
Chapter 6
About the Links Between Equilibrium
Problems and Variational Inequalities

D. Aussel, J. Dutta and T. Pandit

6.1 Introduction and Motivation

In the recent decades, a huge number of papers of the literature of optimization
have been dedicated to equilibrium problem. In the community of optimizers, this
terminology is used to describe the following problem: given a subset C ⊂ R

n and
a (bi)function f : Rn × R

n → R, the equilibrium problem consists in

EP( f,C) find x ∈ C such that f (x, y) ≥ 0, for all y ∈ C.

This understanding of the term ‘equilibrium’ seems to be quite far to its usual sense in
game theory. It is actually not really the case as we will see in the example described
in the forthcoming Sect. 6.4.

It was Oettli who in 1994 [4] first coined the term equilibrium problem during the
annual conference of the Indian Mathematical Society and his paper was published
in the journalMathematics Student of the Indian Mathematical Society. It is one of
the most cited papers in optimization theory.

The power of this formulation is that it allows to include, in a common framework,
a large set of problems. For example, consider f (x, y) = ϕ(y) − ϕ(x) and a subsetC
ofRn . Then the solution set of the problem EP( f,C) coincides with the set of global
minimizers of the function ϕ over C . Now if one consider f (x, y) = ϕ(x) − ϕ(y),
then, symmetrically, the solutions of the equilibrium problem EP( f,C) are the
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global maximizers of the function ϕ over C . Thus, the concept of an equilibrium
problem seems to unify both minimization and maximization problems.

On the other hand if the objective function ϕ is assumed to be differentiable over
a closed convex set C , then it is a well-known fact (and simple to prove) that if x̄ is
a local minimizer of ϕ over C , then

〈∇ϕ(x̄), y − x̄〉 ≥ 0, ∀y ∈ C. (6.1)

The above inequality expresses the necessary optimality condition in the so-called
variational inequality form V I (∇ϕ,C). Of course, if additionally f is convex, then
the above expression is both necessary and sufficient for global optimality and thus,
in context of convex optimization, a first relationship between equilibrium problem
and variational inequality occurs since

EP( fϕ,C) = argmin
C

ϕ = V I (∇ϕ,C) where fϕ(x, y) = ϕ(y) − ϕ(x), (6.2)

where the notations EP and V I are both used for the problem itself and its solution
set.

Our aim in this short note is to make a synthesis/state of art of the relationships
(inclusions, equality) of equilibrium problems and variational inequalities, that is,
to give sufficient conditions ensuring that one is included in the other one or that
they coincide. Then in Sect. 6.4, we also emphasize through an example that the
variational inequality is possibly the most general form of an equilibrium problem
arising in applications.

6.2 State of the Art of Relationships

6.2.1 A First Step: VI and EP Generated by an Optimization
Problem

Before going further into the relationship between equilibrium problems and varia-
tional inequalities, let us continue the reformulation process started above with the
reformulation of optimization problems in terms of variational inequalities. Indeed,
the link stated in (6.2) still holds true, under slight modifications, even if the objective
function ϕ is not differentiable and/or not convex.

If ϕ is a lower semi-continuous proper convex function which is not assume to
be differentiable, then one can use both the concepts of (convex) subdifferential and
set-valued variational inequality in order to obtain a relation similar to (6.2). Let us
recall that the subdifferential of the convex function ϕ at a point is given by ∂ϕ(x) =
{v ∈ R

n : 〈v, y − x〉 ≤ ϕ(y) − ϕ(x), ∀ y ∈ R
n} and that the general framework of

variational inequalities is the following: given a set-valued map F : Rn ⇒ R
n and a

subset C of Rn , the (somehow called generalized) variational inequality V I (F,C)

consists in:
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find x̄ ∈ C such that there exists x̄∗ ∈ F(x̄) with 〈x̄∗, y − x̄〉 ≥ 0, ∀x ∈ C.

Thus taking these notations into account, it is well known that Eq. (6.2) extends
in

EP( fϕ,C) = V I (∂ϕ,C) where fϕ(x, y) = ϕ(y) − ϕ(x). (6.3)

Now if ϕ is not assumed to be convex but only quasi-convex, then thanks to some
recent developments (see, e.g. [1]), it is nevertheless possible to achieve the perfect
reformulation of the minimization of ϕ over a convex set C in terms of a related
variational inequality. To be more precise, let us first recall some definitions:

A function ϕ : X → IR ∪ {+∞} is said to be
• quasi-convex on K if,

for all x, y ∈ K and all t ∈ [0, 1], ϕ(t x + (1 − t)y) ≤ max{ϕ(x), ϕ(y)},

or equivalently

for all λ ∈ R, the sublevel set Sλ = {x ∈ X : ϕ(x) ≤ λ} is convex.

• semi-strictly quasi-convex on K if, ϕ is quasi-convex and for any x, y ∈ K ,

ϕ(x) < ϕ(y) ⇒ ϕ(z) < ϕ(y), ∀ z ∈ [x, y[.

Clearly, any convex function is semi-strictly quasi-convexwhile semi-strict quasi-
convexity implies quasi-convexity. Roughly speaking, a semi-strictly quasi-convex
function is a quasi-convex function that has no ‘full dimensional flat part’ except
eventually at argmin.

Some years ago, a new concept of sublevel set called adjusted sublevel set has
been defined in [1]: for any x ∈ dom f , we define

Saϕ(x) = Sϕ(x) ∩ B(S<
ϕ(x), ρx ),

where S>
λ = {x ∈ X : ϕ(x) < λ} stands for the strict sublevel set of ϕ at point x

and moreover ρx = dist (x, S<
ϕ(x)), if S

<
ϕ(x) �= ∅

and Saϕ(x) = Sϕ(x) if S<
ϕ(x) = ∅.

Note that actually Saϕ(x) coincideswith Sϕ(x) if cl(S>
ϕ(x)) = Sϕ(x). It is, for example,

the case whenever f is semi-strictly quasi-convex.
Based on this concept of sublevel sets, one can naturally define the following

set-valued map called adjusted normal operator Na
ϕ defined by

Na
ϕ (x) = {x∗ ∈ R

n : 〈x∗, y − x〉 ≤ 0, ∀ y ∈ Saϕ(x)}.
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Now following [2, Prop. 5.1], a necessary and sufficient optimality conditions can
be proved for the minimization of a quasi-convex function over a convex set.

Proposition 6.2.1 Let C be a closed convex subset of X, x̄ ∈ C and ϕ : Rn → R be
continuous semi-strictly quasi-convex such that int(Saϕ(x̄)) �= ∅ and ϕ(x̄) > inf X ϕ.
Then the following assertions are equivalent:

(i) ϕ(x̄) = minC ϕ.
(ii) x̄ ∈ V I (Na

ϕ \ {0},C).

Let us observe that the notation Na
f \ {0}means that at any point x , 0 is dropped from

the cone Na
ϕ (x). It is an essential technical point for the above equivalence since it

allows to avoid any ‘trivial solution’ of the variational inequality.
As a consequence ifC is a closed convex subset of X such thatC ∩ argminIR f =

∅, then one has an analogous of the extremely important equivalence (6.2) and it can
be proved in the context of quasi-convex optimization.

EP( f,C) = argmin
C

ϕ = V I (Na
ϕ \ {0},C) where f (x, y) = ϕ(y) − ϕ(x).

(6.4)
The table below summarizes the interrelations stated above between equilib-

rium problems and variational inequalities in the very particular case where they
are defined through an optimization problem.

Initial problem EP reformulation Hypothesis VI reformulation Hypothesis
minC ϕ argminC ϕ = EP( fϕ,C) none argminC ϕ =

V I (∇ϕ,C)

ϕ diff. convex

with C convex non-empty
fϕ(x, y) = ϕ(y) − ϕ(x)

argminC ϕ =
V I (∂ϕ,C)

ϕ lsc proper convex

C convex non-empty
argminC ϕ

= V I (Na
ϕ \ {0},C)

ϕ continuous and

semi-strictly quasi-convex
C convex non-empty
C ∩ argminIRn f = ∅

6.2.2 The More General Case

Based on the interrelations recalled in the previous subsection, we will now explore
the relations that can be stated between equilibrium problem EP( f,C) and vari-
ational inequalities whenever the function f is not coming from an optimization
problem.
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Given a subset C of Rn and a set-valued map F : Rn ⇒ R
n and the associated

variational inequality V I (F,C), an immediate link with an equilibrium problem can
be stated by simply considering a dedicated bifunction fF :

V I (F,C) = EP( fF ,C) where fF (x, y) = 〈F(x), y − x〉.

This equality beingvalidwithout anyhypothesis one can thus consider that variational
inequality problem are actually particular cases of the class of equilibrium problems.
Let us now explore the reverse question that is under which conditions an equilibrium
problem EP( f,C) can be seen as a variational inequality problem.

For an equilibrium problem in the general framework to yield nice results, it is
needed to fulfil some assumption on the data. One the most common assumptions in
the literature (see, for example [4–13]) is the following:

(H1) f (x, x) = 0 for all x ∈ R
n (or for just x ∈ C).

(H2) For any x ∈ R
n , the function y �→ f (x, y) is a convex function.

The first condition shows that if x∗ is a solution of the equilibrium problem then
x∗ minimizes the function f (x∗, y) over C . Now assume that f is a differentiable
convex function in y and C is non-empty and convex. Then we can write down the
necessary and sufficient optimality condition as

〈∇y f (x
∗, x∗), y − x∗〉 ≥ 0, ∀y ∈ C.

This shows that x∗ solves the variational inequality V I (Ff ,C) where, for each
x ∈ R

n , Ff (x) = ∇y f (x, x). Further if x∗ solves V I (Ff ,C) then by (6.1) and the
convexity of f in the second variable it is clear that x∗ minimizes f (x∗, .) over C
and since f (x∗, x∗) = 0 we conclude that x∗ solves EP( f,C). Thus, the solution
set of EP( f,C) coincides with the solution set of V I (Ff ,C) once we assume that
f is differentiable and convex in the second variable that is

EP( f,C) = V I (Ff (x),C) where Ff (x) = ∇y f (x, x).

Looking to the developments of Sect. 6.2.1, one can wonder if the above relation
(6.2.2) can actually be generalized to the case where f is not differentiable and/or
not convex in the second variable. First if, for any x ∈ C , the function f (x, ·) is
convex lower semi-continuous then, using the same proof as above one obtains

EP( f,C) = V I (Ff (x),C) where Ff (x) = ∂y f (x, x).

Finally if (H1) holds true, C is convex and the function is only assumed to be
continuous and semistricly quasi-convex in the second variable then, as previously
explained, x∗ is a solution of EP( f,C) if and only if x∗ minimizes f (x∗, .) and
therefore, using Proposition 6.2.1, one immediately have

EP( f,C) = V I (Ff (x),C) where Ff (x) = Na
f (x,·)(x) \ {0}.
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Thus, as a conclusion, even if it is true in a full generality, we often have that an
equilibrium problem EP( f,C) can be seen as a variational inequality.

The above stated interrelations are summarize in the table below, where assump-
tion (H1) and (H2) is assumed to hold.

Initial problem EP reformulation Hypothesis VI reformulation Hypothesis

V I (F,C) V I (F,C) =
EP( fF ,C)

none

with
fF (x, y) =
〈F(x), y − x〉

EP( f,C) EP( f,C) = V I (F f ,C) f (x, .) diff. convex, ∀ x
with C convex non-empty
F f (x) = ∇2 f (x, ·)(x) f (x, x) = 0, ∀ x
E P( f,C) = V I (F f ,C) f (x, .) lsc proper convex, ∀ x
with C convex non-empty
F f (x) = ∂2 f (x, ·)(x) f (x, x) = 0, ∀ x
E P( f,C) = V I (F f ,C) f (x, .) continuous

and semi-strictly quasi-convex, ∀ x
with F f (x) = C convex non-empty
Na f (x, ·)(x) \ {0} C ∩ argminIRn f = ∅

6.3 Existence Results for EP Through VI

Here, we present some existence results for both equilibrium problem and the vari-
ational inequality problem which are well established in the literature. We can see
that the relation between EP and VI mentioned in the previous table implies the
interrelation between the existence results of these two classes of problems.

Theorem 6.3.1 ([14, 15]) Let C is a non-empty, convex and compact subset of Rn

and let F : Rn → R
n be a continuous mapping. Then there exists a solution to the

problem V I (F,C).

Theorem 6.3.2 Let C ⊂ R
n be non-empty, convex and compact. Also let that f :

R
n × R

n → R is bifunction such that f (x, .) is convex, differentiable and f (x, x) =
0 for any x ∈ X. Then the solution set of the problem EP( f,C) is non-empty

Keeping in viewof the relation betweenEPandVI as presented in the previous section
it is clear that Theorem 6.3.2 follows in a straightforward fashion fromTheorem 6.3.1
The following existence result for VI with set-valued function is a particular case of
Theorem 3.1 [16].

Theorem 6.3.3 Let C be a non-empty, convex, compact subset ofRn and F : Rn ⇒
R

n be an upper semi-continuous set-valued map with convex, compact values. Then
VI(F,C) has a solution.
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A similar theorem is present in the literature by Ky Fan [17] for the equilibrium
problem.

Theorem 6.3.4 (Theorem 1, [17]) Let C is a non-empty, convex, compact subset of
R

n. If a continuous bifunction f : Rn × R
n → R satisfies the following properties:

• f (x, .) : Rn → R is convex for each x ∈ C.
• f (x, x) = 0 for any x ∈ C.
Then the equilibrium problem EP( f,C) has a solution.

Again looking at the relationship between EP and the VI with set-valued map as we
have presented in the previous section, it is clear that Ky Fan’s result can be deduced
from Theorem 6.3.3.

There are some results in the literature about the existence of the solutions of
EP( f,C) and V I (F,C), when C is closed but unbounded. But these results were
developed independently. Here we show that the link between EP and V I problems
leads to those existence results of EP once we assume the same for the V I .

Theorem 6.3.5 (Prop 2.2.3 [19]) Let C ⊂ R
n be closed convex and F : Rn → R

n

be continuous. If there exists u ∈ R
n such that the set

V< := {x ∈ C : 〈F(x), x − u〉 < 0}

is bounded (possibly empty), then V I (F,C) has a solution.

The next theorem is an existential result for the equilibrium problem developed by
Iusem et al. (Theorem 4.2 [18]). Here, we show that the same result is obtained using
the last theorem which ensures the existence of a solution of a VI problem.

Theorem 6.3.6 Let C ⊂ R
n is closed convex and f : Rn × R

n → R is a bifunction
such that f (x, .) : Rn → R

n is differentiable convex and f (x, x) = 0 for each x ∈ C.
If there exists u ∈ C such that the set

L> := {x ∈ C : f (x, u) > 0}

is bounded (possibly empty), then E P( f,C) has a solution.

Proof As f (x, .) is convex and differentiable function for all x ∈ C , we already know
that EP( f,C) = V I (Ff ,C); where Ff (x) = ∇2 f (x, .)(x). Also for any x ∈ C ,

f (x, u) ≥ f (x, x) + 〈∇2 f (x, .)(x), u − x〉.

By the given hypothesis, we get

f (x, u) ≥ 〈Ff (x), u − x〉. (6.5)
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From (6.5), it is clear that {x ∈ C : 〈Ff (x), x − u〉 < 0} ⊆ {x ∈ C : f (x, u) > 0} =
L>. Now the boundedness of L> (possibly empty) implies that {x ∈ C : 〈Ff (x), x −
u〉 < 0} is bounded (possibly empty). Then by Theorem 6.3.5, V I (Ff ,C) has a
solution, implying that EP( f,C) also has solution.

Remark 6.3.1 With the similar assumptions on F and C as Theorem 6.3.5 for VI, if
we assume that there exists u ∈ C and ζ ≥ 0 such that

lim inf‖x‖→∞
〈F(x), x − u〉

‖x‖ζ
> 0, (6.6)

then V I (F,C) has a solution (Prop. 2.2.7, [19]). Note that the coercivity condition
(6.6) implies the boundedness of the set V< in Theorem 6.3.5.

Similar thing happens with the equilibrium problem also. The boundedness con-
dition of L> can be replaced by the coercivity condition of f ,

lim inf‖x‖→∞
− f (x, u)

‖x‖ζ
> 0.

6.4 Examples and Counterexamples

In the previous section, it was shown that under some natural assumptions the solu-
tion set of an equilibrium problem coincides with the solution set of an associ-
ated variational inequality problem. Given the problem EP( f,C), where C is non-
empty and convex, f is differentiable and (H1) holds. We shall call the problem
V I (Ff ,C), with Ff (x) = ∇y f (x, .)(x) = ∇y f (x, x) as the variational inequality
associated with the equilibrium problem EP( f,C). This is because if x∗ is a solu-
tion of EP( f,C), then x∗ solves V I (Ff ,C), though the converse need not be true.
Taking a clue from an example taken from Muu et al. [3], we show an equilibrium
problem which can not be solved by solving the associated variational inequality.

Example 6.4.1 Consider the following equilibrium problem. Find x ∈ C such that

f (x, y) ≥ 0 for all y ∈ C,

where f (x, y) = 〈x, y − x〉 + x2 − y2 and C = [−1, 1]. Since there does not exist
any such x ∈ [−1, 1], this equilibrium problem does not have any solution. Here
fy(x, y) = x − 2y, which implies that ∇ fy(x, x) = −x . Hence, the variational
inequality associated with the above mentioned equilibrium problem is given as
follows. Find x such that

〈−x, y − x〉 ≥ 0 for all y ∈ [−1, 1].
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Note x = 0 satisfies the above inequality for all y ∈ [−1, 1], implying that the asso-
ciated variational inequality has a solution when the equilibrium problem does not.

The above example shows that in general an equilibrium problem may not be related
to its associated variational inequality. The above example might appear artificial.
Thus, it is natural to ask if there is an example of an equilibrium problem which
is drawn from some application where its solution set does not coincide with the
solution of its associated variational inequality. While trying to search for such an
example, we came across the work of Muu et al. [3], where they have studied the
profit maximization problem in the setting of an oligopolistic market. They showed
that the existence of Nash equilibrium in such a market is equivalent to a hemivaria-
tional inequality. However, they assumed that cost function which tells us the cost of
producing a given amount of a good is concave and increasing. Under this assump-
tion, the Nash equilibrium problem cannot be solved by solving the hemivariational
inequality problem. However, this assumption is flawed from the economic point of
view. It is common knowledge in microeconomics that the function relating the cost
of producing a given good with the quantity to be produced is a strictly( or strongly)
convex function.We showbelow that if we consider the correct economic assumption
on the cost function, the problem discussed by Muu et al. [3] is indeed equivalent to
a variational inequality. We describe the problem in considerable detail.

Let us begin by considering an oligopolistic market. In an oligopolistic market,
there are more than one firm produces the same commodity and compete among
themselves. Thus, the unit price of the commodity fixed by one firm does not depend
only on its own level of production but depends also on the amount of production
achieved by other forms. More precisely, consider that there are n firms and let
xi be the amount of the commodity produced by the i th firm and let pi be the
price of the commodity given by the i th firm. In fact, we should write the price as
pi (x1, x2, . . . , xn). Let hi be the cost function associated with the firm and thus for
producing the amount xi , the firm i needs to spend h(xi ). Thus, the profit or the
pay-off function for the i th firm is a function fi : Rm → R is s given as

fi (x) = fi (x1, . . . xm) = xi pi (x1, . . . , xn) − hi (xi ).

In fact, it is natural to assume that the cost function hi of the i th firm depends only on
production level of the i th firm itself. It is also important to note that in an oligopolistic
structure, the number of firms is not very large. Further, we assume that each firm i
has a strategy setUi ⊂ R and we can safely assume it to be convex. This strategy set
allows the firm i to set its production level once it has idea of the production level
of other firms. This is quite natural since the number of firms is quite less. Thus, a
point x̄ = (x̄1, . . . , x̄n) ∈ U = U1 ×U2 × · · · ×Un is aNash equilibrium if for each
i = 1, . . . , n

fi (x̄1, x̄2, . . . , x̄i−1, yi , x̄i+1, . . . x̄n) ≤ f (x̄1, x̄2, . . . , x̄i , . . . , x̄n),
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for all yi ∈ Ui . In fact, one can express this as a sequence of minimization problem.
Let x−i denote the production levels of all the firms except the i th firm. Thus, we
can write

x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn)
T .

Traditionally in the study of Nash equilibrium, one can write the vector x as x =
(xi , x−i ). Let us write the loss function for the i th firm as

θi (xi , x
−i ) = − fi (x1, . . . , xn) = hi (xi ) − xi pi (x1, . . . , xn).

Thus for any given x−i , the object of the i th firm is to choose a strategy which solves
the problem Pi (x−i ) given as

min
xi∈Ui

θi (xi , x
−i ).

Let S(x−i ) denote the solution set of the problem Pi (x−i ). A vector x̄ is a Nash
equilibrium if x̄i ∈ S(x̄−i ) for each i = 1, . . . , n. In order solve the above problem,
most economists would like to have at least have that θi is convex in xi . Thus, this
means that hi (xi ) − xi pi (x1, . . . , xn) must be convex in xi . In fact, Muu et al. [3]
considers p(x1, . . . , xn) = αi − βi (x1 + · · · + xn) where, αi and βi are constants
with βi ≥ 0. Note that in this case we have

xi pi (x1, . . . xn) = αi xi − βi (x1xi + · · · + x2i + · · · + xnxi ).

This is in fact concave in xi . Further as per the standard assumptions in economic
theory we consider that the cost function hi is strongly convex and this proves that
θi is convex in xi . In fact, a careful inspection would show that it is actually jointly
convex in all the variables. Through the following proposition our aim would be to
show that under the above assumptions the Nash equilibrium can be computed by
solving a hemivariational inequality through of the non-monotone type.

Proposition 6.4.1 Let us assume that x̄ is the Nash equilibrium of the oligopolistic
market model discussed above. Let us assume that the cost function hi of each of the
i th firm is strongly convex and the unit price pi quoted by the i th firm is given as

pi (x1, . . . , xn) = αi − βi (x1 + · · · + xn),

where αi ∈ R and βi ≥ 0. Then x̄ solves the hemivariational inequality V I (F,+
∇ϕ,U ), where F(x) = B̃x − α, α = (α1, . . . , αn)

T with B̃ is a n × n matrix whose
i th row has the entry 0 at the i th column and all other entries are βi and ϕ is given
as

ϕ(x) = 〈x, Bx〉 + h(x),
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where B is a diagonalmatrix given as B = diag(β1, . . . βn) and h(x) = ∑n
i=1 hi (xi ).

Conversely if x̄ is a solution to V I (F + ∇ϕ,U ) with F and ϕ as given above then
x̄ is indeed a Nash equilibrium for the oligopolistic market model.

Proof: Let us begin by assuming that x̄ is the Nash equilibrium of the oligopolistic
market model described above. Thus for each i = 1, . . . , n, we have

fi (x̄1, x̄2, . . . , x̄i−1, yi , x̄i+1, . . . x̄n) ≤ f (x̄1, x̄2, . . . , x̄i , . . . , x̄n),

for all yi ∈ Ui . Of course, we know that U = U1 ×U2 × · · · ×Un . From the above
expression, a simple manipulation will show that

hi (yi ) − yi

⎛

⎝αi − βi

⎛

⎝yi +
n∑

j=1, j �=i

x̄ j

⎞

⎠

⎞

⎠ ≥ hi (x̄i ) − x̄i pi (x̄1, . . . , x̄n).

Further simplification shows that

hi (yi ) − hi (x̄i ) + (βi x̄1 + · · · + βi x̄i−1 + βi xi+1 + · · · + βi x̄n − αi )(yi − x̄i )

+βi y
2
i − βi x̄

2
i ≥ 0,

for all yi ∈ Ui . Summing over all i from 1 to n we have

n∑

i=1

hi (yi ) −
n∑

i=1

hi (x̄i ) + 〈B̃ x̄ − α, y − x̄〉 + 〈y, By〉 − 〈x, Bx〉 ≥ 0 ∀y ∈ U.

This shows that x̄ solves V I (F + ∇ϕ,U ).
Conversely let x̄ solve V I (F + ∇ϕ,U )with F andϕ as described in the statement

of the proposition. Thus, we have

n∑

i=1

hi (yi ) −
n∑

i=1

hi (x̄i ) + 〈B̃ x̄ − α, y − x̄〉 + 〈y, By〉 − 〈x, Bx〉 ≥ 0 ∀y ∈ U.

(6.7)
Let us choose y ∈ U as follows:

y = (x̄1, x̄2, . . . , x̄i−1, yi , x̄i+1, . . . , x̄n),

where yi is any element from Ui . Plugging this y in (6.7), we get

hi (yi ) − hi (x̄i ) + (βi x̄1 + · · · + βi x̄i−1 + βi xi+1 + · · · + βi x̄n − αi )(yi − x̄i )

+βi y
2
i − βi x̄

2
i ≥ 0,
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which implies that fi (x̄1, . . . , x̄i−1, yi , x̄i+1, . . . , x̄n) ≤ fi (x̄1, . . . , x̄n). This clearly
shows that x̄ is the Nash equilibrium of the oligopolistic market model. �.

As mentioned earlier in Muu et al. [3], it was assumed that hi is an increasing
concave function for each i . Then ϕ becomes a difference convex function, and
thus, the V I (F + ∇ϕ,U )would truly become an equilibrium problemwhich cannot
be solved by solving a V I . However as we had discussed this issue with several
economists, they have clearly told us that concavity assumption on the cost function
is fundamentally incorrect since in such a case the graph of the cost function of
a firm may always remain below the price curve xi pi (x1, . . . xn) which leads the
possibility of arbitrarily large amount of production in principle. However, no firm
can make an arbitrarily large amount of commodities. The assumption of a convex
curve limits the amount of commodities produced by the firm i and thus makes Ui

a compact and convex set. This will make it much easier to handle the problems
(Pi (x−i )). Thus as we see that under the strong convexity assumption on the cost
function of each firm, we have ϕ to be strongly convex and thus V I (F + ∇ϕ,U )

is same as V I (F + 2B + ∇h,U ), since the cost functions are assumed to be twice
differentiable. Thus, the analysis of the Nash equilibrium of an oligopolistic market
under natural assumptions does not lead us to an equilibrium problem different from
a V I . To the best of our knowledge, the problem of finding an application which
can be modelled as an equilibrium problem that is not equivalent to its associated
variational inequality remains to be open.

Thus given assumptions (H1) and (H2), it appears that the most general form of
an equilibrium problem is a variational inequality problem. However, a variational
inequality problem is more general than an optimization problem. This is what the
following example will demonstrate.

Example 6.4.2 Consider the following convex optimization problem (CP):

min f (x) subject to gi (x) ≤ 0, i = 1, . . . ,m, x ∈ X,

where f and each gi , i = 1, . . . ,m are finite-valued convex functions on X orRn and
X is a closed convex subset of Rn . Associated with (CP) is the Lagrangian function
L : X × R

m+ → R given as

L(x, λ) = f (x) + λ1g1(x) + · · · + λmgm(x).

Assume that the Slater’s condition holds, i.e. there exists x̂ ∈ X such that gi (x̂) < 0
for all i = 1. . . . ,m. It is a well-known result in convex optimization (see, for exam-
ple, Dhara and Dutta [20] ) that if Slater condition holds then x̄ ∈ X is a minimizer
of (CP) if and only if there exists λ̄ ∈ R

m+ such that

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄), for all x ∈ X, λ ∈ R
m
+. (6.8)
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The point (x̄, λ̄) ∈ X × R
m+ is called a saddle point of the Lagrangian function. From

(6.8), it is clear that

L(x̄, λ̄) = min
x∈X L(x, λ̄)

L(x̄, λ̄) = max
λ∈Rm+

L(x̄, λ).

Now using the standard necessary optimality for convex optimization (see Rockafel-
lar [21]), we conclude that

−∇x L(x̄, λ̄) ∈ NX (x̄)

and

∇λL(x̄, λ̄) ∈ NR
m+(λ̄).

Noting that

NX (x) × NR
m+(λ) = NX×R

m+(x, λ)

we conclude that under the Slater condition (x̄, λ̄) ∈ X × R
m+ is a saddle point of the

Lagrangian function if and only if (x̄, λ̄) solves the following variational inequality:

0 ∈ F(x, λ) + NX×R
m+(x, λ)

where F(x, λ) = (∇x L(x, λ),−∇λL(x, λ)). It is clear that F(x, λ) is not the gradient
of a convex function and in fact, it is not the gradient of theLagrangian function jointly
in both variable. Thus, we have a variational inequality which is not the optimality
condition of convex optimization problem.

For more examples of this type, see Borwein and Dutta [22] and Borwein and Lewis
[23].

6.5 Link Between QEP and QVI

Amore general version of the variational inequality problem is the quasi-variational
inequality (QVI) problem (see [24]) and the quasi-equilibrium problem (QEP) gen-
eralizes the standard equilibrium problem with set-valued maps. For more details on
quasi-equilibrium problems, see, for example, [25, 26]. In this section, we present the
observations about the relation between QEP and QVI, i.e. under which assumptions
a QEP is equivalent to a QVI.
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Given two set-valued maps T : Rn ⇒ R
n and K : Rn ⇒ R

n , the problem
QV I (T, K ) is defined as:

Find x ∈ K (x) such that there exists x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0 for all
y ∈ K (x).

For a bifunction f : Rn × R
n → R and a set-valuedmap K : Rn ⇒ R

n , QEP( f, K )

is

Find x ∈ K (x) such that f (x, y) ≥ 0 for all y ∈ K (x).

The following assumptions have been taken for QEP( f, K ) in this chapter which
also appear in literature:
A 1 : f (x, .) is convex for each x ∈ R

n .
A 2 : f (x, x) = 0 for each x ∈ R

n .
A 3 : K (x) is non-empty, convex and closed for all x ∈ R

n .

If x∗ is a solution of QEP( f, K ), by assumption we get that x∗ ∈ K (x∗) and

f (x∗, y) ≥ f (x∗, x∗) ∀y ∈ K (x∗),

which is nothing but a solution of the following minimization problem:

min f (x∗, y) subject to y ∈ K (x∗).

Additionally if we assume that f (x, .) is lsc, proper for any x ∈ R
n , by the necessary

and sufficient optimality condition for this problem we get that there exists ξ ∗ ∈
∂2 f (x∗, .)(x∗) such that

〈ξ ∗, y − x〉 ≥ 0 ∀y ∈ K (x∗). (6.9)

This implies that x∗ is a solution of the QV I (T f , K ), where T f (x) = ∂2 f (x, .)(x).
Further if x∗ solves QV I (T f , K ), (6.9) holds with some ξ ∗ ∈ ∂2 f (x∗, .)(x∗). This
together with A 1 and A 2 implies that x∗ is a solution of QEP( f, K ). Hence

QEP( f, K ) = QV I (T f , K ) where T f (x) = ∂2 f (x, .)(x).

In particular when f (x, .) is differentiable for any x ∈ R
n , using the gradient for

subdifferential we get

QEP( f, K ) = QV I (T f , K ) where T f (x) = ∇2 f (x, .)(x).

Finally, if A 2 and A 3 are satisfied and the function f (x, .) is semi-strictly quasi-
convex function for each x ∈ R

n , we still get an equivalence relation between QEP
and QVI. If x∗ is a solution of QEP( f, K ), we have

f (x∗, y) ≥ 0 ∀y ∈ K (x∗),



6 About the Links Between Equilibrium Problems … 129

which implies that x∗ is a solution of the equilibrium problem EP( f, K (x∗)).
Then by Proposition 2.1, we can say that EP( f, K (x∗)) = V I (T f , K (x∗)), where
T f (x) = Na

f (x,.)(x)\{0}, which implies there exists y∗ ∈ T f (x∗) = Na
f (x∗,.)(x

∗)\{0}
such that

〈y∗, y − x∗〉 ≥ 0 ∀y ∈ K (x∗).

Hence, x∗ solves QV I (T f , K ). Again if we assume that x∗ is a solution of the
QV I (T f , K ), following the previous arguments in reverse way we can easily show
that x∗ also solves QEP( f, K ).

The above-stated observations are summarized in the following table with the
assumption that A 2 and A 3 hold:

Initial problem QEP reformulation Hypothesis QVI reformulation Hypothesis

QVI(T,K) QV I (T, K ) =
QEP( fT , K )

with fT (x, y) =
sup

ξ∈T (x)
〈ξ, y − x〉

T (x) is compact
∀x ∈ R

n

QEP(f,K) QEP( f, K ) = QV I (T f , K )

with T f (x) = ∇2 f (x, .)(x)
f (x, .) diff. convex ∀x ∈
R
n

QEP( f, K ) = QV I (T f , K )

with T f (x) = ∂2 f (x, .)(x)
f (x, .) convex, lsc, proper
∀x ∈ R

n

QEP( f, K ) = QV I (T f , K )

with T f (x) = Na
f (x,.)(x)\{0}

f(x,.) continuous and
semi-strictly quasi-
convex ∀x ∈ R

n

K (x) ∩ argminRn f =
∅ ∀x ∈ R

n
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