
Chapter 3
Optimization Problems on Acyclic
Orientations of Graphs, Shellability
of Simplicial Complexes, and Acyclic
Partitions

Masahiro Hachimori

3.1 An Optimization Problem on Acyclic Orientation
of Graphs in the Theory of Polytopes

For an undirected graph G = (V (G), E(G)) and its orientation O , we denote by
GO the resulted directed graph. In this chapter, we consider optimization problems
such that the values of the objective functions are determined by the out-degrees of
GO , where we vary the orientations O of G under some given restrictions. A typical
example is the following problem.

(P1) : min
∑

v∈G
2out-deg(v;GO )

s. t. O is acyclic,

where the minimum is taken by varying the orientations O of G under the restriction
that O is acyclic, i.e., there are no directed cycles on GO . Here, out-deg(v; GO)

is the out-degree of v in GO . This optimization problem appears in the theory of
polytopes. In [6], Blind and Mani showed the following theorem.

Theorem 1 (Blind and Mani [6]) The combinatorial structure of a simple polytope
P is determined by its graph G(P).

Here, the graph G(P) of a polytope P is a graph consisting of the vertices and edges
of P . In other words, two simple polytopes have isomorphic face lattices if and only
if their graphs are isomorphic.

Later, Kalai [14] gave a simple short proof for Theorem1. In his proof, the key
is the notion of “good orientation.” An orientation O of G(P) is a good orientation
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if the restriction of G(P)O to every face of P (including P itself) has exactly one
source. (Remark: In this chapter, we orient all the edges in a reverse way to the
original paper. Originally, it is defined that an orientation is good if all the restriction
of G(P)O to every face of P has exactly one sink. Here, a source is a node in a
directed graph such that all the edges incident to the node are oriented from the node,
and a sink is a node such that all the edges incident to it are oriented into the node.)
Using this definition, it is shown that a set of vertices A of G(P) forms a face of P if
and only if the induced subgraph G(P)[A] is k-regular and A is an ending set with
respect to some good orientation O (i.e., all the edges connecting a vertex a of A and
a vertex a′ outside of A are oriented from a′ to a.). By this fact, the remaining thing
to be shown is to determine which orientations are good without knowing which set
A of vertices forms a face of P . The following theorem is the answer to this.

Theorem 2 (Kalai [14]) For a simple polytope P, an orientation O of G(P) is a
good orientation if and only if it is a minimizer of the problem (P1) with G = G(P).

Since Theorem2 assures that whether an orientation is good or not is determined
only by G(P) (no information of the faces of P is needed), this gives the proof of
Theorem1. A comprehensive introduction of this story can be found in Ziegler [21,
Lect. 3.4].

In this chapter, we introduce optimization problems similar to (P1) in the follow-
ing sections in relation to the combinatorial structures of simplicial complexes and
cubical complexes.

3.2 Shellability of Simplicial Complexes and Orientations
of Facet-Ridge Incidence Graphs

A (finite) simplicial complex Γ is a nonempty set of simplices in some Euclidean
space R

N such that (i) every face of σ ∈ Γ is a member of Γ , and (ii) σ ∩ τ is a
face of both σ and τ for any σ, τ ∈ Γ . (Remark: we treat the empty set as a (−1)-
dimensional simplex, and in this definition, the empty set is always a member of
a simplicial complex. Also we remark that we assume all the simplicial complexes
are finite in this chapter.) The members of a simplicial complex Γ are faces of Γ .
We adopt the conventional terminology to mention 0-dimensional faces as vertices,
1-dimensional faces as edges, and the maximal faces with respect to inclusion as
facets. The dimension of a simplicial complex Γ is the maximum dimension of its
faces. A simplicial complex is pure if all the facets are of the same dimension.

The combinatorial structures of simplicial complexes have been important sub-
jects of study from several contexts, as a high-dimensional generalization of graphs,
in the theory of polytopes (e.g., Ziegler [21, Lect. 8]), as a tool of topological meth-
ods in combinatorics (Björner [2]), or a way to address applications like computing
network reliability (Colbourn [7]). One reason simplicial complexes appear in many
contexts in combinatorics is because they are equivalent to a set family closed under
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Fig. 3.1 Shellable and nonshellable simplicial complexes

taking subsets (i.e., “abstract simplicial complex”) which can be found quite com-
monly in many combinatorial structures. Among several combinatorial properties of
simplicial complexes, shellability is one of themost famous and important properties,
and it appears in many places.

Definition 1 Asimplicial complexΓ is shellable if the facetsσ1, σ2, . . . , σt ofΓ can
be ordered such that (

⋃i−1
j=1 σ j ) ∩ σi is a (dim σi − 1)-dimensional pure subcomplex

for each 2 ≤ i ≤ t , where σ denotes the simplicial complex consisting of all the faces
of σ . An ordering of facets satisfying this condition is called a shelling.

See Fig. 3.1 for examples of shellable and nonshellable simplicial complexes.
During the previous century, shellability of simplicial complexes are only defined for
pure simplicial complexes (e.g., [2, 21]). To define shellability for nonpure simplicial
complexes is suggested byBjörner andWachs [4, 5] and now this generalized version
has become the standard definition. Our definition above follows this version.

To distinguish shellable simplicial complexes and nonshellable ones is a diffi-
cult problem. All zero-dimensional simplicial complexes are shellable, and one-
dimensional simplicial complexes are shellable if and only if its 1-dimensional edges
are connected (i.e., a connected graphwith some isolated vertices). However, for two-
and higher dimensional simplicial complexes, no efficient way is known in general
to recognize whether a given simplicial complex is shellable or not. The recognition
problem is in the class NP, but it is neither knownwhether it is in P or not, nor whether
it is NP-complete or not (Kaibel and Pfetsch [16, Sec. 34]). There is an efficient way
to recognize shellability for the two-dimensional case if restricted to the class of
pseudomanifolds (Danaraj and Klee [8]), but it is not known whether there exist effi-
cient algorithms to recognize shellability for three-dimensional pseudomanifolds,
even for the triangulations of spheres.

In this section, we give a characterization of shellability by an optimization prob-
lem on orientations of graphs. First, we restrict ourselves to the pure case for simplic-
ity. Later, we give a generalized formulation including nonpure complexes. Our result
in this section first appeared in Hachimori and Moriyama [13], and also appeared
in Hachimori [11] with a generalized treatment. We here follow the proof given in
Hachimori [11] and present in a somewhat more easily comprehensible way.
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3.2.1 The Case of Pure Simplicial Complexes

Though our result of this section is valid for general simplicial complexes including
both pure and nonpure simplicial complexes, we first present the result restricted to
pure simplicial complexes in this subsection, since the pure case is essential in this
result. The generalization to include the nonpure case, which will be presented in the
next subsection, is just a technical revision and easy to follow after understanding
the pure case.

For a pure d-dimensional simplicial complex Γ , we say that a face τ is a ridge
of Γ if it is covered by a facet, i.e., if τ ⊆ σ with dim τ = dim σ − 1 for some
facet σ . Let F(Γ ) be the set of facets, and R(Γ ) the set of ridges of Γ . Since Γ is
pure, F(Γ ) is exactly the set of d-dimensional faces andR(Γ ) is the set of (d − 1)-
dimensional faces of Γ . (Remark that we need to change the definition of ridges for
nonpure complexes in the next subsection.) We let the graphG(Γ ) be the facet-ridge
incidence graph, i.e., the bipartite graph with the partite sets F(Γ ) and R(Γ ), and
two nodes σ ∈ F(Γ ) and τ ∈ R(Γ ) are adjacent if and only if σ ⊇ τ in Γ .

We consider orientations of the graph G(Γ ). We denote the oriented arc from α

to β in G(Γ ) by α → β, and denote the directed path from α to β by α � β. We
say an orientation O is admissible if in-deg(τ ) ≥ 1 for every τ ∈ R(Γ ). We have
the following characterization of shellability of pure simplicial complexes.

Theorem 3 For a pure d-dimensional simplicial complex Γ , let us consider the
following minimization problem:

(P2) : min
∑

σ∈F(Γ )

2out-deg(σ ;GO(Γ ))

s. t. O is acyclic and admissible.

Then the optimum value V ∗ of (P2) satisfies V ∗ ≥ f (Γ ), where f (Γ ) is the number
of all the faces of Γ . Further, the equality holds if and only if Γ is shellable.

The proof of Theorem3 follows the following lemmas.
First, we define the set SO(σ ) as follows.

SO(σ ) = {η ∈ Γ : σ → τ inGO(Γ ) for every ridge τ with η ⊆ τ ⊆ σ } ∪ {σ }.
(3.1)

Note that the complement of SO(σ ) in σ , denoted as ScO(σ ), is given as follows.

ScO(σ ) = σ − SO(σ )

= {η ∈ Γ : σ ← τ inGO(Γ ) for some ridge τ with η ⊆ τ ⊆ σ }
=

⋃
{ τ : τ ∈ R(Γ ), σ ← τ inGO(Γ )}. (3.2)



3 Optimization Problems on Acyclic Orientations of Graphs … 53

Lemma 1 Let Γ be a pure simplicial complex, and let η ∈ Γ and σ ∈ F(Γ ). Then,
for any orientation O, η ∈ SO(σ ) if and only if σ is a source node in GO⊇η(Γ ), where
GO⊇η(Γ ) is the subgraph induced by the nodes corresponding to the facets and the
ridges of Γ containing η.

Proof The proof is obvious from the definition of SO(σ ). �

The inequality of the theorem follows the following lemma.

Lemma 2 Let Γ be a pure simplicial complex and O an orientation of G(Γ ) that
is acyclic and admissible. Then, we have

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) ≥ f (Γ ).

Proof We have the graph GO⊇η(Γ ) acyclic since GO(Γ ) is acyclic, and this implies
that GO⊇η(Γ ) has at least one source node. This source node should be a facet, not a
ridge, by the condition that O is admissible. By Lemma1, this implies that the family
{SO(σ ) : σ ∈ F(Γ )} coversΓ (i.e., for any η ∈ Γ there exists a σ ∈ F(Γ ) such that
η ∈ SO(σ ) ). On the other hand, we have |SO(σ )| = 2out-deg(σ ;GO (Γ )). (This follows
from the fact that SO(σ ) forms a boolean lattice with respect to inclusion relation. In
fact, the smallest face in SO(σ ) is given by σ ∩ {τ ∈ R(Γ ) : σ → τ inGO(Γ )} =:
Ψ O(σ ) and SO(σ ) equals the interval [Ψ O(σ ), σ ] in the face poset ofΓ . This interval
is a boolean lattice since every proper interval in the face poset of a simplicial complex
is boolean.) Hence the inequality is verified. �

By the proof of Lemma2, we have the following natural consequence for the
equality case.

Lemma 3 Let Γ be a pure simplicial complex and O an orientation of G(Γ ) that is
acyclic and admissible. The equality

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) = f (Γ ) holds if and
only if {SO(σ ) : σ ∈ F(Γ )} forms a partition of Γ .

Proof By the proof of Lemma2, {SO(σ ) : σ ∈ F(Γ )} covers Γ . Since
∑

σ∈F(Γ )

2out-deg(σ ;GO(Γ )) counts the number of the faces of Γ with multiplicity in this
covering, the equality means that each face of Γ is contained in exactly one
SO(σ ). �

Here we define a graph G̃O(Γ ) whose nodes are the facets of Γ and arcs σ → σ ′
are defined if there is a face η ⊆ σ ′ with η ∈ SO(σ ). We have the following lemma.

Lemma 4 When {SO(σ ) : σ ∈ F(Γ )} is a partition of a pure simplicial complex
Γ , G̃O(Γ ) is acyclic if and only if GO(Γ ) is acyclic.

Proof Let us assume G̃O(Γ ) has a directed cycle. Assume σ → σ ′ is an arc in
G̃O(Γ ). From the definition of G̃O(Γ ), there exists a face η with η ⊆ σ ′ and η ∈
SO(σ ). Here, η ⊆ σ ′ implies that both σ and σ ′ are nodes ofGO⊇η(Γ ). FromLemma1
and the assumption that {SO(σ ) : σ ∈ F(Γ )} is a partition, η ∈ SO(σ ) implies that
σ is a unique source in GO⊇η(Γ ). This assures the existence of a directed path from
σ to σ ′ in GO⊇η(Γ ), and thus in GO(Γ ). Hence, the existence of a directed cycle in
G̃O(Γ ) implies the existence of a directed cycle in GO(Γ ).
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On the other hand, let us assume GO(Γ ) has a directed cycle. The cycle is of
the form σ1 → τ1 → σ2 → τ2 → · · · → σs → τs → σs+1 = σ1, where σi ∈ F(Γ )

for all 1 ≤ i ≤ s and τ j ∈ R(Γ ) for all 1 ≤ j ≤ s. Then we have τi ⊆ σi and τi ∈
SO(σi+1) for all 1 ≤ i ≤ s, and this implies there is a directed cycle in G̃O(Γ ). �

The following last lemma shows that having an acyclic admissible orientation O
of G(Γ ) such that the family {SO(σ ) : σ ∈ F(Γ )} is a partition of Γ and G̃O(Γ ) is
acyclic is equivalent to the shellability of Γ .

Lemma 5 For a pure simplicial complex Γ , there exists an acyclic admissible ori-
entation O of G(Γ ) such that {SO(σ ) : σ ∈ F(Γ )} is a partition of Γ with G̃O(Γ )

acyclic if and only if Γ is shellable.

Proof To show the “only if” part, let us assume {SO(σ ) : σ ∈ F(Γ )} is a partition
of Γ and G̃O(Γ ) is acyclic. Let σ1, σ2, . . . , σt be a linear extension (or a “topo-
logical sort”) of G̃O(Γ ), i.e., a total ordering such that the existence of a directed
arc σi → σ j in G̃O(Γ ) implies i < j . From the fact that {SO(σ ) : σ ∈ F(Γ )} is
a partition together with the Eqs. (3.1) and (3.2), we have that (

⋃i−1
j=1 σ j ) ∩ σi =

ScO(σi ) = ⋃{ τ : τ ∈ R(Γ ), σi ← τ inGO(Γ )} for every 1 ≤ i ≤ t − 1. Hence,
σ1, σ2, . . . , σt is a shelling and Γ is shellable since (

⋃i−1
j=1 σ j ) ∩ σi is (dim σi − 1)-

dimensional and pure. (Note that, the set {τ ∈ R(Γ ) : σi ← τ inGO(Γ )} is not
empty for i > 1 since G(Γ ) = G(Γ )⊇∅ has only one source node and it should be
σ1.) For the “if” part, let Γ be a pure shellable simplicial complex and σ1, σ2, . . . , σt

be its shelling. It is well known that this shelling induces a partition of Γ by⋃t
i=1[Res(σi ), σi ] with Res(σi ) the minimum face of σi not contained in the facets

σ1, σ2, . . . , σi−1, see for example [4, Sec. 2] or [21, Lect. 8]. (Here, [a, b] = {z ∈
Γ : a ⊆ z ⊆ b]. Remark that Ψ O(σ ) mentioned in the proof of Lemma2 coincides
with this Res(σ ).) This Res(σi ) is called the “restriction” of σi , and given by
Res(σi ) = ⋂{τ ∈ R(Γ ) ∩ σi : there is no j < i with τ ⊆ σ j }. We construct an ori-
entation O such that, for each ridge τ incident to σi , τ → σi if τ ⊆ σ j for some j < i ,
and τ ← σi otherwise. Under this orientation, we have Res(σi ) = ⋂{τ ∈ R(Γ ) :
τ ← σi }, and thus [Res(σi ), σi ] = {η ∈ Γ : τ → σi for all τ ∈ R(Γ )with η ⊆ τ ⊆
σi } = SO(σi ). Hence {SO(σi ) : 1 ≤ i ≤ t} forms a partition of Γ . Here, O is obvi-
ously acyclic, and thus we have G̃O(Γ ) acyclic by Lemma4, hence Lemma5 is
verified. �
Proof (Proof of Theorem3) The inequality V ∗ ≥ f (Γ ) follows from Lemma2. Fur-
ther, Lemma3 shows that the equality holds if and only if {SO(σ ) : σ ∈ F(Γ )} is
a partition of Γ , and for this partition we have G̃(Γ ) acyclic by Lemma4. Finally,
Lemma5 shows this is equivalent to the shellability of Γ . �

3.2.2 The Case of Nonpure Simplicial Complexes

In the case of pure simplicial complexes, we defined the faces covered by a facet as
ridges and considered the adjacency between facets and ridges. For the case of general
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Fig. 3.2 The simplicial complex Γ has facets abcd, bce, ce f , f g, and gh. The faces bc and f are
pseudoridges. In the figure of G(Γ ), the black nodes are facets and white nodes are ridges. The
pseudoridges are indicated by the node with dashed circle but they are not contained in G(Γ )

simplicial complexes including nonpure complexes, we need to discriminate these
faces covered by a facet into ridges and pseudoridges. Let Γ be a simplicial complex
not necessarily pure. Let τ be a face covered by some facet. We say τ is a ridge
if all its superfaces (i.e., faces strictly containing τ ) are facets, and a pseudoridge
otherwise. We denote the set of facets, ridges, and pseudoridges of Γ , by F(Γ ),
R(Γ ), and R′(Γ ), respectively.

We define the facet-ridge incidence graphG(Γ ) as the bipartite graph with partite
sets F(Γ ) and R(Γ ), where the two nodes σ ∈ F(Γ ) and τ ∈ R(Γ ) are joined by
an edge if σ ⊇ τ . Note that we do not include pseudoridges in G(Γ ). (See Fig. 3.2
for example. Here, note that the adjacency between a facet σ and a ridge τ occurs in
G(Γ ) only when dim σ = dim τ + 1.)

Under this setting, we have the same statement as the pure case.

Theorem 4 For a d-dimensional (not necessarily pure) simplicial complex Γ , let
us consider the following minimization problem:

(P3) : min
∑

σ∈F(Γ )

2out-deg(σ ;GO(Γ ))

s. t. O is acyclic and admissible.

Then, the optimum value V ∗ of (P3) satisfies V ∗ ≥ f (Γ ), where f (Γ ) is the number
of all the faces of Γ . Further, the equality holds if and only if Γ is shellable.

Note that Theorem4 contains Theorem3 as a special case.
For the proof of Theorem4, we introduce a graph G ′(Γ ) and G ′O(Γ ) as follows.

The graph G ′(Γ ) is the graph obtained from G(Γ ) by adding pseudoridges as nodes
and edges between pseudoridges and facets such that an edge is introduced between
τ ∈ R′(Γ ) and σ ∈ F(Γ ) if τ ⊆ σ . (Here, σ and τ with dim σ > dim τ + 1 can
be joined by an edge.) For an orientation O of G(Γ ), we extend the orientation
to that of G ′(Γ ) to obtain G ′O(Γ ). In this extended orientation, for τ ∈ R′(Γ )

and σ ∈ F(Γ ) with τ ⊆ σ , we orient τ → σ if dim σ = dim τ + 1 and τ ← σ if
dim σ > dim τ + 1. (See Fig. 3.3 for example.) Further, for a face η ∈ Γ , we let
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Fig. 3.3 The graphs G(Γ ) and G ′(Γ ), and their orientations

G ′O⊇η(Γ ) be the subgraph of G ′O(Γ ) induced by the facets, ridges, and pseudoridges
containing η.

The proof of Theorem4 is given completely in parallel to that of Theorem3 by
replacing GO⊇η(Γ ) by G ′O⊇η(Γ ). In the definitions of SO(σ ) and ScO(σ ), we also
replace GO(Γ ) by G ′O(Γ ) as follows. (Formally, SO(σ ) is the same as the original
definition (1). The replacement is essential for the description of ScO(σ ).)

SO (σ ) = {η ∈ Γ : σ → τ inG′O (Γ ) for every (pseudo)ridge τ with η ⊆ τ ⊆ σ } ∪ {σ }
= {η ∈ Γ : σ → τ inGO (Γ ) for every ridge τ with η ⊆ τ ⊆ σ } ∪ {σ }, (3.3)

ScO (σ ) = σ − SO (σ )

= {η ∈ Γ : σ ← τ inG′O (Γ ) for some (pseudo)ridge τ with η ⊆ τ ⊆ σ }
=

⋃
{ τ : τ ∈ R(Γ ) ∪ R′(Γ ), σ ← τ inG′O (Γ )}. (3.4)

When {SO(σ ) : σ ∈ F(Γ )} is a partition, we define G̃(Γ ) as same as the pure case.
That is, we define a graph G̃O(Γ ) whose nodes are facets of Γ and arcs σ → σ ′ are
defined if there is a face η ⊆ σ ′ with η ∈ SO(σ ).

By this replacement, the whole argument in Theorem3 works for the nonpure
case. Theorem4 is verified by examining the following lemmas.

Lemma 6 Let Γ be a simplicial complex and let η ∈ Γ and σ ∈ F(Γ ). Then, for
any orientation O, η ∈ SO(Γ ) if and only if σ is a source node in G ′O⊇η(Γ ).

Lemma 7 Let Γ be a simplicial complex and O an orientation of G(Γ ) that is
acyclic and admissible. Then we have

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) ≥ f (Γ ).
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Lemma 8 Let Γ be a simplicial complex and O an orientation of G(Γ ) that is
acyclic and admissible. The equality

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) = f (Γ ) holds if and
only if {SO(σ ) : σ ∈ F(Γ )} forms a partition of Γ .

Lemma 9 When {SO(σ ) : σ ∈ F(Γ )} is a partition of a simplicial complex Γ , the
following are equivalent.
• G̃O(Γ ) is acyclic,
• G ′O(σ ) is acyclic,
• GO(σ ) is acyclic.

Lemma 10 For a simplicial complex Γ , there exists an acyclic and admissible ori-
entation O of G(Γ ) such that {SO(σ ) : σ ∈ F} is a partition ofΓ with G̃(Γ ) acyclic
if and only if Γ is shellable.

The proofs of Lemmas6 to 10 are completely the same as the pure case. The proof
of Theorem4 is also the same as the pure case.

Proof (Proof of Theorem4) The inequality V ∗ ≥ f (Γ ) follows from Lemma7. Fur-
ther, Lemma8 shows that the equality holds if and only if {SO(σ ) : σ ∈ F(Γ )} is
a partition of Γ , and for this partition we have G̃(Γ ) acyclic by Lemma9. Finally,
Lemma10 shows this is equivalent to the shellability of Γ . �

The trick of generalizing the pure case of Theorem3 to the nonpure case of The-
orem4 can be understood from the well-known “Rearrangement lemma” of Björner
andWachs [4, Lemma 2.6]. According to the Rearrangement lemma, any shelling of
a shellable simplicial complexΓ can be rearranged such that the facets in the shelling
are ordered in a descending order with respect to dimension, without changing the
restriction maps. In our theorems, setting restriction maps corresponds to giving
orientations to the facet-ridge incidence graph, and shellings with fixed restriction
maps are derived as linear extensions of G ′O(Γ ) restricted to facets. As remarked in
[4, p. 1305], (after the rearrangement) any shelling of a nonpure simplicial complex
of dimension d has the structure such that first d-dimensional facets are shelled,
and after that (d − 1)-dimensional facets follow extending a shelling of the (d − 1)-
skeleton of the d-dimensional part, and then (d − 2)-dimensional facets follow in
the same way. This process continues until all the facets are shelled. The orientation
of G ′O(Γ ) extending GO(Γ ) forces this structure.

The result of Theorem4 is first shown in [13], and also later appears in [11] with
a generalized framework for cell complexes.

Remark 1 In the optimization problem (P2) or (P3), in the optimal orientation, every
ridge has in-degree equal to 1. To see this, assume in an acyclic and admissible
orientation O , there is a ridge node τ that has in-degree k ≥ 2 with σ1 → τ, σ2 →
τ, . . . σk → τ . Then, we can observe there is at least one σi such that reversing the
orientation to σi ← τ remains the orientation acyclic (and obviously also admissible)
as follows. If reversing σ1 → τ to σ1 ← τ in O makes a cycle, then there should
exist a directed path from σ1 to some σi1 . If reversing σi1 → τ to σi1 ← τ in O makes
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a cycle, then there should exist a directed path from σi1 to some σi2 . By continuing
this way, at some l ≤ k, we will find a σil such that reversing σil → τ to σil ← τ

in O remain the orientation acyclic, since otherwise we have a cycle σi j � σi j+1 �
σi j+2 � · · · � σil = σi j because k is finite. Since reversing one σil → τ to σil ← τ

makes the value of the objective function smaller, we conclude that an orientation O
cannot be an optimal solution if there is a ridge node with in-degree ≥ 2.

Remark 2 The optimization problem (P1) in the setting of Theorem2 (setting
G = G(P) for a simple polytope P) is in fact a special case of the problem (P2) in
Theorem3. For a simple polytope P , let P∗ be the polar dual of P . P∗ is a simplicial
polytope, and thus its boundary ∂P∗ is a simplicial complex. Then, the facet-ridge
incidence graph G(∂P∗) is isomorphic to a subdivision of the graph G(P) intro-
ducing one node (corresponding to a ridge) on each edge. Note that each ridge node
in G(∂P∗) has degree 2. Here, as is explained in the previous remark, the optimal
orientation of the problem (P2) has in-deg(τ ) = 1 for each ridge node τ . Since each
ridge in G(∂P∗) has exactly two adjacent facets, the orientation optimal for (P2)
can be naturally translated to an orientation for (P1), and the resulted orientation is
an optimal orientation for (P1). This relation shows that the optimal orientations of
(P1) give shellings of P∗ as their linear extensions. Such a relation between good
orientations of simple polytopes and shellings of their duals has been known already,
see [20] for example.

The optimization problem (P1) can be used for characterizing shellability of pseu-
domanifolds. A (closed) pseudomanifold is a pure simplicial complex such that each
ridge is contained by exactly two facets. As is noted in Sect. 3.1, the recognition of
shellability of pseudomanifolds is easy for the 2-dimensional case [8], but no efficient
algorithms are known for 3-dimensional and higher cases. Since each ridge node has
exactly two facet nodes in the facet-ridge incidence graph of a pseudomanifold, (P2)
can be reduced to (P1) for the case of pseudomanifolds by the same reason as for ∂P∗.
The facet-ridge incidence graph of a d-dimensional pseudomanifold is a (d + 1)-
regular graph. This suggests that the problem (P1) is likely a difficult optimization
problem even if we restrict the graph G to be a k-regular graph with k ≥ 4.

3.3 Cubical Complexes and Acyclic Partitions

A simplicial complex, discussed in Sect. 3.2 is a cell complex in which each cell
is a simplex. Likewise, a cubical complex is a cell complex in which each cell is
(combinatorially equivalent to) a (hyper)cube. In this section, we develop a theory
for cubical complexes similar to that for simplicial complexes. (More precisely, what
we are considering here is a regularCWcomplex inwhich each cell is combinatorially
equivalent to a (hyper)cube. Usually, it is required that cubical complexes satisfy the
intersection property, i.e., the nonempty intersection of two cells is always a cell in the
complex, but we do not need this condition.) This result appeared in Hachimori [11].
We here follow the discussion in [11].
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Recall the story of our theory for simplicial complexes in the previous section.
In the optimization problem of (P2) or (P3), the objective function

∑
σ∈F(Γ )

2out-deg(σ ;GO (Γ )) is equal to
∑

σ∈F(Γ ) |SO(σ )|, where SO(σ ) is the set of faces of
a facet σ generated by the ridges τ with orientation σ → τ . On the other hand,
the constraint of the optimization problem that the orientations must be acyclic and
admissible (i.e., each ridge has in-degree at least 1) assures that the family {SO(σ )}
always forms a covering of Γ . Hence, the condition that the minimum value of the
optimization problem equals the number of the faces of Γ turns out to be equivalent
to that {SO(σ ) : σ ∈ F(Γ )} is a partition with an acyclic structure, i.e., such that the
graph G̃O(Γ ) is acyclic. We say such a partition an “acyclic partition.” In this story
for simplicial complexes, the existence of acyclic partitions happens to be equivalent
to be shellable, and this concludes the proof of Theorem4.

For cubical complexes, the same story can be developed except the last part. We
define G(Γ ) and G ′(Γ ) analogously to Sect. 3.2 with the same definition of facets,
ridges, and pseudoridges. For a given orientation O of G(Γ ), we extend the orienta-
tion toG ′(Γ ) by the same rule.We say an orientationO is admissible if in-deg(τ ) ≥ 1
for every τ ∈ R(Γ ). In a cubical complex Γ , each facet σ contains dim σ antipodal
pairs of (pseudo)ridges of dimension dim σ − 1. (For example, a three-dimensional
cube has three antipodal pairs of two-dimensional (pseudo)ridges.) According to the
orientation O of G(Γ ) and thus of G ′(Γ ), we define (t O0 (Γ ), t O1 (Γ ), t O2 (Γ )) the
type of the facet σ , where

t O0 (σ ) = # of antipodal pairs of (pseudo)ridges {τ, τ ′}with σ → τ and σ → τ ′,
t O2 (σ ) = # of antipodal pairs of (pseudo)ridges {τ, τ ′}with σ ← τ and σ ← τ ′,
t O1 (σ ) = dim σ − t O0 (σ ) − t O2 (σ ).

For cubical complexes, we develop the theory on Γ̌ = Γ − ∅ instead of Γ . For
σ ∈ F(Γ ), we define ŠO(σ ) = SO(σ ) − ∅ and ŠcO(σ ) = σ − ŠO(σ ). As same as
in the case of simplicial complexes, define a graph G̃O(Γ ) whose nodes are facets
of Γ and arc σ → σ ′ is defined if there is a face η ⊆ σ ′ with η ∈ ŠO(σ ). If there
exists an orientation O for a cubical complex Γ such that {ŠO(σ ) : σ ∈ F(Γ )} is a
partition of Γ̌ with G̃O(Γ ) acyclic, we say Γ̌ has an acyclic partition. Now we have
the following theorem.

Theorem 5 For a cubical complex Γ , let us consider the following minimization
problem:

(P4) : min
∑

σ∈F(Γ )

2t
O
1 (σ )3t

O
0 (σ )

s. t. O is acyclic and admissible.

Then the optimum value V ∗ of (P4) satisfies V ∗ ≥ f (Γ̌ ), where Γ̌ = Γ − ∅ and
f (Γ̌ ) is the number of all the faces of Γ̌ . Further, the equality holds if and only if Γ̌
has an acyclic partition.
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The proof of this theorem is completely the same as Theorem4. Here, in the objec-
tive function of (P4), 2t

O
1 (σ )3t

O
0 (σ ) equals the number of faces contained in ŠO(σ ).

(One reason we removed the empty set and replaced Γ by Γ̌ is to represent the
number of faces by this formula.) In Theorem4 of the case of simplicial complexes,
the existence of acyclic partitions is equivalent to shellability as Lemma10. Unfor-
tunately, however, we lack this equivalence for cubical complexes.

Remark 3 SO(σ ) and ŠO(σ ) differ only when SO(σ ) = σ , in this case Š(σ ) =
S(σ ) − ∅. The difference between an acyclic partition of Γ and an acyclic partition
of Γ̌ is the treatment of the empty set. For an acyclic partition of Γ , we require
that the empty set should be contained in exactly one SO(σ ). This requires that the
oriented graphGO(Γ ) has exactly one source node. On the other hand, for an acyclic
partition of Γ̌ , we remove the empty set from Γ̌ and from each ŠO(σ ). HenceGO(σ )

can have more than one source nodes. If O induces an acyclic partition of Γ̌ such
that GO(Γ ) has only one source node, then the orientation O also induces an acyclic
partition of Γ .

For cubical complexes, more generally for a general class of cell complexes called
“regular CW complexes” (including polytopal complexes), shellability is defined in
the following recursive form.

Definition 2 (Björner and Wachs [5, Sec. 13]) In a regular CW complex Γ , an
ordering σ1, σ2, . . . , σt of the facets of Γ is called a shelling if either dim Γ = 0 or
if dim Γ ≥ 1 and satisfies the following:

(i) ∂σ1 has a shelling,
(ii) ∂σi ∩ (

⋃i−1
j=1 ∂σi ) is pure and (dim σi − 1)-dimensional, for 2 ≤ i ≤ t ,

(iii) ∂σi has a shelling such that facets of ∂σi in ∂σi ∩ (
⋃i−1

j=1 ∂σi ) come first in the
shelling, for 2 ≤ i ≤ t ,

where ∂σ is the boundary complex of σ , i.e., the subcomplex of σ consisting of all
proper faces of σ (i.e., all the faces of σ except σ itself). Γ is shellable if it has a
shelling.

This kind of generalized version of shellability has been studied classically for pure
complexes, seeBjörner andWachs [3]. For a comprehensive exposition of shellability
for pure polytopal complexes, see Ziegler [21, Lecture 8]. For regular CWcomplexes,
see Björner [1].

The equivalence of acyclic partition and shellability like Lemma10 is valid only
in the class of simplicial complexes. Unfortunately, this equivalence does not hold for
general cell complexes. For example, the simple example in Fig. 3.4 has an acyclic
partition with the orientation shown in the figure, but it is not shellable. Hence, the
optimization in Theorem5 does not characterize shellability.

For cubical complexes, however, we can retrieve some topological information as
follows. Let O be an orientation on a cubical complex Γ . We say a facet σ is critical
if t O1 (σ ) = 0, and count the number of critical facets as follows:

pO
i (Γ ) = #{σ ∈ F(Γ ) : σ is critical and t O2 (σ ) = i}.
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Fig. 3.4 A nonshellable cubical complex that has an acyclic partition

We say that a facet is a critical facet of index i if σ is critical and t O2 (σ ) = i . Thus,
pO
i (Γ ) is the number of critical facets of index i . We have the following theorem.

Theorem 6 Let Γ be a cubical complex, and O an orientation such that {ŠO(σ ) :
σ ∈ F(Γ )} is an acyclic partition. Then we have the following inequalities:

βk(Γ ) − βk−1(Γ ) + · · ·m + (−1)k−1β0(Γ ) ≤ pOk (Γ ) − pOk−1(Γ ) + · · ·m + (−1)k−1 pO0 (Γ ),

(0 ≤ k ≤ dim Γ )

χ(Γ ) = pO
0 (Γ ) − pO

1 (Γ ) + · · ·m + (−1)dim Γ −1 pO
dim Γ (Γ ),

βi ≤ pO
i , (0 ≤ i ≤ dim Γ )

where βi (Γ ) is the i th Betti number of Γ and χ(Γ ) is the Euler characteristic of Γ .

Proof Let σ1, σ2, . . . , σt be a linear extension of G̃O(Γ ), and Γi = ⋃i
j=1 σ j . As

same as the discussion in the proof of Theorem3, Γi−1 ∩ σi = ŠcO(σi ). For each i ,
Γi is a cubical complex and we observe the following.

• If t O1 (σi ) ≥ 1, then ŠcO is homeomorphic to a ball (of dimension dim σi ), and thus
Γi is homotopy equivalent to Γi−1. (This can be verified from the fact that ScO(σi )

is shellable, see for example [21, Exercise 8.1 (i)].)
• If t O1 (σi ) = 0, then Γi is a union of Γi−1 and σ i , where σ i is homeomorphic
to the direct product of intervals I t

O
0 (σi ) × I t

O
2 (σi ) with the intersection Γi−1 ∩ σ i

corresponds to I t0(σi ) × {0, 1}t2(σi ). Thus, Γi is homotopy equivalent to the union
of Γi−1 and a t O2 (σi )-dimensional cell (i.e., adding a t O2 (σi )-handle to Γi ).

By these observations, we conclude that Γ = Γt is homotopy equivalent to a CW
complex with pi cells for each i . (See Fig. 3.5 for a simple illustrative example of this
procedure.) The inequalities follow from this by following the standard argument in
Morse theory, see for example [10, 17]. �

As we see in the proof of Theorem6, acyclic partitions can be seen as a kind of
discrete analogue of Morse functions on smooth manifolds. The critical facets of
index i correspond to the critical points of index i of Morse functions. There is a
famous discrete analogue of Morse theory by Forman [10], but our cubical analogue
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optimal orientation

σ

σ

σ

σ1

2

3

4

σ1

σ3

σ4
σ2

critical facet
of index 0

acyclic partition

type=(1,1,0) type=(1,1,0)

not critical not critical

type=(1,0,1)type=(2,0,0)
critical facet
of index 1

Fig. 3.5 An acyclic partition of a cubical complex homotopy equivalent to a cell complex with one
0-cell and one 1-cell

seems different from this. The similarity to Morse function can be observed further
as follows. This is an analogue of the “Sphere Theorem”.

Theorem 7 Let Γ be a cubical decomposition of a closed manifold (i.e., a cubical
complex homeomorphic to a closed manifold). If Γ has an acyclic partition such
that p0 = pdim Γ = 1 and pi = 0 for 0 < i < dim Γ , then Γ is a PL-sphere.

Proof This is just a consequence of that Γ is shellable if p0 = 1 and pi = 0 for 0 <

i < dim Γ , which is easy to verify. It is well known that a regular CWdecomposition
of a closed manifold is a PL-sphere if it is shellable, see Björner [1] for example. �

3.4 Optimization of Orientation of Graphs Without
Acyclicity Constraint

As is remarked in the end of Sect. 3.2, the problem (P1) seems a difficult optimization
problem in general. The difficulty of the problem (P1) lies in the constraint that the
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orientations must be acyclic. Without this constraint, the problem is easy to solve.
To see this, let us consider the following optimization problem.

(P5) : min
∑

v∈G
2out-deg(v;GO ) (=: ϕ(O))

s. t. O is any orientation.

Lemma 11 An orientation O is optimal for the problem (P5) if and only if there is no
directed path in GO fromu to v for any u, v ∈ V (G)with out-deg(v) ≤ out-deg(u) −
2.

Proof The “only if” part is easy. If there is a directed path p in GO from u to v, let
Op be the orientation reversing the orientations of edges on the path p in O . Then
we have

out-deg(u;GOp ) = out-deg(u;GO) − 1,

out-deg(v;GOp ) = out-deg(v;GO) + 1,

out-deg(w;GOp ) = out-deg(w;GO) (∀w ∈ V (G) − {u, x}).

By the condition out-deg(v) ≤ out-deg(u) − 2, it is verified that ϕ(Op) < ϕ(O)

since 2a + 2b > 2a+1 + 2b−1 if a ≤ b − 2, hence O is not optimal.
For the “if” part, assume an orientation O has no directed path from u to v

for any u, v ∈ V (G) with out-deg(v) ≤ out-deg(u) − 2, and O∗ is an optimal ori-
entation with ϕ(O) > ϕ(O∗). Let G(O,O∗) be the subgraph of G induced by the
edges of G with different orientations in O and O∗, and G(O,O∗)O (G(O,O∗)O∗

) the
graph G(O,O∗) oriented by O (by O∗). Here, we observe that we can choose O∗
such that G(O,O∗)O∗

has no directed cycles: if there is a directed cycle in G(O,O∗)O∗
,

we can reverse the orientations of the edges in O∗ along the cycle without chang-
ing the value of ϕ(O∗), and we get a required O∗ by continuing this. Further, we
choose O∗ such that the number of edges of G(O,O∗) is minimum. Since G(O,O∗)O∗

is acyclic and thus G(O,O∗)O is also acyclic, we can find a path q = x � y on
G(O,O∗) such that, in G(O,O∗)O , x is a source, y is a sink, and the path q is a
directed path from x to y. Here, we have out-deg(x;GO∗

) ≤ out-deg(x;GO) − 1
and out-deg(y;GO∗

) ≥ out-deg(y;GO) + 1 since x is a source and y is a sink in
G(O,O∗)O . We have out-deg(y;GO) ≥ out-deg(x;GO) − 1 by the assumption on O .
Hence we have

out-deg(x;GO∗
) ≤ out-deg(x;GO ) − 1 ≤ out-deg(y;GO ) ≤ out-deg(y;GO∗

) − 1.

NowletO∗
q be theorientation reversing the edges on thepathq inO

∗. If out-deg(x; O∗)
≤ out-deg(y; O∗) − 2, we have f (O∗

q ) < f (O∗), a contradiction to the optimal-
ity of O∗. If out-deg(x; O∗) = out-deg(y; O∗) − 1, we have f (O∗

q ) = f (O∗) with
|E(G(O,O∗

q )| < |E(G(O,O∗)|, a contradiction to theminimality of the number of edges
of G(O,O∗). This completes the proof of Lemma11. �
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Theorem 8 The problem (P5) can be solved in a polynomial time.

Proof To solve (P5), Lemma11 suggests the following easy algorithm. First, start
from an arbitrary orientation ofG. Then, find a directed path u � v in the orientation
such that out-deg(v) ≤ out-deg(u) − 2 and reverse the orientations of edges along
the path. Continue this until there is no such a directed path found. The resulted
orientation is an optimal solution of (P5). Since finding such a path in each repetition
can be easily done in a polynomial time, what remains is to evaluate the number of
repetitions in this algorithm. For this evaluation, consider a function

F(O) =
∑

{u,v}∈(V (G)

2 )

|out-deg(u;GO) − out-deg(v;GO)|.

When the orientations of the edges are reversed along a path p = x � y with
out-deg(y) ≤ out-deg(x) − 2, out-deg(x) decreases and out-deg(y) increases by one
respectively, and thus we have the following.

• Ifw ∈ V (G) − {x, y}has out-deg(w;GO) ≤ out-deg(y;GO)or out-deg(w;GO) ≥
out-deg(x;GO), then

(
|out-deg(x;GO ) − out-deg(w;GO )| + |out-deg(y;GO ) − out-deg(w;GO )|

)

−
(

|out-deg(x;GOp ) − out-deg(w;GOp )| + |out-deg(y;GOp ) − out-deg(w;GOp )|
)

=0.

• Ifw ∈ V (G) − {x, y}has out-deg(y;GO) < out-deg(w;GO) < out-deg(x;GO),
then

(
|out-deg(x;GO ) − out-deg(w;GO )| + |out-deg(y;GO ) − out-deg(w;GO )|

)

−
(

|out-deg(x;GOp ) − out-deg(w;GOp )| + |out-deg(y;GOp ) − out-deg(w;GOp )|
)

=2.

• We have |out-deg(x;GO) − out-deg(y;GO)| − |out-deg(x;GOp ) − out-deg
(y;GOp )| = 2 (∗), and |out-deg(w;GO) − out-deg(z;GO)| remains unchanged
for w, z ∈ V (G) − {x, y}.

Thus, in total, we have F(O) − F(Op) ≥ 2 (from (∗)). On the other hand, for any
orientation O we have 0 ≤ F(O) < n3, hence the number of repetition is bounded
by n3/2. This completes the proof of Theorem8. �

Lemma11 and Theorem8 relies only on the convexity property of the function
2x in the summand that 2a + 2b > 2a+1 + 2b−1 for a ≤ b − 2. Likewise, the same
holds if the objective function is a function ψ satisfying the condition that ψ(O) −
ψ(O ′) > 0 if the out-degrees of the nodes are the same in O and O ′ except u and
v, out-deg(u;GO) ≤ out-deg(v;GO) − 2, out-deg(u;GO ′

) = out-deg(u;GO) + 1,
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and out-deg(v;GO ′
) = out-deg(v;GO) − 1. Also, we can apply the same algorithm

for the problems (P2)-(P4) without acyclicity constraint starting from an orientation
with out-deg(τ ) = 1 for all τ ∈ R(Γ ) and finding a directed path σ � σ ′ with
σ, σ ′ ∈ F(Γ ) in each repetition. (Note that we have out-deg(τ ) = 1 for all τ ∈ R(Γ )

in the optimal orientation as same as remarked in the end of Sect. 3.2.2.)
To conclude this chapter, we list some open problems to be studied.
For the original optimization problem (P1), such a good property as Lemma11

does not likely hold and this makes the problem difficult. As is remarked before,
(P1) seems difficult even if we restrict the graph G to be k-regular with k ≥ 4. To
look for a nontrivial class of graphs for which optimization problems like (P1)-(P4)
can be solved in a polynomial time is an interesting problem. For example, is (P1)
efficiently solvable for 3-regular graphs?

On the other hand, we believe the problems (P1)-(P4) are difficult to solve in
general, but we do not have NP-hardness results for these problems. To show NP-
hardness of these problems is an important problem.

Our results in Sect. 3.2 are based on the fact that the optimization for problems
(P2) or (P3) gives an acyclic partition of a given simplicial complex. Such a parti-
tion without acyclicity is called partitionability and have been an important topic of
study, see Kleinschmidt and Onn [15], Stanley [18, Ch. III.2], etc. See also Duval,
Goeckner, Klivans, and Martin [9] for recent progress. Signability, introduced by
Kleinschmidt and Onn [15] as a generalization of partitionability, is very closely
related to our discussion in Sects. 3.2 and 3.3. Lemma1 is essentially equivalent to
the relation between partitionability and signability shown in [15] where the ori-
entations of edges σ → τ and σ ← τ are replaced to the assignment of signs +
and − to the covering relations between facets σ and ridges τ . Though partitionabil-
ity is a property removing the acyclicity structure from shellability, unfortunately
partitionability cannot be represented by the optimization problems just removing
acyclicity constraints from (P2)-(P4) as is considered in (P5). To assure partition-
ability, GO(Γ )⊇η should have exactly one source facet node for all faces η ∈ Γ . In
Theorem3, for this requirement, acyclicity assures that each GO(Γ )⊇η has at least
one source facet node, and optimization reduces it to exactly equal to one node. For
partitionability, the lack of acyclicity makes it difficult to assure GO(Γ )⊇η to have
at least one source facet node. How to treat partitionability in a similar framework is
a difficult problem.

Related to shellability and partitionability, Hachimori andKashiwabara [12] intro-
duced hereditary-shellability and hereditary-partitionability, which are properties
requiring the restriction to any vertex subset has the property to be shellable and
partitionable. (Other related hereditary properties are defined in the same way.) This
is motivated by the notion of obstructions introduced by Wachs [19]. To treat these
hereditary properties in the optimization setting is a quite open problem.

Finally, to look for other topics that can be formulated using optimizations on
orientations of graphs will be an interesting problem.
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