 1

)
> −Cδ > −ε

in case we choose 0 < δ < ε
C . Therefore, we obtain that the sequence (sn) of real

numbers is slowly decreasing relative to (Pn).
Similarly, if (pn) satisfies conditions (1) and (11), then two-sided condition of

Hardy type relative to (Pn) implies condition of slow oscillation relative to (Pn).
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2 Development of Tauberian Theory for Weighted Mean
Method of Summability and Its Statistical Convergence

In this section, we begin with some remarks about the late history of the (N , p)
summability and its Tauberian results that are about the history from the early part of
nineteenth century until these days.We shortlymention the emergence of the concept
of statistical convergence and the advancement of that in Tauberian theory. In the
sequel, bringing together the concepts of the (N , p) summability and statistical con-
vergence under the same roof, we refer certain results obtained by several researchers
concerning these concepts. After dwelling on the studies that encourage us to do this
research, we complete this section summarizing theorems and corollaries attained in
this article.

Also called Riesz method since it was investigated for the first time in detail by
Riesz, the (N , p) summabilitymethodhas attracted the attentionofmany researchers,
notably Kronecker, Cesàro, and Hardy [4]. One of the researchers who supported
the development of this method in Tauberian theory, Tietz [5] revealed many Taube-
rian conditions that contain some well-known special Tauberian conditions, for the
(N , p) summability method. In the sequel, Móricz and Rhoades [6] presented two
Tauberian theorems which convergence follows from the (N , p) summability under
necessary and sufficient conditions. Tietz and Zeller [7] established some Tauberian
conditions controlling one-sided and two-sided oscillatory behavior of a sequence in
certain senses defined in their paper for the (N , p) summability method. Móricz and
Stadtmüller [8] obtained necessary and sufficient conditions including all classical
(one-sided and two-sided) Tauberian conditions given for the (N , p) summability
method.Móricz and Rhoades [9] arrivedmore general results than that in [6]. Finally,
Sezer and Çanak [10] investigated some conditions needed for the (N , p) summable
sequences to be convergent by using different approaches.

Contrary to the common belief that the concept of statistical convergence, which
is a natural generalization of that of ordinary convergence, was introduced by Fast
[11] and Schoenberg [12], this concept firstly came up with by Zygmund [13] who
used the term almost convergence in place of statistical convergence and proved some
theorems related to it. After the definition of statistical convergence was put into final
form by Fast [11] and Schoenberg [12], it was associated with Tauberian conditions
given by several researchers from past to present. Šalát [14] proved that the statisti-
cally convergent sequence needs to be neither bounded nor convergent. Considering
statistical convergence as a regular summability method, Fridy [15] indicated that
n�un = O(1) is a Tauberian condition for statistical convergence. Following the
paper [15], Fridy and Khan [16] presented the statistical extension of some classical
Tauberian theorems.Móricz [17] found out that necessary conditions for convergence
of sequences which are statistically convergent are slow decrease and slow oscilla-
tion. In the sequel, Totur and Çanak [18] obtained some results which generalize
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well-known classical Tauberian theorems given for statistical convergence. There
are also some interesting studies related to Tauberian theorems in which statistical
convergence is used (see [19, 20]).

After the results obtained related to the concept of statistical convergence were
published, it was combined with the (N , p) summability method. In relation to that,
Móricz and Orhan [21] presented Tauberian theorems which convergence follows
from the (N , p) summability under necessary and sufficient conditions, statistical
slow decrease and statistical slow oscillation conditions. In the sequel, Totur and
Çanak [22] arrived some results which improve well-known classical Tauberian
theorems given for (N , p) summability method and statistical convergence.

Besides the studies mentioned up to now, the studies that encourage us to do
this research is in fact those including some results obtained by Móricz [17, 23]
for the Cesàro (or (C,1)) and the harmonic (or (H,1)) summability methods. Móricz
formulated these results as follows, respectively:

Theorem 2.1 ([17]) If the real (or complex) sequence (sn) is statistically (C, 1)
summable to μ and slowly decreasing (or slowly oscillating), then (sn) is convergent
to μ.

Theorem 2.2 ([23]) If the real (or complex) sequence (sn) is statistically (H, 1)
summable to μ and slowly decreasing (or slowly oscillating) with respect to the
(H,1) summability, then (sn) is convergent to μ.

In case that pn = 1 and pn = 1

n
for all nonnegative integers n, the (N , p) summa-

bility method reduces to the Cesàro and the harmonic summability methods, respec-
tively. Here, our aim extends the theorems presented by Móricz for the Cesàro and
the harmonic summability methods to the (N , p) summability method. Therefore,
above-mentioned theorems are corollaries of our main results.

In this paper, we indicate that some conditions under which convergence follows
from the statistical (N , p) summability for real and complex sequence. In Sect. 3,
we present some lemmas which will be benefited in the proofs of our main results
for real sequences. In the sequel, we prove a Tauberian theorem for real sequences
that convergence follows from statistically (N , p) summability under the condition
of slow decrease relative to (Pn) and additional conditions on (pn) and we present
a corollary related to this theorem. We end this section by giving another Tauberian
condition for the (N , p) summability method. In Sect. 4, we present some lemmas
which will be benefited in the proofs of our main results for complex sequences
in parallel with Sect. 3. In the sequel, we prove a Tauberian theorem for complex
sequences that convergence follows from statistically (N , p) summability under the
condition of slow oscillation relative to (Pn) and additional conditions on (pn) and
we present a corollary related to this theorem. We end this section by giving another
Tauberian condition for the (N , p) summability method.
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3 Lemmas and Main Results for Real Sequences

This section essentially consists of twoparts. In the first part,we present some lemmas
which will be used in the proofs of our main results for real sequences. In the second
part, we obtain some Tauberian conditions under which convergence follows from
statistically (N , p) summability. In the sequel, we end this section by a corollary.

3.1 Lemmas

In this subsection, we express and prove the following assertions which will be
benefited in the proofs of our main results for real sequences. The following lemma
which were proved by Mikhalin [24] plays a crucial role in the proofs of subsequent
two lemmas which are necessary to achieve our main results for real sequences.

Lemma 3.1 ([24, Lemma 2]) Let (pn) satisfy conditions (1) and
pn
Pn

→ 0 as n →
∞. If (sn) satisfies condition

lim inf
m≥n→∞(sm − sn) ≥ −r (0 ≤ r < ∞) as 1 ≤ Pm

Pn
→ 1, (7)

then there exist numbers a > 0 and b > 0 such that sm − sn ≥ −a log
Pm
Pn

− b for

all m ≥ n ≥ 0.

Due to the fact that condition (7) corresponds to condition of slowdecrease relative
to (Pn) in the case of r = 0 in Lemma3.1, we prove in the following lemma that the
below-mentioned sequence is bounded below under condition of slow decrease rela-
tive to (Pn)which is restrictive in comparison with condition (7) and some additional
condition on (pn) by the help of Lemma3.1.

Lemma 3.2 Let (pn) satisfy conditions (1) and
pn
Pn

→ 0 as n → ∞. If (sn) is slowly

decreasing relative to (Pn), then

(
1

Pm

m∑

n=0

pn(sm − sn)

)

is bounded below.

Proof Assume that (pn) satisfies conditions (1) and
pn
Pn

→ 0 as n → ∞ and (sn)

is slowly decreasing relative to (Pn). Then, by taking these hypotheses into consid-
eration, we conclude by the help of Lemma 3.1 that there exist positive numbers
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a and b such that sm − sn ≥ −a log
Pm
Pn

− b for all m ≥ n ≥ 0. In addition to this,

since (pn) satisfies the condition
pn
Pn

→ 0 as n → ∞, we have

Pn
Pn+1

= 1 − pn+1

Pn+1
→ 1 as n → ∞. (8)

By the fact that tn → � implies
1

tn
→ 1

�
whenever � 	= 0, we find by (8) that

Pn+1

Pn
→ 1 as n → ∞ (9)

and so,

1 ≤ Pm
Pn

= Pm
Pm−1

Pm−1

Pm−2
. . .

Pn+1

Pn
→ 1 as m ≥ n → ∞. (10)

This means that for every δ > 0, there exists n0 ∈ N
0 such that 1 ≤ Pm

Pn
≤ 1 + δ

whenever m ≥ n ≥ n0. Therefore, from the condition of slow decrease relative
to (Pn) we declare that for every ε > 0 there exist δ > 0 and n0 ∈ N

0 such that

sm − sn ≥ −ε whenever m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ. With reference to above

inequalities, we obtain that given ε > 0

1

Pm

m∑

n=0

pn(sm − sn) = 1

Pm

n0∑

n=0

pn(sm − sn) + 1

Pm

m∑

n=n0+1

pn(sm − sn)

≥ 1

Pm

n0∑

n=0

pn

(
−a log

Pm
Pn

− b

)
+ 1

Pm

m∑

n=n0+1

pn(−ε)

≥ 1

Pm

n0∑

n=0

pn

(
−a log

Pm
P0

− b

)
+ 1

Pm

m∑

n=n0+1

pn(−ε)

= Pn0 − P0
Pm

(
−a log

Pm
P0

− b

)
+ Pm − Pn0

Pm
(−ε)

= (
Pn0 − P0

) (
− a

Pm
log

Pm
P0

)
+ Pn0 − P0

Pm
(−b) +

(
1 − Pn0

Pm

)
(−ε)

≥ (
Pn0 − P0

) (
− a

P0

)
+ Pn0 − P0

P0
(−b) +

(
1 − Pn0

Pm

)
(−ε)

=
(
Pn0
P0

− 1

)
(−a − b) +

(
1 − Pn0

Pm

)
(−ε)

for all m ≥ 0. In conjunction with information obtained up to now if we consider

that

(
Pn0
Pm

)
is convergent to 0 by the condition (1) and every convergent sequence

is also bounded, then there exists a positive constant H such that
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1

Pm

m∑

n=0

pn(sm − sn) ≥
(
Pn0
P0

− 1

)
(−a − b) +

(
1 − Pn0

Pm

)
(−ε)

≥
(
Pn0
P0

− 1

)
(−a − b) − H

:= −M

for all m ≥ 0 and some constant M > 0. In conclusion, we reach that the sequence(
1

Pm

m∑

n=0

pn(sm − sn)

)
is bounded below. �

At present, we offer an alternative proof of Lemma3.3 which were previously
proved by Mikhalin [24].

Lemma 3.3 Let (pn) satisfy conditions (1) and
pn
Pn

→ 0 as n → ∞. If (sn) is slowly

decreasing relative to (Pn), then (tn) is also slowly decreasing relative to (Pn).

Proof Assume that (pn) satisfies conditions (1) and
pn
Pn

→ 0 as n → ∞ and (sn) is

slowly decreasing relative to (Pn). Given ε > 0. By the definition of slow decrease
relative to (Pn), this means that there exist δ > 0 and n0 ∈ N

0 such that sm − sn ≥ −ε

whenever m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ.

Let m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ′. By the definition of the weighted means of

(sn) and Lemma3.2, we obtain that

tm − tn = 1

Pm

m∑

k=0

pksk − 1

Pn

n∑

k=0

pksk

= 1

Pm

{
n∑

k=0

+
m∑

k=n+1

}
pksk − 1

Pn

n∑

k=0

pksk

= 1

Pm

n∑

k=0

pksk + 1

Pm

m∑

k=n+1

pksk + Pm − Pn
Pm Pn

n∑

k=0

pksn − Pm − Pn
Pm Pn

n∑

k=0

pksn − 1

Pn

n∑

k=0

pksk

= 1

Pm

m∑

k=n+1

pk (sk − sn) +
(

1

Pm
− 1

Pn

) n∑

k=0

pksk + Pm − Pn
Pm Pn

n∑

k=0

pksn

= Pm − Pn
Pm

1

Pn

n∑

k=0

pk (sn − sk) + 1

Pm

m∑

k=n+1

pk (sk − sn)

≥
(
1 − Pn

Pm

)
(−M) + 1

Pm

m∑

k=n+1

pk (−ε)

=
(
1 − Pn

Pm

)
(−M − ε)
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whenever m ≥ k > n ≥ n0, 1 <
Pk
Pn

≤ Pm
Pn

≤ 1 + δ′ and for some constant M > 0.

Since we have that for m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ′

0 ≤ 1 − Pn
Pm

≤ δ′

1 + δ′ ,

if we choose 0 < δ′ ≤ ε

M
, then we arrive

tm − tn ≥
(
1 − Pn

Pm

)
(−M − ε) ≥ δ′

1 + δ′ (−M − ε) ≥ −ε.

Therefore, we obtain that (tn) is also slowly decreasing relative to (Pn). �

Lemma 3.4 ([17, Lemma 6]) If (sn) is statistically convergent to μ and slowly
decreasing, then (sn) is convergent to μ.

Lemma 3.5 ([3, Theorem 4.2.2]) Let (pn) satisfy conditions (1) and

Pn
Pn+1

→ 1 as n → ∞.

If (sn) is (N , p) summable to μ and slowly decreasing relative to (Pn), then (sn) is
convergent to μ.

3.2 Main Results

In this subsection, we prove a Tauberian theorem for real sequences that convergence
follows from statistically (N , p) summability under the condition of slow decrease
relative to (Pn) and additional conditions on (pn) and we present a corollary related
to this theorem. In the sequel, we end this part by giving a Tauberian condition for
the (N , p) summability method.

Theorem 3.6 Let (pn) satisfy conditions (1),
pn
Pn

→ 0 as n → ∞ and

1 ≤ Pm
Pn

→ 1 whenever 1 <
m

n
→ 1 as n → ∞. (11)

If (sn) is statistically (N , p) summable to μ and slowly decreasing relative to (Pn),
then (sn) is convergent to μ.
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Proof Assume that (pn) satisfies conditions (1), (11) and
pn
Pn

→ 0 as n → ∞ and

that (sn) is statistically (N , p) summable to μ and is slowly decreasing relative to
(Pn). In the circumstances, we arrive by the help of Lemma3.3 that (tn) is also
slowly decreasing relative to (Pn). In other words, we can say by the definition of
slow decrease relative to (Pn) that condition

lim inf
m≥n→∞(tm − tn) ≥ 0 as 1 ≤ Pm

Pn
→ 1

holds and so by the condition (11) we obtain that

lim inf
m≥n→∞(tm − tn) ≥ 0 as 1 ≤ m

n
→ 1.

This statement implies the slow decrease of (tn). Since (tn) is slowly decreasing
and statistically convergent to μ, we reach by the help of Lemma3.4 that (tn) is
convergent to μ which means that (sn) is (N , p) summable to μ. In addition to this,

as (pn) satisfies condition
pn
Pn

→ 0 as n → ∞, we attain that

Pn
Pn+1

= Pn + pn+1 − pn+1

Pn+1
= Pn+1

Pn+1
− pn+1

Pn+1
= 1 − pn+1

Pn+1
→ 1 as n → ∞.

If we consider that condition of slowly decreasing relative to (Pn) is Tauberian
condition for (N , p) summable sequence under additional conditions on (pn) as a
result of Lemma3.5, then we conclude that (sn) is convergent to μ. �

Corollary 3.7 Let (pn) satisfy conditions (1), (11) and
pn
Pn

→ 0 as n → ∞. If (sn)

is statistically (N , p) summable toμ and one-sided condition of Landau type relative
to (Pn) is satisfied, then (sn) is convergent to μ.

Lemma 3.8 Let (pn) satisfy conditions (1) and (11). If the one-sided condition

sn+1 − sn ≥ −C
pn
Pn

for all n ∈ N (12)

is satisfied for some constant C > 0, then condition

tn − tn−1 ≥ −C
pn
Pn

for all n ∈ N (13)

is also satisfied and (tn) is slowly decreasing relative to (Pn).

Proof Assume that (pn) satisfies conditions (1) and (11). By taking these hypotheses
and condition (12) into consideration, we obtain that
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tn − tn−1 = 1

Pn

n∑

k=0

pksk − 1

Pn−1

n−1∑

k=0

pksk

= 1

Pn Pn−1

(
Pn−1

n∑

k=0

pksk − Pn

n−1∑

k=0

pksk

)

= 1

Pn Pn−1

(
Pn−1 pnsn − pn

n−1∑

k=0

pksk

)

= pn
Pn Pn−1

n−1∑

k=0

pk(sn − sk)

= pn
Pn Pn−1

n−1∑

k=0

pk

n∑

j=k+1

(s j − s j−1)

= pn
Pn Pn−1

n∑

j=0

Pj−1(s j − s j−1)

≥ −C
pn

Pn Pn−1

n∑

j=0

Pj−1
p j−1

Pj−1

= −C
pn
Pn

for all n ∈ N and some constant C > 0. Therefore, we conclude that condition (13)
is satisfied and so (tn) is slowly decreasing relative to (Pn). �

Remark 3.9 We recall that if (sn) is a (N , p) summable sequence satisfying the
two-sided condition

|sn+1 − sn| ≤ C
pn
Pn

(14)

for all n ∈ N and some constant C > 0 and (pn) holds condition (1), then (sn) is
convergent. However, if we replace the two-sided condition (14) by the one-sided
condition (12), then this statement fails in general without additional condition on
(pn) or (sn) (cf. [3]).
On the other hand, the two-sided condition (14) can be weakened to the one-sided

condition (12) by adding the assumption that (pn) also satisfies the condition
pn
Pn

→ 0

as n → ∞ (cf. [25]).

In consideration of Lemma3.8 and Remark 3.9, we can give the following theo-
rem.

Theorem 3.10 Let (pn) satisfy conditions (1), (11) and
pn
Pn

→ 0 as n → ∞. If (sn)

is statistically (N , p) summable to μ and condition (12) is satisfied, then (sn) is
convergent to μ.
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Proof Assume that (pn) satisfies conditions (1), (11) and
pn
Pn

→ 0 asn → ∞ and that

statistically (N , p) summable (sn) to μ satisfies condition (12). In the circumstances,
we arrive by the help of Lemma3.8 that (tn) is also slowly decreasing relative to (Pn).
In other words, we can say by the definition of slow decrease relative to (Pn) that
condition

lim inf
m≥n→∞(tm − tn) ≥ 0 as 1 ≤ Pm

Pn
→ 1,

holds and so by condition (11) we obtain that

lim inf
m≥n→∞(tm − tn) ≥ 0 as 1 ≤ m

n
→ 1.

Since (tn) is slowly decreasing and statistically convergent to μ, we reach by the
help of Lemma3.4 that (tn) is convergent to μ which means that (sn) is (N , p)
summable to μ. If we consider that condition (12) is a Tauberian condition for (N , p)
summable sequence under additional conditions on (pn), then we conclude that (sn)
is convergent to μ. �

4 Lemmas and Main Results for Complex Sequences

This section essentially consists of two parts as lemmas andmain results for complex
sequences in parallel with Sect. 3. In the first part, we present some lemmas which
will be used in the proofs of our main results for complex sequences. In the second
part, we prove some Tauberian theorems for complex sequences that convergence
follows from statistically (N , p) summability under some Tauberian conditions and
additional conditions on (pn). In the sequel, we complete this part by giving a corol-
lary.

4.1 Lemmas

In this subsection, we express and prove the following assertions which will be
benefited in the proofs of our main results for complex sequences. The following
lemma was proved for real sequences by Mikhalin [24] and it plays a crucial role
in the proofs of subsequent two lemmas which are necessary to achieve our main
results for complex sequences.

Lemma 4.1 Let (pn) satisfy conditions (1) and
pn
Pn

→ 0 as n → ∞. If (sn) satisfies

the condition
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lim sup
m≥n→∞

|sm − sn| ≤ r (0 ≤ r < ∞) as 1 ≤ Pm
Pn

→ 1, (15)

then there exist positive numbers c and d such that |sm − sn| ≤ c log
Pm
Pn

+ d for all

m ≥ n ≥ 0.

Proof Assume that (pn) satisfies conditions (1) and
pn
Pn

→ 0 as n → ∞ and (sn)

satisfies the condition (15). We can say from condition (15) that for every r + 1 >

0, there exist δ > 0 and n0 ∈ N such that |sm − sn| < r + 1 whenever n > n0 and

1 ≤ Pm
Pn

≤ 1 + δ.

Let n ≤ n0 and Pm ≤ Pn0(1 + δ). In this case, we find that |sm − sn| has a maximum
depending only on n0, and so there exist δ > 0 and � ≥ (r + 1) such that |sm − sn| <

� for all m, n ∈ N related by 0 ≤ Pm − Pn ≤ δPn . Choose n1 such that 1 ≤ Pn+1

Pn
≤

(1 + δ) for all n ≥ n1. We investigate chosen n1 in three cases such that q ≥ w ≥ n1,
0 ≤ w < n1 ≤ q, and 0 ≤ w ≤ q < n1 for arbitrary fixed q, w ∈ N.

We firstly take into consideration the case q ≥ w ≥ n1. For this, we define the
subsequence (wi+1) where w0 = w and wi+1 is the largest natural number for which
the inequality Pn ≤ Pwi (1 + δ) holds for all i ∈ N. Therefore, we attain from this
defining that the inequalities Pwi+1 ≤ Pwi (1 + δ) and Pwi+1+1 > Pwi (1 + δ) are valid.
In addition to these, let wk ≤ q − 1 < wk+1. Then, we obtain that the inequalities
Pq ≤ Pwk+1 and 0 ≤ Pwi+1 − Pwi ≤ δPwi hold for all k ∈ N, and so we get that

∣∣sq − sw
∣∣ = ∣∣sq + swk − swk − sw0

∣∣

=
∣∣∣∣∣∣

k−1∑

j=0

(sw j+1 − sw j ) + sq − swk

∣∣∣∣∣∣

≤
k−1∑

j=0

∣∣sw j+1 − sw j

∣∣ + ∣∣sq − swk

∣∣

≤
k−1∑

j=0

� + ∣∣sq − swk

∣∣

≤ (k + 1)�.

Due to the fact that we have also the inequalities

Pq ≥ Pwk+1 > Pwk−1 (1 + δ) ≥ Pwk−2+1(1 + δ) > Pwk−3 (1 + δ)2 ≥ · · · ≥ Pw0 (1 + δ)

[
k
2

]

> Pw(1 + δ)
k
2 −1,

weeventually reach the inequality log Pq ≥ log Pw + k − 2

2
log(1 + δ). This implies

that the inequality (1 + k) ≤ log Pq − log Pw

log(1 + δ)1/2
+ 3 holds, and hence, we achieve the
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inequality

∣∣sq − sw
∣∣ ≤ (k + 1)� <

�

log(1 + δ)1/2
(log Pq − log Pw) + 3� (16)

for any q ≥ w ≥ n1.
On the other hand, we take into consideration the case 0 ≤ w < n1 ≤ q. Then,

we obtain that

∣∣sq − sw
∣∣ = ∣∣sq − sn1 + sn1 − sw

∣∣ ≤ ∣∣sq − sn1
∣∣ + max

0≤w<n1
|sn1 − sw |

≤ �

log(1 + δ)1/2
(log Pq − log Pn1 ) + 3� + max

0≤w<n1
|sn1 − sw |

≤ �

log(1 + δ)1/2
(log Pq − log Pw) + 3� + max

0≤w<n1
|sn1 − sw |. (17)

Finally, if we consider the case 0 ≤ w ≤ q < n1, then we attain that

∣∣sq − sw
∣∣ ≤ max

0≤w≤q≤n1−1

∣∣sq − sw
∣∣ ≤ �

log(1 + δ)1/2
(log Pq − log Pw) + 3� + max

0≤w≤q≤n1

∣∣sq − sw
∣∣ .

(18)

If we define positive numbers c, d as c = �

log(1 + δ)1/2
and d = max{3�, 3� +

max
0≤w≤q≤n1

∣∣sq − sw
∣∣}, then we conclude by (16)–(18) that

∣∣sq − sw
∣∣ ≤ c log

Pq
Pw

+ d

for all q ≥ w ≥ 0. �

Due to the fact that condition (15) corresponds to condition of slow oscillation
relative to (Pn) in the case of r = 0 in Lemma4.1, we prove in the following lemma
that the below-mentioned sequence is bounded under condition of slow oscillation
relative to (Pn) which is restrictive in comparison with condition (15) and some
additional condition on (pn) with the help of Lemma4.1.

Lemma 4.2 Let (pn) satisfy conditions (1) and
pn
Pn

→ 0 as n → ∞. If (sn) is slowly

oscillating relative to (Pn), then

(
1

Pm

m∑

n=0

pn(sm − sn)

)

is bounded.

Proof Assume that (pn) satisfies conditions (1) and
pn
Pn

→ 0 as n → ∞ and (sn) is

slowly oscillating relative to (Pn). Then, by taking these hypotheses into considera-
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tion we can say with the help of Lemma4.1 that there exist positive numbers c and

d such that |sm − sn| ≤ c log
Pm
Pn

+ d for all m ≥ n ≥ 0. In addition to this, as (pn)

satisfies the condition
pn
Pn

→ 0 as n → ∞, we attain that

Pn
Pn+1

= Pn + pn+1 − pn+1

Pn+1
= Pn+1

Pn+1
− pn+1

Pn+1
= 1 − pn+1

Pn+1
→ 1 as n → ∞.

(19)

Because it is well known that tn → � implies
1

tn
→ 1

�
whenever � 	= 0 as n → ∞,

we find by (19) that
Pn+1

Pn
→ 1 as n → ∞ (20)

and so,

1 ≤ Pm
Pn

= Pm
Pm−1

Pm−1

Pm−2
. . .

Pn+1

Pn
→ 1 as m ≥ n → ∞. (21)

This means that for every δ > 0, there exists n0 ∈ N
0 such that 1 ≤ Pm

Pn
≤ 1 + δ

wheneverm ≥ n ≥ n0. Therefore, from condition of slow oscillation relative to (Pn)
we declare that for every ε > 0 there exist δ > 0 and n0 ∈ N

0 such that |sm − sn| ≤ ε

whenever m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ. With reference to above inequalities,

we obtain that for all m ≥ 0 and given an ε > 0

∣∣∣∣∣
1

Pm

m∑

n=0

pn(sm − sn)

∣∣∣∣∣ =
∣∣∣∣∣
1

Pm

n0∑

n=0

pn(sm − sn) + 1

Pm

m∑

n=n0+1

pn(sm − sn)

∣∣∣∣∣

≤ 1

Pm

n0∑

n=0

pn|sm − sn| + 1

Pm

m∑

n=n0+1

pn|sm − sn|

≤ 1

Pm

n0∑

n=0

pn

(
c log

Pm
Pn

+ d

)
+ 1

Pm

m∑

n=n0+1

pnε

≤ 1

Pm

n0∑

n=0

pn

(
c log

Pm
P0

+ d

)
+ 1

Pm

m∑

n=n0+1

pnε

= Pn0 − P0
Pm

(
c log

Pm
P0

+ d

)
+ Pm − Pn0

Pm
ε

= (
Pn0 − P0

) (
c

Pm
log

Pm
P0

)
+ Pn0 − P0

Pm
d +

(
1 − Pn0

Pm

)
ε

≤ (
Pn0 − P0

) (
c

P0

)
+ Pn0 − P0

P0
d +

(
1 − Pn0

Pm

)
ε
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=
(
Pn0
P0

− 1

)
(c + d) +

(
1 − Pn0

Pm

)
ε.

In conjunction with the information obtained up to now if we consider that

(
Pn0
Pm

)

is convergent to 0 by condition (1) and every convergent sequence is also bounded,
then there exists a positive constant H such that

∣∣∣∣∣
1

Pm

m∑

n=0

pn(sm − sn)

∣∣∣∣∣ ≤
(
Pn0
P0

− 1

)
(c + d) +

(
1 − Pn0

Pm

)
ε

≤
(
Pn0
P0

− 1

)
(c + d) + H

:= M

for all m ≥ 0 and some constant M > 0. In conclusion, we reach that(
1

Pm

m∑

n=0

pn(sm − sn)

)
is bounded. �

An alternative proof of the following lemma can also be done by following the
procedure used in [24].

Lemma 4.3 Let (pn) satisfy conditions (1) and
pn
Pn

→ 0 as n → ∞. If (sn) is slowly

oscillating relative to (Pn), then (tn) is also slowly oscillating relative to (Pn).

Proof Assume that (pn) satisfies conditions (1) and
pn
Pn

→ 0 as n → ∞ and (sn) is

slowly oscillating relative to (Pn). Given ε > 0. By the definition of slow oscillation
relative to (Pn), this means that there exist δ > 0 and n0 ∈ N

0 such that |sm − sn| ≤ ε

whenever m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ.

Let m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ′. By the definition of the weighted means of

(sn) and Lemma4.2, we obtain that

|tm − tn | =
∣∣∣∣∣
1

Pm

m∑

k=0

pksk − 1

Pn

n∑

k=0

pksk

∣∣∣∣∣

=
∣∣∣∣∣
1

Pm

{
n∑

k=0

+
m∑

k=n+1

}
pksk − 1

Pn

n∑

k=0

pksk

∣∣∣∣∣

=
∣∣∣∣∣
1

Pm

n∑

k=0

pksk + 1

Pm

m∑

k=n+1

pksk + Pm − Pn
Pm Pn

n∑

k=0

pksn − Pm − Pn
Pm Pn

n∑

k=0

pksn − 1

Pn

n∑

k=0

pksk

∣∣∣∣∣

=
∣∣∣∣∣
1

Pm

m∑

k=n+1

pk (sk − sn) +
(

1

Pm
− 1

Pn

) n∑

k=0

pksk + Pm − Pn
Pm Pn

n∑

k=0

pksn

∣∣∣∣∣

=
∣∣∣∣∣
Pm − Pn

Pm

1

Pn

n∑

k=0

pk (sn − sk ) + 1

Pm

m∑

k=n+1

pk (sk − sn)

∣∣∣∣∣
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≤ Pm − Pn
Pm

∣∣∣∣∣
1

Pn

n∑

k=0

pk (sn − sk)

∣∣∣∣∣ + 1

Pm

m∑

k=n+1

pk |sk − sn |

≤
(
1 − Pn

Pm

)
M + 1

Pm

m∑

k=n+1

pkε

=
(
1 − Pn

Pm

)
(M + ε)

wheneverm ≥ k > n ≥ n0, 1 <
Pk
Pn

≤ Pm
Pn

≤ 1 + δ′ and for some constant M > 0.

Since we have that for m ≥ n ≥ n0 and 1 ≤ Pm
Pn

≤ 1 + δ′

0 ≤
(
1 − Pn

Pm

)
≤ δ′

1 + δ′ ,

if we choose 0 < δ′ ≤ ε

M
, then we arrive

|tm − tn| ≤
(
1 − Pn

Pm

)
(M + ε) ≤ δ′

1 + δ′ (M + ε) ≤ ε.

Therefore, we reach that (tn) is also slowly oscillating relative to (Pn). �

Lemma 4.4 ([17, Lemma 7]) If (sn) is statistically convergent to μ and slowly oscil-
lating, then (sn) is convergent to μ.

Lemma 4.5 ([3, Corollary of Theorem4.2.2]) Let (pn) satisfy conditions (1) and

Pn
Pn+1

→ 1 as n → ∞.

If (sn) is (N , p) summable to μ and slowly oscillating relative to (Pn), then (sn) is
convergent to μ.

4.2 Main Results

In this subsection, we prove a Tauberian theorem for complex sequences that conver-
gence follows from statistically (N , p) summability under condition of slow oscil-
lation relative to (Pn) and additional conditions on (pn) and we present a corollary
related to this theorem. In the sequel, we complete this part by giving a Tauberian
condition for the (N , p) summability method.
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Theorem 4.6 Let (pn) satisfy conditions (1), (11) and
pn
Pn

→ 0 as n → ∞. If (sn)

is statistically (N , p) summable to μ and slowly oscillating relative to (Pn), then
(sn) is convergent to μ.

Proof Assume that (pn) satisfies conditions (1), (11) and
pn
Pn

→ 0 as n → ∞ and

(sn)which is statistically (N , p) summable to μ is slowly oscillating relative to (Pn).
In the circumstances, we arrive with the help of Lemma4.3 that (tn) is also slowly
oscillating relative to (Pn). In other words, we can say by the definition of slow
oscillation relative to (Pn) that condition

lim sup
m≥n→∞

|tm − tn| = 0 as 1 ≤ Pm
Pn

→ 1

holds and so by condition (11) we obtain that

lim sup
m≥n→∞

|tm − tn| = 0 as 1 ≤ m

n
→ 1.

The statement implies the slow oscillation of (tn). Since (tn) is slowly oscillating
and statistically convergent to μ, we reach with the help of Lemma4.4 that (tn) is
convergent to μ which means that (sn) is (N , p) summable to μ. In addition to this,

as (pn) satisfies condition
pn
Pn

→ 0 as n → ∞, we attain that

Pn
Pn+1

= Pn + pn+1 − pn+1

Pn+1
= Pn+1

Pn+1
− pn+1

Pn+1
= 1 − pn+1

Pn+1
→ 1 as n → ∞.

If we consider that condition of slowly oscillating relative to (Pn) is a Tauberian
condition for (N , p) summable sequence under additional conditions on (pn) as a
result of Lemma4.5, then we conclude that (sn) is convergent to μ. �

Corollary 4.7 Let (pn) satisfy conditions (1), (11) and
pn
Pn

→ 0 as n → ∞. If (sn)

is statistically (N , p) summable to μ and two-sided condition of Hardy type relative
to (Pn), then (sn) is convergent to μ.

Lemma 4.8 Let (pn) satisfy conditions (1) and (11). If condition

|sn+1 − sn| ≤ C
pn
Pn

for all n ∈ N (22)

is satisfied for some constant C > 0, then condition

|tn − tn−1| ≤ C
pn
Pn

for all n ∈ N (23)

is also satisfied and (tn) is slowly oscillating relative to (Pn).
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Proof Assume that (pn) satisfies conditions (1) and (11). By taking these hypotheses
and condition (22) into consideration, we obtain that

|tn − tn−1| =
∣∣∣∣∣
1

Pn

n∑

k=0

pksk − 1

Pn−1

n−1∑

k=0

pksk

∣∣∣∣∣

= 1

Pn Pn−1

∣∣∣∣∣Pn−1

n∑

k=0

pksk − Pn

n−1∑

k=0

pksk

∣∣∣∣∣

= 1

Pn Pn−1

∣∣∣∣∣Pn−1 pnsn − pn

n−1∑

k=0

pksk

∣∣∣∣∣

= 1

Pn Pn−1

∣∣∣∣∣pn
n−1∑

k=0

pk(sn − sk)

∣∣∣∣∣

= pn
Pn Pn−1

∣∣∣∣∣∣

n−1∑

k=0

pk

n∑

j=k+1

(s j − s j−1)

∣∣∣∣∣∣

≤ pn
Pn Pn−1

n−1∑

k=0

pk

∣∣∣∣∣∣

n∑

j=k+1

(s j − s j−1)

∣∣∣∣∣∣

≤ pn
Pn Pn−1

n−1∑

k=0

pk

n∑

j=k+1

|s j − s j−1|

= pn
Pn Pn−1

n∑

j=0

Pj−1|s j − s j−1|

≤ C
pn

Pn Pn−1

n∑

j=0

Pj−1
p j−1

Pj−1

= C
pn
Pn

for all n ∈ N and some constant C > 0. Therefore, we conclude that condition (23)
is satisfied and so (tn) is slowly oscillating relative to (Pn). �

Remark 4.9 It is known that provided the sequence (pn) satisfies condition (1), any
(N , p) summable sequence (sn) which satisfies two-sided condition (22) is conver-
gent (cf. [3]).

In consideration of Lemma4.8 and Remark4.9, we can give the following theo-
rem.

Theorem 4.10 Let (pn) satisfy conditions (1) and (11). If (sn) is statistically (N , p)
summable to μ and condition (22) is satisfied, then (sn) is convergent to μ.
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Proof Assume that (pn) satisfies conditions (1), (11) and statistically (N , p)
summable (sn) to μ satisfies condition (22). In the circumstances, we arrive with
the help of Lemma4.8 that (tn) is also slowly oscillating relative to (Pn). In other
words, we can say by the definition of slow oscillation relative to (Pn) that condition

lim sup
m≥n→∞

|tm − tn| = 0 as 1 ≤ Pm
Pn

→ 1,

holds and so by condition (11) we obtain that

lim sup
m≥n→∞

|tm − tn| = 0 as 1 ≤ m

n
→ 1.

The statement implies the slow oscillation of (tn). Since (tn) is slowly oscillating
and statistically convergent to μ, we reach with the help of Lemma4.4 that (tn) is
convergent to μ which means that (sn) is (N , p) summable to μ. If we consider
that condition (22) is a Tauberian condition for (N , p) summable sequence under
additional conditions on (pn), then we conclude that (sn) is convergent to μ. �
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