Some Identities on Derangement )
and Degenerate Derangement i
Polynomials

Taekyun Kim and Dae San Kim

Abstract In combinatorics, a derangement is a permutation that has no fixed points.
The number of derangements of an n-element set is called the nth derangement
number. In this paper, as natural companions to derangement numbers and degenerate
versions of the companions we introduce derangement polynomials and degenerate
derangement polynomials. We give some of their properties, recurrence relations,
and identities for those polynomials which are related to some special numbers and
polynomials.
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1 Introduction

It is known that the Fubini polynomials are defined by the generating function

1 > "
m = ; Fn(y)a, (see [7, 11]). (L.1)

Thus, by (1.1), we get
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Fay) =Y Saln. kokly*,  (see [7, 11]). (12)
k=0

Here S, (n, k) is the Stirling number of the second kind which is defined by

=Y S0, D), (1 =0), (1.3)

=0

where (x)g=1,(x), =x(x—=1)...(x —n+ 1), (n > 1).
As is well known, the Bell polynomials are given by the generating function as
follows:

o0
' t"
e’“”“:} Bel,(x)—, (see [5,6, 12]). (1.4)
n.

n=0

When x = 1, Bel, = Bel, (1) are called the Bell numbers. For A € R, the partially
degenerate Bell polynomials were introduced by Kim—Kim-Dolgy as

(4207 1) ZBEln/\(x) , (see [12]). (1.5)

Note thatlim;,_,¢ Bel, ,(x) = Bel,(x),(n > 0). Whenx = 1, Bel,, , = Bel;;(1)
are called the partially degenerate Bell numbers.
From (1.5), we have

n

k
Bel,;(x) =Y > Sy(k, m)Sy(n, k)" *x™, (1.6)

k=0 m=0
where S (n, k) is the Stirling number of the first kind given by
W =Y S, Dx', (0= 0), (see [8]). (1.7)
1=0

In [1], Carlitz introduced the degenerate Bernoulli and Euler polynomials which
are defined by

R "
— (14 ) = () —, 1.8
(1+mx—1( 0 ;ﬁ ) — (1.8)
and
(4= § :Sn,x(w%. (1.9)

1+t +1
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Whenx =0, B, = B2 (0), &5 = &,.5.(0) are called the degenerate Bernoulli num-
bers and degenerate Euler numbers.
Recently, the degenerate Stirling numbers of the second kind are defined by

Soan+1,k) =kS,(n, k) + S2,(n, k —1) —niSy,(n, k), (1.10)

where n > 0 (see [10]).
Note that lim; ¢ Sz, (n, k) = S»(n, k). For A € R, the A-analogue of falling fac-
torial sequence is defined by

(or =1 Onp=x(x —A2)...(x —(n—DA), (n=1), (see[6,8]).
(1.11)

Note that lim,_, 1 (x),x» = (x),, (n > 0), (see [14]).

A derangement is a permutation with no fixed points. In other words, a derange-
ment of a set leaves no elements in the original place. The number of derangements
of a set of size n, denoted d,,, is called the nth derangement number (see [9, 15, 16]).

For n > 0, it is well known that the recurrence relation of derangement numbers
is given by

n n L n (—l)k
d, = (n—kN=Df =n)" . (see [9]). (1.12)
k k!
k=0 k=0
It is not difficult to show that
= 1
> dy— = e, (see[2,3,4,5,9)]). (1.13)
n! 1—1
n=0
From (1.13), we note that
dy=n-d,_1+ (D", (n>1), (seel9,13,14,16,17)). (1.14)
and
dn = (I’l - 1)(dn71 +dn—2), (” > 2) (115)

In this paper, as natural companions to derangement numbers and degenerate ver-
sions of the companions we introduce derangement polynomials and degenerate
derangement polynomials. We give some of their properties, recurrence relations,
and identities for those polynomials which are related to some special numbers and
polynomials.
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2 Derangement Polynomials

Now, we define the derangement polynomials which are given by the generating
function

1 = "
et = Zdn(x);. 2.1)
n=0 '

1 —xt

When x =1, d,(1) = d, are the derangement numbers.
From (1.1), we note that

1 > 1 m
= F,(y)—(log(1l +¢
= n; ) (log(1 +1)
o0 o0 [”
= ZOFm(w Z i, m)— 2.2)
o0 n t”
=Y (Z Fn(3)S) (n,m)) —.
n!
n=0 \m=0
On the other hand,
1 ad "
— nl )
1—yt ;y " n! (2:3)

Therefore, by (2.2) and (2.3), we obtain the following lemma.

Lemma 2.1 Forn > 0, we have

1 n
' == ) ()i m).

" m=0

‘We observe that

1 < 1 et>et_ id()ﬁ iﬂ
=yt \1—yr &\ & o4
)3 (Z (n>d1()’)) -
l n!’

n=0 \/=0

From (2.2) and (2.4), we obtain the following theorem.
Theorem 2.2 Forn > 0, we have

n

)3 <’l’>dl(y) - mZ:O Fu(3)S) (n, m).

=0
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By (2.1), we get

(2.5)

By comparing the coefficients on both sides of (2.5), we obtain the following theorem.

Theorem 2.3 Forn > 0, we have

k
d(x)—n’z( 1)

From (2.1), we have

T= (- Y do

0 2.6)
= dy(x) + 2}: (dy(x) — nxdy_1 (x)) %
On the other hand, N
el = z;(—l)”%. (2.7)
Thus, by (2.6) and (2.7), we get
do(x) =1, d,(x) = nxd,_1(x) + (=", (n > 1). (2.8)

From (2.8), we note that

d(¥) = (1% = Deyey () + dy (0) + (=1)"
= (1x = Ddyor (00) + (1 = Dxdy2() + (D" (=)' (2.9
= (1x = D) [die1 (00 + dua ()] + (1 = 0)dya (), (0 = 2).

Therefore, we obtain the following theorem.

Theorem 2.4 Forn > 1, we have

dy(x) = nxd,_(x) + (=1)".
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In particular, for n > 2, we have
dy(x) = (nx = 1) [dy—1 (X) + dy2(0)] + (1 = X)dy—2(x).

Replacing ¢ by ¢’ — 1 in (2.1), we get

1 . > 1
7(3 71) _ . t _ m
1—x(ef—1)e _,Z(:)d (x)m!(e b
- Zd (x) Z Sy(n, m)— (2.10)
o0 tn
- Z (de(x)sz(n, m)) -
n=0 \m=0 ’

By (2.10), we see that

k

; (e —1)
1 —x(e —1) Z (Zd (x) Sy (k, m)) 0
) / o .

=0 k=0 \m=0
) n k n n
=> 12> (k)dm(x)sz(k mBely i | —.

From (1.1), we note that
! i Fy) 2.12
e — () —. .
1 —x("—1) ot n! ( )
Therefore, by (2.11) and (2.12), we obtain the following theorem.
Theorem 2.5 Forn > 0, we have
n k n
F, = dn (x)Sy(k, m)Bel,_y.
(x) ;mgo (k) (x)Sa2(k, m)Bel,

From (1.1), we can derive the following Eq. (2.13):
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1 oo k tk

-t _ —t
= (Z XZ:Fm(x)S,(k, m)> E) e
k o) ( 1)1
F(x)S; (k, m)> ) (Z ) (2.13)
0 0 =0 !
0 n k

nHr- —k "

=Z< Z(k)F ()81 (k, ’”)E ) )

k)!

On the other hand,

e Zd (x)—. (2.14)

Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 2.6 Forn > 0, we have

n k (l)nk
mm=Z§:(yMMMkm———.

k=0 m=0 ( k)‘

As is known, Bernoulli polynomials are defined by the generating function

=me%(mmu 2.15)
n=0 '

When x = 0, B, = B, (0) are Bernoulli numbers. By (2.15), we easily get

(2.16)

o0
B, — B, t"
:Z< +1(m) +1>_’ > 1).
= n—+1 n!

By Taylor expansion, we get

oo [m—1 n
et = Z (Zk) % (m>1). (2.17)

From (2.16) and (2.17), we get

m—1
B, _ B,
S g = Bt = Bret, (2.18)
n+1
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By Lemma 2.1, we easily get

m m—1 n

Fz(k)Sl(n, D). (2.19)

=.|~

-1
k=0 T k=0 I=

Therefore, by Theorem 2.2, (2.18), and (2.19), we obtain the following theorem.
Theorem 2.7 Form > 1 andn > 0, we have

m—1 n

Fi(k)Sy(n, 1)

o ZZ
%g; (7)611(/6)-

By 1(m) — By _
n+1

3 Degenerate Derangement Polynomials

Here we consider the degenerate derangement polynomials which are given by

1 1 ad "
T (1= =3 d(0—, (eR). 3.1)

n=0

When x =1, d,,, = d, (1) are called the degenerate derangement numbers.
From (3.1), we note that

(1= = (Z dn,x(x%) (1—x1)

n=0
o) o] +1
=y M(x)— — > xd, (3.2)
n=0 n=0
—dox(x)-f-z dy 5. (x) = xnd, - u(x))—,.
n=1
On the other hand,
1 > /1 > "
_ - A _ayngm _1\m -
(1 —2p) ,;(")( A"t 2( D" Dy (3.3)

Therefore, by (3.2) and (3.3), we obtain the following theorem.



Some Identities on Derangement and Degenerate Derangement Polynomials 273
Theorem 3.1 Forn > 0, we have
dos(x) =1, dyp(x) =nxdy-1:(x) + (=D"(Dny, (0= 1.

Note that limy_,¢ d, 3 (x) = d,,(x), limy_0dy s = d,, (n > 0).
From (3.1), we note that

= tn 1 1 = m,m = tk
;dm(x)a = (- = <2x t ) (g(—l)k(l)mﬁ)

m=0

n lk
= (Z( )(l)k)\x )t”.
n=0

k=0

(3.4)

Comparing the coefficients on both sides of (3.4), we obtain the following theo-
rem.

Theorem 3.2 Forn > 0, we have

n (_1)k
do () =n1 )
k=0 ’

In particular, for x =1,

1k
M—n'z( AT

Now, we observe that

! )(1 A (1= An)"h
1— xt
o0 _1
(Zm(x)l,) <Z< A)( "t ’")
=0
00 , 00 m (3.5)
= (Zd,x(x)—) <21(1 +2) ... (14 (m— m)—'>
=0 m=0 m:
( " d/,mx)(l)n_l,_x) =
— = n:
On the other hand,
1 ad "
= Zox"nla. (3.6)

Therefore, by (3.5) and (3.6), we obtain the following theorem.
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Theorem 3.3 Forn > 0, we have

" 1 <& /n
X' == dy 3 () (1) g, -
n! l

=0
From Theorem 3.1, we have

dy 3 (x) = nxdy_1 5 (x) + (=1)" (D1
= (nx — Ddy—1 1) + dye1,(x) + (=1)" (D1
= (nx — Ddy1,,(x) + (n — Dxd,2,,(x)
+ (D" Wi+ (=D D
= (nx — 1) [dy-12(x) + dy2, ()]
+ (1= x)dy2,(x) + (=1 (Dpora(n = DA,

(3.7)

where n > 2.
Therefore, by (3.7), we obtain the following theorem.

Theorem 3.4 Forn > 2, we have

dy . (x) = (nx — 1) [dy—1,3(X) + dy—2,5.(x) ]
+ (1 = X)dy—25(x) + (=1)" " (Dy_ya(n — DA

In particular, x = 1,
dyyo= (=1 [dyo1 s+ dyoai] + 20— D(=D" (D)o 5.

Note that
dn = }I\in%)dn,)h = (}’l - 1) [dn—l + dn—2] (I’l = 2)

By using Taylor expansion, we get

o0
1 m
(1= A)h = eiloe=20 = 3 x’”-(log(l - M))
— m!

=> ( ,\"—m(—l)"sl(n,m)) t—|
0 n:

n=0 \m=

(3.8)

On the other hand,
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(1 —at)r = ;(1 — )i (1 — xt)
1 —xt

oo tn oo tn
= dua ) = Y nxdy1 ()
n=0 n=1

00 o 3.9)
= dox () + D {dn s (0) = nxdy 15 (0}
n=1 :
o0 t”
=1+ ; (dns.(x) = nxdy_1,(x)) =

From (3.8) and (3.9), we have

(=D" Y A1 m) = d s (x) = nxdy g 5 (x) = (=1)" (D5, (2= 1.

m=0
(3.10)
Therefore, by (3.10), we obtain the following theorem.
Theorem 3.5 Forn > 1, we have
D XTSI m) = (D
m=0
By (1.13), we get
1 (1+)Lt)% = m 1 m
— ¢ =Z(—1) dp— (1 4 A1)7
(I+r)r +1 — m!
oo 1 o0 n
=2 D"y 3 s (3.11)
m=0 n=0
[o¢] oo
n t
= (Z(‘”"’dm o k) o
n=0 \m=0 n
On the other hand,
1 QIHint _ € 2 QAT 1
(A +r0i +1 2140t +1
e [ t > t"
= | 28y | | 2o Bebna— (3.12)
=0 m=0
e " /n t"
= 5 ZO (ZO <m> Bely ,Eq—m A) 3
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Therefore, by (3.11) and (3.12), we obtain the following theorem.

Theorem 3.6 Forn > 0, we have

" p (m)
Z < )Belm,;\gn_m,;\ = - Z(_l)mdm i .
m=0 n ¢ m=0 mt

From (3.11), we note that

0% Zd ED" g fan? (1 +(1 +M)%)
=y a, ! 3 (_ ) A+ (3.13)
m=0 m m=
oo oo
(_1)m "
= {de — () + (m + 1>M)} —
prdl et m! n
On the other hand,
SIHIDE o a1 i l((1 +0)r - 1>k
o oo B - R (3.14)
t" t"
=e) Y S, k- =e > (Z S2.2(n, k)) ]
k=0 n=k n=0 \k=0
Therefore, by (3.13) and (3.14), we obtain the following theorem.
Theorem 3.7 Forn > 0, we have
n o0 ( l)’n
> Sun,m) = Z () + (m + 1)) -
Indeed,
" ((1+A;)A—1> 1 ] m
ZBeln,\—z =Z;((1+M)x—l>
m=0 (3.15)

Sy s, e = )3 (Z S2:.(n, m))

m=0n=m n=0

Thus, by (3.15), we get
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n

Belyy =Y Sy,(n.m), (n>0). (3.16)

m=0

Therefore, by (3.16), we obtain the following corollary.

Corollary 3.8 Forn > 0, we have

I, (=D
Beln,A = z de% ((m)n,A + (m + l)n,k) .

m=0
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