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M. Emin Ozdemir, Ahmet Ocak Akdemir, Erhan Set and Alper Ekinci

Abstract An integral operator is sometimes called an integral transformation. In the
fractional analysis, Riemann-Liouville integral operator (transformation) of frac-
tional integral is defined as

_L * _ a1
5.0 = 1 /0 (x — % F()di

where f(¢) is any integrable function on [0, 1] and o > O, ¢ is in domain of f.

1 Introduction

The history of fractional analysis goes back to the arising of classical differential
theory. Despite the fact that history is based on extreme ages, the interpretation of
classical analysis as a result of the complexity of its physical structure has not been
postponed and the science has not been very popular in engineering. However, the
fact that fractional derivatives and integrals are not local or punctate has made the
matter of fractional analysis remarkable in terms of better expressing the reality of
nature. Thus, making this more widespread in science and engineering will play an
important role in better interpreting and expressing nature.
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Fractional analysis can be considered as an extension of classical analysis. Frac-
tional analysis does not have the definition of a single derivative as itis in the classical
analysis, but the presence of more than one derivative gives the opportunity to obtain
the best solution to the problems.

Fractional analysis has been studied by many scholars, and they have expressed
fractional derivatives and integrals in different forms with different notations. But
although these expressions are transitions between each other, they differ in terms of
definitions and physical interpretations of their definitions. For the first time in 1695,
the notion of fractional derivative and integral was raised by asking whether it would
be meaningful if the derivation order was 1/2 in a letter sent by L’Hospital to Leibnitz.
Thus, the origin of fractional analysis begins with the question of L’Hospital.

This question on fractional derivatives and integrals has been a subject of study by
many famous mathematicians such as Liouville, Riemann, Weyl, Fourier, Laplace,
Lagrange, Euler, Abel, Lacroix, Griinwald, and Letnikov for more than 300 years.
Since then, fractional differential equations have found many application areas
including the theory of transmission lines, chemical analysis of fluids, heat transfer,
diffusion, Schrodinger equation, material science, fluids, electrochemistry, fractal
processes. Much of the mathematical application of fractional computing techniques
has been put into place before the end of the twentieth century, but it has only been
possible within a hundred years to achieve exciting achievements in engineering and
scientific applications.

The fractional differential calculation technique not only contributes to a new
dimension to mathematical approaches to explain physical phenomena, but also
contributes to the interpretation of physical phenomena. The ranks of the differential
equations describing the physical phenomena determine the rate of change in the
physical state involved. The fractional-order differential at this point plays a major
role in understanding the character of the physical phenomenon as well as closing
the weaknesses of differential equations of integer order to explain some physical
phenomena.

There are many definitions in the literature of the fractional derivative and inte-
grals. Many of these definitions make use of the integral form when making fractional
derivative definitions. The most famous of these definitions is Riemann—Liouville.

Some authors discussed whether the fractional derivative is indeed a fractional
operator. Today, this question is still open to debate. Perhaps this is a philosophical
issue. Moreover, this new definition can be considered as a transformation for the
solution of differential equations of fractional order even if there is no definition of
a fractional derivative. Obviously, this discussion is an argument of what the new
theory is to be given. It is always a matter of deserving to study the definition of this
new fractional derivative and fractional integral.

Various types of fractional derivative and integral operator were studied: Riemann—
Liouville, conformable fractional integral operators, Caputo, Hadamard, Erdelyi—
Kober, Griinwald-Letnikov, Marchaud, and Riesz are just a few to name.

In the present chapter, we shall recall some of fractional integral operators, which
generalizes the classical integrals. We shall start this chapter with some results and
definitions to refresh our memories about some of the remarkable milestones in the
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theory of fractional calculus and recall some inequalities involving two kinds of
fractional integral operators.

Finally, we will give inequalities of Hermite—Hadamard type, Griiss type,
Ostrowski type involving other types of fractional integral operators. All of this
will be presented chronologically.

2 Riemann-Liouville Fractional Integral Operators
and Inequalities

The following definitions are well-known in the fractional calculus and have been
used in many fields of mathematics (see the references [1-4]).

Definition 2.1 ([5]) Let f € L[a, b]. The Riemann-Liouville integrals /7, f and
Jit f of order & > 0 are defined by

1 t
SO = Fs / (=0 fWdr, 1> a,

and

1 b
S f(t) = m/ x =0 'f(x)dx, t<b,

respectively, where I' () = fooo e 't*'dt. Here J +f(t) = Jb f@)= f(@).

In the case of @ = 1, the fractional integral reduces to classical integral.

In this paper, some new integral inequalities have been proved by using con-
formable fractional integrals for functions whose derivatives of absolute values are
quasi-convex, s-convex and log-convex functions.

Several researches have proved different types of integral inequalities via
Riemann-Liouville fractional integrals. We will start with the new representation
of celebrated Montgomery identity for fractional calculus that was proved Anastas-
siou et al. in 2009.

Lemma 2.1 ([6]) Let f : [a, b] — R be differentiable on [a, b], and f' : [a, b]
R be integrable on [a, b], then the following Montgomery identity for fractzonal
integrals holds:

£ = 2 ) B — S (B ) )+ TP DB,z

where P>(x,t) is the fractional Peano kernel defined by:

b —-x)""T(@), a<t=<x,

Py(x.1) =
200D =0 by _eyiare), x <1 <b.
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The authors have also extended Ostrowski’s inequality and Gruss inequality to
fractional calculus as follows.
Theorem 2.1 ([6]) Let f : [a, b] — R be differentiable on [a, bl and | f'(x)| < M,
for every x € [a, b] and o > 1. Then, the following Ostrowski fractional inequality
holds:

‘f( T “Jff(b)JrJﬁ_'Pz(x,b)f(b)‘

M b—x o _ 11—«
< m|:(b—x)<2a<b_a>—a—1)+(b—a) b —x) ]

Proposition 1 ([6]) Suppose that f (x) and g(x) are two integrable functions for all
x € [a, b), and satisfy the conditions

m<®B-x)"f@x)<M, n<@®-x)""gx) <N,

where o« > 1/2,and m, M, n, N are real constants. Then, the following Gruss frac-
tional inequality holds:

P2 =D joami o)) —

b-ar @ b —ap’e/Ols®

1
=< ) (M —m)(N — n).

Another important study on the Riemann—Liouville fractional integrals has been
written by Dahmani in 2010. The following results are concerning with Minkowski
inequality.

Theorem 2.2 ([7]) Leta > 0, p > 1 and let f, g be two positive functions on [0, c0)
such that for all t > 0, J* fP(t) < oo, J¥gP(t) <o0. If0 <m < % <M, e
[0, t], then we have

1+ M@m+2)

@ e
< M DM T D [J9(f + )" (0)]

[ o] +[1%g" )]

Theorem 2.3 ([7]) Leta > 0, p > 1 and let f, g be two positive functions on [0, 0c0)

such that for all t > 0, J* fP(t) < oo, J*gP(t) < oo. IfO<m<% <M, e
[0, t], then we have

2 2 M+1 +1

[Jafp(t)]p + [Jagp(t)]” < <* _ 2)

[ 77 (0] [1°gP )] .

Theorem 2.4 ([7]) Leta > 0, p > 1 andlet f, g be two positive functions on [0, 00).
If f?, g” are two concave functions on [0, 00), then we have
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27PU(F0) + £)P(8(0) + g0 (JU (")’
< JUET )T g ().
We will remind an integral identity that was proved by Set in 2012.

Lemma 2.2 ([8]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a <b. If f' € Lla, b), then for all x € [a, b] and a > 0 we have:

b—a
_ (X _a)Ot+1

b—a

N\ b — x)
<(x @+ (b= )f() Mo+ 1 S D @+ g f o))

1 (b _x)Dt+1 1
/ t“ f'(tx + (1 — Ha)dt — —f tf'(tx + (1 — )b)dt
0 b —d 0

where I' (o) = fooe’l a=lqy.

By using this identity, the author has been given Ostrowski-type integral inequal-
ities for s-convex functions where I" is Euler gamma function.

Theorem 2.5 ([8]) Let f : [a,b] C [0,00) — R be a differentiable mapping on
(a, b) with a < b such that f' € Lla, b]. If |f'| is s-convex in the second sense
on [a, b] for some fixed s € (0, 1] and | f'(x)| < M, x € [a, b], then the following
inequality for fractional integrals with o > 0 holds:

— @) + (b — x)* Mo+ 1
‘((x L x)>f<) %J“f(H “+f(b)]‘
(1 Ca@+ DI+ D\ [(x —a)*t + (b — x)ot!
* Fla+s+1) )[ a+s+1 ]

=

b—a

Theorem 2.6 ([8]) Let f : [a,b] C [0,00) — R be a differentiable mapping on
(a, b) with a < b such that f' € Lla, b]. If | f'|? is s-convex in the second sense
on [a, b] for some fixed s € (0, 1], p,q > 1 and |f'(x)| < M, x € [a, b), then the
following inequality for fractional integrals holds:

x—a)+ b —x)* MNa+1)
‘( b—a )f()_ b—a)

- M < 2 )(]1|:(x_a)a+1+(b_x)ut+li|
_(1_}_[,“)% s+ 1 b—a

1,1
wherep—i—q—l.

[V f(a) + °‘+f(b)]'

Theorem 2.7 ([8]) Let f : [a,b] C [0,00) — R be a differentiable mapping on
(a, b) witha < b such that f' € Lla, b]. If | f|? is s-convex in the second sense on
[a, b] for some fixed s € (0,1],q > 1, and | f'(x)| < M, x € [a, b), then the follow-
ing inequality for fractional integrals holds:
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— @) + (b — x)* Mo+ 1
‘(“ “)+( x)>f() (a+)U“ﬂ)+ %ﬂmﬂ

(b—a)
1—7 1 g
<1+(x> (a+s+1)

M
T+ DI+ D\ 7 [ (x —a)* + (b — x)@+!
(14 Tt DR [emer et o]

IA

where a > 0.

Sarikaya and Ogiinmez have extended the Montgomery identities for the Riemann—
Liouville fractional integrals by using a different proof method; they have used these
Montgomery identities to establish some new integral inequalities. The authors have
also developed some integral inequalities for the fractional integral using differen-
tiable convex functions.

Lemma 2.3 ([9]) Let f : I C R — R be a differentiable function on I° witha, b €
I(a < b)and ' € Li[a,b), then

fx) = L(b WTUIE (b)Y = IETH (P2, b (b)) + IS (Pate, Y (B)), = 1,

where P>(x,t) is as in Lemma 2.1

U} —x)=T(@),a <t <x,

Prlx )= { t=h (y _ xyleT(a), x <1 <b.

Theorem 2.8 ([9]) Let f : I C R — R be a differentiable function on 1° with ' €
Li[a, b], then the following identity holds:

() l—a ja b—a o
A=20f() = — (b —x) Jaf(b)—k<m) fla)

— I (P3(x, b) f (D) + TS (Ps(x. b) f' (b)), a =1,
where P3(x,t) is the fractional Peano kernel defined by

t—(1— )»)a —Ab l—a
Py(x,t) := b— (b—x)"T(a),a=t<x,
EA M(b )lfc(r(a)’ X S ¢ S b.

forO <A <1.

Theorem 2.9 ([9]) Let f : [a, b] — R be differentiable on (a, b) such that [’ €
Li[a, b], where a < b. If | f'(x)| < M for every x € [a, b] and a > 1, then the fol-
lowing inequality holds:
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F(Ol) l—a ja
‘(1 =20 f(x) — m(b —x) S f D)

b— a—1
+ A (ﬁ) f(@ + ¢ (Ps(x, b) £ (b)) ‘

M
a(a+1)

{(b —a)*(b— )22 201 = V)T + A —a) — 1]

b —
£ (b—x) [2(1 Y @+ 1)] }
b—a
Theorem 2.10 ([9]) Let f : [a, b] — R be adifferentiable convex function on (a, b)
and f' € Ly[a, b). Then for any x € (a, b), the following inequality holds:

2

1 [a(b_x) £l - ((b—a)“(b—x)l—a

al@+1[ b—a
2
+a(b X _ (@ + 1)(b —x))f’(x)}
b—a
I'a

-

s (=) B) = I (P, D) (b)) = f (), @z

The fractional integral form of Hermite-Hadamard inequality was proved by
Sarikaya et al. in 2013 as follows.

Theorem 2.11 ([10]) Let f : [a, b] — R be a positive function with0 < a < b and
f € Lila, bl. If f is a convex function on [a,b], then the following inequalities for
fractional integrals hold:

a+b e+ [, a fa)+ f(b)
f< > )SZ(b—a)"‘ [Ja+f(b)+‘]b*f(a)]§f

with a > 0.

In the same paper, the authors have given a new integral identity and generalized
Dragomir and Agarwal’s results to fractional calculus.

Lemma 2.4 ([10]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a < b. If f’ € Lla, b), then the following equality for fractional integrals holds:

fl@+fb) T+
2 2(h—a)¢

. 1
= bT“/ [(1 = 0% — 91 (ta + (1 — 1)b)dt.
0

(1%, £ (b) + - f(a)]

Theorem 2.12 ([10]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a < b. If | f'| is convex on [a,b], then the following inequality for fractional integrals
holds:
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fla+fb) T+l
2 2 (b —a)

- b—a ] 1[, B
_m( —2—a)f(a)+f()-

(12, £ b) + 5 f@)]

Tariboon et al. have proved some new Gruss-type inequalities involving Riemann—
Liouville fractional integrals.

Theorem 2.13 ([11]) Let f be integrable function on [0, 00). Assume that (Hy)
there exist two integrable functions ¢, and ¢, on [0, 00) such that

@1(1) = f(1) = ga2(1), V1 €0, 00),
Then, fort > 0, a, B > 0, one has:
IPou) I f (1) + T ()P f (1) = T2 () TP o1 (0) + T F (1) TP £ (1).
Theorem 2.14 ([11]) Let f and g be two integrable functions on [0, 00). Suppose

that (Hy) holds, and moreover, one assumes that (H,) there exist Yy and \r, integrable
functions on [0, 00) such that

Yi(t) = g(t) < (1), Vi €[0,00),

Then fort > 0, «, B > 0 the following inequalities hold:

(@) JPY ()T f () + T (1) TP g(t) > TPy (1) J%0a(t) + J* f(1) TP g (1),

(b) JPoi(1)J*g(t) + T Y () TP £ (1) = TPy () T Yra(t) + JP f(1) TP g (1),

(©) J*@() TPy + T F ()P g(t) = T pa(t) TP g(t) + TPy (1) J* f (1),

d) Jor(1)J Py + T f()TPg(t) = T (1) TP g(t) + TPy (1) J® £ (2).

Theorem 2.15 ([11]) Let f and g be integrable functions on [0, 00) and let
©1, ©2, Y1 and yr, be integrable functions on [0, 00), satisfying the conditions (Hy)
and (H,) on [0, 00). Then, forallt > 0, a > 0, one has

o

ﬁﬂfg(t) —JOf0JI%g)| < VT (f, o1, 9T (g, Y1, ¥2),
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where T (u, v, w) is defined by

T(u,v,w)= W) — J%u@)(J%u(t) — J*v(t))
ta

+ m]“vu(t) — J”v(t)]“u(t)
ta o o o

+ m] wu(t) — Jw@)J%u(t)

+ J% (@) J%w(t) — t—J“vw(t).

C(a+1)

A new generalization of Montgomery identity has been given by Sarikaya et
al., and the authors have established new Ostrowski-type inequalities by using this
identity as follows.

Throughout this study, we assume that Peano kernels defined by

Ki(x.1) = [f—a-5x—-a)) a<t<x
1, )_{[t—b+ (b—x)] x<t<b
K = a—‘(x—fl)](b—x)1 “T'a),a <t <x
20D = 1 p+ 2 — 0] (- 0T (@), x <1 < b

[t—a——(x—a)](b—x)1 ‘T'lw),a <t <x
hex, ’)_{%[b t+2b—0]b—x'""T@), x <t <b.

Lemma 2.5 ([12]) Let f:1 C R — R be a differentiable function on 1° with
a,bel (a<b), a>1,0<xi<1,and ' € L\[a, b, then the generalization of
Montgomery identity for fractional integral holds:

(b—x)'
a

A
(1 _ §>f(x) = I (Kol b) /(b)) 4

T(e)J% f(b)
A
= —J* ' (Ka(x, b) f (b)) — 7= a)* 2 (x —a)(b—x)*" f(a)

Theorem 2.16 ([12]) Let f : [a, b] — R be differentiable on (a, b) such that ' €
Li[a, b], wherea < band0 < X < 1.If|f'(x)| < M foreveryx € [a,blanda > 1,
then the following Ostrowski fractional inequality holds:

( )1 o N
~ )i )_—F( )a f ()
A
LT K D f(0) + S (b = )P —a) (b = )" f (@)

iA(x)
I'(a)
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where
A(x)
F(oc)(b—x)lo‘{ |:2(b—a)+)»(x—a) b—a:|
=— "3 b-a) —
b—a 2a a+1
J20—x)  (b—a)+rkx -
+b-x) [ a+1 o :|}

Theorem 2.17 ([12]) Let f : [a, b] — R be differentiable on (a, b) such that ' €
Li[a, b], where a < b, 0 < A <1, and o > 1. If the mapping | f'|? is convex on
[a, b], g = 1, then the following fractional inequality holds:

b l—a
'( - —>f( )~ %F(a)]jf(b) + 2 (Ka(x, ) £ (b))

+5(b —a)* 2(x —a)(b—x)*"" f(a)

1
—(A(X))l_f(lf @17B@) + £ (B! Cx))s

I'(a)
where
_1"(0[)(17—a)1 @ wtl 2(b—a)+k(x—a)_b—a
PO =6y {(b_“) [ 2a+ 1) a+2}
Cen[20-0)  (b—a)+ix - ““’“
e e
and
_ C(e)(b —x)'—® o 2(b—a) + A(x —a) b—a 1
CO=—""0 {(b_“)[ 2a(a + 1) _<a+1_a+2>]

_ a+l 1 — (b_X)
+2(b —x) (a+1 (a+2)(b—a)>

—(b—x)“<(b—a)+x<x—“+b>>< box —l>}.
2 b—-—a)a+1) «

Set et al. have given a new integral identity by using Riemann-Liouville fractional
integrals and proved several new Simpson-type integral inequalities that generalize
previous results.

Lemma 2.6 ([13]) f : [a, b] — R be a differentiable function on (a, b) witha < b.
If f € Lla,b]l, n >0, and o > O, then the following equality holds:
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a+nb na+b
I(a,b;n,a)= |:f(a)+f(b)+2f< +1>+2f<n+1):|

Fe+DHm+D*] na+b N a—+nb
 6(b—a) Pff<n+1)+%f(n+1)}

T(a@+1)(n+ 1)*
B 3(b —a)? [ ‘j;:f]”"'f (b) + er+b f (a)i|

_ b—a M2 —0*—7 (n+t 1—¢
~sorn [ 5] Gtes i)
"M =21 —-0*7 ,(1—1t n+t
+/(; |: 3 :|f<n+la+n+1b>dt>

forall x € [a, b] and where T () = f"o —uy o=y,

Proof By using integration by parts, we have

1_/1 2(1 — )% — ¥ P n+ta+1—tb dr
S 3 nt 1 T atl

n—+1 na+b
30— [f(“) 2f< lﬂ

na+b

1 a+1 s +b a—1
_O;—((l:’ja))aH / £ ) <nna+1 _x) dx

20[ (l’l+ )a+l
3(b — a)et!

(=20 -0, (11t n+t
e [ [ (e )
n+1 a+nb
~5tma 7042 (55T
a+1 a—1
a(n+1) thf()( a—i—nb) dx

3(b — a)e+! +1

20[ n+1 )a+1
3(b — a)t!

na +b

/ f)(x—a)dx

and

n+1

f (x) (b —x)* " dx.

By adding I, and I, and multiplying the both sides %, we can write
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L+ = é [f(a) b ) +2f <“ +”b> +of (”“ “’)}

n+1 n+1
na+b a71
DE [ b
_an kDT (MR )
6(b—a) J, n+1
na+b
a(n+ 1% +1 o
30— f ) (x—a)* " dx

am+ D> [P a+nb\*!
=T - d
6(b —a)° wf(x)<x n+1> *
am+ D> [P
3(b —a)* Jaim

n+1

f(x) (b —x)*"dx.

From the facts that

na+b

) / U rme—aT =, f @
! ’ a—1 _
T@ Jug T 0T dx = iy 1)

/'TI" na+b . a_ldx Jof na+b
F(a) +1 T n+1

a+nb a+nb
dx = J ,
F(tx) wf(x)(x n+1> * bf<n+1>

we get the result. (]

Theorem 2.18 ([13]) Let f : [a, b] — R be a differentiable function on [a, b). If
f' € Lla, bl and | f (x)| is convex function, then the following inequality holds for
fractional integrals with a > 0;

I (a,b;n,a)l
1 a+l 1 a+1
b—a 3_2(2?11) _4<1_2i:1) , )
21D TR (|l @]+ @)

where I" («) is Euler gamma function.

Proof From the integral identity given in Lemma 1 and by using the properties of
modulus, we have
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177
I (a,b;n,a)
_ 1 Y B
- b—a ( 20 =0 —t f,<n+za+1 tb)‘d;
=20 =], (1—1 n+t
+fo 3 f<n+1a+n+1b> dt)‘
Since | f (x)| is convex function, we can write
|l (a,b;n,a)
b—a "2 —-n—| (n+t
S2(n+1)(0 3 ( ’f()|+ ‘f (b)|)
M =20 =0 (1—1t, , n4t
+/0 3 (n—l—l |f (a)|+n+_1 |f (b)|>dt>
Cb—a | 200" e (4
T2(m41) /( 3 )<n+1|f()\+ |f(b)|)
0
\ 2(1
Y — — 1 +t
+/( ; )>(n \f<>|+—|f<b>\)
- -
/( 3 )( +1\f<>|+ |f<b>\)
0
1 —2(1 o
) ()
By a simple computation, we obtain the desired result. O

Theorem 2.19 ([13]) Let f : [a, b] — R be a differentiable function on [a, b]. If

f' € Lla, bl and | ) |q is convex function, then the following inequality holds for
fractional integrals witha > 0, g > 1, and p~' +q~' = 1;
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|l (a,b;n, )l

e (| a)
“2m+1)
2n+1 ay
X[<2(+1)|f()| 2<+1>|f()|)

(1
+(sagp @+ g lrer)’ }

where I" («) is Euler gamma function.

2 =0% -1
3

Proof By using Lemma 1 and Holder integral inequality, we can write
,(n+t 1-
—b
f <n+1 + n+1 )
1—1t n—+t
! b||dt
f(n+la+n+l) >
1 1
PP (! ndt  1—r \|7 \7
dt ' b)| dt
) (/(; f<n+1a+n+1 )
1 1
L _oq—peP \7 [l 1—t n+t \|7 \9
—_— dt ! b)| dt .
+</0 3 /o f<n+1a+n+1>

Since | f(x) |q is convex function, we can write

|1 (a,b;n, o)l
b—a 1
=
2(m+1) \Jo
Y -2 -0n"
3

2(1 — )% — ¢
3

dt

+

0
_ b-a (( 21— — 1@
“2(m+1 0 3

I (a,b;n,a)l

b— M2 -0 —¢ t 1—1t
< a d-0 [ i b)|dt
2(n+1) Uy 3 n+1 n+1

¥ —2(1 —-n"

1
+f0 ;
b—a ( !
P
=2m+D \\U,

l—1 / q ‘
T|f )| )dt)

1—1t n+t
! b)|dt
f<n+la+n+l> )

Y _ sa|P le
2(1—0)% —1t dt) (/0 <n+t|f()|q

3
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e 2= NP ([ (1=t .
(L= ) () G
ot oy (b)v)dt) )
By taking into account,
Vin+t ay _ 2n+1 q
[ (B @l sl ol )= +1)|f()|
q
+2( +-1)|f'(b)
1
‘1 _ q
/0<n+1}f()| |f()|) 2(+1)|f()|
2n+1
2( +1)
we obtain
|l (a,b;n,a)|
b—a 2= —@|? \7
S2(n+1)( 3 dt)
2n + 1 ¢ 7
X[(z( +1)Lf()| 2 (n +1)Lf()|>
(1
gl @l s o) }
which completes the proof. (]

Theorem 2.20 ([13]) Let f : [a, b] — R be a differentiable function on [a, b]. If
f' € Lla,b]land | /) |q is convex function, then the following inequality holds for
fractional integrals witha > Oand g > 1 ;

[ (a,b;n,a)

1 a+1 1 a+1 -1
b (72 s 0-F) T
< 2@ +1 2@ +1
~“2(m+1) 3+ 1)

Q=

< ((Ki@m|f @]+ Kot m | 1 ®)]')
T (Kaloom) |1 @]+ Kieem) | £ )]1)).
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where I" («) is Euler gamma function and

1 a+1 a+l1
(-M-4W1-£L) 48n+2—%<%L>

Kl(avn)z 2041
3@+ DH@m+1
1 a+2 1 a+2
-30) ()
+ 2@ +1 2% +1
3(@+2)(n+1)
1 a+1 1 a+2 1 a+2
1-2(%“) 1—4(1— 2 ) +2(%“)
Koo, n) = 2@ +1 2@ 41 2@ +] )

3@+ (m+1) 3(@+2)(n+1)

Proof By Lemma 1 and power-mean integral inequality, we can write

I (a,b;n, o)l
1
b— 1 _ Y s -2
- a /2(1 1) tdt g
2m+ 1)\ Uy 3
1
M2 -0 =], (n+t 11—t \|*,\*
b)| dt
X((,/(; 3 f<n+la+n+1> )
=21 —n"

N
dt) .

: 1—1t n4+t
" —— b
+/(; f<n+1a+n+1>

By taking into account convexity of | f(x) }q, we get

3

Il (a,b;n, )l
b—a /12a—o“—ﬂ =5
P — —|dt
2+ 1 \ Uy 3
1
20 ==t (n+1t g 1=t g
' —— | ®)|")at
(P G i or) o)
1
e =20 =0 /1—1¢ g n+t 0
' — | ®»|*)ar) |.
+</O 3 <n+1|f(a)| +n+]|f()|) )
Computing the above integrals, we get the result. d

Sarikaya and Yildirnm have given a new refinement of Hermite—-Hadamard
inequality for Riemann-Liouville fractional integrals. They have proved an integral
identity that gives some results for left side of Hermite-Hadamard inequality as
follows.

Theorem 2.21 ([14]) Let f : [a, b] — R be a positive function with0 < a < b and
f € Lila, bl. If f is a convex function on [a, b], then the following inequalities for
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fractional integrals hold:

f <a +b> - 27T (e + 1)

f @)+ f(b)
2 (b —a)™ ’

[y T O+ Ty F@0] = =55

with a > 0.

Lemma 2.7 ([14]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a < b. If f' € Lla, b), then the following equality for fractional integrals holds:

2710 (e + 1) o a+b

G ey TO + Ty T@] f( : )

=b;a{/ t“f (—a-{-z—b)dt—/(; t"f’(zgta+%b)dt},
with o > 0.

Theorem 2.22 ([14]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a < b. If| f'|1 is a convex function on [a, b] for g > 1, then the following inequality
for fractional integrals holds:

201 (a + 1)
b—a)

[J6y O+ oy @] - f(“;bﬂ

1

s(b_a)( : )q{[(a+1)|f/(a)|"+(a+3)lf/(b)|q]q

4+ D\ 2(@+2)

+H@+ 3@ + @+ DI e }
Theorem 2.23 ([14]) Let f : [a, b] — R be a differentiable mapping on (a, b) with

a<b. If |f'|1 is a convex on |a, b] for q > 1, then the following inequality for
fractional integrals holds:

29710 + 1)
W[ (1,+h)+f(b)+J wp) f(a)] f(— ‘
b-—a)( 1 N[/ @ +3/ O 3@+ 1Bl
= 4 <ocp~|—1> {[ 4 ] +[ 4 ] }
b—a; 4 Niyo. ,
< (o57) W@+ 1ol

where L + = =1.
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3 Conformable Fractional Integrals and Inequalities

The conformable fractional derivative attracts attention with conformity to classical
derivative. Khalil et al. have introduced the conformable fractional derivative by
the equation which has a limit form similar to the classical derivative. Khalil et
al. have proved that this definition provides multiplication and division rules. They
also express the Rolle theorem and the mean value theorem for functions which are
differentiable with conformable fractional order.

The analysis of the conformable fractional was developed by Abdeljawad. In
his work, he has presented left and right conformable fractional derivative concepts,
fractional chain rule, and Gronwall inequality for a conformable fractional derivative.
We will mention the beta function (see [5]):

r@rp)

B(a,b):m—

1
/ A =nttar, a,b>0,
0

where I' () = fooo e 't*~dt is gamma function.
Incomplete beta function is defined as:

B, (a,b):/ a1 =ntldr, a,b>0.
0

In spite of its valuable contributions to mathematical analysis, the Riemann—
Liouvile fractional integrals have deficiencies. For example, the solution of the dif-
ferential equation is given as:

y(%) +y= x @) + x(%), y(0) =0

ra.s)

where y(%) is the fractional derivative of y of order %

The solution of the above differential equation has caused to imagine on a new
and simple representation of the definition of fractional derivative. In [15] , Khalil
et al. gave a new definition that is called “conformable fractional derivative.” They
not only proved further properties of these definitions but also gave the differences
with the other fractional derivatives. Besides, another considerable study has been
presented by Abdeljawad to discuss the basic concepts of fractional calculus.

In [16], Abdeljawad gave the following definitions of right-left conformable frac-
tional integrals:

Definition 3.1 Leta € (n,n+ 1],n =0, 1,2, ...andset 8 = o — n. Then, the left
conformable fractional integral of any order o > 0 is defined by

1 t
I3 =— / (t —x)"(x —a)’ ! f(x)dx.
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Definition 3.2 Analogously, the right conformable fractional integral of any order
a > 0 is defined by

1 b
CLA@) = — / (x — )" (b — )P f(x)dx.

Notice thatifa =n + 1,then = o —n =n+1—n = I hence, (I} | /) (1) =
(i @) and CLr @) = (57 f) @),

In [15, 16], the authors have pointed that the Riemann—Liouville derivatives are
not valid for product of two functions. In this case, the inequalities that have been
proved by Riemann-Liouville integrals are not valid. The results which are obtained
by using the conformable fractional integrals have a wide range of validity. (Let us
consider the function f defined as f : RT — R, f = x%e* which is convex.)

Several researchers have focused on new integral inequalities involving con-
formable fractional integrals in recent years. In [17], Set et al. have given some
more general Hadamard-type inequalities for convex functions. Set, Akdemir, and
Mumcu have proved several Ostrowski-type inequalities by using conformable frac-
tional integrals involving special functions in [18]. In [19-21], the authors have
obtained new inequalities of Hermite—Hadamard type associated with conformable
fractional integrals. In [22], several new integral inequalities have been established
via conformable fractional integrals for pre-invex functions by Awan et al. In [23],
Sarikaya and Budak have proved some Opial-type inequalities.

Set, Akdemir, and Mumcu have established a new form of Hermite—Hadamard
inequality via conformable fractional integrals and also proved an extension of
Hermite—Hadamard inequality as follows.

Theorem 3.1 ([24]) Let f : [a, b] — R be a mapping with 0 <a <b and f €
Lila,bl. If f is a convex mapping on [a, b], then one can obtain the following
inequalities for conformable fractional integrals:

a+b Mo +1) . b f@+ fb)
f( > ) < 26— T —n (UG Hb)+ Cl fla)] < —
3.1)

witha € (n,n + 1].

3.1 Extensions of HH-Inequality

Theorem 3.2 ([24]) Assume that f : [a, b] — R is a twice differentiable mapping
witha < band f € Ly[a, b]. Iff” is bounded on [a, b), then we have
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ml(a + 1) /” a+b 2
— X
2(b — a)*T" (¢ — n)n! J, 2
x[(b—x)"(x —a)* ™" '+ (x —a)"(b—x)*"Ndx

N'a+1) a » a+b
- 2(b — a)”‘F(a _ n) [(Ia f)(b) + ( Iocf)(a)] - f (_2 ) (3.2)

MU (a + 1) /7 (a+b )2
< x|,
—2(b—a)T (e —n)n! J, 2

x[(b—x)"(x —a)* "'+ (x —a)" (b —x)*"dx,

and

atb

—MT (a + 1) 3
2(b —a)*T'(a — n)n! /a x —a)(b—x)

x[(b—x)"(x —a)* "+ (x —a)' (b — x)* " dx

S S el N0 + L@ - HOTIE 6
=20 :’Z;(ﬁ(: —l)n)n! f @k -x)
x[(b—x)"(x —a)* "'+ (x —a)" (b — x)*" Ndx,
witha € (n,n + 11, where m = inficrap f &), M = supicap f ().
It is obvious that f* > 0 implies that f non-decreasing. Therefore,
fla+b—x)=> f(x), (3.4)

holds for all x € [a, “TH’]. So, we establish the following theorem using inequality
of (3.4).

Theorem 3.3 ([24]) Let f : [a, b] — R be a positive, differentiable mapping with
a<band f e Lila,bl.If fa+b—x)> f(x)forall x € a, #]. Then, the
following inequalities for fractional integrals hold

a+b M@+ 1) . ) f @+ f b
f( . ) < 5 e =N + L @] = ==

The following results have been obtained by Set et. al. involving Ostrowski-type
inequalities for conformable fractional integrals.

Lemma 3.1 ([25]) Let f : [a, b] — R be a differentiable mapping in the interior
1° on (a, b) with a < b. Iff’ € Lla, b), then for all x € [a,b] and o € [n,n + 1)
we have:
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_ a+1 1
x —a) Bin+1,a—n)f (tx+ (1 —Na)dt

nl(b—a) J
_ a+1 1
e e — ) fx + (1 — )by (3.5)
nl(b—a) Jy

T —nlx—a)® + (b —x)"
- (e +1)(b —a)

1
]f(x) - b—[xlaf(a) +1; £ (D)),
—a

where I'(a) = fol e "u*"'du.

Theorem 3.4 ([25]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a < b such that f’ € Lla, b].If|f’| is convex and |f/(x)| < M, x € [a, b], then the
Jfollowing inequality for fractional integrals with « € [n, n + 1) holds:

Mo —n)(x—a)+®—x)*
Cle@+ Db —a)

- MT (¢ —n—+1)

T Ia+2)(b—a)

1
- @+ o
—a
[ = @)™ + (b — 1], (3.6)

Theorem 3.5 ([25]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a < b such that f € Lla,b]. If | f'|9 is convex, p,q > 1, and |f (x)| < M, x €
[a, b], then the following inequality for fractional integrals holds:

MNa—n)[x—a)+ b —x)*
Fa+ 1)k —a)

1
]f(X) - b—[xlaf(a) + I(ff(b)]‘
—a

! 0
s,—[(x—a>“+‘+(b—x)“+']</ B,(n+1,a—n)Pdr) ,
n!(b — a) 0

where%+$=1, o €n,n+1).

Theorem 3.6 ([25]) Let f : [a, b] — R be a differentiable mapping on (a, b) with
a < bsuchthat f* € Lla, b]. If| f |2 is convex, ¢ > 1, and | f (x)| < M, x € [a, b],
then the following inequality for fractional integrals holds:

F(a —m)[(x —a)* + (b —x)*
C(a +1)(b —a)

lae—n+1) el et
< —F(a—l—Z)(b—a)[(x a)* 4+ (b —x)*t],

1
]f(X) - b—["faf(a) + 15 f(D)]
—d

where o € [n,n + 1).

Theorem 3.7 ([25]) Let f : [a, b] C [0, 00) — R be a differentiable mapping on
(a,b) witha < b such that f" € L{a, b]. If | f | is a concave on [a, bl and p,q > 1,
then the following inequality for conformable fractional integrals holds:
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‘F(a —n)[(x —a)* + (b —x)*
Mo+ 1)k —a)

1
1 ?
< (/ Bn+1,a— n)pdt>
0

(x_a)otJrl (x+a (b_x)otJrl
X[n!(b—a) f( 2 >‘+n!(b—a)

1
]f(x) - b—[xlaf(a) + 1§f(b)]‘
—a

b+ x
f(5))
where%%—é:l,ae[n,n—}—l).

In [26], Akdemir, Ekinci, and Set have proved some inequalities involving con-
formable fractional integral operators as follows:

Theorem 3.8 Let f : [a, b] — R be a differentiable mapping on (a, b) witha < b
such that f' € L[a, b]. Suppose that there exist two integrable functions ¢, ¢, on
[a, b] such that

() = f@) =e2(t), Vie€la,b]. (3.7)

Then, the inequality
loga @) I f (B) + 101 (B) Lo f (@) = 1591 (B)" 1o (@) + 1 f ()" Lo f (a)

holds true, where x € [a, b].

Proof From the inequality (3.7), for all u, v € [a, b], we have
(2 () = f () (f (V) —¢1 (v)) = 0.
This implies that
@2 (u) [ (V) + @1 (v) f ()= @1 (V) g2 () + [ (u) f ).

For x € [a, b], if we use the change of variables u = rx + (1 —r)a and v = sx +
(1 —=s)bforr,s € [0, 1] and multiply both sides of the above inequality by

[rn (1 _ r)a—n—l] [Sn (1 _ S)ot—n—l] ,

later by integrating the resulting expression with respect to » and s, we have the
following equality for the first integral

1
/ [r" (- r)”‘_"_l] [s" (- s)a—”—l] 0 (rx + (1= r)a) f (sx + (1 — s)b) drds
0

1

[s" (1- s)“*"*‘] f(sx+(1—s5)b) ds/ [r" (1— r)“*”*l] 0 (rx + (1 —r)a) dr.

0

Ot O— _
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By using the change of variables above, we get

1

1
/[s"(l —s)“*"*l]f(sx+(1 —s)b)ds/ [r" a —r)“*"*l]m rx+ (1 —r)a)dr
0

0

<x_v>n<v_b)a—n—l f(v) :|
dv
x—b x—>b x—>b
|:/‘x <u —a)" (x—u)anl ¥2 (u)du:|
X —a X —a X —a
] b
= | — Y _ pya—n—l1
= |:(b—x)°‘/(x v)" (v —>b) f(v)dv:|

1 X
[(x_a)a / —a)" (x—uw)* "o () du}

= )" Loga (@) I f (b).

If we proceed the similar methods for the other integrals, we deduce the desired
result. (]

Theorem 3.9 Let f : [a, b] — R be a differentiable mapping on (a, b) witha < b
suchthat ' € Lla, b). Suppose thatm < f (t) < M, forallt € [a, b] and for some
m, M € R. Then, the following inequality holds:

hymly fb) Y M o f (@) () I3 f (0) I f (@)

(b_X)a (x—a)a - (b_x)ot(x_a)a +Bmn+1,a—n)ymM.

Proof Since
m= f()=M,

forall t,u, v € [a, b], we have

(m — f ) (f (v) — M) =0.

By using the above inequality and a similar argument to the proof of Theorem 3.8,
we get the desired result. O

Theorem 3.10 Let f : [a, b] — R be a differentiable mapping on (a, b) witha < b
such that f' € L [a, b]. Suppose that there exist two integrable functions ¢y, ¢, on
[a, b] such that

p1 (1) = f (@) =@ (1), Vi€la,b].

Then, the inequality
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apa (@) 1y f (B) + 1501 (D) 1o f (@) = 1y1 (D) Loga (@) + 1, f (B)" Lo f ()
holds true, where x € [a, b].

Proof From inequality (3.7), for all u, v € [a, b], we have
(02 @) = f ) (f' (v) = @1 (v)) = 0.
This implies
92 () f1 () + @1 () f (W) = @1 (V) @2 (W) + [ (W) [ (v).

For x € [a, b], if we use the change of variables u =rx + (1 —r)a and v = sb +
(1 —s)x forr, s € [0, 1] and multiply both sides of the above inequality by

B (n+1l,0a—n)B;(n+1,aa—n),

and then integrate it with respect to r and s, for the first integral, we have
11
//B, m+la—nBsm+1,a—n)gy (rx +(1 —r)a) f' (sb+ (1 —s)x)drds
00

1
Bs(n+1,a—n) f (sb+(1 —s)x)ds/Br m+1,a—n)px(rx+ (1 —r)a)dr.
0

I
O~

By using integration by parts and the change of variables above, we get

1

[B(n—i—l,a—n)f’(sb—i—(l—s)x)ds
0

fsb+(1—s5)x)
b—x

b
£ (b) 1 v—x\"[(b—v\*"!
=Bn+1,a— ) b b—x/(b—x) (b—x) f (w)ydv

b
F(n+ D (@—n) f (b !
_ (n ) (@ —n) f(b) . )aJrl /(v _x)n b— v)a—n—l f (w)ydv

=Bi(n+1,0a—n)

1
1
— /s" (11— "1 Mds
0 b—x

T@+1) b—x (b—x

D) n! 1
—B(n+1l.a- )f(_); G ")aﬂ I f (),

and
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1

/B,(n—}—l,a—n)gog(rx—i—(l—r)a)dr
0

:B(n—i—l,a—n)/(pg(u)du.

By changing of the variables above, we get
b n a—n—1
/ X —v v—>b f ()
= dv
x—b x—> x—>b
f <u —a)" (x - u)a_"_l fw
——du
X —a X —a X —a

b
_ 1 _ n _ a—n—1
= —(b—x)” /(x v)" (v —b) dv

L 1

| I T

1 [ n a—n—1
m/(w—a) (x —u) du

=m)* L (@) IX f ().

189

By using the similar methods for the other integrals, we deduce the desired result.l]

Theorem 3.11 Let f, g : [a, b] — R be two Lipschitzian mappings with the con-

stants Ly > Qand L, > 0, i.e.,

lf ) —fWI<Lilx=yl, lg&x)—gWM| = LIx =y,

(3.8)

forall x,y € [a, b]. Then, the following inequality holds for conformable fractional

integrals

IT (@ —n) [*I (fg) (@) + I (fg) ()]
T+ D[ Lg@I}f®b) +1 g1 L.f (@]

1

LiL, [B(n+l,(x—n)K Bn+1,0—n)

“T'(n+1) (x —a)* (b —x)~

2
T —a)* (b—x)" K3K“} ’

where
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-
T T(a+3)

K ((n+1)(n+2)x2—2ax(n+1)(n—a)+a2(n—a)(n—a—1)),

K — T+ 1T (¢ —n)(x—>b)"
:T T (a +3)
x((n+Dn+2)b*=2bx(n+D@—n)+x>*—a)(n—a—1)),

Ra— T+ DI (@ —n)(x—a)
T T (¢ +3)
x((m+DH(n+2)x* —2ax(n+1)(n—a)+a*(n—a)(n—a—1)),

K _T'n+ DT (@ —n)(x—b)*
T T (a+2)

(n+1Db—-—xn—a)).

Proof By (3.8), we can write

I(f ()= FON (X)) —gONI < LiLy (x —y)*

for all x,y € [a, b]. For x € [a, b], if we use the change of variables u = rx +
(1—r)a and v =sx+ (1 —s)b for r,s € [0, 1] and multiply both sides of the
above inequality by [r" (1 — r)* "' [s" (1 — $)*"7'], we get

[r" (- r)“—"—l] [s" (- s)“—"—l] IfGx+(=ra)g@rx+(1—ra)
fx+ A=) gx+A—=5)b)—frx+A—-r)a)g@sx+ (1 —s5)b)
+F x4+ =9b)grx+ (1 -rall

< [r" (- r)“—"—l] [s" (1- s)“—"—l] LiLy (rx + (1 —r)a) — (sx + (1 —5)b))2.

Then by integrating the resulting inequality with respect to r and s, we have

11
f/ [ =r) " A=) Uf rx+ A =r)a) g (rx + (1 —=r)a)
0 0

fx+A=s5)b)gx+ (N —=85)b)— fOrx+A—=r)a)gsx+ (1 —1s)b)
+fGx+A—=s5)b)g(rx+ (1 —r)a)lldrds

1 1
<L/L, / / [r" (1— r)o‘*”fl] [Sn a- s)a*nfl]
0 0

(rx + (1 =r)a) — (sx + (1 — ) b))> drds.
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By computing above integrals and by using the definition of conformable fractional
integrals, we get the result. O

Theorem 3.12 Let f: 1 C (0,00) - R be a function such that f € Li[a, b],
where a,b € I witha < b. If f is GA-convex function on [a, b], we have the fol-
lowing inequalities for conformable fractional integrals:

f@)+f b
—

Ma+1) a b
7 (Yab) < 5= mayre = e f O+ Lef @) <

Proof Since f is G A-convex function on [a, b], we have

forall x, y € [a, b] (with t = % in the definition of GA-convexity). By setting x =
a'b'"and y = b'a'~", we get

2f (vab) < f(a'b")+ £ (b'a).
By multiplying both sides of this inequality by %t” (1 — 1)~ then integrating the
resulting inequality with respect to ¢ over [0, 1], we obtain

1

%f (ﬂ)/r”(l — e gy

0

| =

=<

S

1
! /Z’l(l _ t)afnflf (az‘blft) dt
0

1
1
—i——/l”(l — )" f (b'a' ") dt.
n!
0

Namely,

a+1) 9 b
f (m) N — LSO+ LS @)

which completes the proof of the first inequality. For the proof of the second inequal-
ity, we can write

f@b"™) <tf@+dA -0 fb)

and

f@'a'") <tfb)+ (1 —0)f(a).
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By adding these inequalities, we have
F @)+ 1 (b'a'™") < fl@) + fb).

Multiplying both sides of this inequality by L#"*(1 — r)®~"~!, then integrating the

n!
resulting inequality with respect to ¢ over [0, 1], we deduce

C(a+1)
(Inb —Ina)*T" (@ — n)

e fb)+ I f(@] < f(a)+ f ().

This completes the proof. O

Lemma 3.2 Let f: 1 C (0,00) — R be a differentiable function on 1° such that
f' € Lyla, b), wherea,b € I witha < b. Then, forallx € [a,blanda € (n,n + 1],
we have

1

f * _ t 11—t
(lna> /B,(n—i—l,ot n)df(xa )

0
1
b ¢ t 11—t
+<ln—> fB,(n+1,a—n)df(bx )
by
0

_T(n4+ Dl (a—n) X\ b\*
T T+ [(m E) Feo+ (m Z) f(b)]

—n![I" (f oexp) (Inx) +™° I, (f o exp) (Inx)].

Proof By using integration by parts in the left-hand side of the above inequality, one
can obtain the right-hand side. We omit the details. [

For simplicity, we will use following notation

F¢(a, n; x)
_ T+ DHIN(a—n) X\ b\*
= i [(m;) f(x)+<ln)—c> f(b)}

—n![lli““ (f oexp) (Inx) +"% I, (f o exp) (Inx)].

Theorem 3.13 Let f : I C (0, 00) — R be a differentiable function on 1° such that
f' € Lila, b], wherea,b € I witha < b. 1f|f’|q is quasi-geometrically convex on

[a, b] and q > 1, then we have the following inequality for conformable fractional
integrals
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‘Ff(oz,n;x)’

1
< /|B, (n+1,a—n)|"dt (ln£>aL% (aq,x‘f) sup{|f’(x)
a
0

@]}

)

»

1
- /IB,(n—i—l,a—n)V’dt <lné> L7 (x?, b%) sup {| /' (b)
X
0

[0

b

’

forallx € [a,b], p' +q¢ ' =landa € (n,n +1].
Proof By using Lemma 3.2 and by applying Holder integral inequality, we can write

|Ff(ot,n;x)|
1
)_C o _ to1—t
§<lna) /B,(n+1,a nydf (x'a'™)

0
|

+<ln§) /B, n+1,a —n)df (b’xl_’)

0

1 a
< (1n )—C) / |B,(n+ 1,0 —n)|”dt /x‘”aq“_’) |f/ (x’a"’)\q dt
a
0

0

<=

1
1 » 1
b(l
+<ln—) f|B,(n+1,a—n)|Pdt /b"’x"“‘”|f’(b’X"’)|"df
X
0 0

Since | f ’|q7 is quasi-geometrically convex, we get

|yl ms )]

1
1 7 1 q
< (1n g)asup{‘f/ @ |f @]} (/ 1B (n+ 1,0 —n)|? dt) (/xq’aﬂ“%n)
0

0
1

1
o P 1 q
+(ln ;) sup {| £ )], |f )]} (/|B, (n—l—l,a—n)l”dt) (qu’xq“’)dz) :

0 0

By computing the above integrals, one can easily obtain the desired inequality.[]

Theorem 3.14 Let f : I C (0, 00) — R be a differentiable function on 1° such that
f' € Lila, b], where a,b € I witha < b. If\f/|q is quasi-geometrically convex on



194 M. Emin Ozdemir et al.

[a, b], then we have the following inequality for conformable fractional integrals
|Fr(a, n: x)|

= (n2) sup{|f ] £ @]}

| 1
T(@—n+1)\"v
X (M) /lBt (n+1,a—n)|x‘1’a‘1(1_’)dt
0

I'(x+2)

b o
+<ln—) sup {|
x

1 1

A (@—n+1))\" ¢ / ~

b e B 1, a —n)| b4 x11-0 gy

RS T
0

ol

forall x € [a,b], @ € (n,n + 1] where g > 1.

Proof From Lemma 3.2 and the power-mean integral inequality, we have

\Ff(a,n;x)|
1

< <ln ;—‘)a/B, (n+ 1,0 —n)df (x'a"™)

0
1

+ <ln g) /B, m+1,a—n)df (b’x'_’)

0

( Z) /lB,(n+1ot—n)|dt

1

/'B'<"+1 o —m)|xal 0| (xa )| de
0

b o
+<ln—) /|B,(n+1,ot—n)|dt
X
0

/ B (1 + Lo = m] bx 00 | 17 (') " dt

1-1
q

<

-1
q

7 we obtain
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|Fy(a, n; x)|

1
<7 (ln )—C) / |B, (n+ 1, —n)| x?'a?9"0dy
a
0

x sup {| f/ (x)

(@]}

3

1

1
b o
o' <ln }> /|B, (m+1,a —n)| b x11"dt
0

’

X sup{|f’ (b)

|}

Then, use the following formula:

1
/IBt(n+l,a—n)|dt=B(n+1,ot—n)—B(n+2,a—n)
0

_n!F(a—n+l)
O T(+2)

This completes the proof. O
Corollary 3.1 Let f : I C (0, 00) — R be a differentiable function on I° such that

f' € Lila, b], where a,b € I witha < b. If|f’|q is quasi-geometrically convex on

[a, b] and q > 1, then we have the following inequality for conformable fractional
integrals

|F e, n; x)|

1
< /|B, (n+1,a—n)|"dt (ln£>aL,§ (a,x)sup{|f/ (x)
a
0

@]}

’

ol

1 ?
b\*
+ /lB,(n—i—l,a—n)V’dt <ln—> Ly (x?,b%)sup{|f' (b)
x
0

forallx € [a,b], p' +q ' =landa € (n,n +1].

Proof By using a similar argument as in the proof of Theorem 3.14, we can write
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|Fr(e,n; x)|
1

T\ ‘o1t

< (m>) /Bf(n—i-l,a—n)df(xa )

0
1

b ¢ t.1—t
+<ln;> /B,(n—l—l,a—n)df(bx )
0

By using the general Cauchy inequality, we have

|Ff(Ol, n; x)’
1

(in 2) / B (n+1.a—n)(tx+ (1 —1na)|f (x'a'™")|dt

0

=

b o ’ (1t 1t
+ (- /Bf<n+1,a—n><rb+<1—r>x>|f (b'x')| dr.
0

By applying the Holder integral inequality and from quasi-geometrically convex-
ity of | £'|*, we obtain

|Ff(a,n;x)|

1

@]} /IBI (n+1,a—n)dt

0

1
»

’

< (ln ;—C)a sup {| £/ (x)

q

1
/ (tx + (1 —t)a) dt
0

+ (ln é) sup {| f" (b)
x
1

/ b+ (1A —1x)?det
0

3

1
£ ) f|Bf (n+ 1o — )P dt
0

q

By computing the above integrals, we get the result. (I

Corollary 3.2 Let f : I C (0, 00) — R be a differentiable function on 1° such that
f' € Lyla, b), wherea,b € I witha < b. If’f’|q is quasi-geometrically convex on
[a, b], then we have the following inequality for conformable fractional integrals
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|Fr(a, n; x)|

)

T(a—n+1\ "4
fwm(iiLjiJ)

X\« ’
5@7)“MV@) T («t2)

x4 al 7
X (B(n—i—l,ot—n)A(a‘i,xQ)_?B(n+3,o¢—n)—71'1)

, nl'(ao —n+1) -3
fum( Fla+2) )

’

+ (ln g) sup{|f’ (b)

b4 x4 q
X (B(n+1,a—n)A(xq,b4)_?B(n—i—?a,a—n)—?Il)

forall x € [a,b],« € (n,n+ 1] where g > 1 and 1| = (20’_”+2111(‘051'§)2)r(0’_").
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Proof If we use the general Cauchy inequality and power-mean inequality in the

proof of Theorem 3.14, we can write

|Ff(a,n;x)|
X\ ,
= (=) sup {[ @)

@]}

)

(n!F (0« —n+1)
X —_—

-1 1
[ (a+2) ) ;/w“"+L“‘mqu+a—na%m

’

b [0
() sl @l | o)

(n!F (¢« —n+1)

-1 (1
I@+2) ) z[w“n+L“‘me“+a—wx%m

By computing the above integrals, we get the desired result.
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