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Abstract. In cloud computing, the arrival process of user requests is becoming
more diversiform with the globalization of users and the popularization of
mobile technology. Moreover, the workloads in cloud computing are tending
towards a hybrid of more applications types. It is hardly for the traditional
arrival process models to cover the ever-increasing new arrival processes in
reality. For that, we propose a general and flexible arrival process model to
describe various arrival processes. At the same time, we present a unified
generation algorithm to generate the corresponding workload arrival instance
based on the arrival process model automatically. The model defines the arrival
process by four steps: firstly defines the number of intervals during the workload
lifetime, then defines the length of each time interval, next defines the number of
requests arriving during each time interval, lastly defines the arrival time points
during each time interval. In the case study, we use the generic arrival process
model to describe three arrival process models of typical cloud application types
and a custom arrival process model, and present corresponding arrival instances
using the generation algorithm. The cases showed the flexibility and extensi-
bility of the model. The model and algorithm are simple and generic and are
more approaching to realistic hybrid arrival processes.
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1 Introduction

Cloud applications are reaching more and more industries, such as online social net-
work services, user data processing services, online videos, customer relationship
management applications, online mass games, online booking and online banking.
Different cloud applications have different workload patterns. At the same time, the
global distribution of cloud users and the continuous development of mobile tech-
nology make workload patterns more complex. For example, because the users are in
different time zones, the new diurnal pattern may become a superposition of multiple
traditional diurnal patterns. In most real-world cloud scenarios, the workload popula-
tion is hybrid with more than one cloud applications, and the workload patterns are
more and more diversified. To mimic the cloud workloads closer to reality, a generic
workload model is needed. A generic arrival process model plays a key role which
should cover a variety of arrival processes and independent of application types.
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The limitations of existing arrival process models for cloud workload generation
can be broadly classified into two types. One limitation is the arrival process models are
too unitary, for example only for specific applications or mimic some specific scenario
such as burst. Another limitation is the arrival process models are not general and
scalable enough to cover a variety of arrival processes. For instance, most current
arrival models are defined as arrival time points that are consistent with an independent
and identical distribution like possion process mostly. These models lack the time-
dependent characteristics such as periodicity. Though in recent years, the arrival pro-
cess models based on MAP (Markov arrival process) were studied to describe some
time-dependent characteristics. Unfortunately, the number of states and the generation
matrix of MAP models depend on different applications or different scenarios. As a
result, the arrival models lack generality and calculations for workload generation will
multiply as the number of states increases. Therefore, the MAP model is not suitable
for use as a generic arrival process model to generate hybrid workloads.

In this paper, a hierarchical generic arrival process model was developed. The main
characteristics of various arrival process models were captured and were independent
of different applications types. At the same time, we proposed a unified algorithm to
automatically generate arrival process instances that conform to the arrival model
definition.

The arrival process model is defined by four steps: (1) the duration of workload
which is defined as the number of time intervals, (2) the variation of each time interval,
(3) the variation of the requests numbers within each time intervals, (4) each arrival
time points within each metering interval in final.

Our generation algorithm supports that each step can be defined as a constant, or a
statistical distribution/process, or a self-defined function. Then the algorithm auto-
matically generates an arrival process instance based on the defined arrival process
model. The generation of sample arrival time points conforms to the corresponding
definition and has random characteristics. The option of self-defined function further
enhances the extensibility and flexibility of the generic arrival process model.

In the case study following the model definition, we demonstrated how to use the
generic arrival model to define the arrival process models for three representative cloud
applications types. A Web application, a batch application and a MapReduce appli-
cation were picked. Additionally, an arrival process model included a self-defined
function was illustrated. Furthermore, the corresponding four arrival process instances
were generated based on their arrival process models.

The rest of this article is organized as follows: Sect. 2 analyses the related works
involved in arrival process models and generation algorithms. Section 3 details the
generic arrival process model and its generation algorithm, as well as four example
demonstrations. Section 4 summarizes our work and future directions.

2 Related Works

A number of researchers have investigated modeling and simulation of arrival pro-
cesses. There are three typical representations of arrival process: point process, count
process and rate process [1]. The random variable in point process is the interval
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between adjacent arrival time points. The random variable in count process is the
number of points arrived at each equally spaced interval T. The random variable in rate
process is the normalized count, which equals to the number of points in each time
interval divided by time interval T. The point process is the most accurate because it
requires all the arrival time points. Count process and rate process lose the accurate
time points with interval T. However, if the research problem does not care about the
accurate arrival time points, the latter two processes could be chosen. For instance, in
[2] different arrival rates were defined for different types of jobs. In the existing studies
about arrival process model, some studies adopted one representation, others men-
tioned above combined representations.

Next, the related works about arrival process model are classified into three types:
i.i.d. first-order model, temporal dependent model and hierarchical model.

At present, the first-order arrival models mostly adopted point process represen-
tation. That is, the intervals sequence conforms to some distribution or some statistical
process. The most common assumption was the arrival process followed the Poisson
Process [3, 4]. Some researchers argued that this assumption are unrealistic. They built
their arrival process models by fitting real data. For example, in [5] the arrival of batch
jobs conformed to Weibull distribution. In [6] the arrival intervals were in accordance
with Pareto distribution by fitting the traces from the Google internal data center. In [7]
the interarrival times in private cloud workloads were well modeled by a 3-phase
Hyper-Exponential distribution. The author found the model with 5 parameters was
more realistically than the lognormal and Pareto models with 2 parameters. And in [§]
the author used a queueing system to model a cloud system with a lot of servers, and
interarrival times were denoted as a phase-type distribution. The phase-type distribu-
tion is composed of adjustable number of exponential phases. This phase-type arrival
process model is a general i.i.d. first-order model because any distributions can be
generated closely by a combination of these exponential phases [9].

The i.i.d. first-order arrival process models describe the statistical distribution of
interarrival times within a period of time, but not the temporal dependence between
different time periods. Namely, they cannot define the temporal features such as
periodicities, burstiness and self-similarity. To address these shortcomings, a MAP
(Markov Arrival Process) model was proposed in [10] to represent the distribution and
correlation of arrival times. Meantime, the author [10] pointed out that the MAP model
is a superset of i.i.d. first-order models, and also gave a method to fit the MAP model.
MAP models define that arrival process can be in different states. During each state
holding period, the arrival process conforms to a certain distribution, which is generally
exponential distribution [11], called MMPP (Markov Modulated Poisson Process), or
other distribution [12], called semi-Markov process, and the state transition is defined
by an intensity matrix. In recent years, some researchers believe MAP models are more
realistic than the i.i.d. first-order processes. In [13], the arrival process of a Web
application was modeled by MAP. The work in [14] fitted the interarrival times for
Grid level jobs through Poisson, Interrupted Poisson Process (IPP), MMPP2, MMPP3,
and MMPP4 models. The result was that MMPP2 is closer to the real data in
changeability than Poisson and IPP. Although MAP model introduces more realistic
temporal correlation, the state definitions and generation matrix are dependent on
applications and workload scenarios. Moreover, the complexity of model definition
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will be multiplied with the increase of the number of states. Therefore, MAP models
are not suitable for generating diverse hybrid cloud workloads in terms of generality
and scalability.

In order to more accurately grasp the characteristics of the arrival process, some
studies have adopted hierarchical models. This is similar to our modeling approach. In
[15] the author built a two-level arrival process model to describe the access to a file
system. Firstly the access times were divided into groups by clustering method. Then
three features were used to define arrival process: the interval between clusters, the
number of accesses within a cluster and the interarrival times within a cluster. Lastly,
the arrival process model was proved to synthesize access instances of a distributed
replicated file system close to the original data. Another research [1] fitted a LRD
(Long Range Dependent) arrival process model in two steps. First, the arrival rate
process was fitted by a multifractal wavelet model. Second, Controlled-Variability InF
was made to convert rate process to arrival time points. After the two steps a com-
pletely determined LRD arrival instance were generated. Strictly speaking, the above
two studies only gave the hierarchical method to generate arrival process instances
which could be close to real trace logs. Neither of them proposed arrival process model
formally. Besides, they cannot be general applicable in other types of applications or
scenarios. The hierarchical arrival process model we proposed combines the counting
process with point process, captures the main characteristics of the arrival process, and
maximizes the flexibility of the model with time-section and hierarchical methods. This
model can be used to specify diverse arrival scenarios for different applications.

At present, most cloud workload generation tools are built in the Benchmarks.
These workload generators typically enable users to generate the required workloads by
defining the distributions or parameter values of the arrival process. Most arrival
process models in Benchmarks are i.i.d. first-order model. For example, a popular Web
Benchmark: Rubis [16] defined that user session length and think time between ses-
sions conformed to negative exponential distributions. Some researchers [17] adjusted
the arrival process model of Rubis, where the request arrival rates can be set. And at a
request arrival rate, the requests arrived accord with uniform distribution. A “standard”
Benchmark for NOSQL cloud system is: Yahoo! Cloud Serving Benchmark (YCSB)
[18]. The total number of operations and different throughputs can be configured before
workload generation. Then during each timeframe, the interarrival times are generated
conformed to uniform distribution. The generated arrival process based on arrival rate
lost the variability of arrival time points within a timeframe. SPEC Cloud ™ IaaS 2016
[19] use open source CBTool [20] to generate workload. CBTool allows users to set the
duration of a workload, the maximum number of requests, and the distribution of
arrival process. Our workload generation tool is more flexible than CBTool. Four
features can be configured: the number of intervals during the workload lifetime, the
length of each time interval, the number of requests arriving during each time interval
and the arrival time points during each time interval.

We noticed there are some recent Benchmarks turned to generate workloads based
on MAP models. For example, BURSE [21] was proposed to generate workloads with
spikes and self-similarity according to a MMPP model. However, MMPP model is
complex and not intuitive for users. And one model is only true usually of one specific
application or some specific scenarios. As a consequence, MMPP model is not suitable
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for a general workload generation tool. By contrast, our arrival process model and
generation algorithm are more simple, general and intuitive. Our work laid a solid
foundation for generating hybrid cloud workloads. The work about a general workload
model and generation tool in cloud computing can be referred to [22].

3 A Generic Arrival Process Model

For simplicity and generalization of the arrival process model, the inner features which
are specific to applications are out of the question. For example, for web applications,
only the arrival time points of the first request in each session are considered. The other
requests in sessions are taken no account because the requests arrived interdependently.
Similarly, for MapReduce application, only the arrival time points of each job are
included. The start-times of mapper and reducer in each job are excluded. In other
words, our model is concerned only the variations in the number and frequency of user
requests which are common for different applications. A generic model defined the
interdependencies of a cloud application you can refer to our work [22]. Another aspect
requires further explanation, the generic arrival model defined one arrival at a time, but it
can easily be extended to the batch arrival process by adding a bulk-number parameter.

In this section, the generic arrival process model will be reported in three parts:
(1) the mathematical specification of the general arrival process model, (2) the instances
generation algorithm based on the arrival process model, (3) case study for three typical
cloud applications and one arrival process model with self-defined function.

3.1 Formal Specification of a Generic Arrival Process Model

In this section the arrival process is formally defined by a hierarchical mathematical
model. For the convenience of the reader, Table 1 lists a summary of the main
annotations in the order introduced in the paper.

Table 1. The annotations in the model

Annotation Data type Definition
Duration Integer The duration of workload
F(AT,), {ATx, x = 1, Stochastic ATy is the length of xth time interval
2,---,Duration } process
0(.) Function AT, conforms to function 6(.),
AT, ~0(.), x=1,2,---,Duration
FNR-U(AT,), Stochastic | NR-U(AT) is the quantity of arrived requests
{NR-U(ATy), x =1, process in ATy (the xth interval)
2,---,Duration }
3(.) Function NE-Y(AT,)conforms to functiond(.),
NE-YV(AT,) ~5(.)
F(T(x,k)), {T(x,k), Stochastic T(x,k) is the kth arrival time point within the
k=1,2,---NF-U(AT))} process xth time interval
{Funcy(),x =1, A set of Func, () is the function that the arrival time
2,---,Duration} functions points within the xth time interval conforms to
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A generic arrival process model that can be used to generate hybrid cloud workload
requires two conditions as follows

e [ Generality: the model can grasp the essential characteristics of the arrival process
for different cloud applications. And more complex and diverse arrival processes
can be generated by superposition.

e [ Accuracy: the arrival process model combines counting process and point pro-
cess to generate time-dependent workloads without losing the accurate arrival time
points.

In this model, firstly the total time of the workload is defined in terms of the number
of time intervals included. Then, the length of each time interval and the number of
requests arrived within each time interval can be constant or variable. And the arrival
time points within each time interval can be defined individually. This enables the
arrival process model not only to describe the accurate arrival points within a time
interval but also to describe the temporal dependence among different time intervals,
such as periodicity, bursty, variability and self-similarity. The generic arrival process
model is defined in four steps as follows.

1. The total time: Duration
An arrival process is divided into several time intervals. The total time of an arrival
process is defined as a positive integer Duration, which represents the number of
time intervals included in an arrival process. The length of each time interval could
be unequal.

2. The length of each time interval
A total arrival process is split into Duration continuous and disjoint time intervals.
The length of each time interval could be equal, noted as a constant AT. It can also
be variable, the variation of the lengths can be represented as a stochastic process
F(AT,){AT,, x=1,2,...,Duration}, where AT, is a random variable which
represents the length of x th time interval. Let 6(.) be a function used to determine
the variation of the interval lengths. The relationship between F(AT,) and 60(.) is
denoted as

F(AT,)~06(.) (1)

3. The quantity of arrivals in each interval
The variation of the arrival numbers in each time interval is denoted as a stochastic
process FNF-U(AT,), {N®-V(AT,), x = 1,2, ..., Duration}, where N*-U(AT) is
the number of arrived requests within AT, (the xth time interval). Let §(.) be a
function used to determine the variation of the arrival numbers in each time interval.
The relationship between FNf—Y(AT,) and §(.) is denoted as

FNR-U(AT,) ~8(.) )

A special case is that all time intervals are equal, so we simplified the stochastic
process as FNR-Y(x), {N*-Y(x),x = 1,2,---}, where N*-Y(x) is the quantity of
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arrivals in the xth interval. Let (.) be a function used to determine the variation of
the arrival numbers in each time interval. The relationship between FN®-Y(x) and
8(.) is denoted as

FNR-Y(x) ~6(.) (3)

4. The arrival time points in each time interval.
The arrival point process for each time interval can be defined individually. For
each time interval ATy, x = 1,2, .-, Duration, an arrival point process composed
of NR-U(AT,) time points is denoted as a stochastic process

F(T(Xa k))a {T(Xv k)v k= 17 27 o 'NR_U(ATX)} (4)

where T(x, k) is the kth arrival time point within the xth time interval. T(x,k),k =
1,2,---NR-Y(AT,) should be satisfied with

x—1 x—1 _ R_U
L AT T(x, k) < Y 7 AT k= 1,2, NR-Y(ATY) (5)

We denote a set of functions {Funcg(),x = 1,2, --,Duration}, where Func,() is
the function that the arrival time points within the xth time interval conforms to.
Namely,

F(T(x,k)) ~Func,(),x = 1,2,-- -, Duration, k = 1,2,---NFf-V(AT,) (6)

A special case is that each arrival point process is consistent, so we simplified the
stochastic process and the function as F(T(k)) and Func() respectively. And they
have

F(T(k)) ~Func(),k = 1,2, ---NFf-U(AT,) (7

3.2 A Generation Algorithm Based on Arrival Process Model

The input parameters of the generation algorithm are on basis of the generic arrival
process model, include: (1) the number of time intervals Duration, (2) the function 6(.)
determining the variation of the interval lengths, (3) the function (.) determining the
variation of the arrival numbers in each time interval, (4) a set of functions
{Func,(),x = 1,2, -, Duration} determining the arrival time points within each time
interval conforms to. Here 0(.), 8(.) and every Func,(),x = 1,2, -, Duration can be
assigned by three methods: constant, statistical distribution or process and self-defined
function. Any statistical distribution can be assigned, such as exponential distribution,
Weibull distribution. The steps of the algorithm are consistent with the steps of the
generic arrival process model. Firstly, a list of {AT,, x = 1,2,---, Duration} are
generated randomly according to 6(.). Secondly, a list of {NFf-Y(AT,), x=1,
2,- -+, Duration} are generated randomly according to 3(.). Lastly, arrival time points
{T(x,k), x=1,2,---, Duration, k = 1,2,--- Nf-U(AT,)} are generated randomly
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according to the corresponding Funcy(), x = 1,2, - -, Duration. Table 2 showed the
pseudo-code for generating the arrival process instance based on the arrival process
model.

Table 2. Pseudo-code of generation algorithm

Input: Duration, 8(.), 6 (.), Funcy(), x =1,2,---, Duration
Output: { T(x,k),x = 1,2,++, Duration, k = 1,2,--- NR-U(AT,) }

Begin
i—1
T(1,1) <0
while (i<=Duration)
{
AT; «0(.)
}
if (8(ATy) is not defined)
{
i—1
while (i<=Duration)
{ kel
while (T(i, K)<AT;)
{
T(, k + 1)«T(, k)+ random number that matches the random process Func, ()
kek+1
}
i—i+1
}
¥
else
{
i—1
while(i<=Duration)
{
NRU(AT)—8(AT;)
k1
while(k<=NR-U(AT,))
{
T(, k + 1)«<T(j, k)+random number that matches the random process Func, ()
ke—k+1
¥
i—i+l

H

End
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3.3 Case Study

To explain the generality of the arrival process model for different cloud applications in
detail, we take three typical cloud applications: Web applications [23], MapReduce
applications [24] and batch applications [5] as examples. We explained in detail the
definitions of the three arrival processes using our generic model, and gave three
generated arrival process instances applying our generation algorithm. At the same
time, we presented an extra example on the definition of an arrival process model with
self-defined function as well as the generated arrival process instance.

Web Application Arrival Process Model Example

In this web application workload, the arrival process was divided into rounds. The time
of each round is unequal. Within one round, the number of active users is denoted as
Concurrent_Users, and each active user initiated one session. Ramp_Up_Period
specifies the time to initiate all the sessions in one round. If all sessions are created at
the same time, then Ramp_Up_Period = 0. Otherwise, the sessions are created one
after another at regular intervals. The interval between two adjacent sessions is
Ramp_Up_Period | Concurrent_Users. For example, there were 5 active users in a
round and 10 s of Ramp_Up_Period, it will take 2 s between each session creation.
The length of each session conforms to the negative exponential distribution Exp(15).
Thus, the time of each round is defined as

F(ATx) ~ 6(.) = Ramp_Up_Period + Exp(15) (8)

Because in one round each active user can only create one session, the number of
sessions in one round N®-U(AT,) is the number of active users. According to the
specification in [23], the variation of the arrival numbers in each round is defined as

FNR-Y(x) ~8(.) = N(10,3) )
The arrival time points in round x is defined as

Ramp_Up_Period

e _ R_U
T(x,k) = (k—1) =% (Concurrentsters>’ k=1,2,.. N*=7(ATy) (10)

We use the following steps to generate the arrival process instance.

1. Give Duration a value

2. Generate Duration Concurrent_Users which are random sampled by normal dis-
tribution N(10, 3)

3. Generate Concurrent_Users session lengths which are random sampled by negative
exponential distribution Exp(15). In each round, the length of a round is given by
the sum of Ramp_Up_Period and the maximum session length of the samples.

4. In each round, Ramp_Up_Period is set as 800 s, then the interarrival time is
(Ramp_Up_Period/Concurrent_Users)
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Because of limited space, Fig. 1 showed an arrival process instance with Dura-
tion = 4, the number of sessions in 4 rounds are 9, 11, 13, 5, the 4 session lengths are
823.6955 s, 849.5503 s, 826.9957 s, 826.9957 s. We take the start time of the round as
the first arrival point. And the interarrival time in each round is in turn
Ramp_Up_Period/Concurrent_Users = 88.8889 s, 72.7273 s, 61.5385 s, 160 s.

AT, =8495503s | | AT, =8269957s
NI | NY(AT;)=13
‘
‘

AT, = 82369555
NRY (AT,)=9

AT, =8269957s
NRY(AT,)=5

| | |
! i |
| | |
| | |
! |
| | |
! | |
| | |
! | |
| | |
! | |
| | |
| | |
|
| | |
! | |
Y5000 V0000 d0000¢C y i |
¢y 000000000 00 0 0 " H
| | |
| | |
| I |
| | I
|
| | |
! | |
| | |
! | |
| | I
! I |
| | i
| | |
! | |
| | |
| | |

|
0 823.6955 1673.2458 2500.2415 3327.2372
request arrving time(s)

Fig. 1. A web application arrival process instance

MapReduce Application Arrival Process Model Example

The arrival process model [24] is first-order. The interarrival time conformed to
Weibull(20,0.5). As a result, it is not necessary to divide the arrival process model into
time intervals, then Duration = 1;And the interarrival time At; conforms to
Weibull(20,0.5), that is Func( ) ~ Weibull(20,0.5), thus, the kth arrival time point is
equal to

T(1, k) =T(1, (k= 1))+ A, k=1,2... (11)

We use the following steps to generate the arrival process instance.

Duration = 1, AT = 6000 s
. Randomly generate sample points conforming to Weibull(20,0.5) as interarrival
times until the arrival time point is beyond AT.

N =

Figure 2 shows an instance of the arrival process, which generates 20 arrivals
within 6000 s.
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AT=6000s
NAY (AT)=20

| L |
0 1000 2000 3000 4000 5000 6000
job arriving time(s)

Fig. 2. A MapReduce application arrival process instance

Batch Application Arrival Process Model Example

The arrival process model [5] appears Daily-cycle pattern. The day is first divided into
48 intervals by half an hour, i.e. AT = 1800s. Then the variation of the number of
arrivals during each of 48 intervals is defined to conform to Weibull distribution, i.e.
3(.) ~W(1.79,24.16). The hours from 8AM to 5PM are called “peak hours”. The
variation of the interarrival time At; conforms to also Weibull distribution with dif-
ferent parameters, i.e. Func() ~W(4.25,7.86). Thus, the arrival time points in each
interval can be defined as

T(x,k) = T(x,k — 1) 4 Aty (12)

We use the following steps to generate the arrival process instance.

Duration = 48, AT = 1800 s

. Randomly generate 48 sample points conforming to W(1.79,24.16) as the number
of arrivals within each of 48 intervals

3. During the peak hours, the interarrival times in each interval are generated ran-

domly according to the Weibull distribution W(4.25,7.86). The numbers of sample

points within each interval are determined by step 2. And in each interval the first

arrival time point is the start time of the interval.

N

Because the author only gave the interarrival time during the peak hours, also the
space is limited, we showed an instance of the arrival process during only the first four
time intervals (that is, from 8 to 10) in Fig. 3. A batch arrival process is multiple
arrivals at a time. However, we are more concerned with the arrival times in this work,
so that the number of jobs in an arrival is not defined.
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AT = 1800s AT = 1800s AT = 1800s AT=1800s | |
NRY(AT) =43 NRY(AT) =57 NRY(AT) =39 NRY(AT) =30 | |

QR IR

LI AR S T

0 1800 3600 5400 7200
job arrvinng time(s)

Fig. 3. A batch application arrival process instance

An Example of Arrival Process Model with Self-defined Functions

The arrival process model introduces more flexibility by supporting self-defined
functions. We presented an example of the arrival process including self-defined
functions. Firstly, we gave the specification of the self-define arrival process.

arrival rate

time

Fig. 4. Arrival rate function example

5 + 5x (0<x<3)
6 (x) =120 B=<x<5 H 8x)=8x-9) (13)
20—2(x—5) (5<x<9)

As can be seen from Fig. 4, the arrival rate increases linearly from 8 am to 11 am,
from average 5 arrivals per hour to 20 arrivals per hour. From 11 pm to 1 pm, the
arrival rate remains at average 20 arrivals per hour. From 1 pm to 5 pm, the arrival rate
drops linearly until 12 arrivals per hour. After 5 pm it is closed. The time is divided
into hours, i.e. AT = 1h. The arrival time point in an interval conforms to the poisson
process, and A; of the possion process is set to the mean number of arrivals in the ith
interval. In Fig. 4, horizontal axis is time with hour as the unit, and vertical axis is
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arrival rate. 8 am corresponds to the value O on the x-axis. The mathematical function
of the variation of arrival rate is defined in Eq. 13.

N —

We specify the access process with our model as follows:

The time is divided into hours, i.e.AT = 1h.

. The mean number of arrivals in the ith interval is

E(Nf-Y(i)) = / 3(x)dx (14)

The arrival time points in the ith interval are

{T(i,k), k =1,2,---N*-Y(i)}, Fy() ~ Possion(E (N*-Y(7)))  (15)

We use the following steps to generate the arrival process instance.

Duration =9, AT = 1h.

. The number of arrivals in each interval is randomly generated according to the

mean number of arrivals in this interval. As shown in Fig. 5, the nine samples are 6,
11, 16, 20, 19, 18, 15, 12.

The interarrival times in each interval are generated randomly according to the
passion process with their parameter A,.
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Fig. 5. A self-defined arrival process instance

4 Conclusion

This paper presented a general hierarchical arrival process model and an algorithm for
generating arrival process instances based on the arrival model.

The general arrival process model was specified in four steps, had two advantages.

(1) Tt captured the essential features of arrival process models, was independent of
application and workload scenario. (2) It combined the advantages of point process and
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count process, can not only describe accurate time points in each interval but also
describe temporal dependence of intervals.

Our corresponding generation algorithm supports that each of four steps can be
defined as a constant, or a statistical distribution/process, or a self-defined function. The
option of self-defined function further enhances the extensibility and flexibility of the
generic arrival process model. Compared with the existing generation tools, our
algorithm is simple and effective, and has stronger scalability.

The case study showed the generality, flexibility and effectiveness of our works. In
sum, the generic arrival process model and generation algorithm will provide a solid
foundation for generating more realistic hybrid cloud workloads.

In the future, we will further study how to formally define a more complex arrival
process model by combined multiple general arrival process models in vertical and
horizontal axis of time. In vertical axis of time, a complicated arrival process model can
be the superposition of multiple parallel arrival processes model. In horizontal axis of
time, a time-dependent arrival process model can be defined by multiple consecutive
arrival process models. We believe that the study will make the general arrival process
model more comprehensive.

Acknowledgement. The authors wish to thank Natural Science Foundation of China under
Grant No. 61662054, 61262082,61562064 and 61462066, Natural Science Foundation of Inner
Mongolia under Grand No.2015MS0608 and 2018MS06029, Inner Mongolia Science and
Technology Innovation Team of Cloud Computing and Software Engineering and Inner Mon-
golia Application Technology Research and Development Funding Project “Mutual Creation
Service Platform Research and Development Based on Service Optimizing and Operation
Integrating”, Inner Mongolia Engineering Lab of Cloud Computing and Service Software and
Inner Mongolia Engineering Lab of Big Data Analysis Technology.

References

1. Li, H.: Realistic workload modeling and its performance impacts in large-scale escience
grids. IEEE Trans. Parallel Distrib. Syst. 21(4), 480-493 (2010)

2. Guo, M., Guan, Q. Ke, W.: Optimal Scheduling of VMs in Queueing Cloud Computing
Systems with a Heterogeneous Workload, vol. 6 (2018)

3. Vakilinia, S., Ali, M.M., Qiu, D.: Modeling of the resource allocation in cloud computing
centers. Comput. Netw. 91, 453-470 (2015)

4. Lin, A.D., Li, C.S., Liao, W., Franke, H.: Capacity optimization for resource pooling in
virtualized data centers with composable systems. IEEE Trans. Parallel Distrib. Syst. 29(2),
324-337 (2018)

5. losup, A., Sonmez, O., Anoep, S., Epema, D.: The performance of bags-of-tasks in large-
scale distributed systems. In: Proceedings of the 17th International Symposium on High
Performance Distributed Computing—HPDC 2008, p. 97 (2008)

6. Costa, G.D., Grange, L. Courchelle, I.D., Costa, G.D., Grange, L., Courchelle, 1.D.:
Modeling and generating large-scale google-like workload (2016)

7. Wolski, R., Brevik, J.: Using parametric models to represent Private cloud workloads. IEEE
Trans. Serv. Comput. 7(4), 714-725 (2014)



114

8.

11.

12.

13.

14.

15.

16.
17.

18.
19.
20.
21.

22.

23.
24.

C. An et al.

Atmaca, T., Begin, T., Brandwajn, A., Castel-Taleb, H.: Performance evaluation of cloud
computing centers with general arrivals and service. IEEE Trans. Parallel Distrib. Syst. 27
(8), 2341-2348 (2016)

. Bolch, et al.: Queueing Networks and Markov Chains. Wiley, New York (1998)
. Casale, G.: Building accurate workload models using Markovian arrival processes. In:

Proceedings of the ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems - SIGMETRICS 2011, p. 357 (2011)

Meier-Hellstern, K., Fischer, W.: The Markov-modulated Poisson process (MMPP)
cookbook. Perform. Eval. 18(18), 149-171 (1993)

Wang, E., Yang, Y., Wu, J, Liu, W., Wang, X.: An efficient prediction-based user
recruitment for mobile crowdsensing. IEEE Trans. Mob. Comput. 17(1), 1 (2017)
Pacheco-Sanchez, S., Casale, G., Scotney, B., McClean, S., Parr, G., Dawson, S.: Markovian
workload characterization for QoS prediction in the cloud. In: Proceedings—2011 IEEE 4th
International Conference on Cloud Computing CLOUD 2011, pp. 147-154 (2011)

Li, H., Muskulus, M., Wolters, L.: Modeling job arrivals in a data-intensive grid. Job Sched.
Strateg. Parallel Process. 4376, 210-231 (2007)

Ware, P.P., Page, T.W., Nelson, B.L.: Automatic modeling of file system workloads using
two-level arrival processes. ACM Trans. Model. Comput. Simul. 8(3), 305-330 (1998)
RUBIS. http://rubis.ow2.org/ (2018)

Wilkes, J.: PRESS: PRedictive Elastic ReSource Scaling for cloud systems. In: 2010
International Conference on Network and Service Management, pp. 9-16 (2010)

YCSB. https://github.com/brianfrankcooper/Y CSB/wiki

Cloud, S., et al.: SPEC Cloud ™ Taa$ 2016 Benchmark Design Overview, pp. 1-37 (2016)
CBTOOL. https://github.com/ibmcb/cbtool/tree/master/scripts

Yin, J., Lu, X., Zhao, X., Chen, H., Liu, X.: BURSE: a bursty and self-similar workload
generator for cloud computing. [EEE Trans. Parallel Distrib. Syst. 9219 (2014)

An, C., Zhou, J., Liu, S., Geihs, K.: A multi-tenant hierarchical modeling for cloud
computing workload. Intell. Autom. Soft Comput. 1-8 (2016)

The Apache Olio Project. http://incubator.apache.org/olio/

Chen, Y., Ganapathi, A., Griffith, R., Katz, R.: The case for evaluating MapReduce
performance using workload suites. In: 2011 IEEE 19th Annual International Symposium on
Modelling, Analysis, and Simulation of Computer and Telecommunication Systems,
pp- 390-399 (2011)


http://rubis.ow2.org/
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/ibmcb/cbtool/tree/master/scripts
http://incubator.apache.org/olio/

	A Generic Arrival Process Model for Generating Hybrid Cloud Workload
	Abstract
	1 Introduction
	2 Related Works
	3 A Generic Arrival Process Model
	3.1 Formal Specification of a Generic Arrival Process Model
	3.2 A Generation Algorithm Based on Arrival Process Model
	3.3 Case Study

	4 Conclusion
	Acknowledgement
	References




