
Chapter 12
Stochastic Games with Endogenous
Transitions

Reinoud Joosten and Robin Meijboom

12.1 Introduction

We present and subsequently analyze a stochastic game in which transition prob-
abilities at any point in time depend on the history of the play, i.e., players’ past
action choices, their current choices, and the current state. This development has
been inspired by an ambition to incorporate certain empirical phenomena into Small
Fish Wars1 [37]. Here, agents possess the fishing rights on a body of water, and
the resource can be in either of two states, High or Low. In the former, the fish are
more abundant and therefore catches are larger than in the latter. The agents have
two options, to fish with or without restraint. Fishing with restraint by both agents
is (assumed to be) sustainable in the long run, as the resource will be (assumed to
be) able to recover; unrestrained fishing by both yields higher immediate catches,
but damages the resource significantly if continued for prolonged periods of time.
This damage becomes apparent in the dynamics of the system as an increase in the
probabilities that the systemmoves fromHigh to Low, and simultaneously a decrease
in the probabilities of the system to move from Low to High. This causes the system
and hence the play, to spend a higher proportion of time in Low.

We additionally aim to incorporate hysteresis effects called poaching pits in the
field of management of replenishable resources (e.g., Bulte [11], Courchamp et al.
[13], Hall et al. [24]). Hysteresis may be caused by biological phenomena induced
by the (nature of the) exploitation of the resource. For instance, full-grown cod

1A word play on Levhari and Mirman [50] who show that strategic interaction in a fishery may
induce a “tragedy of the commons” [27].
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spawn a considerably higher number of eggs than younger specimen: Oosthuizen
and Daan [57], Armstrong et al. [3] find linear fecundity-weight relations, Rose et
al. [63] report exponential fecundity-weight relations. As mature cod are targeted
by modern catching techniques such as for instance gill netting, overfishing hurts
mainly the cohortsmost productive in providing offspring. To regain full reproductive
capacity, younger cohortsmust reach ageswell beyond adulthood. Hence, it may take
cod a longwhile to escape a poaching pit after a recovery plan or program to replenish
the stock has been effectuated.

To achieve our goalswe engineered a stochastic game2 as follows.Nature (chance)
may move the play from one state to the other dependent on the current action
choices of the agents, but also on their past catching behavior. To achieve the above-
formulated modeling aims we introduce endogenously changing stochastic varia-
tion,3 the evolution of the transition probabilities reflects that the more frequently
the agents exploit the resource without restraint, the more it deteriorates. Here, the
probability of moving toHighmay decrease in time in each state and for each action
combination if the agents show prolonged lack of restraint, i.e., overfish frequently.

Transition probabilities from Low to High may become zero, resulting in Low
becoming a temporarily absorbing state. If the agents keep overexploiting the
resource, this situation does not change in our model. Even if the agents revert
to restraint in order to bring about the recovery of the resource, it may take a long
time before High becomes accessible again. Thus, we endeavor to reproduce effects
similar to the ones associated to hysteresis.

The agents are assumed to wish to maximize their long-term average catches. We
adopt a Folk Theorem type analysis as in Joosten et al. [42], and validate relevant
procedures in this new setting. First, we showhow to establish the rewards for any pair
of jointly convergent pure strategies. Then, we determine the set of jointly convergent
pure-strategy rewards. Amore complex issue is then to find for each player the threat
point reward, i.e., the highest amount this player can guarantee himself if his opponent
tries to minimize his rewards. Finally, we obtain a large set of rewards which can
be supported by equilibria using threats, namely all jointly-convergent pure-strategy
rewards giving each player more than the threat point reward.

In the model analyzed throughout the chapter for expository purposes, we gain
insights relevant to the management of the resource. Our findings reveal a potential
for compromise between ecological and economic maximalistic goals, thus over-
coming the one-sidedness of management policies for natural resources as noted by
e.g., Holden [33], Brooks et al. [10], and in turn improving their chances of success
cf., e.g., BenDor et al. [5], Sanchirico et al. [64]. Full restraint, an ecological maxi-
malistic goal, yields total rewards which are considerably higher than never-restraint
rewards. Yet, a possible economic maximalistic goal, i.e., Pareto-efficient equilib-
rium rewards resulting from jointly convergent pure strategies with threats, yields a

2‘Engineered’ as in Aumann [4]. Stochastic games were introduced by Shapley [69], see also Amir
[1] for links to difference and differential games to which much work on fisheries belongs, cf., e.g.,
Haurie et al. [29], Long [51] for overviews.
3So, the Markov property of standard stochastic games [69] is lost.
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sizeable increase of total rewards even over full restraint. We find that the proportion
of time spent in such a poaching pit goes to zero in the long run under equilibrium
behavior. A whole range of models should be analyzed to obtain general findings
providing insights into the full range of fishery management games.

Next, we introduce our model with endogenous transition probabilities.
In Sect. 12.3, we focus on strategies and restrictions desirable or resulting from the
model. Section12.4 treats rewards in a very general sense, and equilibrium rewards
more specifically. Also some attention is paid to the complexity of computing threat
point rewards. Section12.5 concludes.

12.2 Endogenous Transition Probabilities

A Small FishWar is played by rowplayer A and column player B at discretemoments
in time called stages. Each player has two actions and at each stage t ∈ N the play-
ers independently and simultaneously choose an action. Action 1 for either player
denotes the action for which some restriction exists allowing the resource to recover,
e.g., catching with wide-mazed nets or catching a low quantity. Action 2 denotes the
action with little restraint.

We assume catches to vary due to random shocks, which we model by means of
a stochastic game with two states at every stage of the play. First, let us capture the
past play until stage t, t > 1, by the following two matrices:

QHt =
[
qt
1 q

t
2

qt
3 q

t
4

]
, and QLt =

[
qt
5 q

t
6

qt
7 q

t
8

]
.

Here, e.g., qt
1 is the relative frequency with which action pair top-left in High has

occurred until stage t , and qt
7 is the relative frequency of action pair bottom-left in

Low having occurred during past play. So, we must have qt = (
qt
1, . . . , q

t
8

) ∈ Δ7 =
{x ∈ R

8|xi ≥ 0 for all i = 1, . . . , 8 and
∑8

j=1 x j = 1}. We refer to such a vector as
the relative frequency vector.

Let the interaction at stage t of the play be represented by the following:

Ht = H
(
qt

) =
[

θ1, p1
(
qt

)
θ2, p2

(
qt

)
θ3, p3

(
qt

)
θ4, p4

(
qt

)
]

,

Lt = L
(
qt

) =
[

θ5, p5
(
qt

)
θ6, p6

(
qt

)
θ7, p7

(
qt

)
θ8, p8

(
qt

) ]
.

Here Ht
(
qt

)
(Lt

(
qt

)
) indicates state High (Low) at stage t of the play if the play

until then resulted in relative frequency vector qt . Each entry of the two matrices
has an ordered pair denoting the pair of payoffs to the players θi = (

θ A
i , θ B

i

)
if the

corresponding action pair is chosen and the probability pi
(
qt

)
that the systemmoves
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toHigh at stage t + 1 (and toLowwith the complementary probability). All functions
pi : Δ7 → [0, 1] are assumed continuous. We now give an example.

Example 1 In this Small FishWar we assume that in both states Action 1, i.e., catch-
ing with restraint, is dominated by the alternative.4 Let, for given relative frequency
vector qt ∈ Δ7, the transition functions pi : Δ7 → [0, 1], i = 1, . . . , 8, governing
the transition probabilities, be given by

p1(qt ) = [
8
10 − 11

24q
t
4 − 11

12q
t
8

]
+

p2(qt ) = p3(qt ) = [
6
10 − 11

20q
t
4 − 11

10q
t
8

]
+

p4(qt ) = [
3
10 − 11

16q
t
4 − 11

8 q
t
8

]
+

p5(qt ) = [
6
10 − 11

12q
t
4 − 11

6 q
t
8

]
+

p6(qt ) = p7(qt ) = [
4
10 − 11

8 q
t
4 − 11

4 q
t
8

]
+

p8(qt ) = [
1
10 − 11

4 q
t
4 − 11

2 q
t
8

]
+ .

Here, [x]+ is short hand for max{x, 0}. These equations capture the following delib-
erations. Two-sided full restraint is assumed to cause notmore damage to the resource
in both states than if exactly one player catches with restraint. Hence, the probability
that during the next stage play is in High if the first case arises is at least equal to
the corresponding probability in the second case. We also assume symmetry, hence
p2

(
qt

) = p3
(
qt

)
and p6

(
qt

) = p7
(
qt

)
. Furthermore, we assume that exactly one

player catching without restraint is not more harmful to the resource than two players
catching without restraint. The inequalities pi

(
qt

) ≥ pi+4
(
qt

)
for i = 1, . . . , 4, are

assumed to hold because if the play is in Low, the system is assumed at least as
more vulnerable to overfishing as in High. We refer to e.g., Kelly et al. [46] for an
empirical underpinning of these modeling choices.

Now, we show that renewable resources may recuperate slowly after a program
of recovery has been taken up. Suppose both agents play Action 1 twice followed
by 2 for a sufficiently long period of time until stage t∗. Clearly, qt∗

4 + qt∗
8 = t∗−2

t∗ .

Now, for t∗ → ∞, p5
(
qt∗) = p6

(
qt∗) = p7

(
qt∗) = p8

(
qt∗) = 0, because

6
10 − 11

12q
t∗
4 − 11

6 q
t∗
8 = 6

10 − 11
12

(
t∗−2
t∗ − qt∗

8

) − 11
6 q

t∗
8 =

6
10 − 11

12

(
1 − 2

t∗ − qt∗
8

) − 11
6 q

t∗
8 = − 19

60 + 11
6t∗ − 11

12q
t∗
8 < 0.

Then, p5
(
qt∗) = 0 and by the relation to the other transition probability functions,

p6
(
qt∗) = p7

(
qt∗) = p8

(
qt∗) = 0 as well. Take t∗ = 16, clearly

− 19
60 + 11

6t∗ − 11
12q

t∗
8 < − 19

60 + 11
6t∗ < 0.

If both agents switch to playing sequences of (1, 1, 1, . . .) from then on, it will take
a while before p5

(
qt

)
becomes positive again. Since

4Right now, we do not need the actual payoffs and focus on the transition probabilities.
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6
10 − 11

12q
t∗+k
4 − 11

6 q
t∗+k
8 = 6

10 − 11
12

t∗−2
t∗+k − 11

12q
t∗+k
8 =

6
10 − 11

12

(
1 − k+2

t∗+k

) − 11
12q

t∗+k
8 = − 19

60 + 11
12

k+2
t∗+k − 11

12q
t∗+k
8

< − 19
60 + 11

12
k+2
t∗+k ,

the first expression cannot be positive for k < 19t∗−110
36 . So, for t∗ = 16 it takes at

least six stages for the play to be able to return to High.

12.3 Strategies and Restrictions

A strategy is a game plan for the entire infinite time horizon, allowing it to depend
on any condition makes an extensive analysis of infinitely repeated games quite
impossible. Most restrictions in the literature put requirements on what aspects the
strategies are conditional upon. For instance, a history-dependent strategy prescribes
a possibly mixed action to be played at each stage conditional on the current stage
and state, as well as on the full history until then, i.e., all states visited and all action
combinations realized before.

Less general strategies are for instance, action independent ones which condition
on all states visited before, but not on the action combinations chosen [31]. Markov
strategies condition on the current state and the current stage, and stationary strategies
only condition on the present state (cf., e.g., Filar and Vrieze [20], Flesch [21]).

The challenge in the present framework is to find restrictions on strategies which
are helpful in the analysis. Although Markov and stationary strategies have proven
their value in the analysis of finite state stochastic games with fixed transition prob-
abilities, it is quite unclear what their contribution can be in the present framework.

Essentially, (at least) two points of view can be adopted to analyze the present
framework. The one we favor is the one in which High and Low are seen as the
states with the transitions between these states being a function of the history of the
play as captured by the relative frequency vector qt . Stationary strategies are easily
formulated here, but probably much too simple for analytical purposes as some link
with qt must be assumed to be useful. An alternative is to define the states according
to the relative frequency vector in which there exist infinitely many states H(qt )

and L(qt ). Here, the practical problem is the enormity of the task of infinitely many
stationary or Markov strategies to be defined.

LetX k denote the set of history-dependent strategies of player k = 1, 2.Astrategy
is pure, if at each stage a pure action is chosen, i.e., an action is chosen with
probability 1. The set of pure strategies for player k is Pk , and P ≡ P A × P B . Let
us define the following notions, introduced before in a rather informal manner, a bit
more formally. For j = 1, 2, t > 1
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qt
j ≡ #{( j A,H

u , j B,H
u )| j A,H

u =1, j B,H
u = j, 1≤u<t}

t−1 ,

qt
j+2 ≡ #{( j A,H

u , j B,H
u )| j A,H

u =2, j B,H
u = j, 1≤u<t}

t−1 ,

qt
j+4 ≡ #{( j A,L

u , j B,L
u )| j A,H

u =1, j B,H
u = j, 1≤u<t}

t−1 ,

qt
j+6 ≡ #{( j A,L

u , j B,L
u )| j A,H

u =2, j B,H
u = j, 1≤u<t}

t−1 .

Here, j A,X
u ( j B,X

u ) denotes the action taken by player A (B) while being in state
X = H, L at stage u. So, for instance qt

4 is the relative frequency of action pair (2, 2)
in state H being chosen until stage t.

The strategy pair (π, σ ) ∈ X A × X B is jointly convergent if and only if q ∈ Δ7

exists such that for all ε > 0, i ∈ {1, 2, . . . , 8} :

lim supt→∞ Prπ,σ

[∣∣qt
i − qi

∣∣ ≥ ε
] = 0. (12.1)

Prπ,σ denotes the probability under strategy pair (π, σ ).J C denotes the set of jointly
convergent strategy pairs. Under such a pair of strategies, the relative frequency of
each action pair in both states as play goes to infinity converges to a fixed number
with probability 1 in the terminology of Billingsley [8, p. 274]). The set of jointly-
convergent pure-strategy rewards PJC is then the set of pairs of rewards obtained
by using a pair of jointly-convergent pure strategies.

For a pair of jointly convergent pure strategies, let pi ≡ limt→∞ pi
(
qt

) = pi (q)

for i = 1, . . . , 8. These notions are well defined as the relevant functions are con-
tinuous (cf., e.g., Billingsley [8]). We distinguish the following restrictions to be
explained below:

0 <
∑4

i=1qi (1 − pi ) = ∑8
i=5 qi pi and 0 <

∑4
i=1qi < 1, (12.2)∑8

i=5qi = 1, and qi > 0 =⇒ pi = 0, i = 5, . . . , 8, (12.3)∑4
i=1qi = 1, and qi > 0 =⇒ pi = 1, i = 1, . . . , 4. (12.4)

Restriction (12.2) is a conservation of flow equation: play takes place on both states
infinitely often, therefore, due to the law of large numbers the actual instances of
leaving High must be proportional to the long run probability of leaving it and the
latter must be equal to the probability of returning.

If the long run play occurs in Low exclusively, (12.3) must hold. The former part is
obvious, if qi pi > 0 for some i = 5, . . . , 8, then play would visit the corresponding
entry infinitely often as time goes to infinity, hence with probability at least qi pi state
High would occur. Similar reasoning applies to the other case that play occurs only
in High, hence (12.4). We now show the implications for jointly-convergent pure
strategies.

Example 2 Now, (12.3) can only hold if pi = 0 or qi = 0 for all i = 5, . . . , 8. Sim-
ilarly, (12.4) can only hold if 1 − pi = 0 or qi = 0 for all i = 1, . . . , 4. So, if a state
is absorbing, then positive mass on a component of the relative frequency vector
q can only occur if the associated probability of leaving that state is zero. Observe
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Fig. 12.1 If play concentrates on Low, q1 = · · · = q4 = 0 and q5 + · · · + q8 = 1. We depict this
face of Δ7 as a “projection” unto Δ3. Extreme point ei has component i − 4 equal to one. The
admissible q’s, are sketched as the three-dimensional set on top, and the two-dimensional boundary
set

that therefore only Low can be absorbing. From the ranking of probabilities, we may
distinguish the following three subcases.

q8 = 1 and p8 = 1
10 − 11

4 q4 − 11
2 q8 ≤ 0 or∑8

i=6qi = 1 and p6 = p7 = 4
10 − 11

8 q4 − 11
4 q8 ≤ 0 or∑8

i=5qi = 1 and p5 = 6
10 − 11

12q4 − 11
6 q8 ≤ 0.

Clearly, q4 = 0. The first case is easily checked reducing analysis to

∑8
i=6qi = 1 and 16

110 ≤ q8 ≤ 36
110 , or∑8

i=5qi = 1 and q8 ≥ 36
110 .

leading to q5 = 0 and 16
110 ≤ q8 ≤ 36

110 , and q8 ≥ 36
110 and q5, . . . , q7 ≥ 0.

Figure12.1 visualizes these restrictions for Low being absorbing. The upper three-
dimensional subset of Δ3, is connected to the final inequality; the parallelogram on
the face of Δ3 is connected to the former.
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12.4 On Rewards and Equilibrium Rewards

The players receive an infinite stream of stage payoffs, they are assumed to wish to
maximize their average rewards. For a given pair of strategies (π, σ ) , Rk

t (π, σ ) is the
expected payoff to player k at stage t under strategy combination (π, σ ), then player
k’s average reward, k = A, B, is γ k (π, σ ) = lim infT→∞ 1

T

∑T
t=1 R

k
t (π, σ ) , and

γ (π, σ ) ≡ (
γ A (π, σ ) , γ B (π, σ )

)
. Moreover, for vector q ∈ Δ7, the q-averaged

payoffs (x, y)q are given by

(x, y)q = ∑8
i=1qiθi .

The strategy pair (π∗, σ ∗) ∈ X A × X B is an equilibrium if and only if

γ A
(
π∗, σ ∗) ≥ γ A

(
π, σ ∗) for all π ∈ X A

γ B
(
π∗, σ ∗) ≥ γ B

(
π∗, σ

)
for all σ ∈ X B .

The rewards γ (π∗, σ ∗) associated with an equilibrium (π∗, σ ∗) will be referred to
as equilibrium rewards.

In the analysis of repeated games, another helpful measure to reduce complexity is
to focus on rewards instead of strategies. It ismore rule than exception that one and the
same reward combination can be achieved by several distinct strategy combinations.
Here, we focus on rewards to be obtained by jointly-convergent pure strategies.

12.4.1 Jointly Convergent Pure-Strategy Rewards

The next result connects notions introduced in the previous sections.

Proposition 1 Let strategy pair (π, σ ) ∈ J C and let q ∈ Δ7 for which (12.1) is
satisfied, then the average payoffs are given by γ (π, σ ) = (x, y)q .

Proof Let (π, σ ) ∈ J C and E{θπ,σ
u } ≡ (

R1
u (π, σ ) , R2

u (π, σ )
)
, then

limt→∞ 1
t

∑t
u=1E{θπ,σ

u } = limt→∞ E
{
1
t

∑t
u=1θ

π,σ
u

} =
limt→∞ E

{∑8
i=1q

t
i θi

}
= limt→∞

∑8
i=1E

{
qt
i

}
θi = ∑8

i=1qiθi = (x, y)q .

The second equality sign involves a change in counting: on the left-hand side we sum
over all periods, on the right-hand side over all eight entries of the two bi-matrices
weighed by their relative frequencies. Equalities one and three are standard, the
penultimate one follows from (12.1), cf., e.g., Billingsley [8, p. 274], the final one by
the definition given above. Since limt→∞ 1

t

∑t
u=1 E{θπ,σ

u } equals (x, y)q , it follows
that γ (π, σ ) = (x, y)q .
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Example 3 To continue the example, we add stage payoffs

H
(
qt

) =
[

(4, 4) , p1
(
qt

) (
7
2 , 6

)
, p2

(
qt

)
(
6, 7

2

)
, p3

(
qt

) (
11
2 , 11

2

)
, p4

(
qt

)
]

,

L
(
qt

) =
[

(2, 2) , p5
(
qt

) (
7
4 , 3

)
, p6

(
qt

)
(
3, 7

4

)
, p7

(
qt

) (
11
4 , 11

4

)
, p8

(
qt

)
]

.

Observe that θi = 1
2θi−4 for i = 5, . . . , 8. The specifics for the probabilities

p1
(
qt

)
, . . . , p8

(
qt

)
were already presented earlier. Note that in both states, the

first action is dominated by the second for both players.
Figure12.2 shows the rewards consistent with Low being absorbing and note that

this hexagon is not convex.5 The link between rewards in Fig. 12.2 and the strategy
restrictions visualized in Fig. 12.1 is that the extreme points in Fig. 12.2 have the
following coordinates (i.e., rewards)

74
110 (2, 2) + 36

110

(
11
4 , 11

4

) = (
247
110 ,

247
110

)
74
110

(
3, 7

4

) + 36
110

(
11
4 , 11

4

) = (
642
220 ,

457
220

)
74
110

(
7
4 , 3

) + 36
110

(
11
4 , 11

4

) = (
457
220 ,

642
220

)
94
110

(
3, 7

4

) + 16
110

(
11
4 , 11

4

) = (
652
220 ,

417
220

)
94
110

(
7
4 , 3

) + 16
110

(
11
4 , 11

4

) = (
417
220 ,

652
220

)
.

The first three rewards coincide with the lower three vertices of the shaded simplex
of dimension 3 within Δ3 in Fig. 12.1. The latter two coincide with the lower two
vertices of the quadrangle on the face of Δ3 in Fig. 12.1. Finally, the reward

(
11
4 , 11

4

)
coincides with the vertex e8 in Fig. 12.1.

So, e5 corresponds to the situation that in the long run the relative frequency of
play on action pair (1, 1) in Low is 1 (if that were possible). The left-hand lowest
vertex of the shaded simplex in Fig. 12.1 has coordinates (74/110, 00, 36/100), so
the corresponding rewards are obtained by the linear combination of both (2, 2) and(
11
4 , 11

4

)
with the associated weights.

Similarly, all interior points of the shaded simplex in Fig. 12.1 correspond to the
interior of the shaded parallelogram in Fig. 12.2. The interior points of the boundary
quadrangle in Fig. 12.1 correspond to the interior of the trapezium in Fig. 12.2.

We must also find rewards such that (12.2) is satisfied. Figure12.3 shows all
jointly-convergent pure-strategy rewards. For instance, rewards

(
7
2 ,

7
2

)
correspond

to mutual full restraint; furthermore, the Pareto-efficient line segment connecting(
22
6 , 23

6

)
and

(
23
6 , 22

6

)
is achieved by playing Top-Right in High and by playing the

off-diagonal action pairs in Low exclusively.

5Figures12.2 and 12.3 are based onMatlab graphs generated by an algorithmyielding 6million pairs
of rewards which took several days. Memory restrictions corrupt image quality as we experienced.
The algorithm and output are available on request.
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Fig. 12.2 Asketch of the hexagon being the union of the lightly shaded parallelogramand the darker
trapezium. The former corresponds to the three-dimensional set, the latter to the two-dimensional
boundary set in Fig. 12.1. The other rewards, corresponding to the convex hull of the four entries
associated with Low are not feasible by jointly-convergent pure strategies

12.4.2 Equilibrium Rewards

We now focus on rewards from equilibria involving threats. Our approach is similar
to a well-established one in the repeated games literature (cf., e.g., Hart [28], Forges
[23]), linked to theFolkTheorem (see e.g.,VanDamme [74]) and applied to stochastic
games aswell (cf., e.g., Thuijsman andVrieze [71], Joosten et al. [42], Schoenmakers
[67]).

Wecallv = (
vA, vB

)
the threatpoint,wherevA = minσ∈X B maxπ∈X A γ A(π, σ ),

and vB = minπ∈X A maxσ∈X B γ B(π, σ ). So, vA is the highest amount A can get if
B tries to minimize A’s average payoffs. Under a pair of individually rational
(feasible) rewards each player receives at least the threat-point reward.

Let E = {
(x, y) ∈ PJC| x > vA and y > vB

}
be the set of all individually ratio-

nal jointly convergent pure-strategy rewards giving each player strictly more than
his threat point reward. We can now present the following formal result:
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Fig. 12.3 The set PJC : on the lower left-hand side the hexagon of Fig. 12.2, for other rewards
both states are visited infinitely often

Theorem 1 Each pair of rewards in E can be supported by an equilibrium.

Proof Let (x, y) ∈ E , then a pure-strategy combination (π, σ ) ∈ J C exists such
that γ (π, σ ) = (x, y) . Let ε = 1

2 min
(
x − vA, y − vB

)
and let π p (σ p) be a

punishment-strategy of A (B), i.e., a strategy holding his opponent to at most vB + ε

(vA + ε). Let

π∗
t ≡

{
πt if jk = σ ∗

k for all k < t,
π

p
t otherwise.

σ ∗
t ≡

{
σt if ik = π∗

k for all k < t,
σ

p
t otherwise.

Here, it ( jt ) denotes the action taken by player A (B) at stage t of the play. Clearly,
γ (π∗, σ ∗) = γ (π, σ ) = (x, y). Suppose player A were to play π ′ such that π ′

k �=
π∗
k for some k, then player B would play according to σ p from then on. Since,

γ A
(
π ′, σ p

) ≤ vA + ε < x , it follows immediately that player A cannot improve
against σ ∗. A similar statement holds in case player B deviates unilaterally. Hence,
(π∗, σ ∗) is an equilibrium.

Such a pair of strategies (π∗, σ ∗) is called an equilibrium involving threats, e.g.,
Hart [28], Van Damme [74], Thuijsman and Vrieze [71].
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Joosten et al. [42] prove by construction that each reward in the convex hull
of E can be supported by an equilibrium, too. Equilibrium rewards in the convex
hull of E not in E can be obtained by history-dependent strategies with threats,
which are neither jointly-convergent, nor pure. The construction of Joosten et al.
[42] involves a randomization phase which obviously violates the pure-strategy part.
The randomization phase serves to identify and communicate to both players which
equilibrium pair of jointly convergent pure strategies is to be played afterwards. So,
this also violates the very notion of jointly convergent strategies. This construction
need not work for every stochastic game, but for the present class of games it does
as no state is absorbing (permanently).

Whether equilibria exist yielding rewards that are not in the convex hull of E,

is an open question. Such equilibria then must be associated with strategies which
are not jointly convergent. For instance, in the example here, it can be shown by
construction that rewards in the convex hull of

(
417
220 ,

417
220

)
and PJC can be obtained

for the average reward criterion using the limes inferior. Similarly, although this is
out of the scope of this chapter, one can obtain the convex hull of

(
7
4 ,

7
4

)
and PJC

as feasible rewards for the average reward criterion using the limes superior. For
the latter criterion all additional rewards Pareto dominate all equilibrium rewards
in PJC . Therefore, these rewards can be supported by equilibria as well for this
alternative evaluation criterion.

Theorem 1 hinges on the possibility of punishing unilateral deviations, as in e.g.,
Hämäläinen et al. [25]. So, we cannot restrict ourselves to Markov or stationary
strategies as these types of strategies do not offer the strategic richness to allow
punishing. History-dependent strategies do offer the required flexibility, but it is an
open question whether less general classes of strategies might suffice. What is clear
though, is that action independent strategies do not.

There is no contradiction between strategy pairs being both jointly-convergent and
history-dependent, or for that matter cooperative, e.g., Tołwinski [72], Tołwinski et
al. [73], Krawczyk and To łwinski [48], or incentive strategies, or combinations, e.g.,
Ehtamo and Hämäläinen [15–18].

12.4.3 On Computing Threat Points

We illustrate Theorem 1 and the notions introduced. Moreover, we use the examples
to show the scope of the problem of computing threat points. The next example shows
that linear programs may not suffice.

Example 4 Assume that player B uses his second action at all stages of the play.
Now, consider the (nonlinear) program
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minq2,q4,q6,q86q2 + 11
2 q4 + 3q6 + 11

4 q8
s.t. 1 = q2 + q4 + q6 + q8
0 = (1 − p2)q2 + (1 − p4)q4 − p6q6 − p8q8
p2 = [

6
10 − 11

20q4 − 11
10q8

]
+

p4 = [
3
10 − 11

16q4 − 11
8 q8

]
+

p6 = [
4
10 − 11

8 q4 − 11
4 q8

]
+

p8 = [
1
10 − 11

4 q4 − 11
2 q8

]
+

0 ≤ q2, q4, q6, q8.

Clearly, q8 = 1 yields rewards equal to 11
4 ; all other feasible rewards involve q8 < 1

yielding a reward strictly higher than 11
4 . Evidently, player B can guarantee himself

at least 2.75. This implies vB ≥ 2.75.
Next, we aim to show that player A can hold his opponent to at most 2.75 by

using his second action at all stages of the play. First, we argue that the best reply of
player B resulting in a pair of jointly convergent strategies yields at most 2.75. Then,
we argue that if B uses a strategy resulting in a pair of strategies which is not jointly
convergent, then this cannot yield more than 2.75. We do not provide the lengthy
computations underlying our findings,6 only intuitions.

For the first part, since we assume that the pair of strategies is jointly convergent,
we may consider the (nonlinear) program

maxq3,q4,q7,q8
7
2q3 + 11

2 q4 + 7
4q7 + 11

4 q8
s.t. 1 = q3 + q4 + q7 + q8
0 = (1 − p3)q3 + (1 − p4)q4 − p7q7 − p8q8
p3 = [

6
10 − 11

20q4 − 11
10q8

]
+

p4 = [
3
10 − 11

16q4 − 11
8 q8

]
+

p7 = [
4
10 − 11

8 q4 − 11
4 q8

]
+

p8 = [
1
10 − 11

4 q4 − 11
2 q8

]
+

0 ≤ q3, q4, q7, q8.

Observe that if p7 = 0, then p8 = 0 as well, hence q3 = q4 = 0. Then, the maxi-
mization program implies q8 = 1 and the value of the objective function is 11

4 . Let us
define ek = (q3, q4, q7, q8) by qk = 1, q j = 0 for j �= k. Now, p7 = 0 if the relative
frequency vector (q3, q4, q7, q8) is in

S0 = conv
{{
e4, e8,

(
78
110 ,

32
110 , 0, 0

)
,
(
0, 32

110 ,
78
110 , 0

)}
∪ {(

0, 0, 94
110 ,

16
110

)
,
(

94
110 , 0, 0,

16
110

)}}
,

where conv S denotes the convex hull of set S. Possible higher rewards are only to
be found for (q3, q4, q7, q8) ∈ Δ3\S0.

Furthermore, 1 − p4 > 1 − p3 ≥ 4
10 ≥ p7 > p8, hence q3 + q4 ≤ 1

2 ≤ q7 + q8.
So, only tuples (q3, q4, q7, q8) in

6They are available on request, of course.
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S1 = conv
{{(

1
2 , 0,

1
2 , 0

)
,
(
1
2 , 0,

39
110 ,

16
110

)
,
(

23
110 ,

32
110 ,

1
2 , 0

)}
∪ {

e7,
(
0, 0, 94

110 ,
16
110

)
,
(
0, 32

110 ,
78
110 , 0

)}}
.

may yield higher rewards than 11
4 . This follows from the observation that the sum of

the probabilities to move to (from) Low is always above (below) 4
10 , hence the (long

term) proportion of the play spent in Low is at least 1
2 .

The points in S1 satisfying the restriction

0 = (1 − p3)q3 + (1 − p4)q4 − p7q7 − p8q8

form a two-dimensional manifold, say M , and the restriction is clearly violated in a
neighborhood of the plane

P = conv
{(

1
2 , 0,

39
110 ,

16
110

)
,
(

23
110 ,

32
110 ,

1
2 , 0

)
,
(
0, 0, 94

110 ,
16
110

)
,
(
0, 16

55 ,
39
55 , 0

)}

which is the facet of S1 opposite the line segment
(
1
2 − x, 0, 1

2 + x, 0
)
, x ∈ [0, 1

2 ].
Hence, M does not intersect P. The following defines for α ∈ [0, 16

55 ] a family of
two-dimensional planes in S1:

S (α) = {
(q3, q4, q7, q8) ∈ S1|q4 + q8 = α

}
.

For increasing α, we establish whether S (α) ∩ M �= ∅, and in that case the inter-
section is either a point, a line segment or a two-dimensional subset of S (α) . Any
unique point in this intersection with the highest weight on q4 clearly maximizes the
objective function for S (α); otherwise a one-dimensional set of points exist with
highest weights on q4, then the point with the highest weight on q3 is the solution
with respect to S (α) . So, for fixed α one observes immediately that q4 = α and
q8 = 0 for any solution with respect to S (α) .

Take q3 + q7 = 1, then 1 − p3 = p7 = 4
10 which in turn implies q3 = q7 = 1

2 . In
this case, 7

2q3 + 11
2 q4 + 7

4q7 + 11
4 q8 = 21

8 . To obtain higher values of the objective
function q4 should be increased from zero while keeping q8 = 0. The final point
is that the one-dimensional set of solutions restricted to such S (α) for α ∈ [0, 16

55 ]
“beginning at”

(
1
2 , 0,

1
2 , 0

)
does not lead to higher values of the objective function

than 21
8 .

As no solution satisfying the restrictions of the maximization problem, yields
more than 11

4 in Δ3\S0, the solution is located in S0, so the global solution is q8 = 1;
the connected reward to player B is 2.75. As player A can hold B to this amount, we
have vB ≤ 2.75. Hence, under the assumption that the outcome of the maximization
problem of player B against his opponent using his second action in any state and at
any stage, is a jointly convergent pair of strategies, we find vB = 2.75.

Now, we continue our reasoning with the assumption that the maximization
problem does not result in a pair of jointly-convergent strategies. First, note that the
latter expression in the present framework means that B uses a strategy σ against
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player A playing π∗ = (2, 2, 2, . . .), such that qt = (
qt
3, q

t
4,q

t
7, q

t
8

)
never converges,

i.e., qt must move around in the three-dimensional unit simplex forever.
Note that if for some (non-jointly convergent) pair of strategies (π∗, σ ) and some

T, it holds that7 {qt }t≥T ⊂ S0, then limt→∞ qt
3 = limt→∞ qt

4 = 0. This follows from
the circumstance that p7

(
qt

) = p8
(
qt

) = 0 for all t ≥ T . So, the long-term average
payoffs at point t in time for t sufficiently large satisfy

7

4
qt
7 + 11

4
qt
8 = 7

4
qt
7 + 11

4

(
1 − qt

7

) = 11

4
− qt

7 <
11

4
.

This means that γ B(π∗, σ ) < 11
4 .

Furthermore, let S2 = conv{e7, e8,
(
4
7 ,

3
7 , 0, 0

)
,
(
0, 11

15 ,
4
15 , 0

)}. Then it is easily
confirmed that 7

2q3 + 11
2 q4 + 7

4q7 + 11
4 q8 ≤ 11

4 for all q ∈ S2. Hence, if for some
(π∗, σ ) it holds that

lim sup
T→∞

[
Pr

π∗,σ

[
#

{
qt ⊂ S2|t ≤ T

}
T

]
≥ ε

]
> 0 for all ε > 0,

then γ B(π∗, σ ) ≤ 11
4 .

Let S3 = Δ3\ (
S0 ∪ S2

)
and note that 7

2q3 + 11
2 q4 + 7

4q7 + 11
4 q8 ≥ 11

4 for q ∈ S3.
By choosing a set of convenient (but not even tight) upper and lower bounds it takes
quite some effort to confirm that if for some (π∗, σ )

lim sup
T→∞

[
Pr

π∗,σ

[
#

{
qt ⊂ S3|t ≤ T

}
T

]
≥ ε

]
= 0 for all ε > 0,

then γ B(π∗, σ ) < 11
4 . This contradiction implies that it is impossible to guarantee

play such that the resulting relative frequencies vectors stay in S3 (hence out of
S0 ∪ S2) almost forever.

So, candidates to yield a limiting average reward higher than 11
4 must induce

play such that relative frequency vectors stay forever in
(
S0\S2) ∪ S3. However,

in
(
S0\S2) ∪ S3 there is persistent drift away from conv{e3, e4} because the transi-

tion probabilities from Low to High are small and the transition probabilities from
High to Low are large. Away from conv{e3, e4} means towards conv{e7, e8} which
implies that the play will induce relative frequency vectors in S2.Note that due to the
assumption that (π∗, σ ) is not jointly convergent means e8 can only be approached
infinitely often by relative frequency vectors from S2 or returning to S2, yielding
limiting average rewards below 11

4 .

The negative results above imply that the maximization problem can be solved in
jointly convergent strategies in this example. Hence, vB = 2.75 (Fig. 12.4).

7Hordijk et al. [34] show that a stationary strategy suffices as a best reply against a fixed stationary
strategy, and we may write the next sequence as a deterministic one.
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Fig. 12.4 Each pair of jointly convergent pure-strategy rewards to the “north-east” of v =
(2.75, 2.75) can be supported by an equilibrium involving threats

Example4 illustrates that finding threat points may be cumbersome as it requires
at least a nonlinear program. Our approach was to alternate a minimization and a
maximization program against sequences of stationary strategies to obtain lower and
upper bounds for the threat point. If solutions coincide, as in the example above after
two steps, we are done. Otherwise, all rewards yielding more than the lowest upper
bound established can be associated to equilibria involving threats.

We can interpret every minimization and maximization program as a single con-
troller stochastic game (cf., e.g., Parthasarathy and Raghavan [60]). However, the
circumstance that the number of states captured in the relative frequency vectors
(please recall our remarks on this issue in Sect. 12.3) is not finite takes our problem
out of the scope of the algorithms implied to compute the associated values (e.g.,
Filar and Raghavan [19], Vrieze [75], see Raghavan and Filar [62] for a survey).
Hordijk et al. [34] show that a stationary strategy suffices as a best reply against a
fixed stationary strategy, and the optimization problemsmentioned reduce toMarkov
decision problems (cf., e.g., Filar and Vrieze [20]). We used these results partially
above,8 but found not much help in them otherwise.

8In earlier versions of our paper we were too quick to conclude that the associated optimization
problems yield jointly convergent strategies. A referee pointed out a flaw in our reasoning, which by
the way, makes to problem of finding an optimal strategy against a fixed strategy even much harder
to solve. If jointly convergent strategies do not yield a solution, play never settles down measured in
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The general problem is equivalent to finding the value of a zero-sum stochastic
game. Well-known techniques from standard stochastic game theory, e.g., Bewley
and Kohlberg [6, 7] and Mertens and Neyman [56], offer insufficient solace because
of the state space which is not finite but denumerable.

12.5 Conclusions

We added an innovation to the framework of Small Fish Wars (e.g., Joosten [37,
38, 41]) by allowing endogeneity in the transition structure: transition probabilities
depend on the actions taken by the agents currently in the current state and on the
history of the play. In this new setting states may become absorbing temporarily.
Here, this feature is used to model the phenomenon that, even if the agents turn
to ecologically sound exploitation policies, it may take a long time before the first
transition to a state yielding higher outcomes occurs if the state Low turns out to have
become temporarily absorbing. Thus, we capture hysteresis, called a poaching pit
in the management of natural resources literature (cf., e.g., Bulte [11]). Hysteresis
is an empirical phenomenon and may be observed in the slow recovery of coastal
cod stocks in Canada after a moratorium on cod fishing since 1992 (cf., Rose et
al. [63]). More recent estimates of stocks show a less bleak picture due to recent
developments unrelated to resource management, but the stocks are still far removed
from high historical levels.

Our approach generalizes standard stochastic games,9 too. We propose methods
of analysis originally introduced in Joosten et al. [42] inspired by Folk Theorems for
stochastic games e.g., Thuijsman and Vrieze [71], Joosten [35, 36] and Schoenmak-
ers [67], and developed further in for instance Joosten [37, 38, 41]. Crucial notion
is that of jointly-convergent strategies which justify the necessary steps in creating
analogies to the Folk Theorem. In our view, it is convenient that the complex model
arising from endogenous transition probabilities may be solved quite analogously to
repeated games.10

the space of the relative frequency vectors and the sequence of relative frequency vectors induced
is essentially stochastic.
9At several presentations the question was raised whether our games should not be presented as
stochastic games with infinitely many states. We agree that our games fall into this class, as they can
be rewritten as such. We prefer our presentation because of its simplicity and the circumstance that
we were able to generate a number of results. Moreover, we are very sceptic about which known
results from the analysis of stochastic games with infinitely many states would be helpful to obtain
results for ours.
10We like our rather complex model to resemble repeated games for psychological reasons and for
reasons of ease of communication for instance with less mathematically inclined people (politi-
cians, civil servants). Many people have learned about the repeated prisoners’ dilemma in educa-
tional programs, so offering our model in a simple fashion may offer windows of opportunity for
communication with the general public. To present our model as a stochastic game with infinitely
many states might scare researchers but more likely less mathematically inclined people away.
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Our analysis of a special example with hysteresis shows that a “tragedy of the
commons” can be averted by sufficiently patient rational agents11 maximizing their
utilities non-cooperatively. All equilibrium rewards yield more than the amounts
associated to the permanent ruthless exploitation of the resource. Pareto optimal
equilibrium rewards correspond to strategy pairs involving a considerable amount
of restraint on the part of the agents, and are considerably higher than no-restraint
rewards and slightly higher than perfect-restraint rewards.

To present a tractable model and to economize on notations, we kept the fish
stock fixed yet stochastic, i.e., the variation in stock size and catches is only due to
random effects; we imposed symmetry and used the three “twos”: two states, two
players and two actions. Two distinct states allow to model the kind of transitions
we had in mind; two agents are minimally required to model strategic interaction;
two stage-game actions leave something to choose. In order to capture additional
real-life phenomena observed, such as seasonalities or other types of correlations,
a larger number of states may be required. Furthermore, more levels or dimensions
of restraining measures may be necessary. Adding states, (asymmetric) players or
actions changes nothing to our approach conceptually.

By keeping the model and its analysis relatively simple, hence presumably more
tractable, further links to and comparisons with contributions in the social dilemma
literature, cf., e.g., Komorita and Parks [1994], Heckathorn [30], Marwell and Oliver
[53] where dyadic choice is predominant, may be facilitated. Our resource game is
to be associated primarily with a social trap, see e.g., Hamburger [26], Platt [61],
Cross and Guyer [14] of which the ‘tragedy of the commons’ cf., e.g., Hardin [27],
Messick et al. [55], Messick and Brewer [54]) is a special notorious example.

Ongoing related research focusses on designing algorithms improving computa-
tional efficiency of existing ones to generate large sets of jointly-convergent pure-
strategy rewards. The algorithms used to find the rewards visualized in consecutive
figures in this chapter are unacceptably slow. This was an unpleasant surprise as they
were in fact modifications of algorithms working extremely rapidly in models within
the same and related frameworks (e.g., Joosten [37, 39–41]). The new algorithms
not only generate the desired sets within acceptable computing times here, but also
seem much more efficient than our algorithms used before when applied to certain
repeated games, stochastic games and gameswith frequency dependent stage payoffs
(cf., Joosten and Samuel [43, 44]).

Related ongoing research is devoted to computing threat points with spin-offs of
the algorithms of Joosten and Samuel [43, 44] for the same models as mentioned in
the previous paragraph. This is a solution born out of necessity because very little

11Our agent is not the individual fisherman, but rather countries, regions, villages or cooperatives.
Whether or not the latter care for the future sufficiently to induce sustainability (see e.g., Ostrom
[58], Ostrom et al. [59] for optimistic views), individual fisherman’s preferences seem too myopic
(cf., e.g., Hillis andWheelan [32]). Next to impatience of the agents, their number, communication,
punishment possibilities and the observability of actions taken influence the likelihood that the
tragedy of the commons can be averted (cf., e.g., Komorita and Parks [47], Ostrom [58, 59], Steg
[70]).
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is known on finding threat points in this new framework. Future research should
address this knowledge gap.

Future research should combine the various modifications and extensions of the
original Small Fish Wars [37] with the innovation presented here. Joosten [41] adds
various price-scarcity feedbacks to the model, as well as another low-density phe-
nomenon called the Allee effect. For the majority of results and our methods of
analysis we anticipate to need no more than the notion of jointly convergent strate-
gies and continuity of stage payoff functions and transition probability functions
involved.

We envision applications of stochastic games with endogenous transitions where
hysteresis-like phenomena occur, for instance shallow lakes (e.g., Scheffer [65],
Carpenter et al. [12], Mäler et al. [52]), labor markets (e.g., Blanchard and Summers
[9]), climate change (e.g., Lenton et al. [49]), or more general, where tipping or
regime shifts may occur [2, 66]. We also see possible extensions of earlier models
on (un)learning by (not) doing, cf., Joosten et al. [42, 45], and related work, e.g.,
Schoenmakers et al. [68], Schoenmakers [67], Flesch et al. [22].
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