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Preface

Mathematical programming and game theory models are applied frequently in
management, business, and social studies. This volume deals with certain topics of
fundamental importance in mathematical programming, game theory, and other
related sciences that are presented in the form of 12 chapters. It is a peer-reviewed
volume under Indian Statistical Institute Series with a primary focus on recent
topics that discuss new challenges from theory and practice. Some pioneers in the
field and some prominent young researchers have contributed chapters to this
volume. This volume presents an integration of mathematical programming and
game theory models that use different methodologies to improve the decision
making associated with the new challenges of the present and future problems.

The linear complementarity problem (LCP) is normally identified as a problem
of mathematical programming, and it provides a unifying framework for several
optimization problems like linear programming, linear fractional programming,
convex quadratic programming, and bimatrix game problem. More specifically,
LCP models the optimality conditions of these problems. Chapter 1 by D. Dubey
and S. K. Neogy starts with the presentation of various mathematical programming
problems and bimatrix game problem as the linear complementarity problem. Rest
of the chapter is devoted to a study of the properties of some matrix classes in the
linear complementarity theory and its usefulness for solving LCP by Lemke’s
algorithm. Under what conditions a linear complementarity problem can be solved
as a linear programming problem is also discussed. Finally, various generalizations
that appear in various applications in engineering, management science, and game
theory are also discussed.

Chapters 2–4 deal with mathematical programming problems that arise in graph
theory. Chapter 2 by R. B. Bapat considers two problems, namely the problems of
maximizing the spectral radius and the number of spanning trees in a class of
bipartite graphs with certain degree constraints, and the optimal graph for both the
problems is conjectured to be a Ferrers graph. Several necessary and sufficient
conditions under which the removal of an edge in a graph does not affect the
resistance distance between the end-vertices of another edge are presented in this
chapter. A brief survey of the problem and references to the literature containing
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results and open problems are also given. A new proof of the formula for the number
of spanning trees in a Ferrers graph is presented, which is different from the proof of
Ehrenborg and van Willigenburg that uses electrical networks and resistances.
Chapter 3 by Masahiro Hachimori considers optimization problem on orientations of
a given graph, where the values of the objective functions are determined by the
out-degrees of the resulting directed graph and the constraints contain acyclicity
of the orientations. A survey of the applications of such optimization problems in
polytope theory, shellability of simplicial complexes, and acyclic partitions are also
discussed. Another interesting problem is to look for a nontrivial class of graphs for
which optimization problems that are presented in this chapter can be solved in a
polynomial time. Chapter 4 deals with the Max-Flow-Min-Cut property and total
dual integrality. A matrix inequality Ax� b (resp. to Ax� b) is called totally dual
integral if the linear program minfhw; xijAx� bg (resp. to maxfhw; xijAx� bg) has
an integral optimal dual solution y for every integral cost vector w for which the
above linear program has a finite optimum. Motivated by the pluperfect and (weak)
perfect graph theorems for the set covering problem by Fulkerson and Lovász,
Seymour introduced the concept of the so-called Max-Flow-Min-Cut property (the
MFMC property) of clutters, which is the packing counterpart of the totally dual
integrality built in the perfection. A clutter C has the MFMC property if, for its clutter
matrixMðCÞ, the linear systemMðCÞx= 1; x= 0 is totally dual integral. Conforti and
Cornuéjols conjectured that a clutter has the packing property if and only if it has the
MFMC property (Conjecture 1). Cornuéjols, Guenin, and Margot conjectured that
the blocking number of every ideal minimally nonpacking clutter is 2. Furthermore,
they proved that Conjecture 1 implies Conjecture 2. In this chapter, K. Kashiwabara
and T. Sakuma provide a framework to attack Conjecture 2.

Chapter 5 deals with an important combinatorial optimization problem, namely
travelling salesman problem (TSP). The objective of TSP is to find an optimal tour
that visits every node in a finite set of nodes and returns to the origin node on a
graph, given the matrix of distances between any two nodes. In this chapter, Tiru
Arthanari and Kun Qian study TSP, followed by some preliminaries in graph
theory. The authors then compare the Dantzig, Fulkerson, and Johnson
(DFJ) formulation, Carr’s cycle-shrink relaxation (an LP formulation), and multi-
stage insertion (MI) formulation given by Arthanari. Various advantages of the MI
formulation are discussed. With the same LP relaxation values as the classic DFJ
formulation, the MI formulation has only n3 variables and n2 constraints, compared
to DFJ with nðn� 1Þ variables and 2n�1 þ n� 1 constraints. Using CPLEX, a
commercial LP solver, the MI formulation has been shown to be competitive
compared to other formulations of TSP. An interpretation of the MI formulation as
a hypergraph minimum cost flow problem and some theoretical computational
complexity results on the algorithms involved in solving the hypergraph minimum
cost flow problem, namely the flow and potential algorithm, are also presented.

Chapter 6 by D. Aussel, J. Dutta, and T. Pandit discusses the links between
equilibrium problems and variational inequalities. Under the most natural assump-
tion, the equilibrium problem is shown to be equivalent to an associated variational
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inequality and the existence results for equilibrium problems can be obtained from
the existence results for variational inequality problems and vice versa. The authors
also study a problem of existence of Nash equilibrium in an oligopolistic market and
show that it is equivalent to a variational inequality under the most natural economic
assumption. Further, the relation between the quasi-equilibrium problem and
quasi-variational inequality is also studied.

Chapter 7 by Y. Kimura presents approximation techniques as the solution to
convex minimization problems by using iterative sequences with resolvent opera-
tors and proposes an iterative scheme for an approximation of the solution to a
common minimization problem for a finite family of convex functions.

Chapter 8 by Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi
deals with an emerging area of research within algorithmic game theory: multi-
variate analysis of games. This chapter presents a survey of the landscape of work
on various stable marriage problems and the use of parametrized complexity as a
toolbox to study computationally hard variants of these problems. The entire survey
is divided into three broad topics, namely strategic manipulation, maximum(mini-
mum) sized matching in the presence of ties, and notions of fair or equitable stable
matchings.

Chapter 9 by M. Kaneko deals with quasi-linear utility functions that are widely
used in economics and game theory as convenient tools. The author makes an
explicit connection between approximate quasi-linearity and expected utility theory
and presents two applications of their results to the theories of cooperative games
with side payments and of Lindahl-ratio equilibrium for a public goods economy
with quasi-linearity.

Chapter 10 by L. Mallozzi and A. Sacco presents a cooperative game theoretical
model for a multi-commodity network flow problem. In this game, each player
receives a return for shipping his commodity and considers the possibility to have
uncertainty on the costs. A cooperative game under interval uncertainty is presented
for the model, and the existence of core solutions is also investigated.

Chapter 11 by Andrey Garnaev and Wade Trappe discusses an interesting topic
on pricing competition between cell phone carriers in a growing market of cus-
tomers. A game theoretical model for the competition between service providers,
such as cell phone carriers, in a market of customers that is growing, was inves-
tigated. Solving this game helps to show how the loyalty factor associated with the
carriers might impact the prices and relative market share between the carriers.

Chapter 12 by Reinoud Joosten and Robin Meijboom presents and analyzes a
stochastic game in which transition probabilities between states are not fixed as in
standard stochastic games, but depend on the history of the play, i.e., the players’
past action choices. For the limiting average reward criterion, the authors determine
the set of jointly convergent pure-strategy rewards which can be supported by
equilibria involving threats. Further, for expository purposes, a stylized fishery
game is analyzed. In each period, two agents choose between catching with restraint
and catching without restraint. The resource is in either of two states, high or low.
Restraint is harmless to the fish, but it is a dominated action at each stage. The lesser
the restraint shown during the play, the higher the probabilities that the system
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moves to or stays in low. The latter state may even become ‘absorbing temporarily’;
i.e., transition probabilities to high temporarily become zero, while transition
probabilities to low remain nonzero. Future research should combine various
modifications and extensions of the original Small Fish Wars with the innovation
presented here.

It is hoped that the results presented in this research monograph will inspire
young researchers for further contributions to the fields of mathematical pro-
gramming, game theory, and graph theory, especially in the form of novel appli-
cations and development of computational techniques.

New Delhi, India S. K. Neogy
July 2018 Ravindra B. Bapat

Dipti Dubey
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Chapter 1
A Unified Framework for a Class
of Mathematical Programming Problems

Dipti Dubey and S. K. Neogy

1.1 Introduction

The linear complementarity problem (LCP) appears in the literature as one of the
fundamental problems in mathematical programming and it is a combination of
linear and nonlinear system of inequalities and equations. LCP includes a large class
of mathematical programming and game problems and it is always an extremely
demanding and interesting topic to researchers on optimization. The novelty of the
problem is that it unifies several mathematical programming problems like linear
programming, linear fractional programming, convex quadratic programming, and
the bimatrix game problem. The problem is studied for more than 50 years in the
lliterature and it is stated as follows.

Given a matrix M ∈ R
n×n and a vector q ∈ R

n, find z ∈ R
n such that Mz + q ≥

0, z ≥ 0 and zT (Mz + q) = 0 (or prove that such a z does not exist).
Alternatively, the problem may be restated as follows: For a given matrix

M ∈ R
n×n and a vector q ∈ R

n, the linear complementarity problem (denoted
by LCP(q, M)) is to find vectors w, z ∈ R

n such that

w − Mz = q, w ≥ 0, z ≥ 0 (1.1)

wT z = 0. (1.2)

This work was supported by SERB Grant.
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2 D. Dubey and S. K. Neogy

A pair (w, z) of vectors satisfying (1.1) and (1.2) is called a solution to the
LCP(q, M). We denote the feasible set by F(q, M) = {z : Mz + q ≥ 0, z ≥ 0}
and the solution set by S(q, M) = {z : z ∈ F(q, M), zT (Mz + q) = 0}. LCP is
normally identified as a part of optimization theory and equilibrium problems. Eaves
[11] noted that the linear complementarity problem may be thought of a specialized
quadratic program (QP) and it is basically the problem of finding an optimal solution
(w, z) of the QP

minimize wT z = zT Mz + zT q subject to Iw − Mz = q, w ≥ 0, z ≥ 0,

if the optimal objective value is zero. The algorithm presented by Lemke andHowson
[24] to compute an equilibrium pair of strategies to a bimatrix game, later extended
by Lemke [22] to solve an LCP(q, M) contributed significantly to the development
of the linear complementarity theory and brought the LCP into the limelight. Ever
since, the subject has been making great strides and has been a fertile field for
practitioners and researchers. It also arises in a number of applications in operations
research, control theory, mathematical economics, geometry, and engineering. For
further details on this problem and its applications see [8, 13, 39].

1.2 Preliminaries

We consider matrices and vectors with real entries. Any vector x ∈ R
n is a col-

umn vector unless otherwise specified and xT denotes the row transpose of x .
I· j denotes the vector whose j th coordinate is 1 and whose other coordinates
are 0s. If x = (x1, . . . , xr )T and y = (y1, . . . , yr )T are two vectors, we write
x < y if xi < yi , ∀ 1 ≤ i ≤ r and x ≤ y if xi ≤ yi , ∀ 1 ≤ i ≤ r. For any vec-
tor x ∈ R

n, x+ and x− are the vectors whose components are x+
i (= max{xi , 0})

and x−
i (= max{−xi , 0}), respectively, for all i. If x ∈ R

n and y ∈ R
n are two vec-

tors, the symbol x ∧ y denotes the vector u ∈ R
n whose i th coordinate ui is given

by ui = min(xi , yi ). By writing A ∈ R
m×n, we denote that A is a matrix of real

entries with m rows and n columns. For any matrix A ∈ R
m×n, ai j denotes its i th

row and j th column entry. A· j denotes the j th column and Ai ·, the i th row of A.
If A is a matrix of order m × n, α ⊆ {1, 2, . . . ,m} and β ⊆ {1, 2, . . . , n} then Aαβ

denotes the submatrix of A consisting of only the rows and columns of A, whose
indices are in α and β, respectively. If α = β then the submatrix Aαα is called the
principal submatrix of A and det(Aαα) is called the principal minor of A. For a given
integer k (1 ≤ p ≤ n), the principal submatrix Aαα where α = {1, . . . , p} is called
a leading principal submatrix of A. Given a symmetric matrix S ∈ R

n×n, its inertia
is the triple (ν+(S), ν−(S), ν0(S)) where ν+(S), ν−(S), ν0(S) denote the number of
positive, negative and zero eigenvalues of S respectively. Aα· denotes the submatrix
formed by the rows of A, whose indices are in α. Similarly, A·α denotes the subma-
trix formed by the columns of the matrix A, whose indices are in α. For any set β,
|β| denotes its cardinality. For any set α ⊆ {1, 2, . . . , n}, ᾱ denotes its complement
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in {1, 2, . . . , n}. Pos(A) denotes the cone generated by columns of A. A probabil-
ity vector is a vector x ∈ R

n such that all the coordinates of x are nonnegative and
n∑

i=1

xi = 1, where xi is the i th coordinate of x . Tucker introduced the concept of

principal pivot transforms (PPTs). The principal pivot transform of M with respect
to α ⊆ {1, . . . , n} is defined as the matrix given by

M ′ =
[
M ′

αα M ′
αᾱ

M ′
ᾱα M ′

ᾱᾱ

]

where M ′
αα = (Mαα)−1, M ′

αᾱ=−(Mαα)−1Mαᾱ, M ′
ᾱα = Mᾱα(Mαα)−1, M ′

ᾱᾱ = Mᾱᾱ

− Mᾱα(Mαα)−1Mαᾱ. The expression Mᾱᾱ − Mᾱα(Mαα)−1Mαᾱ is the Schur comple-
ment of Mαα in M and is denoted as (M/Mαα). The PPT of LCP (q, M)with respect
to α (obtained by pivoting on Mαα) is given by LCP (q ′, M ′), where q ′

α = −M−1
αα qα

and q ′
ᾱ = qᾱ − MᾱαM−1

αα qα. We use the notation ℘α(M)(= M ′) for PPT of M with
respect to α ⊆ {1, . . . , n}. Note that PPT is only defined with respect to those α for
which det Mαα 	= 0. By a legitimate principal pivot transform, we mean the PPT
obtained from M by performing a principal pivot on a nonsingular principal subma-
trix. When α = ∅, by convention det Mαα = 1 and M = ℘α(M). For further details
on principal pivot transform, see [3] and references therein.

1.3 A Class of Mathematical Programming Problems
in Complementarity Framework

In this section, we consider a class of mathematical programming problems, namely
linear programming problem, quadratic programming problem, linear fractional pro-
gramming problem, etc., which lead to linear complementarity problems.

1.3.1 Linear Programming

Let A ∈ R
m×n, b ∈ R

m , and c ∈ R
n . Consider the primal linear program (P): min-

imize cT x subject to Ax ≥ b, x ≥ 0 and its dual (D): maximize bT y subject to
AT y ≤ c, y ≥ 0.

An important aspect of the primal–dual relationship is the complementary slack-
ness principle which is the following:

If x is feasible to (P) and y is feasible to (D) then x, y are optimal to the respective
problem if and only if

yT (Ax − b) + xT (c − AT y) = 0.
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Using the above result, we can associate to the problems, (P) and (D) as a com-
plementarity problem. Indeed, adding slack variables u ∈ R

n, v ∈ R
m such that

u = c − AT y ≥ 0, v = −b + Ax ≥ 0 and uT x = 0, vT y = 0 and denoting M =[
0 −AT

A 0

]
, q =

[
c

−b

]
, z =

[
x
y

]
, and w =

[
u
v

]
, we obtain LCP(q, M).

Remark 1 The complementary slackness principle holds not only for the linear pro-
gramming problem; it also holds for more general programming problem. In par-
ticular, this principle is useful for developing algorithms for the convex quadratic
programming problems, in which the objective function is convex and quadratic and
the constraints are linear. It is also useful for minimizing a linear fractional function,
in which the denominator does not vanish for any feasible x , and the constraints are
linear.

The complementary slackness principle for the more general programming prob-
lems is based on the Karush–Kuhn–Tucker conditions of optimality. A statement of
these conditions for a programming problem with linear constraints in nonnegative
variables is as follows.

Let f : Rn+ → R be a convex function. Let A ∈ R
m×n be a given matrix and

b ∈ R
m be a given vector. Consider the problem: minimize f (x) subject to Ax

≤ b, x ≥ 0. Let S = {x | x ≥ 0, Ax ≤ b}. The Karush–Kuhn–Tucker condition of
optimality states that x̄ is an optimal solution to the above problem if and only if
there exist ū ∈ R

m, v̄ ∈ R
n such that

∇ f (x̄) + AT ū − v̄ = 0,

Ax̄ ≤ b, x̄ ≥ 0,

ū ≥ 0, v̄ ≥ 0,

v̄T x̄ = 0,

ūT (b − Ax̄) = 0.

Note that ūT (b − Ax̄) = 0, v̄T x̄ = 0 is the complementary slackness property here.

1.3.2 Quadratic Programming

Quadratic programming problems have a number of applications in Economics.
Hence through quadratic and linear programming problem, complementary slack-
ness principle is also highly useful in the economic theory and models and has been
recognized as an equilibrium condition. Consider the following quadratic program-
ming problem:

minimize f (x) = cT x + 1

2
xT Qx
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subject to Ax ≥ b, x ≥ 0

where Q ∈ R
n×n is symmetric, A ∈ R

m×n, b ∈ R
m , and c ∈ R

n. Here we have
assumed without loss of generality that Q is symmetric. The function cT x + 1

2 x
T Qx

is convex if and only if Q is positive semidefinite (PSD). In this case, the Karush–
Kuhn–Tucker conditions are necessary and sufficient for a given x̄ in the set of fea-
sible solutions S = {x | − Ax + b ≤ 0, x ≥ 0} to be a solution. The Karush–Kuhn–
Tucker necessary and sufficient optimality conditions specialized to this problem
yields the following equations and inequalities:

c + Qx̄ − AT ȳ − ū = 0,

−Ax̄ + v̄ = −b,

x̄ T ū = ȳT v̄ = 0,

x̄ ≥ 0, ȳ ≥ 0, ū ≥ 0, v̄ ≥ 0.

This gives us the linear complementarity problem LCP(q, M) with

M =
[
Q −AT

A 0

]
, q =

[
c

−b

]
, w =

[
ū
v̄

]
, and z =

[
x̄
ȳ

]
.

Note that Q = 0 give rise to a linear program. Thus when Q is PSD, quadratic
programming problem is completely equivalent to solving LCP(q, M).

1.3.3 Linear Fractional Programming Problem

The problem of minimizing a linear fractional function subject to linear inequality
constraints also leads to a linear complementarity problem via the Karush–Kuhn–
Tucker conditions.

Given anm × n matrix A ∈ R
m×n, vectors b ∈ R

m, c, d ∈ R
n and α, β ∈ R, the

linear fractional programming problem is the following:

minimize f (x) = cT x + α

dT x + β
(1.3)

subject to
Ax ≤ b,−x ≤ 0. (1.4)

Let S = {x |Ax ≤ b, x ≥ 0}. It is assumed that dT x + β 	= 0 for all x ∈ S or
without loss of generality, we assume that dT x + β > 0 for all x ∈ S. With this
assumption, the function f (x) is both pseudoconvex and pseudoconcave. Hence, the



6 D. Dubey and S. K. Neogy

Karush–Kuhn–Tucker optimality conditions are both necessary and sufficient for a
point x̄ to be a solution to (1.3)–(1.4). Thus, x̄ is a solution to (1.3)–(1.4), if and only
if there exist ȳ, ū ∈ R

m, and v̄ ∈ R
n such that

∇ f (x̄) + AT ū − v̄ = 0,

Ax̄ + ȳ = b,

x̄ T v̄ + ȳT ū = 0,

x̄ ≥ 0, ū ≥ 0,

v̄ ≥ 0, ȳ ≥ 0.

Now for the linear fractional programming problem, we can easily calculate ∇ f (x̄).
This is given by

∇ f (x̄) = (dT x̄ + β)−2[(dT x̄ + β)c − (cT x̄ + α)d]

which reduces to (dT x̄ + β)−2[Dx̄ + βc − αd], where D is an n × n matrix whose
i th row j th column element is given by d j ci − dic j for 1 ≤ i ≤ n, 1 ≤ j ≤ n.
We see that x̄ is a solution to (1.3)–(1.4) if and only if there exist ȳ ∈ R

m, ū ∈
R

m, and v̄ ∈ R
n such that

Dx̄ + βc − αd + AT ū − v̄ = 0,

Ax̄ + ȳ = b,

x̄ T v̄ + ȳT ū = 0,

x̄ ≥ 0, ū ≥ 0,

v̄ ≥ 0, ȳ ≥ 0.

The above leads to the following linear complementarity problem:
[

v̄

ȳ

]
−

[
D AT

−A 0

] [
x̄
ū

]
=

[
βc − αd

b

]
,

[
v̄

ȳ

]
≥ 0,

[
x̄
ū

]
≥ 0,

v̄T x̄ = 0, ȳT ū = 0.

We note that the diagonal elements of M =
[

D AT

−A 0

]
are 0 and M = −MT . Such

a matrix is PSD and therefore LCP(q, M) corresponding to a linear fractional pro-
gramming problem is processable by Lemke’s algorithm.
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1.3.4 Nash Equilibrium and Bimatrix Games

A bimatrix game is a noncooperative nonzero-sum two-person game (Player I and
Player II) in which each player has a finite number of actions (called pure strategies).
Let player I have m pure strategies and player II, n pure strategies. In a game if
player I chooses strategy i and player II chooses strategy j they incur the costs ai j
and bi j , respectively, where A = [ai j ] ∈ R

m×n and B = [bi j ] ∈ R
m×n are given cost

matrices.
A mixed strategy for player I is a probability vector x ∈ R

m whose i th com-
ponent xi represents the probability of choosing pure strategy i , where xi ≥ 0 for

i = 1, . . . ,m and
m∑

i=1

xi = 1. Similarly, a mixed strategy for player II is a probability

vector y ∈ R
n. If player I adopts a mixed strategy x and player II adopts a mixed

strategy y, then their expected costs are given by xT Ay and xT By, respectively.
A pair of mixed strategies (x∗, y∗)with x∗ ∈ R

m and y∗ ∈ R
n is said to be a Nash

equilibrium pair if

(x∗)T Ay∗ ≤ xT Ay∗ for all mixed strategies x ∈ R
m

and
(x∗)T By∗ ≤ (x∗)T By for all mixed strategies y ∈ R

n.

It is easy to show that the addition of a constant to all entries of A or B leaves the set
of equilibrium points invariant. Henceforth, we assume that all entries of thematrices
A and B are positive. We consider the following LCP:

[
u
v

]
=

[−em
−en

]
+

[
0 A
BT 0

] [
x
y

]
,

[
u
v

]T [
x
y

]
= 0,

[
u
v

]
,

[
x
y

]
≥ 0 (1.5)

where em and en are m vectors and n vectors whose components are all 1s. It is easy
to see that if (x∗, y∗) is a Nash equilibrium pair then (x̄, ȳ) is a solution to (1.5)
where

x̄ = x∗/(x∗)T By∗ and ȳ = y∗/(x∗)T Ay∗. (1.6)

Conversely, if (x̄, ȳ) is a solution of (1.5) then x̄ 	= 0 and ȳ 	= 0 in (1.6) is ensured
from the positivity of the cost matrices A and B. Therefore, (x∗, y∗) is a Nash
equilibrium pair where

x∗ = x̄/eTm x̄ and y∗ = ȳ/eTn ȳ.

Lemke andHowson [24] gave an efficient and constructive procedure for obtaining an

equilibrium pair by solving LCP(q, M), where M =
[

0 A
BT 0

]
and q =

[−em
−en

]
.
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Note that a two-person zero-summatrix game is a special case of a bimatrix game
in which A + B = 0. In a two-person zero-sum matrix game, player I chooses an
integer i (i = 1, . . . ,m) and player II chooses an integer j ( j = 1, . . . , n) simulta-
neously. Then player I pays player II an amount ai j (which may be positive, negative,
or zero). Since player II’s gain is player I’s loss, the game is said to be zero-sum.
A = (ai j ) is called the payoff matrix. We write v(A) to denote the value of the game
corresponding to the payoff matrix A. In the game described above, player I is the
minimizer and player II is the maximizer. The value of the game v(A) is positive
(nonnegative) if there exists a 0 	= y ≥ 0 such that Ay > 0 (Ay ≥ 0).Similarly, v(A)

is negative (nonpositive) if there exists a 0 	= x ≥ 0 such that AT x < 0 (AT x ≤ 0).

1.3.5 Computational Complexity of LCP

We consider LCP(q, M) where q is an n-dimensional integer column vector and M
is a square matrix with integer entries. We consider the following decision-making
problem.

Does LCP(q, M) have a solution?

In order to show that the above problem is NP-complete, we consider a known NP-
complete problem which is given below.

Problem FKP: The decision problem of checking feasibility of a 0 − 1 equality
constrained knapsack problem. Let a1, a2, . . . , an, b be given (n + 1) positive integer
values. Does a1x1 + a2x2 + · · · + anxn = b have a (0, 1) solution?

The above problem is a knownNP-complete problem. To show N P-completeness
of the linear complementarity problem,we construct an equivalent LCP(q, M) corre-
sponding to FKP, where M = (mi j ) is a matrix of order (n + 2) and q is an (n + 2)-
dimensional vector defined as follows:

qi =
⎧
⎨

⎩

ai , for 1 ≤ i ≤ n,

−b, for i = n + 1,
b, for i = n + 2.

mi j =

⎧
⎪⎪⎨

⎪⎪⎩

−1, for i = j = 1 to n + 2
1, for j = 1 to n with i = n + 1

−1, for j = 1 to n with i = n + 2
0, otherwise.

Corresponding to above FKP we get an LCP(q, M) where
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M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 0 0
0 −1 · · · 0 0 0
...

...
...

...
...

...

0 0 · · · −1 0 0
1 1 · · · 1 −1 0

−1 −1 · · · −1 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
...

an
−b
b

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

We present the following lemma and its proof due to Chung [1] for the sake of
completeness.

Lemma 1.3.1 ([1]) Problem FKP has a solution if and only if the corresponding
LCP has a solution.

Proof Let x be a solution of FKP. Define wn+1 = wn+2 = zn+1 = zn+2 = 0. For
i = 1, . . . , n, define

wi = ai (1 − xi ), zi = ai xi .

Thus, wi ≥ 0, zi ≥ 0, wi zi = 0, i = 1, . . . , n + 2.
Also it is easy to see that wi + zi = ai , i = 1, . . . , n.

wn+1 − z1 − · · · − zn + zn+1 = −b. (1.7)

wn+2 + z1 + · · · + zn + zn+2 = b. (1.8)

Hence (w, z) is a solution of the LCP(q, M).

On the other hand, let (w, z) be a solution to LCP(q, M).

Define xi = zi
ai

, i = 1, 2, . . . , n.

Note that wi zi = 0, wi + zi = ai , i = 1, 2, . . . , n. Therefore zi is either 0 or ai .
This implies xi = 0 or 1.From (1.7) and (1.8), we getwn+1 + wn+2 + zn+1 + zn+2 =
0. Since w ≥ 0, z ≥ 0, we have wn+1 = wn+2 = zn+1 = zn+2 = 0. Thus z1 + z2 +
· · · + zn = b. But this implies a1x1 + a2x2 + · · · + anxn = b. Hence, x is a solution
of the problem FKP. �

Remark 2 It is shown above that a known NP-complete problem FKP reduces to
LCP(q, M).A nondeterministic algorithm can guess a complementarity basic vector
and then check its feasibility in polynomial time. Therefore, the problem LCP(q, M)

belongs to NP-complete class. Clearly, all the generalizations of LCP(q, M) pre-
sented in Sect. 1.8 also belongs to NP-complete class.
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1.4 Matrix Classes in LCP

Matrix classes play an important role for studying the theory and algorithms of LCP.
Over the years, a variety of classes of matrices are introduced in LCP literature.
Most of the matrix classes encountered in the context of LCP are commonly found
in several applications. Several of these matrix classes are of interest, because they
characterize certain properties of the LCP and they offer certain nice features from
the viewpoint of algorithms. It is useful to review some of these matrix classes and
their properties which will form the basis for further discussions.

We say that M ∈ R
n×n is

• positive semidefinite (PSD) if xT Mx ≥ 0 ∀ x ∈ R
n.

• positive definite (PD) if xT Mx > 0 ∀ 0 	= x ∈ R
n.

• Z if mi j ≤ 0, ∀ i 	= j .
• P (P0) if all its principal minors are positive (nonnegative).
• K (K0)-matrix if it is in Z ∩ P (Z ∩ P0).

• N (N0) if all the principal minors of M are negative (nonpositive).
• N-matrix of the first category if it has at least one positive entry.
• almost N-matrix if the determinant is positive and all proper principal minors are
negative.

• N-matrix of the second category if M < 0.
• column adequate if M ∈ P0 and for each α ⊆ {1, . . . , n}, det(Mαα) = 0 implies
that columns of M·α are linearly dependent.

• column sufficient if for all x ∈ R
n the following implication holds:

xi (Mx)i ≤ 0 ∀ i implies xi (Mx)i = 0 ∀ i.

• row sufficient if MT is column sufficient.
• sufficient if M and MT are both column sufficient.
• copositive (C0) (strictly copositive (C)) if xT Mx ≥ 0 ∀ x ≥ 0 (xT Mx > 0 ∀ 0 	=
x ≥ 0).

• copositive-plus (C+
0 ) if M ∈ C0 and the implication [xT Mx = 0, x ≥ 0] ⇒

(M + MT )x = 0 holds.
• copositive-star (C∗

0) if M ∈ C0 and the implication [xT Mx = 0, Mx ≥ 0, x ≥ 0]
⇒ MT x ≤ 0 holds.

• Q-matrix if LCP(q, M) has a solution ∀ q ∈ R
n .

• Q0-matrix if for all q ∈ R
n, F(q, M) 	= ∅ ⇒ S(q, M) 	= ∅.

• S-matrix if there exists a vector 0 	= x ∈ R
n+ such that Mx > 0.

• R0-matrix if LCP(0, A) has only the trivial solution.
• L1 (semimonotone) if for every 0 	= y ≥ 0, y ∈ R

n ∃ an i such that yi > 0 and
(My)i ≥ 0.

• L2-matrix if for each 0 	= ξ ≥ 0, ξ ∈ R
n satisfying η = M ξ ≥ 0 and ηT ξ = 0

∃ a 0 	= ξ̂ ≥ 0 satisfying η̂ = −MT ξ̂ , η ≥ η̂ ≥ 0, ξ ≥ ξ̂ ≥ 0.
• L-matrix if it is in both L1 and L2.
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• E(d): E(d), (d ∈ R
n) if (w̄, z̄), z̄ 	= 0 is a solution for the LCP(d, M) implies

that there ∃ a 0 	= x ≥ 0 such that y = −MT x ≥ 0, x ≤ z̄, and y ≤ w̄.

• E∗(d): E∗(d) for a d ∈ R
n if (w̄, z̄) is a solution to the LCP(d, M) implies that

w̄ = d, z̄ = 0.
Note that E(d) = E∗(d) for any d > 0 or d < 0, E(0) = L2 of [11] and L(d) =
E(d) ∩ E(0). Further L1 = ∩d>0E(d). We refer to L(d) as Garcia’s class which
extends Eaves class L and L(d) ⊆ Q0.

1.5 Lemke’s Algorithm

A widely applicable method for solving LCP(q, M) is the method of Lemke, which
is a modification of the Lemke–Howson method proposed in [24] for finding an
equilibriumpoint of a bimatrix game. Lemke [22] proposed this algorithm for solving
certain classes of linear complementarity problems which is described below.

For solving (1.1) and (1.2), the following algorithm based on pivot steps has been
given by Lemke [22]. The initial solution to (1.1) and (1.2) is taken as

w = q + d z0

z = 0

where d ∈ R
n is any given positive vector which is called covering vector and z0 is

an artificial variable which takes a large enough value so that w > 0. This is called
primary ray.

Step 1: Decrease z0 so that one of the variables wi , 1 ≤ i ≤ n, say wr is reduced
to zero. We now have a basic feasible solution with z0 in place of wr and with
exactly one pair of complementary variables (wr , zr ) being nonbasic.

Step 2: At each iteration, the complement of the variable which has been removed
in the previous iteration is to be increased. In the second iteration, for instance,
zr will be increased.

Step 3: If the variable selected at step 2 to enter the basis can be arbitrarily
increased, then the procedure terminates in a secondary ray. If a new basic feasible
solution is obtained with z0 = 0, we have solved (1.1) and (1.2). If in the new
basic feasible solution z0 > 0, we have obtained a new basic pair of complemen-
tary variables (ws, zs). We repeat step 2.

Lemke’s algorithm consists of the repeated applications of steps 2 and 3. If non-
degeneracy is assumed, the procedure terminates either in a secondary ray or in a
solution to (1.1) and (1.2). If degenerate almost complementary solutions are gener-
ated these can be resolved using the methods discussed by Eaves [11]. We say that
an algorithm processes a problem if the algorithm can either compute a solution to
it if one exists, or show that no solution exists. For more explanations see [8]. Many
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classes of matrices have been identified in the literature on linear complementarity
theory for which one can conclude that there is no solution to (1.1) and (1.2), when
Lemke’s algorithm with the positive vector d terminates in a secondary ray for some
q. Lemke’s method is applicable for a fairly large class of matrices. For M ∈ L(d)

where d > 0 the success of Lemke’s algorithm applied to LCP(q, M) with d as the
covering vector is guaranteed if it is feasible [15].

1.6 Some Recent Matrix Classes and Lemke’s Algorithm

In what follows we discuss some recently introduced matrix classes and their pro-
cessability by Lemke’s algorithm.

1.6.1 Positive Subdefinite Matrices

Martos [29] introduced the class of symmetric positive subdefinite matrices (a gen-
eralization of the class of positive semidefinite (PSD) matrices) in connection with
a characterization of a pseudoconvex function. The study of pseudoconvex and qua-
siconvex quadratic forms leads to this new class of matrices, and it is useful in the
study of quadratic programming problem. Cottle and Ferland [5] further obtained
converses for some of Martos’s results. Since Martos was considering the Hessians
of quadratic functions, he was concerned only about symmetric matrices. Crouzeix
et al. [2] studied nonsymmetric version of PSBD matrices in the context of general-
ized monotonicity and the linear complementarity problem. We say that M ∈ R

n×n

is positive subdefinite (PSBD) if for all x ∈ R
n

xT Mx < 0 implies either MT x ≤ 0 or MT x ≥ 0.

M is said to be merely positive subdefinite (MPSBD) if M is a PSBD matrix but
not positive semidefinite (PSD). The concept of PSBD matrices leads to a study
of pseudomonotone matrices. Crouzeix et al. [2] have obtained new characteriza-
tions for generalized monotone affine maps on R

n+ using PSBD matrices. Given a
matrix M ∈ R

n×n and a vector q ∈ R
n, an affine map F(x) = Mx + q is said to be

pseudomonotone on R
n+ if

(y − z)T (Mz + q) ≥ 0, y ≥ 0, z ≥ 0 ⇒ (y − z)T (My + q) ≥ 0.

M ∈ R
n×n is said to be pseudomonotone if F(x) = Mx is pseudomonotone on

the nonnegative orthant. Gowda [16] establishes a connection between affine pseu-
domonotone mapping and the linear complementarity problem and showed that for
an affine pseudomonotone mapping, the feasibility of the LCP implies its solvability.
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Crouzeix et al. [2] proved that an affine map F(x) = Mx + q where M ∈ R
n×n and

q ∈ R
n is pseudomonotone if and only if

z ∈ R
n, zT Mz < 0 ⇒

{
MT z ≥ 0 and zT q ≥ 0 or
MT z ≤ 0, zT q ≤ 0 and zT (Mz− + q) < 0.

Theorem 1.6.1 ([2, Proposition 2.1]) Let M = abT where a 	= b, a, b ∈ R
n . M is

PSBD if and only if one of the following conditions holds:

(i) ∃ a t > 0 such that b = ta;
(ii) for all t > 0, b 	= ta and either b ≥ 0 or b ≤ 0.

Further suppose that M ∈ MPSBD. Then M ∈ C0 if and only if either (a ≥ 0 and
b ≥ 0) or (a ≤ 0 and b ≤ 0) and M ∈ C∗

0 if and only if M is copositive and ai = 0
whenever bi = 0.

The following results are obtained by Crouzeix et al. [2].

Theorem 1.6.2 ([2, Theorem 2.1, Proposition 2.5]) Let M ∈ R
n×n is PSBD and

rank(M) ≥ 2. Then MT is PSBD and at least one of the following conditions holds:

(i) M is PSD;
(ii) (M + MT ) ≤ 0;
(iii) M is C∗

0.

Theorem 1.6.3 ([2, Proposition2.2])Suppose M ∈ R
n×n isMPSBDand rank(M) ≥

2. Then

(a) ν−(M + MT ) = 1,
(b) (M + MT )z = 0 ⇔ Mz = MT z = 0.

Theorem 1.6.4 ([2, Theorem 3.3]) A matrix M ∈ R
n×n is pseudomonotone if and

only if M is PSBD and copositive with the additional condition in case M = abT ,

that bi = 0 ⇒ ai = 0.

In fact, the class of pseudomonotone matrices coincides with the class of matrices
which are both PSBD and copositive-star.

Theorem 1.6.5 ([16, Corollary 4]) If M is pseudomonotone, then M is a row suffi-
cient matrix.

PSBDmatrix is introduced as a natural generalization of a PSD matrix. However,

many properties of a PSDmatrixmay not hold for a PSBDmatrix. LetM =
[

0 2
−1 0

]
.

It is easy to check that M ∈ PSBD but (M + MT ) and M−1 is not a PSBD matrix.
The next theorem says that PSBD is a complete class in the sense of [8, 3.9.5].
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Theorem 1.6.6 ([37]) Suppose M ∈ R
n×n is a PSBD matrix. Then Mαα ∈ PSBD

where α ⊆ {1, . . . , n}.
Proof Let M ∈ PSBD and α ⊆ {1, . . . , n}. Let xα ∈ R

|α| and

M =
[
Mαα Mαᾱ

Mᾱα Mᾱᾱ

]
.

Suppose that xTα Mααxα < 0. Now define z ∈ R
n by taking zα = xα and zᾱ = 0.

Then zT Mz = xTα Mααxα. Since M is a PSBD matrix, zT Mz = xTα Mααxα < 0 ⇒
eitherMT z ≥ 0which implies thatMT

ααxα ≥ 0 orMT z ≤ 0 (which impliesMT
ααxα ≤

0).ThereforeMαα ∈PSBD.Asα is arbitrary, it follows that every principal submatrix
of M is a PSBD matrix. �

Theorem 1.6.7 ([37]) Assume that M ∈ R
n×n is a PSBD matrix. Let D ∈ R

n×n be
a positive diagonal matrix. Then M ∈ PSBD if and only if DMDT ∈ PSBD.

Proof Let M ∈ PSBD. For any x ∈ R
n, let y = DT x . Note that xT DMDT x =

yT My < 0 ⇒ MT y = MT DT x ≤ 0 or MT y = MT DT x ≥ 0. This implies that
either DMT DT x ≤ 0 or DMT DT x ≥ 0 since D is a positive diagonal matrix. Thus
DMDT ∈ PSBD. The converse follows from the fact that D−1 is a positive diagonal
matrix and M = D−1(DMDT )(D−1)T . �

Theorem 1.6.8 ([37]) If M ∈ R
n×n is a PSBDmatrix and P ∈ R

n×n is any permuta-
tion matrix, then PMPT ∈ PSBD, i.e., PSBDmatrices are invariant under principal
rearrangement.

Proof Let M ∈ PSBD and let P ∈ R
n×n be any permutation matrix. For any

x ∈ R
n, let y = PT x .Note that xT PMPT x = yT My < 0⇒ MT y = MT PT x ≤ 0

or MT y = MT PT x ≥ 0. This implies that either PMT PT x ≤ 0 or PMT PT x ≥ 0
since P is just a permutation matrix. It follows that PMPT is a PSBD matrix.
The converse of the above theorem follows from the fact that PT P = I and
M = PT (PMPT )(PT )T . �

Lemma 1.6.2 ([37]) Suppose M ∈ R
n×n is a PSBD matrix with rank(M) ≥ 2 and

M + MT ≤ 0. If M is not a skew-symmetric matrix, then M ≤ 0.

Theorem 1.6.9 ([37]) Suppose M ∈ R
n×n is a PSBD matrix with rank(M) ≥ 2.

Then M is a Q0-matrix.

Proof By Theorem 1.6.2, MT is a PSBD matrix. Also by the same theorem, either
M ∈ PSD or (M + MT ) ≤ 0 or M ∈ C∗

0. If M ∈ C∗
0 then M ∈ Q0 (see [8]). Now if

(M + MT ) ≤ 0, and M is not skew-symmetric then by Lemma 1.6.2 it follows that
M ≤ 0. In this case,M ∈ Q0 [8]. However, ifM is skew-symmetric thenM ∈ PSD.

Therefore, M ∈ Q0. �
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Corollary 1 ([37]) Assume that M is a PSBD matrix with rank(M) ≥ 2. Then
LCP(q, M) is processable by Lemke’s algorithm. If rank(M) = 1, (i.e., M =
abT , a, b 	= 0) and M ∈ C0 then LCP(q, M) is processable by Lemke’s algorithm
whenever bi = 0 ⇒ ai = 0.

Proof Suppose rank(M) ≥ 2. From Theorem 1.6.2 and the proof of Theorem 1.6.9,
it follows that M is either a PSD matrix or M ≤ 0 or M ∈ C∗

0. Hence LCP(q, M) is
processable by Lemke’s algorithm (see [8]). For PSBD ∩ C0 matrices of rank(M) =
1, i.e., for M = abT , a, b 	= 0, such that bi = 0 ⇒ ai = 0. Note that M ∈ C∗

0 by
Theorem 1.6.1. Hence LCP(q, M) with such matrices are processable by Lemke’s
algorithm. �

Theorem 1.6.10 ([37]) Suppose M is a PSBD∩ C0 matrix with rank(M) ≥ 2. Then
M ∈ R

n×n is a sufficient matrix.

Proof Note that by Theorem 1.6.2, MT is a PSBD ∩ C0 matrix with rank(MT ) ≥ 2.
Now by Theorem 1.6.4, M and MT are pseudomonotone. Hence, M and MT are
row sufficient by Theorem 1.6.5 Therefore M is sufficient. �

Note that, in general a PSBD matrix need not be a P0 matrix. It is easy to check

that M =
[

0 −2
−1 0

]
is a PSBD matrix but M /∈ P0.

Theorem 1.6.11 ([37]) Suppose A ∈ R
n×n can be written as M + N where M ∈

MPSBD ∩ C+
0 , rank(M) ≥ 2 and N ∈ C0. If the system q + Mx − NT y ≥ 0, y ≥

0 is feasible, then Lemke’s algorithm for LCP(q, A) with covering vector d > 0
terminates with a solution.

Proof Let the feasibility condition of the theorem holds so that there exist an x0 ∈ R
n

and a y0 ∈ R
n+ such that q + Mx0 − NT y0 ≥ 0. First we need to show that for

any x ∈ R
n+, if Ax ≥ 0 and xT Ax = 0, then xT q ≥ 0. Note that for given x ≥ 0,

xT Ax = 0 ⇒ xT (M + N )x = 0 and sinceM, N ∈ C0, this implies that xT Mx = 0.
As M is a MPSBD matrix xT Mx = 0 ⇔ xT (M + MT )x = 0 ⇔ (M + MT )x =
0 ⇔ MT x = 0 ⇔ Mx = 0. See Theorem 1.6.3. Also since Ax ≥ 0, it follows that
Nx ≥ 0 and hence xT NT y0 ≥ 0. Further since q + Mx0 − NT y0 ≥ 0 and x ≥ 0,
it follows that xT (q + Mx0 − NT y0) ≥ 0. This implies that xT q ≥ xT NT y0 ≥ 0.

Now from Corollary 4.4.12 and Theorem 4.4.13 of [8, p. 277] it follows that
Lemke’s algorithm for LCP(q, A) with covering vector d > 0 terminates with a
solution. �

The class MPSBD ∩ C+
0 is nonempty. It is easy to check this from the matrix

M =
⎡

⎣
2 5 0
1 4 0
0 0 0

⎤

⎦ . Note that xT Mx = 2(x1 + x2)(x1 + 2x2). Using this expression, it

is easy to verify that xT Mx < 0 ⇒ either MT x ≤ 0 or MT x ≥ 0. Also it is easy to
see that M ∈ C+

0 .
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1.6.2 N̄ (Almost N̄-Matrix)

The class of N̄-matrices was introduced by Mohan and Sridhar in [31]. The class of
almost N-matrices is studied in [32, 45]. We discuss here a new matrix class almost
N̄ studied in [43], which is a subclass of the almost N0-matrices.

Definition 1 AmatrixM ∈ R
n×n is said to be an N̄(almost N̄)-matrix if there exists a

sequence {M (k)}, where M (k) = [m(k)
i j ] areN(almostN)-matrix such thatm(k)

i j → mi j

for all i, j ∈ {1, 2, . . . , n}.

Example 1 Let M =
⎡

⎣
−1 2 2
0 0 2
1 1 −1

⎤

⎦ . Note that M is an almost N0-matrix. It is easy

to verify that M ∈ almost N̄ since we can get M as a limit point of the sequence of
almost N-matrices

M (k) =
⎡

⎣
−1 2 2

1
k − 1

k 2
1 1 −1

⎤

⎦ .

It is well known that for P0 (almost P0)-matrices, by perturbing the diagonal
entries alone one can get a sequence of P (almost P)-matrices that converges to an
element ofP0 (almostP0). However, this is not true forN0 (almostN0)-matrices. One
of the reasons is that an N (almost N)-matrix needs to have all its entries nonzero.
However, in the above example, we can see that even though the matrix M ∈ almost
N0, it cannot be obtained as a limit point of almost N-matrices by perturbing the
diagonal. However, we show in the above example that M ∈ almost N̄.

The following example shows that an almost N0-matrix need not be an almost
N̄-matrix.

Example 2 Let M =

⎡

⎢⎢⎣

0 −1 −1 0
0 0 0 1
0 1 0 0
1 1 0 −1

⎤

⎥⎥⎦ . Here M is an almost N0-matrix. However,

it is easy to see that M is not an almost N̄-matrix since we cannot get M as a limit
point of a sequence of almost N-matrices.

Suppose M ∈ almost N0. Then is it true that (i) M ∈ Q implies M ∈ R0? The
following example demonstrates that M ∈ almost N0 ∩ Q but M /∈ R0.

Example 3 Consider the matrixM =

⎡

⎢⎢⎣

−1 1 1 1
1 0 0 0
1 0 0 −1
1 0 −1 0

⎤

⎥⎥⎦. It is easy to verify thatM ∈

almost N0. Now taking a PPT with respect to α = {1, 3} we get

℘α(M) =

⎡

⎢⎢⎣

0 0 1 1
0 0 1 1
1 −1 1 0

−1 1 0 1

⎤

⎥⎥⎦. Now M ∈ Q since ℘α(M) (a PPT of M) ∈ Q (see [42,

p. 193]). However (0, 1, 0, 0) solves LCP(0, M). Hence M /∈ R0.
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The next example [45, p. 120] shows that an almost N0-matrix, even with value
positive, need not be a Q-matrix or an R0-matrix.

Example 4 Let M =

⎡

⎢⎢⎣

−2 −2 −2 2
−2 −1 −3 3
−2 −3 −1 3
2 3 3 0

⎤

⎥⎥⎦ q =

⎡

⎢⎢⎣

−1001
−500
−500
500

⎤

⎥⎥⎦ . It is easy to verify that

M ∈ almost N0 but M /∈ Q even though v(M) is positive. Furthermore, M /∈ R0.

However, if M ∈ almost N̄ ∩ R0 and v(M) > 0, then we show that M ∈ Q.

In the statement of some theorems that follow, we assume that n ≥ 4, to make
use of the sign pattern stated in the following lemma.

Lemma 1.6.3 ([43]) Suppose M ∈ R
n×n is an almost N̄-matrix of order n ≥ 4. Then

there exists a nonempty subset α of {1, 2, . . . , n} such that M can be written in the
partitioned form as (if necessary, after a principal rearrangement of its rows and
columns)

M =
[
Mαα Mαᾱ

Mᾱα Mᾱᾱ

]

where Mαα ≤ 0, Mᾱᾱ ≤ 0, Mᾱα ≥ 0, and Mαᾱ ≥ 0.

Proof This follows fromRemark 3.1 in [32, p. 623] and from the definition of almost
N̄-matrices. �

In the proof of the sign pattern in Lemma 1.6.3, we assume n ≥ 4 since lemma
requires that all the principal minors of order 3 or less are negative.

Theorem 1.6.12 ([43]) Suppose M ∈ E0 ∩ almost N̄ (n ≥ 4). Then there exists a
principal rearrangement

B =
[
Bαα Bαᾱ

Bᾱα Bᾱᾱ

]

of M where Bαα, Bᾱᾱ are nonpositive strict upper triangular matrices and Bᾱα, Bαᾱ

are nonnegative matrices.

Proof Note that M is an almost N̄-matrix of order n ≥ 4. By Lemma 1.6.3 there
exists a nonempty subset α of {1, 2, . . . , n} satisfying

M =
[
Mαα Mαᾱ

Mᾱα Mᾱᾱ

]

where Mαα ≤ 0, Mᾱᾱ ≤ 0, Mᾱα ≥ 0 and Mαᾱ ≥ 0.
M ∈ E0 implies Mαα ∈ E0. It is easy to see that there exist permutation matrices

L ∈ R
|α|×|α| and M ∈ R

|ᾱ|×|ᾱ| such that LMααLT and MMᾱᾱMT are strict upper
triangular matrices. Let

P =
[L 0
0 M

]
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be a permutation matrix. Then

B = PMPT =
[ LMααLT LMαᾱMT

MMᾱαLT MMᾱᾱMT

]

whereLMααLT andMMᾱᾱMT are nonpositive strict upper triangular matrices and
LMαᾱMT , MMᾱαLT are nonnegative matrices. Hence the result. �

An example of almost N̄ ∩ E0-matrix is given below.

Example 5 Let M =

⎡

⎢⎢⎣

0 −1 0 2
0 0 1 0
0 1 0 −1
1 0 0 0

⎤

⎥⎥⎦ . Here M is an E0 ∩ almost N0-matrix. It is

easy to see that M ∈ almost N̄ since we can get M as a limit point of the sequence

M (k) =

⎡

⎢⎢⎣

− 1
k −1 2

k 2
− 1

k − 1
k 1 2

k
4
k 1 − 1

k −1
1 2

k − 1
k − 1

k

⎤

⎥⎥⎦ of almostN-matriceswhich converges toM as k → ∞.

We need the following results in sequel.

Theorem 1.6.13 ([38, 48]) If M ∈ R0 and LCP(q, M) has an odd number of solu-
tions for a nondegenerate q, then M ∈ Q.

Theorem 1.6.14 ([40, p. 1271]) Suppose M ∈ Q (Q0). Assume that Mi · ≥ 0 for
some i ∈ {1, 2, . . . , n}. Then Mαα ∈ Q (Q0), where α = {1, 2, . . . , n}\{i}.
Theorem 1.6.15 ([48, p. 45]) A sufficient condition for LCP(q, M) to have even
number of solutions for all q for which each solution is nondegenerate is that there
exists a vector z > 0 such that zT M < 0.

Theorem 1.6.16 ([43]) Suppose M ∈ R
n×n is an almost N̄ ∩ Q0 ∩ E0-matrix with

n ≥ 4. Then, there exists a principal rearrangement B of M such that all the leading
principal submatrices of B are Q0-matrices.

Proof Note that M is an almost N̄ ∩ Q0 ∩ E0-matrix with n ≥ 4. Then by Theo-
rem 1.6.12 there exists a principal rearrangement

B =
[
Bαα Bαᾱ

Bᾱα Bᾱᾱ

]

of A such that Bαα, Bᾱᾱ are nonpositive strict upper triangular matrices and Bᾱα,

Bαᾱ are nonnegative matrices. It is easy to conclude from the structure of B that
Bn· ≥ 0. Note that B ∈ Q0, since B is a principal rearrangement of A. Therefore,
by Theorem 1.6.14, Bββ ∈ Q0 where β = {1, 2, . . . , n}\{n}. Repeating the same
argument, it follows that all leading principal submatrices of B are Q0. �



1 A Unified Framework for a Class of Mathematical Programming Problems 19

Theorem 1.6.17 ([43]) Suppose M ∈ almost N̄ ∩ R
n×n, n ≥ 4 with v(M) > 0.

Then M ∈ Q if M ∈ R0.

Proof Let M ∈ almost N̄ ∩ R0. Then by Lemma 1.6.3, there exists ∅ 	= α ⊆
{1, 2, . . . , n}, M =

[
Mαα Mαᾱ

Mᾱα Mᾱᾱ

]
where Mαα ≤ 0, Mᾱᾱ ≤ 0, Mᾱα ≥ 0 and Mαᾱ ≥

0.
Now consider Mαα. Suppose Mαα contains a nonnegative column vector. Then

clearly LCP(0, M) has a nontrivial solution, which contradicts our hypothesis that
M ∈ R0.Hence, every column of Mαα should have at least one negative entry. Hence
there exists an x ∈ R

|α|, x > 0, such that xT Mαα < 0. It now follows from The-
orem 1.6.15 that for any qα > 0, where qα is nondegenerate with respect to Mαα,

LCP(qα, Mαα) has r solutions (r ≥ 2 and even). Similarly, LCP(qᾱ, Mᾱᾱ) has s solu-
tions (s ≥ 2 and even) for any qᾱ > 0, where qᾱ is nondegenerate with respect to

Mᾱᾱ . Now suppose (wi
α, ziα) is a solution for LCP(qα, Mαα). Note that w =

[
wi

α

qᾱ

]

and z =
[
ziα
0

]
solves LCP(q, M). Similarly, associated with every solution (wi

ᾱ, ziᾱ)

we can construct a solution of LCP(q, M). Thus, LCP(q, M) has (r + s − 1) solu-
tions accounting for only once the solution w = q, z = 0. Thus, there are an odd
number (r + s − 1 ≥ 3) of solutions to LCP(q, M) with all solutions nondegen-
erate. We shall show that (r + s − 1) ≤ 3 and hence there are only 3 solutions to
LCP(q, M). Since q is nondegenerate with respect toM, this is a finite set [38, p. 85].
Suppose (w̄, z̄) is a nondegenerate solution to LCP(q, M). Then (w̄, z̄) ∈ S(q, M).

Now since M is a limit point of almost N-matrices {M (k)}, we note that the com-
plementary basis corresponding (w̄, z̄) will also yield a solution to LCP(q, M (k))

for all k sufficiently large. By Theorem 3.2 [32, p. 625], which asserts that there are
exactly 3 solutions for LCP(q, M (k)) for any nondegenerate q(> 0) with respect to
M (k), we obtain (r + s − 1) ≤ |S(q, M)| ≤ |S(q, M (k))| = 3. But (r + s − 1) ≥ 3.
Hence LCP(q, M) has exactly 3 solutions for any nondegenerate q(> 0)with respect
to M. Since M ∈ R0 and LCP(q, M) has an odd number of solutions, it follows from
Theorem 1.6.13 that M ∈ Q. �

1.6.3 Fully Cospositive Matrices

In this section, we discuss about a class ofmatrices that are defined based on principal
pivot transforms and show that the matrices in this class have nonnegative principal
minors. A matrix M is said to be fully copositive (C f

0 ) if ℘α(M) is a C0-matrix for
all α ⊆ {1, . . . , n}. It is known that C f

0 ∩ Q0 matrices are sufficient. The elements
of C f

0 ∩ Q0 are completely Q0-matrices [41] and share many properties of positive
semidefinite (PSD) matrices. Symmetric C f

0 ∩ Q0 matrices are PSD.
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Theorem 1.6.18 ([41, Theorem 4.5]) Suppose M ∈ C f
0 ∩ Q0. Then M ∈ P0.

Theorem 1.6.19 ([41, Theorem 3.3]) Let M ∈ C f
0 . The following statements are

equivalent:

(a) M is a Q0-matrix.
(b) for every PPT M ′ of M, m ′

i i = 0 ⇒ m ′
i j + m ′

j i = 0, ∀ i, j ∈ {1, 2, . . . , n}.
(c) M is a completely Q0-matrix.

Theorem 1.6.20 ([41, Theorem 4.9]) If M ∈ R
2×2 ∩ C f

0 ∩ Q0, then M is a PSD
matrix.

Theorem 1.6.21 ([6, Theorem 2 ′, p.73]) M ∈ R
n×n is sufficient if and only if every

matrix obtained from it by means of a PPT operation is sufficient of order 2.

As a consequence we have the following theorem.

Theorem 1.6.22 ([36]) Let M ∈ C f
0 ∩ Q0. Then M is sufficient.

Proof Note that all 2 × 2 submatrices of M or its PPTs are C f
0 ∩ Q0 matrices since

M and ℘α(M) are completely Q0-matrices. Now by Theorem 1.6.20, all 2 × 2 sub-
matrices of M or ℘α(M) for all α are positive semidefinite, and hence sufficient.
Therefore, M or every matrix obtained by means of a PPT operation is sufficient of
order 2. Now by Theorem 1.6.21, M is sufficient. �

1.7 Hidden Z-Matrices

The class of hidden Z-matrices generalizes the class of Z-matrices. Mangasarian
introduced this generalization for studying the class of linear complementarity prob-
lems solvable as linear programs [10, 25–27]. Let us recall the definition of hidden
Z-matrix.

Definition 2 A matrix M ∈ R
n×n is said to be a hidden Z-matrix if there exist Z -

matrices X, Y ∈ R
n×n and r, s ∈ R

n+ satisfying the following two conditions:
(i) MX = Y ,
(ii) r T X + sT Y > 0.

The class of hidden Z-matrices is denoted by hidden Z. Pang [47] established a
necessary and sufficient condition for a hidden Z-matrix to be a P-matrix. Many of
the results which hold for the Z class admit an extension to the hidden Z class [8,
47]. The idea of solving a LCP as linear programs follows from well known fact that
if LCP has a solution then the solution is one of the extreme points of the feasible
set S(q, M). Therefore, if an appropriate linear form is known whose minimum over
S(q, M) would necessarily occur at a complementary solution then LCP could be
solved as an LP [7]. Mangasarian observed the following result for solving LCPs as
linear programs.
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Proposition 1 If the linear complementarity problem LCP(q, M) has a solution
then there exist a p ∈ R

n such that the linear program LP (min pT z subject to
w = Mz + q ≥ 0, z ≥ 0) has a (unique) solution z̄ that also solves LCP(q, M).

Mangasarian [25] also obtain the expressions for such p for the class hidden Z
matrices as stated in the following theorem.

Theorem 1.7.23 ([25]) Let M ∈ hiddenZ and F(q, M) 	= ∅. Then the LCP (q, M)

has a solution which can be obtained by solving the linear program LP(p, q, M) :

min pT x

subject to

q + Mx ≥ 0

x ≥ 0,

where p = r + MT s, r and s are as in the Definition 2.

The following result identifies somemore subclasses of hiddenZ-matrices, where
the vector p can be easily specified in the following theorem:

Lemma 1.7.4 ([10]) Let M ∈ R
n×n be a hidden Z-matrix. Let ℘α(M) be a PPT of

M with respect to α ⊆ {1, . . . , n}. Then ℘α(M) is a hidden Z-matrix.

Proof LetM ∈ hiddenZ, X andY are any twoZ-matrices satisfying the conditions in
Definition 2 with r, s ≥ 0 and α ⊆ {1, . . . , n}. Suppose M, X , and Y are partitioned
as follows:

M =
[
Mαα Mαᾱ

Mᾱα Mᾱᾱ

]
, X =

[
Xαα Xαᾱ

X ᾱα X ᾱᾱ

]
, Y =

[
Yαα Yαᾱ

Yᾱα Yᾱᾱ

]
.

Then by Lemma 1.3.1 [47], we have

[
M−1

αα −M−1
αα Mαᾱ

MᾱαM−1
αα Mᾱᾱ − MᾱαM−1

αα Mαᾱ

] [
Yαα Yαᾱ

X ᾱα X ᾱᾱ

]
=

[
Xαα Xαᾱ

Yᾱα Yᾱᾱ

]
.

Let X̃ =
[
Yαα Yαᾱ

X ᾱα X ᾱᾱ

]
and Ỹ =

[
Xαα Xαᾱ

Yᾱα Yᾱᾱ

]
. Note that X̃ , Ỹ ∈ Z. Define r̃ =

(sα, rᾱ) and s̃ = (rα, sᾱ). Note that r̃ and s̃ are nonnegative and r̃ T X̃ + s̃T Ỹ = r T X +
sT Y > 0. Therefore, ℘α(M) ∈ hidden Z. �

Mangasarian [26] gave a table consisting of a summary of the cases for which
LCP (q, M) can be solvable as LP (p, q, M), where p is specified along with the
conditions on M.

A partial table from [26] is given below.
In the next theorem, we identify some more subclasses of hidden Z-matrices

where the vector p can be easily specified in the following theorem:
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Table 1.1 Vector p in the linear program

Matrix M Condition on M Vector p in the LP

M = Z2Z
−1
1 ,

rT Z1 + sT Z2 > 0, r, s ≥ 0

Z1, Z2 ∈ Z p = r + MT s

M M ∈ Z p > 0

M M−1 ∈ Z p = MT s, s > 0

M M > 0, n ≥ 3 p = e where e is a vector of all
1’s

M Mj j ≥
∑

i 	= j

|Mi j |, ; j = 1, 2, . . . , n p = MT e

Theorem 1.7.24 ([10])Consider the LCP (q, M). Let℘α(M) be the PPT of M with
respect to α ⊆ {1, . . . , n}, which belongs to the subclasses of hidden Z-matrices
listed in the Table 1.1 [26]. Then the LCP (q ′, ℘α(M)) obtained from taking the PPT
of LCP (q, M) with respect to α ⊆ {1, . . . , n} can be solved by solving the linear
program LP(p′, q ′, ℘α(M)) :

min p′T x
subject to

q ′ + ℘α(M)x ≥ 0

x ≥ 0,

where p′ is specified in the Table 1.1 [26].

Proof Suppose M ∈ hidden Z matrix which does not belong to the classes listed
in Table 1.1 [26] and there exists a PPT ℘α(M) where α ⊆ {1, . . . , n} such that
℘α(M) belongs to one of the classes listed in Table 1.1 [26]. Note that PPT of LCP
(q, M) with respect to α ⊆ {1, . . . , n} is given by LCP (q ′, ℘α(M)). Further, note
that |S(q, M)| = |S(q ′, ℘α(M))| and we can obtain a solution of LCP (q, M) by
solving LCP (q ′, ℘α(M)). Since ℘α(M) belongs to the class listed in the Table 1.1
[26], we can take p′ as 1 as p specified in the Table 1.1 [26]. By Lemma 1.7.4
and Theorem 1.7.23, it follows that by solving LP(p′, q ′, ℘α(M)) we can obtain a
solution of LCP (q ′, ℘α(M)) and hence we can obtain a solution of LCP (q, M). �

The following example demonstrates that the above scheme extends the class of
LCPs which can be solved as a linear program.

Example 6 Consider the following matrix

M =
⎡

⎣
−1 −1 −13
3 1 7

−5 −1 −14

⎤

⎦ .
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Note that its inverse is

⎡

⎣
0.2692 0.0385 −0.2308

−0.2692 1.9615 1.2308
−0.0769 −0.1538 −0.0769

⎤

⎦, which is not a Z-matrix.

But,

℘α(M) =
⎡

⎣
2 −1 −6

−3 1 −7
−2 −1 −7

⎤

⎦

with respect to α = {2} is a Z-matrix.

Remark 3 Mangasarian [26] provides the following example of LCP(q, M) where

M =
⎡

⎣
0 3 4
1 −1 0
0 −1 −3

⎤

⎦, q =
⎡

⎣
−2
0
1

⎤

⎦ for which the solution can be obtained by solv-

ing LP(p, q, M) with p = MTe = e but application of Lemke’s algorithm on
LCP(q, M) leads to ray termination.

1.8 Various Generalizations of LCP

In this section, we discuss various generalizations of the linear complementarity
problem appeared in the literature. A number of generalizations of the linear com-
plementarity problem have been proposed by several researchers in the context of
real-life problems arising frommanagement, engineering, or game theoretical appli-
cations. Researchers over the decade have developed theory and algorithms for each
of the generalizations exclusively. These generalizations deals with various types of
mixed complementarity conditions for which standard literature is not available.

1.8.1 Vertical Linear Complementarity Problem

While defining LCP(q, M), it is assumed that the given matrix is a square matrix.
However, in many real-life applications, we may not get a square matrix and each
complementarity pair may not exist as it appears in the definition of the problem
LCP(q, M). In order to overcome the difficulties associated with a square matrix,
the concept of a vertical blockmatrix (a rectangular matrix) was introduced by Cottle
and Dantzig [4] in connection with the generalization of the linear complementarity
problem.

Consider a rectangular matrix A of order m × k with m ≥ k. Suppose A is par-
titioned row-wise into k blocks in the form
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A =

⎡

⎢⎢⎢⎣

A1

A2

...

Ak

⎤

⎥⎥⎥⎦

where each A j = ((a j
rs)) ∈ R

m j×k with
k∑

j=1

m j = m. Then A is called a vertical

block matrix of type (m1, . . . ,mk). If m j = 1, ∀ j = 1, . . . , k, then A is a square
matrix. The r th block of A is denoted by Ar and is a matrix of order mr × k. We
then use the notation J1 = {1, 2, . . . ,m1} to denote the set of row indices of the first

block in A and Jr =
⎧
⎨

⎩

r−1∑

j=1

m j + 1,
r−1∑

j=1

m j + 2, . . . ,
r∑

j=1

m j

⎫
⎬

⎭ to denote the set of

row indices of the r th block in A for r = 2, 3, . . . , k. A vertical block matrix is
a natural generalization of a square matrix. For example, the vertical block matrix
structure given above arises naturally in the literature of stochastic games where the
states are represented by the columns and actions in each state are represented by
rows in a particular block. See [34, 35].

We shall now present a generalization of the linear complementarity problem by
Cottle and Dantzig [4] involving a vertical block matrix known as vertical linear
complementarity problem and it is stated as follows:

Given a vertical block matrix A of type (m1, . . . ,mk) and a vector q ∈ R
m,

the vertical linear complementarity problem (VLCP(q,A)) is to find w ∈ R
m and

z ∈ R
k such that

w − Az = q, w ≥ 0, z ≥ 0 (1.9)

z j

m j∏

i=1

w
j
i = 0, for j = 1, 2, . . . , k. (1.10)

Cottle–Dantzig’s generalizationwasdesignated later by the name vertical linear com-
plementarity problem [8] and this problem is denoted as VLCP(q,A). For details
on vertical linear complementarity problem see [30, 33] and the references therein.
Ebiefung and Kostreva [12] presented a generalized version of Leontief input–output
linear model as a vertical linear complementarity problem and mentioned that this
model can be used for the problem of choosing a new technology, solving problems
related to energy commodity demands, international trade, multinational army per-
sonnel assignment, and pollution control. Another general form of the VLCP(q,A)

arises in different areas of control theory through discretization of Hamilton–Jacobi–
Bellman equations [52, 53]. Oh [44] formulated a mixed lubrication problem as a
generalized nonlinear complementarity problem. Another nice application of the
VLCP is the formulation of the global stability of a two-species piecewise linear
Volterra ecosystem [14]. Gowda and Sznajder [19] present an extension of the bima-
trix game model and the problem of computing a pair of equilibrium strategies for
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this extended model leads to a VLCP formulation. This generalized bimatrix game
model can be used in many applications in economics. A number of natural applica-
tions of vertical linear complementarity problem arise in stochastic games of special
structure in the payoff and transition probability matrix. See [35] and the references
cited therein. This sort of applications and the potential future applications have
motivated to study VLCP theory and algorithms for the VLCP.

Mohan et al. [33] obtained an equivalent formulation of VLCP(q,A) as LCP
(q,M) in order to extend various matrix theoretic results and applicability of
Cottle Dantzig’ algorithm (a generalization of Lemke’s algorithm). The problem
VLCP(q,A) can be formulated as LCP(q,M) as follows.

Consider a vertical block matrixA of type (m1, . . . ,mk), where m j is the size of
the j th block. We construct an equivalent square matrix M of orderm × m ofA by
copying A· j , m j times for j = 1, 2, . . . , k (for example, A·1 is copied m1 times,
A·2 is copied m2 times etc.). Thus M·p = A·s ∀ p ∈ Js . Note that M is singular
if m > k. Mohan et al. [33] observe the following result. The proof of the following
lemma presents a construction procedure for a solution (u, v) to LCP(q,M) from a
solution (w, z) of VLCP(q,A).

Lemma 1.8.5 Given the VLCP(q,A), letM be the equivalent square matrix ofA.

VLCP(q,A) has a solution if and only if LCP(q,M) has a solution.

Proof We obtain a solution (u, v) to LCP(q,M) from a solution (w, z) of VLCP
(q,A) as follows:

We choose u = w.Note that z j > 0 implies ∃ p( j) ∈ Jj such thatwp( j) = 0.
Define

vr =
{
0, if r 	= p( j) for any 1 ≤ j ≤ k
z j , if ∃ a j, 1 ≤ j ≤ k, such that r = p( j)

Clearly, vr is well defined. Now it is easy to see that (u, v) solves LCP(q,M).

Conversely, suppose (u, v) is a solution to the LCP(q,M). Define the vector
z ∈ R

k by taking
z j =

∑

i∈J j

vi .

Note that if z j > 0, ∃ i ∈ Jj such that vi > 0 and hence ui = 0. Hence with
w = u, (w, z) solves VLCP(q,A). �

1.8.2 Scarf’s Complementarity Problem

Scarf [50] introduced ageneralization of the linear complementarity problem todiver-
sify the field of applications. Scarf [50] introduced the following interesting gener-
alization of the linear complementarity problem involving a vertical block matrix A
of type (m1,m2, . . . ,mk) described in earlier section. Let M j (x) where 0 ≤ x ∈ R

k
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be k homogeneous linear functions, each of which is the maximum of a finite num-
ber of linear functions and q = [q1, q2, . . . , qk]T ∈ R

k be a vector. Scarf posed the
following problem. Under what conditions can we say that the equations

M1(x) − r1 = q1

M2(x) − r2 = q2

...

Mk(x) − rk = qk

have a solution in nonnegative variables x and r with x jr j = 0 for all j?
Note that the important difference between Scarf’s problem and LCP (see [50])

is that each linear function is replaced by the maximum of several linear functions.
Scarf [50] pointed out that if M j (x) were the minimum rather than the maximum of
linear functions, the problem could be solved by a trivial reformulation of LCP.

A slightly generalized version of Scarf’s complementarity problem stated by
Lemke [23] is as follows.

Given an m × k, m ≥ k vertical block matrix A of type (m1,m2, . . . ,mk ) and

q̄ ∈ R
m where m =

k∑

j=1

m j , find x ∈ R
k such that

r j (x) = max
i∈J j

(A j x + q̄ j )i ≥ 0, j = 1, . . . , k, x ≥ 0 (1.11)

k∑

j=1

x jr j (x) = 0. (1.12)

We refer to this generalization as Scarf’s complementarity problem and denote
this problem by SCP(q̄, A). Lemke [23] formulated the Scarf’s complementarity
problem as a linear complementarity problem LCP(q, M) but he remained silent
about the processability of this problem by his algorithm. Lemke [23] showed that
this formulation arises for calculating a vector in the core of an n person game [51].

1.8.3 Other Generalizations

We now briefly mention some more generalizations which are proposed in the liter-
ature to accommodate more real-life problems.

• The Horizontal Linear Complementarity Problem: Given two matrices A, B ∈
R

n×n and a vector q ∈ R, the horizontal linear complementarity problem
(HLCP(q, A, B)) is to find vectors x ∈ R

n and y ∈ R
n such that

Ax − By = q, x ≥ 0, y ≥ 0 (1.13)
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xT y = 0. (1.14)

The HLCPwas apparently introduced by Samelson, Thrall, andWesler [49], moti-
vated by a problem in structural engineering. Clearly, this problem reduces to the
standard problem LCP(q, M) when A = I, B = M.

• The extended horizontal linear complementarity problem: Consider a rectangular
matrix C of order n × m (m > n). Suppose C is partitioned into (k + 1) blocks
of the form [

C0 C1 C2 · · · Ck
]

whereC j ∈ R
n×n, j = 0, 1, 2, . . . , k andm = (k + 1) n. Let c be a block vector

which is defined as q for k = 1 and as [q, d1, d2, . . . , dk−1] for k ≥ 2, where q ∈
R

n and 0 < d j ∈ R
n for j = 1, 2, . . . , k − 1.The extended horizontal LCP(c,C)

is to find vectors x j ∈ R
n, j = 0, 1, 2, . . . , k such that

C0 x0 = q +
k∑

j=1

C j x j ,

x0 ∧ x1 = 0, (d j − x j ) ∧ x j+1 = 0, j = 1, 2, . . . , k − 1,

where for k = 1, only the first complementarity condition is considered. The above
form of the extended HLCP has been considered by Sznajder and Gowda [54].
Kaneko [20] considers the extended HLCP for the case C0 = I and cites appli-
cations in mathematical programming and structural mechanics. See [21, 46, 55]
for applications in inventory theory, statistics, and modeling piecewise linear elec-
trical networks. The study of HLCP is important due to the fact that any piecewise
linear system can be formulated as a HLCP.

• Extended Generalized Order Linear Complementarity Problem: Given a block
matrix B ∈ R

n(k+1)×n and a block vector b ∈ R
n(k+1)×1 where B = [B0, B1, . . . ,

Bk], B j ∈ R
n×n, j = 0, 1, . . . , k and b = [b0, b1, . . . , bk], b j ∈ R

n, j = 0,
1, . . . , k, the extended generalized order linear complementarity problem
(EGOLCP (b, B)) is to find z ∈ R

n such that

(B0z + b0) ∧ (B1z + b1) ∧ (B2z + B2) ∧ · · · ∧ (Bkz + bk) = 0. (1.15)

This was introduced by Gowda and Sznajder [18]. The problem reduces to gener-
alized order linear complementarity problem (GOLCP) by taking B0 = I.

• Generalized LCP of Ye: This was introduced by Ye [56]. Given matrices A, B ∈
R

m×n, C ∈ R
m×k and a vector q ∈ R

m, find x, y ∈ R
n and z ∈ R

k such that

Ax + By + Cz = q, x, y, z ≥ 0,

xT y = 0.
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As mentioned in [56], this generalized LCP arises in economic equilibrium prob-
lems, noncooperative games, traffic assignment problems, and, of course, in
optimization problems. It is related to the variational inequality problem, the sta-
tionary point problem, bilinear programming problem, and nonlinear equations.

• Mangasarian and Pang’s Extended Linear Complementarity Problem: This gen-
eralization of LCP was introduced by Mangasarian and Pang [28]. Given two
matrices M, N ∈ R

m×n and a polyhedral set K in R
m, Mangasarian and Pang’s

extended linear complementarity problem (denoted by XLCP(M, N ,K)) is to find
two vectors x, y ∈ R

n such that

Mx − Ny ∈ K, x ≥ 0, y ≥ 0,

xT y = 0.

The generalized LCP of Ye and XLCP are equivalent [17].
• The Mixed Linear Complementarity Problem: Given matrices A ∈ R

n×n, B ∈
R

n×m, C ∈ R
m×n, D ∈ R

m×m and vectors a ∈ R
n, b ∈ R

m, find x ∈ R
n and y ∈

R
m such that

Ax + By + a = 0, Cx + Dy + b ≥ 0, y ≥ 0,

yT (Cx + Dy + b) = 0.

In this formulation x is the free variable. If A is a nonsingular square matrix then
MLCP is equivalent to LCP [8].

• Extended Linear Complementarity Problem: Given two matrices C ∈ R
p×n, D ∈

R
q×n, two vectors c ∈ R

p, d ∈ R
q and m subsets θ1, . . . , θm of {1, 2, . . . , p},

the extended linear complementarity problem (ELCP(C, D, c, d,Θ)) is to find
x ∈ R

n such that
Cx ≥ c (1.16)

Dx = d (1.17)

∏

i∈θ j

(Cx − c)i = 0, ∀ j = 1, 2, . . . ,m, (1.18)

or show that no such vector exists.
Here, Θ = {θ1, . . . , θm} is the collection of subsets θ j of {1, 2, . . . , p} and |Θ| =
m. If x ∈ R

n satisfies (1.16) and (1.17) then the problem ELCP(C, D, c, d,Θ)

is said to have a feasible solution. The complementarity condition (1.18) implies
that for each set θ j , j = 1, 2, . . . ,m corresponds to a group of inequalities in
Cx ≥ c and for each θ j at least one inequality should hold as equality. If the
feasible solution x ∈ R

n satisfies the complementarity condition (1.18) then we
say that it is a solution of ELCP(C, D, c, d,Θ). This generalization is proposed
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by Schutter and De Moor [9] and it is shown that the generalization like VLCP,
HLCP, XLCP etc can be obtained as a special case of ELCP. The formulation of
ELCP arises in the study of discrete event systems, examples of which are flexible
manufacturing systems, subway traffic networks, parallel processing systems, and
telecommunication networks. Many important problems in the max algebra such
as solving a set of multivariate polynomial equalities and inequalities, matrix
decompositions, state-space transformations, minimal state-space realization of
max-linear discrete event systems and some problems in structured stochastic
game can be reformulated as an ELCP. Schutter and De Moor [9] have proposed
an algorithm for solving ELCP(C, D, c, d,Θ).
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Chapter 2
Maximizing Spectral Radius and Number
of Spanning Trees in Bipartite Graphs

Ravindra B. Bapat

2.1 Introduction

We consider simple graphs which have no loops or parallel edges. Thus, a graph
G = (V, E) consists of a finite set of vertices, V (G), and a set of edges, E(G), each
of whose elements is a pair of distinct vertices. We will assume familiarity with basic
graph-theoretic notions, see, for example, Bondy and Murty [5].

There are severalmatrices that one normally associateswith a graph.We introduce
some such matrices which are important. Let G be a graph with V (G) = {1, . . . , n}.
The adjacencymatrix A ofG is an n × nmatrixwith its rows and columns indexed by
V (G) and with the (i, j)-entry equal to 1 if vertices i, j are adjacent and 0 otherwise.
Thus, A is a symmetric matrix with its i th row (or column) sum equal to d(i), which
by definition is the degree of the vertex i, i = 1, 2, . . . , n. Let D denote the n × n
diagonal matrix, whose i th diagonal entry is d(i), i = 1, 2, . . . , n. The Laplacian
matrix of G, denoted by L , is the matrix L = D − A.

By the eigenvalues of a graph, we mean the eigenvalues of its adjacency matrix.
Spectral graph theory is the study of the relationship between the eigenvalues of
a graph and its structural properties. The spectral radius of a graph is the largest
eigenvalue, in modulus, of the graph. It is a topic of much investigation. It evolved
during the study of molecular graphs by chemists. We refer to [12] for the subject of
spectral graph theory.

A connected graph without a cycle is called a tree. Trees constitute an important
subclass of graphs both from theoretical and practical considerations. A spanning
tree in a graph is a spanning subgraph which is a tree. Spanning trees arise in several
applications. If we are interested in establishing a network of locations with minimal
links, then it corresponds to a spanning tree.Wemay also be interested in the spanning
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tree with the least weight, where each edge in the graph is associated a weight, and
the weight of a spanning tree is the sum of the weights of its edges.

If G is connected, then L is singular with rank n − 1. Furthermore, the well-
known Matrix-Tree Theorem asserts that any cofactor of L equals the number of
spanning trees τ (G) in G. For basic results concerning matrices associated with a
graph, we refer to [2].

A graph G is bipartite if its vertex set can be partitioned as V (G) = X ∪ Y such
that no two vertices in X, or in Y, are adjacent. We often denote the bipartition as
(X,Y ). A graph is bipartite if and only if it has no cycle of odd length.

The adjacencymatrix of a bipartite graphG has a particularly simple form viewed
as a partitioned matrix

A(G) =
[
0 B
B ′ 0

]
.

This form is especially useful in dealing with matrices associated with a bipartite
graph.

In this chapter, we consider two optimization problems over bipartite graphs under
certain constraints. One of the problems is to maximize the spectral radius, while the
other is to maximize the number of spanning trees.

We now describe the contents of this chapter. In Sect. 2.2, we introduce the class
of Ferrers graphs which are bipartite graphs such that the edges of the graph are in
direct correspondence with the boxes in a Ferrers diagram. This class is of interest
in both the maximization problems that we consider.

The problem of maximizing the spectral radius of a bipartite graph is considered
in Sect. 2.3. We give a brief survey of the problem and provide references to the
literature containing results and open problems.

In Sect. 2.4, we state an elegant formula for the number of spanning trees in a
Ferrers graph due to Ehrenborg and vanWilligenburg [13]. We give references to the
proofs of the formula available in the literature. The formula leads to a conjectured
upper bound for the number of spanning trees in a bipartite graph and is considered
in Sect. 2.5. A reformulation of the conjecture in terms of majorization due to Slone
is described in Sect. 2.6.

Sections2.7 and 2.8 contain new results. The concept of resistance distance [17]
between two vertices in a graph captures the notion of the degree of communication
in a better way than the classical distance. The resistance distance can be defined in
several equivalent ways, see, for example [3]. It is known, and intuitively obvious,
that the resistance distance between any two vertices does not decrease when an
edge, which is not a cut edge, is deleted from the graph. In Sect. 2.7, we first give an
introduction to resistance distance. We then examine the situation when the removal
of an edge in a graph does not affect the resistance distance between the end vertices
of another edge. Several equivalent conditions are given for this to hold. This result,
which appears to be of interest by itself, is then used in Sect. 2.8 to give another proof
of the formula for the number of spanning trees in a Ferrers graph. Ehrenborg and
van Willigenburg [13] also use electrical networks and resistances in their proof of
the formula but our approach is different.



2 Maximizing Spectral Radius and Number of Spanning Trees in Bipartite Graphs 35

2.2 Ferrers Graphs

A Ferrers graph is defined as a bipartite graph on the bipartition (U, V ), where
U = {u1, . . . , um}, V = {v1, . . . , vn} such that

• if (ui , v j ) is an edge, then so is (u p, vq), where 1 ≤ p ≤ i and 1 ≤ q ≤ j, and
• (u1, vn) and (um, v1) are edges.

For a Ferrers graph G, we have the associated partition λ = (λ1, . . . ,λm), where
λi is the degree of vertex ui , i = 1, . . . ,m, Similarly, we have the dual partition λ′ =
(λ′

1, . . . ,λ
′
n)where λ′

j is the degree of vertex v j , j = 1, . . . , n.Note that λ1 ≥ λ2 ≥
· · · ≥ λm and λ′

1 ≥ λ′
2 ≥ · · · ≥ λ′

n. The associated Ferrers diagram is the diagram of
boxes where we have a box in position (i, j) if and only if (ui , v j ) is an edge in the
Ferrers graph.

Example 1 The Ferrers graph with the degree sequences (3, 3, 2, 1) and (4, 3, 2) is
shown below:
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◦u3
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���
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���
◦u4
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�����
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�����

����

◦v1 ◦v2 ◦v3

The associated Ferrers diagram is

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦

◦ ◦
The definition of Ferrers graph is due to Ehrenborg and van Willigenburg [13].

Chestnut and Fishkind [10] defined the class of bipartite graphs called difference
graphs. A bipartite graph with parts X and Y is a difference graph if there exist a
function φ : X ∪ Y → R and a threshold α ∈ R such that for all x ∈ X and y ∈ Y, x
is adjacent to y if and only if φ(x) + φ(y) ≥ α. It turns out that the class of Ferrers
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graphs coincides with the class of difference graphs, as shown by Hammer et al. [16].
A more direct proof of this equivalence is given by Cheng Wai Koo [18]. The same
class is termed chain graphs in [4].

2.3 Maximizing the Spectral Radius of a Bipartite Graph

We introduce some notation. Let G = (V ∪ W, E) be a bipartite graph, where V =
{v1, . . . , vm},W = {w1, . . . , wn} are the two partite sets. We view the undirected
edges E of G as a subset of V × W. Let

D(G) = d1(G) ≥ d2(G) ≥ · · · ≥ dm(G)

be the rearranged set of the degrees of v1, . . . , vm . Note that e(G) =
m∑
i=1

di (G) is the

number of edges in G. Recall that the eigenvalues of G are simply the eigenvalues of
the adjacency matrix of G. Since the adjacency matrix is entry-wise non-negative, it
follows from the Perron–Frobenius Theorem that the spectral radius of the adjacency
matrix is an eigenvalue of the matrix. Denote by λmax (G) the maximum eigenvalue
of G. It is known [4] that

λmax (G) ≤ √
e(G) (2.1)

and equality occurs if and only ifG is a complete bipartite graph, with possibly some
isolated vertices.

We now consider refinements of (2.1) for non-complete bipartite graphs. For
positive integers p, q, let Kp,q be the complete bipartite graph G = (V ∪ W, E)

where |V | = p, |W | = q. Let K(p, q, e) be the family of subgraphs of Kp,q with e
edges, with no isolated vertices, and which are not complete bipartite graphs. The
following problem was considered in [4].

Problem 1 Let 2 ≤ p ≤ q, 1 < e < pq be integers. Characterize the graphs which
solve the maximization problem

max
G∈K(p,q,e)

λmax (G). (2.2)

Motivated by a conjecture of Brualdi and Hoffman [7] for non-bipartite graphs,
which was proved by Rowlinson [21], the following conjecture was proposed in [4].

Conjecture 1 Under the assumptions of Problem1, an extremal graph that solves
the maximal problem (2.2) is obtained from a complete bipartite graph by adding
one vertex and a corresponding number of edges.

As an example, consider the class K(3, 4, 10). There are two graphs in this class
which satisfy the description in Conjecture1. The graph G1 is obtained from the
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complete bipartite graph K2,4 by adding an extra vertex of degree 2, and the graph
G2, is obtained from K3,3 by adding an extra vertex of degree 1. The graph G1 is
associated with the Ferrers diagram

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦
while G2 is associated with the Ferrers diagram

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
It can be checked that λmax (G2) = 3.0592 > λmax (G1) = 3.0204. Thus accord-

ing to Conjecture1, G2 maximizes λmax (G) over G ∈ K(3, 4, 10).
Conjecture1 is still open, although some special cases have been settled, see [4,

14, 20, 23]. We now mention a result from [4] towards the solution of Problem1
which is of interest by itself and is related to Ferrers graphs.

Let D = {d1, d2, . . . , dm} be a set of positive integers where d1 ≥ d2 ≥ · · · ≥ dm
and let BD be the class of bipartite graphs G = (X ∪ Y, E) with no isolated vertices,
with |X | = m, andwith degrees of vertices in X beingd1, . . . , dm .Then, it is shown in
[4] that maxG∈BD λmax (G) is achieved, up to isomorphism, by the Ferrers graph, with
the Ferrers diagram having d1, d2, . . . , dm boxes in rows 1, 2, . . . ,m, respectively.

It follows that an extremal graph solving Problem1 is a Ferrers graph.
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2.4 The Number of Spanning Trees in a Ferrers Graph

Definition 1 Let G = (V, E) be a bipartite graph with bipartition V = X ∪ Y. The
Ferrers invariant of G is the quantity

F(G) = 1

|X ||Y |
∏
v∈V

deg(v).

Recall that we denote the number of spanning trees in a graph G as τ (G). Ehren-
borg and van Willigenburg [13] proved the following interesting formula.

Theorem 1 If G is a Ferrers graph, then τ (G) = F(G).

Let G be the Ferrers graph with bipartition (U, V ), where |U | = m, |V | = n. We
assumeU = {u1, . . . , um}, V = {v1, . . . , vn}. Let d1 ≥ · · · ≥ dm and d ′

1 ≥ · · · ≥ d ′
n

be the degrees of u1, . . . , um and v1, . . . , vn , respectively. We may assume G to
be connected, since otherwise, τ (G) = 0. If G is connected, then d1 = |V | and
d ′
1 = |U |. Thus according to Theorem1, τ (G) = d2 · · · dmd ′

2 · · · d ′
n .

As an example, the Ferrers graph in Example1 has degree sequences (3, 3, 2, 1)
and (4, 3, 2).Thus, according toTheorem1, it has 3 · 2 · 1 · 3 · 2 = 36 spanning trees.

The complete graph Km,n hasmn−1nm−1 spanning trees, and this can also be seen
as a consequence of Theorem1.

Theorem1 can be proved in many ways. The proof given by Ehrenborg and van
Willigenburg [13] is based on electrical networks. A purely bijective proof is given by
Burns [8]. We give yet another proof based on resistance distance, which is different
than the one in [13], see Sect. 2.8.

It is tempting to attempt a proof of Theorem1 using the Matrix-Tree Theorem.
As an example, the Laplacian matrix of the Ferrers graph in Example1 is given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 −1 −1 −1
0 3 0 0 −1 −1 −1
0 0 2 0 −1 −1 0
0 0 0 1 −1 0 0

−1 −1 −1 −1 4 0 0
−1 −1 −1 0 0 3 0
−1 −1 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let L(1|1) be the submatrix obtained from L be deleting the first row and column.
According to the Matrix-Tree Theorem, the number of spanning trees in the graph
is equal to the determinant of L(1|1). Thus, Theorem1 will be proved if we can
evaluate the determinant of L(1|1). But this does not seem easy in general.

A weighted analogue of Theorem1 has also been given in [13] which we describe
now. Consider the Ferrers graph G on the vertex partition U = {u0, . . . , un} and
V = {v0, . . . , vm}. For a spanning tree T of G, define the weight σ(T ) to be
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σ(T ) =
n∏

p=0

x
degT (u p)
p

m∏
q=0

y
degT (vq )
q ,

where x0, . . . , xn; y0, . . . , ym are indeterminates.
For a Ferrers graph G define �(G) to be the sum �(G) = ∑

T σ(T ), where T
ranges over all spanning trees T of G.

Theorem 2 ([13]) Let G be the Ferrers graph corresponding to the partition λ and
the dual partition λ′. Then

�(G) = x0 · · · xn · y0 · · · ym
n∏

p=1

(y0 + · · · + yλp−1)

m∏
q=1

(x0 + · · · + xλ′
q−1).

Theorem1 follows from Theorem2 by setting x0 = · · · = xn = y0 = · · · =
ym = 1.

2.5 Maximizing the Number of Spanning Trees in a
Bipartite Graph

For general bipartite graphs, the following conjecture was proposed by Ehrenborg
[18, 22].

Conjecture 2 (Ferrers bound conjecture) Let G = (V, E) be a bipartite graph with
bipartition V = X ∪ Y. Then

τ (G) ≤ 1

|X ||Y |
∏
v∈V

deg(v),

that is, τ (G) ≤ F(G).

Conjecture2 is open in general. In this section, we describe some partial results
towards its solution, mainly from [15, 18]. The following result has been proved in
[15].

Theorem 3 Let G be a connected bipartite graph for which Conjecture2 holds. Let
u be a new vertex not in V (G), and let v be a vertex in V (G). Let G ′ be the graph
obtained by adding the edge {u, v} to G. Then Conjecture2 holds for G ′ as well.

Note that Conjecture2 clearly holds for the graph consisting of a single edge. Any
tree can be constructed from such a graph by repeatedly adding a pendant vertex.
Thus as an immediate consequence of Theorem3, we get the following.

Corollary 1 Conjecture2 holds when the graph is a tree.
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Using explicit calculations with homogeneous polynomials, the following result
is also established in [15].

Theorem 4 Let G be a bipartite graph with bipartition X ∪ Y. Then Conjecture2
holds when |X | ≤ 5.

The following result is established in [18].

Proposition 1 Let G and G ′ be bipartite graphs for which Conjecture2 holds. Let
X and Y be the parts of G, and let X ′ and Y ′ be the parts of G ′. Choose vertices
x ∈ X and x ′ ∈ X ′. Define the graph H with V (H) = V (G) ∪ V (G ′) and E(H) =
E(G) ∪ E(G ′) ∪ {xx ′}. Then the conjecture holds for H also.

It may be remarked that Corollary 1 can be proved using Proposition 1 and induc-
tion as well. The following bound has been obtained in [6].

Theorem 5 Let G be a bipartite graph on n ≥ 2 vertices. Then

τ (G) ≤
∏

v dv

|E(G)| , (2.3)

with equality if and only if G is complete bipartite.

Since there can be at most |X ||Y | edges in a bipartite graph with parts X and Y,

if Conjecture2 were true, then Theorem5 would follow. Thus, the assertion of Con-
jecture2 improves upon Theorem5 by a factor of E(G)|/(|X ||Y |). This motivates
the following definition introduced in [18].

Definition 2 Let G be a bipartite graph with parts X and Y. The bipartite density of
G, denoted ρ(G), is the ratio E(G)/(|X ||Y |). Equivalently, G contains ρ(G) times
as many edges as the complete bipartite graph K|X |,|Y |.

Let G be a graph with n vertices. Let A be the adjacency matrix of G and let D be
the diagonal matrix of vertex degrees of G. Note that L = D − A is the Laplacian
of G. The matrix K = D− 1

2 LD− 1
2 is termed as the normalized Laplacian of G. If

G is connected, then K is positive semi-definite with rank n − 1. Let μ1 ≥ μ2 · · · ≥
μn−1 > μn = 0 denote the eigenvalues of K . It is known, see [11], that μn−1 ≤ 2,
with equality if and only if G is bipartite. Conjecture2 can be shown to be equivalent
to the following, see [18].

Conjecture 3 Let G be a bipartite graph on n ≥ 3 vertices with parts X and Y.

Then
n−2∏
i=1

μi ≤ ρ(G).

Yet another result from [18] is the following.
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Lemma 1 Let G be a bipartite graph on n ≥ 3 vertices with parts X and Y. Suppose,
for some 1 ≤ k ≤ 	 n−1

2 
 we have
k∏

i=1

μi (2 − μi ) ≤ ρ(G).

Then Conjecture2 holds for G.

We conclude this section by stating the following result [18]. It asserts that Con-
jecture2 holds for a sufficiently edge-dense graph with a cut vertex of degree 2.

Theorem 6 Let G be a bipartite graph. Suppose that ρ(G) ≥ 0.544 and that G
contains a cut vertex x of degree 2. Then Conjecture2 holds for G.

2.6 A Reformulation in Terms of Majorization

This section is based on [22]. Call a bipartite graphG Ferrers-good if τ (G) ≤ F(G).

Thus,Conjecture2maybe expressedmore briefly as the claim that all bipartite graphs
are Ferrers-good.

In 2009, Jack Schmidt (as reported in [22]) computationally verified by an exhaus-
tive search that all bipartite graphs on at most 13 vertices are Ferrers-good. For a
bipartite graph, we refer to the vertices in the two parts as red vertices and blue
vertices. In 2013, Praveen Venkataramana proved an inequality weaker than Conjec-
ture2 valid for all bipartite graphs:

Proposition 2 (Venkataramana) Let G be a bipartite graph with red vertices having
degrees d1, . . . , dp and blue vertices having degrees e1, . . . , eq . Then

τ (G) ≤
p∏

i=1

(di + 1

2
)

q∏
j=1

(e j + 1

2
)
√
e1.

Conjecture2 can be expressed in terms of majorization, for which the standard
reference is [19]. For a vector a = (a1, . . . , an), the vector (a[1], . . . , a[n]) denotes
the rearrangement of the entries of a in non-increasing order. Recall that a vector
a = (a1, . . . , an) is majorized by another vector b = (b1, . . . , bn), written a ≺ b,
provided that the inequality

k∑
i=1

a[i] ≤
k∑

i=1

b[i]

holds for 1 ≤ k ≤ n and holds with equality for k = n.

Given a finite sequence a, let �(a) denote its number of parts and |a| denote its
sum. For example, if a = (4, 3, 1), then �(a) = 3 and |a| = 8.
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Definition 3 (Conjugate sequence) Let a be a partition of an integer. The conjugate
partition of a is the partition a∗

a∗
i = #{ j : 1 ≤ j ≤ �(a) and a j ≥ i}.

For example, (5, 5, 4, 2, 2, 1)∗ = (6, 5, 3, 3, 2).

Definition 4 (Concatenation of sequences) Let a = (a1, . . . , ap) and b = (b1, . . . ,
bq) be sequences. Then their concatenation is the sequence

a ⊕ b = (a1, . . . , ap, b1, . . . , bq).

With this notation, we can now state the following conjecture.

Conjecture 4 Let d be a partition with �(d) = n, and let λ be a non-increasing
sequence of positive real numbers with �(λ) = n − 1. Suppose d = a ⊕ b for some
a, b with �(a) = p and �(b) = q. If a ≺ b∗ and d ≺ λ ≺ d∗, then

1

n

n−1∏
i=1

λi ≤ 1

pq

n∏
i=1

di .

Conjecture4 implies Conjecture2 in view of the following two theorems.

Theorem 7 (Gale–Ryser) Let a and b be partitions of an integer. There is a bipartite
graph whose blue degree sequence is a and whose red degree sequence is b if and
only if a ≺ b∗.

Theorem 8 (Grone–Merris conjecture, proved in [1]) The Laplacian spectrum of a
graph is majorized by the conjugate of its degree sequence.

Now let us show that Conjecture4 implies Conjecture2. Assume Conjecture4 is
true. Let G be a bipartite graph on n vertices, with p blue vertices and q red vertices.
Let d be its degree sequence, with blue degree sequence a and red degree sequence
b, and let λ be its Laplacian spectrum. By Theorem7, a ≺ b∗. Since the Laplacian
is a Hermitian matrix, d ≺ λ, and by Theorem8, λ ≺ d∗. Hence, the assumptions of
Conjecture2 apply. We conclude that

1

n

n−1∏
i=1

λi ≤ 1

pq

n∏
i=1

di . (2.4)

By theMatrix-Tree Theorem, the left-hand side of (2.4) is τ (G).Hence, Conjecture2
holds as well.
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2.7 Resistance Distance in G and G \ { f }

We recall some definitions that will be useful. Given a matrix A of order m × n,

a matrix G of order n × m is called a generalized inverse (or a g-inverse) of A if
it satisfies AGA = A. Furthermore, G is called Moore–Penrose inverse of A if it
satisfies AGA = A,GAG = G, (AG)′ = AG and (GA)′ = GA. It is well known
that the Moore–Penrose inverse exists and is unique. We denote the Moore–Penrose
inverse of A by A+.We refer to [9] for background material on generalized inverses.

Let G be a connected graph with vertex set V = {1, . . . , n} and let i, j ∈ V . Let
H be a g-inverse of the Laplacian matrix L of G. The resistance distance r(i, j)
between i and j is defined as

rG(i, j) = hii + h j j − hi j − h ji . (2.5)

It can be shown that the resistance distance does not depend on the choice of the
g-inverse. In particular, choosing the Moore–Penrose inverse, we see that

rG(i, j) = �+
i i + �+

j j − 2�+
i j .

Let G be a connected graph with V (G) = {1, . . . , n}. We assume that each edge
of G is given an orientation. If e = {i, j} is an edge of G oriented from i to j, then
the incidence vector xe of e is and n × 1 vector with 1(−1) at i th ( j th) place and
zeros elsewhere. The Laplacian L of G has rank n − 1 and any vector orthogonal to
1 is in the column space of L . In particular, xe is in the column space of L .

For a matrix A, we denote by A(i | j) the matrix obtained by deleting row i and
column j from A. We denote A(i |i) simply as A(i). Similar notation applies to
vectors. Thus for a vector x, we denote by x(i) the vector obtained by deleting the
i th coordinate of x .Let L be the Laplacianmatrix of a connected graphG with vertex
set {1, . . . , n}. Fix i, j ∈ {1, . . . , n}, i �= j, and let H be the matrix constructed as
follows. Set H(i) = L(i)−1 and let the i th row and column of H be zero. Then H
is a g-inverse of L ([2], p.133). It follows from (2.5) that r(i, j) = h j j . For basic
properties of resistance distance, we refer to [2, 3].

In the next result, we give several equivalent conditions under which deletion of
an edge does not affect the resistance distance between the end vertices of another
edge. This result, which appears to be of interest by itself, will be used in Sect. 2.8
to give another proof of Theorem1. We denote an arbitrary g-inverse of the matrix
L by L−.

Theorem 9 Let G be a graph with V (G) = {1, . . . , n}, n ≥ 4. Let e = {i, j}, f =
{k, �} be edges of G with no common vertex such that G \ {e} and G \ { f } are
connected subgraphs. Let L , Le and L f be the Laplacians of G,G \ {e} and G \
{ f }, respectively. Let xe, x f be the incidence vector of e, f , respectively. Then the
following statements are equivalent:
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(i) rG(i, j) = rG\{ f }(i, j).
(ii) rG(k, �) = rG\{e}(k, �).
(iii) τ (G \ {e})τ (G \ { f }) = τ (G)τ (G \ {e, f }).
(iv) The ith and the j th coordinates of L+x f are equal.
(v) The ith and the j th coordinates of L−x f are equal for any L−.
(vi) The i th and the j th coordinates of L+

f x f are equal.
(vii) The i th and the j th coordinates of L−

f x f are equal for any L−
f .

(viii) The kth and the �th coordinates of L+xe are equal.
(ix) The kth and the �th coordinates of L−xe are equal for any L−.
(x) The kth and the �th coordinates of L+

e xe are equal.
(xi) The kth and the �th coordinates of L−

e xe are equal for any L−
e .

Proof Let u = L+
f x f , w = L+x f . Since x f is in the column space of L f , we have

x f = L f z for some z. It follows that L f u = L f L
+
f x f = L f L

+
f L f z = L f z = x f .

Similarly Lw = x f . Since L = L f + x f x ′
f then Lw = L f w + x f x ′

f w and hence

L f (u − w) = x f x
′
f w. (2.6)

Also,
(x ′

f w)L f u = x f (x
′
f w). (2.7)

Subtracting (2.7) from (2.6) gives L f (u − w − (x ′
f w))u = 0, which implies u −

w − (x ′
f w)u = α1 for someα. It follows that (1 − x ′

f w)u = w + α1. If 1 − x ′
f w =

0, then all coordinates of w are equal, which would imply Lw = 0, contradicting
x f = Lw. Thus 1 − x ′

f w �= 0 and hence u = w+α1
1−x ′

f w
. Thus, any two coordinates of

u are equal if and only if the corresponding coordinates of w are equal. This implies
the equivalence of (iv) and (vi). A similar argument shows that (iv) − (vi i) are
equivalent and that (vi i i) − (xi) are equivalent.

Note that rG(i, j) = det L(i, j)
det L(i) = τ (G\{e})

τ (G)
, rG\{ f }(i, j) = det L f (i, j)

det L f (i)
= τ (G\{e, f })

τ (G\{ f }) . and

rG\{e}(k, �) = det Le(k,�)
det Le(k)

= τ (G\{e, f })
τ (G\{e}) . Thus, (i), (i i) and (i i i) are equivalent.

We turn to the proof of (iv) ⇒ (i). Let w = L+x f and suppose wi = w j . Since
the vector 1 is in the null space of L+, we may assume, without loss of generality,
that wi = w j = 0. As seen before, Lw = x f .

Since L(i) = L f (i) + x f (i)x f (i)′, by the Sherman–Morrison formula,

L(i)−1 = (L f (i) + x f (i)x f (i)
′)−1

= L f (i)
−1 − L f (i)−1x f (i)x f (i)′L f (i)−1

1 − x f (i)′L f (i)−1x f (i)
. (2.8)

Since x f = Lw,wi = 0 and (x f (i)) j = 0, we have
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(x f (i)) j = (L(i)w(i)) j
= ((L f (i) + x f (i)x f (i)

′)w(i)) j
= (L f (i)w(i) j + x f (i)

′w(i)(L f (i)x f (i)) j .

Hence (L f (i)−1x f (i)) j = 0. It follows from (2.8) that the ( j, j)th element of L(i)−1

and L f (i)−1 are identical. In view of the observation preceding the Theorem, the
( j, j)-element of L(i)−1 (respectively, L f (i)−1) is the resistance distance between i
and j in G (respectively, G \ { f }). Therefore the resistance distance between i and
j is the same in G and G \ { f } if the i th and the j th coordinates of L+x are equal.

Before proceeding we remark that if (v) holds for a particular g-inverse, then it
can be shown that it holds for any g-inverse. Similar remark applies to (vi i), (i x)
and (x).

Now suppose (i) holds. Then (L(i))−1
j j = (L f (i))

−1
j j , and using (2.8) we conclude

that (L f (i)−1x f (i)x f (i)′L f (i)) j j = 0, which implies

(L f (i)
−1x f (i)) j = 0. (2.9)

If we augment L f (i)−1 by introducing the i th row and i th column, both equal to
zero vectors, then we obtain a g-inverse L−

f of L f . Since the i th coordinate of x f

is zero, we conclude from (2.9) that (L−
f x f ) j = 0. Since the i th row of L−

f is zero,
(L−

f x f )i = 0. It follows that the i th and the j th coordinates of L−
f x f = 0 and thus

(vi i) holds (for a particular g-inverse and hence for any g-inverse). Similarly, it can
be shown that (i i) ⇒ (xi). This completes the proof. �

2.8 The Number of Spanning Trees in Ferrers Graphs

We now prove a preliminary result.

Lemma 2 Consider the Ferrers graph G with bipartition (U, V ), where U =
{u1, . . . , um}, V = {v1, . . . , vn}. Let λi be the degree of ui , i = 1, . . . ,m and let λ′

j
be the degree of v j , j = 1, . . . , n. Let p ∈ {1, . . . ,m − 1} be such that λi = n, i =
1, . . . , p and λp+1 = k < n. Let f be the edge {u p, vn}. Then

rG(u p+1, vk) = rG\{ f }(u p+1, vk). (2.10)

Proof The bipartite adjacency matrix of G is given by
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · · · · n

1 1 1 · · · · · · 1
2 1 1 · · · · · · 1
... 1 1 · · · · · · 1
p 1 1 · · · · · · 1
p + 1 1 1 · · · 0 0
... 1 1 · · · 0 0
m 1 1 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the Laplacian matrix L of G is given by

L = diag(λ1, . . . ,λm,λ′
1, . . . ,λ

′
n) −

[
0 M
M ′ 0

]
.

Let

w = 1

p
[−1

n
, · · · ,−1

n︸ ︷︷ ︸
p−1

,
p − 1

n
, 0, · · · , 0,−1]′.

It can be verified that Lw is the (m + n) × 1 vector with 1 at position p, −1 at
position m + n and zeros elsewhere. Thus, Lw = x f , the incidence vector of the
edge f = {u p, vn}.

It follows from basic properties of the Moore–Penrose inverse [9] that

L+L =
(
I − 1

m + n
11′

)
.

Hence

L+x f = L+Lw =
(
I − 1

m + n
11′

)
w = w − α11′, (2.11)

where α = 1′w/(m + n). Let e be the edge {u p+1, vk}. Since the coordinates p + 1
and m + k of w are zero, it follows from (2.11) and the implication (iv) ⇒ (i) of
Theorem9 that (2.10) holds. This completes the proof. �

Let G be a connected graph with V (G) = {1, . . . , n}, and let i, j ∈ V (G). Let L
be the Laplacian of G.We denote by L(i, j) the submatrix of L obtained by deleting
rows i, j and columns i, j. Recall that τ (G) denotes the number of spanning trees
of G. It is well known that

rG(i, j) = det L(i | j)
τ (G)

. (2.12)

Furthermore, det L(i, j) is the number of spanning forests ofGwith two components,
one containing i and the other containing j. Now suppose that i and j are adjacent
and let f = {i, j} be the corresponding edge. Let τ ′(G) and τ ′′(G) denote the number
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of spanning trees of G, containing f, and not containing f, respectively. Then in
view of the preceding remarks, τ ′(G) = det L1(i, j), where L1 is the Laplacian of
G \ {e}.
Theorem 10 ([13]) Let G be the Ferrers graph with the bipartition (U, V ), where
U = {u1, . . . , um}, V = {v1, . . . , vn} and let λ = (λ1, . . . ,λm),λ′ = (λ′

1, . . . ,λ
′
n)

be the associated partitions. Then the number of spanning trees in G is

1

mn

m∏
i=1

λi

n∏
i=1

λ′
i .

Proof We assume λm,λ′
n to be positive, for otherwise, the graph is disconnected and

the result is trivial. We prove the result by induction on the number of edges. Let
e = {p + 1,m + k}, f = {p,m + n} be edges of G.

By the induction assumption, we have

τ (G \ {e}) = 1

mn

m∏
i=1

λi

n∏
i=1

λ′
i

(λp+1 − 1)(λ′
k − 1)

λp+1λ
′
k

, (2.13)

τ (G \ { f }) = 1

mn

m∏
i=1

λi

n∏
i=1

λ′
i

(λp − 1)(λ′
n − 1)

λpλ′
n

, (2.14)

and

τ (G \ {e, f }) = 1

mn

m∏
i=1

λi

n∏
i=1

λ′
i

(λp+1 − 1)(λp)(λ
′
k − 1)(λ′

n − 1)

λp+1λpλ
′
kλ

′
n

. (2.15)

It follows from (2.13), (2.14), (2.15) and Theorem9 that

τ (G) = τ (G \ {e})(τ (G \ { f })
τ (G \ {e, f }) = 1

mn

m∏
i=1

λi

n∏
i=1

λ′
i ,

and the proof is complete. �
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Chapter 3
Optimization Problems on Acyclic
Orientations of Graphs, Shellability
of Simplicial Complexes, and Acyclic
Partitions

Masahiro Hachimori

3.1 An Optimization Problem on Acyclic Orientation
of Graphs in the Theory of Polytopes

For an undirected graph G = (V (G), E(G)) and its orientation O , we denote by
GO the resulted directed graph. In this chapter, we consider optimization problems
such that the values of the objective functions are determined by the out-degrees of
GO , where we vary the orientations O of G under some given restrictions. A typical
example is the following problem.

(P1) : min
∑

v∈G
2out-deg(v;GO )

s. t. O is acyclic,

where the minimum is taken by varying the orientations O of G under the restriction
that O is acyclic, i.e., there are no directed cycles on GO . Here, out-deg(v; GO)

is the out-degree of v in GO . This optimization problem appears in the theory of
polytopes. In [6], Blind and Mani showed the following theorem.

Theorem 1 (Blind and Mani [6]) The combinatorial structure of a simple polytope
P is determined by its graph G(P).

Here, the graph G(P) of a polytope P is a graph consisting of the vertices and edges
of P . In other words, two simple polytopes have isomorphic face lattices if and only
if their graphs are isomorphic.

Later, Kalai [14] gave a simple short proof for Theorem1. In his proof, the key
is the notion of “good orientation.” An orientation O of G(P) is a good orientation

M. Hachimori (B)
Faculty of Engineering, Information and Systems, University of Tsukuba,
Tsukuba, Ibaraki 305-8573, Japan
e-mail: hachi@sk.tsukuba.ac.jp

© Springer Nature Singapore Pte Ltd. 2018
S. K. Neogy et al. (eds.), Mathematical Programming and Game Theory,
Indian Statistical Institute Series, https://doi.org/10.1007/978-981-13-3059-9_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3059-9_3&domain=pdf
mailto:hachi@sk.tsukuba.ac.jp
https://doi.org/10.1007/978-981-13-3059-9_3


50 M. Hachimori

if the restriction of G(P)O to every face of P (including P itself) has exactly one
source. (Remark: In this chapter, we orient all the edges in a reverse way to the
original paper. Originally, it is defined that an orientation is good if all the restriction
of G(P)O to every face of P has exactly one sink. Here, a source is a node in a
directed graph such that all the edges incident to the node are oriented from the node,
and a sink is a node such that all the edges incident to it are oriented into the node.)
Using this definition, it is shown that a set of vertices A of G(P) forms a face of P if
and only if the induced subgraph G(P)[A] is k-regular and A is an ending set with
respect to some good orientation O (i.e., all the edges connecting a vertex a of A and
a vertex a′ outside of A are oriented from a′ to a.). By this fact, the remaining thing
to be shown is to determine which orientations are good without knowing which set
A of vertices forms a face of P . The following theorem is the answer to this.

Theorem 2 (Kalai [14]) For a simple polytope P, an orientation O of G(P) is a
good orientation if and only if it is a minimizer of the problem (P1) with G = G(P).

Since Theorem2 assures that whether an orientation is good or not is determined
only by G(P) (no information of the faces of P is needed), this gives the proof of
Theorem1. A comprehensive introduction of this story can be found in Ziegler [21,
Lect. 3.4].

In this chapter, we introduce optimization problems similar to (P1) in the follow-
ing sections in relation to the combinatorial structures of simplicial complexes and
cubical complexes.

3.2 Shellability of Simplicial Complexes and Orientations
of Facet-Ridge Incidence Graphs

A (finite) simplicial complex Γ is a nonempty set of simplices in some Euclidean
space R

N such that (i) every face of σ ∈ Γ is a member of Γ , and (ii) σ ∩ τ is a
face of both σ and τ for any σ, τ ∈ Γ . (Remark: we treat the empty set as a (−1)-
dimensional simplex, and in this definition, the empty set is always a member of
a simplicial complex. Also we remark that we assume all the simplicial complexes
are finite in this chapter.) The members of a simplicial complex Γ are faces of Γ .
We adopt the conventional terminology to mention 0-dimensional faces as vertices,
1-dimensional faces as edges, and the maximal faces with respect to inclusion as
facets. The dimension of a simplicial complex Γ is the maximum dimension of its
faces. A simplicial complex is pure if all the facets are of the same dimension.

The combinatorial structures of simplicial complexes have been important sub-
jects of study from several contexts, as a high-dimensional generalization of graphs,
in the theory of polytopes (e.g., Ziegler [21, Lect. 8]), as a tool of topological meth-
ods in combinatorics (Björner [2]), or a way to address applications like computing
network reliability (Colbourn [7]). One reason simplicial complexes appear in many
contexts in combinatorics is because they are equivalent to a set family closed under
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Fig. 3.1 Shellable and nonshellable simplicial complexes

taking subsets (i.e., “abstract simplicial complex”) which can be found quite com-
monly in many combinatorial structures. Among several combinatorial properties of
simplicial complexes, shellability is one of themost famous and important properties,
and it appears in many places.

Definition 1 Asimplicial complexΓ is shellable if the facetsσ1, σ2, . . . , σt ofΓ can
be ordered such that (

⋃i−1
j=1 σ j ) ∩ σi is a (dim σi − 1)-dimensional pure subcomplex

for each 2 ≤ i ≤ t , where σ denotes the simplicial complex consisting of all the faces
of σ . An ordering of facets satisfying this condition is called a shelling.

See Fig. 3.1 for examples of shellable and nonshellable simplicial complexes.
During the previous century, shellability of simplicial complexes are only defined for
pure simplicial complexes (e.g., [2, 21]). To define shellability for nonpure simplicial
complexes is suggested byBjörner andWachs [4, 5] and now this generalized version
has become the standard definition. Our definition above follows this version.

To distinguish shellable simplicial complexes and nonshellable ones is a diffi-
cult problem. All zero-dimensional simplicial complexes are shellable, and one-
dimensional simplicial complexes are shellable if and only if its 1-dimensional edges
are connected (i.e., a connected graphwith some isolated vertices). However, for two-
and higher dimensional simplicial complexes, no efficient way is known in general
to recognize whether a given simplicial complex is shellable or not. The recognition
problem is in the class NP, but it is neither knownwhether it is in P or not, nor whether
it is NP-complete or not (Kaibel and Pfetsch [16, Sec. 34]). There is an efficient way
to recognize shellability for the two-dimensional case if restricted to the class of
pseudomanifolds (Danaraj and Klee [8]), but it is not known whether there exist effi-
cient algorithms to recognize shellability for three-dimensional pseudomanifolds,
even for the triangulations of spheres.

In this section, we give a characterization of shellability by an optimization prob-
lem on orientations of graphs. First, we restrict ourselves to the pure case for simplic-
ity. Later, we give a generalized formulation including nonpure complexes. Our result
in this section first appeared in Hachimori and Moriyama [13], and also appeared
in Hachimori [11] with a generalized treatment. We here follow the proof given in
Hachimori [11] and present in a somewhat more easily comprehensible way.
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3.2.1 The Case of Pure Simplicial Complexes

Though our result of this section is valid for general simplicial complexes including
both pure and nonpure simplicial complexes, we first present the result restricted to
pure simplicial complexes in this subsection, since the pure case is essential in this
result. The generalization to include the nonpure case, which will be presented in the
next subsection, is just a technical revision and easy to follow after understanding
the pure case.

For a pure d-dimensional simplicial complex Γ , we say that a face τ is a ridge
of Γ if it is covered by a facet, i.e., if τ ⊆ σ with dim τ = dim σ − 1 for some
facet σ . Let F(Γ ) be the set of facets, and R(Γ ) the set of ridges of Γ . Since Γ is
pure, F(Γ ) is exactly the set of d-dimensional faces andR(Γ ) is the set of (d − 1)-
dimensional faces of Γ . (Remark that we need to change the definition of ridges for
nonpure complexes in the next subsection.) We let the graphG(Γ ) be the facet-ridge
incidence graph, i.e., the bipartite graph with the partite sets F(Γ ) and R(Γ ), and
two nodes σ ∈ F(Γ ) and τ ∈ R(Γ ) are adjacent if and only if σ ⊇ τ in Γ .

We consider orientations of the graph G(Γ ). We denote the oriented arc from α

to β in G(Γ ) by α → β, and denote the directed path from α to β by α � β. We
say an orientation O is admissible if in-deg(τ ) ≥ 1 for every τ ∈ R(Γ ). We have
the following characterization of shellability of pure simplicial complexes.

Theorem 3 For a pure d-dimensional simplicial complex Γ , let us consider the
following minimization problem:

(P2) : min
∑

σ∈F(Γ )

2out-deg(σ ;GO(Γ ))

s. t. O is acyclic and admissible.

Then the optimum value V ∗ of (P2) satisfies V ∗ ≥ f (Γ ), where f (Γ ) is the number
of all the faces of Γ . Further, the equality holds if and only if Γ is shellable.

The proof of Theorem3 follows the following lemmas.
First, we define the set SO(σ ) as follows.

SO(σ ) = {η ∈ Γ : σ → τ inGO(Γ ) for every ridge τ with η ⊆ τ ⊆ σ } ∪ {σ }.
(3.1)

Note that the complement of SO(σ ) in σ , denoted as ScO(σ ), is given as follows.

ScO(σ ) = σ − SO(σ )

= {η ∈ Γ : σ ← τ inGO(Γ ) for some ridge τ with η ⊆ τ ⊆ σ }
=

⋃
{ τ : τ ∈ R(Γ ), σ ← τ inGO(Γ )}. (3.2)
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Lemma 1 Let Γ be a pure simplicial complex, and let η ∈ Γ and σ ∈ F(Γ ). Then,
for any orientation O, η ∈ SO(σ ) if and only if σ is a source node in GO⊇η(Γ ), where
GO⊇η(Γ ) is the subgraph induced by the nodes corresponding to the facets and the
ridges of Γ containing η.

Proof The proof is obvious from the definition of SO(σ ). �

The inequality of the theorem follows the following lemma.

Lemma 2 Let Γ be a pure simplicial complex and O an orientation of G(Γ ) that
is acyclic and admissible. Then, we have

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) ≥ f (Γ ).

Proof We have the graph GO⊇η(Γ ) acyclic since GO(Γ ) is acyclic, and this implies
that GO⊇η(Γ ) has at least one source node. This source node should be a facet, not a
ridge, by the condition that O is admissible. By Lemma1, this implies that the family
{SO(σ ) : σ ∈ F(Γ )} coversΓ (i.e., for any η ∈ Γ there exists a σ ∈ F(Γ ) such that
η ∈ SO(σ ) ). On the other hand, we have |SO(σ )| = 2out-deg(σ ;GO (Γ )). (This follows
from the fact that SO(σ ) forms a boolean lattice with respect to inclusion relation. In
fact, the smallest face in SO(σ ) is given by σ ∩ {τ ∈ R(Γ ) : σ → τ inGO(Γ )} =:
Ψ O(σ ) and SO(σ ) equals the interval [Ψ O(σ ), σ ] in the face poset ofΓ . This interval
is a boolean lattice since every proper interval in the face poset of a simplicial complex
is boolean.) Hence the inequality is verified. �

By the proof of Lemma2, we have the following natural consequence for the
equality case.

Lemma 3 Let Γ be a pure simplicial complex and O an orientation of G(Γ ) that is
acyclic and admissible. The equality

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) = f (Γ ) holds if and
only if {SO(σ ) : σ ∈ F(Γ )} forms a partition of Γ .

Proof By the proof of Lemma2, {SO(σ ) : σ ∈ F(Γ )} covers Γ . Since
∑

σ∈F(Γ )

2out-deg(σ ;GO(Γ )) counts the number of the faces of Γ with multiplicity in this
covering, the equality means that each face of Γ is contained in exactly one
SO(σ ). �

Here we define a graph G̃O(Γ ) whose nodes are the facets of Γ and arcs σ → σ ′
are defined if there is a face η ⊆ σ ′ with η ∈ SO(σ ). We have the following lemma.

Lemma 4 When {SO(σ ) : σ ∈ F(Γ )} is a partition of a pure simplicial complex
Γ , G̃O(Γ ) is acyclic if and only if GO(Γ ) is acyclic.

Proof Let us assume G̃O(Γ ) has a directed cycle. Assume σ → σ ′ is an arc in
G̃O(Γ ). From the definition of G̃O(Γ ), there exists a face η with η ⊆ σ ′ and η ∈
SO(σ ). Here, η ⊆ σ ′ implies that both σ and σ ′ are nodes ofGO⊇η(Γ ). FromLemma1
and the assumption that {SO(σ ) : σ ∈ F(Γ )} is a partition, η ∈ SO(σ ) implies that
σ is a unique source in GO⊇η(Γ ). This assures the existence of a directed path from
σ to σ ′ in GO⊇η(Γ ), and thus in GO(Γ ). Hence, the existence of a directed cycle in
G̃O(Γ ) implies the existence of a directed cycle in GO(Γ ).



54 M. Hachimori

On the other hand, let us assume GO(Γ ) has a directed cycle. The cycle is of
the form σ1 → τ1 → σ2 → τ2 → · · · → σs → τs → σs+1 = σ1, where σi ∈ F(Γ )

for all 1 ≤ i ≤ s and τ j ∈ R(Γ ) for all 1 ≤ j ≤ s. Then we have τi ⊆ σi and τi ∈
SO(σi+1) for all 1 ≤ i ≤ s, and this implies there is a directed cycle in G̃O(Γ ). �

The following last lemma shows that having an acyclic admissible orientation O
of G(Γ ) such that the family {SO(σ ) : σ ∈ F(Γ )} is a partition of Γ and G̃O(Γ ) is
acyclic is equivalent to the shellability of Γ .

Lemma 5 For a pure simplicial complex Γ , there exists an acyclic admissible ori-
entation O of G(Γ ) such that {SO(σ ) : σ ∈ F(Γ )} is a partition of Γ with G̃O(Γ )

acyclic if and only if Γ is shellable.

Proof To show the “only if” part, let us assume {SO(σ ) : σ ∈ F(Γ )} is a partition
of Γ and G̃O(Γ ) is acyclic. Let σ1, σ2, . . . , σt be a linear extension (or a “topo-
logical sort”) of G̃O(Γ ), i.e., a total ordering such that the existence of a directed
arc σi → σ j in G̃O(Γ ) implies i < j . From the fact that {SO(σ ) : σ ∈ F(Γ )} is
a partition together with the Eqs. (3.1) and (3.2), we have that (

⋃i−1
j=1 σ j ) ∩ σi =

ScO(σi ) = ⋃{ τ : τ ∈ R(Γ ), σi ← τ inGO(Γ )} for every 1 ≤ i ≤ t − 1. Hence,
σ1, σ2, . . . , σt is a shelling and Γ is shellable since (

⋃i−1
j=1 σ j ) ∩ σi is (dim σi − 1)-

dimensional and pure. (Note that, the set {τ ∈ R(Γ ) : σi ← τ inGO(Γ )} is not
empty for i > 1 since G(Γ ) = G(Γ )⊇∅ has only one source node and it should be
σ1.) For the “if” part, let Γ be a pure shellable simplicial complex and σ1, σ2, . . . , σt

be its shelling. It is well known that this shelling induces a partition of Γ by⋃t
i=1[Res(σi ), σi ] with Res(σi ) the minimum face of σi not contained in the facets

σ1, σ2, . . . , σi−1, see for example [4, Sec. 2] or [21, Lect. 8]. (Here, [a, b] = {z ∈
Γ : a ⊆ z ⊆ b]. Remark that Ψ O(σ ) mentioned in the proof of Lemma2 coincides
with this Res(σ ).) This Res(σi ) is called the “restriction” of σi , and given by
Res(σi ) = ⋂{τ ∈ R(Γ ) ∩ σi : there is no j < i with τ ⊆ σ j }. We construct an ori-
entation O such that, for each ridge τ incident to σi , τ → σi if τ ⊆ σ j for some j < i ,
and τ ← σi otherwise. Under this orientation, we have Res(σi ) = ⋂{τ ∈ R(Γ ) :
τ ← σi }, and thus [Res(σi ), σi ] = {η ∈ Γ : τ → σi for all τ ∈ R(Γ )with η ⊆ τ ⊆
σi } = SO(σi ). Hence {SO(σi ) : 1 ≤ i ≤ t} forms a partition of Γ . Here, O is obvi-
ously acyclic, and thus we have G̃O(Γ ) acyclic by Lemma4, hence Lemma5 is
verified. �
Proof (Proof of Theorem3) The inequality V ∗ ≥ f (Γ ) follows from Lemma2. Fur-
ther, Lemma3 shows that the equality holds if and only if {SO(σ ) : σ ∈ F(Γ )} is
a partition of Γ , and for this partition we have G̃(Γ ) acyclic by Lemma4. Finally,
Lemma5 shows this is equivalent to the shellability of Γ . �

3.2.2 The Case of Nonpure Simplicial Complexes

In the case of pure simplicial complexes, we defined the faces covered by a facet as
ridges and considered the adjacency between facets and ridges. For the case of general
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Fig. 3.2 The simplicial complex Γ has facets abcd, bce, ce f , f g, and gh. The faces bc and f are
pseudoridges. In the figure of G(Γ ), the black nodes are facets and white nodes are ridges. The
pseudoridges are indicated by the node with dashed circle but they are not contained in G(Γ )

simplicial complexes including nonpure complexes, we need to discriminate these
faces covered by a facet into ridges and pseudoridges. Let Γ be a simplicial complex
not necessarily pure. Let τ be a face covered by some facet. We say τ is a ridge
if all its superfaces (i.e., faces strictly containing τ ) are facets, and a pseudoridge
otherwise. We denote the set of facets, ridges, and pseudoridges of Γ , by F(Γ ),
R(Γ ), and R′(Γ ), respectively.

We define the facet-ridge incidence graphG(Γ ) as the bipartite graph with partite
sets F(Γ ) and R(Γ ), where the two nodes σ ∈ F(Γ ) and τ ∈ R(Γ ) are joined by
an edge if σ ⊇ τ . Note that we do not include pseudoridges in G(Γ ). (See Fig. 3.2
for example. Here, note that the adjacency between a facet σ and a ridge τ occurs in
G(Γ ) only when dim σ = dim τ + 1.)

Under this setting, we have the same statement as the pure case.

Theorem 4 For a d-dimensional (not necessarily pure) simplicial complex Γ , let
us consider the following minimization problem:

(P3) : min
∑

σ∈F(Γ )

2out-deg(σ ;GO(Γ ))

s. t. O is acyclic and admissible.

Then, the optimum value V ∗ of (P3) satisfies V ∗ ≥ f (Γ ), where f (Γ ) is the number
of all the faces of Γ . Further, the equality holds if and only if Γ is shellable.

Note that Theorem4 contains Theorem3 as a special case.
For the proof of Theorem4, we introduce a graph G ′(Γ ) and G ′O(Γ ) as follows.

The graph G ′(Γ ) is the graph obtained from G(Γ ) by adding pseudoridges as nodes
and edges between pseudoridges and facets such that an edge is introduced between
τ ∈ R′(Γ ) and σ ∈ F(Γ ) if τ ⊆ σ . (Here, σ and τ with dim σ > dim τ + 1 can
be joined by an edge.) For an orientation O of G(Γ ), we extend the orientation
to that of G ′(Γ ) to obtain G ′O(Γ ). In this extended orientation, for τ ∈ R′(Γ )

and σ ∈ F(Γ ) with τ ⊆ σ , we orient τ → σ if dim σ = dim τ + 1 and τ ← σ if
dim σ > dim τ + 1. (See Fig. 3.3 for example.) Further, for a face η ∈ Γ , we let
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Fig. 3.3 The graphs G(Γ ) and G ′(Γ ), and their orientations

G ′O⊇η(Γ ) be the subgraph of G ′O(Γ ) induced by the facets, ridges, and pseudoridges
containing η.

The proof of Theorem4 is given completely in parallel to that of Theorem3 by
replacing GO⊇η(Γ ) by G ′O⊇η(Γ ). In the definitions of SO(σ ) and ScO(σ ), we also
replace GO(Γ ) by G ′O(Γ ) as follows. (Formally, SO(σ ) is the same as the original
definition (1). The replacement is essential for the description of ScO(σ ).)

SO (σ ) = {η ∈ Γ : σ → τ inG′O (Γ ) for every (pseudo)ridge τ with η ⊆ τ ⊆ σ } ∪ {σ }
= {η ∈ Γ : σ → τ inGO (Γ ) for every ridge τ with η ⊆ τ ⊆ σ } ∪ {σ }, (3.3)

ScO (σ ) = σ − SO (σ )

= {η ∈ Γ : σ ← τ inG′O (Γ ) for some (pseudo)ridge τ with η ⊆ τ ⊆ σ }
=

⋃
{ τ : τ ∈ R(Γ ) ∪ R′(Γ ), σ ← τ inG′O (Γ )}. (3.4)

When {SO(σ ) : σ ∈ F(Γ )} is a partition, we define G̃(Γ ) as same as the pure case.
That is, we define a graph G̃O(Γ ) whose nodes are facets of Γ and arcs σ → σ ′ are
defined if there is a face η ⊆ σ ′ with η ∈ SO(σ ).

By this replacement, the whole argument in Theorem3 works for the nonpure
case. Theorem4 is verified by examining the following lemmas.

Lemma 6 Let Γ be a simplicial complex and let η ∈ Γ and σ ∈ F(Γ ). Then, for
any orientation O, η ∈ SO(Γ ) if and only if σ is a source node in G ′O⊇η(Γ ).

Lemma 7 Let Γ be a simplicial complex and O an orientation of G(Γ ) that is
acyclic and admissible. Then we have

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) ≥ f (Γ ).
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Lemma 8 Let Γ be a simplicial complex and O an orientation of G(Γ ) that is
acyclic and admissible. The equality

∑
σ∈F(Γ ) 2

out-deg(σ ;GO(Γ )) = f (Γ ) holds if and
only if {SO(σ ) : σ ∈ F(Γ )} forms a partition of Γ .

Lemma 9 When {SO(σ ) : σ ∈ F(Γ )} is a partition of a simplicial complex Γ , the
following are equivalent.
• G̃O(Γ ) is acyclic,
• G ′O(σ ) is acyclic,
• GO(σ ) is acyclic.

Lemma 10 For a simplicial complex Γ , there exists an acyclic and admissible ori-
entation O of G(Γ ) such that {SO(σ ) : σ ∈ F} is a partition ofΓ with G̃(Γ ) acyclic
if and only if Γ is shellable.

The proofs of Lemmas6 to 10 are completely the same as the pure case. The proof
of Theorem4 is also the same as the pure case.

Proof (Proof of Theorem4) The inequality V ∗ ≥ f (Γ ) follows from Lemma7. Fur-
ther, Lemma8 shows that the equality holds if and only if {SO(σ ) : σ ∈ F(Γ )} is
a partition of Γ , and for this partition we have G̃(Γ ) acyclic by Lemma9. Finally,
Lemma10 shows this is equivalent to the shellability of Γ . �

The trick of generalizing the pure case of Theorem3 to the nonpure case of The-
orem4 can be understood from the well-known “Rearrangement lemma” of Björner
andWachs [4, Lemma 2.6]. According to the Rearrangement lemma, any shelling of
a shellable simplicial complexΓ can be rearranged such that the facets in the shelling
are ordered in a descending order with respect to dimension, without changing the
restriction maps. In our theorems, setting restriction maps corresponds to giving
orientations to the facet-ridge incidence graph, and shellings with fixed restriction
maps are derived as linear extensions of G ′O(Γ ) restricted to facets. As remarked in
[4, p. 1305], (after the rearrangement) any shelling of a nonpure simplicial complex
of dimension d has the structure such that first d-dimensional facets are shelled,
and after that (d − 1)-dimensional facets follow extending a shelling of the (d − 1)-
skeleton of the d-dimensional part, and then (d − 2)-dimensional facets follow in
the same way. This process continues until all the facets are shelled. The orientation
of G ′O(Γ ) extending GO(Γ ) forces this structure.

The result of Theorem4 is first shown in [13], and also later appears in [11] with
a generalized framework for cell complexes.

Remark 1 In the optimization problem (P2) or (P3), in the optimal orientation, every
ridge has in-degree equal to 1. To see this, assume in an acyclic and admissible
orientation O , there is a ridge node τ that has in-degree k ≥ 2 with σ1 → τ, σ2 →
τ, . . . σk → τ . Then, we can observe there is at least one σi such that reversing the
orientation to σi ← τ remains the orientation acyclic (and obviously also admissible)
as follows. If reversing σ1 → τ to σ1 ← τ in O makes a cycle, then there should
exist a directed path from σ1 to some σi1 . If reversing σi1 → τ to σi1 ← τ in O makes
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a cycle, then there should exist a directed path from σi1 to some σi2 . By continuing
this way, at some l ≤ k, we will find a σil such that reversing σil → τ to σil ← τ

in O remain the orientation acyclic, since otherwise we have a cycle σi j � σi j+1 �
σi j+2 � · · · � σil = σi j because k is finite. Since reversing one σil → τ to σil ← τ

makes the value of the objective function smaller, we conclude that an orientation O
cannot be an optimal solution if there is a ridge node with in-degree ≥ 2.

Remark 2 The optimization problem (P1) in the setting of Theorem2 (setting
G = G(P) for a simple polytope P) is in fact a special case of the problem (P2) in
Theorem3. For a simple polytope P , let P∗ be the polar dual of P . P∗ is a simplicial
polytope, and thus its boundary ∂P∗ is a simplicial complex. Then, the facet-ridge
incidence graph G(∂P∗) is isomorphic to a subdivision of the graph G(P) intro-
ducing one node (corresponding to a ridge) on each edge. Note that each ridge node
in G(∂P∗) has degree 2. Here, as is explained in the previous remark, the optimal
orientation of the problem (P2) has in-deg(τ ) = 1 for each ridge node τ . Since each
ridge in G(∂P∗) has exactly two adjacent facets, the orientation optimal for (P2)
can be naturally translated to an orientation for (P1), and the resulted orientation is
an optimal orientation for (P1). This relation shows that the optimal orientations of
(P1) give shellings of P∗ as their linear extensions. Such a relation between good
orientations of simple polytopes and shellings of their duals has been known already,
see [20] for example.

The optimization problem (P1) can be used for characterizing shellability of pseu-
domanifolds. A (closed) pseudomanifold is a pure simplicial complex such that each
ridge is contained by exactly two facets. As is noted in Sect. 3.1, the recognition of
shellability of pseudomanifolds is easy for the 2-dimensional case [8], but no efficient
algorithms are known for 3-dimensional and higher cases. Since each ridge node has
exactly two facet nodes in the facet-ridge incidence graph of a pseudomanifold, (P2)
can be reduced to (P1) for the case of pseudomanifolds by the same reason as for ∂P∗.
The facet-ridge incidence graph of a d-dimensional pseudomanifold is a (d + 1)-
regular graph. This suggests that the problem (P1) is likely a difficult optimization
problem even if we restrict the graph G to be a k-regular graph with k ≥ 4.

3.3 Cubical Complexes and Acyclic Partitions

A simplicial complex, discussed in Sect. 3.2 is a cell complex in which each cell
is a simplex. Likewise, a cubical complex is a cell complex in which each cell is
(combinatorially equivalent to) a (hyper)cube. In this section, we develop a theory
for cubical complexes similar to that for simplicial complexes. (More precisely, what
we are considering here is a regularCWcomplex inwhich each cell is combinatorially
equivalent to a (hyper)cube. Usually, it is required that cubical complexes satisfy the
intersection property, i.e., the nonempty intersection of two cells is always a cell in the
complex, but we do not need this condition.) This result appeared in Hachimori [11].
We here follow the discussion in [11].
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Recall the story of our theory for simplicial complexes in the previous section.
In the optimization problem of (P2) or (P3), the objective function

∑
σ∈F(Γ )

2out-deg(σ ;GO (Γ )) is equal to
∑

σ∈F(Γ ) |SO(σ )|, where SO(σ ) is the set of faces of
a facet σ generated by the ridges τ with orientation σ → τ . On the other hand,
the constraint of the optimization problem that the orientations must be acyclic and
admissible (i.e., each ridge has in-degree at least 1) assures that the family {SO(σ )}
always forms a covering of Γ . Hence, the condition that the minimum value of the
optimization problem equals the number of the faces of Γ turns out to be equivalent
to that {SO(σ ) : σ ∈ F(Γ )} is a partition with an acyclic structure, i.e., such that the
graph G̃O(Γ ) is acyclic. We say such a partition an “acyclic partition.” In this story
for simplicial complexes, the existence of acyclic partitions happens to be equivalent
to be shellable, and this concludes the proof of Theorem4.

For cubical complexes, the same story can be developed except the last part. We
define G(Γ ) and G ′(Γ ) analogously to Sect. 3.2 with the same definition of facets,
ridges, and pseudoridges. For a given orientation O of G(Γ ), we extend the orienta-
tion toG ′(Γ ) by the same rule.We say an orientationO is admissible if in-deg(τ ) ≥ 1
for every τ ∈ R(Γ ). In a cubical complex Γ , each facet σ contains dim σ antipodal
pairs of (pseudo)ridges of dimension dim σ − 1. (For example, a three-dimensional
cube has three antipodal pairs of two-dimensional (pseudo)ridges.) According to the
orientation O of G(Γ ) and thus of G ′(Γ ), we define (t O0 (Γ ), t O1 (Γ ), t O2 (Γ )) the
type of the facet σ , where

t O0 (σ ) = # of antipodal pairs of (pseudo)ridges {τ, τ ′}with σ → τ and σ → τ ′,
t O2 (σ ) = # of antipodal pairs of (pseudo)ridges {τ, τ ′}with σ ← τ and σ ← τ ′,
t O1 (σ ) = dim σ − t O0 (σ ) − t O2 (σ ).

For cubical complexes, we develop the theory on Γ̌ = Γ − ∅ instead of Γ . For
σ ∈ F(Γ ), we define ŠO(σ ) = SO(σ ) − ∅ and ŠcO(σ ) = σ − ŠO(σ ). As same as
in the case of simplicial complexes, define a graph G̃O(Γ ) whose nodes are facets
of Γ and arc σ → σ ′ is defined if there is a face η ⊆ σ ′ with η ∈ ŠO(σ ). If there
exists an orientation O for a cubical complex Γ such that {ŠO(σ ) : σ ∈ F(Γ )} is a
partition of Γ̌ with G̃O(Γ ) acyclic, we say Γ̌ has an acyclic partition. Now we have
the following theorem.

Theorem 5 For a cubical complex Γ , let us consider the following minimization
problem:

(P4) : min
∑

σ∈F(Γ )

2t
O
1 (σ )3t

O
0 (σ )

s. t. O is acyclic and admissible.

Then the optimum value V ∗ of (P4) satisfies V ∗ ≥ f (Γ̌ ), where Γ̌ = Γ − ∅ and
f (Γ̌ ) is the number of all the faces of Γ̌ . Further, the equality holds if and only if Γ̌
has an acyclic partition.
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The proof of this theorem is completely the same as Theorem4. Here, in the objec-
tive function of (P4), 2t

O
1 (σ )3t

O
0 (σ ) equals the number of faces contained in ŠO(σ ).

(One reason we removed the empty set and replaced Γ by Γ̌ is to represent the
number of faces by this formula.) In Theorem4 of the case of simplicial complexes,
the existence of acyclic partitions is equivalent to shellability as Lemma10. Unfor-
tunately, however, we lack this equivalence for cubical complexes.

Remark 3 SO(σ ) and ŠO(σ ) differ only when SO(σ ) = σ , in this case Š(σ ) =
S(σ ) − ∅. The difference between an acyclic partition of Γ and an acyclic partition
of Γ̌ is the treatment of the empty set. For an acyclic partition of Γ , we require
that the empty set should be contained in exactly one SO(σ ). This requires that the
oriented graphGO(Γ ) has exactly one source node. On the other hand, for an acyclic
partition of Γ̌ , we remove the empty set from Γ̌ and from each ŠO(σ ). HenceGO(σ )

can have more than one source nodes. If O induces an acyclic partition of Γ̌ such
that GO(Γ ) has only one source node, then the orientation O also induces an acyclic
partition of Γ .

For cubical complexes, more generally for a general class of cell complexes called
“regular CW complexes” (including polytopal complexes), shellability is defined in
the following recursive form.

Definition 2 (Björner and Wachs [5, Sec. 13]) In a regular CW complex Γ , an
ordering σ1, σ2, . . . , σt of the facets of Γ is called a shelling if either dim Γ = 0 or
if dim Γ ≥ 1 and satisfies the following:

(i) ∂σ1 has a shelling,
(ii) ∂σi ∩ (

⋃i−1
j=1 ∂σi ) is pure and (dim σi − 1)-dimensional, for 2 ≤ i ≤ t ,

(iii) ∂σi has a shelling such that facets of ∂σi in ∂σi ∩ (
⋃i−1

j=1 ∂σi ) come first in the
shelling, for 2 ≤ i ≤ t ,

where ∂σ is the boundary complex of σ , i.e., the subcomplex of σ consisting of all
proper faces of σ (i.e., all the faces of σ except σ itself). Γ is shellable if it has a
shelling.

This kind of generalized version of shellability has been studied classically for pure
complexes, seeBjörner andWachs [3]. For a comprehensive exposition of shellability
for pure polytopal complexes, see Ziegler [21, Lecture 8]. For regular CWcomplexes,
see Björner [1].

The equivalence of acyclic partition and shellability like Lemma10 is valid only
in the class of simplicial complexes. Unfortunately, this equivalence does not hold for
general cell complexes. For example, the simple example in Fig. 3.4 has an acyclic
partition with the orientation shown in the figure, but it is not shellable. Hence, the
optimization in Theorem5 does not characterize shellability.

For cubical complexes, however, we can retrieve some topological information as
follows. Let O be an orientation on a cubical complex Γ . We say a facet σ is critical
if t O1 (σ ) = 0, and count the number of critical facets as follows:

pO
i (Γ ) = #{σ ∈ F(Γ ) : σ is critical and t O2 (σ ) = i}.
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Fig. 3.4 A nonshellable cubical complex that has an acyclic partition

We say that a facet is a critical facet of index i if σ is critical and t O2 (σ ) = i . Thus,
pO
i (Γ ) is the number of critical facets of index i . We have the following theorem.

Theorem 6 Let Γ be a cubical complex, and O an orientation such that {ŠO(σ ) :
σ ∈ F(Γ )} is an acyclic partition. Then we have the following inequalities:

βk(Γ ) − βk−1(Γ ) + · · ·m + (−1)k−1β0(Γ ) ≤ pOk (Γ ) − pOk−1(Γ ) + · · ·m + (−1)k−1 pO0 (Γ ),

(0 ≤ k ≤ dim Γ )

χ(Γ ) = pO
0 (Γ ) − pO

1 (Γ ) + · · ·m + (−1)dim Γ −1 pO
dim Γ (Γ ),

βi ≤ pO
i , (0 ≤ i ≤ dim Γ )

where βi (Γ ) is the i th Betti number of Γ and χ(Γ ) is the Euler characteristic of Γ .

Proof Let σ1, σ2, . . . , σt be a linear extension of G̃O(Γ ), and Γi = ⋃i
j=1 σ j . As

same as the discussion in the proof of Theorem3, Γi−1 ∩ σi = ŠcO(σi ). For each i ,
Γi is a cubical complex and we observe the following.

• If t O1 (σi ) ≥ 1, then ŠcO is homeomorphic to a ball (of dimension dim σi ), and thus
Γi is homotopy equivalent to Γi−1. (This can be verified from the fact that ScO(σi )

is shellable, see for example [21, Exercise 8.1 (i)].)
• If t O1 (σi ) = 0, then Γi is a union of Γi−1 and σ i , where σ i is homeomorphic
to the direct product of intervals I t

O
0 (σi ) × I t

O
2 (σi ) with the intersection Γi−1 ∩ σ i

corresponds to I t0(σi ) × {0, 1}t2(σi ). Thus, Γi is homotopy equivalent to the union
of Γi−1 and a t O2 (σi )-dimensional cell (i.e., adding a t O2 (σi )-handle to Γi ).

By these observations, we conclude that Γ = Γt is homotopy equivalent to a CW
complex with pi cells for each i . (See Fig. 3.5 for a simple illustrative example of this
procedure.) The inequalities follow from this by following the standard argument in
Morse theory, see for example [10, 17]. �

As we see in the proof of Theorem6, acyclic partitions can be seen as a kind of
discrete analogue of Morse functions on smooth manifolds. The critical facets of
index i correspond to the critical points of index i of Morse functions. There is a
famous discrete analogue of Morse theory by Forman [10], but our cubical analogue
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optimal orientation

σ

σ

σ

σ1

2

3

4

σ1

σ3

σ4
σ2

critical facet
of index 0

acyclic partition

type=(1,1,0) type=(1,1,0)

not critical not critical

type=(1,0,1)type=(2,0,0)
critical facet
of index 1

Fig. 3.5 An acyclic partition of a cubical complex homotopy equivalent to a cell complex with one
0-cell and one 1-cell

seems different from this. The similarity to Morse function can be observed further
as follows. This is an analogue of the “Sphere Theorem”.

Theorem 7 Let Γ be a cubical decomposition of a closed manifold (i.e., a cubical
complex homeomorphic to a closed manifold). If Γ has an acyclic partition such
that p0 = pdim Γ = 1 and pi = 0 for 0 < i < dim Γ , then Γ is a PL-sphere.

Proof This is just a consequence of that Γ is shellable if p0 = 1 and pi = 0 for 0 <

i < dim Γ , which is easy to verify. It is well known that a regular CWdecomposition
of a closed manifold is a PL-sphere if it is shellable, see Björner [1] for example. �

3.4 Optimization of Orientation of Graphs Without
Acyclicity Constraint

As is remarked in the end of Sect. 3.2, the problem (P1) seems a difficult optimization
problem in general. The difficulty of the problem (P1) lies in the constraint that the
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orientations must be acyclic. Without this constraint, the problem is easy to solve.
To see this, let us consider the following optimization problem.

(P5) : min
∑

v∈G
2out-deg(v;GO ) (=: ϕ(O))

s. t. O is any orientation.

Lemma 11 An orientation O is optimal for the problem (P5) if and only if there is no
directed path in GO fromu to v for any u, v ∈ V (G)with out-deg(v) ≤ out-deg(u) −
2.

Proof The “only if” part is easy. If there is a directed path p in GO from u to v, let
Op be the orientation reversing the orientations of edges on the path p in O . Then
we have

out-deg(u;GOp ) = out-deg(u;GO) − 1,

out-deg(v;GOp ) = out-deg(v;GO) + 1,

out-deg(w;GOp ) = out-deg(w;GO) (∀w ∈ V (G) − {u, x}).

By the condition out-deg(v) ≤ out-deg(u) − 2, it is verified that ϕ(Op) < ϕ(O)

since 2a + 2b > 2a+1 + 2b−1 if a ≤ b − 2, hence O is not optimal.
For the “if” part, assume an orientation O has no directed path from u to v

for any u, v ∈ V (G) with out-deg(v) ≤ out-deg(u) − 2, and O∗ is an optimal ori-
entation with ϕ(O) > ϕ(O∗). Let G(O,O∗) be the subgraph of G induced by the
edges of G with different orientations in O and O∗, and G(O,O∗)O (G(O,O∗)O∗

) the
graph G(O,O∗) oriented by O (by O∗). Here, we observe that we can choose O∗
such that G(O,O∗)O∗

has no directed cycles: if there is a directed cycle in G(O,O∗)O∗
,

we can reverse the orientations of the edges in O∗ along the cycle without chang-
ing the value of ϕ(O∗), and we get a required O∗ by continuing this. Further, we
choose O∗ such that the number of edges of G(O,O∗) is minimum. Since G(O,O∗)O∗

is acyclic and thus G(O,O∗)O is also acyclic, we can find a path q = x � y on
G(O,O∗) such that, in G(O,O∗)O , x is a source, y is a sink, and the path q is a
directed path from x to y. Here, we have out-deg(x;GO∗

) ≤ out-deg(x;GO) − 1
and out-deg(y;GO∗

) ≥ out-deg(y;GO) + 1 since x is a source and y is a sink in
G(O,O∗)O . We have out-deg(y;GO) ≥ out-deg(x;GO) − 1 by the assumption on O .
Hence we have

out-deg(x;GO∗
) ≤ out-deg(x;GO ) − 1 ≤ out-deg(y;GO ) ≤ out-deg(y;GO∗

) − 1.

NowletO∗
q be theorientation reversing the edges on thepathq inO

∗. If out-deg(x; O∗)
≤ out-deg(y; O∗) − 2, we have f (O∗

q ) < f (O∗), a contradiction to the optimal-
ity of O∗. If out-deg(x; O∗) = out-deg(y; O∗) − 1, we have f (O∗

q ) = f (O∗) with
|E(G(O,O∗

q )| < |E(G(O,O∗)|, a contradiction to theminimality of the number of edges
of G(O,O∗). This completes the proof of Lemma11. �
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Theorem 8 The problem (P5) can be solved in a polynomial time.

Proof To solve (P5), Lemma11 suggests the following easy algorithm. First, start
from an arbitrary orientation ofG. Then, find a directed path u � v in the orientation
such that out-deg(v) ≤ out-deg(u) − 2 and reverse the orientations of edges along
the path. Continue this until there is no such a directed path found. The resulted
orientation is an optimal solution of (P5). Since finding such a path in each repetition
can be easily done in a polynomial time, what remains is to evaluate the number of
repetitions in this algorithm. For this evaluation, consider a function

F(O) =
∑

{u,v}∈(V (G)

2 )

|out-deg(u;GO) − out-deg(v;GO)|.

When the orientations of the edges are reversed along a path p = x � y with
out-deg(y) ≤ out-deg(x) − 2, out-deg(x) decreases and out-deg(y) increases by one
respectively, and thus we have the following.

• Ifw ∈ V (G) − {x, y}has out-deg(w;GO) ≤ out-deg(y;GO)or out-deg(w;GO) ≥
out-deg(x;GO), then

(
|out-deg(x;GO ) − out-deg(w;GO )| + |out-deg(y;GO ) − out-deg(w;GO )|

)

−
(

|out-deg(x;GOp ) − out-deg(w;GOp )| + |out-deg(y;GOp ) − out-deg(w;GOp )|
)

=0.

• Ifw ∈ V (G) − {x, y}has out-deg(y;GO) < out-deg(w;GO) < out-deg(x;GO),
then

(
|out-deg(x;GO ) − out-deg(w;GO )| + |out-deg(y;GO ) − out-deg(w;GO )|

)

−
(

|out-deg(x;GOp ) − out-deg(w;GOp )| + |out-deg(y;GOp ) − out-deg(w;GOp )|
)

=2.

• We have |out-deg(x;GO) − out-deg(y;GO)| − |out-deg(x;GOp ) − out-deg
(y;GOp )| = 2 (∗), and |out-deg(w;GO) − out-deg(z;GO)| remains unchanged
for w, z ∈ V (G) − {x, y}.

Thus, in total, we have F(O) − F(Op) ≥ 2 (from (∗)). On the other hand, for any
orientation O we have 0 ≤ F(O) < n3, hence the number of repetition is bounded
by n3/2. This completes the proof of Theorem8. �

Lemma11 and Theorem8 relies only on the convexity property of the function
2x in the summand that 2a + 2b > 2a+1 + 2b−1 for a ≤ b − 2. Likewise, the same
holds if the objective function is a function ψ satisfying the condition that ψ(O) −
ψ(O ′) > 0 if the out-degrees of the nodes are the same in O and O ′ except u and
v, out-deg(u;GO) ≤ out-deg(v;GO) − 2, out-deg(u;GO ′

) = out-deg(u;GO) + 1,
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and out-deg(v;GO ′
) = out-deg(v;GO) − 1. Also, we can apply the same algorithm

for the problems (P2)-(P4) without acyclicity constraint starting from an orientation
with out-deg(τ ) = 1 for all τ ∈ R(Γ ) and finding a directed path σ � σ ′ with
σ, σ ′ ∈ F(Γ ) in each repetition. (Note that we have out-deg(τ ) = 1 for all τ ∈ R(Γ )

in the optimal orientation as same as remarked in the end of Sect. 3.2.2.)
To conclude this chapter, we list some open problems to be studied.
For the original optimization problem (P1), such a good property as Lemma11

does not likely hold and this makes the problem difficult. As is remarked before,
(P1) seems difficult even if we restrict the graph G to be k-regular with k ≥ 4. To
look for a nontrivial class of graphs for which optimization problems like (P1)-(P4)
can be solved in a polynomial time is an interesting problem. For example, is (P1)
efficiently solvable for 3-regular graphs?

On the other hand, we believe the problems (P1)-(P4) are difficult to solve in
general, but we do not have NP-hardness results for these problems. To show NP-
hardness of these problems is an important problem.

Our results in Sect. 3.2 are based on the fact that the optimization for problems
(P2) or (P3) gives an acyclic partition of a given simplicial complex. Such a parti-
tion without acyclicity is called partitionability and have been an important topic of
study, see Kleinschmidt and Onn [15], Stanley [18, Ch. III.2], etc. See also Duval,
Goeckner, Klivans, and Martin [9] for recent progress. Signability, introduced by
Kleinschmidt and Onn [15] as a generalization of partitionability, is very closely
related to our discussion in Sects. 3.2 and 3.3. Lemma1 is essentially equivalent to
the relation between partitionability and signability shown in [15] where the ori-
entations of edges σ → τ and σ ← τ are replaced to the assignment of signs +
and − to the covering relations between facets σ and ridges τ . Though partitionabil-
ity is a property removing the acyclicity structure from shellability, unfortunately
partitionability cannot be represented by the optimization problems just removing
acyclicity constraints from (P2)-(P4) as is considered in (P5). To assure partition-
ability, GO(Γ )⊇η should have exactly one source facet node for all faces η ∈ Γ . In
Theorem3, for this requirement, acyclicity assures that each GO(Γ )⊇η has at least
one source facet node, and optimization reduces it to exactly equal to one node. For
partitionability, the lack of acyclicity makes it difficult to assure GO(Γ )⊇η to have
at least one source facet node. How to treat partitionability in a similar framework is
a difficult problem.

Related to shellability and partitionability, Hachimori andKashiwabara [12] intro-
duced hereditary-shellability and hereditary-partitionability, which are properties
requiring the restriction to any vertex subset has the property to be shellable and
partitionable. (Other related hereditary properties are defined in the same way.) This
is motivated by the notion of obstructions introduced by Wachs [19]. To treat these
hereditary properties in the optimization setting is a quite open problem.

Finally, to look for other topics that can be formulated using optimizations on
orientations of graphs will be an interesting problem.
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Chapter 4
On Ideal Minimally Non-packing
Clutters

Kenji Kashiwabara and Tadashi Sakuma

4.1 Introduction

4.1.1 Background and Motivation

In the celebrated paper [15] of Seymour, motivated by the pluperfect and (weak) per-
fect graph theorems for the set covering problem by Fulkerson and Lovász, he intro-
duced the concept of so-called “the Max-Flow-Min-Cut property” of clutters, which
is the packing counterpart of the totally dual integrality built in the perfection. That
is, a clutter C has the Max-Flow-Min-Cut property (the MFMC property, for short)
if, for its clutter matrix M(C ), the linear system M(C )x � 1, x � 0 is totally dual
integral. A matrix inequality Ax ≥ b (resp. to Ax ≤ b) is called totally dual integral
if the linear programmin{〈w, x〉|Ax ≥ b} (resp. tomax{〈w, x〉|Ax ≤ b}) has an inte-
gral optimal dual solution y for every integral cost vectorw for which the above linear
program has a finite optimum. In the case of the anti-blocking polytope of a clutter
matrix, its integrality and the totally dual integrality of its linear system are coinci-
dent with the perfection. Seymour[15] also pointed out that this “obvious analog” of
the set covering problem is false for the set packing problem, because there exists
a non-MFMC clutter Q6 := {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}} whose blocking
polyhedron {x ∈ R

6|0 ≤ x, M(Q6)x ≥ 1} is integral (i.e., ideal). On the other hand,
he proved that this Q6 is the only ideal binary clutter which is minimally non-MFMC
as the meaning of clutter minor.
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AclutterC has the packing property (resp. packs) if the both sides of the linear pro-
gramming equation min{〈ω, x〉|x � 1, M(C )x � 1} = max{〈y, 1〉|y � 0, yM(C )

� ω} have optimal solution integral vectors x and y for all cost vectors ω with com-
ponents equal to 0, 1 or∞ (resp. when ω = 1). Lehman [12] proved that the packing
property implies the idealness. However, the converse is false because the ideal clut-
ter Q6 does not pack and hence does not have the packing property. By definition,
the MFMC property implies the packing property. But how about the converse? In
1993, Conforti and Cornuéjols [1] proposed the following famous conjecture.

Conjecture 1 (Conforti and Cornuéjols 1993) A clutter has the packing property if
and only if it has the MFMC property.

Despite its natural appearance, this conjecture is very difficult and still open. The
existing approaches can be classified roughly into two categories

Thefirst category is to find a clutter class forwhich the conjecture is affirmative (or,
if possible, false). Conjecture 1 holds for the binary clutters [15], the diadic clutters
[4], the clutter of circuits of a digraph [8], the clutter of cycles in an undirected graph
[6], the broken circuit clutter of two-dimension affine convex geometries [9], the
Ehrhart clutters [13], and so on. However, for the almost all of them, except for the
case of the binary clutters shown in the Seymour’s initial paper [15], the MFMC
property is coincident with not only the packing property but also the idealness. In
other words, there are only minimally non-ideal excluded clutter minors for these
classes to have theMFMCproperty.Of course, there are several knownclutter classes,
other than the binary clutters, on which the packing property is not coincident with
the idealness. It is well known that the clutter of disjoins [3, 14, 16] falls into the case.
See also [11] for another example. However, as far as the authors know, Conjecture
1 seems unsettled even if restricted to each of these classes. To begin with, there are
so few clutter classes on which the packing property is characterized by the set of
minimally excluded minors which inevitably includes some ideal clutters (again, see
[11]).

The second category is to investigate “the packing property” itself and extract
key nature of the concept by which we can prove or disprove the conjecture. The
first essential step on this line was achieved by Cornuéjols, Guenin and Margot [4].
Starting with the discovery of Q6 [15], there have been found numerous (and several
infinite families of) ideal minimally non-packing clutters until today (e.g., [3, 4, 7,
11, 14, 16]). All of these existing clutters have the common property: The blocking
number is 2 for all of them. Cornuéjols, Guenin and Margot [4] conjectured that the
converse is also true.

Conjecture 2 The blocking number of every ideal minimally non-packing clutter is
2.

Furthermore, they proved that the above conjecture implies Conjecture 1.
In this chapter, the authorswill provide a framework to attackConjecture 2. A tilde

core of an ideal minimally non-packing clutter C is the maximal set of hyperedges
of C such that every minimum transversal of C has a unique common element
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with each of the hyperedges. As the concept of the core has greatly developed the
theory of minimally non-ideal clutters (see [2] for details), the concept of the tilde
core may have similar impact to the theory of ideal minimally non-packing clutters.
Actually, Cornuéjols, Guenin and Margot [4] proved that several key features of the
ideal minimally non-packing clutters are controlled by their tilde cores. The authors
will develop their idea to a framework to check whether a given clutter can be a
tilde core of an ideal minimally non-packing clutter or not. This framework is useful
not only for the search of counterexamples but also to prove the conjecture. We
demonstrate this by applying our framework to the case of a special clutter, namely,
the combinatorial affine planes.We show that every combinatorial affine planewhose
blockingnumber is at least 3 cannot be a tilde core of any idealminimally non-packing
clutter (Theorem8).

In connection with this, we should note that whether a combinatorial projective
plane except for the Fano plane F7 can be a core of a minimally non-ideal clutter
or not is a famous open question of the theory of minimally non-ideal clutters (see
Question 6 in [5]).

4.1.2 Overview of Our Results

We consider Conjecture 2 in this chapter. That is, we consider the (non-)existence
problem of an ideal minimally non-packing clutter of blocking number at least 3.
We propose a new framework to attack the conjecture.

Let E be a finite ground set of clutters throughout this chapter. C̃ denotes the set
of hyperedges in a clutter C each of which intersects every minimum transversal in
exactly one element. A tilde clutter C̃ was first introduced in Cornuéjols, Guenin
andMargot [4]. That paper gave necessary conditions for C to be an ideal minimally
non-packing clutter in terms of C̃ . In our chapter, we develop their idea. We contrive
tractable necessary conditions for C to be an ideal minimally non-packing clutter in
terms of C̃ . By our approach, clutters that we have to consider are restricted.

We divide the (non-)existence problem of an ideal minimally non-packing clutter
D as in Conjecture 2 into two steps. In the first step (Sect. 4.3), we give necessary
conditions for C = D̃ when D is an ideal minimally non-packing clutter. We call
a clutter satisfying the conditions in the step 1 a precore clutter. In the second step
(Sect. 4.4), for a precore clutter C , we consider whether C has an ideal minimally
non-packing clutter D with C = D̃ . Since the necessary conditions in step 1 are
rather strong, clutters that we have to consider are much confined. However, we
found a several classes of precore clutters. When we try to find a counterexample or
prove the conjecture, we have only to consider the problem for each precore clutter
C . That is, it is the problem for C to have an ideal non-minimally non-packing
clutter D with C = D̃ . Starting with a (rather vague) task to find a counterexample
to Conjecture 2, here, we obtain a tractable concrete problem whether a given clutter
C has an ideal non-minimally non-packing clutter D with C = D̃ or not.
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Section4.3 is devoted to step 1. For an ideal non-packing clutter D , we present
several necessary conditions of D̃ : the integral blocking condition, tilde-invariance,
the integrality of I(D̃), and non-separability (Theorem2). The integral blocking con-
dition is defined as the coincidence of the fractional packing number and the blocking
number. This condition is a fundamental condition as a premise of an argument. A
clutter C satisfying the integral blocking condition is called tilde-invariant if C = C̃
holds. For an ideal clutter C , C̃ is tilde-invariant. A clutter is ideal if and only if
the blocking polyhedron {x ∈ R

E |〈1H , x〉 ≥ 1 for all H ∈ C , x ≥ 0} is an integral
polyhedron. The polyhedron I(C ) is a face of the above blocking polyhedron defined
by the equalities corresponding to minimum transversals. We show that, for an ideal
clutter C , not only I(C ) but also I(C̃ ) is an integral polyhedron (Theorem1). The
minimum transversals define the affine hull of I(C ) and somenon-minimum transver-
sals define facets of I(C ). By observing these transversals carefully, we can derive
useful information from them.

Cornuéjols, Guenin, and Margot [4] proved that deleting all the elements on a
hyperedge of an ideal minimally non-packing clutter decreases the blocking num-
ber by at least two. We call such a condition hyperedge-non-separability. We also
present a condition called non-separability, which is a generalization of hyperedge-
separability.

We have the following implications among conditions on C under the conditions
that itsminimum transversals cover E and the integral blocking condition (Lemmas6,
12 and 13).

Integrality of I(C ) ⇒ tilde-full condition+dimension condition ⇒
tilde-full condition ⇒ weak tilde-invariant clutter.

In Sect. 4.4, when a precore clutter C is given, we present several necessary
conditions for an ideal minimally non-packing clutter D with C = D̃ : Conditions
IM, IF, H, and B (Theorems4 and 5). Since these conditions forD are strong enough,
the next condition for a precore C is derived. When a precore clutter C has an ideal
minimally non-packing clutter, there must exist a clutter D satisfying Conditions
IM, IF, H, and B (Corollary3).

In Sect. 4.5, we consider the problem with an additional condition that the maxi-
mum fractional packing is unique. Many classes of precore clutters satisfy this con-
dition as far as we know. In this case, I (C̃ ) for a precore clutter is an integral simplex.
This condition is characterized in terms of transversals and a condition about dimen-
sion (Theorem6). We give an example of a precore clutter, namely, a combinatorial
affine plane. The clutter C of a combinatorial affine plane is obtained by deleting
one element from a combinatorial projective plane. We show that the clutter C of
a combinatorial affine plane is a precore clutter (Theorem7). Moreover, we show
that the clutter C of a combinatorial affine plane cannot have a counterexample D
to Conjecture 2 with C = D̃ (Theorem8).
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4.2 Preliminaries

Let E be a finite set. A family C ⊆ 2E of sets is said to be a clutter if no member
includes another member. A member of C is called a hyperedge. For details about
clutters, please refer to [2].

For a clutter C , a set on E is a transversal if it intersects every element of C
and it is minimal with respect to inclusion in such sets.1 b(C ) denotes the clutter
consisting of all the transversals of C . A minimum transversal of C is a transversal
of the minimum size. minb(C ) denotes the set of minimum transversals of a clutter
C . Note that we assume that the word “transversal” always means a “minimal”
transversal to avoid the confusion between a minimum transversal and a minimal
transversal in our definition.

The blocking number bn(C ) of a clutter C is the minimum size of a transversal
in b(C ). The packing number pn(C ) of a clutter C is the maximum size of a family
of hyperedges of a clutter such that any pair of them does not intersect. Clearly,
pn(C ) ≤ bn(C ) holds. When pn(C ) = bn(C ) holds, C is said to pack. When C ⊆
C ′, pn(C ) ≤ pn(C ′) and bn(C ) ≤ bn(C ′) hold.

The contraction of A from C is C /A = min({X − A|X ∈ C }) where min is the
operation of collectingminimal sets with respect to inclusion. The deletion of A from
C is C \A = {X ∈ C |X ∩ A = ∅}. A minor of C is a clutter which is obtained by
contractions and deletions iteratively from C . A proper minor means a minor which
is not equal to the original clutter. The restriction of C to A is C [A] = C \Ac.

A clutter C is called minimally non-packing if it does not pack and every proper
minor packs. A clutter C is called minimally non-packing with respect to deletion
if it does not pack and every proper deletion minor packs. A clutter on E is called
minimum-transversal-covered if its minimum transversals cover E .

Lemma 1 For a minimally non-packing clutter with respect to deletion, it is
minimum-transversal-covered.

Proof Since C does not pack, pn(C ) < bn(C ) holds. For a minimally non-packing
clutter C with respect to deletion and a ∈ E , the deletion C \a packs. Therefore
pn(C \a) = bn(C \a). Since deleting one element decreases the blocking number by
at most one, we have bn(C \a) = bn(C ) − 1. Recall that the deletion of a clutter
corresponds to the contraction of the clutter of its transversals. If a is not covered
by any minimum transversal, every minimum transversal of C \a is also a minimum
transversal of C , a contradiction to bn(C \a) = bn(C ) − 1. �

For a clutter C , M(C ) denotes a clutter matrix of C , whose row vectors coin-
cide with the incidence vectors of its hyperedges. We consider the following linear
problem.

1In standard terminology, this concept normally would be called a “minimal transversal”. However
since we only treat minimal transversals and this term is repeatedly used throughout this chapter,
we include minimality in our definition for convenience.
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max

⎧
⎨

⎩

∑

H∈C
y(H)|yM(C ) ≤ 1E , y ∈ R

C

⎫
⎬

⎭
= min

⎧
⎨

⎩

∑

a∈E

x(a)|M(C )x ≥ 1C , x ∈ RE

⎫
⎬

⎭
.

Note that the above equality always holds because of the duality theorem of the
linear programming. We call the maximizing problem of y the primal problem and
the minimizing problem of x the dual problem.

A clutter C is ideal if {x ∈ R
E |〈x, 1H 〉 ≥ 1 for all H ∈ C , x ≥ 0} is an integral

polyhedron where 1H is the incidence vector of H . Note that x ≥ 0 means x(a) ≥ 0
for every a ∈ E . It is known that every minor of an ideal clutter is an ideal clutter
again.

By the complementary slackness of the linear programming, we have that, for
every maximum solution y of the primal problem, every minimum solution x of the
dual problem and, for every a ∈ E , x(a) > 0 implies

∑
H :a∈H∈C y(H) = 1.

Amaximum fractional packing y of a clutterC is a functionC → R≥ maximizing
the sum

∑
H∈C y(H) such that

∑
H :a∈H∈C y(H) ≤ 1 for every a ∈ E . Every maxi-

mum fractional packing is an optimal solution of the primal problem. The support of
a maximum fractional packing y is the set of hyperedges H with y(H) > 0. Define

F(C ) = {z ∈ R
C |z is a maximum fractional packing}.

The fractional packing number is
∑

H∈C y(H) for y ∈ F(C ), denoted by fpn(C ).
Note that bn(C ) ≥ fpn(C ) ≥ pn(C ). For an ideal clutterC , fpn(C ) = bn(C ) holds.
When a clutter C packs, pn(C ) = fpn(C ) = bn(C ).

C̃ denotes the set of hyperedges in a clutter C which intersect every minimum
transversal in exactly one element. That is,

C̃ = {H ∈ C : |B ∩ H | = 1 for all B ∈ minb(C )}.

We call C̃ the tilde clutter of C . A clutter C̃ , obtained by the tilde operation, plays
a crucial role in this chapter.

4.3 Precore Conditions

In this section, we present several necessary conditions for D̃ when D is ideal min-
imally non-packing: the integral blocking condition, the integrality of I(C ), and
non-separability.

4.3.1 Integral Blocking Condition

Definition 1 A clutter C satisfies the integral blocking condition if its fractional
packing number fpn(C ) is equal to its blocking number bn(C ).
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Lemma 2 Assume that a minimum-transversal-covered clutter C satisfies the inte-
gral blocking condition. Then, for every y ∈ F(C ),

∑
H∈C y(H)1H = 1E holds.

Proof By the integral blocking condition,we have
∑

H∈C y(H) = bn(C ) for amaxi-
mumfractional packing y. By the complementary slackness,wehave

∑
H∈C y(H)1H

= 1E since the minimum transversals cover E . Note that its minimum transversals
are optimal solutions of the dual problem by the integral blocking condition. �

Lemma 3 Assume that a minimum-transversal-covered clutter C satisfies the inte-
gral blocking condition. Then every hyperedge in the support of a maximum fractional
packing of C intersects every minimum transversal in exactly one element. That is,
every hyperedge in the support of some maximum fractional packing of C belongs
to C̃ .

Proof By definition of transversals, every hyperedge H ∈ C and every minimum
transversal B satisfy |H ∩ B| ≥ 1. When there exist some hyperedge H and some
minimum transversal B with |H ∩ B| > 1, 〈∑H∈C y(H)1H , 1B〉 = ∑

H∈C y(H)

〈1H , 1B〉 > ∑
H∈C y(H). Since 1E = ∑

H∈C y(H)1H by Lemma2, 〈1E , 1B〉 =
〈∑H∈C y(H)1H , 1B〉 > ∑

H∈C y(H) = bn(C ), which contradicts the fact that
〈1E , 1B〉 = bn(C ). �

So we can regard y ∈ F(C ) as y ∈ F(C̃ ).

Lemma 4 Assume that a minimum-transversal-covered clutter C satisfies the inte-
gral blocking condition. For y ∈ F(C ),

∑
H∈ ˜C y(H)1H = 1E and

∑
H∈ ˜C y(H) =

bn(C̃ ) = bn(C ). Moreover F(C ) = F(C̃ ) holds.

Proof By the integral blocking condition and covering by the minimum transver-
sals,

∑
H∈C y(H) = bn(C ) holds for y ∈ F(C ). We have

∑
H∈C y(H)1H = 1E by

Lemma2. Therefore
∑

H∈ ˜C y(H)1H = ∑
H∈C y(H)1H = 1E holds by Lemma3.

By taking the inner product between each side of the equality and a minimum
transversal B of C , we have

∑
H∈ ˜C y(H)〈1H , 1B〉 = 〈1E , 1B〉. Since 〈1H , 1B〉 =

1 for H ∈ C̃ ,
∑

H∈ ˜C y(H) = bn(C ). Since C̃ ⊆ C ,
∑

H∈ ˜C y(H) ≤ fpn(C̃ ) ≤
bn(C̃ ) ≤ bn(C ). Therefore y attains a maximum fractional packing of C̃ . So
F(C ) = F(C̃ ). We have fpn(C̃ ) = bn(C ) = bn(C̃ ). �

Corollary 1 For a minimum-transversal-covered clutter C which satisfies the inte-
gral blocking condition, C̃ is minimum-transversal-covered and also satisfies the
integral blocking condition. Moreover, minb(C ) ⊆ minb(C̃ ) holds.

Proof By Lemma4, F(C ) = F(C̃ ) and bn(C ) = bn(C̃ ). So fpn(C̃ ) = fpn(C ) =
bn(C ) = bn(C̃ ).

By definition, C̃ ⊆ C holds. So every minimum transversal of C intersects every
hyperedge of C̃ . Since bn(C ) = bn(C̃ ), a minimum transversal of C is a minimum
transversal of C̃ . So the minimum transversals of C̃ cover E . �
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Example 1 Let C = {ac, bc, bd} on E = {a, b, c, d}. Then b(C ) = {ab, bc, cd}
and C̃ = {ac, bd}. Since b(C̃ ) = {ab, bc, cd, da}, this is an example whose mini-
mum transversals are different between C and C̃ .

Corollary 2 Let C be an ideal minimum-transversal-covered clutter. Then C sat-
isfies the integral blocking condition. Moreover C̃ satisfies the integral blocking
condition.

Proof By the duality theorem of linear programming, for every maximum frac-
tional packing y on C , there exists a minimum transversal B ∈ minb(C ) with
yM(C )1B = |B|. Note that we can take an integral optimal solution 1B since C
is ideal. By Lemma3, yM(C )1B = yM(C̃ )1B . Since M(C̃ )1B = 1 ˜C , yM(C̃ )1B =∑

H∈ ˜C y(H) is also the fractional packing number of C . Therefore C satisfies the
integral blocking condition.

Moreover, by Corollary1, C̃ also satisfies the integral blocking condition. �

Proposition 1 When every minor of a clutter satisfies the integral blocking condi-
tion, the clutter is an ideal clutter.

Proof When the clutter is not ideal, it has aminimally non-ideal clutterC ′ as aminor.
Then fpn(C ′) > bn(C ′) since any minimum transversal of C ′ cannot be an optimal
solution of the dual problem. The clutter C ′ does not satisfy the integral blocking
condition. �

Lemma 5 For a minimum-transversal-covered clutterC which satisfies the integral
blocking condition, the number of hyperedges in C̃ is at least the blocking number.

Proof There exists at least one maximum fractional packing. The number of hyper-
edges which belong to the support is at least the blocking number since, for each
minimum transversal B, every element of B intersects a different hyperedge in C̃ .
Therefore the statement follows from Lemma3. �

4.3.2 Tilde-Invariant Clutters and Tilde-Full Condition

Definition 2 A clutter C is a tilde-invariant clutter if it satisfies C = C̃ and the
integral blocking condition.

Definition 3 A clutter C is a weak tilde-invariant clutter if C satisfies the integral
blocking condition and C̃ is a tilde-invariant clutter.

By definition, every tilde-invariant clutter is a weak tilde-invariant clutter.

Example 2 Even if the minimum transversals of a clutter cover E , and if it satisfies
the integral blocking condition, it may not be a weak tilde-invariant clutter. Let
C = {abc, de, e f, f d, a f, bd, ce} on {a, b, c, d, e, f } shown in Fig. 4.1. We have
b(C ) = {ade, be f, c f d}, and C̃ = {a f, bd, ce, abc}. Since C̃ is not a tilde-invariant
clutter, C is not a weak tilde-invariant clutter.
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Fig. 4.1 An example of a
non-weak tilde-invariant
clutter

Definition 4 A clutter C satisfies the tilde-full condition when C satisfies the fol-
lowing conditions.

• It is minimum-transversal-covered.
• C satisfies the integral blocking condition.
• Every hyperedge in C̃ belongs to the support of somemaximum fractional packing.

Lemma 6 If a clutter C satisfies the tilde-full condition, C is a weak tilde-invariant
clutter.

Proof Assume that C satisfies the tilde-full condition. Then every hyperedge H in
C̃ belongs to the support of some maximum fractional packing y. By Lemma4, y is
also a maximum fractional packing of C̃ . On C̃ , H and any minimum solution x0 ∈
{x ∈ R

E |M(C̃ )x ≥ 1E , x ≥ 0} in the dual problem satisfy 〈1H , x0〉 = 1. Since any
minimum transversal B ∈ minb(C̃ ) is a minimum solution, we have |B ∩ H | = 1.
Therefore C̃ is a tilde-invariant clutter. �

Lemma 7 When a clutter C satisfies the tilde-full condition, C̃ also satisfies the
tilde-full condition.

Proof By Corollary1, C̃ satisfies the integral blocking condition. For every hyper-
edge H ∈ C̃ , there exists a maximum fractional packing y of C whose support
contains H since C satisfies the tilde-full condition. Since the support of y is con-
tained in C̃ by Lemma4, y is also a maximum fractional packing of C̃ . Therefore
C̃ satisfies the tilde-full condition. �

4.3.3 Polytope I(C )

We define a polyhedron I(C ) as follows.

I(C ) = {x ∈ R
E : 〈x, 1D〉 = 1 for all D ∈ minb(C ), 〈x, 1D〉 ≥ 1 for all D ∈ b(C ), x ≥ 0}.

Note that this polyhedron I (C ) is a face of the blocking polyhedron {x ∈ R
E :

〈x, 1D〉 ≥ 1 for all D ∈ b(C ), x ≥ 0}. This polyhedron plays a central role in this
chapter.
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Lemma 8 For a clutter C which satisfies the integral blocking condition, I(C ) is a
non-empty polyhedron. For a clutterC which satisfies the integral blocking condition,
I(C ) is a polytope if and only if C is minimum-transversal-covered.

Proof We show the first statement. Since C satisfies the integral blocking condition,
there exists at least one maximum fractional packing whose support intersects every
minimum transversal in exactly one element. Therefore C̃ contains some hyperedge
H . Then 1H ∈ I(C ).

We show the second statement.
Assume that C is minimum-transversal-covered. By Lemma5, C̃ is non-empty.

Since the incidence vector of every hyperedge of C̃ belongs to I(C ), I(C ) is non-
empty.

Assume x ∈ I(C ). For any a ∈ E , there exists B ∈ minb(C ) with a ∈ B since
the minimum transversals cover E . Therefore x(a) is at most 1 since x ≥ 0 and
〈x, 1B〉 = 1. Since x ≥ 0, I(C ) is bounded.

Conversely, assume that there exists a ∈ E which is covered with no minimum
transversals. Since C satisfies the integral blocking condition, C̃ contains some
hyperedge H . Then 1H ∈ I(C ). 1H + k1a ∈ I(C ) for any k ≥ 0. So I(C ) is not
bounded. �

Lemma 9 For an ideal minimum-transversal-covered clutter C , I(C ) is an integral
polytope.

Proof Since C is ideal, {x ∈ R
E |〈x, 1B〉 ≥ 1 for any B ∈ b(C ), x ≥ 0} becomes an

integral polyhedron. Since I(C ) is a face of it, I(C ) is also an integral polyhedron.
Note that every face of an integral polyhedron is integral. I(C ) is a polytope since
its minimum transversals cover E and Lemma8. �

Lemma 10 For a minimum-transversal-covered clutter C , the set of integral points
in I(C ) coincides with the set of incidence vectors of C̃ . And hence every integral
point in I(C ) is an integral extreme point of I(C ).

Proof Every incidence vector of C̃ satisfies all the inequalities defining I(C ). Con-
versely, consider an integral point x in I(C ). Note that such an integral point x is a
01-vector because the minimum transversals cover E . Let H be the set with 1H = x .
We show that H is a hyperedge of C̃ . By the definition of I(C ), H intersects every
transversal and intersects every minimum transversal in exactly one element. Next
we show that such H is minimal. If there exists another integral point 1H ′ such
that H ′

� H . Then there exists a ∈ H − H ′. Since the minimum transversals cover
E , there exists a minimum transversal B containing a. But B − a also intersects
every hyperedge, which contradicts the minimality of a hyperedge. So such a set is
a hyperedge in C̃ . And hence x is also an extreme point of the polytope I(C ). �

Lemma 11 For a minimum-transversal-covered clutter C which satisfies the inte-
gral blocking condition, the point consisting of all 1/bn(C ) is contained in the
relative interior of I(C ).
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Proof Since every transversal defining a facet of I(C ) has a size of at least bn(C ) + 1,
the inner product of a transversal defining a facet of I(C ) and the point in the statement
is more than 1. On the other hand, the inner product of a minimum transversal of
I(C ) and the point in the statement is exactly 1. Therefore the point consisting of
1/bn(C ) is contained in the relative interior of I(C ). �

Lemma 12 Assume that a clutter C which satisfies the integral blocking condition.
When I(C ) is an integral polytope, C satisfies the tilde-full condition.

Proof Since I(C ) is a polytope, C is minimum-transversal-covered by Lemma8.
By the integrality of the polytope I(C ) and Lemma10, there exists no extreme point
other than such incidence vectors of C̃ . Therefore the point in Lemma11 is expressed
as a positive combination of the extreme points of I(C ) because the point is in
the relative interior of I(C ). By multiplying such a coefficient by bn(C ), the sum
of all the components of the vector attains bn(C ), which is the fractional packing
number. So there is a maximum fractional packing such that all the coefficients are
positive. �

Theorem 1 For an ideal minimum-transversal-covered clutterC , I(C̃ ) is an integral
polytope with I(C ) = I(C̃ ). The extreme points of I(C ) consist of the incidence
vectors of C̃ .

Proof I(C ) is an integral polytope by Lemma9. By Corollaries1 and 2, C and C̃
are minimum-transversal-covered and satisfy the integral blocking condition. Since
C̃ ⊆ C , there exists B ′ ∈ b(C̃ ) with B ′ ⊆ B for any B ∈ b(C ). Therefore I (C̃ ) ⊆
I (C ) holds. Therefore I(C ) = I(C̃ ) follows from Lemma10. �

Definition 5 A clutter C satisfies the dimension condition if

(affine dimension of C̃ ) + (affine dimension of minb(C̃ )) = |E | − 1.

The affine dimension of C̃ means the dimension of the affine hull of all the incidence
vectors of C̃ .

Lemma 13 For a tilde-invariant clutter C = C̃ such that I(C ) is an integral poly-
tope, C satisfies the dimension condition.

Proof Since I(C ) is a polytope, C is minimum-transversal-covered by Lemma8.
Since I(C ) is an integral polytope, the extreme points of I(C ) consist of the inci-
dence vectors of C̃ by Lemma10. So the dimension of I(C ) is equal to the dimension
of the affine hull of C̃ .Wehave only to show that the dimension of I (C ) is not affected
by transversals other than minb(C̃ ). If the dimension of I (C ) is affected by a non-
minimum transversal, such a non-minimum transversal intersects every hyperedge
in C in exactly one element. For a maximum fractional packing y,

∑
H∈ ˜C y(H) =∑

H∈ ˜C y(H)〈1H , 1B〉 = ∑
H∈ ˜C y(H)〈1H , 1B〉 = 〈1E , 1B〉 = |B| > bn(C ), a con-

tradiction to Lemma4. �
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4.3.4 Non-separability

Separability is a necessary condition for a clutter C to have an ideal minimally
non-packing clutter D with C = D̃ .

Definition 6 A clutter C is separable if there exists a nontrivial partition {E1, E2}
of E and bn(C ) = bn(C [E1]) + bn(C [E2])where C [E1] := C \Ec

1 with C [E2] :=
C \Ec

2. Otherwise it is called non-separable.

Lemma 14 A minimally non-packing clutter with respect to deletion is non-
separable.

Proof Since a clutter C is minimally non-packing, C does not pack. Assume that it
is separable with a partition {E1, E2} of E .

Consider the case where both C [E1] and C [E2] pack. Then fpn(C [E1]) =
pn(C [E1]) = bn(C [E1]) and fpn(C [E2]) = pn(C [E2]) = bn(C [E2]) and fpn(C )

≥ fpn(C [E1]) + fpn(C [E2]). By separability, pn(C ) ≥ pn(C [E1]) + pn(C [E2]) =
bn(C [E1]) + bn(C [E2]) = bn(C ). Since pn(C ) ≤ bn(C ) generally, pn(C ) =
bn(C ) holds. So C packs. This contradicts the fact that C does not pack.

Consider the casewhere either of themdoes not pack. This contradicts the assump-
tion that C is minimally non-packing. �

Lemma 15 Assume that a minimum-transversal-covered clutterC satisfies the inte-
gral blocking condition and non-separability. Then C̃ is non-separable.

Proof Assume that C̃ is separable with a partition {E1, E2} such that bn(C̃ [E1]) +
bn(C̃ [E2]) = bn(C̃ ). We have bn(C̃ [E1]) ≤ bn(C [E1]) and bn(C̃ [E2]) ≤
bn(C [E2]) since C̃ [E1] ⊆ C [E1] and C̃ [E2] ⊆ C [E2]. ByLemma4 and the integral
blocking conditiononC ,wehavebn(C ) = bn(C̃ ). Sincebn(C [E1]) + bn(C [E2]) ≤
bn(C ) generally, we have bn(C̃ ) = bn(C̃ [E1]) + bn(C̃ [E2]) ≤ bn(C [E1]) +
bn(C [E2]) ≤ bn(C ). Therefore we have bn(C [E1]) + bn(C [E2]) = bn(C ), which
contradicts the fact that C is non-separable. �

Definition 7 Aminimum-transversal-covered clutterC satisfying the integral block-
ing condition is hyperedge-separable if there exists a hyperedge H ∈ C̃ such that
bn(C \H) = bn(C ) − 1. Otherwise, that is, if bn(C \H) < bn(C ) − 1 holds for
every hyperedge H ∈ C̃ , the clutter C is called hyperedge-non-separable.

Lemma 16 When a minimum-transversal-covered clutter C satisfying the integral
blocking condition is hyperedge-separable, it is separable.

Proof When a clutter C is hyperedge-separable at H ∈ C̃ , we take a partition
{H, H c} of E . Thenwe have bn(C [H ]) + bn(C \H) = bn(C ) because of bn(C [H ])
= 1. �
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4.3.5 Summarizing the Conditions in Step 1

Definition 8 For a clutter C , a clutter D is called a solution clutter of C if C = D̃ .

As a weaker problem, we first consider the problem for a clutterC to have an ideal
clutterD withC = D̃ . That is, we discard the condition of “minimally non-packing”.

We have considered necessary conditions for the tilde-invariant clutter C to have
an ideal minimally non-packing clutter D with C = D̃ . In this subsection, we inte-
grate these results.

Theorem 2 Assume that a clutter C has an ideal minimally non-packing solution
D . Then C satisfies the following conditions.

• C satisfies the integral blocking condition.
• I(C ) is an integral polytope.
• C is non-separable.

Proof The clutter C is minimum-transversal-covered by Lemma1. The clutter C is
integral blocking by Corollary2. So the integrality of I(C ) follows from Theorem1.
The non-separability condition follows from Lemmas14 and 15. �

In other words, for any ideal minimally non-packing solution D , D̃ satisfies the
conditions in Theorem2.

We call a clutter C = C̃ satisfying the conditions in Theorem2 a precore clutter.
When we consider Conjecture 2, we have only to consider the precore clutters. We
give an example of a precore clutter in Sect. 4.5.2.

Theorem 3 Assume that C satisfies the integral blocking condition and I(C ) is an
integral polytope. Then C̃ is minimum-transversal-covered and tilde-invariant, and
satisfies the tilde-full condition, and the dimension condition.

Proof The clutter C̃ is minimum-transversal-covered by Lemma8. The integral
blocking condition follows from Corollary2. The clutter C̃ satisfies the tilde-full
condition by Lemmas12 and 7. So C̃ is a tilde-invariant clutter by Lemma6. The
dimension condition follows from Lemma13. �

4.4 Conditions in the Second Step

Afterwefind a clutterC satisfying the conditions in step 1,wehave to discusswhether
it has an ideal clutter D which is minimally non-packing with C = D̃ further.

For a precore clutter C , we discuss necessary conditions for an ideal solution
clutter D . The difference between the conditions in Theorem2 and those in this
section is whether D appears in the conditions directly or not.
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Condition I: I(C ) = I(D) holds.
We can divide Condition I into Conditions IM and IF.
Condition IM: The affine space generated by the incidence vectors of the min-

imum transversals of C is equal to be the affine space generated by the incidence
vectors of the minimum transversals of D .

Condition IF: If a facet F of I(C ) is defined by a transversal of C , there exists
at least one element B ∈ b(D) defining the facet F . Moreover, every B ∈ b(D)

intersects every H ∈ C .
ConditionH:C ⊆ D must hold. For any H ∈ D − C , there exists B ∈ minb(C )

with |H ∩ B| ≥ 2.

Theorem 4 For a precore clutter C , every ideal solution clutter D to C satisfies
Conditions IM, IF, and H.

Proof By Theorem1, Condition I holds. Since the affine hull of I (C ) is defined by
minb(C ), Condition IM holds. Since the facets of I (C ) are defined by b(C ) and
x ≥ 0, Condition IF holds. Note that every B ∈ b(D) intersects every H ∈ C since
C ⊆ D .

Assume H ∈ D − C . Since H /∈ C̃ = C , there exists B ∈ minb(C ) with |H ∩
B| ≥ 2. Therefore Condition H holds. �

We consider necessary conditions for the tilde-invariant clutter C to have an ideal
minimally non-packing solution clutter D .

Condition B: For any disjoint sets A, B ⊆ E with A ∪ B �= ∅, bn(C /A\B) ≤
pn(D/A\B) holds.

Theorem 5 For a precore clutter C , every ideal minimally non-packing solution
clutter D to C satisfies Condition B.

Proof Since every proper minor of D has the packing property, bn(D/A\B) =
pn(D/A\B) holds. Since C ⊆ D , bn(C /A\B) ≤ bn(D/A\B). Therefore Condi-
tion B holds. �

Corollary 3 When a precore clutterC has an ideal minimally non-packing solution,
there must exist a clutter D satisfying Conditions IF, IM, H, and B.

We have not found a precore clutterC withD satisfying the above conditions yet.
If we can prove that there exist no such precore clutters, then Conjecture 2 will be
affirmative. Actually, the conditions in Corollary 3 are effectively used in Sect. 4.5.2.

4.5 Unique Maximum Fractional Packing

In this section, we consider the problem under an additional condition that the maxi-
mum fractional packing is unique. Many important classes of precore clutters satisfy
this condition. Section4.5.1 is concerned with step 1 in the case that the maximum



4 On Ideal Minimally Non-packing Clutters 81

fractional packing is unique. In Sect. 4.5.2, we consider an example of a precore
clutter. Moreover we show that there exists no counterexample to Conjecture 2 in
that class (Theorem8).

4.5.1 Unique Maximum Fractional Packing

In this subsection, we consider a clutter which has a unique maximum fractional
packing. For example, the clutter Q6 = {abc, cde, e f a, bd f } has a uniquemaximum
fractional packing.

Lemma 17 Consider a clutter C which satisfies the tilde-full condition. The inci-
dence vectors of C̃ are affinely independent if and only if its maximum fractional
packing is unique.

Proof Assume that a maximum fractional packing is unique. Then y(H) > 0 for all
H ∈ C̃ by the tilde-full condition. The support of the maximum fractional packing
y of C consists of the hyperedges of C̃ by Lemma3. When these incidence vectors
are affinely dependent, the maximum fractional packing can be moved slightly so
that it is still a maximum fractional packing, a contradiction.

When a maximum fractional packing is not unique, by taking two maximum
fractional packings y1 and y2, they are affinely dependent since

∑
H∈C y1(H) =∑

H∈C y2(H) and
∑

H∈C y1(H)1H = ∑
H∈C y2(H)1H = 1E by Lemma4. �

Generally, when a polyhedron P is not full dimensional, its facet-defining inequal-
ity is not unique.Here,we call a linear inequality 〈1B , x〉 ≥ 0 a facet-defining inequal-
ity of P to a facet F when {x ∈ P|〈1B, x〉 = 0} = F .

Lemma 18 Consider a clutter C such that I(C ) satisfies the integral blocking con-
dition and is an integral polytope. Its maximum fractional packing is unique if and
only if I(C ) is a simplex.

Proof Since I(C ) is a polytope, theminimum transversals ofC cover E by Lemma8.
By Lemma12, C satisfies the tilde-full condition. By Lemma17, its maximum frac-
tional packing is unique if and only if the incidence vectors of C̃ are affinely inde-
pendent. �

We call an integral polytope which is simplex an integral simplex. For H ∈ C̃ , we
call a transversal B ∈ b(C̃ ) a facet transversal of H if |H ∩ B| > 1 and |H ′ ∩ B| = 1
for H ′ ∈ C̃ − {H}.
Theorem 6 Let C be a minimum-transversal-covered tilde-invariant clutter which
satisfies the integral blocking condition. The polytope I(C ) is an integral simplex
and the clutter C is hyperedge-non-separable if and only if C satisfies the dimension
condition and, for each hyperedge of H of C (= C̃ ), there exists a facet transversal
B ∈ b(C ) of H.
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Proof First, let us assume that the clutter C is tilde-invariant and hyperedge-non-
separable and that the polytope I(C ) is an integral simplex. From Lemma10, we
have that, for every extreme point x of the simplex I(C ), there exists a hyperedge
H of the clutter C̃ (= C ) such that x = 1H holds. Let FH be the unique facet of
the simplex I(C ) which does not contain 1H . If there exists a transversal B ∈ b(C )

defining FH , then, by definition, it will be a facet transversal of H . On the contrary,
suppose that there exists no facet transversal B ∈ b(C ) defining FH . Then the facet
FH must be defined by a linear inequality of a nonnegative constraint x(a) ≥ 0 for
some element a of E . And hence every hyperedge in C except for the hyperedge H
satisfies x(a) = 0, that is, it does not contain the element a. The point 1E is attained by
the nonnegative combination of C by Lemma4. Therefore when 1E is represented
as a nonnegative combination y of C , the coefficient y(H) to H is 1. Since the
deletion of all the elements reduces the fractional packing number by exactly one, it
is hyperedge-separable. Therefore any facet-defining inequality is defined by a facet
transversal. The dimension condition follows from Lemma13.

Next, suppose conversely that, for every hyperedge H of the clutter C , there
exists a transversal B ∈ b(C ) such that |H ∩ B| > 1 holds and that |H ′ ∩ B| = 1
holds for every H ′ ∈ C − {H}. Then the incidencevector 1H of every hyperedge H in
C (= C̃ ) is an extreme point of the polytope I(C ) by Lemma10. For each 1H ∈ I(C ),
the facet 〈1B, x〉 = 1 contains all the integral extreme points except 1H . And hence
I(C ) has a (|C | − 1)-dimensional simplicial face F whose extreme points coincide
with the incidence vectors of the hyperedges of the clutterC (= C̃ ). By the dimension
condition, the dimension of I(C ) is the size |C | − 1. Therefore the simplicial face F
is coincident with the polytope I(C ) itself. Since its extreme points are expressed as
C , it is an integral simplex. Since |H ∩ B| ≥ 2 holds, there exists a hyperedge X of
C − {H} such that X ∩ (H ∩ B) �= ∅ holds. And hence the clutter (C \ H) ∪ {H}
cannot contain the hyperedge X . Since the clutter C is tilde-invariant, the hyperedge
X is also a hyperedge of C̃ and hence the incidence vector 1X of X forms an extreme
point of the integral simplex I(C ). On the other hand, from Lemma18, we have that
the clutterC has a unique maximum fractional packing and that it inevitably uses the
incidence vector 1X of X as an element of its convex combination. Thus, for every
hyperedge H of the clutter C , we have that the unique maximum fractional packing
ofC is different from anymaximum fractional packing of the clutter (C \ H) ∪ {H},
which means that the clutter C is hyperedge-non-separable. �

We give an example of a precore clutter. A graph G is called a brick if it is 3-
connected and G − {u, v} has a perfect matching for all pairs of distinct u, v ∈ V (G).
For a graphG, the vertex cut clutterC (G) is the clutter {{{a, b} ∈ E(G)}|a ∈ V (G)}.
Example 3 For a brick G, the vertex cut clutter C (G) of G is an example of a
precore clutter. In fact, since G is non-bipartite, the maximum fractional packing is
unique and the integral blocking condition is satisfied. Since G is matching covered,

C (G) satisfies the minimum-transversal-covered. Moreover, C (G) = C̃ (G) holds.
Since the dimension of the matching polytope of a brick G is |E(G)| − |V (G)|, the
dimension condition is satisfied. For any vertex x ∈ V (G), there exists a factor of a
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brick G such that vertex x has degree 3 and the other vertices have degree 1. Such a
factor becomes a facet transversal. Therefore by Theorem6, I (C (G)) is an integral
simplex and hyperedge-non-separable.We can show thatC (G) is also non-separable
by the definition of a brick.

4.5.2 Combinatorial Affine Planes

AclutterC on a finite set E is called a combinatorial projective plane if the following
three conditions are satisfied.

(1) For any two distinct elements, there exists a unique hyperedge containing the
two elements.

(2) Any two distinct hyperedges intersect in exactly one element.
(3) There are four elements such that no hyperedge contains more than two of

them.
On a combinatorial projective plane C , each hyperedge is also called a point

and each element is also called a line. (The inverse correspondence between point
and line is possible but the reason why we adopt this correspondence is due to a
combinatorial affine plane appeared later.) For any combinatorial projective plane
C , there exists a natural number n such that n2 + n + 1 = |C | = |E |. Every element
a ∈ E is contained in (n + 1) hyperedges, and every hyperedge has size n + 1.

By deleting one element a ∈ E from the clutterC , we obtain another clutterC \a.
This clutter C \a becomes a clutter of a combinatorial affine plane.

Definition 9 A clutter C on a finite set E is called a combinatorial affine plane if
the following three conditions are satisfied.

(1) For any two distinct hyperedges H and H ′, |H ∩ H ′| = 1.
(2) Given an element a and a hyperedge H ∈ C with a /∈ H , there exists a unique

element b ∈ H such that a and b are not contained in the same hyperedge.
(3) There exist three hyperedges which do not contain the same element.

For example, a combinatorial projective plane on seven elements induces a com-
binatorial affine plane on six elements. It is Q6, which is an ideal clutter of blocking
number 2.

The following proposition is folklore (for example, see [10]).

Proposition 2 Let the size of a hyperedge of a combinatorial affine plane be n + 1.
Then |E | = n2 + n, the size of its minimum transversal is n, the number of its min-
imum transversals is n + 1. Each element is contained in exactly n hyperedges. Its
minimum transversals form a partition of E. Any two elements which belong to dif-
ferent minimum transversals are included in exactly one hyperedge. Each hyperedge
is also a transversal.

Lemma 19 A combinatorial affine planeC satisfies the integral blocking condition,
and C = C̃ holds. Therefore it is tilde-invariant.
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Fig. 4.2 An example of
D[X ]

Proof Let n + 1 be the size of its hyperedge. We first show the integral blocking
condition. The blocking number of C is n. For each element in E , there exist n
hyperedges of C containing the element. Therefore the sum of the incidence vectors
of all the hyperedges of C is n1E , which is a fractional packing of C . Since they
form a maximum fractional packing, C satisfies the integral blocking condition.

Since every minimum transversal and every hyperedge of C intersect in exactly
one element by Proposition2, we have C = C̃ . �

Lemma 20 The maximum fractional packing of a combinatorial affine plane is
unique.

Proof By calculating the determinant of the clutter matrix, the incidence vectors of
hyperedges of the clutter are affinely independent. So the statement follows from
Lemma17. �

Theorem 7 For a combinatorial affine plane C , I(C ) is an integral simplex and C
is non-separable. Therefore C is a precore clutter.

Proof We can take the hyperedges on C as facet transversals by Proposition2. The
number of the hyperedges is n2 and the number of theminimum transversals is n + 1.
Since they are affinely independent, we have the dimension condition. By Theorem6,
I(C ) is an integral simplex.

By deleting all the points on a hyperedge, all the hyperedges disappear. So the
clutter of a combinatorial affine plane is non-separable. �

Theorem 8 Every combinatorial affine plane C of blocking number at least 3 has
no ideal minimally non-packing solution clutter.

Proof Assume that C has an ideal minimally non-packing solution clutter D .
Consider distinct hyperedges A, B, and C in C with A ∩ B ∩ C = ∅. Let z be a

unique point in A ∩ B. Similarly, let x be a unique point in B ∩ C , and y be a unique
point in C ∩ A (Fig. 4.2).

Then consider the restriction C [X ] where X is the union of the three hyperedges
A, B, and C . Note that X �= E since the blocking number is at least 3. Then since
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such a clutter has exactly three hyperedges, its blocking number is 2. Since D[X ]
must pack, there exists a packing of size 2 in D[X ] (Condition B). By Condition
IF, any facet transversal of I (C ) is also a facet transversal of I (D). Therefore any
hyperedge H ∈ C is also a transversal in D . Moreover any minimum transversal
of C is a minimum transversal of D by Condition IM. Therefore the two elements
consisting of x and any one element of A − {y, z} form a transversal of D[X ].
Similarly, two elements consisting of y and any one element of B − {z, x} form a
transversal, and two elements consisting of z and any one element of C − {x, y}
form a transversal. Such two elements are included in some minimum transversal or
included in some hyperedge which is also a transversal in b(D) since the deletion
of elements from a clutter corresponds to the contraction of them from the clutter
of transversals. Therefore X is covered by transversals of size 2. By regarding such
two elements as an edge of a graph, such a graph has three connected components
and each of them is a star. A packing of size 2 becomes a partition on X consisting
of two hyperedges of size |X |/2 as in Fig. 4.3. For a packing of size 2 in D[X ], two
elements as a transversal belong to different hyperedges in the packing of size 2 on
D[X ]. Therefore we can take four types of packings of size 2.

In three types out of the four types of packings, one hyperedge in packings of
size 2 is either of A, B, and C , the other hyperedge is included in the complement
of the hyperedge in X . These cases contradict the fact that A, B,C themselves are
transversals because every hyperedge must intersect every transversal. We discuss
the remaining type of the packings, that is, one hyperedge is included in {x, y, z}, and
other hyperedge is included in X − {x, y, z}. Since {x, y, z} intersects any minimum
transversal in exactly one element, {x, y, z} cannot be a hyperedge ofD byCondition
H, a contradiction. �

We should note that whether a combinatorial projective plane except for the F7

can be a core of a minimally non-ideal clutter or not is a famous open question of
the theory of minimally non-ideal clutters (see Question 6 in Cornuéjols, Guenin
and Tunçel [5]). The following conjecture asserts that, except for the F7, there is no
combinatorial projective plane which is a core of some minimally non-ideal clutter:

Conjecture 3 A clutter of a combinatorial affine plane of blocking number at least
3 has no ideal solution clutter.

Fig. 4.3 Sets of vertices indicated by circles and squares represent hyperedges
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Chapter 5
Symmetric Travelling Salesman Problem

Some New Algorithmic Possibilities

Tiru Arthanari and Kun Qian

5.1 Introduction

Starting from humble beginnings in a travelling manual in 1832 [51], the Travelling
Salesman Problem (TSP) has grown to become the iconic problem in combinatorial
optimization [20]. The difficulty of the TSP was first brought to the attention of the
mathematics community by Austrian mathematician Karl Menger in 1930 [20].

The underlying objective of the TSP is to find an optimal tour that visits every
node in a finite set of nodes and returns to the origin node on a graph, given the
matrix of distances between any two nodes. It is easy to define yet hard to find an
optimal solution [35]. There are a few variations of the TSP, such as the standard
Asymmetrical Travelling Salesman Problem (ATSP) [46]; the time-dependent trav-
elling salesman problem [27, 28]. In this chapter, our focus is on the Symmetric
Travelling Salesman Problem (STSP) where the distance between two nodes is the
same in either direction.

In 1954, George Dantzig, Ray Fulkerson and Selmer Johnson from the RAND
Corporation presented a proof for the optimal path they had found for a tour through
49 cities in the United States of America (USA) [22]. They used a combination of
linear programming and some heuristics to calculate the shortest tour manually for
the 12,345-mile tour through 49 cities.

Initially, most of the work done on the TSP is motivated by the wide range of
applicability of TSP algorithms on other discrete optimisation problems [20]. Over
time the algorithms developed for the TSP have been used in industry to solve many
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practical problems. Some of the problems include the following: vehicle routing [24],
genome mapping [1], guiding industrial machines [20] and organizing data [38].

Although there had been some progress in solving specific instances of the TSP
problem, researchers were starting to wonder whether or not there exists an efficient
algorithm to solve the TSP problem. Jack Edmonds famously stated in 1967 that he
‘conjectures that there is no good algorithm for the travelling salesman problem’ [24].
The ‘good algorithm’ Edmonds was referring to is an algorithmwhere the time taken
to solve the problem will increase at an acceptable rate and not grow exponentially
as the problem size grows. The nature of the TSP, however, requires the brute force
algorithm to compare and rank all the combinations of possible paths through the
nodes, and therefore, n nodes in an instance will require (n − 1)! operations, taking
exponential time with respect to the size of the problem.

Both exactmethods and heuristic algorithms have been developed to find solutions
to the TSP. Exact methods include dynamic programming algorithms like the Held
Karp algorithm [32]; the branch and bound algorithm by Little et al. [41] and poly-
hedral approaches [39] like the branch and cut, used in Concorde—the program that
solved the largest ST SP problem to date having 85900 cities [2]. Heuristics include
algorithms such as Christofides algorithm [18], Lin–Kernighan algorithm [40] and
Lin–Kernighan–Helsgaun algorithm [34]. Metaheuristics are heuristic methods for
developing heuristics to solve general problems. Some examples of metaheuristics
are as follows: local search and hill climbing; simulated annealing [36]; genetic
algorithm [45].

The research of this chapter departs from the standard formulation Dantzig,
Fulkerson and Johnson [22] and other formulations of the ST SP such as Bellman
[13]; Carr [16]; Claus [19]; Fox, Gavish and Graves [25]; Gavish and Graves [26];
Held and Karp [33]; Lawler et al. [37]; and Miller, Tucker and Zemlin [43]. And
considers for study a new multistage insertion (MI) formulation of the STSP [5, 11].
Insertion is a local search heuristic commonly employed to generate a tour involving
k + 1 cities from a tour that involves k cities, where k varies from 3 to n − 1 [23, 37].
The sequence of insertion decisions made to insert city k + 1 in an edge available
in the k-tour resulting from the earlier insertion decisions starting with the unique
3-city tour, (1, 2, 3, 1) was formulated in Arthanari [5] as an integer programming
problem (MI-formulation), solving which yields the best tour.

Naddef [44] succinctly summarizes the comparative strengths of the different
models for STSP. One can paraphrase it as follows: Among all the known integer
linear programming models, three models emerge and attain the same value for
their linear relaxations. These are as follows: the MI-formulation, the cycle-shrink
formulation of Carr [16] and the standard formulation or the subtour elimination
formulation of Dantzig, Fulkerson and Johnson [22]. The multistage insertion is
inspired by dynamic programming recursion—building up a tour step-by-step. Cycle
shrink does the opposite—going from a tour to a node. Not surprisingly these two
formulations are equivalent (see proof in [12]).

Haerian [30] as part of her doctoral thesis has compared different formulations of
the symmetric travelling salesman problem, including the standard formulation or
DFJ formulation with respect to (i) the LP relaxation of the formulation and integral-
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ity gap, (ii) number of simplex iterations and (iii) CPU time used to find an optimal
continuous solution. It turns out that MI-formulation has emerged more often than
not as the winner as far as the gap is concerned. Also, it has shown superiority among
those formulations with similar gap by needing less number of simplex iterations.
Gubb [29] compared 19 formulations of STSP that model the problem from different
perspectives, namely, flows, insertions and subtours (some of these are in the list
of references [19, 25, 26, 43, 50, 52, 53]). He concludes that even among those
formulations that are similar in polytope-wise implications, they vary in computa-
tional efficiency.MI-formulation stands out in this experimental comparison as well.
Unfortunately, in both Haerian [30] and Gubb [29], the sizes of the instances from
TSPLIB [49] considered are less than 300. The reason for this limitation arises pri-
marily from the capacity of the commercial LP solver software used.MI-formulation
has n(n−1)

2 + (n − 3) constraints and τn = ∑n
k=4

(k−1)(k−2)
2 variables. In order to solve

larger size problems, one needs to abandon using general purpose LP algorithms to
solve the LP instances that are sparse, with 0,±1-matrices, with the non-zero ele-
ments occurring in specific positions that can be given by a formula. In this chapter,
we consider the constraint matrix of the MI-formulation for further clue to devise
special purpose LP algorithms to exploit completely the structure of the problem
matrix.

Rest of the chapter is structured as follows: Sect. 5.2 provides notations used and
some definitions and concepts from graph theory. Section 5.3 gives a brief account of
the different formulations of STSP and their comparisons. Sections 5.4–5.6 develop
the concepts and algorithms that are required to solve the MI-relaxation as a hyper-
graph minimum cost flow problem. The last two sections provide details of our
four-phase research and concluding remarks.

5.2 Preliminaries

In this chapter, we define some terminologies used in graph theory and give an
introduction to linear programming and the simplex algorithm. The definitions and
algorithms are taken from Cunningham [21], Bondy et al. [14] and Cook [20].

5.2.1 Graph Theory

Let V be a finite non-empty set of elements called nodes or vertices and E be a
subset of V × V with its elements called edges be defined by e = (v, u) ∈ E such
that u, v ∈ V are the end points of edge e ∈ E . An edge e ∈ E is called an incident
edge to some node v ∈ V , if node v is an end point of e. For an edge e ∈ E , if the edge
is directed from one end point to the other, it is called a directed edge; otherwise, it
is called an undirected edge.
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Definition 1 A graph G is defined using a set of nodes V and a set of edges E and
is denoted by G = (V, E). Graphs are generally categorized as undirected graphs or
directed (digraphs). If all e ∈ E are undirected edges, then G is an undirected graph;
if all e ∈ E are directed edges, then G is a directed graph, otherwise G is a mixed
graph.

Given a graphG = (V, E), an incident edge of node v ∈ V are all edges that have
node v ∈ V as an end point. The set of incident edges is denoted by δ(v).

Definition 2 The degree of a node is the number of edges incident to that node.

Definition 3 Two nodes in a graph are called adjacent to each other if there exists
an edge joining them.

Definition 4 A node sequence (v0, . . . , vk) in G is called a path if there are no repe-
titions for all i = 1, . . . , k in the sequence and e = (vi−1, vi ) ∈ E . A node sequence
(v0, . . . , vk), for some 3 ≤ k ≤ |V | is called a cycle, if v0 = vk , and the sequence
(v0, . . . , vk−1) is a path. A cycle that contains all the node in V is called aHamiltonian
cycle.

Definition 5 Let E(U ) = {(i; j) ∈ E | i , j ∈ U }; for some U ⊆ V in graph G. A
graph G ′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V . A subgraph G ′ = (V ′, E ′)
of G is called a component of G, if and only if there is a path between any two nodes
in V ′ and not between any of the nodes from V ′ and V \V ′.

Definition 6 If a graph has only one component, it is called a connected graph. A
connected graphwith no cycles is called a tree. Given a digraph, a strongly connected
component of the graph is a subset of V such that for any given set of vertices u and
v in the component, there is a path from u to v.

Let R, Q, Z, N denote the set of reals, respectively, and B stands for the binary
set of {0, 1}. Let Rd denote the set of d-tuples of R. Similarly, the superscript d is
applied the same to the rationals, integers and natural numbers.

Let Kn = (Vn, En)be the complete graphofn ≥ 4vertices,where ’Vn = {1, . . . , n}
is the set of vertices labelled in some order, and En = {e = (i, j) | i, j ∈ Vn, i < j}
is the set of edges.

Definition 7 A subsetHC1 of En is called a Hamiltonian cycle in Kn if it is the edge
set of a simple cycle in Kn , of length n. We also call such a Hamiltonian cycle an
n-tour in Kn.

Definition 8 A combinatorial optimization problem (COP) aims to find a X ∈ F
that minimizes c(X), where

1. E be a finite set called the ground set.

1We use HC to represent a Hamiltonian cycle instead of H because in later sections, we use H to
represent a hypergraph.
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2. F is a collection of subsets of E .
3. c : F → R denotes a cost function.

Let {0, 1}|E | denote the set of all 0 − 1 vectors indexed by E . Since any subset of
E can be given by a 0 − 1 vector, called the incidence vector, the collection F can
be equivalently given by a subset F of {0, 1}|E |.

We can make the following observations:

1. The convex hull of F , denoted by conv(F), is a 0 − 1 polytope.
2. The set of vertices of the polytope can be seen as F .
3. We can create a combinatorial optimization problem by establishing (E, F, c).

For example, the STSP is equivalent to the problem of finding aHamiltonian cycle
that minimizes a linear objective function over the set of all Hamiltonian cycles (or
n − tours) in Kn is a COP . For this problem, E is the set of edges in a complete
graph on n vertices, En . F is the set of incidence vectors of HC ∈ HCn . And we
are given the cost function c ∈ R|En |. Let Qn denote the polytope conv(F).

5.3 Formulations for the TSP

Over the last century, there have been various formulations suggested for the TSP.
These formulations usually trade off between the number of constraints for an increas-
ing number of variables. However, the goal remains the same—to find the most opti-
mal values for the variables which satisfy the constraints and minimizes the total
cost. In the following sections, we present and compare a few formulations of the
TSP and discuss the strength of the LP relaxation of these formulations.

5.3.1 Dantzig, Fulkerson and Johnson

The most well-known TSP formulation is the formulation proposed by Dantzig,
Fulkerson and Johnson (DFJ) in 1954.

min
n∑

j=1

n∑

i

ci j xi j

Subject to
n∑

i=1

xi j = 1, ∀ j = 1, . . . n (5.1)

n∑

j=1

xi j = 1, ∀i = 1, . . . n (5.2)
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∑

i, j∈S
xi j ≤ |S| − 1, ∀S ⊆ V, 2 ≤ |S| ≤ n − 1 (5.3)

xi j ∈ {0, 1},∀i, j. (5.4)

Constraints (5.1) and (5.2) make sure that every node is visited. Constraint (5.3) is
known as the subtour elimination constraint andmakes sure that the output, in the end,
is a Hamiltonian cycle. The algorithm partitions the set V into two groups: nodes that
have already been visited and nodes that have yet to be visited while constraining the
sum of the values of the edges that are connected between the two groups. The DFJ
formulation has 2n−1 + n − 1 constraints and n(n − 1) variables. The exponential
number of subtour elimination constraints creates a barrier for implementing this
formulation efficiently. However, Dantzig et al. [22] solved the LP relaxation of the
formulation with subtour elimination constraints relaxed, this would allow outputs of
non-Hamiltonian cycles to be produced. To compensate for the relaxation, Dantzig
et al. would let the algorithm run until a complete tour was produced [3].

5.3.2 Cycle Shrink

Carr [17] proposed the cycle-shrink relaxationwhich is anLP formulation thatmodels
the LP relaxation of the DFJ formulation. For a given node some k ∈ V , let Vk =
{k + 1, . . . , n} and let Gk = (Vk, Ek) be a subgraph of the complete graph G that is
induced by Vk . For each edge e ∈ Ek , we define a decision variable xke .

Let x0 be an indicator vector of a Hamiltonian cycle H 0(x0) in G. Let H 1(x0)
be a Hamiltonian cycle in G1 that is formed by removing vertex 1 from H 0(x0) and
connected its neighbours with an edge. Similarly, let Hk(x0) be a Hamiltonian cycle
in Gk that is obtained by removing vertex k from Hk−1(x0) in Gk−1 and connecting
its neighbours.

The incidence vector of H 0 is indicated as x0 = (x0e |e ∈ E) and for any k ∈
{1, . . . , n − 3} the incidence vector of Hk is xk = (xke |e ∈ Ek). The solution toCarr’s
formulation are sequences of nodes that have been removed from initial Hamilto-
nian cycles in G and are represented by x = (x0, x1, . . . , xn−3). The cycle-shrink
relaxation formulation by Carr is

min
∑

e∈E
cex

0
e .

Subject to
x0e ≥ 0,∀e ∈ E (5.5)

∑

e∈δ({ j})∩Ek

xke = 2,∀k ∈ {0, . . . , n − 3},∀ j ∈ Vk (5.6)
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xk−1
e − xke ≤ 0, k ∈ {1, . . . , n − 3}, e ∈ Ek . (5.7)

Carr [17] has shown that all the subtour elimination constraints would be satisfied by
a feasible solution for the cycle-shrink model. Let τn = ∑n

k=4(k − 1)(k − 2)/2. The
cycle-shrink model has (τn+1 + (n + 3)(n − 2)/2) constraints and τn+1 variables.

5.3.3 The Multistage Insertion Formulation for the STSP

Arthanari [5] proposed the Symmetric Travelling Salesman Problem (STSP) as a
multistage dynamic programming problem.He presented themathematical program-
ming formulation and showed that the slack variables from this formulation are the
edge-tour incidence vectors. This formulation was called the Multistage Insertion
formulation (MI formulation) and uses n3 variables and n2 constraints.

Let Kn = (Vn, En)be a complete graphwithn ≥ 4vertices,where Vn ∈ {1 , . . . , n}
is a set of vertices labelled in an arbitrary order, and En ∈ {e = (i, j) | i , j ∈ Vn , i <

j} is a set of edges. The cardinality of En denoted by pn is n(n − 1)/2 as Kn

is a complete graph. We assign a unique edge label li j = p j−1 + i to each edge
e = (i , j) ∈ En . For a subset F ⊆ En the characteristic vector of F is represented
by xF ∈ R

pn . Assuming that edges in En are ordered in increasing order according
to their edge labels, the characteristic vector is defined as follows:

xF (e) =
{
1, if e ∈ F,

0, otherwise.

For a subset S ⊂ Vn , we define E(S) = { (i , j) ∈ En | i, j ∈ S}. The set δ(S)

denote the set of edges with one node in S and one node in Vn \ S.
Let Tk = [v1, v2, . . . , vk, v1] be an STSP tour of size k also called a k − tour corre-
sponding to a Hamiltonian cycle in a graph Kk = (Vk, Ek), where 1 ≤ k ≤ n. Let
vi ∈ Vk for 3 ≤ i ≤ k indicate that the i th node in the k-tour Tk .

The MI formulation is based on n − 3 iterations of node insertions into the 3-
tour T3 = [1 , 2 , 3 , 1 ]. This tour is eventually expanded to an n − tour as the nodes
from 4 to n are inserted successively into the tour. The decision of choosing an edge
for insertion at state k − 3 for 4 ≤ k ≤ n is represented by the variable xi jk , for all
1 ≤ i < j < k, such that

xi jk =
{
1, if node k is inserted between nodes i and j,

0, otherwise.

The first stage of the insertion starts with the decision of inserting node 4 into
one of the edges in T3, i.e. node 4 is inserted between one of the edges in the set
{(1 , 2) (1 , 3) (2 , 3)}. Suppose the edge which is chosen is labelled as (i4 , j4) ∈
E3 then the available edges in the next stage would be {(1 , 2) (1 , 3) (2 , 3)} ∪
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{(i4 , 4), ( j4 , 4)}\ {(i4 , j4)}. Generally, the tour that is constructed at stage k,
depends on available edges from the (k − 1)th stage and also on the choice of edge
(ik−1 , jk−1) for the insertion of the node k − 1. The set of available edges in each
stage Ak can be shown as Ak = Ak−1 ∪ {(ik−1 , k), ( jk−1 , k)}\ {(ik−1 , jk−1)}.

Since by the end of the n − 3 stages, each node 4 ≤ k ≤ n is inserted into one
edge only, we have the condition as a constraint

∑

1≤ i< j< k

xi jk = 1,∀ 4 ≤ k ≤ n. (5.8)

For each edge of the initial 3-tour, namely, the edges {(1, 2), (1, 3), (2, 3)} can
be used for the insertion of at most one node 4 ≤ k ≤ n. This condition can be shown
as a constraint

n∑

k=1

xi jk ≤ 1,∀ 1 ≤ i, j ≤ 3. (5.9)

At the k − 3 stage of insertion, the edge (i , j) that is needed for insertion of node
k is required to have existed at stage k − 3, implying that the edge (i , j) must have
been created in one of the stages prior to stage k − 3. Additionally, no node other
than k should be inserted between the edge (i , j).

Moreover, if the edge (i , j) /∈ E3, in some stage prior to k − 3, edge (i , j) needs
to be constructed by inserting j into either edge (r , i) or (i , s), where 1 ≤ r < i
and i < s < j . This requires that the sum

∑i−1
r=1 xri j + ∑ j−1

s=i+1 xis j = 1. Second, this
edge could be used for insertion by only one node k > i . These two conditions are
combined to create the constraint

−
i−1∑

r=1

xri j −
j−1∑

s=i+1

xis j +
n∑

k= j+1

xi jk ≤ 0, ∀ 4 ≤ j < n, 1 ≤ i < j. (5.10)

Let ci j denote the cost of an edge (i , j) ∈ En . Insertion of node k into edge (i , j),
would replace edge (i , j) with two new edges (i , k) and ( j , k). This replacement
increases the total cost of the tour by Ci jk = cik + c jk − ci j .
The MI formulation minimizes the total incremental cost of the tour that is made by
the node insertions at each stage. Since the initial cost of the 3-tour c12 + c13 + c23
is the same in all of the tours of a given instance, it is not included in the objective
function of the MI formulation. The complete MI formulation is given below [5]:

min
n∑

k=4

∑

1≤i< j<k

Ci jk xi jk .

Subject to
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∑

1≤ i< j< k

xi jk = 1,∀ 4 ≤ k ≤ n (5.8)

n∑

k=1

xi jk ≤ 1,∀ 1 ≤ i j ≤ 3 (5.9)

−
i−1∑

r=1

xri j −
j−1∑

s=i+1

xis j +
n∑

k= j+1

xi jk ≤ 0, ∀ 1 ≤ i < j, 4 ≤ j < n. (5.10)

The number of constraints for the MI formulation is pn + n − 3, and the num-
ber of variables is τn = ∑n

k=4 pk−1. By relaxing the integrality constraint from the
MI formulation and adding the following constraint, the MI-relaxation problem is
defined.

−
i−1∑

r=1

xrin −
n−1∑

s=i+1

xisn ≤ 0 , i = 1, . . . , n − 1 (5.11)

Although constraint (5.11) is non-binding, it is added as a constraint to the model
because of its corresponding slack variables. The slack variables of the formulation
determine the edges that are chosen for the tour. The polytope given by the LP
relaxation of the MI formulation is denoted by PMI (n). Let ui j , 1 ≤ i < j ≤ n, be
the slack variables corresponding to the inequalities in the MI formulation. Arthanri
and Usha [11] uses slack variables of the inequalities (5.9)–(5.11) to define the
corresponding tour as given in (5.12)

ui j =
{
1, if edge (i ,j) is present in the tour,
0, otherwise.

(5.12)

Definition 9 ([11]) Let ek be a vector of size 1 × k with all its coordinates equal
to one. The matrix corresponding to Eq. (5.8) is denoted En and is constructed as
follows.

For n = 4, we have
E4 = e 3×2

2
= (1, 1, 1).

For n = 5, we have

E5 =
(
e 3×2

2
0

0 e 4×3
2

)

=
(
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1

)

.

In general, En can be constructed recursively as shown below:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e 3×2
2

0 0 · · · 0 0

0 e 4×3
2

0 · · · ... 0

0 0
. . . 0 0

0 0
. . . 0 0

0 0 e (n−2)×(n−3)
2

0
0 0 0 e (n−1)×(n−2)

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
En−1 0
0 e (n−1)×(n−2)

2

)

.

Let

A(n) =
(

Ipn−1

−Mn−1

)

,

where Mi corresponds to coefficients of constraints (5.9)–(5.11), the matrix corre-
sponding to constraints (5.9)–(5.11) is denoted as An and it is constructed as follows:

An =

⎛

⎜
⎜
⎜
⎝

A4

0 A5
...

...
. . .

0 0 0 An

⎞

⎟
⎟
⎟
⎠

=
(
An−1

0 An

)

.

Let U denote the vector of slack variables in the MI formulation and let CT =
(c124, c134, c125, . . . , c(n−2)(n−1)n). Based on the definition of An and En and some
manipulation by letting CT = −cT An , the MI formulation can also be defined as
problem.

Problem 1
minCT X

s.t.
(
En 0
An I

) (
X
U

)

=
⎛

⎝
en−3

e3
0

⎞

⎠ , X, U ≥ 0.

5.3.4 The Pedigree Polytope

The integer solution to the MI formulation for the STSP has a 1-1 correspondence
with a combinatorial object called pedigree. In the following section, we will define
the pedigree and give an example of using the MI formulation to solve an STSP
problem of size 5.

Let HCn be the set of all Hamiltonian cycles of Kn = (Vn, En) and let HCk ∈
HCk for all 3 ≤ k ≤ n. Let e = (i, j) ∈ Ek−1, by inserting k in e is equivalent as
replacing e by {(i, k), ( j, k)}.
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Definition 10 ([7]) Edge Generators: Given e = (i, j) ∈ En , G(e) is called the set
of generators of e

G(e) =
{

δ(i) ∩ E j−1, if j ≥ 4
E3\{e}, otherwise.

As edge e = (i, j) for when j > 3 is created through inserting j into any existing
edge in a stage prior to this one, all the edges that are replaced at each stage of the
MI formulation are added to the G(e).

Let n = 5, e = (1, 4). In this example, j = 4 which is greater than 3, so G(e)
= δ(i) ∩ E j−1 and as i = 1 therefore using the definition of δ(i), δ(1) = {(1, 2),
(1, 3), (1, 4), (1, 5)}. E j−1 = E = {(1, 2), (1, 3), (2, 3)}. Therefore, hence G(e) =
{(1, 2), (1, 3)}.
Definition 11 ([7]) Given n, consideringW = (e4, . . . en), where ek = (ik, jk). For
1 ≤ ik < jk ≤ k − 1, 4 ≤ k ≤ n. W is called a pedigree if and only if

1. ek, 4 ≤ k ≤ n are all distinct,
2. ek ∈ Ek−1, 4 ≤ k ≤ n and
3. for every k, 5 ≤ k ≤ n, there exists a e′ ∈ G(ek) such that eq = e′, where q =

max{4, jk}.
Let Pn denote the set of all pedigrees for a given n > 3. For any 4 ≤ k ≤ n, given
an edge e ∈ Ek−1, with edge label l, we can associate a 0-1 vector, x(e) ∈ Bτn such
that x(e) has a 1 in the lth coordinate, and zeros everywhere else. That is, x(e) is an
indicator vector of e.

Let E = E3 × E4 · · · × En−1 be the ground set. Let Bτn denote the set of all binary
vectors with τn coordinates. That is, here {0, 1}|E | = Bτn . Then, we can associate an
X = (x4, . . . xn) ∈ Bτn , the characteristic vector of the pedigree W , where (W )k =
ek , the (k − 3)rd component of W , 4 ≤ k ≤ n and xk is the indicator of ek .

Let Pn = {X ∈ Bτn : X is the characteristic vector of W a pedigree}. Consider the
convex hull of Pn . We call this the pedigree polytope, denoted by conv(Pn).

Given a cost vectorC ∈ R
τn the goal is tofindpedigree X∗ in Pn that minimizes CX∗.

We illustrate this with a 5-city example, with the cost matrix C , using the MI
formulation to solve for the most optimal tour and formulating it using Problem 1.

c =

⎛

⎜
⎜
⎜
⎜
⎝

1 2 3 4 5

1 30 26 50 50
2 24 40 50
3 24 26
4 30
5

⎞

⎟
⎟
⎟
⎟
⎠

We wish to solve
minCT X
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(
E5 0
A5 I

)(
X
U

)

=
⎛

⎝
en−3

e3
0

⎞

⎠ , X, U ≥ 0.

Expanding (
E5 0
A5 I

)

we get

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 4 4 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0

1, 2 13 23 12 1, 3 23 14 24 34 1, 2 1, 3 2, 3 1, 4 2, 4 3, 4 1, 5 2, 5 3, 5 4, 5
4 1 1 1
5 1 1 1 1 1 1
1, 2 1 1 1
1, 3 1 1 1
2, 3 1 1 1
1, 4 −1 −1 1 1
2, 4 −1 −1 1 1
3, 4 −1 −1 1 1
1, 5 −1 −1 −1 1
2, 5 −1 −1 −1 1
3, 5 −1 −1 −1 1
4, 5 −1 −1 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Finally, using any pedigree for K5 as a basic feasible solution, we can run an LP
solver to solve for X as in the formulation in Problem 1. The final result is the
5 tour, T5 = {(1, 2), (2, 3), (3, 4), (4, 5), (1, 5)} with a total distance of 148, this
corresponds to the pedigree: ((1,3), (1,4)).

Research on pedigree polytopes and their connection to tour polytopes are of
interest. Pedigree polytope and its properties are studied by Arthanari [6–8] and
Ardekani and Arthanari [31]. Arthanari [9] proves that a sufficiency condition for
non-adjacency in tour polytope is non-adjacency of the corresponding pedigrees in
the pedigree polytope.

Makkeh, Pourmoradnasseri and Theis [42] modelled [8] characterization of adja-
cency for the Pedigree polytope using an ‘adjacency game’. The authors show that
the minimum degree for a vertex in a pedigree graph is asymptotically equal to the
number of vertices—i.e. asymptotically, the graph is almost complete.

The main result of that paper: The minimum degree of a vertex on the Pedigree
polytope for n cities is (1 − o(1)) ∗ (n − 1)!/2 for n → ∞.

And in rephrasing the theorem: ∀ε > 0 there is an integer N such that ∀n ≥ N
and all cycles An , with node set {n}, if Bn is drawn uniformly at random from all
cycles with node set {n} then the probability that the pedigree graph corresponding
to the pedigrees An , and Bn is complete larger than or equal to 1 − ε.

The next section reports some computational comparisons made by Haerian [30]
and Gubb [29].
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Table 5.1 Table comparing number of constraints and variables for the different formulations of
TSP

Formulation Constraints Integer variables Continuous variables

DFJ [22] 2n−1 + n − 1 n(n − 1)

FLOOD [24] n2 n(n + 1)(n − 1)

MTZ [43] n2 − n + 2 n(n − 1) (n − 1)

FGG [25] n n(n − 1) n(n − 1)(n + 1)

WONG [53] 2(n3 + n2 + 1) n(n − 1) 2n(n − 1)2

CLAUS [19] n3 + n2 + 3n 2n2 + 2n

CARR [17] τn+1 + (n + 3)(n − 2)/2 τn+1

MI [5] n(n − 1)/2 + (n − 3) n3

5.3.5 Comparisons

Thebiggest disadvantage of theDFJ formulation is the exponential number of subtour
elimination constraints. This has motivated researchers to suggest more compact
formulations which have polynomial number of constraints. There are many other
formulations such as Bellman [13]; Carr [16]; Claus [19]; Fox, Gavish and Graves
[25]; Gavish and Graves [26]; Held and Karp [33]; Lawler et al. [37]; and Miller,
Tucker andZemlin [43].We show the number of constraints and the number variables
of the different TSP formulations in Table 5.1.

To compare the different formulations when used in LP-based solutions methods,
Padberg andSung [48] have used a special transformation technique tomappolytopes
given by other formulations into the DFJ formulation variable space. After finding
the projection of different formulations into the DFJ variable space, the sizes of the
projected polytopes were compared with that of the DFJ formulation. They showed
that the DFJ formulation gives the tightest polytope for the TSP.

Although most of these formulations have a polynomial number of constraints,
they have taken some sort of trade-off in the quality of their LP relaxation.

Arthanari and Usha [12] show that the multistage insertion and Carr’s cycle-
shrink formulations are equivalent and that the MI formulation is as tight as the
DFJ formulation. Haerian [30] compared different formulations of the symmetric
travelling salesman problem with respect to:

1. the LP relaxation of the formulations,
2. the integrality gap of the formulations,
3. number of simplex iterations taken to reach the solution and
4. CPU time used to find an optimal continuous solution.

She found that the continuous solution solved by the MI-formulation has one
of the best integrality gaps and is among the formulations that take lesser simplex
iterations.
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Unfortunately, in Haerian’s [30] research, she was not able to solve instances from
TSPLIB [49] which have size greater than 300 cities. The reason for this limitation
arises primarily from the capacity of the commercial LP solver software used.

In order to solve larger size problems, one needs to abandon using general purpose
LP algorithms to solve the LP instances and take advantage of the special structure
that arises from the MI relaxation. In the following sections, we present ideas from
Arthanari [10] for the solution to this problem and details of the implementation of
a prototype which acts as a proof of concept.

5.4 Hypergraphs

Hypergraphs are a generalization of a graph where an edge can join any number
of vertices, while a normal graph edge consists of a pair of nodes, hyperedges or
hyperarcs contain an arbitrary number of nodes.

The following definitions are from Cambini et al. [15].

Definition 12 Adirectedhypergraph is a pair ofH = (V, E),whereV = {v1, . . . , vn}
is the set of vertices and E = {e1, . . . , ek} is the set of hyperarcs. Therefore, E is
a subset of P(V ) \ {∅} where P(V ) is the power set of v. A hyperarc e is a pair
(Te, he) where TE ⊂ V is the tail of e and he ∈ V \ Te is its head. A hyperarc that
is headless, (Te,∅) is called a sink and a tailless hyperarc (∅, he) is called a source.

Definition 13 The size of a hypergraph can be defined by

si ze(H) =
∑

ei∈E
|ei |.

Given a hypergraph H = (V, E), a positive real multiplier μv(e) associated with
each v ∈ Te, a real demand vector b associated with V , and a non-negative capacity
vector w, a flow on H is a function f : E → R which satisfies

∑

v=he

f (e) −
∑

v=Te

μv(e) f (e) = b(v), ∀v ∈ V (Conservation) (5.13)

0 ≤ fe,∀e ∈ E, (Feasibili t y) (5.14)

fe ≤ w(e),∀e ∈ E, (Capacity). (5.15)

Problem 2 Minimum cost hypergraph flow problem
Let c(e) be the cost associated with the hyperarc e,∀e ∈ E . Find f ∗ such that∑

e∈E c(e) f ∗(e) is a minimum over all f satisfying the flow constraints stated above.

A directed path Pst from s to t in H is a sequence Pst = (v1 = s, e1, v2 . . . , eq ,
vq+1 = t) where s ∈ Te1, heq = t and vi ∈ Te ∩ hei−1 for i = 2, . . . , q.
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Fig. 5.1 Showing an
example of a spanning
hypertree. Let TR =
({1, 2}, e1, 3, e2, 4, e3, 5). In
this example, R = {1, 2},
N = {3, 4, 5},
ET = {e1, e2, e3},
EX = {e4, e5}

If s = t , then Pst is a directed cycle and when no directed cycle exists in the graph,
then H is called a cycle-free hypergraph.

Definition 14 Adirected hyperpath
∏

st from the source set s to the sink node t , such
that each node with the exception of the nodes in S has exactly one entering hyperarc.
A hyperarc e′ is said to be a permutation of a hyperarc e if Te ∪ {he} = Te′ ∪ {he′ }. A
hypergraph H ′ is a permutation of a hypergraph H if its hyperarcs are permutations
of the hyperarcs of H .

Definition 15 A directed hypertree with root set R and a set of hyperarcs ET called
tree arcs is a hypergraph TR = (R ∪ N , ET ) such that

1. TR has no isolated nodes and does not contain any directed cycles.
2. R ∩ N = ∅.
3. Each node v ∈ N has exactly one entering hyperarc.
4. No hyperarc has a vertex of R as its head.

Remark 1 TR is a directed hypertree with root set R and has a set of nodes N which
are non-root nodes. Any non-root node not contained in the tail of any tree arc is
called a leaf. Any permutation of a directed hypertree rooted at R yields an undirected
hypertree rooted at R.

It can be shown that TR is a directed hypertree rooted at R if and only if TR has no
isolated nodes, with R ∩ N = ∅ and |N | = |ET | = q and an ordering (v1, . . . , vq)
and (e1, . . . , eq) exists for the elements of N and of ET such that he j = v j and
R ∪ {v1, . . . , v j−1} ⊇ Tej ,∀e j ∈ ET .

Definition 16 An undirected hypertree rooted at R is any permutation of a directed
hypertree rooted at R. In the case of undirected hypertrees, a leaf is a non-root node
which belongs to exactly one hyperarc.

Definition 17 A spanning hypertree of H = (V, E) is an undirected hypertree TR =
(V, ET ) such that ET ⊆ E and (Te ∪ {he}) � R, ∀e ∈ E\ET . Figure 5.1 gives a
hypergraph with spanning hypertree TR .

Definition 18 EX is a subset of E\ET and columns corresponding to this set of
hyperarcs that form a linearly independent set with the columns corresponding to
the hyperarcs of the spanning tree.
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5.5 Hypergraph Simplex

The simplex algorithm, developed by George Dantzig in 1947, solves linear pro-
gramming (LP) problems starting with a basic feasible solution, first tests whether
the optimality conditions are satisfied by the current basis and if satisfied stops.
Otherwise, it selects a suitable variable not in the basis to enter the basis (reduced
costs for the non-basic variables are computed for this purpose) and a corresponding
basic variable leaves the basis, to form a new basis. The algorithm continues until
an optimal solution is found.

One can specialize the simplex method to solve the minimum cost flow problem
which can be efficiently solved using the network simplex method. The network
simplex method adopts the simplex algorithm and finds the optimal solution by
pushing flow through a network [47].

Like the simplex algorithm, the hypergraph simplex algorithm proposed by Cam-
bini et al. [15] is a generalized formulation of the network simplex algorithm which
solves the minimum cost flow problem on a hypergraph instead of a regular graph.
Starting with a spanning tree of the hypergraph which is a basic feasible solution,
the FLOW method (explained below) can be used to determine the optimal amount
of flow to be pushed through each hyperarc. The POTENTIAL method is used to
calculate the reduced cost for each hyperarc that is not in the solution. Just like the
simplex algorithm, the hypergraph simplex algorithm selects a hyperarc that is violat-
ing the optimality condition and enters that hyperarc into the basis and forces out of
the basis a corresponding hyperarc. In the minimum cost hypergraph flow problem,
each basis M corresponds to a pair (TR, EX )where TR is a spanning hypertree of the
sub-hypergraph H∗ corresponding to M . And EX is the set of external hyperarcs,
that is, the basic hyperarcs outside the spanning hypertree.

Flows and Potential

Flow

For any |N | vector d(N ) and any |EX | vector f (EX ), there exists unique vectors d(R)

and f (T ) such that f = ( f (T ), f (EX )) is a flow which satisfies the conservation
constraints at the nodes, with d = (d(R), d(N )) as the demand vector. Both f (T )

and d(R) can be determined in O(si ze(H)) time through the flow algorithm shown
below which was adapted from the flow algorithm proposed in Cambini et al. [15].

The flow algorithm takes four input parameters. They are as follows:

1. A hypergraph H = (V, E).
2. A hypertree TR = (R, e1, v1, e2, v2 . . . eq , vq).
3. Demand vector for non-root nodes d(N ).
4. Flow vector for edges not in the hypertree f (EX ).

The outputs of the flow algorithm are as follows:

1. Demand vector for root nodes d(R).
2. Flow vector for edges in the hypertree f (T ).
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Potential

The reduced cost of hyperarc e is

c(e) +
∑

v∈Te
μv(e)π(v) − π(he),

where ce is the cost of e, and π(v) is the potential of node v.
For any |ET | cost vector c(T ) and any |R| vector π(R), there exist a unique

potential vector, π(N ), and cost vector, c(EX ), such that the reduced cost of each
basic hyperarc is equal to zero. The running time for this algorithm is O(si ze(H)).

The potential algorithm takes four input parameters. They are as follows:

1. A hypergraph H = (V, E).
2. A hypertree TR = (R, e1, v1, e2, v2 . . . eq , vq).
3. Cost vector for edges in the hypertree c(T ).
4. Potential vector for edges in root nodes of the hypertree π(R).

The outputs of the Potential algorithm are as follows:

1. Cost vector for edges not in the hypertree, c(EX ).
2. Potential vector for the non-root nodes in the hypertree, π(N ).

The Root Matrix

Definition 19 ([15]) Let TR = (V, ET ) be one of the spanning hypertrees of H ,
rooted at R, and

A =
[
B C
U D

]

be the incidence matrix of H in canonical form with respect to TR .
The rootmatrix of H is the |R| × |EX |matrix AR = (C − BU−1D). Each column

of AR corresponds to one of the external hyperarcs,while each of its rows corresponds
to one of the roots.

Let AR(∗, e) be the column of AR corresponding to hyperarc e and AR(v, ∗) be
the row of AR corresponding to the root node v.

This root matrix can be calculated by the flow and potential algorithm defined
previously [15].

Definition 20 Let M be the incidence matrix of a sub-hypergraph with |V | nodes
and |V | hyperarcs of a hypergraph H . If M is non-singular, then the sub-hypergraph
cannot have isolated nodes, otherwise, M should have a zero row, and as a conse-
quence, it has a spanning hypertree, TR since |R| = |EX |. M can be converted in
canonical form with C and the root matrix MR being square matrices.

The rooted spanning trees which characterize the basis matrices in the case of
standard graphs, are particular spanning hypertrees, where the root set is a singleton.
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MR
−1, the inverse of the root matrix MR can be calculated in terms of flows and

potentials.

Primal, Dual and Hypergraph Simplex

The algebraic equivalent problem being solved by the hypergraph simplex algorithm
is of type M f = b̄ and πM = c̄, where M is an |V | × |V | basis of H and b̄ =
(b̄(R), b̄(N )) and c̄ = (c̄(T ), c̄(EX )) are vectors of length |V | and needs to be solved.

Cambini et al. [15] show that the first system can be interpreted as the problem
of finding on the sub-hypergraph (whose incidence matrix M) a flow f satisfying a
given demand vector b̄. The solution to this system M f = b̄ can be obtained as the
sum of a flow and of a circulation.

The primal algorithmfirst calculates the flowwhich satisfies the flow requirements
at the non-roots and the relative root demand vector d(R). Then it computes the
circulationwhich yields a flow vector f (EX ) = MR

−1(b̄(R) − d(R)) on the external
hyperarcs, and adds this circulation to the previously computed flow.
On the other hand, consider the second system πM = c̄, where π0 and c0 are the
potential vector and the cost vector on the external hyperarcs returned by thePotential
algorithm. When π(R) = 0, let π1 be the vector returned by the Potential algorithm
when c̄(T ) = 0 and π(R) = (c̄(EX ) − c0)MR

−1.
Similar to the PRIMAL algorithm, the DUAL algorithm first calculates the poten-

tial of the non-root nodes and then proceeds to calculate the reduced costs of all the
hyperarcs which are not part of the current basis.

Optimality Testing

Let M be the current feasible basis. H∗ the corresponding hypergraph and TR one of
the corresponding spanning hypertrees. Given the inverse of the root matrix MR

−1,
we can use the primal and dual algorithms from the previous section to carry out
the computation of the primal basic solution f = M−1b∗ and the corresponding dual
vector π = c∗M−1, where b∗ is the demand vector induced on the nodes by the flows
on the non-basic hyperarcs, while c∗ is the cost vector relative to the basic hyperarcs.

The optimality conditions we check are, based on the reduced costs: the non-basic
hyperarcs must have reduced costs ≥ 0, if their flow is zero, and if their flow is at the
upper bound, then the reduced costs must be≤ 0. If these conditions are satisfied, M
is optimal and the algorithm terminates. Otherwise, the algorithm selects a hyperarc
e′ not in the basis which violates the optimality conditions and forces it into the basis.

After the algorithm determines which the entering and leaving hyperarc of the
spanning tree are, the spanning tree needs to be updated. Cambini et al., [15] provide
a detailed description of this method.

5.6 MI formulation in Hypergraph

Hyperflow and MI Relaxation

We can convert the MI-relaxation problem into a minimum cost hypergraph flow
problem using the MI formulation of the STSP [10]. This is then solved using a
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specialized version of the procedures used in the hypergraph simplex algorithm of
Cambini et al. [15]. The details of these algorithms are provided in AppendixA.

We consider the following hypergraph H = (V, E) corresponding to the MI for-
mulation.
We have: V = {4, . . . , n} ∪ {(i, j)| 1 ≤ i ≤ j ≤ n} and E = {(∅ , (i, j))| (i, j) ∈
V } ∪n

k=4 {(k : (i, j))| 1 ≤ i < j < k} where (k : (i, j)) denotes the hyperarc,
({(i, k), ( j, k), k}, (i, j)) for 1 ≤ i < j < k, ∀k ∈ V .

Theorem 1 The hypergraph H = (V, E) corresponding to MI formulation is cycle
free.

Proof Vertices in S = {4,…n} have no hyperarcs entering any of k ∈ S. So any
directed path starting from k cannot end in k. So there are no cycles involving k ∈ S.
Consider any (i, j) for any 1 ≤ i < j ≤ n.

Case 1: (i, j) ∈ V , 1 ≤ i < j ≤ 3. Since none of these vertices is in the tail set
of any hyperarc, a directed cycle involving such an (i, j) is not possible.

Case 2: (i, j) ∈ V , 4 ≤ i < j ≤ n. Suppose for some (i0, j0) there is a directed
cycle, then (i0, j0) is the head of a hyperarc e and is in the tail set of another hyper-
arc e′.

Therefore, e′ has to be an arc ( j0 : (u, v)) for some u < v < j0 with u or v = i0
and e is either (∅ : (i0, j0)) or (r : (i0, j0)) for n ≥ r > j0.

First we show that e = (∅ : (i0, j0)) is not possible. In any directed path, if e
appears as ei for some 1 ≤ i ≤ q, then the vertex vi is required to belong to {hei−1} ∪
Tei . But Tei = Te = ∅ implies e cannot appear in any such directed path.

So e = (r : (i0, j0)) for some n ≥ r > j0. Now we have the directed path,

. . . , (r : (i0, j0)), (i0, j0), ( j0 : (u, v)), . . .

with u < v < j0 and one of u or v = i0.
Thus, any directed path Pst = (v1 = s = (i, j), e1, v2, . . . eq , vq+1 = t) in H is

such that heq = t and that t = (a, b) with max{a, b} < j . Therefore t = s is not
possible, and hence H is cycle free. �
Theorem 2 Given any pedigree P, we have a spanning hypertree of H = (V, E)

given by H = (R ∪ N , ET ) with

ET = {(k : (i, j))|(i, j) ∈ E(P)} ∪ {(∅ : (i, j))|(i, j) ∈ En−1\E(P)},

where E(P) = {(ik, jk)|4 ≤ k ≤ n,� P = ((i4, j4), . . . (in, jn))} is the given pedi-
gree.

Proof Since ET ⊂ E and (V, ET ) is a sub-hypergraph of H and is cycle free. Let
R = {k|4 ≤ k ≤ n}, and N = V \R. So (V, ET ) satisfies the requirement R ∩ N =
∅. No hyperarc in ET has a vertex in R as head. Every vertex v = (i, j) ∈ N either
has a unique hyperarc (k : (i, j)) entering (i, j) if (i, j) ∈ E(P) or has a unique
hyperarc (∅ : (i, j)) if (i, j) /∈ E(P). Thus (V, ET ) is a hypertree. Notice that it is a
spanning hypertree as well, as all vertices in V are spanned. �
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Since we have m = |V | which is the number of vertices and we have only |ET |
hyperarcs, we need to add m − |ET | other hyperarcs such that the incidence matrix
corresponding to the spanning hypertree is extended to a basis of size m × m.

Using this traversal of the hypertree, we can rearrange the incidence matrix of the
spanning tree.

Remark 2 1. Observe that ∀e ∈ E\ET , Te ∪ {he} is not a subset of R as every
hyperarc not in ET has he ∈ En and so not in R.

2. EX is a subset of E\ET and columns corresponding to this set of hyperarcs form
a linearly independent set with the columns corresponding to the hyperarcs of
the spanning tree.

3. In the MI-hypergraph flow problem, we have a feasible basis given by the span-
ning tree corresponding to any pedigree, so we can start the hypergraph simplex
algorithm without phase I using artificial variables.

4. The set of linearly independent columns corresponding to the hyperarcs in ET

needs to be expanded to a basis of size m × m.
5. The basis is used by the primal and dual algorithms and the basis is changed

based on the reduced cost of non-basis hyperarcs.

Consider n = 6 and the pedigree in P6 given by P = ((1, 3), (1, 4), (2, 3)). The cor-
responding traverse, TR of the spanning hypertreewith R = {4, 5, 6} and ET = {((4 :
(1, 3)), (5 : (1, 4)), (6 : (2, 3)))} ∪ {(∅, (i, j))| (i, j) ∈ E5 and (i, j) /∈ P} is as fol-
lows:

TR = (R, (∅, (2, 6)), (2, 6),(∅, (3, 6)), (3, 6), (6, (2, 3)), (2, 3), (∅, (1, 5)), (1, 5),

(∅, (4, 5)), (4, 5),(5, (1, 4)), (1, 4), (∅, (3, 4)), (3, 4), (4, (1, 3)), (1, 3),

(∅, (1, 2)), (1, 2),(∅, (2, 4)), (2, 4), (∅, (2, 5)), (2, 5), (∅, (3, 5)), (3, 5),

(∅, (1, 6)), (1, 6), (∅, (4, 6)), (4, 6), (∅, (5, 6)), (5, 6)).

We expand this to a basis by adding (6 − 3) + (6 × 5)/2 − 15 = 3 more external
hyperarcs ((4 : (1, 2)), (5 : (3, 4)), (6 : (3, 5)) that are linearly independent of the
set of columns corresponding to the 15 hyperarcs in ET . This initial basis is shown
in Table 5.2. We observe that it is an upper triangular matrix.

Nowwe can apply the hypergraph simplex algorithm discussed previously (shown
in the appendix) to solve theMI-relaxation problem.

5.7 Implementation of Hypergraph Approach

From the previous section,we outlined the details fromArthanari [10] discussing how
to convert the MI-relaxation problem of the STSP into a hypergraph flow problem
and how to find the solution using the HySimplex methods from Cambini et al. [15].
The advantage of the HySimplex is that it only requires to perform the inverse of
the root matrix of size n × n. Therefore, in theory, it can be solved quicker than the
standard MI relaxation on a normal graph which requires a matrix of size n2 × n2 to
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Table 5.2 Initial basis corresponding to a spanning hypertree generated by P = ((1, 3),
(1, 4), (2, 3))

Hyperarc 06 05 04 4 5 6

Nodes 26 36 23 15 45 14 34 13 12 24 25 35 16 46 56 12 34 35

4 −1 −1

5 −1 −1

6 −1 −1

26 1 −1

36 1 −1 −1

23 1

15 1 −1

45 1 −1 −1

14 1 −1 −1

34 1 −1 1

13 1

12 1 1

24 1 −1

25 1

35 1 −1 1

16 1

46 1

56 1 −1

be inverted. Based on the reported superior performance of the hypergraph simplex
algorithm by Cambini et al. [15], we are encouraged to conduct this computational
comparison for the hypergraph MI formulation of the STSP.

We have designed our research in four phases:

1. Adapt the HySimplex methods from Cambini et al. [15] for the MI-relaxation
problem of the STSP.

2. Implementation of a prototype from the algorithms in phase 1.
3. Optimizing the prototype.
4. Computational experiments.

In phase 1 of the research, we specialize the HySimplex method in order to
fully exploit the MI-relaxation’s recursive structure. Our version of the algorithm
uses the fact that the tail of a hyperarc in the MI-relaxation problem is either ∅ or
{(i, k), ( j, k), k} where the head is (i, j), and therefore cuts down a huge number of
operations needed to be carried out by either algorithm.

Specifically, the for loop starting at line 4 of our flow algorithm (shown in
AppendixA) iterates through every hyperarc in the set EX . For each hyperarc in
this loop, the algorithm makes a constant number of computations as the number of
nodes in the set Te ∪ he is fixed in theMI relaxation. In the flow algorithm of Cambini
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et al. [15], the number of computations in the loop is not constant as it depends on
the number of nodes in the set Te ∪ he which is not fixed. This can be seen again on
line 23 where the loop makes a constant number of iterations as the set w is fixed.
We adapt the potential algorithm in a similar fashion. This can be seen on line 6 and
line 27 of our adapted Potential algorithm (shown in AppendixA).

Cambini et al. [15] use the technique of inserting artificial hyperarcs with infinite
capacity and large cost to create the first initial feasible basis. However, we have
shown earlier that an initial feasible basis can be constructed from a pedigree. We
have designed the CreateBasis algorithm (shown in AppendixA) which generates an
initial feasible basis by constructing a pedigree and extending it to form a basis.

Phase 2 of the research has been carried out by the second author in his unpublished
Master’s dissertation. He was able to build a prototype which solves small problems
and found that cycling was a major obstacle and occurred more frequently as the size
of the problem increased. Phase 3 of this research will consist of solving the cycling
issue found in Phase 2 and further optimize the prototype. Finally, in phase 4 we will
conduct comparative computational experiments. We plan to test the minimum cost
hypergraph flow simplex algorithms on two sets of problems: first STSP problems
in the TSPLIB and second randomly generated Euclidean STSP problem instances
with varying sizes.Wewill collect data such as the integrality gap, CPU time, number
of iterations and other performance statistics. The main aim of the experiments is
to estimate the compression in computational time achieved by the new algorithms
compared to solving these LP instances using commercial as well as open source
generic LP solvers.

5.8 Concluding Remarks

In this chapter, we introduced the TSP problem, followed by some preliminaries
in graph theory. We then compare the DFJ, cycle-shrink and the MI formulation
given by Arthanari [5]. Various advantages of the MI formulation were discussed
in the previous sections. With the same LP relaxation values as the classic DFJ
formulation, the MI formulation has only n3 variables and n2 constraints, compared
to the DFJ with n(n − 1) variables and 2n−1 + n − 1 constraints. Using Cplex, a
commercial LP solver, the MI formulation has shown to be competitive compared to
other formulations of the TSP by Ardekani [4] and Gubb [29].

We introduced the structure of a hypergraph and defined the hypergraphminimum
cost flow problem. We considered how to interpret the MI formulation as a hyper-
graph minimum cost flow problem and presented some theoretical computational
complexity results on the algorithms involved in solving the hypergraph minimum
cost flow problem, namely, the flow and potential algorithm [10].

We presented our four-phase approach for our research and why we expect to
solve larger instances of MI-relaxation problem using the hypergraph flow approach
than that is possible with commercially available LP solvers. Finally, we outline the
plans for future computational experiments to verify the efficacy of the suggested
approach.
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Appendix A—Hypergraph Algorithms

The four algorithms used to solve the minimum cost flow problem on the hypergraph
are presented here.

Algorithm 1 Calculate Flow
Input: H = (V, E); TR = (R, e1, v1, e2, v2 . . . eq , vq ); d(N ); f (X);
Output: d(R); f (T );
1: procedure Flow(H ; TR; d(N ); f (X);)
2: for v ∈ R do d(v) = 0
3: end for
4: for e = (k : (i, j)) ∈ EX do
5: d(i, k) ← d(i, k) + f (e)
6: d( j, k) ← d( j, k) + f (e)
7: d(k) ← d(k) + f (e)
8: d(i, j) ← d(i, j) − f (e)
9: end for
10: for v ∈ V do
11: unvisi ted(v) = number of hyperarcs incident into v
12: end for
13: Queue = {v | v is a leaf of TR}
14: while Queue �= ∅ do
15: Select v ∈ Queue
16: Queue ← Queue\{v}
17: Let ev = (k′ : (i ′, j ′))
18: if v = (i, j) then
19: f (ev) ← d(v)
20: else
21: f (ev) ← −d(v)
22: end if
23: for w ∈ {(i ′, j ′), (i ′, k′), ( j ′, k′), k′}\{v} do
24: if w = (i ′, j ′) then
25: d(w) ← d(w) − f (ev)
26: else
27: d(w) ← d(w) + f (ev)
28: end if
29: unvisi ted(w) ← unvisi ted(w) − 1
30: if unvisi ted(w) = 1 AND w /∈ R then
31: Queue ← Queue ∪ {w}
32: end if
33: end for
34: end while
35: for v ∈ V do
36: d(v) = −d(v)
37: end for
38: return demand at root nodes d(R) and flows on SHT arcs f (T )

39: end procedure
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Algorithm 2 Calculate Potential
Input: H = (V, E); TR = (R, e1, v1, e2, v2 . . . eq , vq ); c(T ); π(R);
Output: c(X); π(N );
1: procedure Potential(H ; TR; c(T ); π(R);)
2: for e ∈ Ex do
3: c(e) = 0
4: end for
5: for v ∈ R do
6: for e ∈ E such that v ∈ {(i ′, j ′), (i ′, k′), ( j ′, k′), k′} do
7: if e ∈ ET and e corresponds to xi jk then
8: c(e) ← c(i, j, k) + π(v)
9: else if e ∈ ET and e corresponds to ui j
10: c(e) ← d(i j) − π(v)
11: end if
12: end for
13: end for
14: for e ∈ E do
15: unvisi ted(e) =number of nodes of N incident into e
16: end for
17: Queue = {e | e ∈ TR and unvisi ted(e) = 1}
18: while Queue �= ∅ do
19: Select e ∈ Queue
20: Queue ← Queue\{e}
21: Let v be a unique unvisited node of N incident to e
22: if v = (i, j) then
23: π(v) ← c(e)
24: else
25: π(v) ← −c(e)
26: end if
27: for e′ ∈ E\{e} such that v ∈ {(i ′, j ′), (i ′, k′), ( j ′, k′), k′} do
28: if e = (i, j : k) then
29: c(e) ← c(e) − π(v)
30: else
31: c(e) ← c(e) + π(v)
32: end if
33: unvisi ted(e) ← unvisi ted(e) − 1
34: if unvisi ted(e) = 1 AND e /∈ EX then
35: Queue ← Queue ∪ {e}
36: end if
37: end for
38: end while
39: for e ∈ EX do
40: c(e) = −c(e)
41: end for
42: return potential at non-root nodes π(N ) and cost for arcs not in the SHT c(X)

43: end procedure
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Algorithm 3 Calculate Primal
Input: H = (V, E); TR = (R, e1, v1, e2, v2 . . . eq , vq ); MR

−1; b̄
Output: f : flow vector which satisfies f = M−1b̄
1: procedure Primal(H ; TR; MR

−1; b̄)
2: {d(R), f (T )} = Flow(H, TR, b̄(N ), 0)
3: f (X) = MR

−1(b̄(R) − d(R))

4: {b̄(R), f (T )} = Flow(H, TR, b̄(N ), f (X))

5: return f (T ) as f
6: end procedure

Algorithm 4 Calculate Dual
Input: H = (V, E); TR = (R, e1, v1, e2, v2 . . . eq , vq ); MR

−1; c̄
Output: π : potential vector which satisfies πM = c̄
1: procedure Dual(H ; TR; MR

−1 c̄)
2: {c0, π0(N )} = Potential(H, TR, c̄(T ), 0)
3: π(R) = (c̄(X) − c0)MR

−1

4: {c̄(X), π(N ) = Potential(H, TR, c̄(T ), π(R))

5: return π(N ) as π

6: end procedure

Algorithm 5 Create Initial Basis
Input: n, N
Output: EB : A list of hypertree arcs and a list of external arcs.
1: procedure CreateBasis(n, N )
2: I ni tialN = {(1, 2), (1, 3), (2, 3)}, ET = {}, EX = {}
3: for k from 4 to n + 1 do
4: v = (i, j) Be a random node from N
5: ET := ET ∪{(v, i)}, N := N \{v}
6: v′ = (i ′, j ′) Be a random node from N
7: EX := EX ∪{(v, i)}, N := N \{v′}
8: if k > i then
9: N := N ∪(i, k)
10: else
11: N := N ∪(k, i)
12: end if
13: if k > j then
14: N := N ∪( j, k)
15: else
16: N := N ∪(k, j)
17: end if
18: end for
19: for v ∈ N do
20: if v /∈ {he}∀e ∈ ET then
21: ET := ET ∪((v,∅))

22: end if
23: end for
24: return ET , EX
25: end procedure
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Chapter 6
About the Links Between Equilibrium
Problems and Variational Inequalities

D. Aussel, J. Dutta and T. Pandit

6.1 Introduction and Motivation

In the recent decades, a huge number of papers of the literature of optimization
have been dedicated to equilibrium problem. In the community of optimizers, this
terminology is used to describe the following problem: given a subset C ⊂ R

n and
a (bi)function f : Rn × R

n → R, the equilibrium problem consists in

EP( f,C) find x ∈ C such that f (x, y) ≥ 0, for all y ∈ C.

This understanding of the term ‘equilibrium’ seems to be quite far to its usual sense in
game theory. It is actually not really the case as we will see in the example described
in the forthcoming Sect. 6.4.

It was Oettli who in 1994 [4] first coined the term equilibrium problem during the
annual conference of the Indian Mathematical Society and his paper was published
in the journalMathematics Student of the Indian Mathematical Society. It is one of
the most cited papers in optimization theory.

The power of this formulation is that it allows to include, in a common framework,
a large set of problems. For example, consider f (x, y) = ϕ(y) − ϕ(x) and a subsetC
ofRn . Then the solution set of the problem EP( f,C) coincides with the set of global
minimizers of the function ϕ over C . Now if one consider f (x, y) = ϕ(x) − ϕ(y),
then, symmetrically, the solutions of the equilibrium problem EP( f,C) are the
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global maximizers of the function ϕ over C . Thus, the concept of an equilibrium
problem seems to unify both minimization and maximization problems.

On the other hand if the objective function ϕ is assumed to be differentiable over
a closed convex set C , then it is a well-known fact (and simple to prove) that if x̄ is
a local minimizer of ϕ over C , then

〈∇ϕ(x̄), y − x̄〉 ≥ 0, ∀y ∈ C. (6.1)

The above inequality expresses the necessary optimality condition in the so-called
variational inequality form V I (∇ϕ,C). Of course, if additionally f is convex, then
the above expression is both necessary and sufficient for global optimality and thus,
in context of convex optimization, a first relationship between equilibrium problem
and variational inequality occurs since

EP( fϕ,C) = argmin
C

ϕ = V I (∇ϕ,C) where fϕ(x, y) = ϕ(y) − ϕ(x), (6.2)

where the notations EP and V I are both used for the problem itself and its solution
set.

Our aim in this short note is to make a synthesis/state of art of the relationships
(inclusions, equality) of equilibrium problems and variational inequalities, that is,
to give sufficient conditions ensuring that one is included in the other one or that
they coincide. Then in Sect. 6.4, we also emphasize through an example that the
variational inequality is possibly the most general form of an equilibrium problem
arising in applications.

6.2 State of the Art of Relationships

6.2.1 A First Step: VI and EP Generated by an Optimization
Problem

Before going further into the relationship between equilibrium problems and varia-
tional inequalities, let us continue the reformulation process started above with the
reformulation of optimization problems in terms of variational inequalities. Indeed,
the link stated in (6.2) still holds true, under slight modifications, even if the objective
function ϕ is not differentiable and/or not convex.

If ϕ is a lower semi-continuous proper convex function which is not assume to
be differentiable, then one can use both the concepts of (convex) subdifferential and
set-valued variational inequality in order to obtain a relation similar to (6.2). Let us
recall that the subdifferential of the convex function ϕ at a point is given by ∂ϕ(x) =
{v ∈ R

n : 〈v, y − x〉 ≤ ϕ(y) − ϕ(x), ∀ y ∈ R
n} and that the general framework of

variational inequalities is the following: given a set-valued map F : Rn ⇒ R
n and a

subset C of Rn , the (somehow called generalized) variational inequality V I (F,C)

consists in:



6 About the Links Between Equilibrium Problems … 117

find x̄ ∈ C such that there exists x̄∗ ∈ F(x̄) with 〈x̄∗, y − x̄〉 ≥ 0, ∀x ∈ C.

Thus taking these notations into account, it is well known that Eq. (6.2) extends
in

EP( fϕ,C) = V I (∂ϕ,C) where fϕ(x, y) = ϕ(y) − ϕ(x). (6.3)

Now if ϕ is not assumed to be convex but only quasi-convex, then thanks to some
recent developments (see, e.g. [1]), it is nevertheless possible to achieve the perfect
reformulation of the minimization of ϕ over a convex set C in terms of a related
variational inequality. To be more precise, let us first recall some definitions:

A function ϕ : X → IR ∪ {+∞} is said to be
• quasi-convex on K if,

for all x, y ∈ K and all t ∈ [0, 1], ϕ(t x + (1 − t)y) ≤ max{ϕ(x), ϕ(y)},

or equivalently

for all λ ∈ R, the sublevel set Sλ = {x ∈ X : ϕ(x) ≤ λ} is convex.

• semi-strictly quasi-convex on K if, ϕ is quasi-convex and for any x, y ∈ K ,

ϕ(x) < ϕ(y) ⇒ ϕ(z) < ϕ(y), ∀ z ∈ [x, y[.

Clearly, any convex function is semi-strictly quasi-convexwhile semi-strict quasi-
convexity implies quasi-convexity. Roughly speaking, a semi-strictly quasi-convex
function is a quasi-convex function that has no ‘full dimensional flat part’ except
eventually at argmin.

Some years ago, a new concept of sublevel set called adjusted sublevel set has
been defined in [1]: for any x ∈ dom f , we define

Saϕ(x) = Sϕ(x) ∩ B(S<
ϕ(x), ρx ),

where S>
λ = {x ∈ X : ϕ(x) < λ} stands for the strict sublevel set of ϕ at point x

and moreover ρx = dist (x, S<
ϕ(x)), if S

<
ϕ(x) �= ∅

and Saϕ(x) = Sϕ(x) if S<
ϕ(x) = ∅.

Note that actually Saϕ(x) coincideswith Sϕ(x) if cl(S>
ϕ(x)) = Sϕ(x). It is, for example,

the case whenever f is semi-strictly quasi-convex.
Based on this concept of sublevel sets, one can naturally define the following

set-valued map called adjusted normal operator Na
ϕ defined by

Na
ϕ (x) = {x∗ ∈ R

n : 〈x∗, y − x〉 ≤ 0, ∀ y ∈ Saϕ(x)}.
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Now following [2, Prop. 5.1], a necessary and sufficient optimality conditions can
be proved for the minimization of a quasi-convex function over a convex set.

Proposition 6.2.1 Let C be a closed convex subset of X, x̄ ∈ C and ϕ : Rn → R be
continuous semi-strictly quasi-convex such that int(Saϕ(x̄)) �= ∅ and ϕ(x̄) > inf X ϕ.
Then the following assertions are equivalent:

(i) ϕ(x̄) = minC ϕ.
(ii) x̄ ∈ V I (Na

ϕ \ {0},C).

Let us observe that the notation Na
f \ {0}means that at any point x , 0 is dropped from

the cone Na
ϕ (x). It is an essential technical point for the above equivalence since it

allows to avoid any ‘trivial solution’ of the variational inequality.
As a consequence ifC is a closed convex subset of X such thatC ∩ argminIR f =

∅, then one has an analogous of the extremely important equivalence (6.2) and it can
be proved in the context of quasi-convex optimization.

EP( f,C) = argmin
C

ϕ = V I (Na
ϕ \ {0},C) where f (x, y) = ϕ(y) − ϕ(x).

(6.4)
The table below summarizes the interrelations stated above between equilib-

rium problems and variational inequalities in the very particular case where they
are defined through an optimization problem.

Initial problem EP reformulation Hypothesis VI reformulation Hypothesis
minC ϕ argminC ϕ = EP( fϕ,C) none argminC ϕ =

V I (∇ϕ,C)

ϕ diff. convex

with C convex non-empty
fϕ(x, y) = ϕ(y) − ϕ(x)

argminC ϕ =
V I (∂ϕ,C)

ϕ lsc proper convex

C convex non-empty
argminC ϕ

= V I (Na
ϕ \ {0},C)

ϕ continuous and

semi-strictly quasi-convex
C convex non-empty
C ∩ argminIRn f = ∅

6.2.2 The More General Case

Based on the interrelations recalled in the previous subsection, we will now explore
the relations that can be stated between equilibrium problem EP( f,C) and vari-
ational inequalities whenever the function f is not coming from an optimization
problem.
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Given a subset C of Rn and a set-valued map F : Rn ⇒ R
n and the associated

variational inequality V I (F,C), an immediate link with an equilibrium problem can
be stated by simply considering a dedicated bifunction fF :

V I (F,C) = EP( fF ,C) where fF (x, y) = 〈F(x), y − x〉.

This equality beingvalidwithout anyhypothesis one can thus consider that variational
inequality problem are actually particular cases of the class of equilibrium problems.
Let us now explore the reverse question that is under which conditions an equilibrium
problem EP( f,C) can be seen as a variational inequality problem.

For an equilibrium problem in the general framework to yield nice results, it is
needed to fulfil some assumption on the data. One the most common assumptions in
the literature (see, for example [4–13]) is the following:

(H1) f (x, x) = 0 for all x ∈ R
n (or for just x ∈ C).

(H2) For any x ∈ R
n , the function y �→ f (x, y) is a convex function.

The first condition shows that if x∗ is a solution of the equilibrium problem then
x∗ minimizes the function f (x∗, y) over C . Now assume that f is a differentiable
convex function in y and C is non-empty and convex. Then we can write down the
necessary and sufficient optimality condition as

〈∇y f (x
∗, x∗), y − x∗〉 ≥ 0, ∀y ∈ C.

This shows that x∗ solves the variational inequality V I (Ff ,C) where, for each
x ∈ R

n , Ff (x) = ∇y f (x, x). Further if x∗ solves V I (Ff ,C) then by (6.1) and the
convexity of f in the second variable it is clear that x∗ minimizes f (x∗, .) over C
and since f (x∗, x∗) = 0 we conclude that x∗ solves EP( f,C). Thus, the solution
set of EP( f,C) coincides with the solution set of V I (Ff ,C) once we assume that
f is differentiable and convex in the second variable that is

EP( f,C) = V I (Ff (x),C) where Ff (x) = ∇y f (x, x).

Looking to the developments of Sect. 6.2.1, one can wonder if the above relation
(6.2.2) can actually be generalized to the case where f is not differentiable and/or
not convex in the second variable. First if, for any x ∈ C , the function f (x, ·) is
convex lower semi-continuous then, using the same proof as above one obtains

EP( f,C) = V I (Ff (x),C) where Ff (x) = ∂y f (x, x).

Finally if (H1) holds true, C is convex and the function is only assumed to be
continuous and semistricly quasi-convex in the second variable then, as previously
explained, x∗ is a solution of EP( f,C) if and only if x∗ minimizes f (x∗, .) and
therefore, using Proposition 6.2.1, one immediately have

EP( f,C) = V I (Ff (x),C) where Ff (x) = Na
f (x,·)(x) \ {0}.
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Thus, as a conclusion, even if it is true in a full generality, we often have that an
equilibrium problem EP( f,C) can be seen as a variational inequality.

The above stated interrelations are summarize in the table below, where assump-
tion (H1) and (H2) is assumed to hold.

Initial problem EP reformulation Hypothesis VI reformulation Hypothesis

V I (F,C) V I (F,C) =
EP( fF ,C)

none

with
fF (x, y) =
〈F(x), y − x〉

EP( f,C) EP( f,C) = V I (F f ,C) f (x, .) diff. convex, ∀ x
with C convex non-empty
F f (x) = ∇2 f (x, ·)(x) f (x, x) = 0, ∀ x
E P( f,C) = V I (F f ,C) f (x, .) lsc proper convex, ∀ x
with C convex non-empty
F f (x) = ∂2 f (x, ·)(x) f (x, x) = 0, ∀ x
E P( f,C) = V I (F f ,C) f (x, .) continuous

and semi-strictly quasi-convex, ∀ x
with F f (x) = C convex non-empty
Na f (x, ·)(x) \ {0} C ∩ argminIRn f = ∅

6.3 Existence Results for EP Through VI

Here, we present some existence results for both equilibrium problem and the vari-
ational inequality problem which are well established in the literature. We can see
that the relation between EP and VI mentioned in the previous table implies the
interrelation between the existence results of these two classes of problems.

Theorem 6.3.1 ([14, 15]) Let C is a non-empty, convex and compact subset of Rn

and let F : Rn → R
n be a continuous mapping. Then there exists a solution to the

problem V I (F,C).

Theorem 6.3.2 Let C ⊂ R
n be non-empty, convex and compact. Also let that f :

R
n × R

n → R is bifunction such that f (x, .) is convex, differentiable and f (x, x) =
0 for any x ∈ X. Then the solution set of the problem EP( f,C) is non-empty

Keeping in viewof the relation betweenEPandVI as presented in the previous section
it is clear that Theorem 6.3.2 follows in a straightforward fashion fromTheorem 6.3.1
The following existence result for VI with set-valued function is a particular case of
Theorem 3.1 [16].

Theorem 6.3.3 Let C be a non-empty, convex, compact subset ofRn and F : Rn ⇒
R

n be an upper semi-continuous set-valued map with convex, compact values. Then
VI(F,C) has a solution.
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A similar theorem is present in the literature by Ky Fan [17] for the equilibrium
problem.

Theorem 6.3.4 (Theorem 1, [17]) Let C is a non-empty, convex, compact subset of
R

n. If a continuous bifunction f : Rn × R
n → R satisfies the following properties:

• f (x, .) : Rn → R is convex for each x ∈ C.
• f (x, x) = 0 for any x ∈ C.
Then the equilibrium problem EP( f,C) has a solution.

Again looking at the relationship between EP and the VI with set-valued map as we
have presented in the previous section, it is clear that Ky Fan’s result can be deduced
from Theorem 6.3.3.

There are some results in the literature about the existence of the solutions of
EP( f,C) and V I (F,C), when C is closed but unbounded. But these results were
developed independently. Here we show that the link between EP and V I problems
leads to those existence results of EP once we assume the same for the V I .

Theorem 6.3.5 (Prop 2.2.3 [19]) Let C ⊂ R
n be closed convex and F : Rn → R

n

be continuous. If there exists u ∈ R
n such that the set

V< := {x ∈ C : 〈F(x), x − u〉 < 0}

is bounded (possibly empty), then V I (F,C) has a solution.

The next theorem is an existential result for the equilibrium problem developed by
Iusem et al. (Theorem 4.2 [18]). Here, we show that the same result is obtained using
the last theorem which ensures the existence of a solution of a VI problem.

Theorem 6.3.6 Let C ⊂ R
n is closed convex and f : Rn × R

n → R is a bifunction
such that f (x, .) : Rn → R

n is differentiable convex and f (x, x) = 0 for each x ∈ C.
If there exists u ∈ C such that the set

L> := {x ∈ C : f (x, u) > 0}

is bounded (possibly empty), then E P( f,C) has a solution.

Proof As f (x, .) is convex and differentiable function for all x ∈ C , we already know
that EP( f,C) = V I (Ff ,C); where Ff (x) = ∇2 f (x, .)(x). Also for any x ∈ C ,

f (x, u) ≥ f (x, x) + 〈∇2 f (x, .)(x), u − x〉.

By the given hypothesis, we get

f (x, u) ≥ 〈Ff (x), u − x〉. (6.5)
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From (6.5), it is clear that {x ∈ C : 〈Ff (x), x − u〉 < 0} ⊆ {x ∈ C : f (x, u) > 0} =
L>. Now the boundedness of L> (possibly empty) implies that {x ∈ C : 〈Ff (x), x −
u〉 < 0} is bounded (possibly empty). Then by Theorem 6.3.5, V I (Ff ,C) has a
solution, implying that EP( f,C) also has solution.

Remark 6.3.1 With the similar assumptions on F and C as Theorem 6.3.5 for VI, if
we assume that there exists u ∈ C and ζ ≥ 0 such that

lim inf‖x‖→∞
〈F(x), x − u〉

‖x‖ζ
> 0, (6.6)

then V I (F,C) has a solution (Prop. 2.2.7, [19]). Note that the coercivity condition
(6.6) implies the boundedness of the set V< in Theorem 6.3.5.

Similar thing happens with the equilibrium problem also. The boundedness con-
dition of L> can be replaced by the coercivity condition of f ,

lim inf‖x‖→∞
− f (x, u)

‖x‖ζ
> 0.

6.4 Examples and Counterexamples

In the previous section, it was shown that under some natural assumptions the solu-
tion set of an equilibrium problem coincides with the solution set of an associ-
ated variational inequality problem. Given the problem EP( f,C), where C is non-
empty and convex, f is differentiable and (H1) holds. We shall call the problem
V I (Ff ,C), with Ff (x) = ∇y f (x, .)(x) = ∇y f (x, x) as the variational inequality
associated with the equilibrium problem EP( f,C). This is because if x∗ is a solu-
tion of EP( f,C), then x∗ solves V I (Ff ,C), though the converse need not be true.
Taking a clue from an example taken from Muu et al. [3], we show an equilibrium
problem which can not be solved by solving the associated variational inequality.

Example 6.4.1 Consider the following equilibrium problem. Find x ∈ C such that

f (x, y) ≥ 0 for all y ∈ C,

where f (x, y) = 〈x, y − x〉 + x2 − y2 and C = [−1, 1]. Since there does not exist
any such x ∈ [−1, 1], this equilibrium problem does not have any solution. Here
fy(x, y) = x − 2y, which implies that ∇ fy(x, x) = −x . Hence, the variational
inequality associated with the above mentioned equilibrium problem is given as
follows. Find x such that

〈−x, y − x〉 ≥ 0 for all y ∈ [−1, 1].
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Note x = 0 satisfies the above inequality for all y ∈ [−1, 1], implying that the asso-
ciated variational inequality has a solution when the equilibrium problem does not.

The above example shows that in general an equilibrium problem may not be related
to its associated variational inequality. The above example might appear artificial.
Thus, it is natural to ask if there is an example of an equilibrium problem which
is drawn from some application where its solution set does not coincide with the
solution of its associated variational inequality. While trying to search for such an
example, we came across the work of Muu et al. [3], where they have studied the
profit maximization problem in the setting of an oligopolistic market. They showed
that the existence of Nash equilibrium in such a market is equivalent to a hemivaria-
tional inequality. However, they assumed that cost function which tells us the cost of
producing a given amount of a good is concave and increasing. Under this assump-
tion, the Nash equilibrium problem cannot be solved by solving the hemivariational
inequality problem. However, this assumption is flawed from the economic point of
view. It is common knowledge in microeconomics that the function relating the cost
of producing a given good with the quantity to be produced is a strictly( or strongly)
convex function.We showbelow that if we consider the correct economic assumption
on the cost function, the problem discussed by Muu et al. [3] is indeed equivalent to
a variational inequality. We describe the problem in considerable detail.

Let us begin by considering an oligopolistic market. In an oligopolistic market,
there are more than one firm produces the same commodity and compete among
themselves. Thus, the unit price of the commodity fixed by one firm does not depend
only on its own level of production but depends also on the amount of production
achieved by other forms. More precisely, consider that there are n firms and let
xi be the amount of the commodity produced by the i th firm and let pi be the
price of the commodity given by the i th firm. In fact, we should write the price as
pi (x1, x2, . . . , xn). Let hi be the cost function associated with the firm and thus for
producing the amount xi , the firm i needs to spend h(xi ). Thus, the profit or the
pay-off function for the i th firm is a function fi : Rm → R is s given as

fi (x) = fi (x1, . . . xm) = xi pi (x1, . . . , xn) − hi (xi ).

In fact, it is natural to assume that the cost function hi of the i th firm depends only on
production level of the i th firm itself. It is also important to note that in an oligopolistic
structure, the number of firms is not very large. Further, we assume that each firm i
has a strategy setUi ⊂ R and we can safely assume it to be convex. This strategy set
allows the firm i to set its production level once it has idea of the production level
of other firms. This is quite natural since the number of firms is quite less. Thus, a
point x̄ = (x̄1, . . . , x̄n) ∈ U = U1 ×U2 × · · · ×Un is aNash equilibrium if for each
i = 1, . . . , n

fi (x̄1, x̄2, . . . , x̄i−1, yi , x̄i+1, . . . x̄n) ≤ f (x̄1, x̄2, . . . , x̄i , . . . , x̄n),
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for all yi ∈ Ui . In fact, one can express this as a sequence of minimization problem.
Let x−i denote the production levels of all the firms except the i th firm. Thus, we
can write

x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn)
T .

Traditionally in the study of Nash equilibrium, one can write the vector x as x =
(xi , x−i ). Let us write the loss function for the i th firm as

θi (xi , x
−i ) = − fi (x1, . . . , xn) = hi (xi ) − xi pi (x1, . . . , xn).

Thus for any given x−i , the object of the i th firm is to choose a strategy which solves
the problem Pi (x−i ) given as

min
xi∈Ui

θi (xi , x
−i ).

Let S(x−i ) denote the solution set of the problem Pi (x−i ). A vector x̄ is a Nash
equilibrium if x̄i ∈ S(x̄−i ) for each i = 1, . . . , n. In order solve the above problem,
most economists would like to have at least have that θi is convex in xi . Thus, this
means that hi (xi ) − xi pi (x1, . . . , xn) must be convex in xi . In fact, Muu et al. [3]
considers p(x1, . . . , xn) = αi − βi (x1 + · · · + xn) where, αi and βi are constants
with βi ≥ 0. Note that in this case we have

xi pi (x1, . . . xn) = αi xi − βi (x1xi + · · · + x2i + · · · + xnxi ).

This is in fact concave in xi . Further as per the standard assumptions in economic
theory we consider that the cost function hi is strongly convex and this proves that
θi is convex in xi . In fact, a careful inspection would show that it is actually jointly
convex in all the variables. Through the following proposition our aim would be to
show that under the above assumptions the Nash equilibrium can be computed by
solving a hemivariational inequality through of the non-monotone type.

Proposition 6.4.1 Let us assume that x̄ is the Nash equilibrium of the oligopolistic
market model discussed above. Let us assume that the cost function hi of each of the
i th firm is strongly convex and the unit price pi quoted by the i th firm is given as

pi (x1, . . . , xn) = αi − βi (x1 + · · · + xn),

where αi ∈ R and βi ≥ 0. Then x̄ solves the hemivariational inequality V I (F,+
∇ϕ,U ), where F(x) = B̃x − α, α = (α1, . . . , αn)

T with B̃ is a n × n matrix whose
i th row has the entry 0 at the i th column and all other entries are βi and ϕ is given
as

ϕ(x) = 〈x, Bx〉 + h(x),



6 About the Links Between Equilibrium Problems … 125

where B is a diagonalmatrix given as B = diag(β1, . . . βn) and h(x) = ∑n
i=1 hi (xi ).

Conversely if x̄ is a solution to V I (F + ∇ϕ,U ) with F and ϕ as given above then
x̄ is indeed a Nash equilibrium for the oligopolistic market model.

Proof: Let us begin by assuming that x̄ is the Nash equilibrium of the oligopolistic
market model described above. Thus for each i = 1, . . . , n, we have

fi (x̄1, x̄2, . . . , x̄i−1, yi , x̄i+1, . . . x̄n) ≤ f (x̄1, x̄2, . . . , x̄i , . . . , x̄n),

for all yi ∈ Ui . Of course, we know that U = U1 ×U2 × · · · ×Un . From the above
expression, a simple manipulation will show that

hi (yi ) − yi

⎛

⎝αi − βi

⎛

⎝yi +
n∑

j=1, j �=i

x̄ j

⎞

⎠

⎞

⎠ ≥ hi (x̄i ) − x̄i pi (x̄1, . . . , x̄n).

Further simplification shows that

hi (yi ) − hi (x̄i ) + (βi x̄1 + · · · + βi x̄i−1 + βi xi+1 + · · · + βi x̄n − αi )(yi − x̄i )

+βi y
2
i − βi x̄

2
i ≥ 0,

for all yi ∈ Ui . Summing over all i from 1 to n we have

n∑

i=1

hi (yi ) −
n∑

i=1

hi (x̄i ) + 〈B̃ x̄ − α, y − x̄〉 + 〈y, By〉 − 〈x, Bx〉 ≥ 0 ∀y ∈ U.

This shows that x̄ solves V I (F + ∇ϕ,U ).
Conversely let x̄ solve V I (F + ∇ϕ,U )with F andϕ as described in the statement

of the proposition. Thus, we have

n∑

i=1

hi (yi ) −
n∑

i=1

hi (x̄i ) + 〈B̃ x̄ − α, y − x̄〉 + 〈y, By〉 − 〈x, Bx〉 ≥ 0 ∀y ∈ U.

(6.7)
Let us choose y ∈ U as follows:

y = (x̄1, x̄2, . . . , x̄i−1, yi , x̄i+1, . . . , x̄n),

where yi is any element from Ui . Plugging this y in (6.7), we get

hi (yi ) − hi (x̄i ) + (βi x̄1 + · · · + βi x̄i−1 + βi xi+1 + · · · + βi x̄n − αi )(yi − x̄i )

+βi y
2
i − βi x̄

2
i ≥ 0,
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which implies that fi (x̄1, . . . , x̄i−1, yi , x̄i+1, . . . , x̄n) ≤ fi (x̄1, . . . , x̄n). This clearly
shows that x̄ is the Nash equilibrium of the oligopolistic market model. �.

As mentioned earlier in Muu et al. [3], it was assumed that hi is an increasing
concave function for each i . Then ϕ becomes a difference convex function, and
thus, the V I (F + ∇ϕ,U )would truly become an equilibrium problemwhich cannot
be solved by solving a V I . However as we had discussed this issue with several
economists, they have clearly told us that concavity assumption on the cost function
is fundamentally incorrect since in such a case the graph of the cost function of
a firm may always remain below the price curve xi pi (x1, . . . xn) which leads the
possibility of arbitrarily large amount of production in principle. However, no firm
can make an arbitrarily large amount of commodities. The assumption of a convex
curve limits the amount of commodities produced by the firm i and thus makes Ui

a compact and convex set. This will make it much easier to handle the problems
(Pi (x−i )). Thus as we see that under the strong convexity assumption on the cost
function of each firm, we have ϕ to be strongly convex and thus V I (F + ∇ϕ,U )

is same as V I (F + 2B + ∇h,U ), since the cost functions are assumed to be twice
differentiable. Thus, the analysis of the Nash equilibrium of an oligopolistic market
under natural assumptions does not lead us to an equilibrium problem different from
a V I . To the best of our knowledge, the problem of finding an application which
can be modelled as an equilibrium problem that is not equivalent to its associated
variational inequality remains to be open.

Thus given assumptions (H1) and (H2), it appears that the most general form of
an equilibrium problem is a variational inequality problem. However, a variational
inequality problem is more general than an optimization problem. This is what the
following example will demonstrate.

Example 6.4.2 Consider the following convex optimization problem (CP):

min f (x) subject to gi (x) ≤ 0, i = 1, . . . ,m, x ∈ X,

where f and each gi , i = 1, . . . ,m are finite-valued convex functions on X orRn and
X is a closed convex subset of Rn . Associated with (CP) is the Lagrangian function
L : X × R

m+ → R given as

L(x, λ) = f (x) + λ1g1(x) + · · · + λmgm(x).

Assume that the Slater’s condition holds, i.e. there exists x̂ ∈ X such that gi (x̂) < 0
for all i = 1. . . . ,m. It is a well-known result in convex optimization (see, for exam-
ple, Dhara and Dutta [20] ) that if Slater condition holds then x̄ ∈ X is a minimizer
of (CP) if and only if there exists λ̄ ∈ R

m+ such that

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄), for all x ∈ X, λ ∈ R
m
+. (6.8)
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The point (x̄, λ̄) ∈ X × R
m+ is called a saddle point of the Lagrangian function. From

(6.8), it is clear that

L(x̄, λ̄) = min
x∈X L(x, λ̄)

L(x̄, λ̄) = max
λ∈Rm+

L(x̄, λ).

Now using the standard necessary optimality for convex optimization (see Rockafel-
lar [21]), we conclude that

−∇x L(x̄, λ̄) ∈ NX (x̄)

and

∇λL(x̄, λ̄) ∈ NR
m+(λ̄).

Noting that

NX (x) × NR
m+(λ) = NX×R

m+(x, λ)

we conclude that under the Slater condition (x̄, λ̄) ∈ X × R
m+ is a saddle point of the

Lagrangian function if and only if (x̄, λ̄) solves the following variational inequality:

0 ∈ F(x, λ) + NX×R
m+(x, λ)

where F(x, λ) = (∇x L(x, λ),−∇λL(x, λ)). It is clear that F(x, λ) is not the gradient
of a convex function and in fact, it is not the gradient of theLagrangian function jointly
in both variable. Thus, we have a variational inequality which is not the optimality
condition of convex optimization problem.

For more examples of this type, see Borwein and Dutta [22] and Borwein and Lewis
[23].

6.5 Link Between QEP and QVI

Amore general version of the variational inequality problem is the quasi-variational
inequality (QVI) problem (see [24]) and the quasi-equilibrium problem (QEP) gen-
eralizes the standard equilibrium problem with set-valued maps. For more details on
quasi-equilibrium problems, see, for example, [25, 26]. In this section, we present the
observations about the relation between QEP and QVI, i.e. under which assumptions
a QEP is equivalent to a QVI.



128 D. Aussel et al.

Given two set-valued maps T : Rn ⇒ R
n and K : Rn ⇒ R

n , the problem
QV I (T, K ) is defined as:

Find x ∈ K (x) such that there exists x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0 for all
y ∈ K (x).

For a bifunction f : Rn × R
n → R and a set-valuedmap K : Rn ⇒ R

n , QEP( f, K )

is

Find x ∈ K (x) such that f (x, y) ≥ 0 for all y ∈ K (x).

The following assumptions have been taken for QEP( f, K ) in this chapter which
also appear in literature:
A 1 : f (x, .) is convex for each x ∈ R

n .
A 2 : f (x, x) = 0 for each x ∈ R

n .
A 3 : K (x) is non-empty, convex and closed for all x ∈ R

n .

If x∗ is a solution of QEP( f, K ), by assumption we get that x∗ ∈ K (x∗) and

f (x∗, y) ≥ f (x∗, x∗) ∀y ∈ K (x∗),

which is nothing but a solution of the following minimization problem:

min f (x∗, y) subject to y ∈ K (x∗).

Additionally if we assume that f (x, .) is lsc, proper for any x ∈ R
n , by the necessary

and sufficient optimality condition for this problem we get that there exists ξ ∗ ∈
∂2 f (x∗, .)(x∗) such that

〈ξ ∗, y − x〉 ≥ 0 ∀y ∈ K (x∗). (6.9)

This implies that x∗ is a solution of the QV I (T f , K ), where T f (x) = ∂2 f (x, .)(x).
Further if x∗ solves QV I (T f , K ), (6.9) holds with some ξ ∗ ∈ ∂2 f (x∗, .)(x∗). This
together with A 1 and A 2 implies that x∗ is a solution of QEP( f, K ). Hence

QEP( f, K ) = QV I (T f , K ) where T f (x) = ∂2 f (x, .)(x).

In particular when f (x, .) is differentiable for any x ∈ R
n , using the gradient for

subdifferential we get

QEP( f, K ) = QV I (T f , K ) where T f (x) = ∇2 f (x, .)(x).

Finally, if A 2 and A 3 are satisfied and the function f (x, .) is semi-strictly quasi-
convex function for each x ∈ R

n , we still get an equivalence relation between QEP
and QVI. If x∗ is a solution of QEP( f, K ), we have

f (x∗, y) ≥ 0 ∀y ∈ K (x∗),
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which implies that x∗ is a solution of the equilibrium problem EP( f, K (x∗)).
Then by Proposition 2.1, we can say that EP( f, K (x∗)) = V I (T f , K (x∗)), where
T f (x) = Na

f (x,.)(x)\{0}, which implies there exists y∗ ∈ T f (x∗) = Na
f (x∗,.)(x

∗)\{0}
such that

〈y∗, y − x∗〉 ≥ 0 ∀y ∈ K (x∗).

Hence, x∗ solves QV I (T f , K ). Again if we assume that x∗ is a solution of the
QV I (T f , K ), following the previous arguments in reverse way we can easily show
that x∗ also solves QEP( f, K ).

The above-stated observations are summarized in the following table with the
assumption that A 2 and A 3 hold:

Initial problem QEP reformulation Hypothesis QVI reformulation Hypothesis

QVI(T,K) QV I (T, K ) =
QEP( fT , K )

with fT (x, y) =
sup

ξ∈T (x)
〈ξ, y − x〉

T (x) is compact
∀x ∈ R

n

QEP(f,K) QEP( f, K ) = QV I (T f , K )

with T f (x) = ∇2 f (x, .)(x)
f (x, .) diff. convex ∀x ∈
R
n

QEP( f, K ) = QV I (T f , K )

with T f (x) = ∂2 f (x, .)(x)
f (x, .) convex, lsc, proper
∀x ∈ R

n

QEP( f, K ) = QV I (T f , K )

with T f (x) = Na
f (x,.)(x)\{0}

f(x,.) continuous and
semi-strictly quasi-
convex ∀x ∈ R

n

K (x) ∩ argminRn f =
∅ ∀x ∈ R

n
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Chapter 7
The Shrinking Projection Method
and Resolvents on Hadamard Spaces

Yasunori Kimura

7.1 Introduction

Let H be a real Hilbert space and f : H → ]−∞,+∞] a proper lower semicon-
tinuous convex function. We consider the following problem called a convex mini-
mization problem: Find an element z ∈ H such that

f (z) = inf
y∈H f (y).

The solution to this problem is called aminimizer of f . A large number of researchers
have been working on this simple problem because it is related to various types of
nonlinear problems such as equilibrium problems, variational inequality problems,
saddle point problems, and others. In particular, there is a strong relation between
convex minimization problems and fixed point problems for nonexpansive mappings
and the concept of resolvent plays an important role to connect these two nonlinear
problems.

The definition of the resolvent for f is as follows: For fixed x ∈ H , define gx :
H → ]−∞,+∞] by

gx (y) = f (y) + ‖y − x‖2 .

Then, we know that gx has a unique minimizer yx ∈ H . Using this fact, we define
an operator J f : H → H by J f x = yx . Namely,

J f x = argminy∈H ( f (y) + ‖y − x‖2).
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Since we know that the resolvent operator is nonexpansive and the set Fix J f =
{z ∈ H : z = J f z} of its fixed points coincides with the set of minimizers of f , we
may apply the notion of this operator to the theory of nonexpansive mappings and
their fixed points, and consequently, we can obtain various kinds of useful results
related to the convex minimization problem.

In this note, we will discuss approximation techniques to the solution of convex
minimization problems by using iterative sequences with resolvent operators. As
well as the history of this topic, we will show a new iterative scheme with respect to
the common minimization problem for a finite family of convex functions.

7.2 Preliminaries

Let X be a metric space with a metric d. For x, y ∈ X , we say that a map-
ping c : [0, l] → X is a geodesic with endpoints x, y if c(0) = x , c(l) = y, and
d(c(t), c(s)) = |t − s| for any t, s ∈ [0, l]. We say that X is a geodesic metric space
if a geodesic with endpoints x, y exists for every x, y ∈ X . Moreover, if a geodesic
is unique for each x, y ∈ X , then X is said to be uniquely geodesic. In what follows,
we assume that X is uniquely geodesic.

The image of a geodesic c with endpoints x, y ∈ X is called a geodesic seg-
ment joining x and y, and is denoted by [x, y]. A geodesic triangle with vertices
x, y, z ∈ X is defined by �(x, y, z) = [y, z] ∪ [z, x] ∪ [x, y]. For �(x, y, z) ⊂ X ,
the comparison triangle �(x, y, z) is defined by the triangle in the 2-dimensional
Euclidean space E2 with vertices x, y, z ∈ E

2 such that

d(y, z) = |y − z|E2 , d(z, x) = |z − x |E2 , d(x, y) = |x − y|E2 ,

where |·|E2 is the Euclidean norm on E
2. A point p ∈ [x, y] is called a comparison

point for p ∈ [x, y] if d(x, p) = |x − p|E2 . If for any p, q ∈ �(x, y, z) and their
comparison points p, q ∈ �(x, y, z), the inequality

d(p, q) ≤ |p − q|
E2

holds for all triangles in X , we call X a CAT(0) space. A Hadamard space is defined
as a complete CAT(0) space.

For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that
d(x, z) = (1 − t)d(x, y) and d(z, y) = td(x, y). We denote it by t x ⊕ (1 − t)y.
A subset C of X is said to be convex if t x ⊕ (1 − t)y ∈ C for every x, y ∈ C and
t ∈ [0, 1]. In a Hadamard space X , we know that the following inequality holds:

d(z, t x ⊕ (1 − t)y)2 ≤ td(z, x)2 + (1 − t)d(z, y)2 − t (1 − t)d(x, y)2

for every x, y, z ∈ X and t ∈ [0, 1].



7 The Shrinking Projection Method and Resolvents on Hadamard Spaces 133

For a nonempty subset C of a Hadamard space X and x ∈ X , we define the
distance d(x,C) between x and C by

d(x,C) = inf
y∈C d(x, y).

Suppose thatC is nonempty, closed, and convex. Then, we know that for each x ∈ X ,
there exists a unique point yx ∈ C such that d(x, yx ) = d(x,C). Using this fact, we
define a mapping PC : X → C by PCx = yx for x ∈ X and we call it the metric
projection of X onto C .

The following result shows a relation between a decreasing sequence of closed
convex subsets with respect to inclusion and the sequence of corresponding metric
projections.

Theorem 7.1 (Kimura [4]) Let {Cn} be a sequence of nonempty closed convex sub-
sets of a Hadamard space X and suppose that Cn+1 ⊂ Cn for all n ∈ N. Let u ∈ X.
If C0 = ⋂

n∈N Cn is nonempty, then the corresponding sequence {PCnu} of metric
projections to {Cn} converges to PC0u.

For more details of Hadamard spaces and their fundamental properties, see [2].

7.3 The Shrinking Projection Method

The shrinking projection method was originally proposed by Takahashi, Takeuchi,
and Kubota [9] as an iterative method approximating a common fixed point of non-
expansive mappings defined on a subset of a Hilbert space. For a metric space X , a
mapping T : X → X is said to be nonexpansive if

d(T x, T y) ≤ d(x, y)

for all x, y ∈ X . We say that z ∈ X is a fixed point of T if z = T z, and we denote
the set of fixed points of T by Fix T .

For a nonexpansive mapping T defined on a closed convex subset of a Hadamard
space X , Fix T is always closed and convex. Therefore, under the assumption that
Fix T �= ∅, themetric projection PFix T : H → Fix T is defined.These properties also
hold on a Hilbert space since a Hilbert space is an example of Hadamard spaces. The
following is a convergence theoremwith a simple version of the shrinking projection
method.

Theorem 7.2 (Takahashi, Takeuchi, and Kubota [9]) Let H be a Hilbert space and
C a nonempty closed convex subset of H. Let T : C → C be a nonexpansivemapping
such that Fix T �= ∅. Let {αn} be a nonnegative real sequence such that supn∈N αn <

1. For an arbitrary point u ∈ H, generate a sequence {xn} by the following iterative
scheme: x1 ∈ C, C1 = C, and
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yn = αnxn + (1 − αn)T xn,

Cn+1 = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖} ∩ Cn,

xn+1 = PCn+1u

for n ∈ N. Then, {xn} converges strongly to PFix T u ∈ C.

This result was generalized to the setting of real Hilbert ball, a special case of
Hadamard spaces, by Kimura [4]. We remark that the underlying space of this result
can be changed to aHadamard space satisfying that a set {x ∈ X : d(x, u) ≤ d(x, v)}
is always convex for u, v ∈ X as follows:

Theorem 7.3 (Kimura [4])Let X be aHadamard space such that {z ∈ X : d(u, z) ≤
d(v, z)} is convex for every u, v ∈ X. Let T : X → X be a nonexpansive mapping
such that Fix T �= ∅. Let {αn} be a nonnegative real sequence in [0, 1] such that
lim infn→∞ αn < 1. For u ∈ X, generate an iterative sequence {xn} by x1 ∈ X, C1 =
X, and

yn = αnxn ⊕ (1 − αn)T xn,

Cn+1 = {z ∈ X : d(yn, z) ≤ d(xn, z)} ∩ Cn,

xn+1 = PCn+1u

for all n ∈ N. Then {xn} converges to PFix T u ∈ X.

In this method, we need to calculate a metric projection for a convex subset of
X for every iteration, and it may be difficult to obtain its exact value in a practical
computation. To overcome this difficulty, we can use the following result.

Theorem 7.4 (Kimura [5]) Let X be a Hadamard space and suppose that a sub-
set {z ∈ X : d(u, z) ≤ d(v, z)} is convex for every u, v ∈ X. Let T : X → X be a
nonexpansive mapping such that Fix T �= ∅. Let {δn} be a sequence of nonnegative
numbers and δ0 = lim supn→∞ δn. For a given point u ∈ X, generate a sequence
{xn} by x1 ∈ X, C1 = X, and

Cn+1 = {z ∈ X : d(T xn, z) ≤ d(xn, z)} ∩ Cn,

xn+1 ∈ Cn+1 such that d(u, xn+1)
2 ≤ d(u,Cn+1)

2 + δ2n+1

for each n ∈ N. Then,
lim sup
n→∞

d(xn, T xn) ≤ 2δ0.

Moreover, if δ0 = 0, then {xn} converges to PFix T u.
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7.4 Common Minimizers for a Family of Convex Functions

As we stated in the introduction, the resolvent operator for a convex function is
defined in the setting of Hilbert spaces and more general spaces such as Banach
spaces and Hadamard spaces. In this section, we first see the definition and fun-
damental properties of resolvents defined on Hadamard spaces. Then, we obtain an
approximation result for a commonminimizing problem for a finite family of convex
functions.

Let X be a Hadamard space and f : X → ]−∞,+∞]. We say that f is proper
if f (x0) < ∞ for some x0 ∈ X . f is said to be lower semicontinuous if

f (x0) ≤ lim inf
n→∞ f (xn)

whenever {xn} ⊂ X converges to x0 ∈ X . f is said to be convex if for x, y ∈ X and
τ ∈ ]0, 1[,

f (τ x ⊕ (1 − τ )y) ≤ τ f (x) + (1 − τ ) f (y)

holds.
Suppose that f is proper, lower semicontinuous, and convex. For x ∈ X , define

gx : X → X by g(y) = f (x) + d(y, x)2 for y ∈ X . Then, we know that gx has a
unique minimizer yx ∈ X . The resolvent operator J f : X → X is defined by J f x =
yx for each x ∈ X , that is,

J f x = argminy∈X ( f (y) + d(y, x)2)

for x ∈ X . This definition was firstly given by Jost [3]. See also [8].
The resolvent operator has the following useful properties; see [1, 7].

• The set of fixed points of J f coincides with the set of minimizers of f ; Fix J f =
argminy∈X f (y);

• J f is firmly nonexpansive in the sense that

2d(J f x, J f y)
2 + d(J f x, x)

2 + d(J f y, y)
2 ≤ d(J f x, y)

2 + d(J f y, x)
2

for all x, y ∈ X and thus it is nonexpansive.

Since the set of fixed points of nonexpansivemappings onHadamard spaces is closed
and convex, so is argminy∈X f (y).

Using the notion of the resolvent for convex functions, we consider the problem
of finding common minimizers for a finite family of convex functions. To take calcu-
lation errors for the metric projections into consideration, we employ the technique
used in Theorem 7.4.

Theorem 7.5 Let X be a Hadamard space and suppose that {x ∈ X : d(x, u) ≤
d(x, v)} is convex for every u, v ∈ X. For fixed k ∈ N, let { f j : X → ]−∞,+∞] ,
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j = 0, 1, . . . , k − 1} be a finite family of proper lower semicontinuous convex func-
tions such that the set M = ⋂k−1

j=0 argminX f j of common minimizers of { f j } is
nonempty. For a positive real sequence {ρn} such that ρ0 = lim infn→∞ ρn > 0 and
for n ∈ N, let

Jn = Jρn f(n mod k) ,

where Jρn f is the resolvent of ρn f . For given u, x1 ∈ X with d(u, x1) ≤ δ1, generate
an iterative sequence {xn} as follows: C1 = X,

Cn+1 = {z ∈ X : d(Jnxn, z) ≤ d(xn, z)} ∩ Cn,

xn+1 ∈ Cn+1 such that d(u, xn+1)
2 ≤ d(u,Cn+1)

2 + δ2n+1,

where {δn} is a nonnegative real sequence. Let δ0 = lim supn→∞ δn. Then,

lim sup
m→∞

f j (Jkm+ j xkm+ j ) − min
y∈X f j (y) ≤ 4δ0(2d(p, u) + δ0)

ρ0

for all j ∈ {0, 1, . . . , k − 1}.
Moreover, if δ0 = 0, then {xn} converges to PMu ∈ ⋂k−1

j=0 argminy∈X f j (y).

Proof Wefirst prove thewell-definedness of the sequence {xn} andM ⊂ ⋂
n∈N Cn by

induction. Note that x1 ∈ X is given and it is trivial that M ⊂ C1 = X . For arbitrarily
fixed n ∈ N, we suppose that xn ∈ X is defined and M ⊂ Cn . Then, we have that

Cn+1 ⊃ Fix Jn ∩ M = argminy∈X ρn f(n mod k)(y) ∩ M

= argminy∈X f(n mod k)(y) ∩ M ⊃ M �= ∅.

Thus there exists xn+1 ∈ Cn+1 such that

d(u, xn+1)
2 ≤ d(u,Cn+1)

2 + δ2n+1.

It follows that {xn} is well defined and M ⊂ ⋂
n∈N Cn .

It is easy to see that that every Cn is closed by the continuity of the metric d.
We also know that Cn is convex from the assumption of the space. Hence {Cn}
is a decreasing sequence of nonempty closed convex subsets of X with respect to
inclusion. Let pn = PCnu for n ∈ N and p0 = PC0u, where C0 = ⋂

n∈N Cn . Then,
by Theorem 7.1 we have that {pn} converges to p0. From the definition of the metric
projections, we have that

d(u, xn)
2 ≤ d(u,Cn)

2 + δ2n = d(u, pn)
2 + δ2n .

For τ ∈ ]0, 1[, it follows that

d(u, pn)
2 ≤ d(u, τ pn ⊕ (1 − τ )xn)

2

≤ τd(u, pn)
2 + (1 − τ )d(u, xn)

2 − τ (1 − τ )d(xn, pn)
2,
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and thus
τd(xn, pn)

2 ≤ d(u, xn)
2 − d(u, pn)

2.

Tending τ ↑ 1, we have that

d(xn, pn)
2 ≤ d(u, xn)

2 − d(u, pn)
2 ≤ δ2n,

and hence d(xn, pn) ≤ δn . Since pn+1 ∈ Cn+1, we have that

d(Jnxn, xn) ≤ d(Jnxn, pn+1) + d(pn+1, xn)

≤ 2d(pn+1, xn)

≤ 2(d(pn+1, pn) + d(pn, xn))

≤ 2(d(pn+1, pn) + δn)

for all n ∈ N. Therefore, we obtain that

lim sup
n→∞

d(Jnxn, xn) ≤ 2δ0.

Let p = PMu. Fix j ∈ {0, 1, . . . , k − 1} arbitrarily. Then, for m ∈ N, we have that

Jn = Jkm+ j = Jρn f j ,

where n = km + j . For τ ∈ ]0, 1[, we have that

ρn f j (Jnxn) + d(Jnxn, xn)
2

≤ ρn f j (τ Jnxn + (1 − τ )p) + d(τ Jnxn ⊕ (1 − τ )p, xn)
2

≤ τρn f j (Jnxn) + (1 − τ )ρn f j (p)

+ τd(Jnxn, xn)
2 + (1 − τ )d(p, xn)

2 − τ (1 − τ )d(Jnxn, p)
2.

It follows that

(1 − τ )ρn f j (Jnxn) − (1 − τ )ρn f j (p)

≤ (1 − τ )d(p, xn)
2 − (1 − τ )d(Jnxn, xn)

2 − τ (1 − τ )d(Jnxn, p)
2.

Dividing by 1 − τ and tending τ ↑ 1, we have that

ρn f j (Jnxn) − ρn f j (p) ≤ d(xn, p)
2 − d(Jnxn, xn)

2 − d(Jnxn, p)
2.

On the other hand, we have that
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d(xn, p)
2 − d(Jnxn, xn)

2 − d(Jnxn, p)
2

= (d(xn, p) − d(Jnxn, p))(d(xn, p) + d(Jnxn, p)) − d(Jnxn, xn)
2

≤ d(Jnxn, xn)(d(xn, p) + d(Jnxn, p)) − d(Jnxn, xn)
2

= d(Jnxn, xn)(d(xn, p) + d(Jnxn, p) − d(Jnxn, xn))

≤ 2d(Jnxn, xn)d(xn, p)

≤ 4(d(pn+1, pn) + δn)(d(p, u) + d(u, pn) + d(pn, xn))

≤ 4(d(pn+1, pn) + δn)(2d(p, u) + δn).

Since n = km + j , we have that

f j (Jkm+ j xkm+ j ) − f j (p)

= f j (Jnxn) − f j (p)

≤ 4(d(pn+1, pn) + δn)(2d(p, u) + δn)

ρn

≤ 4(d(pkm+ j+1, pkm+ j ) + δkm+ j )(2d(p, u) + δkm+ j )

ρkm+ j
.

Since f j (p) = miny∈X f j (y) and {pn} converges strongly to p0, tending m → ∞,
we have that

lim sup
m→∞

f j (Jkm+ j xkm+ j ) − min
y∈X f j (y)

= lim sup
m→∞

f j (Jkm+ j xkm+ j ) − f j (p)

≤ lim sup
m→∞

4(d(pkm+ j+1, pkm+ j ) + δkm+ j )(2d(p, u) + δkm+ j )

ρkm+ j

≤ 4δ0(2d(p, u) + δ0)

ρ0

for any j ∈ {0, 1, . . . , k − 1}. Hence we obtain the desired result.
For the latter part of the theorem, suppose that δ0 = 0. Then we have that

lim
n→∞ d(xn, pn) ≤ lim

n→∞ δn = δ0 = 0.

Since {pn} converges to p0, so does {xn}. We also have that

lim
n→∞ d(Jnxn, xn) = lim

n→∞ 2δn = 2δ0 = 0,

{Jρn xn} also converges to p0. Since each f j is lower semicontinuous, we have that
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f j (p0) − min
y∈X f (y) ≤ lim inf

m→∞ f (Jkm+ j xkm+ j ) − min
y∈X f (y)

≤ lim sup
m→∞

f (Jkm+ j xkm+ j ) − min
y∈X f (y)

= 4δ0(2d(u, p) + δ0)

ρ0

= 0.

Therefore, p0 ∈ argminX f j for all j ∈ {0, 1, . . . , k − 1} and it follows that p0 ∈ M .
Since p0 = PC0u and M ⊂ C0, we have that

p0 = PMu ∈ M =
k−1⋂

j=0

argminy∈X f j (y),

which completes the proof.

In the end of this chapter, we remark some recent development for this theory.
The notion of resolvent for convex functions has been generalized to that defined
on a complete CAT(1) space [6]. It is also obtained that this new resolvent operator
has useful properties called firm spherical nonspreadingness, which is an analogy
to firm nonexpansiveness of the resolvent defined on Hadamard spaces. By using
this operator, we may obtain various kinds of approximation schemes for the convex
minimization problem on complete CAT(1) spaces.
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Chapter 8
Some Hard Stable Marriage Problems:
A Survey on Multivariate Analysis

Sushmita Gupta, Sanjukta Roy, Saket Saurabh and Meirav Zehavi

8.1 Introduction

Matching under preferences is a rich topic central to both economics and computer
science, which has been consistently and intensively studied for over several decades.
One of the main reasons for interest in this topic stems from the observation that it
is extremely relevant to a wide variety of practical applications modeling situations
where the objective is to match agents to other agents (or to resources). In the most
general setting, a matching is defined as an allocation (or assignment) of agents to re-
sources that satisfies some predefined criterion of compatibility/acceptability. Here,
the (arguably) best-knownmodel is the two-sidedmodel, where the agents on one side
are referred to asmen, and the agents on the other side are referred to aswomen. A few
illustrative examples of real-life situations where this model is employed in practice
includematchinghospitals to residents, students to colleges, kidneypatients to donors
and users to servers in a distributed Internet service. At the heart of all of these appli-
cations lies the fundamental Stable Marriage problem. In particular, the Nobel
Prize in Economicswas awarded to Shapley andRoth in 2012 “for the theory of stable
allocations and the practice of market design.” Moreover, several books have been
dedicated to the study of Stable Marriage as well as optimization variants of this
classical problem such as theEgalitarian Stable Marriage, Sex-Equal Sta-
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ble Marriage, Balanced Stable Marriage,Maximum (minimum) Stable

matching with ties and Stable Matching manipulation problems [1–3].
A solution to Stable Marriage problem can be computed in polynomial time
[4]. However, these variants of Stable Marriage problem except Egalitarian
Stable Marriage are NP-hard. Consequently, different ways to cope with the
hardness has been looked at for these problems.

In this article, we survey works on NP-hard variants of problems related to
Stable Marriage in the area of exact exponential time algorithms. In particular,
we look at these problems through the lens of Parameterized Complexity, a finer
notion of complexity for NP-hard problems. We will introduce the fundamentals of
Parameterized Complexity in the next section. Prior to that, we define the problems
we study in this article.

8.1.1 Stable Matching and Its Variants

In algorithmic game theory, it is common to model games in terms of graph theory
terminology. Primarily inspired by the seminal work of Myerson [5] on cooperative
game theory, this has become a standard practice, especially but not limited to the
study of assignment problems of which Stable Marriage, Stable Roommates

are special cases. In this model vertices of a graph are used to represent players,
and edges represent some notion of compatibility or acceptability among pairs of
players.

Stable Marriage. The input of the Stable Marriage (SM) problem consists of
a set of men, M , and a set of women, W , each person ranking a subset of people
of the opposite gender, modeled as a bipartite graph G = (M,W, E). That is, each
person a has a set of acceptable partners,A(a), whom this person subjectively ranks.
Consequently, each person a has a so-called preference list, where pa(b) denotes the
position of b ∈ A(a) in a’s preference list. Without loss of generality, it is assumed
that if a person a ranks a person b, then the person b ranks the person a as well.
The sets of preference lists of the men and the women are denoted by LM and LW ,
respectively. In this context, we say that a pair of a man and a woman, (m, w), is
an acceptable pair if both m ∈ A(w) and w ∈ A(m) ( equivalently, (m, w) ∈ E).
Accordingly, the notion of amarriage refers to a matching betweenmen and women,
where two people that are matched to one another form an acceptable pair. Roughly
speaking, the goal of the Stable Marriage problem is to find a matching that is
stable in the following sense: there should not exist two people who prefer being
matched to each other over their current “status”. More precisely, a matching μ is
said to be stable if it does not have a blocking pair, which is an acceptable pair (m, w)

such that (i) either m is unmatched by μ or pm(w) < pm(μ(m)), and (ii) either w

is unmatched by μ or pw(m) < pw(μ(w)). Here, the notation μ(a) represents the
person to whom μ matches the person a. Note that a person always prefers being
matched to an acceptable partner to being unmatched. Keeping in line with the graph
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terminology, we will refer to a blocking pair as a blocking edge. We denote the set
of all stable matchings by SM.

Stable Roommate. When the underlying graph G = (V, E) is not necessarily a bi-
partite graph, then the Stable Marriage problem is known as the Stable Room-

mate problem. For each vertex v ∈ V , L(v) is a strict ranking over the set of the
neighbors of v in G, denoted by N (v). Quite clearly, the notions of acceptable pair,
and stability are well defined even for the roommate setting.

8.1.1.1 Stability in Presence of Ties

When the preference lists are not strict orderings but can contain ties, then in the
case of a bipartite graph, we have Stable Marriage with Ties and Stable

Roommate With Ties otherwise. Moreover, the preference lists may not be com-
plete, i.e., the underlying graph is not complete, then the problems are called Stable
Marriage with Ties and Incomplete Lists (SMTI) and Stable Roommate

with Ties and Incomplete Lists (SRTI), respectively.
In the presence ties, there are multiple notions of stability: weak, super, and

strong [6, 7]. A matching μ is said to be (weakly) stable if there do not exist blocking
edges. The above models depict many real-life situations where solutions have to
satisfy certain predefined criterion of suitability and compatibility. Every instance
of SMTI has a stable matching, and such a matching can be found in polynomial
time [8]: Simply break ties arbitrarily and runGale–Shapley algorithm to find a stable
matching in the new instance. The resulting matching is weakly stable in the original
instance. However, note that, there can be an exponential number of stable matchings
in a given instance [1, Theorem 1.3.3, pg 24]. Furthermore, the manner in which the
ties are broken can affect the size of the resulting stable matching, up to a factor of 2.
Depending on the application at hand, some of these (exponentiallymany)matchings
might be better suited than others. The two (arguably) most natural objectives are to
maximize or minimize the size of the matching as it might be desirable to maintain
stability while either maximizing or minimizing the use of available “resources”.
These objectives define the well-known NP-hard variants of SM problem, namely
theMax- SMTI and Min- SMTI problems [8].

8.1.2 Stability and Equality

Gale and Shapley in the 1960s [4], while analyzing a heuristic that was in use for over
a decade to match medical residents to teaching hospitals in the Boston area under
the National ResidentMatching Program (NRMP), showed that every instance of the
Stable Marriage problem admits a stable matching. The heuristic has since come
to be known as the famous Gale–Shapley algorithm works in polynomial time and
can be used to find a stable matching. In other words, given any set of preference lists
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of men and women there exists at least one stable matching and as many as expo-
nential number of stable matchings, and they should be viewed as a spectrum where
the two extremes are known as the man-optimal stable matching and the woman-
optimal stable matching. The man-optimal stable matching, denoted by μM , is a
stable matching such that every stable matching μ satisfies the following condition:
every man m is either unmatched by both μM and μ or pm(μM(m)) ≤ pm(μ(m)).
The woman-optimal stable matching, denoted by μW , is defined analogously. These
two extremes, which give the best possible solution for one party at the expense of
the other party, always exist and can be computed in polynomial time [4].

Gale–Shapley Algorithm. This algorithm exists in two versions: men-proposing
and women-proposing. The version that yields the man (woman)-optimal stable
matching is the men-proposing (women-proposing) Gale–Shapley algorithm. It has
been customary to use themen-proposing version of the algorithm, and our discussion
in this survey will stick to that convention. In the next paragraph, we will only
describe the men-proposing version of the algorithm; the other one can be described
analogously.

Amanwho is currently unmatched to anywoman, proposes to thewomanwho is at
the top of his current list, which is obtained by removing from his original preference
list, all the women who have rejected him at an earlier step. On the woman’s side,
when a woman w receives a proposal from a man m, she accepts the proposal if
it is her first proposal, or if she prefers m to her current partner. If w prefers her
current partner tom, then w rejects m. Ifm is rejected by w, thenm removes w from
his list. This process continues until every man is either matched or his preference
list is empty. The output of this algorithm is the men-optimal stable matching. For
more details, see [1] Gusfeld and Irving’s authoritative treatise on stable matching.
Let (LM ,LW ) denote the set of preference lists of men and women, and the men-
optimal stable matching with respect to these lists are denoted by GS(LM ,LW ).
Henceforth, unless explicitly stated otherwise, any mention of a stable matching
should be interpreted by the reader as the man-optimal stable matching.

Naturally, it is desirable to analyze stable matchings that lie somewhere in the
middle of the two extremes, being globally desirable, fair towards both sides or
desirable by both sides. Each of these notions yields a desirable stable matching that
leads to a natural, different optimization problem. The determination of which notion
best describes an appropriate outcome depends on the specific situation at hand.
Here, the value pa(μ(a)) is viewed as the “satisfaction” of a in a matching μ, where
a smaller value signifies a greater amount of satisfaction. Under this interpretation,
the egalitarian stable matching attempts to be globally desirable by minimizing
e(μ) = ∑

(m,w)∈μ(pm(μ(m)) + pw(μ(w))) over the set of all stablematchings (recall
that we denote it by SM). The problem of finding an egalitarian stable matching,
called Egalitarian Stable Marriage, is known to be solvable in polynomial
time due to Irving et al. [9]. Roughly speaking, this problem does not distinguish
betweenmen andwomen, and therefore, it does not fit scenarios where it is necessary
to differentiate between the individual satisfaction of each party. In such scenarios,



8 Some Hard Stable Marriage Problems: A Survey on Multivariate Analysis 145

the Sex-Equal Stable Marriage andBalanced Stable Marriage problems
come into play.

In the Sex-Equal Stable Marriage problem, the objective is to find a sta-
ble matching that minimizes the absolute value of δ(μ) over SM, where δ(μ) =∑

(m,w)∈μ pm(μ(m)) −∑
(m,w)∈μ pw(μ(w)). It is thus clear that Sex-Equal Sta-

ble Marriage seeks a stable matching that is fair toward both sides by mini-
mizing the difference between their individual amounts of satisfaction. Unlike the
Egalitarian Stable Marriage, the Sex-Equal Stable Marriage problem
is known to be NP-hard [10]. On the other hand, in Balanced Stable Mar-

riage, the objective is to find a stable matching that minimizes balance(μ) =
max{∑(m,w)∈μ pm(w),

∑
(m,w)∈μ pw(m)} over SM. At first sight, this measure might

seem conceptually similar to the previous one, but in fact, the two measures are quite
different. Indeed, Balanced Stable Marriage does not attempt to find a stable
matching that is fair, but one that is desirable by both sides. In other words, Bal-
anced Stable Marriage examines the amount of dissatisfaction of each party
individually, and attempts to minimize the worse one among the two. This problem
fits the common scenario in economics where each party is selfish in the sense that
it desires a matching where its own dissatisfaction is minimized, irrespective of the
dissatisfaction of the other party, and our goal is to find a matching desirable by both
parties by ensuring that each individual amount of dissatisfaction does not exceed
some threshold. In some situations, the minimization of balance(μ) may indirect-
ly also minimize δ(μ), but in other situations, this may not be the case. Indeed,
McDermid [11] constructed a family of instances where there does not exist any
matching that is both a sex-equal stable matching and a balanced stable matching
(the construction is also available in the book [3]).

We study Balanced Stable Marriage problem in the realm of fast exact
exponential time algorithms as defined by the field of Parameterized Complexity (see
Sect. 8.2). Recall that SM is the set of all stable matchings. In this context, we would
like to remark that McDermid and Irving [12] showed that Sex-Equal Stable

Marriage is NP-hard even if it is only necessary to decide whether the target Δ =
minμ∈SM |δ(μ)| is 0 or not [12]. In particular, this means that Sex-Equal Stable

Marriage is not only W[1]-hard with respect to Δ, but it is even paraNP-hard with
respect to this parameter.1 In the case of Balanced Stable Marriage, however,
fixed-parameter tractability with respect to the target Bal = minμ∈SM balance(μ)

trivially follows from the fact that this value is lower bounded by max{|M |, |W |}.2

1If a parameterized problem cannot be solved in polynomial time even when the value of the
parameter is a fixed constant (that is, independent of the input), then the problem is said to be
paraNP-hard.
2In the analysis of the Balanced Stable Marriage, it is assumed that any stable matching is
perfect.
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8.1.3 Optimization Variants

Cseh and Manlove [13] studied NP-hard variants of the Stable Marriage and
Stable Roommate problems3: the input consists of preference lists of every agent,
and two subsets of (not necessarily pairwise disjoint) pairs of agents, representing the
set of forbidden pairs and forced pairs. The objective is to find a matching that does
not contain any of the forbidden pairs, and contains each of the forced pairs, while
simultaneously minimizing the number of blocking pairs in the matching. Mnich
and Schlotter [14] studied a variant of this problem where a subset of women and
as a subset of men are termed distinguished, and the objective is to find a matching
with fewest number of blocking pairs that matches all of the distinguished men and
women. They consider three parameters to determine the computational tractability
of this problem: the maximum length of the preference lists for men and women,
the number of distinguished men and women, and the number of blocking pairs
allowed in a given instance. A complete trichotomy of computational complexity
of the problem is exhibited with respect to these three parameters: polynomial-time
solvable, NP-hard and fixed-parameter tractable, and W[1]-hard, respectively.

8.1.4 Manipulation

Strategic manipulation of matching algorithms is a rich area of research on match-
ings. Working on this topic, specifically with regards to stable matching algorithms,
goes back several decades and is anchored on the fact that there are no stable match-
ing algorithms that are strategyproof. Informally stated, it means that for any stable
matching algorithm, there are instances in which at least some players have an in-
centive to misrepresent their true preferences to obtain a strictly better outcome for
themselves. In the case of Stable Marriage problems, the misrepresentation takes
the form of stating a smaller list of acceptable partners, and/or permuting one’s true
preference list.

Kobayashi and Matsui [15] studied manipulation of the Gale–Shapley algorithm,
where a coalition of agents manipulate with the goal of attaining specific matching
partners. Formally speaking, an input consists of the usual preference lists for men
and women LM and LW , and a matching; this matching can either be perfect (if it
contains n = |M | = |W | pairs) or partial (possibly, fewer than n pairs). Furthermore,
for a couple of problems, we are given a set of preference lists for a subset of women,
LW ′

, where W ′ ⊆ W . The goal is to decide if there exists a set of preference lists for
all the women, LW that contains LW ′

, such that when used in conjunction with LM ,
the Gale–Shapley man-proposing algorithm yields a matching that contains all the

3In Stable Roommate, the matching market consists of agents of the same type, as opposed
to the market modeled the stable marriage problem that consists of agents of two types, men and
women. Roommate assignments in college housing facilities is a real-world application of the stable
roommate problem.
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pairs in the stated matching. Next, we consider two of these problems, and compare
and contrast their computational complexity.

Attainable Stable Matching (ASM)
Input:Aset of preference listsLM ofmenoverwomenW , and aperfectmatching
μ on (M,W ).
Question: Does there exist a set of preference lists of women, denoted by LW ,
such that GS(LM ,LW ) = μ?

Kobayashi andMatsui in [15] showed that ASM is polynomial-time solvable, and
exhibited anO(n2) algorithm that computes the setLW , if one exists. Or else, reports
“none exists”. Note that the following problem, SEOPM, is identical to ASM, except
in one key aspect: the target matching, denoted by μ, need not be perfect. The authors
show that SEOPM is NP-complete.

Stable Extension of Partial Matching (SEOPM)
Input: A set of preference lists LM of men M over women W , and a partial
matching μ on (M,W ).
Question: Does there exist preferences of women, denoted by LW , such that
μ ⊆ GS(LM ,LW )?

These two problems and their differing computational complexities represent a
dichotomy with respect to the size of the target matching. Kobayashi and Matsui
solve ASM by designing a novel combinatorial structure called the suitor graph,
which encodes enough information about the men’s preferences and the matching
pairs in μ, that it allows an efficient search of the possible preference lists of women,
which are n · n! in number. The same approach falls short when the target matching
is partial.

8.2 Parameterized Complexity

A parameterization of a problem P is the association of an integer k with each input
instance of P resulting in a parameterized problem Π = (P, k). Intuitively, the
parameter bounds any secondary information known about the problem or the input
excluding the size of the input instance. The goal of parameterization is to investigate
the complexity of the problem in terms of the input size as well as the parameter. For
the purpose of this article, we use three basic concepts of Parameterized Complexity:
kernelization, fixed parameter tractability, and W-hardness.
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8.2.1 Kernelization

A kernelization algorithm for a parameterized problem Π = (P, k) translates any
input instance (I, k) of Π into an “equivalent instance” (I ′, k ′)4 of Π such that the
size of I ′ is bounded by f (k) and k ′ = g(k) for some computable functions f and
g that only depend on k. A parameterized problem Π is said admit a kernel of size
f (k) if there exists a polynomial-time kernelization algorithm. In case the function
f is polynomial in k, Π is said to admit a polynomial kernel. Thus, kernelization
is seen as a mathematical concept that aims to analyze the power of preprocessing
procedures in a formal and rigorous manner.

8.2.2 Fixed-Parameter Tractability

A parameterized problem Π = (I, k) is said to be fixed parameter tractable (FPT)
if there is an algorithm that solves it in time f (k) · nO(1), where n is the size of
the input and f is a function that depends only on k. Such an algorithm is called
a parameterized algorithm. In other words, the notion of FPT signifies that there
is an algorithm that limits the combinatorial explosion in the running time to the
parameter k and only allows a polynomial dependence on the input size n.

It is known that if a parameterized problem is FPT, then it admits a kernel,
and vice versa. Thus, kernelization can be another way of defining fixed-parameter
tractability.

8.2.3 W-Hardness

Parameterized Complexity also provides tools to refute the existence of polyno-
mial kernels and FPT algorithms for certain problems (under plausible complexity-
theoretic assumptions). In this context, theW-hierarchy of ParameterizedComplexity
is analogous to the polynomial hierarchy of classical Complexity Theory. It is widely
believed that a problem that is W[1]-hard is unlikely to be FPT, and we refer the
reader to the books [16, 17] for more information on this notion in particular, and
on Parameterized Complexity in general.

4Two instances I and J are said to be equivalent if I is a Yes-instance if and only if J is a
Yes-instance.
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8.2.4 Exact Exponential Algorithms

An algorithm whose running time is expressible entirely in terms of the size of input
instance such as f (n) is called an exact algorithm. Specifically, if f is an exponential
function in n (such as f (n) = cn for some constant c), then the algorithm is known
as an exact exponential algorithm.

The notation O∗ is used to hide factors polynomial in the input size.

8.3 Three Problems

Since Balanced Stable Marriage, Maximum (Minimum) Stable Mar-

riage with Ties, and Stable Matching Manipulation problems have been
shown to be NP-complete [8, 15, 18], it is natural to study these problems in com-
putational paradigms that are meant to cope with NP-hardness.

8.3.1 Stable Matching manipulation

Manipulation and strategic issues in voting have been well studied in the field of
Exact Algorithms and Parameterized Complexity; survey [19] provides an overview.
But one cannot say the same regarding the strategic issues in the stable matching
model. These problems hold a lot of promise and remain hitherto unexplored in the
light of exact algorithms and parameterized complexity, with exceptions that are few
and far between [20, 21].

There is a long history of research onmanipulation of the Gale–Shapley algorithm
by one or more agents working individually or in a coalition. The objective is to
misstate the true preference lists (either by truncating, or by permuting the list), to
obtain a better partner (in terms of the true preferences) than would be otherwise
possible under the Gale–Shapley algorithm.

The SEOPM problem (defined in Sect. 8.1.4) can be viewed as a manipulation
game in which a coalition of agents—the subset of women who are matched under
the partial matching μ′—calledmanipulating agents have fixed their partners. These
agents are colluding, with cooperation from the other women who are not matched
in the partial matching, to produce a matching that matches every agent (called a
perfect matching) while matching each of the manipulating agents to their target
partners. There exists a strategy to attain this objective if and only if there exists a
set of preference lists of women that yields a perfect matching using Gale–Shapley
algorithm that contains the partial matching.

Recall that we have n = |M | = |W |. Themost basic algorithm for SEOPMwould
be to generate the preference list of a woman by enumerating all possible permu-
tations of men, n! of them. Thus, a total of n · n! possible choices for the set of
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preference lists for n women, denoted by LW ; and then check whether the partial
matching μ′ is contained in the matching GS(LM ,LW ), obtained by applying the
Gale–Shapley algorithm to (LM ,LW ).

However, this algorithm will have a time complexity of (n!)nn2 = 2O(n2 log n).
One can improve over this naïve algorithm by using the polynomial-time algorithm
by Kobayashi and Matsui for ASM [15]. That is, using the algorithm for ASM, in
which given a matching μ can check in polynomial time whether there exists a set of
preference lists of women LW such that μ = GS(LM ,LW ). The faster algorithm for
SEOPM, using the algorithm for ASM as a subroutine, tries all possible extensions
μ of the partial matching μ′ and checks in polynomial time whether there exists set
of preference lists for women, LW , such that μ = GS(LM ,LW ). Thus, if the size of
the partial matching is k, then this algorithm would have to try (n − k)! possibilities.
In the worst case this can take time (n!)nO(1) = 2O(n log n).

Gupta and Roy [22, 23] give an exact-exponential time algorithm of running
time 2O(n) for SEOPM. Clearly, this improves the time complexity established
by the naïve algorithm. It relates SEOPM to the problem of Colored Sub-

graph Isomorphism, where we are given two graphs G and H and a coloring
χ : V (G) → {1, 2, . . . , |V (H)|}, and the objective is to test whether H is isomor-
phic to some subgraph of G whose vertices have distinct colors. The connection
between SEOPM and Colored Subgraph Isomorphism is established by intro-
ducing a combinatorial tool, the universal suitor graph that extends the notion of the
rooted suitor graph devised by Kobayashi and Matsui in [15], to solve ASM. It is
shown in [15] that an input instance (LM ,μ) of ASM is a Yes-instance if and only
if the corresponding rooted suitor graph has an out-branching: a spanning subgraph
in which every vertex has at most one incoming arc, and is reachable from the root.
The universal suitor graph satisfies the property that an instance of SEOPM (LM ,μ′)
is a Yes-instance if and only if the corresponding universal suitor graph contains a
subgraph that is isomorphic to the out-branching corresponding to (LM ,μ) where μ
is the perfect matching that “extends” μ′. In this manner, the universal suitor graph
succinctly encodes all “possible suitor graphs” and is only polynomially larger than
the size of a suitor graph. That is, the size of universal suitor graph is O(n2).

Using ideas from the world of exact exponential time algorithms and Parameter-
ized Complexity Gupta and Roy [22, 23] search for a subgraph in the universal suitor
graph that is isomorphic to an out-branching corresponding to an extension of μ′. In
particular, their algorithm uses a subroutine that enumerates all non-isomorphic out-
branchings in a (given) rooted directed graph [24, 25], and a parameterized algorithm
for Colored Subgraph Isomorphism [26, 27]. Moveover, it is shown that unless
the Exponential Time Hypothesis (ETH) fails [28], their algorithm is asymptotically
optimal. That is, unless ETH fails, there is no algorithm for SEOPM with running
time 2o(n).
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8.3.2 Maximum (Minimum) Stable Marriage with Ties

Irving, Iwama et al. [8] showed that Max- SMTI is NP-hard even if inputs are
restricted to having ties only in the preference lists ofmen, preference lists of bounded
length, and symmetry in preference lists. Thus, it is natural to studyMax- SMTI from
the perspectives of Parameterized Complexity.

Marx and Schlotter [20] studyMax- SMTI using the local search approach. They
consider the following parameters: (i) the maximum number of ties in an instance
(κ1(i)); (ii) the maximum length of ties in an instance (κ2(i)); (iii) the total length of
the ties in an instance (κ3(i)). Furthermore, it is shown that Max- SMTI is W-hard
parameterized by κ1(i), and FPT when parameterized by κ3(i). Since it is known
thatMax- SMTI isNP-hard when the length of each tie is at most 2 [8], there cannot
exist an algorithm with running time f (κ2(i))ng(κ2(i)), for any functions f and g that
depend only on k unless ¶= NP. This motivates us to study this problem with larger
parameter such as the solution size of the problem.

Adil, Gupta et al. [29] study the parameterized complexity of NP-hard optimiza-
tion versions of Stable Matching and Stable Roommates in the presence of
ties and incomplete lists. Specifically, the following problems are studied.

Max(resp. Min)- SMTI

Input: A bipartite graph G = (M ∪ W, E), and two families of preference lists,
LM and LW and a non-negative integer k.
Question: Find (if there) exists a weakly stable matching of size at least k (resp.
at most k).
Parameter: k

Max- SRTI is defined as follows.

Max- SRTI

Input: A graph G = (V, E), the family of preference lists LV , the size of a
maximum matching �, and a positive integer k.
Question: Find (if there) exists a weakly stable matching of size at least k.
Parameter: �

The parameter �. The reason k is not an appropriate parameter for Max- SRTI

which follows from the fact that the decision version of the SRTI problem, that is,
whether there exists a stable matching is NP-hard [30]. Similar to Max- SMTI, an
approach to solve SRTI is by breaking the ties of the instance of SRTI arbitrarily.
We know that if a matching is stable in the new instance, then it is stable in the
original instance. However, some ordering of the ties may create an instance with no
stable matching while some other ordering of the ties may produce an instance which
has a stable matching. It is computationally hard to decide how to break the ties in
order to test the existence of a stable matching. Thus, there does not exist (unless
¶= NP) any algorithm forMax- SRTI which runs in time of the form f (k) · |V |O(1)

(or even |V | f (k)) where function f depends only on k. Indeed, we could set k = 1,
employ such an algorithm to test whether there exist a stable matching of size at
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least 1 in polynomial time, thereby contradicting the result that the decision version
of the SRTI problem is NP-hard. Consequently, we need to look for an alternate
parameter. Toward this, we observe that a stable matching, if one exists, is amaximal
matching in the underlying graph. Furthermore, the size of any maximal matching is
at least �/2, where � is the size of a maximum matching. Thus, if a stable matching
exists, then the size of such a matching differs from the value of � by a factor of at
most 2. This leads directly to the parameterization ofMax- SRTI by � instead of the
solution size.

The main result of Adil, Gupta et al. [29] is that the above hard variants of Stable
Matching and Stable Roommates, that is, Max(resp. Min)- SMTI and SRTI

admit polynomial sized kernels. It implies that Max- SMTI (Min- SMTI) is FPT
with respect to solution size, and Max- SRTI is FPT with respect to a structural
parameter. Additionally, they show that Max- SMTI, Min- SMTI and Max- SRTI,
when parameterized by the treewidth tw of the input graph, admit algorithms with
running time nO(tw).

Adil, Gupta et al. [29] design FPT algorithms using the small kernel as follows.
First, obtain an equivalent instance by applying the kernelization algorithm, where
the output graph G ′ = (M ′ ∪ W ′, E ′) hasO(k2) edges. This implies that the sum of
the sizes of preference lists of any agent (men (M ′) or women (W ′)) isO(k2). Then,
they enumerate all subsets E ′′ ⊆ E ′ of edges of size q in G ′, where k ≤ q ≤ 2k

and test if E ′′ is a solution for Max- SMTI. Since
∑2k

q=k

(|E ′|
q

) ≤ ∑2k
q=k

(
e|E ′|
q

)q =
|E ′|O(k) = 2O(k) log |E ′| = 2O(k log k), the running time of the algorithm is 2O(k log k).
To solve Min- SMTI, they enumerate all subsets of edges of size at most k in G ′;
again, the running time is

∑k
q=1

(|E ′|
k

) = 2O(k log k). In both cases, for every subset of
edges, the test whether it is a stable matching can be conducted in polynomial time.
Overall, it is shown that both Max- SMTI and Min- SMTI admit a kernel of size
O(k2), and exhibit an algorithm with running time 2O(k log k) + nO(1). In addition,
Max- SRTI admits a kernel of size O(�2), and exhibit an algorithm with running
time 2O(� log �) + nO(1).

Many combinatorial problems that are computationally hard for general graphs,
are known to be easier on planar graphs. Moreover, planar graphs are extensively
studied in real-life applications. However, since it is known that Min Maximal

Matching isNP-hard on planar cubic graphs [31], the reduction by Irving,Manlove
et al. in [32, Section 4, Theorem 6] directly implies thatMax- SMTI,Min- SMTI and
Max- SRTI areNP-hard on planar graphs. This leads us to question: whether or not,
Max- SMTI, Min- SMTI and Max- SRTI admit smaller kernels on planar graphs
than those known for general graphs. In a similar spirit of research, Peters [33] has
recently explicitly asked to study graphical hedonic games (which subsumematching
problems such asSM andStable Roommate) on bipartite, planar and H -minor free
graph topologies. Adill, Gupta et al., [29] showed that for this restricted class of input
Max- SMTI (Min- SMTI) admits a kernel of sizeO(k) and an algorithm running in
time 2O(

√
k log k) + nO(1). They also proved thatMax- SRTI on planar graphs admits

a kernel of size O(�) and an algorithm running in time 2O(
√

� log �)+nO(1).
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Empirical algorithms forMax- SMTI has been studied as well. Munera et al. [34]
gave an algorithm based on local search. Gent and Prosser [35] formulated Max-

SMTI as a constrained optimization problem. They give an algorithm using con-
strained programming for both decision and optimization version of the problem.

8.3.3 Balanced Stable Marriage

TheBalanced Stable Marriage problemwas introduced in the influential work
of Feder [18] on stable matchings. Feder [18] proved that this problem is NP-hard
and that it admits a 2-approximation algorithm. Later, it was shown that this prob-
lem also admits a (2 − 1/�)-approximation algorithm where � is the maximum size
of a set of acceptable partners [3]. O’Malley [36] phrased the Balanced Stable

Marriage problem in terms of constraint programming. Recently, McDermid and
Irving [12] expressed interest in the design of fast exact exponential time algorithms
forBalanced Stable Marriage. ForEgalitarian Stable Roommates, Fed-
er [18] showed that the problem is NP-complete even if the preferences are complete
and have no ties. and gave a 2-approximation algorithm for this case. Recently, Chen
et al. [37] showed that Egalitarian stable roommate is FPT parameterized by
the egalitarian cost.

Gupta et al. [38] consider two parameterizations of Balanced Stable Mar-

riage. Specifically, they introduce two “above-guarantee parameterizations” of
Balanced Stable Marriage. Let us consider the minimum value OM of the
total dissatisfaction of men that can be realized by a stable matching, and the min-
imum value OW of the total dissatisfaction of women that can be realized by a
stable matching. Formally, OM = ∑

(m,w)∈μM
pm(w), and OW = ∑

(m,w)∈μW
pw(m),

where μM and μW are the man-optimal and woman-optimal stable matchings, re-
spectively. An input integer k would indicate that the objective is to decide whether
Bal ≤ k. The first parameter they consider is k − min{OM , OW }, and the second one,
is k − max{OM , OW }. In other words, they ask the following questions (recall that
Bal = minμ∈SM balance(μ)).

Above- Min Balanced Stable Marriage (Above- Min BSM)
Input: An instance (M,W,LM ,LW ) of Balanced Stable Marriage, and a
non-negative integer k.
Question: Is Bal ≤ k?
Parameter: t = k − min{OM , OW }
Above- Max Balanced Stable Marriage (Above- Max BSM)
Input: An instance (M,W,LM ,LW ) of Balanced Stable Marriage, and a
non-negative integer k.
Question: Is Bal ≤ k?
Parameter: t = k − max{OM , OW }
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The parameters. Let us consider the choice of these parameters. Note that the best
satisfaction the party of men can hope for is OM , and the best satisfaction the party
of women can hope for is OW .

First, consider the parameter t = k − min{OM , OW }. Whenever we have a solu-
tion such that the amounts of satisfaction of both parties are close enough to the best
they can hope for, this parameter is small. Indeed, the closer the satisfaction of both
parties to the best they can hope for (which is exactly the case where both parties
would find the solution desirable), the smaller the parameter is, and the smaller the
parameter is, the faster a parameterized algorithm is. In other words, if there exists
a solution that is desirable by both parties, this parameter is small.

However, in this parameterization above, as the min of {OM , OW } is taken, it is
necessary that the satisfaction of both parties to be close to optimal in order to have
a small parameter. They show that Balanced Stable Marriage is FPT with
respect to this parameter. Consequently, the next natural parameter to examine is
t = k − max{OM , OW }. In this case, the parameter is smaller even when at most one
party is closer to the best satisfaction it can achive. So, the demand from a solution
in order to have a small parameter is weaker. In the vocabulary of Parameterized
Complexity, it is said that the parameterization by t = k − max{OM , OW } is “above
a higher guarantee” than the parameterization by t = k − min{OM , OW }, since it
is always the case that max{OM , OW } ≥ min{OM , OW }. Unfortunately, they show,
the parameterization by k − max{OM , OW } results in a problem that is W[1]-hard.
Hence, the complexities of the two parameterizations behave very differently. We re-
mark that in Parameterized Complexity, it is not at all the rule that when one takes an
“above a higher guarantee” parameterization, the problem would suddenly become
W[1]-hard, as can be evidenced by the most classical above-guarantee parameteri-
zations in this field, which are of the Vertex Cover problem. For that problem,
three above-guarantee parameterizations were considered in [39–42], each above a
higher guarantee than the previous one that was studied, and each led to a problem
that is FPT. In that context, unlike this case, it is still not clear whether the bar can
be raised higher. Overall, the results accurately draw the line between tractability
and intractability with respect to the target value in the context of two very natural,
useful parameterizations.

Finally, to be more precise, Gupta et al. [38] prove three main theorems:

• First, it is proved that Above- Min BSM admits a kernel where the number of
people is linear in t . For this purpose, the authors introduce notions that might
be of independent interest in the context of a “functional” variant of Above- Min

BSM. Their kernelization algorithm consists of several phases, each simplifying a
different aspect ofAbove- Min BSM, and shedding light on structural properties
of the Yes-instances of this problem. Note that this result already implies that
Above- Min BSM is FPT.

• Second, it is proved that Above- Min BSM admits a parameterized algorithm
whose running time is single exponential in the parameter t . This algorithm first
builds upon the kernel described, and then incorporates the method of bounded
search trees.



8 Some Hard Stable Marriage Problems: A Survey on Multivariate Analysis 155

• Third, it is proved that Above- Max BSM isW[1]-hard. This reduction is quite
technical, and its importance lies in the fact that it rules out (under plausible
complexity-theoretic assumptions) the existence of a parameterized algorithm for
Above- Max BSM. Thus, they show that although Above- Max BSM seems
quite similar to Above- Min BSM, in the realm of Parameterized Complexity,
these two problems are completely different.

8.4 Conclusion

In this survey,we gave the current status of various stablemarriage problems that have
been studied in the framework of Parameterized Complexity. This is an emerging
area with lots of open problems. There are two ways of defining new problems in this
area. A study the problems that have been considered before with respect to other
set of parameters. For example, Gupta et al. [43] studied stable marriage problems
parameterized by the treewidth of the primal graph as well as of the rotation digraph
(wherever it makes sense). Other important parameters that can be used to study
these problems include feedback vertex set, some width parameter associated with
the preference profile, the number of people, and different topologies of the input
graphs. The next avenue of defining a new problem is to study another variant of
hard stablemarriage problems and study themusing appropriate parameterizations of
solution size. Indeed, matching is just one subarea of algorithmic game theory—a lot
more is yet to explored on other topics such as auction, manipulation, and computing
equilibriums using a multivariate lens.
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Chapter 9
Approximate Quasi-linearity for Large
Incomes

Mamoru Kaneko

9.1 Introduction

Quasi-linear utility functions are widely used in economics and game theory. This
assumption greatly simplifies the development of theories; for example, in the theory
of cooperative games with side payments, Pareto optimality for a given coalition of
agents can be expressed by a one-dimensional value of the maximum total surplus,
while in the theory without the assumption, Pareto optimality should be described
by a set of feasible utility vectors for the coalition. In the cost–benefit analysis,
similarly, the total surplus (minus the total cost) from a policy is used as the criterion
to recommend it or not.

Quasi-linearity ignores income effects on individual evaluations of alternative
choices. It is captured by a condition of no-income effects on such evaluations; a
simple axiomatization of quasi-linearity is found in Aumann [1] and Kaneko [6] (see
also Kaneko-Wooders [9], Mas-Collel et al. [15], Section 3.C). However, income
effects are observed when expenditures for the economic activities in question are
non-negligible relative to total incomes; typical examples are individual behaviors
in the purchase of a house, automobile, and so forth. Hence, it is desirable to study
quasi-linearity from the domain that allows for income effects. As far as the present
author knows, only Miyake [11] studied quasi-linearity explicitly from this point of
view. In this chapter, we study how much the case of income effects and the case
of no-income effects are reconciled; indeed, we give an axiomatic approach to this
problem and study its implications.

Miyake [11] studies the above problem in the classical economics contextwith two
commodities. Under the normality condition on income effects and quasi-concavity,
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he gave various conditions to guarantee the result that the utility function U is ap-
proximated by a quasi-linear function for large incomes.1 In Miyake [12], he studied
the behavior of the demand function for large incomes under similar conditions, but
we will discuss his studies in Sect. 9.3.2

Our treatment is more direct to approximate quasi-linearity than in [11]. We start
with the characterization of quasi-linearity. Let� be a given preference relation over
X × R+, where X is an arbitrary set of the alternatives in question and R+ is the
set of nonnegative real numbers, interpreted as a consumption level measured by a
composite commodity (Marshall’s money, see Hicks [4], Chap.III, and [5], Chap.5).
In addition to certain basic conditions on�,whenwe add a condition –C4P I (parallel
indifference curves ) in Sect. 9.2, we have a quasi-linear utility function u∗ : X → R
so that for all (x, c), (x ′, c′) ∈ X × R+,

(x, c) � (x ′, c′) ⇐⇒ u∗(x) + c ≥ u∗(x ′) + c′. (9.1)

Our main theorem (Theorem 9.3.1) replaces condition C4P I with a weaker con-
dition, C4 – a Cauchy property, given in Sect. 9.3, and states that a utility function
U ∗ : X × R+ → R representing� is approximated by a quasi-linear utility function
u∗ : X → R in the sense that for any x ∈ X and any ε > 0, there is a c0 such that

∣
∣U ∗(x, c) − (u∗(x) + c)

∣
∣ < ε for all c ≥ c0. (9.2)

Both functions U ∗ and u∗ are derived from � with the basic conditions; in the
following, the asterisk ∗ is used to signify that it is derived. Condition (9.2) itself was
first mentioned in Miyake [11]. We will show that under other basic conditions, our
C4 is equivalent to (9.2).

Condition (9.2) means that u∗(x) + c approximates U ∗(x, c) for a large c. The
essential part of (9.2) is that u∗(x) < ∞ is independent of c. This is justified by
assuming that x is tradable in society, but we exclude some familiar mathematical
functions from the candidates of approximate quasi-linearity. We will discuss these
implications in the end of Sect. 9.3.1.

To study quasi-linearity and the implications mentioned above more clearly, we
give another set of sufficient conditions for (9.2) in terms of normality, which is a
weakening of Condition C4P I . This will be given in Sect. 9.4.

Since economic theory and/or game theory with quasi-linear utility functions are
well investigated, it is convenient to connect these cases to the large finite cases.
Specifically, we ask the question of how we can convert results obtained in the case
with quasi-linearity to the case with large finite incomes. We apply our theorem to

1He used the term “asymptotic quasi-linearity.”We use “approximate quasi-linearity” to emphasize
approximation of a utility function including income effects by a quasi-linear utility function.
2It is indirectly related but relevant to mention Vives [22]; he showed that in economies that possibly
have many commodities, the income effects on demand of each commodity become negligible
relative to the number of commodities as the number increases to infinity.
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the theory of cooperative games with side payments in Sect. 9.3.2, and to the theory
of Lindahl-ratio equilibrium in a public goods economy in Sect. 9.4.2.

Diagram 9.1 gives a schematic explanation of these applications. We start with a
base model EB and its quasi-linear approximation EQ, which is the double arrow
�. Some results are obtained in EQ , and then they are converted to EB and hold
approximately in EB . The other way to start with EQ and to find an approximating
EB will be briefly discussed in the end of Sect. 9.3.1.

EB �
approximation

EQ =⇒
analysis

results �
conversion

approximate result in EB ,

Diagram 9.1

This chapter is written as follows: Sect. 9.2 reviews the characterization of a quasi-linear
utility function in terms of a preference relation by Kaneko [6]. In Sect. 9.3, we give a char-
acterization for a preference relation to be approximately represented by a quasi-linear utility
function, and we consider its application to the theory of cooperative games side payments.
Section 9.4 gives another axiomatization in terms of normality, and an application to the the-
ory of Lindahl-ratio equilibrium. Section 9.5 extends the result in Sect. 9.3 to expected utility
theory. Section 9.6 gives a summary of the chapter and states two remaining issues.

9.2 Quasi-linear Utility Function

A preference relation � is a binary relation over X × R+. An expression (x, c) � (x ′, c′)
means that (x, c) is weakly preferred to (x ′, c′). First, we assume Condition C0:
C0 (Complete preordering): � is complete and transitive over X × R+.

Under C0, we define the strict part 
 and the indifference part ∼ as follows: (x, c) 

(x ′, c′) ⇐⇒ not (x ′, c′) � (x, c); and (x, c) ∼ (x ′, c′) ⇐⇒ (x, c) � (x ′, c′) and (x ′, c′) �
(x, c).

We assume the following three basic conditions.
C1 (Monotonicity): For any x ∈ X, if c > c′, then (x, c) 
 (x, c′).
C2 (Monetary substitutability): If (x, c) 
 (x ′, c′), then there is an α > 0 such that (x, c) ∼
(x ′, c′ + α).

C3 (Fixed reference): There is an xo ∈ X such that (x, 0) � (xo, 0) for all x ∈ X. Condition
C1 is coherent with the interpretation of R+ in terms of the composite commodity. Condition
C2 means that the economic activities behind the composite commodity R+ are rich enough
to substitute for a transition from x ′ to x . Condition C3 means that xo is the worst alternative
in X with zero consumption. This is guaranteed by C0 when X is a finite set.3

Quasi-linearity can be captured by adding Condition C4P I :
C4P I (Parallel indifferences): If (x, c) ∼ (x ′, c′) and α ≥ 0, then (x, c + α) ∼ (x ′, c′ + α).

This was given in the case of the domain X × R, instead of X × R+, in Kaneko [6] (cf., also
Kaneko-Wooders [9]), where ξ of (x, ξ) ∈ X × R means the increment or decrement from

3When X is an infinite set with some topology, under C0, a sufficient condition for C3 is: for any
y ∈ Y, {(x, 0) ∈ X × R : (y, 0) � (x, 0)} is a compact set in X × R. This is proved by using the
finite intersection property.
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the normalized initial consumption level zero. In the domain X × R+, c ∈ R+ is an absolute
consumption level, and we can impose an explicit income constraint. As noted in Sect. 9.1,
this can be regarded as the no-income-effect condition on evaluations of alternatives x ∈ X.

If utility maximization is included here, a change in income may still affect the concluded
behavior.4

Proposition 9.2.1 (Quasi-linearity) A preference relation � on X × R+ satisfies Conditions
C0 to C3 and C4 P I if and only if there is a function u∗ : X → R such that u∗(x) ≥ u∗(xo)
for all x ∈ X and (9.1) holds for all (x, c), (x ′, c′) ∈ X × R+.

Proof The only-if part is essential. Then, let (x, c) ∈ X × R+. Since (x, 0) � (xo, 0) by C3,
we have a unique αx ≥ 0 by C1 and C2 so that (x, 0) ∼ (xo, αx ). Then, by C4P I , (x, c) ∼
(xo, αx + c). Define u∗ : X → R by u∗(x) = αx for all x ∈ X. Now, let (x, c), (x ′, c′) ∈
X × R+. Then, by the above definition of αx , and also by C0 and C1, it holds that (x, c) �
(x ′, c′) ⇐⇒ (xo, αx + c) ∼ (x, c) � (x ′, c′) ∼ (xo, αx ′ + c′) ⇐⇒ αx + c ≥ αx ′ + c′ ⇐⇒
u∗(x) + c ≥ u∗(x ′) + c′. �

9.3 Approximate Quasi-linearity

We give a condition for a preference relation � to be approximated by a quasi-linear utility
function as an idealization. This approximate representation theorem is given as Theorem
9.3.1. We also give an application to the theory of cooperative games with side payments.

9.3.1 Condition for Approximate Quasi-linearity

Consider the problem of when condition C4P I holds approximately for large incomes. This
is answered by relaxing C4P I in the following way:
C4 (Approximate monetary substitutes): Let x, x ′ ∈ X. For any ε > 0, there is a c0 ≥ 0
such that for any c, c′ ≥ c0 and α, α′ ≥ 0, if (x, c) ∼ (x ′, c + α) and (x, c′) ∼ (x ′, c′ + α′),
then

∣
∣α − α′∣∣ < ε.

The additional α, α′ are compensations for the transitions from x to x ′ with consumptions
c, c′, and C4 requires these to be close for large c and c′. This is a kind of Cauchy property of
a sequence {aν} (cf., Royden-Fitzpatrick [18], Section 1.5). Condition C4 is an weakening of
C4P I under C1 (i.e., C4P I implies that the conclusion of C4 becomes

∣
∣α − α′∣∣ = 0).

The following lemma is basic for the development of our theory.

Lemma 9.3.1 (Measurement along the consumption axis with xo) Suppose that � satis-
fies C0 to C3. Then there is a real-valued function δ∗ : X × R+ → R such that for any
(x, c), (x ′, c′) ∈ X × R+,

4This is pointed out by a referee. Let a utility function representing� be given as u(x) + c over R2+.

When u(x) is a strictly concave function, utility maximization gives a choice of x, independent of
an income if it is large. However, if u(x) = x2, then utility maximization gives a corner solution;
a change in income affects this corner solution.
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(x, c) ∼ (xo, δ
∗(x, c) + c); (9.3)

(x, c) � (x ′, c′) ⇐⇒ δ∗(x, c) + c ≥ δ∗(x ′, c′) + c′. (9.4)

It holds that
δ∗(xo, c) = 0 for all c ∈ R+. (9.5)

Proof Consider any (x, c) ∈ X × R+. Then, (x, c) � (xo, 0) by C0, C1, and C3. Thus, there
is a unique value δ∗(x, c) + c by C1 and C2 such that (x, c) ∼ (xo, δ∗(x, c) + c). Thus, we
have the function δ∗(·, ·) : X × R+ → R satisfying (9.3).We show (9.4). Let (x, c), (x ′, c′) ∈
X × R+. Then, by C0 and C1, (xo, δ∗(x, c) + c) ∼ (x, c) � (x ′, c′) ∼ (xo, δ∗(x ′, c′) + c′)
⇐⇒ δ∗(x, c) + c ≥ δ∗(x ′, c′) + c′.Letting (x, c) = (xo, c), by (9.3), we have δ∗(xo, c) = 0,
i.e., (9.5). �

Define U∗ : X × R+ → R by

U∗(x, c) = δ∗(x, c) + c for all (x, c) ∈ X × R+. (9.6)

Equation (9.4) states that thisU∗ represents the preference relation � . These particular func-
tions, δ∗(x, c) andU∗(x, c), play crucial roles in the following development. The third state-
ment (9.5) means that U∗(x, c) = δ∗(x, c) + c is measured by the scale of the consumption
axis at xo.

Approximate quasi-linearity (9.2) is then written as: there is some real-valued function u∗
over X such that

∣
∣U∗(x, c) − (u∗(x) + c)

∣
∣ → 0 as c → +∞. (9.7)

Our main theorem states that C4 is exactly the condition for the existence of such a function
u∗(x).

Theorem 9.3.1 (Approximate quasi-linearity) Let � be a preference relation on X × R+
satisfying C0 to C3, and δ∗ the function given by Lemma 9.3.1. Then, � satisfies C4 if and
only if for each x ∈ X, there is a u∗(x) ∈ R such that

lim
c→+∞ δ∗(x, c) = u∗(x). (9.8)

Proof If :5 Let x, x ′ ∈ X and ε > 0. By (9.8), there is a co ≥ 0 such that for all d ≥ co,

∣
∣δ∗(x, d) − u∗(x)

∣
∣ < ε

4 and
∣
∣δ∗(x ′, d) − u∗(x ′)

∣
∣ < ε

4 . (9.9)

Now, let c, c′ ≥ co and α, α′ ≥ 0. Suppose that (x, c) ∼ (x ′, c + α) and (x, c′) ∼ (x ′, c′ +
α′). Then, applying (9.3) of Lemma 9.3.1, we have

δ∗(x, c) = δ∗(x ′, c + α) + α and δ∗(x, c′) = δ∗(x ′, c′ + α′) + α′. (9.10)

5This proof is given by a referee and is clearer than the original proof by the author.
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Letting d = c in (9.9), we obtain

∣
∣δ∗(x, c) − u∗(x)

∣
∣ < ε

4 . (9.11)

Letting d = c + α in the second inequality of (9.9), we have
∣
∣δ∗(x ′, c + α) − u∗(x ′)

∣
∣

< ε
4 . Since δ∗(x ′, c + α) = δ∗(x, c) − α by (9.10), we have

∣
∣u∗(x ′) + α − δ∗(x, c)

∣
∣ = ∣

∣(δ∗(x, c) − α) − u∗(x ′)
∣
∣ (9.12)

= ∣
∣δ∗(x ′, c + α) − u∗(x ′)

∣
∣ < ε

4 .

In a parallel manner to the derivations of (9.11) and (9.12), we have

∣
∣δ∗(x ′, c′ + α′) − u∗(x ′)

∣
∣ < ε

4 and
∣
∣u∗(x) + α′ − δ∗(x ′, c′ + α′)

∣
∣ < ε

4 . (9.13)

Using the triangle inequality and summing up (9.11)–(9.13), we have

∣
∣α − α′∣∣ ≤ ∣

∣δ∗(x, c) − u∗(x)
∣
∣ + ∣

∣u∗(x ′) + α − δ∗(x, c)
∣
∣

+ ∣
∣δ∗(x ′, c′ + α′) − u∗(x ′)

∣
∣ + ∣

∣u∗(x) + α′ − δ∗(x ′, c′ + α′)
∣
∣ < 4 × ε

4
= ε.

Only-if : Let δ∗(x, c) be the function given by (9.3). We show that for each fixed x ∈ X, there
is a u∗(x) ∈ R satisfying (9.8).Consider the sequence {δ∗(x, ν)} = {δ∗(x, ν) : ν = 1, ...}.C4
states that for any ε > 0, there is a ν0 such that for any ν, ν′ ≥ ν0,

∣
∣δ∗(x, ν) − δ∗(x, ν′)

∣
∣ < ε.

This means that {δ∗(x, ν)} is a Cauchy sequence. Hence, it converges to some real number,
which is denoted by u∗(x).Now, each δ∗(x, ν) in {δ∗(x, ν)} is defined for a natural number ν ≥
1.However,we prove limc→+∞ δ∗(x, c) = u∗(x).Let ε be an arbitrary positive number. Then
there is a ν0 such that for any ν ≥ ν0,

∣
∣δ∗(x, ν) − u∗(x)

∣
∣ < ε/2.By C4, there is a c0 such that

for any ν ≥ c0 and c ≥ c0,
∣
∣δ∗(x, ν) − δ∗(x, c)

∣
∣ < ε/2.Now, let ν1 = max(ν0, c0).Then, for

any c ≥ ν1,we have
∣
∣δ∗(x, c) − u∗(x)

∣
∣ ≤ ∣

∣δ∗(x, c) − δ∗(x, ν1)
∣
∣ + ∣

∣δ∗(x, ν1) − u∗(x)
∣
∣ < ε.

Thus, limc→+∞ δ∗(x, c) = u∗(x). This is (9.8). �

Theorem 9.3.1 states that the central condition for approximate quasi-linearity should be
C4 or equivalently (9.8). Now, we use either condition to think about various implications.

As stated above, the functions δ∗(x, c) and U∗(x, c) are defined particularly by (9.3) and
(9.6). Let U (x, c) be any utility function representing a given preference relation �, and
we define δ(x, c) = U (x, c) − c for (x, c) ∈ X × R+. These may look like candidates for
δ∗(x, c) and U∗(x, c). In general, however, they may not satisfy ( 9.3). When we talk about
examples of utility functions U (x, c), we should not forget that δ∗(x, c) is defined by ( 9.3),
rather than U (x, c) − c.

To see this, consider the following necessary condition of (9.8): for each x ∈ X,

{δ∗(x, c) : c ∈ R+} is bounded. (9.14)

Thus, the compensation for x from xo is bounded even if c is very large.
Consider U0(x, c) = u(x) + √

c for (x, c) ∈ R+ × R+ with u(xo) < u(x) for all x �=
xo = 0, which satisfies the law of diminishing marginal utility for c and differentiability
at any c > 0. The function δ∗(x, c) derived from this U0(x, c), however, violates (9.14).
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Choose an x with u(x) > u(xo) and let h = u(x) − u(xo). Then, u(x) + √
c = u(xo) +√

c + δ∗(x, c), i.e., h = √
c + δ∗(x, c) − √

c; so δ∗(x, c) = (h + √
c)2 − c = h2 + 2h

√
c.

Hence, δ∗(x, c) → +∞ as c → +∞; (9.14) is violated.
A positive example is:U1(x, c) = (1 − 1

1+c )u(x) + c. In this case, it is possible to directly
verify (9.14). To facilitate such applications, we provide further conditions on approximate
quasi-linearity on� .One is related to boundedness (9.14), which is studied now, and the other
is a normality condition, which is studied in Sect. 9.4. We represent boundedness in terms of
the preference relation � .

C5 (Boundedness for compensations): For any x ∈ X, there is an m > 0 such that (xo, c +
m) � (x, c) for any c ∈ R+.

That is, there is a compensation m for xo from x independent of consumption level c.
Under C0 to C3, this is equivalent to boundedness of δ∗(x, ·) for each x ∈ X. The example
U1(x, c) = (1 − 1

1+c )u(x) + c satisfies this condition, but U0(x, c) = u(x) + √
c does not.

Lemma 9.3.2 Suppose that � satisfies C0 to C3. Then, � satisfies C5 if and only if (9.14)
holds for δ∗(x, ·) for each x ∈ X.

Proof If : By (9.14), there is an m ∈ R+ such that m > δ∗(x, c) for all c ∈ R+. By (9.3), we
have (xo, c + δ∗(x, c)) ∼ (x, c) for any c. By C1, we have (xo, c + m) � (x, c) for any c.

Only-if : By (9.3), (xo, c + δ∗(x, c)) ∼ (x, c) for any c ∈ R+. By C5, (xo, c + m) � (xo, c +
δ∗(x, c)) ∼ (x, c) for any c ∈ R+. By C1, we have m ≥ δ∗(x, c) for any c ∈ R+. �

Asmentioned inSect. 9.1, approximate quasi-linearitywasfirst studied inMiyake [11],who
aimed to study theMarshallian demand theory; he startswith the domain X × R+ = R+ × R+
and assumes that a utility functionU ofC2 (twice continuously differentiable in the interior of
R+ × R+) is given. U is assumed to be quasi-concave and satisfies normality (formulated in
terms of first and second partial derivatives) in R+ × R+.He then gives some other conditions
to guarantee approximate quasi-linearity in the sense of (9.2), and various results on the limit
demand function.

Miyake [12] continued his study of the Marshallian demand theory, where he gave a cri-
terion for a demand function, called “asymptotically well-behaved demand;” this appears to
be related to our approximate quasi-linearity. He gave three examples:

(a) Ua(x, c) = log(x + 1) + log(c + 1) + c;

(b) Ub(x, c) = (x+1)(c+1)
x+c+2 + c (= (x + 1) − (x+1)2

x+c+2 + c);

(c) Uc(x, c) = 2
√
x + √

c + c.

He showed that (a) and (c) satisfy his criterion but (b) does not. These three, however, satisfy
condition C5. For example, consider (a); since log(x + 1) + log(c + 1) + c > log(c + 1) +
c, it suffices to take an m > log(x + 1). Indeed,

Ua(x, c) = log(x + 1) + log(c + 1) + c < m + log(c + 1) + c

< log(c + 1 + m) + (c + m) = Ua(0, c + m).
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The verification of (c) is similar. For (b), since (x + 1) + c > (x + 1) − (x+1)2
x+c+2 + c >

1 − 1
c+2 + c ≥ 1

2 + c, it suffices to take an m > x − 1
2 . Moreover, we will see, using an-

other characterization of approximate quasi-linearity in Sect. 9.4.1, that these three examples
satisfy approximate quasi-linearity. Thus, Miyake’s “asymptotically well-behaved demand”
conceptually differs from approximate quasi-linearity.6

The exclusion of utility function such as U0(x, c) = u(x) + √
c from C5 may give rise

to some inconvenience. In fact, we can avoid it by changing utility functions slightly. For
example, the above utility function is changed into

Vco (x, c) =
{

u(x)+√
c if c ≤ co

u(x) + β(c − co)+
√
co i f c > co,

(9.15)

where co > is a given parameter and β = 1
2
√
co

. That is, Vco (x, c) is obtained from U0(x, c)

by linearizing
√
c after co. This Vco (x, c) satisfies C5 and the normality condition C5NM to

be given in Sect. 9.4, from which we will see that the preference relation derived by Vco (x, c)
satisfies C0-C4.7

This example is related to a typical justification of quasi-linearity: when a utility function
U (x, c) is partially differentiable with respect to c, it is regarded as locally approximated
by a linear function of c. When the expenditures for possible choices are small relative to
incomes, we could have a quasi-linear approximation of U. However, our theory reveals that
this interpretation is incorrect since our theory requires all consumption levels after some co.
It is an open question of whether our definition can be modified to capture this interpretation.

A schematic representation of the above argument was given as Diagram 9.1. Here, we start
with a given preference relation � and give the conditions, C0–C4, for � to be approximately
represented by a quasi-linear utility function u∗(x) + c. Another approach is to ask whether
for a given u∗(x) + c, we find a preference relation � to be represented approximately by
u∗(x) + c in a nontrivial sense (i.e., � differs from the relation represented by u∗(x) + c).
This direction is depicted in Diagram 9.2. Here, we give only a simple answer to this question.
A full study remains open.

EQ =⇒
approximation

EB

Diagram 9.2

Suppose thatu : X → R is givenwith 0 = u(xo) ≤ u(x) for any x ∈ X , andwe specifically
define δ : X × R+ → R to be

δ(x, c) = u(x) − u(x)

(c + 1)α
, (9.16)

6Miyake [13] provided a result (Theorem 2 in p.561) related to this approach. He studied the
behavior of “willingness-to-pay” and willingness-to-accept,” and he provided many results on the
behavior of these concepts.
7Kaneko-Ito [10] conducted an equilibrium-econometric analysis to study how utility functions
have “significant income effects,” adopting utility functions of the formU (x, c) = u(x) + cα (0 <

α < 1). It was shown that this α is bounded away from 1 using rental housing market data in
Tokyo. Since incomes of households are distributed over some interval, we do not need the above
modification of a utility function.
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where α > 0 is a parameter. The utility function U2(x, c) = δ(x, c) + c for all (x, c) ∈ X ×
R+ derives the preference relation� satisfying C0-C4, and δ∗(x, c) derived by (9.3) is δ(x, c)
itself, and u∗(x) derived by (9.8) is u(x), too. Thus, EB is obtained from EQ . Incidentally,
the parameter α represents the convergence speed of δ(x, c) = δ∗(x, c) to u(x) = u∗(x) (i.e.,
when α is large, the convergence speed is fast, but when α is close to 0, it is slow).

Finally, we raise the question of whether approximate quasi-linearity is an appropriate
concept from the viewpoint of economics. Our theory formulates “large income” simply as
“c tends to +∞.” Mathematically, there are two possibilities: (A) δ∗(x, c) is in a bounded
region, and (B) it goes to +∞. There is a subtlety in the interpretation of “large incomes.” To
have a meaningful interpretation, we should consider how much richness is hidden behind the
compound commodity c and/or the richness of X, which was mentioned to justify condition
C2. The two mathematical possibilities are examined from the socioeconomic point of view.

When income gets larger for a person, his/her scope of consumption (economic behavior
in general) gets larger. Suppose that there is an alternative y, hidden behind the composite
commodity c or in X, similar to x in the sense that the person can switch from x to y. When
this is applied to any person in a similar economic situation, a value of each of x or y is more
or less determined. In this interpretation, δ∗(x, c) is not very different from the social/market
value. Here, possibility (A) is justified, and approximate quasi-linearity is applied.

In possibility (B), alternative x is unique and has no substitution for the person either
behind the composite commodity or in X; x may be indispensable for him/her and its value
may be unbounded when c → +∞. In this case, approximate quasi-linearity does not hold,
and even condition C2 is not justified. Nevertheless, this is only a logically possible world.

9.3.2 An Application to Cooperative Game Theory

Here, we consider an application of Theorem 9.3.1 to the theory of cooperative games with
side payments (cf., Osborne-Rubinstein [17], Chap.13, Maschler et al. [14], Chap.16). This is
one example for Diagram 9.1.

We denote the set of agents by N = {1, ..., n}. For each nonempty subset S ⊆ N , XS is
given as a finite nonempty set of social alternatives to be controlled by S, and CS : XS → R
is a cost function. It can be assumed that XS ∩ XS′ = ∅ if S �= S′. The value CS(x) for each
x ∈ XS is allocated among the members in S. Let Xi = ∪i∈S⊆N XS . Each agent i ∈ N has a
preference relation�i over the set X

i × R+ and an initial income Ii ≥ 0.Here, (x, ci ) ∈ XS ×
R+ means that an alternative x for S is chosen, and agent i’s consumption is ci after paying
his/her cost assignment.Thebasemodel is expressed as EB = ({CS}S⊆N , {�i }i∈N , {Ii }i∈N ).

Here, ({CS}S⊆N , {�i }i∈N ) are fixed, but only {Ii }i∈N are variable parameters. In this sense,
EB may be written as EB({Ii }i∈N ). The above formulation includes market games8 (cf.,
Shapley–Shubik [19]), voting games (cf., Kaneko–Wooders [9]).

Under C0–C4 for the preference relations �i for each i ∈ N , we have two functions u∗
i :

Xi → R andU∗
i : Xi × R+ → R satisfying (9.6) and (9.8). In a parallel manner as above, the

quasi-linear approximation is given as EQ = EQ({Ii }i∈N ) = ({CS}S⊆N , {u∗
i }i∈N , {Ii }i∈N ).

In EQ , we define the characteristic function v by, for all S ⊆ N ,

8When the set of commodity bundles is infinite, we need some modifications.
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v(S) = max
x∈XS

⎛

⎝
∑

i∈S
u∗
i (x) − CS(x)

⎞

⎠ . (9.17)

The value v(S) is the maximum total surplus obtained by S. When
∑

i∈S Ii ≥ CS(x) for all
x ∈ XS, this maximization meets the budget constraint. The pair (N , v) is a game with side
payments.

We ask the question of how (N , v) is related to the base model EB . The aim of (N , v) is
to consider a distribution of the total surplus for each S expressed by v. Such a distribution
is described by an imputation: A vector αS = {αi }i∈S is called an S- imputation iff

∑

i∈S
αi = v(S) and αi ≥ v({i}) for all i ∈ S. We denote the set of all S-imputations in (N , v) by
IS(N , v).9 Then, the question is what the set IS(N , v) is in the base model EB .

Let αS = {αi }i∈S ∈ IS(N , v) and let x∗
S be a solution for (9.17). We consider the corre-

sponding allocation in the base model EB . The cost assignment for agent i ∈ S is given as
γi (αi ) := u∗

i (x
∗
S) − αi . Indeed, αi = u∗

i (x
∗
S) − γi (αi ) is the net surplus for agent i.When the

budget constraint Ii ≥ γi (αi ) holds for each i ∈ S, we can construct an S-allocation in the
base model EB :

ψ(αS) = (x∗
S, {Ii − γi (αi )}i∈S). (9.18)

In EB , the utility level for agent i is given asU∗
i (x∗

S, Ii − γi (αi )), and in EQ = EQ({Ii }i∈N ),

the utility level for agent i is given as

u∗
i (x

∗
S) + (Ii − γi (αi )) = Ii + αi , (9.19)

because γi (αi ) = u∗
i (x

∗
S) − αi . That is, the surplus αi is the increment of utility from the

initial Ii . If the initial state is normalized as 0, the utility level is exactly αi .

The question is now how the cost allocation {γi (αi )}i∈S is interpreted in EB . Here, we
assume C0 to C4 for the preference relations �i for each i ∈ S. Recall that the functions
u∗
i : Xi → R and U∗

i : Xi × R+ → R are defined by (9.8) and (9.6).

Theorem 9.3.2 (Approximation by a game with side payments) For any ε > 0, there is an
I∗ ≥ 0 such that for any Ii ≥ I∗ for all i ∈ S, and for all αS = {αi }i∈S ∈ IS(N , v),

Ii ≥ γi (αi ) for all i ∈ S; (9.20)

∣
∣U∗

i (x∗
S, Ii − γi (αi )) − (ui (x

∗
S) + (Ii − γi (αi ))

∣
∣ < ε for all i ∈ S. (9.21)

Proof First, we fix an agent i ∈ S. The set {γi (αi ) : αS ∈ IS(N , v)} is bounded. Let I 0i be an

income level greater than themaximumof this set. Hence, for all Ii ≥ I 0i ,we have (9.20) for i.
Consider (9.21) for i . Applying Theorem 9.3.1 to i, we have some c∗i such that for any

ci ≥ c∗i ,
∣
∣U∗

i (x∗
S, ci ) − (u∗

i (x
∗
S) + ci )

∣
∣ < ε.Since γ ∗

i (αi ) = u∗
i (x

∗
S) − αi andαi ≥ v({i}) for

all αS ∈ IS(N , v), we can take an I 1i so that I 1i − (u∗
i (x

∗
S) − αi ) ≥ c∗i for all αS ∈ IS(N , v).

Then, we have, for all Ii ≥ I 1i ,

∣
∣U∗

i (x∗
S, Ii − γi (αi )) − (u∗

i (x
∗
S) + (Ii − γi (αi ))

∣
∣

= ∣
∣U∗

i (x∗
S, Ii − (u∗

i (x
∗
S) − αi )) − (u∗

i (x
∗
S) + Ii − (ui (x

∗
S) − αi ))

∣
∣ < ε

9The set IS(N , v) is nonempty under some additional condition (e.g., v(S) ≥ ∑

i∈S v({i})).
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for all αS ∈ IS(N , v). We take I∗ = max{I 0i , I 1i : i ∈ S}. Then, for this I∗, (9.20) and (9.21)
hold for all i ∈ S. �

In Theorem 9.3.2, we focus on a particular coalition S. The theorem can be extended to the
existence of I∗ uniformly for all S ⊆ N . Once this is obtained, we can apply it to a solution
theory for (N , v). For example, the core of (N , v) can be translated into the approximate core
in the base model EB({Ii }i∈N ). Thus, the theory of cooperative games with side payments is
viewed as an ideal approximation of the theory without quasi-linearity.

9.4 Characterization by Normality

Under C0 to C3, condition C4 is equivalent to approximate quasi-linearity. Some sufficient
conditions are useful for applications in economics and game theory. Here, we weaken condi-
tionC4P I in a differentmanner fromC4; it is normality,which togetherwithC5 (boundedness)
implies C4. We will apply this result to the theory of Lindahl-ratio equilibrium in a public
good economy, which is another example of conversion suggested in Diagram 9.1.

9.4.1 Normality and Approximate Quasi-linearity

BoundednessC5 is a necessary condition for approximate quasi-linearity.WhenC5 is assumed
in addition to C0–C3, the monotonicity (weakly increasing) of δ∗(x, c) with c is enough to
have (9.8). In fact, this monotonicity is guaranteed by a normality condition. First, we look at
a weak form of normality, which is equivalent to the monotonicity of δ∗(x, c).

C4NMo (Normalityo): Let (x, c) ∈ X × R+, c′ ∈ R+, and α ≥ 0. If (x, c) ∼ (xo, c′) and
c ≤ c′, then (x, c + α) � (xo, c′ + α).

An additional α to (x, c) gives more (or equal) satisfaction than to (xo, c′).

Lemma 9.4.1 (Monotonicity) Suppose C0 to C3 for �. Let x ∈ X.

(1): Suppose C4NMo . Then, (x, c) � (xo, c) and δ∗(x, c) ≥ 0 for all c ≥ 0.
(2): C4NMo holds if and only if δ∗(x, c) is weakly increasing with respect to c.

Proof (1): Since (x, 0) � (xo, 0) by C3, we have (x, 0) ∼ (xo, α) for some α ≥ 0 by
C2. Hence, we have (x, 0 + c) � (xo, α + c) by C4NMo . By C0 and C1, we have (x, c) �
(xo, c). By (9.3), (x, c) ∼ (xo, δ∗(x, c) + c). Since (x, c) � (xo, c), by C0 and C1, we have
δ∗(x, c) ≥ 0.
(2): Only-if : Now, let α ≥ 0. Then, since (x, c) ∼ (xo, δ∗(x, c) + c) by (9.3) and
δ∗(x, c) ≥ 0 by (1), we have, by C4NMo , (x, c + α) � (xo, δ∗(x, c) + c + α). Since (x, c +
α) ∼ (xo, δ∗(x, c + α) + c + α), we have (xo, δ∗(x, c + α) +c + α) � (xo, δ∗(x, c) + c +
α) by C0. This and C1 imply δ∗(x, c + α) ≥ δ∗(x, c).

If : Suppose (x, c) ∼ (xo, c′) and c ≤ c′. By (9.3), (xo, δ∗(x, c) + c) ∼ (x, c) ∼ (xo, c′). By
C0 and C1, we have δ∗(x, c) + c = c′. Since δ∗(x, c) is increasing with c, we have δ∗(x, c +
α) ≥ δ∗(x, c). Since δ∗(x, c) + c = c′, we have δ∗(x, c) + c + α = c′ + α. Thus, δ∗(x, c +



170 M. Kaneko

α) + c + α ≥ c′ + α. By (9.3) and C1, we have (x, c + α) ∼ (xo, δ∗(x, c + α) + c + α) �
(xo, c′ + α). This is the conclusion of C4NMo . �

Under C0 to C3, C4NMo and C5, the function δ∗(x, c) is increasing (Lemma 9.4.1.(2))
and bounded (Lemma 9.4.2) with c for each x ∈ X. Hence, δ∗(x, c) converges to u∗(x) as
c → +∞. This is (9.8) of Theorem 9.3.1, and thus C4 is derived.

Theorem 9.4.1 (Characterization by normality) Suppose C0 to C3, C4NMo , and C5 for �.
Then, (9.8) holds for �.

Theexamples inSect. 9.3 satisfy conditionC4NMo .For example,Ub(x, c) = (x+1)(c+1)
x+c+2 +

c (= (x + 1) − (x+1)2
x+c+2 + c) is a concave function of c, which implies C4NMo . The other

example U2(x, c) = u(x) − u(x)
(c+1)α + c in (9.16) provides that δ∗(x, c) = u(x) − u(x)

(c+1)α is

increasing with c; the derived preference relation � satisfies C4 NMo by Lemma 9.4.1.(2).
The above form of normality C4NMo is enough for (9.8) but it requires nothing direct

about the relationship between different alternatives x and x ′. It may be more convenient to
mention the following stronger form:10

C4NM (Normality11): Let (x, c), (x ′, c′) ∈ X × R+ and α ≥ 0. If (x, c) ∼ (x ′, c′) and c ≤
c′, then (x, c + α) � (x ′, c′ + α).

We have the full monotonicities for � and δ∗(x, c) over x ∈ X and c ∈ R+.

Lemma 9.4.2 (Monotonicities over X and R+ ) Suppose C0 to C3 and C4NM for �. Let
x, x ′ ∈ X. If (x, 0) � (x ′, 0), then (x, c) � (x ′, c) and δ∗(x, c) ≥ δ∗(x ′, c) for all c ≥ 0.

Proof Let (x, 0) � (x ′, 0). The first conclusion is obtained from the proof of Lemma
9.4.1.(1) by replacing xo by x ′. Hence, by (9.3), (xo, δ∗(x, c) + c) ∼ (x, c) � (x ′, c) ∼
(xo, δ∗(x ′, c) + c). By C0 and C1, we have δ∗(x, c) ≥ δ∗(x ′, c). �

For applications in Sect. 9.4.2,we provide certain specific properties on the derived function
u∗ : X → R. Suppose that X = Zo = {0, ..., zo} and the worst xo in C3 is fixed to be 0.12

The set X × R+ = Zo × R+ is not convex in the standard sense. However, we can modify
the definition of convexity slightly, which enables us to discuss convexity almost in the same
way as the standard.

We say that a subset S of Zo × R+ is convex iff for any (x, c), (x ′, c′) ∈ Zo × R+ and any
λ ∈ [0, 1] with λx + (1 − λ)x ′ ∈ Zo, it holds that λx + (1 − λ)x ′ ∈ S. Using this notion, we
have the following definition of convexity of�: the preference relation� is said to be convex iff
{(x ′, c′) ∈ Zo × R+ : (x ′, c′) � (x, c)} is a convex set for any (x, c) ∈ Zo × R+. Similarly,
we say that a function f : Zo → R is concave (convex) iff for any x, x ′ ∈ Zo and λ ∈ (0, 1)

10This strict version is used in Kaneko [8].
11This term “normality” is motivated by the following observation. Suppose that � is weakly
increasing with respect to x ∈ X = R+. Then, the demand function, assumed to exist here, for the
commodity in X = R+ is weakly monotonic with an income. Indeed, let p > 0. Let (x, I − px) �
(x ′, I − px ′) and x > x ′.ByC1 andC2, (x, I − px) ∼ (x ′, I − px ′ + α) for someα ≥ 0.Let I ′ >

I.Then, since I − px < I − px ′ + α,wehave (x, I ′ − px) � (x ′, I ′ − px ′ + α) � (x ′, I ′ − px ′)
by C4NM and C1. This means that the quantity demanded weakly increases when an income
increases.
12The finiteness of Zo is assumed to have the uniform convergence result in Theorem 9.4.2. Other-
wise, we could take the set of all nonnegative integers Z+.
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with λx + (1 − λ)x ′ ∈ Zo, it holds that f (λx + (1 − λ)x ′) ≥ (≤) λ f (x) + (1 − λ) f (x ′).
This implies f (x) − f (x − 1) ≥ (≤) f (x + 1) − f (x) for all x ∈ Zo with 0 < x < zo.

We have the following result for the function u∗ derived from�with C0 to C4 in Theorem
9.3.1.

Lemma 9.4.3 (Concavity) If � is convex, then u∗(x) is a concave function over Zo.

Proof Let x, x ′ ∈ Zo and c ∈ R+. Suppose (x, c) � (x ′, c). Then, by C1, C2, we have a
unique c′ ≥ c such that (x, c) ∼ (x ′, c′). This implies δ∗(x ′, c′) + c′ = δ∗(x, c) + c. We de-
note c′ = c′(c).

Let λ ∈ (0, 1) with λx + (1 − λ)x ′ ∈ Zo. Then, by convexity for �, we have (λx + (1 −
λ)x ′, λc + (1 − λ)c′) � (x, c) ∼ (x ′, c′). Thus, δ∗(λx + (1 − λ)x ′, λc + (1 − λ)c′) +(λc +
(1 − λ)c′) ≥ δ∗(x, c) + c = δ∗(x ′, c′) + c′, and also δ∗(x, c) + c = λ[δ∗(x, c) + c]+ (1 −
λ)[δ∗(x ′, c′) + c′]. Then, it holds that

δ∗(λx + (1 − λ)x ′, λc + (1 − λ)c′) ≥ λδ∗(x, c) + (1 − λ)δ∗(x ′, c′). (9.22)

This holds for any c with c′ = c′(c). When c → ∞, c′(c) → ∞. Since limc→+∞ δ∗
(x, c)= u∗(x) and limc′→+∞ δ∗(x ′, c′) = u∗(x ′),wehave, by (9.22),u∗(λx + (1 − λ)x ′) ≥
λu∗(x) + (1 − λ)u∗(x ′). �

Themonotonicity of u∗(x) follows fromLemma9.4.2 that if (x, 0) � (x ′, 0), thenu∗(x) =
limc→∞ δ∗(x, c) ≥ limc→∞ δ∗(x ′, c) = u∗(x ′). Sometimes, we need strict monotonicity of
u∗(x), which is obtained by the following condition for �. We say that � over Zo × R+
is strict increasing with x ∈ Zo iff for any x, x ′ ∈ Zo with x > x ′, there is an ε > 0 such
that (x, c) � (x ′, c + ε) for any c ∈ R+. This guarantees the strict monotonicity of u∗ over
X = Zo derived in Theorem 9.3.1.

Lemma 9.4.4 Suppose� over Zo × R+ is strict increasingwith x ∈ Zo. Then, u∗ : Zo → R
is strictly increasing.

Proof Let x > x ′. By (9.3) and strict increasingness for �, we have (xo, δ∗(x, c) + c) ∼
(x, c) � (x ′, c + ε) ∼ (xo, δ∗(x ′, c + ε) + c + ε). Hence, by C0 and C1,
δ∗(x, c) + c ≥ δ∗(x ′, c + ε) + c + ε. When c → +∞, this inequality implies
u∗(x) ≥ u∗(x ′) + ε. �

Finally, we give a comment on the converse of Lemma 9.4.3. It was shown in Kaneko
[6] that u∗ derived C0 to C3 and C4P I in Proposition 9.2.1 is concave if and only if the
preference relation � is convex, where X is assumed to have a convex structure. A question is
whether Lemma 9.4.3 holds in the form of “if and only if”. This is answered negatively, since
if u∗ is linear, it is concave as well as convex; it is possibly derived from a non-convex �. A
counterexample is given below. Of course, it holds that if u∗ is concave, there is a convex �
such that u∗ is derived from � .

Let X × R+ = Zo × R+ with Zo = {0, ..., 4} (Zo can be R+). Consider the utility func-
tion U defined by

U (x, c) = x −
√
x

c + 1
+ 2c.

Then δ∗ derived by (9.3) is δ∗(x, c) = (x −
√
x

c+1 )/2, and the derived U∗(x, c) is given as
δ∗(x, c) + c = U (x, c)/2. In this case, u∗(x) = limc→+∞ δ∗(x, c) = x/2,which is concave
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in Zo.However,U (x, c) is not quasi-concave (equivalently,� is not convex). Indeed, consider
(4, 0) and (0, 1). Then, U (4, 0) = 2 = U (0, 1). The middle point is 1

2 (4, 0) + 1
2 (0, 1) =

(2, 1
2 ), and U (2, 1

2 ) = 2 −
√
2
3
2

+ 1
2 = 2 − 2

3

√
2 + 1

2 < 2.

9.4.2 Lindahl-Ratio Equilibrium for a Public Goods
Economy

Let us apply the results in Sect. 9.4.1 to the theory of Lindahl-ratio equilibrium in a public
goods economy (cf., Kaneko [7], van den Nouweland et al. [20], and van den Nouweland
[21]).

Let X = Zo. A cost function C : Zo → R+ is given as a convex and strictly increasing
function over X with C(0) = 0. Each agent i ∈ N has a preference relation�i over Zo × R+
and an income Ii ≥ 0.We call EB = (C; {�i }i∈N , {Ii }i∈N ) the base (public good) economy.
We assume that each �i satisfies C0-C3, C4

NM , C5, and that �i is convex over Zo × R+
and strictly increasing with x ∈ Zo.

We say that r = (r1, ..., rn) is a ratio vector iff
∑

i∈N ri = 1 and ri > 0 for all i ∈ N .

A pair (x∗, r) = (x∗, (r1, ..., rn)) of an x∗ ∈ Zo and a ratio vector (r1, ..., rn) is called a
(Lindahl-) ratio equilibrium in the base economy EB iff for all i ∈ N ,

riC(x∗) ≤ Ii ; (9.23)

(x∗, Ii − riC(x∗)) �i (x, Ii − riC(x)) for all x ∈ Zo with riC(x) ≤ Ii . (9.24)

That is, with an appropriate choice of a ratio vector for cost-sharing, every agent agrees on
the same choice x∗.

Kaneko [7] formulated this concept taking X = R+, and proved the existence of a ratio
equilibrium, using the standard fixed-point argument. His result cannot directly be obtained
when X = Zo, since Zo is a discrete set. Here, we first study a ratio equilibrium in an economy
with quasi-linearity and then convert the result to EB .

Now, for each i ∈ N , we have u∗
i : Zo → R with limc→+∞ δ∗

i (x, c) = u∗
i (x) for each

x ∈ Zo. The quasi-linear approximation is given as EQ = (C; {u∗
i }i∈N , {Ii }i∈N ). In EQ , a

pair (x∗, r) = (x∗, (r1, ..., rn)) is called a ratio equilibrium in EQ iff (9.23) and (9.25) hold:

u∗
i (x

∗) + Ii − riC(x∗) ≥ u∗
i (x) + Ii − riC(x) for all x ∈ Zo with Ii ≥ riC(x). (9.25)

When Ii is large enough, we can ignore Ii in (9.25).
The analysis of ratio equilibrium is much simpler in the economy EQ than in the base

economy EB . We consider the maximization of the total surplus in EQ :

max
x∈Zo

⎛

⎝
∑

i∈N
u∗
i (x) − C(x)

⎞

⎠ . (9.26)

Then, we have the existence of an optimal solution x∗ ∈ Zo.
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We have the following lemma. Recall that each �i satisfies C0 to C3, C4
NM , C5, and that

�i is convex over Zo × R+ and strictly increasing with x ∈ Zo.

Lemma 9.4.5 Let x∗ be a solution for (9.26). Then, there is a ratio vector r = (r1, ..., rn)
such that (r, x∗) is a ratio equilibrium in the economy EQ.

13

Proof When zo = 0, this lemma holds with any ratio vector r. We assume zo > 0. For a
function f : Zo → R, we denote the left and right differentials f −(x) = f (x) − f (x − 1)
and f +(x) = f (x + 1) − f (x) at x ∈ Zo, where f −(0) or f −(zo) are not defined. Let
g(x) = ∑

i∈N u∗
i (x) − C(x), which is a concave function. We consider the three cases:

x∗ = 0, 0 < x∗ < zo, and x∗ = zo.
Suppose 0 < x∗ < zo. Then, it holds that

g+(x∗) =
∑

i∈N
u∗+
i (x∗) − C+(x∗) ≤ 0 ≤ g−(x∗) =

∑

i∈N
u∗−
i (x∗) − C−(x∗). (9.27)

For θ ∈ [0, 1], let αi (θ) = θu∗+
i (x∗) + (1 − θ)u∗−

i (x∗) for all i ∈ N . Then,
∑

i∈N
αi (θ

∗) = θ∗ ∑

i∈N u∗+
i (x∗) + (1 − θ∗)

∑

i∈N u∗−
i (x∗), and since u∗

i is strictly increasing
by Lemma 9.4.4, we have αi (θ) > 0.

In fact, there is a θ∗ ∈ [0, 1] such that

C−(x∗) ≤
∑

i∈N
αi (θ

∗) ≤ C+(x∗). (9.28)

Let us see this. By (9.27),

∑

i∈N
u∗+
i (x∗) ≤ C+(x∗) and C−(x∗) ≤

∑

i∈N u∗−
i (x∗). (9.29)

Suppose C−(x∗) ≤ ∑

i∈N u∗+
i (x∗). By (9.29), we also have

∑

i∈N u∗+
i (x∗) ≤ C+

(x∗). In this case, we can put θ∗ = 1; Eq. (9.28) holds. In the case
∑

i∈N u∗−
i (x∗)

≤ C+(x∗), we have a parallel argument; we can put θ∗ = 0. Finally, consider the case
∑

i∈N u∗+
i (x∗) < C−(x∗) andC+(x∗) <

∑

i∈N u∗−
i (x∗). SinceC−(x∗) ≤ C+(x∗) by the

convexity of C, there is some θ∗ satisfying (9.28). In the three cases, we have (9.28).
Let ri = αi (θ

∗)/
∑

j∈N α j (θ
∗) for all i ∈ N . Then, since u∗+

i (x∗) ≤ u∗−
i (x∗), it holds

that

u∗+
i (x∗) − (θ∗u∗+

i (x∗) + (1 − θ∗)u∗−
i (x∗)) ≤ 0 (9.30)

≤ u∗−
i (x∗) − (θ∗u∗+

i (x∗) + (1 − θ∗)u∗−
i (x∗)).

Since ri = αi (θ
∗)/

∑

j∈N α j (θ
∗), we have, by (9.28),

u∗+
i (x∗) − riC

+(x∗) ≤ u∗+
i (x∗) − (θ∗u∗+

i (x∗) + (1 − θ∗)u∗−
i (x∗)).

13This is a variant of the method of obtaining the existence of a competitive equilibrium from the
maximization of the total social surplus, which was first given by Negishi [16].
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Using the first inequality of (9.30), we have u∗+
i (x∗) − riC

+(x∗) ≤ 0. Similarly, it holds

that 0 ≤ u∗−
i (x∗) − riC

−(x∗). Thus, since u∗
i (x) + Ii − riC(x) is concave, the solution x∗

maximizes u∗
i (x) + Ii − riC(x) for each i ∈ N .

Suppose x∗ = 0. Then,
∑

i∈N u∗+
i (0) ≤ C+(0). Let αi = u∗+

i (0) > 0 and

ri = u∗+
i (0)/

∑

j∈N u∗+
j (0).Now,wehaveu∗+

i (0) − riC
+(0) ≤ 0 for all i ∈ N .Thismeans

that x∗ = 0 maximizes u∗
i (x) + Ii − riC(x) for each i ∈ N . In the case where x∗ = zo, we

have a parallel argument. �
Now, we have the conversion theorem under C0-C4 for �i over Zo × R+. This theorem

needs neither the convexity nor strict increasingness for �i , since the existence of a ratio
equilibrium is assumed.

Theorem 9.4.2 (Conversion of a ratio equilibrium fromEQ to EB ) Let
(x∗, r) = (x∗, (r1, ..., rn)) be a ratio equilibrium in EQ . Then, for any ε > 0, there is an
I∗ such that for any i ∈ N and Ii ≥ I∗,

Ii ≥ riC(x∗); (9.31)

U∗
i (x∗, Ii − riC(x∗)) + ε > U∗

i (x, Ii − riC(x)) for any x ∈ Zo with Ii ≥ riC(x).
(9.32)

Proof We choose I 0i so that I 0i ≥ riC(x∗). Now, let x ∈ Zo. If I 0i < riC(x), (9.32) holds in

the trivial sense. In the following, consider the case I 0i ≥ riC(x). Then, by (9.25), we have

u∗
i (x

∗) + Ii − riC(x∗) ≥ u∗
i (x) + Ii − riC(x). (9.33)

Take ε > 0. Then, by Theorem 9.3.1, we can choose an I 1i ≥ I 0i so that for any Ii ≥ I 1i ,

∣
∣U∗

i (x∗, Ii − riC(x∗
i )) − (u∗

i (x
∗) + Ii − riC(x∗))

∣
∣ < ε/2

∣
∣U∗

i (x, Ii − riC(x)) − (u∗
i (x) + Ii − riC(x))

∣
∣ < ε/2.

Using these inequalities and (9.33), we have (9.32)

U∗
i (x∗, Ii − riC(x∗)) > u∗

i (x
∗) + Ii − riC(x∗) − ε/2

≥ u∗
i (x) + Ii − riC(x) − ε/2

> U∗
i (x, Ii − riC(xi )) − ε/2 − ε/2

= U∗
i (x, Ii − riC(xi )) − ε.

The above choice of I 1i = I 1i (x) depends upon agent i ∈ N and x ∈ Zo. However, because

N and Zo are finite, it suffices to take I∗ = max{I 1x : i ∈ N and x ∈ Zo}. �

9.5 Extension to Expected Utility Theory

Quasi-linear utility functions are also used in the environment with risks. In this case, the
characterization of quasi-linearity should be connected to expected utility theory, or vice
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versa. This was discussed in Kaneko–Wooders [9]. Here, we will discuss the extension of
Theorem 9.3.1.

LetmF (X × R+) := { f : X × R+ → [0, 1] : ∑

(x,c)∈S f (x, c) = 1 for some finite sub-
set S of X × R+} (i.e., the set of all probability distributionswith finite supports over X × R+).
Regarding mF (X × R+) as a subset of the linear space of all real-valued functions endowed
with the standard sum and scalar (real) multiplication, mF (X × R+) is a convex set (i.e., if
f, g ∈ mF (X × R+) andλ ∈ [0, 1], the convex combination (mixture)λ f ∗ (1 − λ)g belongs
to mF (X × R+)). Let �e be a binary relation over mF (X × R+).

We assume the following:

Condition E0 (Complete preordering): �e is a complete and transitive relation onmF (X ×
R+);
Condition E1 (Intermediate value): If f 
e g 
e h, then λ f ∗ (1 − λ)h ∼e g for some
λ ∈ [0, 1];
Condition E2 (Independence): For any f, g, h ∈ mF (X × R+) and λ ∈ (0, 1),

(1): f 
e g implies λ f ∗ (1 − λ)h 
e λg ∗ (1 − λ)h;

(2): f ∼e g implies λ f ∗ (1 − λ)h ∼e λg ∗ (1 − λ)h.

It is known (cf., Herstein–Milnor [3], Fishburn [2], Kaneko–Wooders [9]) that these three
conditions are enough to derive a utility function Ue : mF (X × R+) → R representing �e

and satisfying Ue(λ f ∗ (1 − λ)g) = λUe( f ) + (1 − λ)U∗(g) for all f, g ∈ mF (X × R+)

and λ ∈ [0, 1].
We can regard X × R+ as a subset of mF (X × R+) by the identity mapping. Restricting

the preference relation �e to X × R+, we have the preference relation over � on X × R+,

which satisfies Condition C0. Conditions E1-E2 require nothing about � over the base set
X × R+.We can assumeC1-C4 on� .Wedenote the restriction ofUe to the base set X × R+
also by U∗.

Theorem 9.5.1 (Expected utility theory version) Suppose that a preference relation �e over
mF (X × R+) satisfies E0-E2, and that the derived preference � on X × R+ satisfies C1-C4.
(1): There is a utility function Ue : mF (X × R+) → R such that

Ue( f ) =
∑

(x,c)∈T f

f (x, c)Ue(x, c) for each f ∈ mF (X × R+), (9.34)

where T f is a finite support of f ∈ mF (X × R+).

(2): There is a (strictly) monotone f : R → R such that

Ue(x, c) = f (δ∗(x, c) + c) for all (x, c) ∈ X × R+. (9.35)

(3): There is a function u∗ : X → R such that (9.8) holds for each x ∈ X.

Proof (1) is known from expected utility theory.
(2): It is shown in Lemma 9.3.1 that over the domain X × R+, the relation� is represented by
the function δ∗(x, c) + c. This implies that if δ∗(x, c) + c = δ∗(x ′, c′) + c′, thenUe(x, c) =
Ue(x ′, c′). Hence, we can define a function f : {δ∗(x, c) + c : (x, c) ∈ X × R+} → R by
f (δ∗(x, c) + c) = Ue(x, c) for all (x, c) ∈ X × R+.This f ismonotone, and can be extended
to R.

(3): This is simply Theorem 9.3.1. �
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We have still the difference that Theorem 9.5.1.(2) is stated in terms ofUe = f (δ∗(x, c) +
c) rather than δ∗(x, c) + c. Expected utility theory is cardinal, while the theory in Sect. 9.3
is ordinal. Hence, it may be informative to connect (3) with (2) directly. This connection is
made to assume risk neutrality:
E3: (Risk Neutrality): 1

2 (xo, c) ∗ 1
2 (xo, c′) ∼e (xo,

1
2 c + 1

2 c
′) for c, c′ ∈ R+.

The preference relation �e is risk neutral with respect to the axis of composite commod-
ity at the worst xo. This is a connection between our theory and expected utility theory. Then,
we have the following lemma on the function f given by Theorem 9.5.1.(2):

Lemma 9.5.1 There are α > 0 and β such that f (c) = αc + β for c ∈ R+.

Proof Recall (9.5) of Lemma 9.3.1: δ∗(xo, c) = 0 for all c ∈ R+. Thus, E3 is expressed as

1
2 f (c) + 1

2 f (c′) = f ( 12 c + 1
2 c

′) for all c, c′ ∈ R+.

This implies that for some α > 0 and β, f (c) = αc + β for c ∈ R+. �

Under the above assumptions on �e, the function f is linear, and in particular, we can
assume

Ue(x, c) = δ∗(x, c) + c for all (x, c) ∈ X × R+. (9.36)

In sum,we obtain the approximately quasi-linear function by adding E3 in the extended theory.
Of course, if we assume risk aversion (lover), f is a concave (convex) function.

9.6 Summary and Remaining Issues

We gave characterizations of a preference relation � to be approximately represented by
a quasi-linear utility function for large incomes. The main condition is C4, which is a
weakening of the parallel indifferences condition C4P I . It guarantees the limit function
u∗(x) = limc→+∞ δ∗(x, c), which is a representation of the monetary equivalence of the
transition from the origin xo to alternative x .

We provided another approach in terms of the normality condition C4NM .Under C0 to C3,
condition C4NM and boundedness C5 imply C4. These are easier to check whether a given
relation satisfies approximate quasi-linearity. We also made an explicit connection between
our approximate quasi-linearity and expected utility theory.

We gave two applications of our results to the theories of cooperative games with side
payments and of Lindahl-ratio equilibrium for a public goods economy with quasi-linearity.
We discussed the conversions the results in these theories to the base models. We started our
considerations with the base models and went to the limit cases; the conversions went back
to the base model. In the end of Sect. 9.3.1, we gave a brief discussion on the other direction
directly from the limit EQ to a base model EB .

Mathematically speaking, condition C4 excludes some familiar utility functions given in
closed forms. In the end of Sect. 9.3.1, we gave how to avoid this difficulty and also argued
that the existence of the limit function u∗(x) is justified in the case where the composite
commodity behind c is rich enough or the alternatives in X are rich enough.

Nevertheless, there remain various issues. Here, only two issues are mentioned. The first
one is how to formulate the richness behind the composite commodity c or the richness of
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alternatives in X.Perhaps, this is an important but difficult problem.Another issue is to evaluate
the standard interpretation of no-income effect in terms of local approximation, mentioned
in the paragraph after (9.15). This may involve double approximations “large incomes” and
“small expenditures”. Although this may turn to be an inappropriate interpretation, it would
be helpful to understand the nature of quasi-linearity and/or no-income effect.
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Chapter 10
Cooperative Games in Networks Under
Uncertainty on the Costs

L. Mallozzi and A. Sacco

10.1 Introduction

In many situations arising from Engineering or Economics, as in transportations and
logistics, an important aspect is to find efficient and optimal plans to design col-
laborative service networks when two or more agents are involved. For example,
efficiency can be measured in lower cost or more flexibility. An important aspect of
the collaboration is to decide on how to share the profits, the cost, or some resources.
In literature several sharing mechanisms or cost allocations can be found, and some
of them are founded in game theory (see e.g., [17–19, 21, 25]). Of many problems
related to collaborating in transportation, some of them regard transportation plan-
ning, traveling salesman, vehicle routing, or minimal cost spanning tree (see e.g., [4,
7, 10, 15]).

In this chapter, we approach a cooperative game model that describe a multi-
commodity network flow problem: the objective in this problem is to share the
revenue generated by simultaneously shipping different commodities. Since different
possibilities may appear in terms of paths, a maximum revenue (or a minimum cost)
network problem can be considered too and solved by using some game theory tools.

Our first assumption is that the network is given and does not have any cycle, so
that each agent that has to ship his commodity from an origin to a destination point
has just one route for the shipment. In this case a revenue sharing problem arises and
a cooperative game problem can be set between agents: the core of the corresponding
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cooperative game is not empty under some concavity conditions on the costs (see
e.g., [22, 24]).

As in reality, some uncertainty may be in the data of the problem. For example,
in [8] the net return that each agent has for the shipment of the commodity has been
considered as a real interval, not a real number. Then an interval cooperative approach
has been presented in order to provide interval core solutions. The first example of
the use of cooperation under interval uncertainty was [5], where it is applied to
bankruptcy situations, and later further extensively studied (see for example [1–3]
and the references section of [6] for more).

The literature is completed by a stream of non-classical models of cooperative
games incorporating some kind of uncertainty such as games with random payoffs
[17, 19, 21], games with fuzzy uncertainty [14] or the so-called cooperative fuzzy
interval games, a combination of fuzzy and interval games [13].

Main contribution of this chapter is to present the model under cost uncertainty
by considering a probability distribution on the set (that is an interval) of the possible
values of the costs. In this case we study the stochastic cooperative resulting game
and give conditions in order to have a non-empty core. The situation of an expansion
cost effect is also discussed, i.e., we study the case where the upper bound of the cost
is proportional to the cost according to an expansion factor.

In the chapter, same mathematical preliminaries are recalled in Sect. 10.2, the
network and the model are presented in Sect. 10.3 together with some existence
results and some examples. Some new research suggestions are discussed in the
concluding section.

10.2 Preliminaries

A cooperative game is an ordered pair < N , v > where N = {1, . . . , n} (n ∈ N) is
the set of the players and v : 2N → R is the characteristic function from the set 2N of
all possible coalitions of players N to a set of payments that satisfies v(∅) = 0. The
function describes how much collective payoff a set of players can gain by forming
a coalition, and the game is sometimes called a value game or a profit game. The
players are assumed to choose which coalitions to form, according to their estimate
of the way the payment will be divided among coalition members; N is called the
grand coalition.

A cooperative game can also be defined with a characteristic cost function
c : 2N → R satisfying c(∅) = 0. In this setting, the characteristic function c rep-
resents the cost of a set of players accomplishing the task together. A game of this
kind is known as a cost game. Although most cooperative game theory deals with
profit games, the duality of the two approaches made them equivalent (the games v
and −c are strategically equivalent).

Several solution concepts have been introduced in the literature. A natural and
well-known solution concept for this cooperative game is the core [17, 20, 23]. The
core C (v) of the cooperative game < N , v > gives a share of the worth of the grand
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coalition satisfying the so-called coalitional efficiency and is defined by

C (v) = {(x1, . . . , xn) ∈ IRn :
∑

i∈N
xi = v(N ),

∑

i∈S
xi ≥ v(S),∀ S ⊆ N }.

Recall that a cooperative game < N , v > is convex if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ), ∀S, T ∈ 2N

and if the game is convex, the core is non-empty [20, 23]. Other solution concepts
are the Shapley value, the nucleolus, and many others.

The choice of the core as solution concept is linked with the assumption of acyclic
network: the core of a game with cycle may be empty.

Example 1 Let us consider a network design situation (N ,G, h, OD, r, IC) where
N = {1, 2, 3} is the set of players, V = {1, 2, 3, 4, 5, 6, 7} is the set of vertexes and
E = {1, 2, 3, 4, 5, 6, 7, 8, 9} is the set of directed edges (with G = (V, E)), h =
(1, 1, 1) represents the units of commodity shipped, OD = (

(1, 7), (3, 7), (5, 7)
)
is

the set of ordered pair of origin/destination, r = (3, 2, 4) is the vector of revenues
and c j (y) = √

y, j ∈ E is the cost function. In this case (see Fig. 10.1)

P1={
18, 67, 123457, 1239

}
, P2={

2167, 28, 3457, 39
}
, P3={

57, 49, 432167, 4328
}

Q1=
{
18, 123457, 1239, 2167, 432167

}
, Q2=

{
123457, 1239, 2167, 28, 432167, 4328

}

Q3=
{
123457, 1239, 3457, 39, 432167, 4328

}
, Q4=

{
123457, 3457, 49, 432167, 4328

}

Q5={
123457, 3457, 57

}
, Q6={

67, 2167, 432167
}
,

Q7=
{
67, 123457, 2167, 3457, 57, 432167

}
, Q8=

{
18, 28, 4328

}
, Q9={

1239, 39, 49
}

and it is easy to compute

c({1}) = c({2}) = c({3}) = 2

c({1, 2}) = c({2, 3}) = c({1, 3}) = 2 + √
2

c({1, 2, 3}) = 4 + √
2.

The characteristic function is

v({1}) = 1, v({2}) = 0, v({3}) = 2

v({1, 2}) = 3 − √
2, v({2, 3}) = 4 − √

2, v({1, 3}) = 5 − √
2
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Fig. 10.1 Scheme for the network described into Example 1

v({1, 2, 3}) = 5 − √
2

and the core of this game is empty [8, 24].

Sometimes we deal in reality with uncertainty: we do not know exactly the worth
of a coalition S, but we can have an estimate of a lower bound and an upper bound
of it. A way to deal with uncertain characteristic function is to consider interval
cooperative games that allow to study the case where the value of a coalition is a
real interval by using interval analysis tools. Since the work of Branzei, Dimitrov
and Tijs in 2003 to study bankruptcy situations [5] many examples of interval games
were studied in the literature (see [1–3, 9, 11, 13] and the references section of [6]
for more).

A cooperative interval game is an ordered pair < N ,w > where N is the set of
the players and w : 2N → IR is the characteristic function such that w(∅) = [0, 0].
Here IR be the set of real intervals IR = {[I , Ī ] ⊂ R, I , Ī ∈ R, I ≤ Ī }. We denote
byw(S) = [w(S), w̄(S)] theworth of the coalition S. By considering the partial order
I  J iff I ≥ J and Ī ≥ J̄ , it is possible to introduce the core solution concept for
the interval game, namely the interval core that is defined by

C (w) = {(I1, . . . , In) ∈ IRn :
∑

i∈N
Ii = w(N ),

∑

i∈S
Ii  w(S),∀ S ⊆ N }.

We point out that this approach can leave some ambiguity on the preferences since
interval core solutions offer many possibilities of profit sharing scheme. In order to
refine the model, we introduce some additional probabilistic information and present
a stochastic version of the network design situation.
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10.3 The Network and the Model

The game is defined by a set of players N = {1, . . . , n} and by a graph G = (V, E),
where V = {1, . . . , k} is the finite set of k vertexes or nodes and E = {1, . . . ,m}
the set of m directed edges (k and m are natural numbers). The couple (oi , di ),
with oi , di ∈ V , is an ordered pair of nodes, identifying origin and destination, be-
tween which each player i ∈ N has to ship hi > 0 units of a commodity. We denote
h = (h1, . . . , hn) and OD = (

(o1, d1), . . . , (on, dn)
)
the vectors of Rn and R

2n re-
spectively.

Moreover the shipment produces for each player i a return ri . The setting of the
network provides that at the initial status the capacity of each edge of E for accom-
modating shipments of the players’ commodities is zero, and there is an investment
cost c j (y) for installing y units of capacity on edge j ∈ E . Considering admissible
network, that is the network is able to satisfy the requirements of any player that
participates to the construction, then any coalition S ⊆ N of players could construct
capacities on the edges of E . The assumption of the model is that the coalition S
chooses the admissible network of minimum cost.

Twoother relevant sets of the network are the set Pi = {path connecting oi and di }
for any player i ∈ N and the set Q j = {path of edges from E including j} for any
edge j ∈ E . A path is the union of consecutive edges (i jk is the path given by edge
i , then edge j , then edge k). We consider in this chapter acyclic networks, so that
each Pi consists of a single path denoted by pi . Here it is implicitly assumed that
players have to ship h, even if it gives them a negative payoff.

The sum of the costs of each edge j by considering all the players of coalition S
that are using that edge j when they use the path pi , ∀i ∈ S, is given by the quantity

c(S) =
∑

j∈E
c j

( ∑

i :i∈S
pi∈Q j

hi

)
.

The vector r = (r1, . . . , rn) denotes the revenue profile vector (ri > 0), while
IC = {c1, . . . , cm} denotes the installing cost functions, where c j : [0,+∞) →
[0,+∞), c j (0) = 0 and c j is an increasing function over the entire domain. We
call the tuple (N ,G, h, OD, r, IC) a network design situation.

Definition 1 Given a network design situation (N ,G, h, OD, r, IC), we define the
network design cooperative game < N , v > where N is the set of the players and
v : 2N → R is the characteristic function such that v(∅) = 0 and for each coalition
S ⊆ N the worth of the coalition is given by

v(S) =
∑

i∈S
ri − c(S).

This game has been studied in [24] and the extension to the case of interval
uncertainty in rewards in [8]. By assuming concave cost functions c j , j ∈ E , the
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cooperative game is a convex game and there exist core solutions and interval core
solutions.

Proposition 1 Let (N ,G, h, OD, r, IC) be a network design situation where c j ,
j ∈ E, are concave cost functions. Then the core of the cooperative game < N , v >

is not empty.

Proof The proof follows by the supermodularity of the game [24]. Here we give a
direct proof. Let us prove that the game is convex, i.e., ∀S, T ∈ 2N , we have that

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ).

Since ∑

i∈S
ri +

∑

i∈T
ri =

∑

i∈S∪T
ri +

∑

i∈S∩T
ri

and for each j the function −c j (t + δ) + c j (t) is increasing in t for any δ > 0, we
have:

v(S ∪ T ) + v(S ∩ T ) − v(S) − v(T ) =
∑

j∈E

[−c j
( ∑

i :i∈S∪T
pi∈Q j

hi
) − c j

( ∑

i :i∈S∩T
pi∈Q j

hi
) + c j

( ∑

i :i∈S
pi∈Q j

hi
) + c j

( ∑

i :i∈T
pi∈Q j

hi
)] =

∑

j∈E

[−c j (y
′′ + δ) − c j (y

′) + c j (y
′′) + c j (y

′ + δ)
] ≥ 0

where

y′ =
∑

i∈S∩T
hi ≤ y′′ =

∑

i∈S
hi and δ =

∑

i∈(S∪T )\S
hi =

∑

i∈T \(S∩T )

hi ≥ 0.

Remark 1 Let us observe that the network design situation, given the installing cost
functions IC and without revenue, is nothing but the congestion situation of [12, 16,
19], studied from a non-cooperative point of view: there exists for such games a pure
Nash equilibrium, because they are potential games.

An analogous result holds for the extension to the case of interval uncertainty
in rewards. We suppose that the reward of player i is an unknown value between
a lower and an upper bound. We denote by R = (R1, . . . , Rn) ∈ IRn the revenue
profile vector and consider the network design situation (N ,G, h, OD, R, IC).

Definition 2 (Uncertainty on returns) We define the network design cooperative
game < N ,w > where N is the set of the players and w : 2N → IR is the charac-
teristic function such that w(∅) = 0 and for each coalition S ⊆ N the worth of the
coalition is given by
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w(S) =
∑

i∈S
Ri − c(S).

This game has been studied in [8], and by assuming concave cost functions c j , j ∈
E , the cooperative game is a convex game and there exist interval core solutions. This
kind of solutions give an indication of possible outcomes with a vagueness degree
since a core solution is a set of values in between a lower bound and an upper bound.

Now, we consider uncertainty on installing costs. As it happens in concrete
situations, we suppose that the cost for installing y units of capacity on each
edge is not known, but players have a lower bound and an upper bound of it.
More precisely, for any edge i ∈ E there are two increasing functions c j and
c j (c j , c j : [0,+∞) → [0,+∞), c j (0) = c j (0) = 0) with c j (y) ≤ c j (y) for all
y > 0 such that the installing cost for y units can be any value in the real inter-
val [c j (y), c j (y)]. Moreover, we assume that the uncertainty does not depend on the
amount y of shipped commodity, but it is edge-specific.

Herewewant to better describe the uncertainty by using a stochastic approach.We
suppose that the cost of installing the edge j is a random variable t with probability
density ϕ j (t).

One way to approach the problem of the uncertainty is considering the expected
installing cost, that is given by

C j (y) =
∫ c j (y)

c j (y)
tϕ j (t)dt,

for any y ≥ 0. Then, given φ = {ϕ1, . . . , ϕm}, we consider the network design situa-
tion (N ,G, h, OD, r, E IC)φ with cost distribution φ, where E IC = {C1, . . . ,Cm}
is the vector of expected installing costs.

Definition 3 (Uncertainty on costs) Given (N ,G, h, OD, r, E IC)φ , we define the
network design cooperative game < N , v > where N is the set of the players and
v : 2N → R is the characteristic function such that v(∅) = 0 and for each coalition
S ⊆ N the worth of the coalition is given by

v(S) =
∑

i∈S
ri − C(S)

being C(S) the cost of the coalition S defined as

C(S) =
∑

j∈E
C j

( ∑

i :i∈S,pi∈Q j

hi
)
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10.3.1 Extremal Situations

In this section, we start to consider the extremal situations in a network design model
with cost uncertainty. This is the case where agents have additional information that
allows to choose the best (resp. the worst) possible cost in the interval [c j (y), c j (y)].
Players, in an optimistic view, consider the best worth they receive under uncertainty,
i.e., one can consider the extremal situations, namely in an optimistic view the worth
can be

vopt (S) =
∑

i∈S
ri −

∑

j∈E
c j

( ∑

i :i∈S
pi∈Q j

hi
)

and in a pessimistic view the worst possible case, i.e.,

vpes(S) =
∑

i∈S
ri −

∑

j∈E
c j

( ∑

i :i∈S
pi∈Q j

hi
)
.

In these two cases the uncertainty is solved considering the lower and the upper
bound for installing cost. In that way, we can study the minimum and the maximum
worth for each possible coalition. The following example show a simple case with
two players and concave cost functions.

Example 2 Let us consider the situation (N ,G, h, OD, r, E IC)φ where N = {1, 2},
V = {1, 2, 3, 4} and E = {1, 2, 3}, h = (1, 1), OD = (

(1, 3), (2, 4)
)
, r = (5, 4),

c j (y) = √
y, c j (y) = 2

√
y, j ∈ E . The characteristic functions in the two extremal

cases are:

vopt ({1}) = 3, vopt ({2}) = 2, vopt ({1, 2}) = 7 − √
2,

vpes(S)({1}) = 1, vpes(S)({2}) = 0, vpes(S)({1, 2}) = 5 − 2
√
2.

Any vector (x1, x2) : 3 ≤ x1 ≤ 5 − √
2, x2 = −x1 + 7 − √

2 is in the core C (vopt )
and any vector (x1, x2) : 1 ≤ x1 ≤ 5 − 2

√
2, x2 = −x1 + 5 − 2

√
2 is in the core

C (vpes).

10.3.2 Expected Costs

If there is no additional information, we assume for each edge j ∈ E that the cost is
a random variable t uniformly distributed in the interval [c j (y), c j (y)] with density
ϕ j (t). Averaging between the lower cost and the upper cost, the expected installing
cost is given by

C j (y) = c j (y) + c j (y)

2
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for any y ≥ 0.

Example 3 Consider the network design situation (N ,G, h, OD, r, E IC)φ of the
previous example, with uniform cost distribution. Now, the characteristic function is

v({1}) = 2, v({2}) = 1, v({1, 2}) = 6 − 3/2
√
2,

and any vector (x1, x2) : 2 ≤ x1 ≤ 5 − 3/2
√
2, x2 = −x1 + 6 − 3/2

√
2 is in the

core C (v). For a value of x1 admissible in the pessimistic case and also in the av-
erage case, say x1 = 2.1 we see that for the second player the share is, respectively,
x2 = 0.08 and x2 = 1.79.

Proposition 2 Let (N ,G, h, OD, r, E IC)φ be a network design situation with cost
distribution φ, where c j , c j , for any j ∈ E, are concave cost functions. If costs follow
a uniform distribution and the uncertainty is solved by mean of the expected cost,
then the core of the cooperative game < N , v > is not empty.

Proof The network (N ,G, h, OD, r, E IC)φ is acyclic and if t ∼ U ([c j (y), c j (y)]),
with c j and c j concave functions, then also the expected cost C j is concave and the
core is not empty.

10.3.3 Upper Bound Expansion

In real situations it can happen that the upper cost for installing a network is unknown
when it is designed. To capture this possibility we consider a special case of the
previous examples, considering an upper cost function c j (y) = Ac j (y), where A
is an unknown parameter, i.e., for any edge j ∈ E and transported quantity y ≥ 0,
the cost is a value in [c j (y), Ac j (y)] and A ≥ 1 is a real parameter describing an
expansion effect on the costs c j (y).

Denoting with γ (A) the density function of the parameter A, the expected in-
stalling cost for each edge j ,C j (y), can be derived by the law of iterated expectations
as follows:

C j (y) =
∫

ΩA

E[t |A]γ (A)d A, (10.1)

where ΩA = [1,+∞[ is the set of admissible values of A and E[t |A] is the condi-
tional expected installing cost. If the installing cost is a random variable with uniform
distribution in the interval [c j (y), Ac j (y)], the conditional expected cost is given by

E[t |A] = c j (y) + Ac j (y)

2
. (10.2)

To model the uncertainty on the parameter A, a shifted exponential density function
is considered as follows:
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γ (A) =
{

λe−λ(A−1), if A ≥ 1,

0, if A < 1.
(10.3)

for a real positive parameter λ. Then, the expected installing cost is

C j (y) = c j (y) + c j (y)

2λ
.

As usual for exponential random variables, the expected cost C j is a decreasing
function of the parameter λ, given that ∂C j/∂λ < 0 for each λ > 0. The expected
worth for each coalition is

v(S) =
∑

i∈S
ri − C(S),

where C(S) is given by
C(S) =

∑

j∈E
C j

( ∑

i :i∈S
pi∈Q j

hi
)
,

so that we guarantee core solutions for any choice of concave cost functions c j .

Example 4 The network design situation (N ,G, h, OD, r, E IC)φ of the previous
examples can be reconsidered assuming that the upper bound of cost function is
unknown, i.e., taking c̄ j (x) = A

√
x , were A is a random variable with a shifted

exponential distribution. So, given c j (x) = √
x , the expected installing cost for each

edge j is

C j (x) = √
x +

√
x

2λ
.

The expected characteristic function is

v({1}) = 5 − 2

(
1

λ
+ 1

)
, v({2}) = 4 − 2

(
1

λ
+ 1

)

v({1, 2}) = 9 −
(√

2 + 2
) (

1

λ
+ 1

)
.

The core of this game is a function of the parameter λ and is given by the system

3λ − 2

λ
≤ x1 ≤ −√

2λ + 5λ − √
2

λ
,

x2 = −√
2λ + 7λ + λ(−x1) − √

2 − 2

λ
.



10 Cooperative Games in Networks Under Uncertainty on the Costs 189

For λ = 2 we have the same solutions as in Example 2, for λ → +∞ we have the
core of the lower game C (vopt ) and for λ = 1 we have the core of the upper game
C (vpes).

10.4 Conclusions

In this chapter, a multi-commodity network flow problem has been analyzed when
some degrees of uncertainty affect the cost to realize it. Under some assumptions on
the network itself (i.e., it has no cycles) and on the density functions that describe
the randomness of costs, two cases were considered: a first one in which the costs lie
within a real interval, and a second case in which the upper bound of the interval is
a random variable itself. There is a clear link between this model and the literature
that faces costs sharing problem with interval cooperative games. In this sense, the
contribution of the chapter is to propose an approach that solve the ambiguity on
preferences given by the interval core solutions.

The first limitations of the model is given by the assumption of acyclic network,
that is, there is only one way to connect to nodes of the network. The reason beyond
this choice lies in the fact that in case of acyclic network, convex costs function are
sufficient condition to have a non-empty core.

The model with uncertainty could be deeply extended to the interesting case of
networkswith cycles, namelywhen at least a player has the possibility to use different
paths to ship his commodity. In that case a minimum cost network can be defined
as follows: given a network design situation (N ,G, h, OD, r, IC), for any player
i ∈ N consider the set

Pi = {path connecting oi and di }

and define the cost of a coalition as

c(S) = min
pi :pi∈Pi ∀i∈S

∑

j∈E
c j

( ∑

i :i∈S
pi∈Q j

hi
)

and then
v(S) =

∑

i∈S
ri − c(S).

Unfortunately, the core of the cooperative game < N , v > can be empty. Here:
(i) the profit sharing problem requires solution concepts different from the core
solutions;
(ii) the minimum cost network has to be refined in cases where there exist many
minimum cost networks, as in Example 1;
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(iii) uncertainty can be considered also in the choice of the minimum cost network,
besides on returns and/or on costs.

We address these considerations to future research.
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Chapter 11
Pricing Competition Between Cell Phone
Carriers in a Growing Market of
Customers

Andrey Garnaev and Wade Trappe

11.1 Introduction

Pricing is a core problem faced by communication markets. There is an extensive
literature treating different aspects of the pricing problem. As a quick sampling, rev-
enue sharing and pricing strategies for Internet Service Providers were studied by
[16, 23]. Pricing was investigated for local and global WiFi markets by [6], under
uncertainty related to the demand posed by users by [2], while pricing for video
streaming in mobile networks was modeled by [19], and for uplink power in wide-
band cognitive radio networks by [1]. The difference between flat rate pricing and
power-based pricing was studied by [11], while license virtual mobile network oper-
ators were investigated by [5] and competition between telecommunication service
providers was modeled by [20].

In the United States, there are four major nationwide cellular carriers that cover
the entire United States, and three smaller regional carriers (see, [13]). Choosing
a cellular carrier is a tough problem for customers and, though there certainly is
some aspect of non-rationality in the decision making, most customers nonetheless
make their decision by comparing plan styles, prices, coverage, phone selection,
speed, customer service quality and the future outlook for the provider (see, [13,
18]). A sophisticated customer even might adapt its selection of a carrier using the
integrated analytical process and grey relational analysis algorithm suggested for
network selection by [22].

In this paper, rather than exploring how customers choose carriers, we explore a
complementary problem in which we consider all the customers as a market, which
can be shared between the carriers based on an integrated characteristic incorporating
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its QoS and (service) prices. By the concept of service price, in this paper, we con-
sider an abstracted, aggregate value incorporating such characteristics as plans and
associated prices. Under QoS we consider an integrated characteristic incorporating
such issues like coverage, data speed and customer services.

Trying to attract customers by better pricing, each of the carriers meet a dilemma
to solve: on the one hand, by reducing prices the carrier can attract new customers,
while on the other hand it yields a smaller profit from each customer. To deal with
this dilemma a simple dynamic game-theoretical model associated with sharing a
market of customers between carriers is presented in this paper, which allows one
to find how the equilibrium pricing strategy depends on the customers’s loyalty and
the overall growth of the entire market of customers.

The organization of this paper is as follows: in Sect. 11.2, a game-theoretical
model describing the competition between the carriers for the customers is given,
as well as the existence and uniqueness of its solution. In Sect. 11.3, this solution is
illustrated numerically in one-step- and multi-step scenarios. Finally, in Sect. 11.4,
conclusions are provided related to the game.

11.2 Customers’ Market Sharing Game

In this Section, we consider a non-zero sum game associated with the sharing of a
growing market of customers between N carriers. At the beginning, let M0i be the
number of the customers signed up to the carrier i . Thus, the total number of the
customers is

∑N
i=1 M0i . It is expected that the market will be increased by M new

customers. Depending on the price assigned by a carrier i , some of its customers
could make a decision of whether to prolong their contract with the carrier or to look
for a better option in the market with another carrier. Intuitively, higher prices lead
to more customers leaving the carrier. We assume that

Di = M0i − ai pi (11.1)

customers are inclined to keep the same carrier i , where pi is the price assigned by the
carrier i , and ai is a sensitivity coefficient associated with likelihood of leaving given
the price and the QoS the provider supplies the customer. Di might be interpreted
as the demand of loyal customers. We note that demand functions have found a
wide applications in different economic models (see, [9]). So, if pi = 0 then any
customers are inclined to keep the same carrier i , but it does not bring any profit for
the carrier. If pi = M0i/ai , then all the customers lose loyalty to the carrier. Then,
ai pi is the number of the customers who are going to be disloyal to the carrier based
on suggested price, and who are going to look for a better option in the market.
Also, we assume that there is a random factor which finally could lead to some of
the M0i − ai pi customers originally inclined to keep the same carrier i to ultimately
change their mind. Let qi be the probability that a customer belonging to carrier i ,
even in spite of there being a proper price, is going to go on the market. So, qi can be
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interpreted as a probability of disloyalty to the carrier, and 1 − qi is the probability
of loyalty. Thus, the carriers i expect

(a) to serve (1 − qi )(M0i − ai pi ) loyal customers,
(b) to compete for its share on the market consisting of M customers where

M = M +
N∑

j=1

a j p j +
N∑

j=1

q j (M0 j − a j p j ).

We assume that the carriers share the customers’ market according to the ratio
form contest success function. Such function is commonly used for modelling share
holders’s attraction (see, [7]) or share goodwill levels (see, [8]), or even protection’s
level depending on applied efforts (see, [10, 14]). Namely,we assume that the carriers
share the customers’ market proportional to their contribution into the total demand
of loyal customers

∑N
j=1(1 − q j )Dj . Thus, the carrier i gets the following share of

the customers being on the market:

ξi (pi , p−i ) = M
(1 − qi )Di

∑N
j=1(1 − q j )Dj

, (11.2)

where p−i = (p1, . . . , pi−1, pi+1, . . . , pN ) is the profile of strategies for all of the
carriers excluding the carrier i .

The payoff πi to the carrier i is the expected total profit gained from the loyal
customers, and the ones he can attract from the market through competition with
other carriers. Thus, the payoff is given as follows:

πi (pi , p−i ) = (1 − qi )(M0i − ai pi )pi + ξi (pi , p−i )pi
= (1 − qi )(M0i − ai pi )pi

+

⎛

⎝M +
N∑

j=1

a j p j +
N∑

j=1

q j (M0 j − a j p j )

⎞

⎠ (1 − qi )(M0i − ai pi )

N∑

j=1

(1 − q j )(M0 j − a j p j )

pi ,

(11.3)
with pi ∈ [0, M0i/ai ] for i = 1, . . . , N . Thus, [0, M0i/ai ] is the set of the all feasible
strategies for carriers i .

We assume that the carriers have complete knowledge about the market’s param-
eters, i.e. about the number of customers M , M0i , probabilities of disloyalty qi , and
coefficients of sensitivity ai .

Each carrierwants tomaximize its profit, i.e.we are looking for aNash equilibrium
(see, [9]). Recall that p∗ is a Nash equilibrium if and only if for each p the following
inequalities hold:
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πi (pi , p−i∗) ≤ πi (pi∗, p−i∗) for i = 1, . . . , N . (11.4)

The best response strategy for the carrier i to a fixed strategy profile p−i for the other
carriers is

pi = BRi ( p−i ) = argpi maxπi (pi , p−i ). (11.5)

Then, p is an equilibrium if and only if it is a solution of the best response Eq. (11.5)
with i = 1, . . . , N .

Theorem 1 The best response strategy BRi for i = 1, . . . , N can be obtained in
closed form as follows:

pi = BRi ( p−i ) = (1 − qi )M0i + si − √
((1 − qi )M0i + si )si

ai (1 − qi )
, (11.6)

where

si =
N∑

j=1, j �=i

(1 − q j )(M0 j − a j p j ). (11.7)

Proof First note that

∂ πi

∂pi
= (1 − qi )(si + M0i + M + fi )

((1 − qi )(M0i − ai pi ) + si )2

× (
a2i (1 − qi )p

2
i − 2ai ((1 − qi )M0i + si )pi + M0i (M0i + si )

)
(11.8)

and
∂2 πi

∂p2i
= −2ai (1 − qi )((1 − qi )M0i + si )

((1 − qi )(M0i − ai pi ) + si )3

× (si + M0i + M + fi ) < 0

(11.9)

with

fi =
N∑

j=1, j �=i

(a j p j + (1 − q j )(M0 j − a j p j )). (11.10)

Thus, πi is concave and the best response strategy can be obtained as the unique root
in [0, M0i/ai ] of the quadratic equation:

a2i (1 − qi )p
2
i − 2ai ((1 − qi )M0i + si )pi + M0i (M0i + si ) = 0. (11.11)

This implies (11.6), and the result follows.

Here we can observe a quite interesting phenomena that the best response strate-
gies do not depend explicitly on the number of new customers M coming to the
market. On one hand it is surprising, since an important parameter appears to not
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be taken into account. On the other hand, it is quite natural, since making a better
proposal in competing for re-sharing of users already existent in the market, the car-
riers understand that this re-sharing will impact the choices of the new customers,
since they also try to choose better proposals. Thus, in a short-run price planning, the
number of new customers coming on the market does not have an impact on price.
Meanwhile, in terms of a long-run price planning, this number produces an impact
on the price since after coming to the market, the customers also will sign up, and so
they join the updated structure of the market of customers, which impacts pricing.

Theorem 2 The considered game has an unique equilibrium p given as follows:

pi = (1 − qi )M0i + xi − √
((1 − qi )M0i + xi )xi

ai (1 − qi )
for i = 1, . . . , N , (11.12)

where

xi =
−(1 − qi )M0i +

√
(1 − qi )2M2

0i + 4x2

2
, (11.13)

and x is the unique positive root of the equation

F(x) = 0 (11.14)

with

F(x) := 2(N − 1)x +
N∑

i=1

(1 − qi )M0i −
N∑

i=1

√
(1 − qi )2M2

0i + 4x2. (11.15)

Proof Due to (11.9), πi is concave on pi . Thus, an equilibrium exists by Nash
Theorem [9].

Finding all of the equilibria is equivalent to finding all of the solutions of the best
response Eq. (11.6), which are equivalent to

(1 − qi )(M0i − ai pi ) + si = √
((1 − qi )M0i + si )si . (11.16)

Let us introduce an auxiliary notation

x =
N∑

j=1

(1 − q j )(M0 j − a j p j ). (11.17)

Then, by (11.7),
si = x − (1 − qi )(M0i − ai pi ). (11.18)

Substituting this si into the left side of Eq. (11.16) implies
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x = √
((1 − qi )M0i + si )si . (11.19)

Solving this equation on positive si implies

si =
−(1 − qi )M0i +

√
(1 − qi )2M2

0i + 4x2

2
. (11.20)

On one hand, summing up this equation by i = 1, . . . , N implies

N∑

i=1

si =
N∑

i=1

−(1 − qi )M0i +
√

(1 − qi )2M2
0i + 4x2

2
. (11.21)

On the other hand, by (11.7),

N∑

i=1

si =
N∑

i=1

N∑

j=1, j �=i

(1 − q j )(M0 j − a j p j )

= (N − 1)x .

(11.22)

Then, (11.21) and (11.22) imply that

(N − 1)x =
N∑

i=1

−(1 − qi )M0i +
√

(1 − qi )2M2
0i + 4x2

2
. (11.23)

Thus, x has to be a positive root of the Eq. (11.14) F given by (11.15).
Note that for F given by (11.15) the following relations hold:

d2 F

d x2
= −

N∑

i=1

4((1 − qi )M0i )
2

(((1 − qi )M0i )2 + 4x2)3/2
< 0 (11.24)

and
d F

d x
(0) = 2(N − 1) > 0. (11.25)

So, F is a continuous concave function, increasing at x = 0 such that F(0) = 0 and
limt↑∞ F(t) = −∞. Thus,(11.12) has a unique positive root. This allows us to obtain
uniquely si by (11.20), as well as the strategy pi by (11.16), and the result follows.

In particular, (11.12) yields that an increasing sensitivity coefficient ai implies a
decreasing equilibrium price. Also, it is interesting to observe a similarity between
these equilibrium strategies and water-filling strategies [3, 12, 17]. Namely, both
these strategies are given in closed form defined by a parameter which can be found
as the unique solution of an auxiliary equation.
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Fig. 11.1 Prices as function on probability of disloyalty q1

11.3 Numerical Illustrations

As a numerical illustration, we consider a market consisting of four carriers, i.e. N =
4. Let the number of new, incoming customers beM = 10,00,000, the number of cus-
tomers assigned to the carriers be given byM0 = (20,000, 30,000, 10,000, 15,000),
the sensitivity coefficients be given by a = (200, 300, 250, 200), the probabilities of
the customer’s disloyalty is given by q = (q1, 0.3, 0.3, 0.3)whileq1 varying from0.1
to 0.9 for carrier 1. Increasing this probabilitymakes carrier 1 reduce its expected pre-
dictable income by reducing its share of the loyal customers, to compensate this loss,
the carriers have to pay more attention to the market reducing its price (Fig. 11.1).
In any case, this increase in probability leads to a provider reducing its share of
the market (Fig. 11.2) and its payoff (Fig. 11.3). The other carriers gain from such
increasing the market in increasing their shares and the payoffs. It also leads to a
slight increase in their prices, which can be explained as a necessity to serve more
customers, which, of course, is not free.

Another important issue that the customer’s disloyalty could impact is the relative
share of the market. To illustrate this, we consider the game played repeatedly over
time slots t = 0, 1, . . . with a market that is growing at a rate of α percent per time
slot. Let us describe the scenario in detail. Suppose, at the beginning of time slot
t there are Mt

0i customers shared by the carriers. Then, the demand for the loyal
customers is given by Dt

i = Mt
0i − ai pti where pti is the price assigned by the carrier

i at time slot t . Due to the fact that the market grows at a fixed rate α, the number
of (new) incoming customers is Mt = α

∑N
i=1 M

t
0i . Thus, at time slot t , the carrier

expects to compete in a market consisting of M
t
customers, where
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Fig. 11.2 Relative shares of the market as function on probability of disloyalty q1

Fig. 11.3 Payoffs to the carriers as function on probability of disloyalty q1

M
t = Mt +

N∑

j=1

a j p
t
j +

N∑

j=1

q j (M
t
0 j − a j p

t
j )

= α

N∑

i=1

Mt
0i +

N∑

j=1

a j p
t
j +

N∑

j=1

q j (M
t
0 j − a j p

t
j ).

(11.26)

This allows one to define payoffs for the carriers at time slot t by (11.3)withM = Mt ,
M0i = Mt

0i and p = pt . For time slot t , we may find the unique Nash equilibrium

pt of this game. Then, (11.2) with M = M
t
and Di = Dt

i returns the shares of the
customers obtained by the carriers at the end of time slot t . These shares serve as the
beginning customer shares for the carriers (i.e. Mt+1

0i ) at the beginning of the next
time slot t + 1, and so on.
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Fig. 11.4 Relative shares of the market by time slots for q = (0.1, 0.9, 0.3, 0.7)

Fig. 11.5 Relative shares of the market by time slots for q = (0.9, 0.9, 0.9, 0.9)

As a numerical illustration we consider α = 0.1 and q = (0.1, 0.9, 0.3, 0.7) and
q = (0.9, 0.9, 0.9, 0.9). Figures11.4 and 11.5 illustrate the stabilization of the rela-
tive market shares associated with the carriers across time. In the case where there
is significant switching tendency for the customers, the share is more fair compared
with the situation when some of the carriers (1 and 3) has a large percent of loyal
customers relative to disloyal customers.

11.4 Conclusions

In this paper a game-theoreticalmodel for the competition between service providers,
such as cell-phone carriers, in amarket of customers that is growingwas investigated.
Solving this game allowed us to show how the loyalty factor associated with the
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carriers might impact to the prices and relative market share between the carriers.
Namely, higher loyalty leads to higher prices and obtaining a larger share of the
market. Consequently, when considering regulatory mechanisms that can support
price stability for consumers and a fair sharing of the customer market, it is desirable
that regulatory agencies develop rules that simplify and encourage the ability for
customers to be able to switch their carriers. It is important to note that for a growing
market, we can observe numerically the stabilization of the relative shares of the
market across the time slots for repeatedly playedgame scenarios, but this observation
is one that we cannot prove analytically. One of the goals of our future research is
to develop mathematical techniques to prove such stabilization in repeatedly played
games. Another important issue about the model is that the carriers have complete
knowledge about all of the parameters.Here problems arise (a) to estimate the demand
functions and involved parameters, and verify model with reality, and (b) whether
or not private information be beneficial for the carriers. To deal with first problem, a
special branch of economics theory, econometrics, was developed which involves the
application of statistical and mathematical theories in economics to test hypotheses,
and then compare and contrast the results against real-life examples. As examples
related to this, estimating characteristics such as the demand function and market
power, we refer the readers to [4, 21] correspondingly. To deal with the second
problem, a Bayesian approach has to be applied. As examples of such approach we
refer the readers to textbook [15]. The goal of our future work is to investigate the
second problem, namely, how the carriers could benefit from private information.
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Chapter 12
Stochastic Games with Endogenous
Transitions

Reinoud Joosten and Robin Meijboom

12.1 Introduction

We present and subsequently analyze a stochastic game in which transition prob-
abilities at any point in time depend on the history of the play, i.e., players’ past
action choices, their current choices, and the current state. This development has
been inspired by an ambition to incorporate certain empirical phenomena into Small
Fish Wars1 [37]. Here, agents possess the fishing rights on a body of water, and
the resource can be in either of two states, High or Low. In the former, the fish are
more abundant and therefore catches are larger than in the latter. The agents have
two options, to fish with or without restraint. Fishing with restraint by both agents
is (assumed to be) sustainable in the long run, as the resource will be (assumed to
be) able to recover; unrestrained fishing by both yields higher immediate catches,
but damages the resource significantly if continued for prolonged periods of time.
This damage becomes apparent in the dynamics of the system as an increase in the
probabilities that the systemmoves fromHigh to Low, and simultaneously a decrease
in the probabilities of the system to move from Low to High. This causes the system
and hence the play, to spend a higher proportion of time in Low.

We additionally aim to incorporate hysteresis effects called poaching pits in the
field of management of replenishable resources (e.g., Bulte [11], Courchamp et al.
[13], Hall et al. [24]). Hysteresis may be caused by biological phenomena induced
by the (nature of the) exploitation of the resource. For instance, full-grown cod

1A word play on Levhari and Mirman [50] who show that strategic interaction in a fishery may
induce a “tragedy of the commons” [27].
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spawn a considerably higher number of eggs than younger specimen: Oosthuizen
and Daan [57], Armstrong et al. [3] find linear fecundity-weight relations, Rose et
al. [63] report exponential fecundity-weight relations. As mature cod are targeted
by modern catching techniques such as for instance gill netting, overfishing hurts
mainly the cohortsmost productive in providing offspring. To regain full reproductive
capacity, younger cohortsmust reach ageswell beyond adulthood. Hence, it may take
cod a longwhile to escape a poaching pit after a recovery plan or program to replenish
the stock has been effectuated.

To achieve our goalswe engineered a stochastic game2 as follows.Nature (chance)
may move the play from one state to the other dependent on the current action
choices of the agents, but also on their past catching behavior. To achieve the above-
formulated modeling aims we introduce endogenously changing stochastic varia-
tion,3 the evolution of the transition probabilities reflects that the more frequently
the agents exploit the resource without restraint, the more it deteriorates. Here, the
probability of moving toHighmay decrease in time in each state and for each action
combination if the agents show prolonged lack of restraint, i.e., overfish frequently.

Transition probabilities from Low to High may become zero, resulting in Low
becoming a temporarily absorbing state. If the agents keep overexploiting the
resource, this situation does not change in our model. Even if the agents revert
to restraint in order to bring about the recovery of the resource, it may take a long
time before High becomes accessible again. Thus, we endeavor to reproduce effects
similar to the ones associated to hysteresis.

The agents are assumed to wish to maximize their long-term average catches. We
adopt a Folk Theorem type analysis as in Joosten et al. [42], and validate relevant
procedures in this new setting. First, we showhow to establish the rewards for any pair
of jointly convergent pure strategies. Then, we determine the set of jointly convergent
pure-strategy rewards. Amore complex issue is then to find for each player the threat
point reward, i.e., the highest amount this player can guarantee himself if his opponent
tries to minimize his rewards. Finally, we obtain a large set of rewards which can
be supported by equilibria using threats, namely all jointly-convergent pure-strategy
rewards giving each player more than the threat point reward.

In the model analyzed throughout the chapter for expository purposes, we gain
insights relevant to the management of the resource. Our findings reveal a potential
for compromise between ecological and economic maximalistic goals, thus over-
coming the one-sidedness of management policies for natural resources as noted by
e.g., Holden [33], Brooks et al. [10], and in turn improving their chances of success
cf., e.g., BenDor et al. [5], Sanchirico et al. [64]. Full restraint, an ecological maxi-
malistic goal, yields total rewards which are considerably higher than never-restraint
rewards. Yet, a possible economic maximalistic goal, i.e., Pareto-efficient equilib-
rium rewards resulting from jointly convergent pure strategies with threats, yields a

2‘Engineered’ as in Aumann [4]. Stochastic games were introduced by Shapley [69], see also Amir
[1] for links to difference and differential games to which much work on fisheries belongs, cf., e.g.,
Haurie et al. [29], Long [51] for overviews.
3So, the Markov property of standard stochastic games [69] is lost.
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sizeable increase of total rewards even over full restraint. We find that the proportion
of time spent in such a poaching pit goes to zero in the long run under equilibrium
behavior. A whole range of models should be analyzed to obtain general findings
providing insights into the full range of fishery management games.

Next, we introduce our model with endogenous transition probabilities.
In Sect. 12.3, we focus on strategies and restrictions desirable or resulting from the
model. Section12.4 treats rewards in a very general sense, and equilibrium rewards
more specifically. Also some attention is paid to the complexity of computing threat
point rewards. Section12.5 concludes.

12.2 Endogenous Transition Probabilities

A Small FishWar is played by rowplayer A and column player B at discretemoments
in time called stages. Each player has two actions and at each stage t ∈ N the play-
ers independently and simultaneously choose an action. Action 1 for either player
denotes the action for which some restriction exists allowing the resource to recover,
e.g., catching with wide-mazed nets or catching a low quantity. Action 2 denotes the
action with little restraint.

We assume catches to vary due to random shocks, which we model by means of
a stochastic game with two states at every stage of the play. First, let us capture the
past play until stage t, t > 1, by the following two matrices:

QHt =
[
qt
1 q

t
2

qt
3 q

t
4

]
, and QLt =

[
qt
5 q

t
6

qt
7 q

t
8

]
.

Here, e.g., qt
1 is the relative frequency with which action pair top-left in High has

occurred until stage t , and qt
7 is the relative frequency of action pair bottom-left in

Low having occurred during past play. So, we must have qt = (
qt
1, . . . , q

t
8

) ∈ Δ7 =
{x ∈ R

8|xi ≥ 0 for all i = 1, . . . , 8 and
∑8

j=1 x j = 1}. We refer to such a vector as
the relative frequency vector.

Let the interaction at stage t of the play be represented by the following:

Ht = H
(
qt

) =
[

θ1, p1
(
qt

)
θ2, p2

(
qt

)
θ3, p3

(
qt

)
θ4, p4

(
qt

)
]

,

Lt = L
(
qt

) =
[

θ5, p5
(
qt

)
θ6, p6

(
qt

)
θ7, p7

(
qt

)
θ8, p8

(
qt

) ]
.

Here Ht
(
qt

)
(Lt

(
qt

)
) indicates state High (Low) at stage t of the play if the play

until then resulted in relative frequency vector qt . Each entry of the two matrices
has an ordered pair denoting the pair of payoffs to the players θi = (

θ A
i , θ B

i

)
if the

corresponding action pair is chosen and the probability pi
(
qt

)
that the systemmoves
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toHigh at stage t + 1 (and toLowwith the complementary probability). All functions
pi : Δ7 → [0, 1] are assumed continuous. We now give an example.

Example 1 In this Small FishWar we assume that in both states Action 1, i.e., catch-
ing with restraint, is dominated by the alternative.4 Let, for given relative frequency
vector qt ∈ Δ7, the transition functions pi : Δ7 → [0, 1], i = 1, . . . , 8, governing
the transition probabilities, be given by

p1(qt ) = [
8
10 − 11

24q
t
4 − 11

12q
t
8

]
+

p2(qt ) = p3(qt ) = [
6
10 − 11

20q
t
4 − 11

10q
t
8

]
+

p4(qt ) = [
3
10 − 11

16q
t
4 − 11

8 q
t
8

]
+

p5(qt ) = [
6
10 − 11

12q
t
4 − 11

6 q
t
8

]
+

p6(qt ) = p7(qt ) = [
4
10 − 11

8 q
t
4 − 11

4 q
t
8

]
+

p8(qt ) = [
1
10 − 11

4 q
t
4 − 11

2 q
t
8

]
+ .

Here, [x]+ is short hand for max{x, 0}. These equations capture the following delib-
erations. Two-sided full restraint is assumed to cause notmore damage to the resource
in both states than if exactly one player catches with restraint. Hence, the probability
that during the next stage play is in High if the first case arises is at least equal to
the corresponding probability in the second case. We also assume symmetry, hence
p2

(
qt

) = p3
(
qt

)
and p6

(
qt

) = p7
(
qt

)
. Furthermore, we assume that exactly one

player catching without restraint is not more harmful to the resource than two players
catching without restraint. The inequalities pi

(
qt

) ≥ pi+4
(
qt

)
for i = 1, . . . , 4, are

assumed to hold because if the play is in Low, the system is assumed at least as
more vulnerable to overfishing as in High. We refer to e.g., Kelly et al. [46] for an
empirical underpinning of these modeling choices.

Now, we show that renewable resources may recuperate slowly after a program
of recovery has been taken up. Suppose both agents play Action 1 twice followed
by 2 for a sufficiently long period of time until stage t∗. Clearly, qt∗

4 + qt∗
8 = t∗−2

t∗ .

Now, for t∗ → ∞, p5
(
qt∗) = p6

(
qt∗) = p7

(
qt∗) = p8

(
qt∗) = 0, because

6
10 − 11

12q
t∗
4 − 11

6 q
t∗
8 = 6

10 − 11
12

(
t∗−2
t∗ − qt∗

8

) − 11
6 q

t∗
8 =

6
10 − 11

12

(
1 − 2

t∗ − qt∗
8

) − 11
6 q

t∗
8 = − 19

60 + 11
6t∗ − 11

12q
t∗
8 < 0.

Then, p5
(
qt∗) = 0 and by the relation to the other transition probability functions,

p6
(
qt∗) = p7

(
qt∗) = p8

(
qt∗) = 0 as well. Take t∗ = 16, clearly

− 19
60 + 11

6t∗ − 11
12q

t∗
8 < − 19

60 + 11
6t∗ < 0.

If both agents switch to playing sequences of (1, 1, 1, . . .) from then on, it will take
a while before p5

(
qt

)
becomes positive again. Since

4Right now, we do not need the actual payoffs and focus on the transition probabilities.
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6
10 − 11

12q
t∗+k
4 − 11

6 q
t∗+k
8 = 6

10 − 11
12

t∗−2
t∗+k − 11

12q
t∗+k
8 =

6
10 − 11

12

(
1 − k+2

t∗+k

) − 11
12q

t∗+k
8 = − 19

60 + 11
12

k+2
t∗+k − 11

12q
t∗+k
8

< − 19
60 + 11

12
k+2
t∗+k ,

the first expression cannot be positive for k < 19t∗−110
36 . So, for t∗ = 16 it takes at

least six stages for the play to be able to return to High.

12.3 Strategies and Restrictions

A strategy is a game plan for the entire infinite time horizon, allowing it to depend
on any condition makes an extensive analysis of infinitely repeated games quite
impossible. Most restrictions in the literature put requirements on what aspects the
strategies are conditional upon. For instance, a history-dependent strategy prescribes
a possibly mixed action to be played at each stage conditional on the current stage
and state, as well as on the full history until then, i.e., all states visited and all action
combinations realized before.

Less general strategies are for instance, action independent ones which condition
on all states visited before, but not on the action combinations chosen [31]. Markov
strategies condition on the current state and the current stage, and stationary strategies
only condition on the present state (cf., e.g., Filar and Vrieze [20], Flesch [21]).

The challenge in the present framework is to find restrictions on strategies which
are helpful in the analysis. Although Markov and stationary strategies have proven
their value in the analysis of finite state stochastic games with fixed transition prob-
abilities, it is quite unclear what their contribution can be in the present framework.

Essentially, (at least) two points of view can be adopted to analyze the present
framework. The one we favor is the one in which High and Low are seen as the
states with the transitions between these states being a function of the history of the
play as captured by the relative frequency vector qt . Stationary strategies are easily
formulated here, but probably much too simple for analytical purposes as some link
with qt must be assumed to be useful. An alternative is to define the states according
to the relative frequency vector in which there exist infinitely many states H(qt )

and L(qt ). Here, the practical problem is the enormity of the task of infinitely many
stationary or Markov strategies to be defined.

LetX k denote the set of history-dependent strategies of player k = 1, 2.Astrategy
is pure, if at each stage a pure action is chosen, i.e., an action is chosen with
probability 1. The set of pure strategies for player k is Pk , and P ≡ P A × P B . Let
us define the following notions, introduced before in a rather informal manner, a bit
more formally. For j = 1, 2, t > 1
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qt
j ≡ #{( j A,H

u , j B,H
u )| j A,H

u =1, j B,H
u = j, 1≤u<t}

t−1 ,

qt
j+2 ≡ #{( j A,H

u , j B,H
u )| j A,H

u =2, j B,H
u = j, 1≤u<t}

t−1 ,

qt
j+4 ≡ #{( j A,L

u , j B,L
u )| j A,H

u =1, j B,H
u = j, 1≤u<t}

t−1 ,

qt
j+6 ≡ #{( j A,L

u , j B,L
u )| j A,H

u =2, j B,H
u = j, 1≤u<t}

t−1 .

Here, j A,X
u ( j B,X

u ) denotes the action taken by player A (B) while being in state
X = H, L at stage u. So, for instance qt

4 is the relative frequency of action pair (2, 2)
in state H being chosen until stage t.

The strategy pair (π, σ ) ∈ X A × X B is jointly convergent if and only if q ∈ Δ7

exists such that for all ε > 0, i ∈ {1, 2, . . . , 8} :

lim supt→∞ Prπ,σ

[∣∣qt
i − qi

∣∣ ≥ ε
] = 0. (12.1)

Prπ,σ denotes the probability under strategy pair (π, σ ).J C denotes the set of jointly
convergent strategy pairs. Under such a pair of strategies, the relative frequency of
each action pair in both states as play goes to infinity converges to a fixed number
with probability 1 in the terminology of Billingsley [8, p. 274]). The set of jointly-
convergent pure-strategy rewards PJC is then the set of pairs of rewards obtained
by using a pair of jointly-convergent pure strategies.

For a pair of jointly convergent pure strategies, let pi ≡ limt→∞ pi
(
qt

) = pi (q)

for i = 1, . . . , 8. These notions are well defined as the relevant functions are con-
tinuous (cf., e.g., Billingsley [8]). We distinguish the following restrictions to be
explained below:

0 <
∑4

i=1qi (1 − pi ) = ∑8
i=5 qi pi and 0 <

∑4
i=1qi < 1, (12.2)∑8

i=5qi = 1, and qi > 0 =⇒ pi = 0, i = 5, . . . , 8, (12.3)∑4
i=1qi = 1, and qi > 0 =⇒ pi = 1, i = 1, . . . , 4. (12.4)

Restriction (12.2) is a conservation of flow equation: play takes place on both states
infinitely often, therefore, due to the law of large numbers the actual instances of
leaving High must be proportional to the long run probability of leaving it and the
latter must be equal to the probability of returning.

If the long run play occurs in Low exclusively, (12.3) must hold. The former part is
obvious, if qi pi > 0 for some i = 5, . . . , 8, then play would visit the corresponding
entry infinitely often as time goes to infinity, hence with probability at least qi pi state
High would occur. Similar reasoning applies to the other case that play occurs only
in High, hence (12.4). We now show the implications for jointly-convergent pure
strategies.

Example 2 Now, (12.3) can only hold if pi = 0 or qi = 0 for all i = 5, . . . , 8. Sim-
ilarly, (12.4) can only hold if 1 − pi = 0 or qi = 0 for all i = 1, . . . , 4. So, if a state
is absorbing, then positive mass on a component of the relative frequency vector
q can only occur if the associated probability of leaving that state is zero. Observe
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Fig. 12.1 If play concentrates on Low, q1 = · · · = q4 = 0 and q5 + · · · + q8 = 1. We depict this
face of Δ7 as a “projection” unto Δ3. Extreme point ei has component i − 4 equal to one. The
admissible q’s, are sketched as the three-dimensional set on top, and the two-dimensional boundary
set

that therefore only Low can be absorbing. From the ranking of probabilities, we may
distinguish the following three subcases.

q8 = 1 and p8 = 1
10 − 11

4 q4 − 11
2 q8 ≤ 0 or∑8

i=6qi = 1 and p6 = p7 = 4
10 − 11

8 q4 − 11
4 q8 ≤ 0 or∑8

i=5qi = 1 and p5 = 6
10 − 11

12q4 − 11
6 q8 ≤ 0.

Clearly, q4 = 0. The first case is easily checked reducing analysis to

∑8
i=6qi = 1 and 16

110 ≤ q8 ≤ 36
110 , or∑8

i=5qi = 1 and q8 ≥ 36
110 .

leading to q5 = 0 and 16
110 ≤ q8 ≤ 36

110 , and q8 ≥ 36
110 and q5, . . . , q7 ≥ 0.

Figure12.1 visualizes these restrictions for Low being absorbing. The upper three-
dimensional subset of Δ3, is connected to the final inequality; the parallelogram on
the face of Δ3 is connected to the former.
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12.4 On Rewards and Equilibrium Rewards

The players receive an infinite stream of stage payoffs, they are assumed to wish to
maximize their average rewards. For a given pair of strategies (π, σ ) , Rk

t (π, σ ) is the
expected payoff to player k at stage t under strategy combination (π, σ ), then player
k’s average reward, k = A, B, is γ k (π, σ ) = lim infT→∞ 1

T

∑T
t=1 R

k
t (π, σ ) , and

γ (π, σ ) ≡ (
γ A (π, σ ) , γ B (π, σ )

)
. Moreover, for vector q ∈ Δ7, the q-averaged

payoffs (x, y)q are given by

(x, y)q = ∑8
i=1qiθi .

The strategy pair (π∗, σ ∗) ∈ X A × X B is an equilibrium if and only if

γ A
(
π∗, σ ∗) ≥ γ A

(
π, σ ∗) for all π ∈ X A

γ B
(
π∗, σ ∗) ≥ γ B

(
π∗, σ

)
for all σ ∈ X B .

The rewards γ (π∗, σ ∗) associated with an equilibrium (π∗, σ ∗) will be referred to
as equilibrium rewards.

In the analysis of repeated games, another helpful measure to reduce complexity is
to focus on rewards instead of strategies. It ismore rule than exception that one and the
same reward combination can be achieved by several distinct strategy combinations.
Here, we focus on rewards to be obtained by jointly-convergent pure strategies.

12.4.1 Jointly Convergent Pure-Strategy Rewards

The next result connects notions introduced in the previous sections.

Proposition 1 Let strategy pair (π, σ ) ∈ J C and let q ∈ Δ7 for which (12.1) is
satisfied, then the average payoffs are given by γ (π, σ ) = (x, y)q .

Proof Let (π, σ ) ∈ J C and E{θπ,σ
u } ≡ (

R1
u (π, σ ) , R2

u (π, σ )
)
, then

limt→∞ 1
t

∑t
u=1E{θπ,σ

u } = limt→∞ E
{
1
t

∑t
u=1θ

π,σ
u

} =
limt→∞ E

{∑8
i=1q

t
i θi

}
= limt→∞

∑8
i=1E

{
qt
i

}
θi = ∑8

i=1qiθi = (x, y)q .

The second equality sign involves a change in counting: on the left-hand side we sum
over all periods, on the right-hand side over all eight entries of the two bi-matrices
weighed by their relative frequencies. Equalities one and three are standard, the
penultimate one follows from (12.1), cf., e.g., Billingsley [8, p. 274], the final one by
the definition given above. Since limt→∞ 1

t

∑t
u=1 E{θπ,σ

u } equals (x, y)q , it follows
that γ (π, σ ) = (x, y)q .
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Example 3 To continue the example, we add stage payoffs

H
(
qt

) =
[

(4, 4) , p1
(
qt

) (
7
2 , 6

)
, p2

(
qt

)
(
6, 7

2

)
, p3

(
qt

) (
11
2 , 11

2

)
, p4

(
qt

)
]

,

L
(
qt

) =
[

(2, 2) , p5
(
qt

) (
7
4 , 3

)
, p6

(
qt

)
(
3, 7

4

)
, p7

(
qt

) (
11
4 , 11

4

)
, p8

(
qt

)
]

.

Observe that θi = 1
2θi−4 for i = 5, . . . , 8. The specifics for the probabilities

p1
(
qt

)
, . . . , p8

(
qt

)
were already presented earlier. Note that in both states, the

first action is dominated by the second for both players.
Figure12.2 shows the rewards consistent with Low being absorbing and note that

this hexagon is not convex.5 The link between rewards in Fig. 12.2 and the strategy
restrictions visualized in Fig. 12.1 is that the extreme points in Fig. 12.2 have the
following coordinates (i.e., rewards)

74
110 (2, 2) + 36

110

(
11
4 , 11

4

) = (
247
110 ,

247
110

)
74
110

(
3, 7

4

) + 36
110

(
11
4 , 11

4

) = (
642
220 ,

457
220

)
74
110

(
7
4 , 3

) + 36
110

(
11
4 , 11

4

) = (
457
220 ,

642
220

)
94
110

(
3, 7

4

) + 16
110

(
11
4 , 11

4

) = (
652
220 ,

417
220

)
94
110

(
7
4 , 3

) + 16
110

(
11
4 , 11

4

) = (
417
220 ,

652
220

)
.

The first three rewards coincide with the lower three vertices of the shaded simplex
of dimension 3 within Δ3 in Fig. 12.1. The latter two coincide with the lower two
vertices of the quadrangle on the face of Δ3 in Fig. 12.1. Finally, the reward

(
11
4 , 11

4

)
coincides with the vertex e8 in Fig. 12.1.

So, e5 corresponds to the situation that in the long run the relative frequency of
play on action pair (1, 1) in Low is 1 (if that were possible). The left-hand lowest
vertex of the shaded simplex in Fig. 12.1 has coordinates (74/110, 00, 36/100), so
the corresponding rewards are obtained by the linear combination of both (2, 2) and(
11
4 , 11

4

)
with the associated weights.

Similarly, all interior points of the shaded simplex in Fig. 12.1 correspond to the
interior of the shaded parallelogram in Fig. 12.2. The interior points of the boundary
quadrangle in Fig. 12.1 correspond to the interior of the trapezium in Fig. 12.2.

We must also find rewards such that (12.2) is satisfied. Figure12.3 shows all
jointly-convergent pure-strategy rewards. For instance, rewards

(
7
2 ,

7
2

)
correspond

to mutual full restraint; furthermore, the Pareto-efficient line segment connecting(
22
6 , 23

6

)
and

(
23
6 , 22

6

)
is achieved by playing Top-Right in High and by playing the

off-diagonal action pairs in Low exclusively.

5Figures12.2 and 12.3 are based onMatlab graphs generated by an algorithmyielding 6million pairs
of rewards which took several days. Memory restrictions corrupt image quality as we experienced.
The algorithm and output are available on request.
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Fig. 12.2 Asketch of the hexagon being the union of the lightly shaded parallelogramand the darker
trapezium. The former corresponds to the three-dimensional set, the latter to the two-dimensional
boundary set in Fig. 12.1. The other rewards, corresponding to the convex hull of the four entries
associated with Low are not feasible by jointly-convergent pure strategies

12.4.2 Equilibrium Rewards

We now focus on rewards from equilibria involving threats. Our approach is similar
to a well-established one in the repeated games literature (cf., e.g., Hart [28], Forges
[23]), linked to theFolkTheorem (see e.g.,VanDamme [74]) and applied to stochastic
games aswell (cf., e.g., Thuijsman andVrieze [71], Joosten et al. [42], Schoenmakers
[67]).

Wecallv = (
vA, vB

)
the threatpoint,wherevA = minσ∈X B maxπ∈X A γ A(π, σ ),

and vB = minπ∈X A maxσ∈X B γ B(π, σ ). So, vA is the highest amount A can get if
B tries to minimize A’s average payoffs. Under a pair of individually rational
(feasible) rewards each player receives at least the threat-point reward.

Let E = {
(x, y) ∈ PJC| x > vA and y > vB

}
be the set of all individually ratio-

nal jointly convergent pure-strategy rewards giving each player strictly more than
his threat point reward. We can now present the following formal result:
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Fig. 12.3 The set PJC : on the lower left-hand side the hexagon of Fig. 12.2, for other rewards
both states are visited infinitely often

Theorem 1 Each pair of rewards in E can be supported by an equilibrium.

Proof Let (x, y) ∈ E , then a pure-strategy combination (π, σ ) ∈ J C exists such
that γ (π, σ ) = (x, y) . Let ε = 1

2 min
(
x − vA, y − vB

)
and let π p (σ p) be a

punishment-strategy of A (B), i.e., a strategy holding his opponent to at most vB + ε

(vA + ε). Let

π∗
t ≡

{
πt if jk = σ ∗

k for all k < t,
π

p
t otherwise.

σ ∗
t ≡

{
σt if ik = π∗

k for all k < t,
σ

p
t otherwise.

Here, it ( jt ) denotes the action taken by player A (B) at stage t of the play. Clearly,
γ (π∗, σ ∗) = γ (π, σ ) = (x, y). Suppose player A were to play π ′ such that π ′

k �=
π∗
k for some k, then player B would play according to σ p from then on. Since,

γ A
(
π ′, σ p

) ≤ vA + ε < x , it follows immediately that player A cannot improve
against σ ∗. A similar statement holds in case player B deviates unilaterally. Hence,
(π∗, σ ∗) is an equilibrium.

Such a pair of strategies (π∗, σ ∗) is called an equilibrium involving threats, e.g.,
Hart [28], Van Damme [74], Thuijsman and Vrieze [71].
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Joosten et al. [42] prove by construction that each reward in the convex hull
of E can be supported by an equilibrium, too. Equilibrium rewards in the convex
hull of E not in E can be obtained by history-dependent strategies with threats,
which are neither jointly-convergent, nor pure. The construction of Joosten et al.
[42] involves a randomization phase which obviously violates the pure-strategy part.
The randomization phase serves to identify and communicate to both players which
equilibrium pair of jointly convergent pure strategies is to be played afterwards. So,
this also violates the very notion of jointly convergent strategies. This construction
need not work for every stochastic game, but for the present class of games it does
as no state is absorbing (permanently).

Whether equilibria exist yielding rewards that are not in the convex hull of E,

is an open question. Such equilibria then must be associated with strategies which
are not jointly convergent. For instance, in the example here, it can be shown by
construction that rewards in the convex hull of

(
417
220 ,

417
220

)
and PJC can be obtained

for the average reward criterion using the limes inferior. Similarly, although this is
out of the scope of this chapter, one can obtain the convex hull of

(
7
4 ,

7
4

)
and PJC

as feasible rewards for the average reward criterion using the limes superior. For
the latter criterion all additional rewards Pareto dominate all equilibrium rewards
in PJC . Therefore, these rewards can be supported by equilibria as well for this
alternative evaluation criterion.

Theorem 1 hinges on the possibility of punishing unilateral deviations, as in e.g.,
Hämäläinen et al. [25]. So, we cannot restrict ourselves to Markov or stationary
strategies as these types of strategies do not offer the strategic richness to allow
punishing. History-dependent strategies do offer the required flexibility, but it is an
open question whether less general classes of strategies might suffice. What is clear
though, is that action independent strategies do not.

There is no contradiction between strategy pairs being both jointly-convergent and
history-dependent, or for that matter cooperative, e.g., Tołwinski [72], Tołwinski et
al. [73], Krawczyk and To łwinski [48], or incentive strategies, or combinations, e.g.,
Ehtamo and Hämäläinen [15–18].

12.4.3 On Computing Threat Points

We illustrate Theorem 1 and the notions introduced. Moreover, we use the examples
to show the scope of the problem of computing threat points. The next example shows
that linear programs may not suffice.

Example 4 Assume that player B uses his second action at all stages of the play.
Now, consider the (nonlinear) program
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minq2,q4,q6,q86q2 + 11
2 q4 + 3q6 + 11

4 q8
s.t. 1 = q2 + q4 + q6 + q8
0 = (1 − p2)q2 + (1 − p4)q4 − p6q6 − p8q8
p2 = [

6
10 − 11

20q4 − 11
10q8

]
+

p4 = [
3
10 − 11

16q4 − 11
8 q8

]
+

p6 = [
4
10 − 11

8 q4 − 11
4 q8

]
+

p8 = [
1
10 − 11

4 q4 − 11
2 q8

]
+

0 ≤ q2, q4, q6, q8.

Clearly, q8 = 1 yields rewards equal to 11
4 ; all other feasible rewards involve q8 < 1

yielding a reward strictly higher than 11
4 . Evidently, player B can guarantee himself

at least 2.75. This implies vB ≥ 2.75.
Next, we aim to show that player A can hold his opponent to at most 2.75 by

using his second action at all stages of the play. First, we argue that the best reply of
player B resulting in a pair of jointly convergent strategies yields at most 2.75. Then,
we argue that if B uses a strategy resulting in a pair of strategies which is not jointly
convergent, then this cannot yield more than 2.75. We do not provide the lengthy
computations underlying our findings,6 only intuitions.

For the first part, since we assume that the pair of strategies is jointly convergent,
we may consider the (nonlinear) program

maxq3,q4,q7,q8
7
2q3 + 11

2 q4 + 7
4q7 + 11

4 q8
s.t. 1 = q3 + q4 + q7 + q8
0 = (1 − p3)q3 + (1 − p4)q4 − p7q7 − p8q8
p3 = [

6
10 − 11

20q4 − 11
10q8

]
+

p4 = [
3
10 − 11

16q4 − 11
8 q8

]
+

p7 = [
4
10 − 11

8 q4 − 11
4 q8

]
+

p8 = [
1
10 − 11

4 q4 − 11
2 q8

]
+

0 ≤ q3, q4, q7, q8.

Observe that if p7 = 0, then p8 = 0 as well, hence q3 = q4 = 0. Then, the maxi-
mization program implies q8 = 1 and the value of the objective function is 11

4 . Let us
define ek = (q3, q4, q7, q8) by qk = 1, q j = 0 for j �= k. Now, p7 = 0 if the relative
frequency vector (q3, q4, q7, q8) is in

S0 = conv
{{
e4, e8,

(
78
110 ,

32
110 , 0, 0

)
,
(
0, 32

110 ,
78
110 , 0

)}
∪ {(

0, 0, 94
110 ,

16
110

)
,
(

94
110 , 0, 0,

16
110

)}}
,

where conv S denotes the convex hull of set S. Possible higher rewards are only to
be found for (q3, q4, q7, q8) ∈ Δ3\S0.

Furthermore, 1 − p4 > 1 − p3 ≥ 4
10 ≥ p7 > p8, hence q3 + q4 ≤ 1

2 ≤ q7 + q8.
So, only tuples (q3, q4, q7, q8) in

6They are available on request, of course.
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S1 = conv
{{(

1
2 , 0,

1
2 , 0

)
,
(
1
2 , 0,

39
110 ,

16
110

)
,
(

23
110 ,

32
110 ,

1
2 , 0

)}
∪ {

e7,
(
0, 0, 94

110 ,
16
110

)
,
(
0, 32

110 ,
78
110 , 0

)}}
.

may yield higher rewards than 11
4 . This follows from the observation that the sum of

the probabilities to move to (from) Low is always above (below) 4
10 , hence the (long

term) proportion of the play spent in Low is at least 1
2 .

The points in S1 satisfying the restriction

0 = (1 − p3)q3 + (1 − p4)q4 − p7q7 − p8q8

form a two-dimensional manifold, say M , and the restriction is clearly violated in a
neighborhood of the plane

P = conv
{(

1
2 , 0,

39
110 ,

16
110

)
,
(

23
110 ,

32
110 ,

1
2 , 0

)
,
(
0, 0, 94

110 ,
16
110

)
,
(
0, 16

55 ,
39
55 , 0

)}

which is the facet of S1 opposite the line segment
(
1
2 − x, 0, 1

2 + x, 0
)
, x ∈ [0, 1

2 ].
Hence, M does not intersect P. The following defines for α ∈ [0, 16

55 ] a family of
two-dimensional planes in S1:

S (α) = {
(q3, q4, q7, q8) ∈ S1|q4 + q8 = α

}
.

For increasing α, we establish whether S (α) ∩ M �= ∅, and in that case the inter-
section is either a point, a line segment or a two-dimensional subset of S (α) . Any
unique point in this intersection with the highest weight on q4 clearly maximizes the
objective function for S (α); otherwise a one-dimensional set of points exist with
highest weights on q4, then the point with the highest weight on q3 is the solution
with respect to S (α) . So, for fixed α one observes immediately that q4 = α and
q8 = 0 for any solution with respect to S (α) .

Take q3 + q7 = 1, then 1 − p3 = p7 = 4
10 which in turn implies q3 = q7 = 1

2 . In
this case, 7

2q3 + 11
2 q4 + 7

4q7 + 11
4 q8 = 21

8 . To obtain higher values of the objective
function q4 should be increased from zero while keeping q8 = 0. The final point
is that the one-dimensional set of solutions restricted to such S (α) for α ∈ [0, 16

55 ]
“beginning at”

(
1
2 , 0,

1
2 , 0

)
does not lead to higher values of the objective function

than 21
8 .

As no solution satisfying the restrictions of the maximization problem, yields
more than 11

4 in Δ3\S0, the solution is located in S0, so the global solution is q8 = 1;
the connected reward to player B is 2.75. As player A can hold B to this amount, we
have vB ≤ 2.75. Hence, under the assumption that the outcome of the maximization
problem of player B against his opponent using his second action in any state and at
any stage, is a jointly convergent pair of strategies, we find vB = 2.75.

Now, we continue our reasoning with the assumption that the maximization
problem does not result in a pair of jointly-convergent strategies. First, note that the
latter expression in the present framework means that B uses a strategy σ against
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player A playing π∗ = (2, 2, 2, . . .), such that qt = (
qt
3, q

t
4,q

t
7, q

t
8

)
never converges,

i.e., qt must move around in the three-dimensional unit simplex forever.
Note that if for some (non-jointly convergent) pair of strategies (π∗, σ ) and some

T, it holds that7 {qt }t≥T ⊂ S0, then limt→∞ qt
3 = limt→∞ qt

4 = 0. This follows from
the circumstance that p7

(
qt

) = p8
(
qt

) = 0 for all t ≥ T . So, the long-term average
payoffs at point t in time for t sufficiently large satisfy

7

4
qt
7 + 11

4
qt
8 = 7

4
qt
7 + 11

4

(
1 − qt

7

) = 11

4
− qt

7 <
11

4
.

This means that γ B(π∗, σ ) < 11
4 .

Furthermore, let S2 = conv{e7, e8,
(
4
7 ,

3
7 , 0, 0

)
,
(
0, 11

15 ,
4
15 , 0

)}. Then it is easily
confirmed that 7

2q3 + 11
2 q4 + 7

4q7 + 11
4 q8 ≤ 11

4 for all q ∈ S2. Hence, if for some
(π∗, σ ) it holds that

lim sup
T→∞

[
Pr

π∗,σ

[
#

{
qt ⊂ S2|t ≤ T

}
T

]
≥ ε

]
> 0 for all ε > 0,

then γ B(π∗, σ ) ≤ 11
4 .

Let S3 = Δ3\ (
S0 ∪ S2

)
and note that 7

2q3 + 11
2 q4 + 7

4q7 + 11
4 q8 ≥ 11

4 for q ∈ S3.
By choosing a set of convenient (but not even tight) upper and lower bounds it takes
quite some effort to confirm that if for some (π∗, σ )

lim sup
T→∞

[
Pr

π∗,σ

[
#

{
qt ⊂ S3|t ≤ T

}
T

]
≥ ε

]
= 0 for all ε > 0,

then γ B(π∗, σ ) < 11
4 . This contradiction implies that it is impossible to guarantee

play such that the resulting relative frequencies vectors stay in S3 (hence out of
S0 ∪ S2) almost forever.

So, candidates to yield a limiting average reward higher than 11
4 must induce

play such that relative frequency vectors stay forever in
(
S0\S2) ∪ S3. However,

in
(
S0\S2) ∪ S3 there is persistent drift away from conv{e3, e4} because the transi-

tion probabilities from Low to High are small and the transition probabilities from
High to Low are large. Away from conv{e3, e4} means towards conv{e7, e8} which
implies that the play will induce relative frequency vectors in S2.Note that due to the
assumption that (π∗, σ ) is not jointly convergent means e8 can only be approached
infinitely often by relative frequency vectors from S2 or returning to S2, yielding
limiting average rewards below 11

4 .

The negative results above imply that the maximization problem can be solved in
jointly convergent strategies in this example. Hence, vB = 2.75 (Fig. 12.4).

7Hordijk et al. [34] show that a stationary strategy suffices as a best reply against a fixed stationary
strategy, and we may write the next sequence as a deterministic one.
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Fig. 12.4 Each pair of jointly convergent pure-strategy rewards to the “north-east” of v =
(2.75, 2.75) can be supported by an equilibrium involving threats

Example4 illustrates that finding threat points may be cumbersome as it requires
at least a nonlinear program. Our approach was to alternate a minimization and a
maximization program against sequences of stationary strategies to obtain lower and
upper bounds for the threat point. If solutions coincide, as in the example above after
two steps, we are done. Otherwise, all rewards yielding more than the lowest upper
bound established can be associated to equilibria involving threats.

We can interpret every minimization and maximization program as a single con-
troller stochastic game (cf., e.g., Parthasarathy and Raghavan [60]). However, the
circumstance that the number of states captured in the relative frequency vectors
(please recall our remarks on this issue in Sect. 12.3) is not finite takes our problem
out of the scope of the algorithms implied to compute the associated values (e.g.,
Filar and Raghavan [19], Vrieze [75], see Raghavan and Filar [62] for a survey).
Hordijk et al. [34] show that a stationary strategy suffices as a best reply against a
fixed stationary strategy, and the optimization problemsmentioned reduce toMarkov
decision problems (cf., e.g., Filar and Vrieze [20]). We used these results partially
above,8 but found not much help in them otherwise.

8In earlier versions of our paper we were too quick to conclude that the associated optimization
problems yield jointly convergent strategies. A referee pointed out a flaw in our reasoning, which by
the way, makes to problem of finding an optimal strategy against a fixed strategy even much harder
to solve. If jointly convergent strategies do not yield a solution, play never settles down measured in
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The general problem is equivalent to finding the value of a zero-sum stochastic
game. Well-known techniques from standard stochastic game theory, e.g., Bewley
and Kohlberg [6, 7] and Mertens and Neyman [56], offer insufficient solace because
of the state space which is not finite but denumerable.

12.5 Conclusions

We added an innovation to the framework of Small Fish Wars (e.g., Joosten [37,
38, 41]) by allowing endogeneity in the transition structure: transition probabilities
depend on the actions taken by the agents currently in the current state and on the
history of the play. In this new setting states may become absorbing temporarily.
Here, this feature is used to model the phenomenon that, even if the agents turn
to ecologically sound exploitation policies, it may take a long time before the first
transition to a state yielding higher outcomes occurs if the state Low turns out to have
become temporarily absorbing. Thus, we capture hysteresis, called a poaching pit
in the management of natural resources literature (cf., e.g., Bulte [11]). Hysteresis
is an empirical phenomenon and may be observed in the slow recovery of coastal
cod stocks in Canada after a moratorium on cod fishing since 1992 (cf., Rose et
al. [63]). More recent estimates of stocks show a less bleak picture due to recent
developments unrelated to resource management, but the stocks are still far removed
from high historical levels.

Our approach generalizes standard stochastic games,9 too. We propose methods
of analysis originally introduced in Joosten et al. [42] inspired by Folk Theorems for
stochastic games e.g., Thuijsman and Vrieze [71], Joosten [35, 36] and Schoenmak-
ers [67], and developed further in for instance Joosten [37, 38, 41]. Crucial notion
is that of jointly-convergent strategies which justify the necessary steps in creating
analogies to the Folk Theorem. In our view, it is convenient that the complex model
arising from endogenous transition probabilities may be solved quite analogously to
repeated games.10

the space of the relative frequency vectors and the sequence of relative frequency vectors induced
is essentially stochastic.
9At several presentations the question was raised whether our games should not be presented as
stochastic games with infinitely many states. We agree that our games fall into this class, as they can
be rewritten as such. We prefer our presentation because of its simplicity and the circumstance that
we were able to generate a number of results. Moreover, we are very sceptic about which known
results from the analysis of stochastic games with infinitely many states would be helpful to obtain
results for ours.
10We like our rather complex model to resemble repeated games for psychological reasons and for
reasons of ease of communication for instance with less mathematically inclined people (politi-
cians, civil servants). Many people have learned about the repeated prisoners’ dilemma in educa-
tional programs, so offering our model in a simple fashion may offer windows of opportunity for
communication with the general public. To present our model as a stochastic game with infinitely
many states might scare researchers but more likely less mathematically inclined people away.
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Our analysis of a special example with hysteresis shows that a “tragedy of the
commons” can be averted by sufficiently patient rational agents11 maximizing their
utilities non-cooperatively. All equilibrium rewards yield more than the amounts
associated to the permanent ruthless exploitation of the resource. Pareto optimal
equilibrium rewards correspond to strategy pairs involving a considerable amount
of restraint on the part of the agents, and are considerably higher than no-restraint
rewards and slightly higher than perfect-restraint rewards.

To present a tractable model and to economize on notations, we kept the fish
stock fixed yet stochastic, i.e., the variation in stock size and catches is only due to
random effects; we imposed symmetry and used the three “twos”: two states, two
players and two actions. Two distinct states allow to model the kind of transitions
we had in mind; two agents are minimally required to model strategic interaction;
two stage-game actions leave something to choose. In order to capture additional
real-life phenomena observed, such as seasonalities or other types of correlations,
a larger number of states may be required. Furthermore, more levels or dimensions
of restraining measures may be necessary. Adding states, (asymmetric) players or
actions changes nothing to our approach conceptually.

By keeping the model and its analysis relatively simple, hence presumably more
tractable, further links to and comparisons with contributions in the social dilemma
literature, cf., e.g., Komorita and Parks [1994], Heckathorn [30], Marwell and Oliver
[53] where dyadic choice is predominant, may be facilitated. Our resource game is
to be associated primarily with a social trap, see e.g., Hamburger [26], Platt [61],
Cross and Guyer [14] of which the ‘tragedy of the commons’ cf., e.g., Hardin [27],
Messick et al. [55], Messick and Brewer [54]) is a special notorious example.

Ongoing related research focusses on designing algorithms improving computa-
tional efficiency of existing ones to generate large sets of jointly-convergent pure-
strategy rewards. The algorithms used to find the rewards visualized in consecutive
figures in this chapter are unacceptably slow. This was an unpleasant surprise as they
were in fact modifications of algorithms working extremely rapidly in models within
the same and related frameworks (e.g., Joosten [37, 39–41]). The new algorithms
not only generate the desired sets within acceptable computing times here, but also
seem much more efficient than our algorithms used before when applied to certain
repeated games, stochastic games and gameswith frequency dependent stage payoffs
(cf., Joosten and Samuel [43, 44]).

Related ongoing research is devoted to computing threat points with spin-offs of
the algorithms of Joosten and Samuel [43, 44] for the same models as mentioned in
the previous paragraph. This is a solution born out of necessity because very little

11Our agent is not the individual fisherman, but rather countries, regions, villages or cooperatives.
Whether or not the latter care for the future sufficiently to induce sustainability (see e.g., Ostrom
[58], Ostrom et al. [59] for optimistic views), individual fisherman’s preferences seem too myopic
(cf., e.g., Hillis andWheelan [32]). Next to impatience of the agents, their number, communication,
punishment possibilities and the observability of actions taken influence the likelihood that the
tragedy of the commons can be averted (cf., e.g., Komorita and Parks [47], Ostrom [58, 59], Steg
[70]).
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is known on finding threat points in this new framework. Future research should
address this knowledge gap.

Future research should combine the various modifications and extensions of the
original Small Fish Wars [37] with the innovation presented here. Joosten [41] adds
various price-scarcity feedbacks to the model, as well as another low-density phe-
nomenon called the Allee effect. For the majority of results and our methods of
analysis we anticipate to need no more than the notion of jointly convergent strate-
gies and continuity of stage payoff functions and transition probability functions
involved.

We envision applications of stochastic games with endogenous transitions where
hysteresis-like phenomena occur, for instance shallow lakes (e.g., Scheffer [65],
Carpenter et al. [12], Mäler et al. [52]), labor markets (e.g., Blanchard and Summers
[9]), climate change (e.g., Lenton et al. [49]), or more general, where tipping or
regime shifts may occur [2, 66]. We also see possible extensions of earlier models
on (un)learning by (not) doing, cf., Joosten et al. [42, 45], and related work, e.g.,
Schoenmakers et al. [68], Schoenmakers [67], Flesch et al. [22].
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