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Inequalities for the Generalized
k-g-Fractional Integrals in Terms
of Double Integral Means

Silvestru Sever Dragomir

Abstract In this chapter, we establish some inequalities for the k-g-fractional
integrals of various subclasses of Lebesgue integrable functions in terms of dou-
ble integral means. Some examples for the generalized left-sided and right-sided
Riemann–Liouville fractional integrals of a function f with respect to another func-
tion g on [a, b] and for general exponential fractional integrals are also given.

Keywords Generalized Riemann–Liouville fractional integrals · Hadamard
fractional integrals · Functions of bounded variation · Ostrowski-type inequalities
Trapezoid inequalities

1991 Mathematics Subject Classification 26D15 · 26D10 · 26D07 · 26A33

1 Introduction

Assume that the kernel k is defined either on (0,∞) or on [0,∞)with complex values
and integrable on any finite subinterval. We define the function K : [0,∞) → C by

K (t) :=
⎧
⎨

⎩

∫ t
0 k (s) ds if 0 < t,

0 if t = 0.
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2 S. S. Dragomir

As a simple example, if k (t) = tα−1, then for α ∈ (0, 1) the function k is defined on
(0,∞) and K (t) := 1

α
tα for t ∈ [0,∞). If α ≥ 1, then k is defined on [0,∞) and

K (t) := 1
α

tα for t ∈ [0,∞).

Let g be a strictly increasing function on (a, b), having a continuous derivative
g′ on (a, b). For the Lebesgue integrable function f : (a, b) → C, we define the
k-g-left-sided fractional integral of f by

Sk,g,a+ f (x) =
∫ x

a
k (g (x) − g (t)) g′ (t) f (t) dt, x ∈ (a, b] (1.1)

and the k-g-right-sided fractional integral of f by

Sk,g,b− f (x) =
∫ b

x
k (g (t) − g (x)) g′ (t) f (t) dt, x ∈ [a, b). (1.2)

If we take k (t) = 1
�(α)

tα−1, where � is the Gamma function, then

Sk,g,a+ f (x) = 1

� (α)

∫ x

a
[g (x) − g (t)]α−1 g′ (t) f (t) dt (1.3)

=: I α
a+,g f (x), a < x ≤ b

and

Sk,g,b− f (x) = 1

� (α)

∫ b

x
[g (t) − g (x)]α−1 g′ (t) f (t) dt (1.4)

=: I α
b−,g f (x), a ≤ x < b,

which are as defined in [24, p. 100].
For g (t) = t in (1.4),wehave the classical Riemann–Liouville fractional integrals

while for the logarithmic function g (t) = ln t , we have the Hadamard fractional
integrals [24, p. 111]

Hα
a+ f (x) := 1

� (α)

∫ x

a

[
ln
( x

t

)]α−1 f (t) dt

t
, 0 ≤ a < x ≤ b (1.5)

and

Hα
b− f (x) := 1

� (α)

∫ b

x

[

ln

(
t

x

)]α−1 f (t) dt

t
, 0 ≤ a < x < b. (1.6)

One can consider the function g (t) = −t−1 and define the “Harmonic fractional
integrals” by
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Rα
a+ f (x) := x1−α

� (α)

∫ x

a

f (t) dt

(x − t)1−α tα+1
, 0 ≤ a < x ≤ b (1.7)

and

Rα
b− f (x) := x1−α

� (α)

∫ b

x

f (t) dt

(t − x)1−α tα+1
, 0 ≤ a < x < b. (1.8)

Also, for g (t) = exp(βt), β > 0, we can consider the “β -Exponential fractional
integrals”

Eα
a+,β f (x) := β

� (α)

∫ x

a

[
exp (βx) − exp (βt)

]α−1
exp (βt) f (t) dt, (1.9)

for a < x ≤ b and

Eα
b−,β f (x) := β

� (α)

∫ b

x

[
exp (βt) − exp (βx)

]α−1
exp (βt) f (t) dt, (1.10)

for a ≤ x < b.

If we take g (t) = t in (1.1) and (1.2), then we can consider the following k-
fractional integrals

Sk,a+ f (x) =
∫ x

a
k (x − t) f (t) dt, x ∈ (a, b] (1.11)

and

Sk,b− f (x) =
∫ b

x
k (t − x) f (t) dt, x ∈ [a, b). (1.12)

In [27], Raina studied a class of functions defined formally by

Fσ
ρ,λ (x) :=

∞∑

k=0

σ (k)

� (ρk + λ)
xk, |x | < R, with R > 0 (1.13)

forρ, λ > 0where the coefficientsσ (k) generate a bounded sequence of positive real
numbers. With the help of (1.13), Raina defined the following left-sided fractional
integral operator

J σ
ρ,λ,a+;w f (x) :=

∫ x

a
(x − t)λ−1 Fσ

ρ,λ (w (x − t)ρ) f (t) dt, x > a (1.14)

where ρ, λ > 0, w ∈ R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as
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J σ
ρ,λ,b−;w f (x) :=

∫ b

x
(t − x)λ−1 Fσ

ρ,λ (w (t − x)ρ) f (t) dt, x < b (1.15)

where ρ, λ > 0,w ∈ R and f is such that the integral on the right side exists. Several
Ostrowski-type inequalities were also established.

We observe that for k (t) = tλ−1Fσ
ρ,λ (wtρ), we re-obtain the definitions of (1.14)

and (1.15) from (1.11) and (1.12).
In [25], Kirane and Torebek introduced the following exponential fractional

integrals

T α
a+ f (x) := 1

α

∫ x

a
exp

{

−1 − α

α
(x − t)

}

f (t) dt, x > a (1.16)

and

T α
b− f (x) := 1

α

∫ b

x
exp

{

−1 − α

α
(t − x)

}

f (t) dt, x < b (1.17)

where α ∈ (0, 1).
We observe that for k (t) = 1

α
exp(− 1−α

α
t), t ∈ R we re-obtain the definitions of

(1.16) and (1.17) from (1.11) and (1.12).
Let g be a strictly increasing function on (a, b), having a continuous derivative

g′ on (a, b). We can define the more general exponential fractional integrals

T α
g,a+ f (x) := 1

α

∫ x

a
exp

{

−1 − α

α
(g (x) − g (t))

}

g′ (t) f (t) dt, x > a (1.18)

and

T α
g,b− f (x) := 1

α

∫ b

x
exp

{

−1 − α

α
(g (t) − g (x))

}

g′ (t) f (t) dt, x < b (1.19)

where α ∈ (0, 1).
Let g be a strictly increasing function on (a, b), having a continuous derivative g′

on (a, b).Assume that α > 0.We can also define the logarithmic fractional integrals

Lα
g,a+ f (x) :=

∫ x

a
(g (x) − g (t))α−1 ln (g (x) − g (t)) g′ (t) f (t) dt, (1.20)

for 0 < a < x ≤ b and

Lα
g,b− f (x) :=

∫ b

x
(g (t) − g (x))α−1 ln (g (t) − g (x)) g′ (t) f (t) dt, (1.21)

for 0 < a ≤ x < b, where α > 0. These are obtained from (1.11) and (1.12) for the
kernel k (t) = tα−1 ln t, t > 0.
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For α = 1, we get

Lg,a+ f (x) :=
∫ x

a
ln (g (x) − g (t)) g′ (t) f (t) dt, 0 < a < x ≤ b (1.22)

and

Lg,b− f (x) :=
∫ b

x
ln (g (t) − g (x)) g′ (t) f (t) dt, 0 < a ≤ x < b. (1.23)

For g (t) = t, we have the simple forms

Lα
a+ f (x) :=

∫ x

a
(x − t)α−1 ln (x − t) f (t) dt, 0 < a < x ≤ b, (1.24)

Lα
b− f (x) :=

∫ b

x
(t − x)α−1 ln (t − x) f (t) dt, 0 < a ≤ x < b, (1.25)

La+ f (x) :=
∫ x

a
ln (x − t) f (t) dt, 0 < a < x ≤ b (1.26)

and

Lb− f (x) :=
∫ b

x
ln (t − x) f (t) dt, 0 < a ≤ x < b. (1.27)

For several Ostrowski-type inequalities for Riemann–Liouville fractional inte-
grals see [2–19, 22–37] and the references therein.

For k and g as at the beginning of Introduction, we consider the mixed operator

Sk,g,a+,b− f (x) (1.28)

:= 1

2

[
Sk,g,a+ f (x) + Sk,g,b− f (x)

]

= 1

2

[∫ x

a
k (g (x) − g (t)) g′ (t) f (t) dt +

∫ b

x
k (g (t) − g (x)) g′ (t) f (t) dt

]

for the Lebesgue integrable function f : (a, b) → C and x ∈ (a, b).

We also define the functions Kp : [0,∞) → [0,∞) by

Kp (t) :=

⎧
⎪⎨

⎪⎩

(∫ t
0 |k (s)|p

)1/p
ds if 0 < t, p ≥ 1

0 if t = 0

For p = 1, we put
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K (t) := K1 (t) =
⎧
⎨

⎩

∫ t
0 |k (s)| ds if 0 < t,

0 if t = 0.

Observe that

Sk,g,x+ f (b) =
∫ b

x
k (g (b) − g (t)) g′ (t) f (t) dt, x ∈ [a, b) (1.29)

and

Sk,g,x− f (a) =
∫ x

a
k (g (t) − g (a)) g′ (t) f (t) dt, x ∈ (a, b]. (1.30)

We can define also the mixed operator

S̆k,g,a+,b− f (x) (1.31)

:= 1

2

[
Sk,g,x+ f (b) + Sk,g,x− f (a)

]

= 1

2

[∫ b

x
k (g (b) − g (t)) g′ (t) f (t) dt +

∫ x

a
k (g (t) − g (a)) g′ (t) f (t) dt

]

for any x ∈ (a, b).

The following two parameters representation for the operators Sk,g,a+,b− and
S̆k,g,a+,b− hold [21]:

Lemma 1 Assume that the kernel k is defined either on (0,∞) or on [0,∞) with
complex values and integrable on any finite subinterval. Let f : [a, b] → C be an
integrable function on [a, b] and g be a strictly increasing function on (a, b), having
a continuous derivative g′ on (a, b). Then

Sk,g,a+,b− f (x) = 1

2

[
γ K (g (b) − g (x)) + λK (g (x) − g (a))

]
(1.32)

+ 1

2

∫ x

a
k (g (x) − g (t)) g′ (t) [ f (t) − λ] dt

+ 1

2

∫ b

x
k (g (t) − g (x)) g′ (t)

[
f (t) − γ

]
dt

and

S̆k,g,a+,b− f (x) = 1

2

[
γ K (g (b) − g (x)) + λK (g (x) − g (a))

]
(1.33)

+ 1

2

∫ x

a
k (g (t) − g (a)) g′ (t) [ f (t) − λ] dt

+ 1

2

∫ b

x
k (g (b) − g (t)) g′ (t)

[
f (t) − γ

]
dt
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for x ∈ (a, b) and for any λ, γ ∈ C.

In the recent paper [20], by using the above representations (1.32) and (1.33) we
obtained the following result for functions of bounded variation:

Theorem 1 Assume that the kernel k is defined either on (0,∞) or on [0,∞) with
complex values and integrable on any finite subinterval. Let f : [a, b] → C be a
function of bounded variation on [a, b] and g be a strictly increasing function on
(a, b), having a continuous derivative g′ on (a, b). Then we have the Ostrowski-type
inequality

∣
∣
∣
∣Sk,g,a+,b− f (x) − 1

2
[K (g (b) − g (x)) + K (g (x) − g (a))] f (x)

∣
∣
∣
∣ (1.34)

≤ 1

2

[∫ b

x
|k (g (t) − g (x))|

t∨

x
( f ) g′ (t) dt +

∫ x

a
|k (g (x) − g (t))|

x∨

t

( f ) g′ (t) dt

]

≤ 1

2

⎡

⎣K (g (b) − g (x))

b∨

x
( f ) + K (g (x) − g (a))

x∨

a
( f )

⎤

⎦ (1.35)

≤ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {K(g(b) − g(x)),K (g (x) − g (a))}∨b
a( f );

[
Kp (g (b) − g (x)) + Kp (g (x) − g (a))

]1/p
((∨x

a ( f )
)q +

(∨b
x ( f )

)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b) − g (x)) + K (g (x) − g (a))]
[
1
2
∨b

a ( f ) + 1
2

∣
∣
∣
∨x

a ( f ) − ∨b
x ( f )

∣
∣
∣

]

and the trapezoid-type inequality

∣
∣
∣
∣Sk,g,a+,b− f (x) − 1

2
[K (g (b) − g (x)) f (b) + K (g (x) − g (a)) f (a)]

∣
∣
∣
∣ (1.36)

≤ 1

2

⎡

⎣

∫ x

a
|k (g (x) − g (t))|

t∨

a
( f ) g′ (t) dt +

∫ b

x
|k (g (t) − g (x))|

b∨

t

( f ) g′ (t) dt

⎤

⎦

≤ 1

2

⎡

⎣K (g (b) − g (x))

b∨

x
( f ) + K (g (x) − g (a))

x∨

a
( f )

⎤

⎦
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≤ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {K(g(b) − g(x)),K (g (x) − g (a))}∨b
a( f );

[
Kp (g (b) − g (x)) + Kp (g (x) − g (a))

]1/p

×
((∨x

a ( f )
)q +

(∨b
x ( f )

)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b) − g (x)) + K (g (x) − g (a))]

×
[
1
2
∨b

a ( f ) + 1
2

∣
∣
∣
∨x

a ( f ) − ∨b
x ( f )

∣
∣
∣

]

for any x ∈ (a, b), where
∨d

c ( f ) denoted the total variation on the interval [c, d] .

In this chapter, we establish some inequalities for the k-g-fractional integrals of
Lebesgue integrable function f : [a, b] → C that provide error bounds in approxi-
mating the composite operators Sk,g,a+,b− f and S̆k,g,a+,b− f in terms of the double
integral means

1

2

[
K (g (b) − g (x))

b − x

∫ b

x
f (t) dt + K (g (x) − g (a))

x − a

∫ x

a
f (t) dt

]

, x ∈ (a, b).

Examples for the generalized left-sided and right-sided Riemann–Liouville frac-
tional integrals of a function f with respect to another function g and a general
exponential fractional integral are also provided.

2 The Main Results

We use the classical Lebesgue p-norms defined as

‖h‖[c,d],∞ := essup
s∈[c,d]

| h (s)|

and

‖h‖[c,d],p :=
(∫ d

c
|h (s)|p ds

)1/p

, p ≥ 1.

We have

Theorem 2 Assume that the kernel k is defined either on (0,∞) or on [0,∞) with
complex values and integrable on any finite subinterval. Let f : [a, b] → C be an
integrable function on [a, b] and g be a strictly increasing function on (a, b), having
a continuous derivative g′ on (a, b). Then
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∣
∣
∣
∣Sk,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.1)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],∞ K (g (x) − g (a))

if f ∈ L∞ [a, b] ;
∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],q

Kp (g (x) − g (a))

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

(2.2)

+ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[x,b],∞

K (g (b) − g (x))

if f ∈ L∞ [a, b] ;
∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[a,x],q

Kp (g (b) − g (x))

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

and

∣
∣
∣
∣S̆k,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.3)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],∞ K (g (x) − g (a))

if f ∈ L∞ [a, b] ;
∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],q

Kp (g (x) − g (a))

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

(2.4)

+1

2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[x,b],∞

K (g (b) − g (x))

if f ∈ L∞ [a, b] ;
∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[a,x],q

Kp (g (b) − g (x))

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

for x ∈ (a, b).

Proof If we write the equality (1.32) for γ = 1
b−x

∫ b
x f (s) ds and λ = 1

x−a∫ x
a f (s) ds, we get
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∣
∣
∣
∣Sk,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.5)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

∣
∣
∣
∣

∫ x

a
k (g (x) − g (t)) g′ (t)

[

f (t) − 1

x − a

∫ x

a
f (s) ds

]

dt

∣
∣
∣
∣

+ 1

2

∣
∣
∣
∣

∫ b

x
k (g (t) − g (x)) g′ (t)

[

f (t) − 1

b − x

∫ b

x
f (s) ds

]

dt

∣
∣
∣
∣

≤ 1

2

∫ x

a
|k (g (x) − g (t))| g′ (t)

∣
∣
∣
∣ f (t) − 1

x − a

∫ x

a
f (s) ds

∣
∣
∣
∣ dt

+ 1

2

∫ b

x
|k (g (t) − g (x))| g′ (t)

∣
∣
∣
∣ f (t) − 1

b − x

∫ b

x
f (s) ds

∣
∣
∣
∣ dt

=: B (x)

for x ∈ (a, b).

Let p, q > 1 with 1
p + 1

q = 1. Then by Hölder’s integral inequality, we have

∫ x

a
|k (g (x) − g (t))| g′ (t)

∣
∣
∣
∣ f (t) − 1

x − a

∫ x

a
f (s) ds

∣
∣
∣
∣ dt (2.6)

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],∞

∫ x
a |k (g (x) − g (t))| g′ (t) dt

if f ∈ L∞ [a, b] ;
∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],q

(∫ x
a |k (g (x) − g (t))|p g′ (t) dt

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

and

∫ b

x
|k (g (t) − g (x))| g′ (t)

∣
∣
∣
∣ f (t) − 1

b − x

∫ b

x
f (s) ds

∣
∣
∣
∣ dt (2.7)

≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[x,b],∞

∫ b
x |k (g (t) − g (x))| g′ (t) dt

if f ∈ L∞ [a, b] ;
∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[a,x],q

(∫ x
a |k (g (t) − g (x))|p g′ (t) dt

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

for x ∈ (a, b).

Observe that, by taking the derivative over t and using the chain rule we have

(K (g (x) − g (t)))′ = −K′ (g (x) − g (t)) g′ (t) = − |k (g (x) − g (t))| g′ (t)
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for t ∈ (a, x) and

(K (g (t) − g (x)))′ = K′ (g (t) − g (x)) g′ (t) = |k (g (t) − g (x))| g′ (t)

for t ∈ (x, b).

Then
∫ x

a
|k (g (x) − g (t))| g′ (t) dt = −

∫ x

a
(K (g (x) − g (t)))′ dt = K (g (x) − g (a))

and

∫ b

x
|k (g (t) − g (x))| g′ (t) dt =

∫ b

x
(K (g (t) − g (x)))′ dt = K (g (x) − g (x))

where x ∈ (a, b).

We also have for p > 1

(
Kp

p (g (x) − g (t))
)′ = − |k (g (x) − g (t))|p g′ (t)

for t ∈ (a, x) and

(
Kp

p (g (t) − g (x))
)′ = |k (g (t) − g (x))|p g′ (t)

for t ∈ (x, b).

These give

∫ x

a
|k (g (x) − g (t))|p g′ (t) dt = −

∫ x

a

(
Kp

p (g (x) − g (t))
)′

dt = Kp
p (g (x) − g (a))

and

∫ b

x
|k (g (t) − g (x))|p g′ (t) dt =

∫ b

x

(
Kp

p (g (t) − g (x))
)′

dt = Kp
p(g(b) − g(x)),

which provide

(∫ x

a
|k (g (x) − g (t))|p g′ (t) dt

)1/p

= Kp (g (x) − g (a))

and (∫ b

x
|k (g (t) − g (x))|p g′ (t) dt

)1/p

= Kp (g (b) − g (x))

for x ∈ (a, b).

By making use of (2.6) and (2.7), we get
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B (x) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],∞ K (g (x) − g (a))

if f ∈ L∞ [a, b] ;
∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],q

Kp (g (x) − g (a))

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[x,b],∞

K (g (x) − g (x))

if f ∈ L∞ [a, b] ;
∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[a,x],q

Kp (g (b) − g (x))

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

and by (2.5) we get (2.1).
Further on, by utilizing the identity (1.33) for γ = 1

b−x

∫ b
x f (s) ds and λ =

1
x−a

∫ x
a f (s) ds we get

∣
∣
∣
∣S̆k,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (s) ds (2.8)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (s) ds

]∣
∣
∣
∣

≤ 1

2

∫ x

a
|k (g (t) − g (a))| g′ (t)

∣
∣
∣
∣ f (t) − 1

x − a

∫ x

a
f (s) ds

∣
∣
∣
∣ dt

+ 1

2

∫ b

x
|k (g (b) − g (t))| g′ (t)

∣
∣
∣
∣ f (t) − 1

b − x

∫ b

x
f (s) ds

∣
∣
∣
∣ dt

≤ 1

2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],∞

∫ x
a |k (g (t) − g (a))| g′ (t) dt

if f ∈ L∞ [a, b] ;
∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],q

(∫ x
a |k (g (t) − g (a))|p g′ (t) dt

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

+ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[x,b],∞

∫ b
x |k (g (b) − g (t))| g′ (t) dt

if f ∈ L∞ [a, b] ;
∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[a,x],q

(∫ b
x |k (g (b) − g (t))|p g′ (t) dt

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

for x ∈ (a, b).

Since
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∫ x

a
|k (g (t) − g (a))| g′ (t) dt =

∫ x

a
(K (g (t) − g (a)))′ dt = K(g(x) − g(a)),

∫ x

a
|k (g (t) − g (a))|p g′ (t) dt =

∫ x

a

(
Kp

p (g (t) − g (a))
)′

dt = Kp
p(g(x) − g(a)),

∫ b

x
|k (g (b) − g (t))| g′ (t) dt = −

∫ b

x
(K (g (b) − g (t)))′ dt = K (g (b) − g (x))

and

∫ b

x
|k (g (b) − g (t))|p g′ (t) dt = −

∫ b

x

(
Kp

p (g (b) − g (t))
)′

dt = Kp
p(g(b) − g(x)),

where x ∈ (a, b), then by (2.8) we get the desired result (2.3).

Remark 1 We observe that

K (t) ≤ t ‖k‖[0,t] for t ≥ 0,

which implies that

K (g (x) − g (a)) ≤ (g (x) − g (a)) ‖k‖[0,g(x)−g(a)]

and
K (g (b) − g (x)) ≤ (g (b) − g (x)) ‖k‖[0,g(b)−g(x)]

for x ∈ (a, b).

Therefore by (2.1) and (2.3), we get

∣
∣
∣
∣Sk,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.9)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],∞

(g (x) − g (a)) ‖k‖[0,g(x)−g(a)]

+ 1

2

∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[x,b],∞

(g (b) − g (x)) ‖k‖[0,g(b)−g(x)]

≤ 1

2
‖k‖[0,g(b)−g(a)]

[∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],∞

(g (x) − g (a))

+
∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[x,b],∞

(g (b) − g (x))

]
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and

∣
∣
∣
∣S̆k,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.10)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],∞

(g (x) − g (a)) ‖k‖[0,g(x)−g(a)]

+1

2

∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[x,b],∞

(g (b) − g (x)) ‖k‖[0,g(b)−g(x)]

≤ 1

2
‖k‖[0,g(b)−g(a)]

[∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],∞

(g (x) − g (a))

+
∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[x,b],∞

(g (b) − g (x))

]

for x ∈ (a, b).

The following result for functions of bounded variation hold [13]:

Lemma 2 Let f : [a, b] → R be a function of bounded variation on [a, b] . Then

‖ f ‖[a,b],∞ ≤ 1

b − a

∣
∣
∣
∣

∫ b

a
f (t) dt

∣
∣
∣
∣ +

∨b

a
( f ). (2.11)

The multiplicative constant 1 in front of
∨b

a ( f ) cannot be replaced by a smaller
quantity.

Lemma 3 Let f : [a, b] → R be a function of bounded variation on [a, b] . Then
for p ≥ 1 one has the inequality

‖ f ‖[a,b],p ≤ 1

(b − a)
1− 1

p

∣
∣
∣
∣

∫ b

a
f (t) dt

∣
∣
∣
∣ +

1

2

(b − a)
1
p
(
2p+1 − 1

) 1
p

(p + 1)
1
p

∨b

a
( f ).

(2.12)
The constant 1

2 is best possible in the sense that it cannot be replaced by a smaller
quantity.

The following result may be then stated:

Corollary 1 Assume that the kernel k is defined either on (0,∞) or on [0,∞) with
complex values and integrable on any finite subinterval. Let f : [a, b] → C be a
function of bounded variation on [a, b] and g be a strictly increasing function on
(a, b), having a continuous derivative g′ on (a, b). Then
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∣
∣
∣
∣Sk,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.13)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨x
a ( f )K (g (x) − g (a))

1
2

(x−a)
1
q (2q+1−1)

1
q

(q+1)
1
q

∨x
a ( f )Kp (g (x) − g (a))

p, q > 1, 1
p + 1

q = 1

+ 1

2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨b
x ( f )K (g (b) − g (x))

1
2

(b−x)
1
q (2q+1−1)

1
q

(q+1)
1
q

∨b
x ( f )Kp (g (b) − g (x))

p, q > 1, 1
p + 1

q = 1

and

∣
∣
∣
∣S̆k,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.14)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨x
a ( f )K (g (x) − g (a))

1
2 · (x−a)

1
q (2q+1−1)

1
q

(q+1)
1
q

∨x
a ( f )Kp (g (x) − g (a))

p, q > 1, 1
p + 1

q = 1

+ 1

2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨b
x ( f )K (g (b) − g (x))

1
2 · (b−x)

1
q (2q+1−1)

1
q

(q+1)
1
q

∨b
x ( f )Kp (g (b) − g (x))

p, q > 1, 1
p + 1

q = 1

for x ∈ (a, b).

Proof By using Lemma 2, we have

∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],∞

≤ 1

x − a

∣
∣
∣
∣

∫ x

a

(

f (t) − 1

x − a

∫ x

a
f (s) ds

)

dt

∣
∣
∣
∣

+
∨x

a

(

f − 1

x − a

∫ x

a
f (s) ds

)

=
∨x

a
( f )
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and

∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[x,b],∞

≤ 1

b − x

∣
∣
∣
∣

∫ b

x

(

f (t) − 1

b − x

∫ b

x
f (s) ds

)

dt

∣
∣
∣
∣

+
∨b

x

(

f (t) − 1

b − x

∫ b

x
f (s) ds

)

=
∨b

x
( f )

for x ∈ (a, b).
Also, by using Lemma 3 we have for q > 1 that

∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],q

≤ 1

(x − a)
1− 1

q

∣
∣
∣
∣

∫ x

a

(

f (t) − 1

x − a

∫ x

a
f (s) ds

)

dt

∣
∣
∣
∣

+ 1

2

(x − a)
1
q
(
2q+1 − 1

) 1
q

(q + 1)
1
q

∨x

a

(

f − 1

x − a

∫ x

a
f (s) ds

)

= 1

2

(x − a)
1
q
(
2q+1 − 1

) 1
q

(q + 1)
1
q

∨x

a
( f )

and
∥
∥
∥
∥
∥

f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
∥
[x,b],q

≤ 1

(b − x)
1− 1

q

∣
∣
∣
∣
∣

∫ b

a

(

f (t) − 1

b − x

∫ b

x
f (s) ds

)

dt

∣
∣
∣
∣
∣

+ 1

2

(b − x)
1
q
(
2q+1 − 1

) 1
q

(q + 1)
1
q

∨b

x

(

f − 1

b − x

∫ b

x
f (s) ds

)

= 1

2

(b − x)
1
q
(
2q+1 − 1

) 1
q

(q + 1)
1
q

∨b

x
( f )

for x ∈ (a, b).

By using Theorem 2, we obtain the desired results (2.13) and (2.14).

Remark 2 With the assumptions of Corollary 1, we have
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∣
∣
∣
∣Sk,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.15)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎨

⎪⎩

max {K(g(x) − g(a)),K (g (b) − g (x))}∨b
a ( f )

[K (g (x) − g (a)) + K (g (b) − g (x))]max
{∨x

a( f ),
∨b

x ( f )
}

and

∣
∣
∣
∣S̆k,g,a+,b− f (x) − 1

2

[

K (g (b) − g (x))
1

b − x

∫ b

x
f (t) dt (2.16)

+ K (g (x) − g (a))
1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎨

⎪⎩

max {K(g(x) − g(a)),K (g (b) − g (x))}∨b
a ( f )

[K (g (x) − g (a)) + K (g (b) − g (x))]max
{∨x

a( f ),
∨b

x ( f )
}

for x ∈ (a, b).

3 Applications for Generalized Riemann–Liouville
Fractional Integrals

If we take k (t) = 1
�(α)

tα−1, where � is the Gamma function, then

Sk,g,a+ f (x) = I α
a+,g f (x) := 1

� (α)

∫ x

a
[g (x) − g (t)]α−1 g′ (t) f (t) dt

for a < x ≤ b and

Sk,g,b− f (x) = I α
b−,g f (x) := 1

� (α)

∫ b

x
[g (t) − g (x)]α−1 g′ (t) f (t) dt

for a ≤ x < b, which are the generalized left-sided and right-sided Riemann–
Liouville fractional integrals of a function f with respect to another function g
on [a, b] as defined in [24, p. 100].

We consider the mixed operators

I α
g,a+,b− f (x) := 1

2

[
I α
a+,g f (x) + I α

b−,g f (x)
]

(3.1)
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and

Ĭ α
g,a+,b− f (x) := 1

2

[
I α

x+,g f (b) + I α
x−,g f (a)

]
(3.2)

for x ∈ (a, b).

We observe that for α > 0, we have

K (t) = 1

� (α)

∫ t

0
sα−1ds = tα

α� (α)
= tα

� (α + 1)
, t ≥ 0

and for α >
p−1

p > 0, where p > 1, we have

Kp (t) = 1

� (α)

(∫ t

0
s(α−1)pds

)1/p

= 1

(α − 1 + 1/p) � (α)
tα−1+1/p, t ≥ 0.

Using Theorem 2, we can state the following inequalities for α > 0

∣
∣
∣
∣I

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.3)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2� (α + 1)

[∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],∞

(g (x) − g (a))α

+
∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[x,b],∞

(g (b) − g (x))α

]

and

∣
∣
∣
∣ Ĭ

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.4)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2� (α + 1)

[∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],∞

(g (x) − g (a))α

+
∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[x,b],∞

(g (b) − g (x))α

]

for x ∈ (a, b).

If p, q > 1 with 1
p + 1

q = 1 and α >
p−1

p = 1
q > 0, then by Theorem 2 we can

state the following inequalities as well
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∣
∣
∣
∣I

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.5)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

1

(α − 1/q) � (α)

[∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],q

(g (x) − g (a))α−1+1/p

+
∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[a,x],q

(g (b) − g (x))α−1+1/p

]

and

∣
∣
∣
∣ Ĭ

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.6)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

1

(α − 1/q) � (α)

[∥
∥
∥
∥ f − 1

x − a

∫ x

a
f (s) ds

∥
∥
∥
∥
[a,x],q

(g (x) − g (a))α−1+1/p

+
∥
∥
∥
∥ f − 1

b − x

∫ b

x
f (s) ds

∥
∥
∥
∥
[a,x],q

(g (b) − g (x))α−1+1/p

]

for x ∈ (a, b).

If we assume that f : [a, b] → C is of bounded variation, then by Corollary 1 we
have for α > 0 that

∣
∣
∣
∣I

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.7)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2� (α + 1)

[∨x

a
( f ) (g (x) − g (a))α +

∨b

x
( f ) (g (b) − g (x))α

]

and

∣
∣
∣
∣ Ĭ

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.8)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2� (α + 1)

[∨x

a
( f ) (g (x) − g (a))α +

∨b

x
( f ) (g (b) − g (x))α

]
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for x ∈ (a, b).

If p, q > 1 with 1
p + 1

q = 1 and α >
p−1

p = 1
q > 0,then by Corollary 1 we have

∣
∣
∣
∣I

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.9)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

4

(
2q+1 − 1

) 1
q

(q + 1)
1
q (α − 1/q) � (α)

[
(x − a)

1
q

∨x

a
( f ) (g (x) − g (a))α−1+1/p

+ (b − x)
1
q

∨b

x
( f ) (g (b) − g (x))α−1+1/p

]

and

∣
∣
∣
∣ Ĭ

α
g,a+,b− f (x) − 1

2� (α + 1)

[
(g (b) − g (x))α

b − x

∫ b

x
f (t) dt (3.10)

+ (g (x) − g (a))α

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

4

(
2q+1 − 1

) 1
q

(q + 1)
1
q (α − 1/q) � (α)

[
(x − a)

1
q

∨x

a
( f ) (g (x) − g (a))α−1+1/p

+ (b − x)
1
q

∨b

x
( f ) (g (b) − g (x))α−1+1/p

]

for x ∈ (a, b).

4 Example for an Exponential Kernel

For α ∈ R we consider the kernel k (t) := exp(αt), t ∈ R. We have

|k (s)| = exp (αs) for s ∈ R,

K (t) = exp (αt) − 1

α
, if t ∈ R

and for p ≥ 1

Kp (t) =
(∫ t

0
exp (pαs)

)1/p

ds =
(
exp (pαt) − 1

pα

)1/p

for α 	= 0.
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Let f : [a, b] → Cbe an integrable function on [a, b] and g be a strictly increasing
function on (a, b), having a continuous derivative g′ on (a, b). Define

Hα
g,a+,b− f (x) = 1

2

∫ b

x
exp [α (g (t) − g (x))] g′ (t) f (t) dt (4.1)

+ 1

2

∫ x

a
exp [α (g (x) − g (t))] g′ (t) f (t) dt

for x ∈ (a, b).

If g = ln h where h : [a, b] → (0,∞) is a strictly increasing function on (a, b),

having a continuous derivative h′ on (a, b), then we can consider the following
operator as well

κα
h,a+,b− f (x) (4.2)

:= Hα
ln h,a+,b− f (x)

= 1

2

[∫ b

x

(
h (t)

h (x)

)α h′ (t)
h (t)

f (t) dt +
∫ x

a

(
h (x)

h (t)

)α h′ (t)
h (t)

f (t) dt

]

,

for x ∈ (a, b).

Furthermore, let f : [a, b] → C be an integrable function on [a, b] and g be a
strictly increasing function on (a, b), having a continuous derivative g′ on (a, b).

Also define

H̆α
g,a+,b− f (x) (4.3)

:= 1

2

∫ b

x
exp [α (g (b) − g (t))] g′ (t) f (t) dt

+ 1

2

∫ x

a
exp [α (g (t) − g (a))] g′ (t) f (t) dt

for any x ∈ (a, b).

If g = ln h where h : [a, b] → (0,∞) is a strictly increasing function on (a, b),

having a continuous derivative h′ on (a, b), then we can consider the following
operator as well

κ̆α
h,a+,b− f (x) (4.4)

:= H̆α
ln h,a+,b− f (x)

= 1

2

[∫ b

x

(
h (b)

h (t)

)α h′ (t)
h (t)

f (t) dt +
∫ x

a

(
h (t)

h (a)

)α h′ (t)
h (t)

f (t) dt

]

,

for any x ∈ (a, b).

Using Theorem 2, we have
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∣
∣
∣
∣H

α
g,a+,b− f (x) − 1

2

[
exp (α (g (b) − g (x))) − 1

α

1

b − x

∫ b

x
f (t) dt (4.5)

+ exp (α (g (x) − g (a))) − 1

α

1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],∞

exp(α(g(x)−g(a)))−1
α

if f ∈ L∞ [a, b] ;
∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],q

(
exp(pα(g(x)−g(a)))−1

pα

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

+ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[x,b],∞

exp(α(g(b)−g(x)))−1
α

if f ∈ L∞ [a, b] ;
∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[a,x],q

(
exp(pα(g(b)−g(x)))−1

pα

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

and

∣
∣
∣
∣H̆

α
g,a+,b− f (x) − 1

2

[
exp (α (g (b) − g (x))) − 1

α

1

b − x

∫ b

x
f (t) dt (4.6)

+ exp (α (g (x) − g (a))) − 1

α

1

x − a

∫ x

a
f (t) dt

]∣
∣
∣
∣

≤ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],∞

exp(α(g(x)−g(a)))−1
α

if f ∈ L∞ [a, b] ;
∥
∥ f − 1

x−a

∫ x
a f (s) ds

∥
∥
[a,x],q

(
exp(pα(g(x)−g(a)))−1

pα

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

+ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[x,b],∞

exp(α(g(b)−g(x)))−1
α

if f ∈ L∞ [a, b] ;
∥
∥
∥ f − 1

b−x

∫ b
x f (s) ds

∥
∥
∥
[a,x],q

(
exp(pα(g(b)−g(x)))−1

pα

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b] ,

for any x ∈ (a, b).

If we take in (4.5) and (4.6) g = ln h where h : [a, b] → (0,∞) is a strictly
increasing function on (a, b), having a continuous derivative h′ on (a, b) , then we
have
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∣
∣
∣
∣
∣
∣
∣

κα
h,a+,b− f (x) − 1

2

⎡

⎢
⎣

(
h(b)

h(x)

)α − 1

α

1

b − x

∫ b

x
f (t) dt (4.7)

+
(

h(x)

h(a)

)α − 1

α

1

x − a

∫ x

a
f (t) dt

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤ 1

2

⎧
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Finally, if we assume that f : [a, b] → C is of bounded variation, then by Corol-
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and
∣
∣
∣
∣
∣
∣
∣

κ̆α
h,a+,b− f (x) − 1

2

⎡

⎢
⎣

(
h(b)

h(x)

)α − 1

α

1

b − x

∫ b

x
f (t) dt (4.10)

+
(

h(x)

h(a)

)α − 1

α

1

x − a

∫ x

a
f (t) dt

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∨x
a ( f )

(
h(x)

h(a)

)α−1

α
if f ∈ L∞ [a, b] ;

1
2

(x−a)
1
q (2q+1−1)

1
q

(q+1)
1
q

∨x
a ( f )

((
h(x)

h(a)

)pα−1

pα

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

+ 1

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∨b
x ( f )

(
h(b)

h(x)

)α−1

α
if f ∈ L∞ [a, b] ;

1
2

(b−x)
1
q (2q+1−1)

1
q

(q+1)
1
q

∨b
x ( f )

((
h(b)

h(x)

)pα−1

pα

)1/p

p, q > 1, 1
p + 1

q = 1 if f ∈ Lq [a, b]

for any x ∈ (a, b).
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Existence Theory on Modular
Metric Spaces

Anantachai Padcharoen, Parin Chaipunya and Poom Kumam

1 Geraghty-Type Theorems and Application to Partial
Differential Equation

Since the year 1922, Banach’s contraction principle, due to its simplicity and us-
ability, has become a popular tool in modern analytics, particularly in nonlinear
analysis, including the use of equations, differential equations, variance, equilibrium
problems, and much more (see, e.g., [1–10]).

Throughout this paper, let R
+ denote the set of all positive real numbers and R+

denote the set of all nonnegative real numbers.
In 1973, Geraghty [11] gave an interesting generalization of the contraction prin-

ciple by using the class S of the functions β : R+ → [0, 1) satisfying the following
condition:

β(tn) → 1 implies tn → 0.

Theorem 1.1 ([11]) Let (X, d) be a complete metric space and f be a self-mapping
on X such that there exists β ∈ S satisfying

d( f x, f y) ≤ β(d(x, y))d(x, y) (1.1)

for all x, y ∈ X. Then the sequence {xn} defined by xn = f xn−1 for each n ≥ 1
converges to the unique fixed point of z in X.

Later, Amini-Harandini et al. [12] extended Geraghty’s fixed point theorem to the
setting of partially ordered metric spaces as follows:
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Theorem 1.2 ([12]) Let (X,�) be a partially ordered metric set and suppose that
there exists a metric d in X such that (X, d) is a complete metric space. Let f be
a nondecreasing self-mapping on X which satisfies the inequality (1.1) whenever
x, y ∈ X are comparable. Assume that f is either continuous or

if a nondecreasing sequence {xn} converges to x∗, then xn � x∗ for each n ≥ 1.
(1.2)

If, additionally, the following condition is satisfied:

for any x, y ∈ X, there exists z ∈ X which is comparable to both x and y, (1.3)

then the sequence {xn} converges to the unique fixed point of z in X.

Let � denote the class of functions ψ : R+ → R+ satisfying the following con-
ditions:

(a) ψ is nondecreasing,
(b) ψ is continuous,
(c) ψ(t) = 0 if and only if t = 0.

By using this class, Eshaghi Gordji et al. [13] extended Theorem 1.2 as follows:

Theorem 1.3 ([13]) Let (X,�) be a partially ordered metric set and suppose that
there exists a metric d in X such that (X, d) is a complete metric space. Let f be
a nondecreasing self-mapping on X such that there exists x0 ∈ X with x0 � f x0.
Suppose that there exist β ∈ S and ψ ∈ � such that

ψ(d( f x, f y)) ≤ β(ψ(d(x, y)))ψ(d(x, y)),

whenever x, y ∈ X are comparable. Assume also that the condition (1.2) holds. Then
f has a fixed point.

In 2010, Chistyakov [14] introduced the notion of a modular metric space which
is raised in an attempt to avoid some restrictions of the concept of a modular space
(for the literature of a modular space; see, e.g., [15–21] and references therein).
Some of the early investigations on metric fixed point theory in this space refer to
[22–24, 54–59].

For the rest of this section, we present some notions and basic facts of modular
metric spaces.

Definition 1.4 ([14]) Let X be a nonempty set. A function ω : R
+ × X × X →

R+ ∪ {∞} is said to be a metric modular on X if, for all x, y, z ∈ X , the following
conditions hold:

(a) ωλ(x, y) = 0 for all λ > 0 if and only if x = y.
(b) ωλ(x, y) = ωλ(y, x) for all λ > 0.
(c) ωλ+μ(x, y) ≤ ωλ(x, z) + ωμ(z, y) for all λ,μ > 0.
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For any xι ∈ X , the set Xω(xι) = {x ∈ X : limλ→∞ ωλ(x, xι) = 0} is called a
modular metric space generated by xι and induced by ω. If its generator xι does
not play any role in the situation (i.e., Xω is independent of generators), we write Xω

instead of Xω(xι).

Observe that a metric modular ω on X is nonincreasing with respect to λ > 0.
We can simply show this assertion by using the condition (c). For any x, y ∈ X and
0 < μ < λ, we have

ωλ(x, y) ≤ ωλ−μ(x, x) + ωμ(x, y) = ωμ(x, y). (1.4)

For any x, y ∈ X and λ > 0, we set

ωλ+(x, y) := lim
ε→0

ωλ+ε(x, y), ωλ−(x, y) := lim
ε→0

ωλ−ε(x, y).

Consequently, from (1.4), it follows that

ωλ+(x, y) ≤ ωλ(x, y) ≤ ωλ−(x, y).

For any x, y ∈ X , if a metric modular ω on X possesses a finite value and
ωλ(x, y) = ωμ(x, y) for all λ,μ > 0, then d(x, y) := ωλ(x, y) is a metric on X .

Example 1.5 Let X = R andω is defined byωλ(x, y) = ∞ ifλ < 1, andωλ(x, y) =
|x − y| if λ ≥ 1, it is easy to verify that ω is regular modular metric but not modular
metric.

Later, Chaipunya et al. [23] have altered the notion of convergence and Cauchy
sequence in modular metric spaces under the direction of Mongkolkeha et al. [24].

Definition 1.6 ([23, 24]) Let (X, ω) be a modular metric space and {xn} be a se-
quence in Xω.

(1) A point x ∈ Xω is called a limit of {xn} if, for each λ, ε > 0, there exists n0 ∈ N

such that ωλ(xn, x) < ε for all n ≥ n0. A sequence that has a limit is said to be
convergent (or converges to x), which is written as limn→∞ xn = x .

(2) A sequence {xn} in Xω is said to be a Cauchy sequence if, for each λ, ε > 0,
there exists n0 ∈ N such that ωλ(xn, xm) < ε for all m, n ≥ n0.

(3) If every Cauchy sequences in X converges, X is said to be complete.

We prove a generalization of Geraghty’s theorem which also improves the result
of Eshagi Gordji et al. [13] under the influence of a modular metric space.

Geraghty-type theorems

Before stating our main results, we first introduce the following classes for a more
convenience of usage.
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For each n ∈ N, let Sn denote the class of n-tuples of functions (β1, β2, . . . , βn),
where for each i ∈ {1, 2, . . . , n}, βi : R+ ∪ {∞} → [0, 1) and the following impli-
cation holds:

β(tk) := β1(tk) + β2(tk) + · · · + βn(tk) → 1 implies tk → 0.

Actually, Geraghty’s class S is equivalent to the class S1 when ∞ is not con-
sidered. It follows that for each m ∈ {1, 2, . . . , n}, if (β1, β2, . . . , βm) ∈ Sm , then
(β1, β2, . . . , βm, θ, θ, . . . , θ

︸ ︷︷ ︸

n−mentries

) ∈ Sn , where θ denotes the zero function. Also, note

that if (β, β, . . . , β
︸ ︷︷ ︸

n entries

) ∈ Sn , then we also have the following:

β(tk) → 1

n
implies tk → 0.

Besides, if (β1, β2 . . . , βn) ∈ Sn , then π((β1, β2 . . . , βn)) ∈ Sn , where
π((β1, β2 . . . , βn)) is a permutation of (β1, β2 . . . , βn). It is also important to
know that if (β1, β2, . . . , βn) ∈ Sn , then (βn1 , βn2 , . . . , βnm ) ∈ Sm for each m ∈
{1, 2, . . . , n}, where each βni is selected from {β1, β2, . . . , βn} and βni 
= βn j .

Let � denote the class of functions ψ : R+ ∪ {∞} → R+ ∪ {∞} satisfying the
following conditions:

(a) If 0 < t < ∞, then ψ(t) < ∞.
(b) ψ |R+ ∈ �.

Now, we are ready to give our main results.

Theorem 1.7 ([25]) Let (X, ω) be a complete modular metric space with a partial
ordering � and f be a self-mapping on Xω such that for each λ > 0, there exists
η(λ) ∈ (0, λ) such that

ψ(ωλ( f x, f y)) ≤ α(ψ(ωλ(x, y)))ψ(ωλ+η(λ)(x, y)) + β(ψ(ωλ(x, y)))ψ(ωλ(x, f x))

+ γ (ψ(ωλ(x, y)))ψ(ωλ(y, f y)),

where ψ ∈ � and (α, β, γ ) ∈ S3 with α(t) + 2max{supt≥0 β(t), supt≥0 γ (t)} < 1.
Assume also that the condition (1.2) holds. If there exists x0 ∈ Xω such that
ωλ(x0, f x0) < ∞ for all λ > 0, then the following holds:

(1) f has a fixed point x∞ ∈ Xω.
(2) The sequence { f nx0} converges to x∞.

Proof It is easy to see that the sequence { f nx0} is nondecreasing. Suppose that for
each n ≥ 1, there exists λn > 0 such that ωλn ( f

nx0, f n+1x0) 
= 0. Otherwise, the
proof is complete. For eachn ≥ 1, if 0 < λ ≤ λn , thenwealsohaveωλ( f nx0, f n+1x0)

= 0. Since f nx0 � f n+1x0, for any 0 < λ ≤ λn , and see [25, Theorem 2.1] for more
detail of proof. �
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Theorem 1.8 ([25]) Additional to the Theorem 1.7, if ψ is subadditive and the
following condition holds:

for any x, y ∈ Xω, there existsw ∈ Xω withw � f w andωλ(w, f w) < ∞
for all λ > 0 such thatw is comparable to both x and y,

(1.5)

then the fixed point in Theorem 1.7 is unique.

Corollary 1.9 ([25]) Additional to Theorem 1.7, if Xω is totally ordered, then the
fixed point in Theorem 1.7 is unique.

The following two corollaries nicely broaden the results in [24] (see Theorems
3.2 and 3.6 [24]).

Corollary 1.10 ([25]) Let (X, ω) be a complete modular metric space with a partial
ordering � and f be a self-mapping on Xω such that for any λ > 0, there exists
η(λ) ∈ (0, λ) such that

ψ(ωλ( f x, f y)) ≤ α(ψ(ωλ(x, y)))ψ(ωλ+η(λ)(x, y)),

where α ∈ S and ψ ∈ �. Assume also that f is continuous or the condition (1.2)
holds. Then f has a fixed point in Xω. Moreover, if the condition (1.5) is satisfied,
the fixed point is unique.

Corollary 1.11 ([25]) Let (X, ω) be a complete modular metric space with a partial
ordering � and f be a self-mapping on Xω such that for any λ > 0, there exist
ζ(λ), μ(λ) ∈ (0, λ) such that

ψ(ωλ( f x, f y)) ≤ β(ψ(ωλ(x, y)))ψ(ωλ(x, f x)) + γ (ψ(ωλ(x, y)))ψ(ωλ(y, f y)),

whereψ ∈ � and (β, γ ) ∈ S2 withmax{supt≥0 β(t), supt≥0 γ (t)} < 1. Assume also
that f is continuous or that the condition (1.2) holds. Then f has a fixed point in
Xω. Moreover, if the condition (1.5) is satisfied, the fixed point is unique.

A correction of the recent results of Mongkolkeha et al. [24]

In [24], Mongkolkeha et al. introduced the following theorems:

Theorem 1.12 ([24]) Let (X, ω) be a complete modular metric space and f be a
self-mapping on X satisfying the inequality

ωλ( f x, f y) ≤ kωλ(x, y), (1.6)

for all x, y ∈ Xω, where k ∈ [0, 1). Then, f has a unique fixed point in x∗ ∈ Xω and
the sequence { f nx} converges to x∗.
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Theorem 1.13 ([24]) Let (X, ω) be a complete modular metric space and f be a
self-mapping on X satisfying the inequality

ωλ( f x, f y) ≤ k[ω2λ(x, f x) + ω2λ(y, f y)],

for all x, y ∈ Xω, where k ∈ [

0, 1
2

)

. Then, f has a unique fixed point in x∗ ∈ Xω and
the sequence { f nx} converges to x∗.

We now claim that the conditions in the above theorems are not sufficient to
guarantee the existence and uniqueness of the fixed points.We state a counterexample
to Theorem 1.12 in the following:

Example 1.14 ([25]) Let X := {0, 1} and ω be given by

ωλ(x, y) =
{∞, if 0 < λ < 1 and x 
= y,
0, if λ ≥ 1 or x = y.

Thus, the modular metric space Xω = X . Now let f be a self-mapping on X defined
by

{

f (0) = 1,
f (1) = 0.

Then, f satisfies the inequality (1.6) with any k ∈ [0, 1) but it possesses no fixed
point after all.

Notice that this gap flaws the two above-mentioned theorems only when ∞ is in-
volved.

In this section, we give corrections to both theorems above as follows:

Theorem 1.15 ([25]) Let (X, ω) be a complete modular metric space and f be a
self-mapping on X satisfying the inequality

ωλ( f x, f y) ≤ kωλ(x, y),

for all x, y ∈ Xω, where k ∈ [0, 1). Suppose that there exists x0 ∈ X such that
ωλ(x0, f x0) < ∞ for all λ > 0. Then, f has a unique fixed point in x∗ ∈ Xω and
the sequence { f nx0} converges to x∗.

Theorem 1.16 ([25]) Let (X, ω) be a complete modular metric space and f be a
self-mapping on X satisfying the inequality

ωλ( f x, f y) ≤ k[ω2λ(x, f x) + ω2λ(y, f y)],

for all x, y ∈ Xω, where k ∈ [

0, 1
2

)

. Suppose that there exists x0 ∈ X such that
ωλ(x0, f x0) < ∞ for all λ > 0. Then, f has a unique fixed point in x∗ ∈ Xω and
the sequence { f nx} converges to x∗.
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Applications

In this section, we give applications of our theorems to establish the existence and
uniqueness of a solution to a nonhomogeneous linear parabolic partial differential
equation satisfying a given initial condition.

Consider the following initial value problem

{

ut (x, t) = uxx (x, t) + F(x, t, u(x, t), ux (x, t)), −∞ < x < ∞, 0 < t ≤ T
u(x, 0) = ϕ(x) ≥ 0, −∞ < x < ∞,

(1.7)
where we assume ϕ to be continuously differentiable such that ϕ and ϕ′ are bounded
and F is continuous.

By a solution of the system (3.2), we meant a function u ≡ u(x, t) defined on
R × I , where I := [0, T ], satisfying the following conditions:

(a) u, ut , ux , uxx ∈ C(R × I ).
(b) u and ux are bounded in R × I .
(c) ut (x, t) = uxx (x, t) + F(x, t, u(x, t), ux (x, t)) for all (x, t) ∈ R × I .
(d) u(x, 0) = ϕ(x) for all x ∈ R.

Now, we consider the following space:

� := {u(x, t) : u, ux ∈ C(R × I ) and ‖u‖ < ∞},

where
‖u‖ := sup

x∈R,t∈I
|u(x, t)| + sup

x∈R,t∈I
|ux (x, t)| .

Obviously, the function ω : R
+ × � × � → R+ given by

ωλ(x, y) := 1

1 + λ
‖u − v‖

is a metric modular on �. Clearly, the set �ω is a complete modular metric space
independent of generators. Define a partial ordering � on �ω by

u, v ∈ �ω, u � v ⇐⇒ u(x, t) ≤ v(x, t) and ux (x, t) ≤ vx (x, t) at each (x, t) ∈ R × I.

Taking a nondecreasing sequence {un} in �ω converging to u ∈ �ω. For any
(x, t) ∈ R × I , we have

u1(x, t) ≤ u2(x, t) ≤ · · · ≤ un(x, t) ≤ · · ·

and
(u1)x (x, t) ≤ (u2)x (x, t) ≤ · · · ≤ (un)x (x, t) ≤ · · · .
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Since the sequences {un(x, t)} and {(un)x (x, t)} converge to u(x, t) and ux (x, t),
respectively, it follows that for any (x, t) ∈ R × I ,

un(x, t) ≤ u(x, t) and (un)x (x, t) ≤ ux (x, t)

for all n ≥ 1. Therefore, un � u for all n ≥ 1. So, the space�ω satisfies the condition
(1.2).

Theorem 1.17 ([25]) Consider the problem (3.2) and assume the following:

(1) For any c > 0 with |s| < c and |p| < c, the function F(x, t, s, p) is uniformly
Hölder continuous in x and t for each compact subset of R × I .

(2) There exists a constant cF ≤ (T + 2π− 1
2 T

1
2 )−1 such that for any λ > 0, there

exists η(λ) ∈ (0, λ) such that

0 ≤ 1
1+λ

[F(x, t, s2, p2) − F(x, t, s1, p1)]
≤ cF [ 1

1+λ+η(λ)
ρ

(

�

(

s2 − s1 + p2 − p1
1 + λ

))

+ 1
1+λ

σ

(

�

(

s2 − s1 + p2 − p1
1 + λ

))

]

for all (s1, p1), (s2, p2) ∈ R × R with s1 ≤ s2 and p1 ≤ p2, where � ∈ � is
sublinear with �(x) ≤ t and ρ, σ are nondecreasing functions on R+ such that
ρ(t) < (1 − k)t andσ(t) < (1 − k)kt for all t > 0 and for somefixed k ∈ (0, 1).

(3) The two functions �,ϒ : R+ → [0, 1) given by

�(t) =
{

0 if t = 0,
ρ(t)

(1−k)t if t > 0,
ϒ(t) =

{

0 if t = 0,
σ(t)

(1−k)t if t > 0,

are such that (�,ϒ,ϒ) ∈ S3, � + 2ϒ < 1.

(4) F(x, t, s, 0) ≥ s
∫ t
0

∫ ∞
∞ k(x − ξ, t − τ)dξdτ

for all s ≥ 0.

(5) F is bounded for bounded s and p.

Then, the existence and uniqueness of the solution of the system (3.2) are affirmative.

It is essential to note that the problem (3.2) is equivalent (under the assumption
of Theorem 3.11) to the integral equation:

u(x, t) =
∫ ∞

−∞
k(x − ξ, t)ϕ(ξ)dξ

+
∫ t

0

∫ ∞

∞
k(x − ξ, t − τ)F(ξ, τ, u(ξ, τ ), ux (ξ, τ ))dξdτ (1.8)

for all x ∈ R and 0 < t ≤ T , where
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k(x, t) := 1√
4π t

e− x2

4t

for all x ∈ R and t > 0. The system (3.2) possesses a unique solution if and only if
Eq. (3.3) possesses a unique solution u such that u and ux are both continuous and
bounded for all x ∈ R and 0 < t ≤ T .

Define a mapping � : �ω → �ω by

(�u)(x, t) :=
∫ ∞

−∞
k(x − ξ, t)ϕ(ξ)dξ

+
∫ t

0

∫ ∞

∞
k(x − ξ, t − τ)F(ξ, τ, u(ξ, τ ), ux (ξ, τ ))dξdτ

for all (x, t) ∈ R × I . Then the problem of finding the solution to Eq. (3.3) is equiv-
alent to the problem of finding the fixed point of �.

Proof It is easy to see that the mapping � is nondecreasing by the definition. Let
u, v ∈ �ω with u � v. Suppose that u 
= v and see more detail [25, Theorem 2.1]
for proof. �

2 Fixed Point Results Based on α-Type F-Contractions

Fixed point technique is one of the most important tools in terms of studying the
existence and uniqueness of the solution of variousmathematicalmethods that appear
in practical problems. Specifically, Banach’s reduction theory is a creativeway to find
specific solutions for models related to differential equations and integral equation.
This principle is generalized by several authors in various directions; see [26–31].
Recently, Gopal et al. [32] introduced the concept of α-type F-contraction in metric
space by combining the ideas given in [31] and obtained some fixed point results.

We introduce the concept of α-type F-contraction in the setting of modular metric
spaces and establish fixed point and periodic point results for such contraction. Con-
sequently, our results generalize and improve some known results from the literature.

Following [33, 34], we denote by F the family of all functions, F : R
+ → R

satisfying the following conditions:

(F1) F is strictly increasing on R
+,

(F2) for every sequence {sn} in R
+, we have lim

n→∞ sn = 0 if and only if

lim
n→∞ F(sn) = −∞,

(F3) there exists a number k ∈ (0, 1) such that lim
s→0+

sk F(s) = 0.

Example 2.1 The following function F : R
+ → R belongs to F :

(i) F(t) = ln t, with t > 0,
(ii) F(t) = ln t + t, with t > 0.
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Definition 2.2 ([31]) A mapping T : X → X is said to be α-admissible if there
exists a function α : X × X → R+ such that

x, y ∈ X, α(x, y) ≥ 1 ⇒ α(T x, T y) ≥ 1.

Definition 2.3 ([34]) Let �G denote the set of all functions G : (R+)4 → R
+ satis-

fying the condition: (G) for all t1, t2, t3, t4 ∈ R
+ with t1t2t3t4 = 0, there exists τ > 0

such that G(t1, t2, t3, t4) = τ.

Example 2.4 The following function G : (R+)4 → R belongs to �G :
(i) G(t1, t2, t3, t4) = Lmin(t1, t2, t3, t4) + τ,

(ii) G(t1, t2, t3, t4) = τeLmin(t1,t2,t3,t4). Where L ∈ R
+

Definition 2.5 ([34]) Let (X, ω) be a modular metric space and T be a self-mapping
on Xω. Suppose that α, η : Xω × Xω → R+ be two functions. We say T is an α-η-
GF-contraction if for x, y ∈ Xω with η(x, T x) ≤ α(x, y), ωλ/ l(T x, T y) > 0, and
λ, l > 0, we have

F(ωλ/ l(x, y))

≥ G(ωλ/ l(x, T x), ωλ/ l(y, T y), ωλ/ l(x, T y), ωλ/ l(y, T x)) + F(ωλ/ l(T x, T y))

where G ∈ �G and F ∈ F .

Fixed point results based on α-type F-contractions

We begin with the following definitions:

Definition 2.6 ([35]) Let (X, ω) be a modular metric space. Let C be a nonempty
subset of Xω. A mapping T : C → C is said to be an α-type F-contraction if there
exists τ > 0 and two functions F ∈ F , α : C × C → (0,∞) such that for all x, y ∈
C, with ω1(T x, T y) > 0, the following inequality holds:

τ + α(x, y)F(ω1(T x, T y) ≤ F(ω1(x, y)). (2.1)

Definition 2.7 ([35]) Let (X, ω) be a modular metric space. Let C be a nonempty
subset of Xω. A mapping T : C → C is said to be an α-type F-weak contraction if
there exists τ > 0 and two functions F ∈ F , α : C × C → (0,∞) such that for all
x, y ∈ C, with ω1(T x, T y) > 0, the following inequality holds:

τ + α(x, y)F(ω1(T x, T y)

≤ F

(

max

{

ω1(x, y), ω1(x, T x), ω1(y, T y),
ω2(x, T y) + ω2(y, T x)

2

})

.
(2.2)

Remark 2.8 ([35]) Every α-type F-contraction is an α-type F-weak contraction, but
converse is not necessarily true.
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Example 2.9 ([35]) Let Xω = C =
[

0,
9

2

]

, ω1 = |x − y| andω2 = |x − y|. Define
T : C → C , α : C × C → (0,∞) and F : R

+ → R by

T (x) =

⎧

⎪
⎨

⎪
⎩

0, if x ∈ [0, 2
9
]

9

2
, otherwise.

Then, for x = 0 and y = 1, by putting F(t) = ln t with t > 0, we have

τ + α(0, 1)F(ω1(T (0), T (1)) = τ + α(0, 1) ln

(

9

2

)

and
F(ω1(0, 1)) = ln(1).

Clearly, we have

eτ

(

9

2

)α(0,1)

� 1 for all τ > 0 and for all α ∈ (0,∞).

However, since

inf
x∈[0, 29 ],y∈( 29 , 92 ]

{

max

{

ω1(x, y), ω1(x, T x), ω1(y, T y),
ω2(x, T y) + ω2(y, T x)

2

}}

= 9

4

then T is an α-type F-weak contraction for the choice

α(x, y) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, if x, y ∈
[

0,
2

9

]

or x, y ∈
(

2

9
,
9

2

]

log 10 − log 9

log 9 − log 2
, otherwise

and τ > 0 such that e−τ = 8

9
.

Remark 2.10 Definition 2.6 (respectively, Definition 2.7) reduces to F-contraction
(respectively, F-weak contraction) for α(x, y) = 1.

The motivation of the following definition can be predicted from the last step of
the proof of Cauchy sequence in our Theorems.

Definition 2.11 ([35]) Let (X, ω) be a modular metric space and C be a nonempty
subset of Xω. The sequence (xn)n∈N in C is said to satisfy �M -condition if this
is the case, i.e., lim

m,n→∞ ωm−(n+1)(xn, xm) = 0 for (m, n ∈ N, m > n + 1) implies

lim
m,n→∞ ωλ(xn, xm) = 0 for some λ > 0.
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Next, we are ready to state our first theorem which generalizes the main theorem
of Gopal et al. [32] for modular metric spaces.

Theorem 2.12 ([35])Let (X, ω)be amodularmetric space. Assume thatω is regular
and satisfies �M-condition. Let C be a nonempty subset of Xω. Assume that C is
complete and bounded, i.e., δω(C) = sup{ω1(x, y) : x, y ∈ C} < ∞. Let T : C →
C be an α-type F-weak contraction satisfying the following conditions:

(i) T is α-admissible,
(ii) there exists x0 ∈ C such that α(x0, T x0) ≥ 1,
(iii) T is continuous.

Then T has a fixed point x∗ ∈ C, and for every x0 ∈ C, the sequence {T nx0}n∈N is
convergent to x∗.

Proof See [35, Theorem 2.9] for proof. �

Theorem 2.13 ([35])Let (X, ω)be amodularmetric space. Assume thatω is regular
and satisfies �M-condition. Let C be a nonempty subset of Xω. Assume that C is
complete modular metric space and bounded, i.e., δω(C) = sup{ω1(x, y) : x, y ∈
C} < ∞. Let T : C → C be an α-type F-weak contraction satisfying the following
conditions:

(i) there exists x0 ∈ C such that α(x0, T x0) ≥ 1,
(ii) T is α-admissible,
(iii) if {xn} is a sequence in Xω such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x

as n → ∞, then α(xn, x) ≥ 1 for all n ∈ N,

(iv) F is continuous.

Then T has a fixed point x∗ ∈ C, and for every x0 ∈ C, the sequence {T nx0}n∈N is
convergent to x∗.

Proof See [35, Theorem 2.10] for proof. �

Indeed, uniqueness of the fixed point, we will consider the following hypothesis.
(H): for all x, y ∈ Fix(T ), α(x, y) ≥ 1.

Theorem 2.14 ([35]) Adding condition (H) to the hypotheses of Theorem 2.12 (re-
spectively, Theorem 6.5), the uniqueness of the fixed point is obtained.

Proof See [35, Theorem 2.10] for proof. �

The following result improves the main theorem of F-contraction [36] for a mod-
ular metric space.

Corollary 2.15 ([35]) Let (X, ω) be a modular metric space. Assume that ω is
regular and satisfies �M-condition. Let C be a nonempty subset of Xω. Assume
that C is complete and bounded, i.e., δω(C) = sup{ω1(x, y) : x, y ∈ C} < ∞. Let
T : C → C be an α- type F-contraction satisfying the hypotheses of Theorem 2.14,
then T has unique fixed point.
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From Example 2.1(i) and Corollary 2.15 (above), we obtain the following result
given [37].

Theorem 2.16 ([35]) Let (X, ω) be a modular metric space. Assume that ω is regu-
lar. Let C be a nonempty subset of Xω. Assume that C is complete and bounded, i.e.,
δω(C) = sup{ω1(x, y); x, y ∈ C} < ∞. Let T : C → C be a contraction. Then T
has a unique fixed point x0. Moreover, the orbit {T n(x)} converges to x0 for x ∈ C.

Periodic point results

In this section, we prove some periodic point results for self-mappings on a modular
metric space. In the sequel, we need the following definition.

Definition 2.17 ([32]) A mapping T : C → C is said to have the property (P) if
Fix(T n) = Fix(T ) for every n ∈ N, where Fix(T ) := {x ∈ Xω : T x = x}.
Theorem 2.18 ([35])Let (X, ω)be amodularmetric space. Assume thatω is regular
and satisfies �M-condition. Let C be a nonempty subset of Xω. Assume that C is
complete and bounded, i.e., δω(C) = sup{ω1(x, y) : x, y ∈ C} < ∞. Let T : C →
C be a mapping satisfying the following conditions:

(i) there exists τ > 0 and two functions F ∈ F and α : C × C → (0,∞) such that

τ + α(x, T x)F(ω1(T x, T
2x)) ≤ F(ω1(x, T x))

holds for all x ∈ C with ω1(T x, T 2x) > 0,
(ii) there exists x0 ∈ C such that α(x0, T x0) ≥ 1,
(iii) T is α-admissible,
(iv) if {xn} is a sequence in C such that α(xn, xn+1) ≤ 1 for all n ∈ N and

ω1(xn, x) → 0, as n → ∞, then ω1(T xn, T x) → 0 as n → ∞,

(v) if z ∈ Fix(T n) and z /∈ Fix(T ), then α(T n−1z, T nz) ≥ 1. Then T has the
property (P).

Proof See [35, Theorem 3.2] for proof. �

Taking α(x, y) = 1 for all x, y ∈ C in Theorem 2.18, we get the following result:

Corollary 2.19 ([35]) Let (X, ω) be a complete modular metric space. Assume that
ω is regular and satisfies �M-condition. Let C be a nonempty subset of Xω. Assume
that C is complete and bounded, i.e., δω(C) = sup{ω1(x, y) : x, y ∈ C} < ∞. Let
T : C → C be a continuous mapping satisfying

τ + F(ω1(T x, T
2x)) ≤ F(ω1(x, T x))

for some τ > 0 and for all x ∈ Xω such that ω1(T x, T 2x)) > 0. Then T has
property (P).
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3 Coincidence Point Results Endowed with a Graph

In 2007, Jachymski [38] using the language of graph theory introduced the concept
of a G-contraction on a metric space endowed with a graph and proved a fixed point
theorem which extends the results of Ran and Reurings [39].

Let (X, ω) be a modular metric space and D be a nonempty subset of Xω. Let
� denote the diagonal of the Cartesian product D × D. Consider a directed graph
(digraphs) Gω such that the set V (Gω) of its vertices coincides with D, and the set
E(Gω) of its edges contains all loops, i.e., E(Gω) ⊇ �.We assumeGω simple graph
(opposite of multigraph), so we can identify Gω with the pair (V (Gω), E(Gω)). Our
graph theory notations and terminology are standard and can be found in all graph
theory books, like [40, 41]. Moreover, we may treat Gω as a weighted graph (see
[41], p. 309) by assigning to each edge the distance between its vertices. By G−1,
we denote the reverse of a graph G, i.e., the graph obtained from G by reversing the
direction of edges. Thus, we have

E(G−1) = {(y, x)|(x, y) ∈ E(G)}.

A digraph G is a directed graph if whenever (u, v) ∈ E(G), then (v, u) /∈ E(G).

The letter G̃ denotes the undirected graph obtained from G by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G̃ as a directed graph
for which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

We call (V ′, E ′) a subgraph of G if V ′ ⊆ V (G), E ′ ⊆ E(G), and for any edge
(x, y) ∈ E ′, x, y ∈ V ′.

If x and y are vertices in a graph G, then a (directed) path in G from x to y
of length N is a sequence (xi )i=N

i=1 of N + 1 vertices such that x0 = x, xN = y and
(xn−1, xn) ∈ E(G) for i = 1, . . . , N . A graph G is connected if there is a directed
path between any two vertices. G is weakly connected if G̃ is connected. If G is
such that E(G) is symmetric and x is a vertex in G, then the subgraph Gx consisting
of all edges and vertices which are contained in some path beginning at x is called
the component of G containing x . In this case V (Gx ) = [x]G, where [x]G is the
equivalence class of the following relation R defined on V (G) by the rule: yRz if
there is a (directed) path in G from y to z. Clearly, Gx is connected.

We establish some coincidence and periodic point theorems concerning F-
contractive mappings in modular metric space endowed with a graph. Our main
result is a generalization of Gopal et al. [32] theorem and others. We also give an
application of our main results to establish the existence of solution for a nonhomo-
geneous linear parabolic partial differential equation.
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Coincidence point results

Throughout this section, we assume that (X, ω) is a modular metric space, D be
a nonempty subset of Xω and G := {Gω is a directed graph with V (Gω) = D and
� ⊆ E(Gω)}.
Definition 3.1 [38, 42] The pair (D,Gω) has Property (A) if for any sequence
{xn}n∈N in D, with xn → x as n → ∞ and (xn, xn+1) ∈ E(Gω), then (xn, x) ∈
E(Gω), for all n.

Definition 3.2 ([43]) Let F ∈ F and Gω ∈ G. A mapping T : D → D is said to be
F-Gω-contraction with respect to R : D → D if

(i) (Rx, Ry) ∈ E(Gω) ⇒ (T x, T y) ∈ E(Gω) for all x, y ∈ D, i.e., T preserves
edges w.r.t. R,

(ii) there exists a number τ > 0 such that

ω1(T x, T y) > 0 ⇒ τ + F(ω1(T x, T y)) ≤ F(ω1(Rx, Ry))

for all x, y ∈ D with (Rx, Ry) ∈ E(Gω).

Example 3.3 ([43]) Let F ∈ F be arbitrary. Then every F-contractivemappingw.r.t.
R is an F-Gω-contraction w.r.t. R for the graph Gω given by V (Gω) = D and
E(Gω) = D × D.

We denote by C(T, R) := {x ∈ D : T x = Rx} the set of all coincidence points
of two self-mappings T and R, defined on D.

Now, we state our first theorem which generalizes the main theorem of Gopal et
al. [32] for regular modular metric spaces.

Theorem 3.4 ([43]) Let (X, ω) be a regular modular metric space with a graph
Gω. Assume that D = V (Gω) is a nonempty bounded subset of Xω and the pair
(D,Gω) has property (A) and also satisfy �M-condition. Let R, T : D → D be two
self-mappings satisfying the following conditions:

(i) there exists x0 ∈ D such that (Rx0, T x0) ∈ E(Gω),

(ii) T is an F-Gω-contraction w.r.t R,

(iii) T (D) ⊆ R(D),

(iii) R(D) is complete.

Then C(R, T ) 
= ∅.
Proof See [43, Theorem 2.1] for proof. �

Periodic point results

In this section, we prove some periodic point results for self-mappings on a modular
metric space endowed with a graph.
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Definition 3.5 [44] Let (X, ω) be a modular metric space and T : D → D be a
mapping. Then T is said to have the property (P) if Fix(T n) = Fix(T ) for every
n ∈ N where Fix(T ) := {x ∈ D : T x = x}.

Again, let (X, ω) be a modular metric space and T : D → D be a mapping. The
set O(x) = {x, T x, T 2x, . . . , T nx, . . .} is called the orbit of x under T .

Definition 3.6 ([43]) A mapping T : D → D is called strong orbitally Gω-
at x if

lim
n→∞ T nx = x∗ and (T nx, T n+1x) ∈ E(Gω) ⇒ lim

n→∞ T n+1x = T x∗.

Amapping T is called stronglyGω-orbitally continuous on D if T is strongly orbitally
Gω-continuous for all x ∈ D.

We denote DT := {x ∈ D : (x, T x) ∈ E(Gω) or (T x, x) ∈ E(Gω)}.
Definition 3.7 ([43]) Let (X, ω) be amodularmetric space. Amapping T : D → D
is called an F-Gω graphic contraction if

(i) T preserves edges, i.e., (x, y) ∈ E(Gω) ⇒ (T x, T y) ∈ E(Gω),

(ii) there exists a number τ > 0 such that

ω1(T x, T
2x) > 0 ⇒ τ + F(ω1(T x, T

2x)) ≤ F(ω1(x, T x)) (3.1)

for all x ∈ DT and F ∈ F .

Remark 3.8 If we consider F(s) = ln s for all s > 0, then Definition 3.7 reduces to
Gω-graphic contractive given in [45].

Before stating the theorem of this section, we give the following lemma without
proof.

Lemma 3.9 Let (X, ω) be a modular metric space endowed with a graph Gω. Let
T : D → D be a Gω-graphic contractive. Then T is a G−1

ω -graphic contractive too.

Theorem 3.10 ([43]) Let (X, ω) be a regular modular metric space with a graph
Gω. Assume that D = V (Gω) is complete, bounded (nonempty) subset of Xω and the
pair (D,Gω) satisfy �M-condition. Suppose that T : D → D is an F-Gω-graphic
contraction satisfying the following condition:

(∗) (x, T x) ∈ E(Gω) or (T x, x) ∈ E(Gω) for all x ∈ D.

Then T has the property (P) provided that T is strongly Gω-orbitally continuous
on D.

Proof See [43, Theorem 3.2] for proof. �
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Existence of solution for a nonhomogeneous linear parabolic partial differential
equation

In this section, following the idea in [23], we discuss the application of coincidence
(fixed) point techniques to the solution of the nonhomogeneous linear parabolic
partial differential equation satisfying a given initial condition.
More precisely, we consider the following initial value problem

{

ut (x, t) = uxx (x, t) + H(x, t, u(x, t), ux (x, t)), −∞ < x < ∞, 0 < t ≤ T
u(x, 0) = ϕ(x) ≥ 0, −∞ < x < ∞,

(3.2)
where H is continuous and ϕ assumes to be continuously differentiable such that

ϕ and ϕ′ are bounded.

By a solution of the problem (3.2), we mean a function u ≡ u(x, t) defined on
R × I , where I := [0, T ], satisfying the following conditions:

(i) u, ut , ux , uxx ∈ C(R × I ). { C(R × I ) denote the space of all continuous real
valued functions },

(ii) u and ux are bounded in R × I,
(iii) ut (x, t) = uxx (x, t) + H(x, t, u(x, t), ux (x, t)) for all (x, t) ∈ R × I,
(iv) u(x, 0) = ϕ(x) for all x ∈ R.

It is important to note that the initial value problem (3.2) is equivalent to the
following integral equation

u(x, t) =
∫ ∞

−∞
k(x − ξ, t)ϕ(ξ)dξ

+
∫ t

0

∫ ∞

−∞
k(x − ξ, t − τ)H(ξ, τ, u(ξ, τ ), ux (ξ, τ ))dξdτ (3.3)

for all x ∈ R and 0 < t ≤ T , where

k(x, t) := 1√
4π t

e− x2

4t .

The problem (3.2) admits a solution if and only if the corresponding integral equation
(3.3) has a solution.

Let
� := {u(x, t); u, ux ∈ C(R × I ) and ‖u‖ < ∞},

where
‖u‖ := sup

x∈R,t∈I
|u(x, t)| + sup

x∈R,t∈I
|ux (x, t)|.

Obviously, the function ω : R
+ × � × � → R+ given by
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ωλ(u, v) := 1

λ
‖u − v‖ = 1

λ
d(u, v)

is a metric modular on �. Clearly, the set �ω is a complete modular metric space
independent of generators.

Theorem 3.11 ([43]) Consider the problem (3.2) and assume the followings:

(i) for c > 0 with |s| < c and |p| < c, the function F(x, t, s, p) is uniformly
Hölder continuous in x and t for each compact subset of R × I,

(ii) there exists a constant cH ≤ (T + 2π− 1
2 T

1
2 )−1 ≤ q, where q ∈ (0, 1) such that

0 ≤ 1
λ
[H(x, t, s2, p2) − H(x, t, s1, p1)]

≤ cH

[

s2 − s1 + p2 − p1
λ

]

for all (s1, p1), (s2, p2) ∈ R × R with s1 ≤ s2 and p1 ≤ p2,
(iii) H is bounded for bounded s and p.

Then the problem (3.2) admits a solution.

Proof See [43, Theorem 4.3] for proof. �

4 Coincidence Point Theorems Base on (CLRT )-property

We consider important property for coincidence point theorems which is defined by
Sintunavarat and Kumam [46], is called the (CLRT )-property as follows:

Let (X, d) is a metric space and S, T : X → X be two mappings. The mappings
S and T are said to satisfy the common limit in the range of T (shortly, (CLRT )-
property) if there exists a sequence {xn} in X such that

lim
n→∞ Sxn = lim

n→∞ T xn = T x

for some x ∈ X. The importance of (CLRT )-property ensures that one does not
require the closeness of range subspaces.

We study and prove the existence of some coincidence point theorems for gen-
eralized contraction mappings in modular metric spaces and give some applications
on integral equations for our main results.

Lemma 4.1 Let S and T be weakly compatible self-mappings of a set Xω. If S and
T have a unique coincidence point, i.e., t = Sx = T x, then t is the common fixed
point of S and T .
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Theorem 4.2 Let (X, ω) be a modular metric space and S, T : Xω → Xω be
weakly compatible mappings such that S(Xω) ⊂ T (Xω). Suppose that there exist
α1, α2, α3, α4, α5 ∈ [0, 1

4 ) and
∑5

i=1 αi < 1 such that for all x, y ∈ Xω and λ > 0,

(a) there exists x0, x1 ∈ Xω such that ωλ(Sx0, T x1) < ∞;
(b) ωλ(Sx, Sy) ≤ α1ωλ(Sx, T x) + α2ωλ(Sy, T y) + α3ωλ(Sy, T x) + α4ωλ

(Sx, T y) + α5ωλ(T y, T x).

If S and T satisfy (CLRT )-property, then S and T have a unique common fixed point.

Proof It follows from condition (b) and S and T satisfy the (CLRT )-property, there
exists a sequence {xn} in Xω, we have

ωλ(Sxn, Sx) ≤ a1ωλ(Sxn, T xn) + a2ωλ(Sx, T x) + a3ωλ(Sx, T xn)
+a4ωλ(Sxn, T x) + a5ωλ(T x, T xn)

for all n ≥ 1. By taking the limit n → ∞, we get

ωλ(T x, Sx) ≤ (a2 + a3)ωλ(Sx, T x).

This implies that (1 − a2 − a3)ωλ(Sx, T x) ≤ 0 for all λ > 0, which is a contra-
diction. Thus, Sx = T x . Then, following the same argument in the proof of [47,
Theorem 3]. �

By setting T = IXω
, we deduce the following result of fixed point for one self-

mapping from Theorem 4.2.

Corollary 4.3 Let (X, ω) be an complete modular metric space and S : Xω → Xω

such that for all λ > 0 and x, y ∈ Xω, ωλ(x0, Sx0) < ∞ and

ωλ(Sx, Sy) ≤ α1ωλ(Sx, x) + α2ωλ(Sy, y) + α3ωλ(Sy, x) + α4ωλ(Sx, y) + α5ωλ(x, y)

where α1, α2, α3, α4, α5 ∈ [0, 1
4 ) and

∑5
i=1 αi < 1. Then S has a unique fixed point

z. Further, for any x0 ∈ Xω, the Picard sequence {Sxn} with an initial point x0 is
convergent to the fixed point z.

Corollary 4.4 Let (X, ω) be an complete modular metric space and S : Xω → Xω

such that for all λ > 0 and x, y ∈ Xω, ωλ(x0, Sx0) < ∞ and

ωλ(Sx, Sy) ≤ α1ωλ(Sx, x) + α2ωλ(Sy, y) + α3ωλ(x, y)

where α1, α2, α3 ∈ [0, 1
4 ) and

3
∑

i=1
αi < 1. Then S has a unique fixed point.

Corollary 4.5 Let (X, ω) be an complete modular metric space and S : Xω → Xω

such that for all λ > 0 and x, y ∈ Xω, ωλ(x0, Sx0) < ∞ and

ωλ(Sx, Sy) ≤ αωλ(x, y)
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where 0 ≤ α < 1. Then S has a unique fixed point.

Now, we give some examples of the (CLRT )-property as follows:

Example 4.6 Let Xω = [0,∞) be a modular metric space. Define two mappings
S, T : Xω → Xω by Sx = 5x − 4 and T x = x for all x ∈ Xω, respectively. Now,
we consider the sequence {xn} defined by xn = {1 + 1

n+5 } for each n ≥ 1. Since

lim
n→∞ Sxn = lim

n→∞ T xn = 1 = T (1) ∈ Xω,

S and T satisfy the (CLRT )-property.

Some applications to Fredholm integral equations

The purpose of this section is to show the existence and uniqueness of a solu-
tion of Fredholm integral equations in modular metric spaces with a function space
(C(I, R), ωλ) and a contraction by using our main results.

Consider the integral equation:

Sx(t) − μ

∫ r

0
K (t, s)hx(s)ds = T (t), (4.1)

where x : I → R is an unknown function, T : I → R and h, S : R → R are two
functions, and μ is a parameter. The kernel K of the integral equation is defined by
I × R → R, where I = [0, r ].
Theorem 4.7 Let K , S, T, h be continuous. Suppose that C ∈ R is such that for all
t, s ∈ I ,

|K (t, s)| ≤ C

and, for each x ∈ (C(I, R), ωλ), there exists y ∈ (C(I, R), ωλ) such that

(Sy)(t) = T (t) + μ

∫ r

0
K (t, s)hx(s)ds

for all r ∈ C(I, R). If S is injective, there exists L ∈ R such that for all x, y ∈ R,

|hx − hy| ≤ L|Sx − Sy|

and {Sx : x ∈ (C(I, R), ωλ)} is complete, then for any μ ∈ ( − 1
CrL , 1

CrL

)

, there
exists w ∈ (C(I, R), ωλ) such that for any x0 ∈ (C(I, R), ωλ),

Sw(t) = lim
x→∞ Sxn(t) = lim

x→∞

[

T (t) + μ

∫ r

0
K (t, s)hxn−1(s)ds

]

(4.2)

and w is the unique solution of Eq. (4.1).

Proof See [47, Theorem 6] for proof. �
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5 An Observation on Set-Valued Contraction Mappings

On the other hand, the set-valued alternative of the contraction principle was given in
[23, 48]. Unfortunately, the proofs of the main results contain a small, but defective
gap (we shall discuss this matter precisely in the forthcoming section). This leaves
the problem of the set-valued contraction principle open.

This research is conducted to properly give sufficient conditions for a set-valued
contraction to possess a fixed point. Our results also fix the slip found in [23, 48],
under some additional assumptions.

Given a modular metric space Xω. Suppose that x ∈ Xω and r > 0, we define an
open ball of radius r around x by

B(x; r) :=
{

z ∈ X, sup
λ>0

ωλ(x, z) < r

}

.

Let B be a set containing all open balls in Xω. We may easily see that B actually
acts as a base determining a unique topology on X , namely τ . Always assume that
Xω is a given modular metric space equipped with the topology generated by B.

With the same elementary proofs (and so omitted) as in a classical metric space,
we may obtain the following results:

Proposition 5.1 ([49]) Xω is Hausdorff separable.

Proposition 5.2 ([49]) In Xω, the compactness and sequential compactness char-
acterize each others.

Proposition 5.3 ([49])A sequence (xn) in Xω converges to a point x ∈ X if and only
if for any given ε > 0, we have supλ>0 ωλ(x, xn) < ε for sufficiently large n ∈ N.

We may now define a Cauchy sequence in parallel to the characterization in
Proposition 5.3.

Definition 5.4 ([49]) A sequence (xn) in Xω is Cauchy if for any ε > 0, there holds
that supλ>0 ωλ(xm, xn) < ε for sufficiently large m, n ∈ N.

Naturally, each convergent sequence is Cauchy. If the converse is true for all
sequence in Xω, we say that Xω is complete.

Definition 5.5 A set Z ⊂ Xω is said to be bounded if supx,y∈Z supλ>0 ωλ(x, y) <

∞.

We may note that a non-singleton finite set in a modular metric space is no need
to be bounded (for instance, take any metric space (M, ρ), and the metric modular
(λ, x, y) ∈ R

+ × M × M �→ ρ(x,y)
λ

). This fact gives an example of a compact set
which is not bounded in contrast to metric spaces. However, a compact set is always
closed by Proposition 5.1.

In accordance with Chaipunya et al. [23], for x ∈ Xω and Y, Z ⊂ Xω, we write
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⎧

⎨

⎩

ωλ(x, Z) := inf z∈Z ωλ(x, z),
eλ(Y, Z) := supy∈Y ωλ(y, Z),

Wλ(Y, Z) := max{eλ(Y, Z), eλ(Z ,Y )}.

A number of fundamental properties of these functions for closed bounded sets can
be found in [23]. In fact, such properties also work, with the same proofs, for closed
(and not necessarily bounded) sets. Also note that if Z ⊂ Xω is closed and z ∈ Xω,
we have z ∈ Z if and only if ωλ(z, Z) = 0 for all λ > 0.

A remark on set-valued contraction

Given a set-valued map F : Xω � Xω, if there exists a constant k ∈ (0, 1) such that

Wλ(F(x), F(y)) ≤ kωλ(x, y), (5.1)

for all λ > 0 and all x, y ∈ Xω, we say that F is a set-valued contraction.
The existence of fixed points for a set-valued contraction in modular metric space

is first considered in [23, Theorem 3.3]. The proof exploited the existence of a
sequence (xn) such that for each n ∈ N, xn ∈ F(xn) and

ωs(xn, xn+1) ≤ kn + Ws(F(xn−1), F(xn)), (5.2)

where s > 0 is pre-given. Note that the property (5.2) is not preserved upon the
change of s. Unfortunately, (5.2) is needed for all s > 0, and this leaves out a gap in
this proof.

To fill this gap in, we need some additional definitions, lemmas, and assumptions.
These materials will be discussed in the succeeding section.

Definition 5.6 ([49]) A nonempty subset Z ⊂ Xω is said to be reachable from a
point x ∈ Xω if

inf
z∈Z supλ>0

ωλ(x, z) = sup
λ>0

inf
z∈Z ωλ(x, z) < ∞.

Remark 5.7 ([49]) To show the reachability, we only need to show that

inf
z∈Z supλ>0

ωλ(x, z) ≤ sup
λ>0

inf
z∈Z ωλ(x, z) < ∞,

since the reverse is always true.

An advantage of the notion of reachability is illustrated in the following lemma:

Lemma 5.8 ([49]) Given two nonempty closed subsets Y, Z ⊂ Xω and a point z ∈
Z. Suppose that Y is reachable from z. Then, to each ε > 0, there corresponds a
point yε ∈ Y such that supλ>0 ωλ(z, yε) ≤ ε + supλ>0 Wλ(Y, Z).

Proof Let ε > 0 be given. It is clear that we can find a point yε ∈ Y such that
supλ>0 ωλ(z, yε) ≤ ε + inf y∈Y supλ>0 ωλ(z, y). By the reachability of Y from z, we
have
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inf
y∈Y supλ>0

ωλ(z, y) = sup
λ>0

inf
y∈Y ωλ(z, y) = sup

λ>0
ωλ(z,Y ) ≤ sup

λ>0
Wλ(Y, Z).

The conclusion thus follows. �
On the other hand, let us turn to a simple sufficient condition for a subset Z ⊂ Xω

to be reachable from x ∈ Xω.

Lemma 5.9 ([49]) Given a point x ∈ Xω and a nonempty compact subset Z ⊂
Xω. If the metric modular ω is l.s.c. in X and either inf z∈Z supλ>0 ωλ(x, z) or
supλ>0 inf z∈Z ωλ(x, z) is finite, then Z is reachable from x.

Proof For each s > 0, we can find a sequence (zsn) such that

ωs(x, z
s
n) → inf

z∈Z ωs(x, z).

Since Z is compact, we may assume that (zsn) converges to some point zs ∈ Z . Since
ω is l.s.c. in X , we have

ωs(x, z
s) ≤ lim inf

n→∞ ωs(x, z
s
n) = inf

z∈Z ωs(x, z),

and therefore ωs(x, zs) = inf z∈Z ωs(x, z). Finally, we have

inf
z∈Z supλ>0

ωλ(x, z) ≤ sup
λ>0

ωλ(x, z
s) = sup

λ>0
inf
z∈Z ωs(x, z).

This completes the proof. �
Existence Theorems

At this stage, we exploit the notion of reachability and its supplementary results to
deduce some fixed point theorems for set-valued contractions. The obtained result
also fix the error in [23]. Additionally, assume through the rest of the paper that Xω

is complete.

Theorem 5.10 ([49]) Suppose that F is a set-valued contraction (w.r.t. k ∈ (0, 1))
on Xω having compact values, and that the metric modular ω is l.s.c. in X. If there
exist two points x0 ∈ Xω and x1 ∈ F(x0) such that the set {x0, x1} is bounded and
F(x1) is reachable from x1, then F has a fixed point.

Proof See [49, Theorem 3.5] for proof. �
Along with the set-valued contraction (5.1), we may consider another class of

maps: Let F : Xω � Xω. If the inequality

Wλ(F(x), F(y)) ≤ k[ωλ(x, F(x)) + ωλ(y, F(y))]

is satisfied for all λ > 0 and all x, y ∈ Xω, at some fixed k ∈ (0, 1
2 ), we say that F is

a set-valued Kannan’s contraction. We close our paper with the following theorem
which is similarly obtained to the preceding theorem.
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Theorem 5.11 ([49]) Suppose that F is a set-valued Kannan’s contraction (w.r.t.
k ∈ (0, 1

2 )) on Xω having compact values, and that the metric modular ω is l.s.c.
in X. If there exist two points x0 ∈ Xω and x1 ∈ F(x0) such that the set {x0, x1} is
bounded and F(x1) is reachable from x1, then F has a fixed point.

Proof See [49, Theorem 3.6] for proof. �

6 Fixed Point Results Based on Multivalued Mappings

We extended work of Nadler [50], Wardowski [36] and Sgroi [51] to modular metric
spaces.

Let CB(D) := {C : C is nonempty closed and bounded subsets of D}, K (D) :=
{C : C is nonempty compact subsets of D} and theHausdorff metricmodular defined
on CB(D) by

Hω(A, B) := max{sup
x∈A

ω1(x, B), sup
y∈B

ω1(A, y)},

where ω1(x, B) = inf
y∈B ω1(x, y).

Lemma 6.1 ([37]) Let (X, ω) be a modular metric space. Assume that ω satisfies
�2-condition. Let D be a nonempty subset of Xω. Let An be a sequence of sets in
CB(D), and suppose lim

n→∞ Hω(An, A0) = 0 where A0 ∈ CB(D). Then if xn ∈ An

and lim
n→∞ xn = x0, it follows that x0 ∈ A0.

Fixed point results based on multivalued F-contractions

Definition 6.2 ([52]) Let (X, ω) be a modular metric space. Let D be non empty
bounded subset of X . A multivalued mapping T : D → CB(D) is called F-
contraction on X if F ∈ F , and τ ∈ R

+, for all x, y ∈ D with y ∈ T x there
exists z ∈ T y such that ω1(y, z) > 0, the following inequality holds:

τ + F(ω1(y, z)) ≤ F(M(x, y)) (6.1)

where M(x, y) = max

{

ω1(x, y), ω1(x, T x), ω1(y, T y), ω1(y, T x)

}

.

Definition 6.3 ([52]) Let (X, ω) be a modular metric space. Let D be a nonempty
subset of Xω. A multivalued mapping T : D → CB(D) is said to be F-contraction
of Hardy–Rogers-type if F ∈ F and τ ∈ R

+ such that

2τ + F(Hω(T x, T y)) ≤ F(αω1(x, y) + βω1(x, T x) + γω1(y, T y) + Lω1(y, T x))
(6.2)

for all x, y ∈ D with Hω(T x, T y) > 0, where α, β, γ, L ≥ 0, α + β + γ = 1 and
γ 
= 1.
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Example 6.4 Let F : R
+ → R be given by F(s) = ln s. It is clear that F satisfies

(F1) − (F3) for any k ∈ (0, 1). Each mapping T : D → CB(D) satisfying equa-
tion (6.2) is an F-contraction such that

Hω(T x, T y) ≤ e−τω1(x, y), for all x, y ∈ D, T x 
= T y

It is clear that for x, y ∈ D such that T x = T y the previous inequality also holds,
and hence, T is a contraction.

Next, we give a fixed point result for multivalued F-contractions of Hardy–
Rogers-type in modular metric space.

Theorem 6.5 Let (X, ω) be a modular metric space. Assume that ω is a regular
modular satisfying �M-condition and �2-condition. Let D be a nonempty bounded
and complete subset of Xω and T : X → K (D) be an F-contractions of Hardy–
Rogers-type. Then T has a fixed point.

Proof Let x0 be an arbitrary point of D and x1 ∈ T x0. If x1 ∈ T x1, then x1 is a fixed
point of T and the proof is completed. Assume that x1 /∈ T x1, then T x0 
= T x1.
Since F is continuous from the right, there exists a real number h > 1 and τ > 0
such that

F(hHω(T x0, T x1)) ≤ F(Hω(T x0, T x1)) + τ.

Now, from ω1(x1, T x1) < hHω(T x0, T x1), we deduce that there exists x2 ∈ T x1
such that ω1(x1, x2) ≤ hHω(T x0, T x1). Consequently, we have

F(ω1(x1, x2)) ≤ F(hHω(T x0, T x1)) < F(Hω(T x0, T x1)) + τ,

which implies

2τ + F(ω1(x1, x2)) ≤ F((α + β + δ)ω1(x0, x1) + (γ + δ)ω1(x1, x2)) + τ.

Thus,

F(ω1(x1, x2)) ≤ F((α + β + δ)ω1(x0, x1) + (γ + δ)ω1(x1, x2)) − τ.

Then, following the same argument in the proof of [52, Theorem 15]. �

Application to integral equations

Integral equations arise in many scientific and engineering problems. A large class of
initial and boundary value problem can be converted to Volterra or Fredholm integral
equation (see for instant [53]).

In this section, we consider the following integral equation:

u(t) = βA
(

u(t)
) + γ B

(

u(t)
) + g(t), t ∈ [0,T], T > 0 (6.3)
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where

A
(

u(t)
) =

∫ t

0
K1

(

t, s, u(s)
)

ds, B
(

u(t)
) =

∫ t

0
K2

(

t, s, u(s)
)

ds and β, γ ≥ 0

Let C(I, R) be the space of all continuous functions on I, where I = [0,T]
with the norm ‖u‖ = supt∈I |u(t)| and the metricωλ(u, v) := 1

λ
‖u − v‖ = 1

λ
d(u, v)

for all u, v ∈ C(I, R). For r > 0 and u ∈ C(I, R), we denote by Bλ(u, r) = {v ∈
C(I, R) : ωλ(u, v) ≤ r} the closed ball concerned at u and of radius r.

Theorem 6.6 Let r > 0 be a fixed real number and the following conditions are
satisfied:

(i) K : I × I × R → R and g : I → R are continuous;
(ii) there exists u0 ∈ C(I, R) such thatβA

(

u0(t)
) + γ B

(

u0(t)
) + g(t) ∈ B(u0, r);

(iii) if v ∈ Bλ(u, r), λ > 0, then

|Ki
(

t, s, u(s)
) − Ki

(

t, s, v(s)
)| ≤ Li (t, s, u(s), v(s))

|u(s) − v(s)|
(

1 + τ

√

|u(s)−v(s)|
λ

)2 ,

i = 1, 2 for all t, s ∈ I, u, v ∈ R and for some continuous functions L1, L2 :
I × I × R × R → R

+.

such that Li
(

t, s, u(s), v(s)
)

(β + γ )T ≤ 1, i = 1, 2 for all s, t ∈ I , then the integral
Equation (6.3) admit a solution.

Proof See [52, Theorem 15] for proof. �

Now, we observe that the function F : R
+ → R defined by F(α) = − 1√

α
, α > 0

is in F and so we deduce that the mapping T satisfies all condition of Theorem 2.12
with M(u, v) = ωλ(u, v) for λ = 1. Hence, there exists a solution of the integral
equation (6.3).

Remark 6.7 Our above Theorem 6.3 is an abstract application of F-contraction
mapping which cannot be covered by Banach contraction principle.
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Lyapunov Inequalities for Some
Differential Equations with
Integral-Type Boundary Conditions

Rui A. C. Ferreira

Abstract In this work, we derive a Lyapunov-type inequality for a fractional
problem depending on an integral boundary condition. We believe our results to
be new even for the classical integer-order derivative case.

1 Introduction

In thiswork,wewill be dealingwith the following fractional boundary value problem:

Dα
a x(t)+h(t, x(t)) = 0, a < t < b, 1 < α ≤ 2, (1)

x(a) = 0,x(b) = λ

∫ b

a
x(s)ds, λ ≥ 0. (2)

We derive the Green function for the linear case and prove some results related to it.
In (1), the operator Dα

a stands for the Riemann–Liouville fractional derivative of
order 1 < α ≤ 2: (Dα

a f )(t) = (D2 I 2−α
a f )(t), where

(I α
a f )(t) = 1

Γ (α)

∫ t

a
(t − s)α−1 f (s)ds, α > 0, t > a,

with (I 0a f )(t) = f (t).
We are particularly interested in finding a Lyapunov-type inequality for the frac-

tional boundary value problem (1)–(2) with h(t, x) = q(t)x . Let us recall the clas-
sical Lyapunov inequality:
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Theorem 1.1 Let a < b be two real numbers and suppose that q ∈ C[a, b]. If the
boundary value problem

x ′′(t) + q(t)x(t) = 0, a < t < b,

x(a) = 0,x(b) = 0,

has a nontrivial continuous solution x, then the following inequality holds,

∫ b

a
|q(s)|ds >

4

b − a
.

The first generalization of Theorem 1.1 including fractional derivatives appeared
in the literature in 2013 [3] and reads as follows:

Theorem 1.2 Let a < b be two real numbers and suppose that q ∈ C[a, b]. If the
boundary value problem

Dα
a (t) + q(t)x(t) = 0, a < t < b, 1 < α ≤ 2

x(a) = 0,x(b) = 0,

has a nontrivial continuous solution x, then the following inequality holds,

∫ b

a
|q(s)|ds > Γ (α)

(
4

b − a

)α−1

.

One immediately observes that, whenα = 2, Theorem 1.2 becomes Theorem 1.1 and
this proves our claim of a generalization of the classical Lyapunov inequality. After
the publication of [3], many other works consisting essentially in finding Lyapunov-
type inequalities where fractional derivatives are somehow involved appeared in the
literature—the reader may consult [1–5, 7–14] and the references therein. Various
kinds of problemswere studied in the above-mentioned works, e.g., using the Caputo
fractional derivative instead of the Riemann–Liouville one, involving higher-order
derivatives in the differential equation, considering sequential fractional derivatives,
and considering several types of boundary conditions. In all of the above papers, the
technique used to derive these inequalities was essentially the same: rewriting the
boundary value problem as an equivalent integral equation and then perform an
analysis on the Green function in order to find the maximum value of its modulus
in a square [a, b] × [a, b]. Though this approach seems to be well suited for study-
ing fractional boundary value problems, it might become, nevertheless, very much
complex to analyze the corresponding Green’s functions. But, to the best of our
knowledge, there is no other known approach to obtain Lyapunov-type inequalities
for boundary value problems which depend on fractional derivatives.

In this work, we consider boundary conditions as in (2) which means that we will
have what is known in the literature by an integral boundary condition. This type of
boundary condition was already considered before in two works [2, 12]. However,



Lyapunov Inequalities for Some Differential Equations … 61

the exact form of the boundary condition is different: In [2], the authors considered
integral boundary conditions depending also on the parameter α in such a way that,
when α = 2, then they get Theorem 1.1. In [12], the authors consider the boundary
condition

x(b) = (I α
a hx)(b),

where h ∈ C[a, b]. Our motivation to consider the BVP (1)–(2) came mainly from
the observation that

x ′′(t) + q(t)h(t, x(t)) = 0, a < t < b, (3)

x(a) = 0,x(b) =
∫ b

a
x(s)ds, (4)

is one of the simplest, yet most studied, boundary value problems depending on
nonlocal boundary conditions. However, though we may find in the literature results
considering existence of solutions (or stability of solutions, or existence of positive
solutions and so on), we did not find any result regarding Lyapunov-type inequalities
for the above-mentioned problem (3)–(4). Indeed,we believe thatCorollary 2.1 stated
in the next section is a novel result in the literature.

Summarizing, in the next section, we derive the Green function for the fractional
boundary value problem (1)–(2) and prove some of its properties. As a consequence,
we enunciate and present a proof of a Lyapunov-type inequality for the linear BVP.
Moreover, we provide a criteria for existence and uniqueness of solution to (1)–(2).

2 Main Results

We start by transforming the fractional boundary value problem (1)–(2) into an
equivalent integral equation.

Lemma 2.1 Given h ∈ C([a, b],R), 1 < α ≤ 2 and λ ∈ R such that α − λ(b −
a) �= 0, the unique solution of the fractional differential equation

Dα
a x(t) + h(t) = 0, a < t < b, (5)

with the following boundary conditions

x(a) = 0, x(b) = λ

∫ b

a
x(t)dt, (6)

is

x(t) =
∫ b

a
G(t, s)h(s)ds,
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where

G(t, s) = 1

Γ (α)

⎧⎨
⎩

(t−a)α−1(b−s)α−1

(b−a)α−1

(
1 + λ(s−a)

α−λ(b−a)

)
− (t − s)α−1, a ≤ s ≤ t ≤ b,

(t−a)α−1(b−s)α−1

(b−a)α−1

(
1 + λ(s−a)

α−λ(b−a)

)
, a ≤ t ≤ s ≤ b.

Proof It is well known that (5) can be represented by an equivalent integral equation

x(t) = − 1

Γ (α)

∫ t

a
(t − s)α−1h(s)ds + c1(t − a)α−1 + c2(t − a)α−2, (7)

for some c1, c2 ∈ R. By (6), it is clear that c2 = 0 and

c1 = 1

(b − a)α−1

[
λ

∫ b

a
x(t)dt + 1

Γ (α)

∫ b

a
(b − s)α−1h(s)ds

]

= A

(b − a)α−1
+ 1

(b − a)α−1Γ (α)

∫ b

a
(b − s)α−1h(s)ds,

where we define A = λ
∫ b
a x(t)dt . Therefore, it follows from (7) that

x(t) = − 1

Γ (α)

∫ t

a
(t − s)α−1h(s)ds + A(t − a)α−1

(b − a)α−1

+ (t − a)α−1

(b − a)α−1Γ (α)

∫ b

a
(b − s)α−1h(s)ds. (8)

Note that

A = λ

∫ b

a
x(t)dt

= −
∫ b

a

∫ t

a

λ(t − s)α−1h(s)

Γ (α)
dsdt +

∫ b

a

λA(t − a)α−1

(b − a)α−1
dt

+
∫ b

a

∫ b

a

λ(t − a)α−1(b − s)α−1h(s)

(b − a)α−1Γ (α)
ds

= −
∫ b

a

λ(b − s)αh(s)

αΓ (α)
ds + λ(b − a)A

α
+ λ(b − a)

αΓ (α)

∫ b

a
(b − s)α−1h(s)ds,

from where it follows that

(
1 − λ

α
(b − a)

)
A = λ

αΓ (α)

∫ b

a

{
(b − a)(b − s)α−1 − (b − s)α

}
h(s)ds

= λ

αΓ (α)

∫ b

a
(s − a)(b − s)α−1h(s)ds.
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Hence,

A = λ

(α − λ(b − a)) Γ (α)

∫ b

a
(s − a)(b − s)α−1h(s)ds.

Substituting A in (8), we get

x(t) = 1

Γ (α)

∫ t

a

[
(t − a)α−1(b − s)α−1

(b − a)α−1

{
1 + λ(s − a)

α − λ(b − a)

}
− (t − s)α−1

]
h(s)ds

+ 1

Γ (α)

∫ b

t

(t − a)α−1(b − s)α−1

(b − a)α−1

{
1 + λ(s − a)

α − λ(b − a)

}
h(s)ds

=
∫ b

a
G(t, s)ds.

The proof is now complete.

The following properties of the Green function will be used to derive our main
results.

Theorem 2.1 Let a, b, α, λ ∈ R with a < b, 1 < α ≤ 2 and λ ≥ 0 such that α −
λ(b − a) > 0. Then,

1. G(t, s) ≥ 0 for all (t, s) ∈ [a, b]2.
2. Define g : [a, b] → R by

g(x) = (x − a)α−1(b − x)α−1

(b − a)α−1

(
1 + λ(x − a)

α − λ(b − a)

)
.

Then,

max
(t,s)∈[a,b]2

G(t, s) = 1

Γ (α)

{(
b−a
4

)α−1
, λ = 0,

max
{
g(x�), (α−1)α−1λ

α−λ(b−a)

(
b−a
α

)α}
, λ �= 0,

where

x� = −(3αbλ − 2α2 − 2bλ + 2α + aαλ)

2λ(1 − 2α)

−

√
(3αbλ − 2α2 − 2bλ + 2α + aαλ)2

−4λ(1 − 2α)(αb2λ − α2b − b2λ + bα − aα2 + aα + aαλb)

2λ(1 − 2α)

3. Define f : [a, b] → R by

f (x) = (x − a)α−1

Γ (α + 1)

(
b − x + λ(b − a)2

[α − λ(b − a)](α + 1)

)
,
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and

t� = − 1

α

[
(1 − α)b − a − λ(α − 1)(b − a)2

[α − λ(b − a)](α + 1)

]
.

We have,

max
t∈[a,b]

∫ b

a
G(t, s)ds =

{
f (t�), t� ≤ b,

f (b), t� > b.

Proof We start by defining two functions:

g1(t, s) = (t − a)α−1(b − s)α−1

(b − a)α−1

(
1 + λ(s − a)

α − λ(b − a)

)
, a ≤ t ≤ s ≤ b,

and

g2(t, s) = (t − a)α−1(b − s)α−1

(b − a)α−1

(
1 + λ(s − a)

α − λ(b − a)

)
− (t − s)α−1, a ≤ s ≤ t ≤ b.

Given our hypothesis on the parameters, it is clear that g1 ≥ 0. Now,

g2(t, s) = (t − a)α−1(b − s)α−1

(b − a)α−1

(
1 + λ(s − a)

α − λ(b − a)

)

− (t − a)α−1

(b − a)α−1

(
b −

(
a + (s − a)(b − a)

t − a

))α−1

= (t − a)α−1

(b − a)α−1

[
(b − s)α−1 + (b − s)α−1 λ(s − a)

α − λ(b − a)
−
(
b −

(
a + (s − a)(b − a)

t − a

))α−1
]

.

But, as observed in the proof of [3, Lemma 2.2],

a + (s − a)(b − a)

t − a
≥ s,

hence g2 ≥ 0. The proof of 1. is done.
We now proceed to prove item 2. Suppose that t ≤ s. Then, g1(t, s) ≤ g1(s, s) :=

G1(s). Then, after some calculations we get:

G ′
1(s) = (s − a)α−2(b − s)α−2

(b − a)α−1(α − λ(b − a))

[
(α − 1)(b − s)

(
1 + λ(s − a)

α − λ(b − a)

)

−(α − 1)(s − a)

(
1 + λ(s − a)

α − λ(b − a)

)
+ (s − a)(b − s)λ

α − λ(b − a)

]
, a < s < b.

Now, defining f by
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f (s) = (α − 1)(b − s)

(
1 + λ(s − a)

α − λ(b − a)

)

− (α − 1)(s − a)

(
1 + λ(s − a)

α − λ(b − a)

)
+ (s − a)(b − s)λ

α − λ(b − a)
,

we see that f (a) = (α − 1)(b − a) > 0 and f (b) = −(α − 1)(b − a)(
1 + λ(b−a)

α−λ(b−a)

)
< 0. Hence, f has a zero in the interval (a, b). Moreover, after

some rearrangements, we derive that:

f (s) = λ(1 − 2α)s2 + (3αbλ − 2α2 − 2bλ + 2α + aαλ)s

− (αb2λ − α2b − b2λ + bα − aα2 + aα + aαλb).

Since the coefficient of s2 is negative (we assume from now on that λ > 0; the case
λ = 0 gives immediately that f (s) = 0 ⇔ s = a+b

2 , and this was studied in [3]), we
conclude that the other zero of f must be less than a. Therefore, the zero of f on
(a, b) is explicitly given by the quantity:

s� = −(3αbλ − 2α2 − 2bλ + 2α + aαλ)

2λ(1 − 2α)

−

√
(3αbλ − 2α2 − 2bλ + 2α + aαλ)2

−4λ(1 − 2α)(αb2λ − α2b − b2λ + bα − aα2 + aα + aαλb)

2λ(1 − 2α)

Finally, since G1 is continuous on [a, b] and G1(a) = G1(b) = 0, then maxs∈[a,b]
G1(s) = G1(s�).

We now consider the function g2(t, s) for s ≤ t . Differentiating with respect to t ,
we get

g2t (t, s) = (α − 1)(t − a)α−2(b − s)α−1

(b − a)α−1

(
1 + λ(s − a)

α − λ(b − a)

)

− (α − 1)
(t − a)α−2

(b − a)α−2

(
b −

(
a + (s − a)(b − a)

t − a

))α−2

= (α − 1)(t − a)α−2

(b − a)α−2

⎡
⎢⎢⎢⎣(b − s)α−1

(
1 + λ(s − a)

α − λ(b − a)

)
−
(
b −

(
a + (s − a)(b − a)

t − a

))α−2

︸ ︷︷ ︸
r(t,s)

⎤
⎥⎥⎥⎦ .

Note that the sign of g2t is the same of the function r . Fix a s ∈ [a, t). It is easily
seen that r(t, s) has at most one zero in t . If r does not have a zero, then r < 0
since limt→s+ r(t, s) = −∞. Suppose now that r(t�, s) = 0 for t� ∈ (s, b). Again,
by the fact that limt→s+ r(t, s) = −∞, we know that r(t, s) < 0 for t ∈ (s, t�). In
the interval (t�, b), the function r might be negative or positive. What we may
conclude from the analysis done is that, since g2 ≥ 0, then maxt∈[s,b] g2(t, s) =
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max{g2(s, s), g2(b, s)}. Since g2(s, s) = g1(s, s) which was analyzed before, we
now calculate maxs∈[a,b] g2(b, s). First, notice that

g2(b, s) = (b − a)α−1(b − s)α−1

(b − a)α−1

(
1 + λ(s − a)

α − λ(b − a)

)
− (b − s)α−1

= (b − s)α−1 λ(s − a)

α − λ(b − a)
.

From that it is easy to show that

max
s∈[a,b] g

2(b, s) = g2
(
b,

a(α − 1) + b

α

)
= (α − 1)α−1λ

α − λ(b − a)

(
b − a

α

)α

.

Finally, we prove item 3. We have,

∫ b

a
G(t, s)ds =
1

Γ (α)

(∫ t

a

[
(t − a)α−1(b − s)α−1

(b − a)α−1

{
1 + λ(s − a)

α − λ(b − a)

}
− (t − s)α−1

]
ds

+
∫ b

t

(t − a)α−1(b − s)α−1

(b − a)α−1

{
1 + λ(s − a)

α − λ(b − a)

}
ds

)

= 1

Γ (α)

(∫ b

a

(t − a)α−1(b − s)α−1

(b − a)α−1

{
1 + λ(s − a)

α − λ(b − a)

}
ds −

∫ t

a
(t − s)α−1ds

)

= 1

Γ (α)

(∫ b

a

(t − a)α−1(b − s)α−1

(b − a)α−1 ds +
∫ b

a

(t − a)α−1(b − s)α−1

(b − a)α−1

λ(s − a)

α − λ(b − a)
ds

−
∫ t

a
(t − s)α−1ds

)

= 1

Γ (α)

(
(t − a)α−1(b − a)

α
+ (t − a)α−1λ

α − λ(b − a)

(b − a)2

α(α + 1)
− (t − a)α

α

)

= (t − a)α−1

Γ (α + 1)

(
b − t + λ(b − a)2

[α − λ(b − a)](α + 1)

)
:= F(t).

Now,

F ′(t) = (t − a)α−2

Γ (α + 1)

⎛
⎜⎜⎜⎝(α − 1)

[
b − t + λ(b − a)2

[α − λ(b − a)](α + 1)

]
− (t − a)

︸ ︷︷ ︸
H(t)

⎞
⎟⎟⎟⎠ .

If H does not have a zero on (a, b), then since
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H(a) = λ(α − 1)(b − a)2

[α − λ(b − a)](α + 1)
+ (α − 1)(b − a) > 0,

the function F is increasing, i.e., maxt∈[a,b] F(t) = F(b) = λ(b−a)α+1

Γ (α+2)[α−λ(b−a)] . If H
has zeros, it is easily seen that it has only one and is given by

t� = − 1

α

[
(1 − α)b − a − λ(α − 1)(b − a)2

[α − λ(b − a)](α + 1)

]
,

provided t� ≤ b (it is easy to verify that t� ≥ a). Moreover, H(t) < 0 for t ∈ (t�, b)
and H(t) > 0 for t ∈ (a, t�). In this case, we finally conclude that maxt∈[a,b] F(t) =
F(t�). The proof is done.

Remark 2.1 We would like to point out that, depending on the values of the param-
eters involved in Theorem 2.1, the expression that gives the

max

{
g(x�),

(α − 1)α−1λ

α − λ(b − a)

(
b − a

α

)α}

varies. To see this, consider a = 0 and b = 1, and define for this purpose h(α, λ) =
(α−1)α−1λ

α−λ

(
1
α

)α
. With the help of Maple Software, we find that g(x�) < h

(
15
10 ,

14
10

)
and

g(x�) > h
(
15
10 , 1

)
.

It follows theLyapunov inequality for the linear fractional boundaryvalueproblem
(1)–(2).

Theorem 2.2 Suppose that q ∈ C[a, b]. If x ∈ C[a, b] is a nontrivial solution of
the following BVP

Dα
a x(t) + q(t)x(t) = 0, a < t < b,

x(a) = 0,x(b) = λ

∫ b

a
x(s)ds,

where a, b, α, λ ∈ R with a < b, 1 < α ≤ 2 and λ ≥ 0 such that α − λ(b − a) > 0,
then ∫ b

a
|q(s)|ds >

1

C
, (9)

where

C = 1

Γ (α)

{(
b−a
4

)α−1
, λ = 0,

max
{
g(x�), (α−1)α−1λ

α−λ(b−a)

(
b−a
α

)α}
, λ �= 0,

with g and x� defined as in 2. of Theorem 2.1.

Proof Let B = C[a, b] be the Banach space endowed with norm ‖x‖ =
maxt∈[a,b] |x(t)|.
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It follows from Lemma 2.1 that a solution x to the BVP satisfies the integral
equation

x(t) =
∫ b

a
G(t, s)q(s)x(s)ds, t ∈ [a, b],

hence,

|x(t)| ≤
∫ b

a
|G(t, s)||q(s)||x(s)|ds, t ∈ [a, b].

Since x is nontrivial, there exists an interval [c, d] ⊂ [a, b] such that |q(s)| > 0 on
[c, d]. From the proof of Theorem 2.1, we know that |G(t, s)| = G(t, s) < C for
almost all t ∈ [a, b] and s ∈ [c, d]. Therefore,

‖x‖ < C
∫ b

a
|q(s)|ds‖x‖,

from which inequality in (9) follows.

As it was mentioned in the introduction, we believe that the previous result is
new, even in the classical case, i.e., when α = 2. For completeness, we enunciate it
below.

Corollary 2.1 Suppose that q ∈ C[a, b]. If x ∈ C[a, b] is a nontrivial solution of
the following BVP

x ′′(t) + q(t)x(t) = 0, a < t < b,

x(a) = 0,x(b) = λ

∫ b

a
x(s)ds,

where a, b, λ ∈ R with a < b, and λ ≥ 0 such that 2 − λ(b − a) > 0, then

∫ b

a
|q(s)|ds >

1

C
, (10)

where

C =
{

b−a
4 , λ = 0,

max
{
g(x�), λ

2−λ(b−a)

(
b−a
2

)2}
, λ �= 0,

with g and x� defined as in 2. of Theorem 2.1.

We end this work presenting a result that follows the same lines of the one recently
obtained in [6, Theorem 2.3].

Theorem 2.3 Assume h : [a, b] × R → R is continuous and satisfies a uniformLip-
schitz condition with respect to the second variable on [a, b] × R with Lipschitz
constant K , that is,
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|h(t, x) − h(t, y)| ≤ K |x − y|,

for all (t, x), (t, y) ∈ [a, b] × R. Define

M =
{
f (t�), t� ≤ b,

f (b), t� > b,

with f and t� defined as in 3. of Theorem 2.1.
If

K M < 1, (11)

then the boundary value problem

Dα
a x(t) = −h(t, x(t)), a < t < b, (12)

x(a) =0, x(b) = λ

∫ b

a
x(s)ds, (13)

where, as before, λ ≥ 0 and α − λ(b − a) > 0, has a unique continuous solution.

Proof Let B be the Banach space of continuous functions defined on [a, b] with
norm given by

‖x‖ = max
t∈[a,b] |x(t)|.

By Lemma 2.1, x ∈ C[a, b] is a solution of the BVP (12)–(13) if and only if it is a
solution of the integral equation

x(t) =
∫ b

a
G(t, s)h(s, x(s))ds.

Define the operator T : B → B by

T x(t) =
∫ b

a
G(t, s)h(s, x(s))ds,

for t ∈ [a, b]. We will show that the operator T has a unique fixed point.
Let x, y ∈ B. Then,

|T x(t) − T y(t)| ≤
∫ b

a
|G(t, s)||h(s, x(s)) − h(s, y(s))|ds

≤
∫ b

a
|G(t, s)|K |x(s) − y(s)|ds

≤ K
∫ b

a
G(t, s)ds‖x − y‖

≤ KM‖x − y‖,
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where we have used Theorem 2.1. By (11), we conclude that T is a contracting
mapping onB, and by the Banach contraction mapping theorem, we get the desired
result.
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A New Class of Generalized Convex
Functions and Integral Inequalities

Mohamed Jleli, Donal O’Regan and Bessem Samet

Abstract In this chapter, we introduce the class of ηϕ-convex functions which is
larger than the class of η-convex functions introduced byGordji et al. (Preprint Rgmia
ResRepColl 1–14, 2015 [1]). SomeFejér type integral inequalities are established for
this new class of functions. As consequences, we deduce some Hermite–Hadamard
type inequalities involving different kinds of fractional integrals.

1 Introduction and Preliminaries

Convexity is a very important concept both in pure mathematics and in applications,
especially in nonlinear programming and optimization. On the other hand, in many
cases from real applications, the convexity property of the examined function is not
satisfied. For this reason, several authors are concerned with a generalization of the
convexity concept. For some works in this direction, see for example [1–10].

Many inequalities involving convex functions exist in the literature. The Hermite–
Hadamard inequality is one of the fundamental results for convex functions having
a natural geometrical interpretation and many applications. Recently, a great deal of
attention has been paid to the study of such inequality for different kinds of convexity.
For more details, we refer the reader to [1, 3, 11–22] and the references therein.

In this contribution, we introduce the notion of ηϕ-convexity, which extends the
concept of η-convexity proposed by Gordji et al. [1]. We establish some Fejér type
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integral inequalities for the suggested class of functions. Next, we deduce several
Hermite–Hadamard type inequalities via different kinds of fractional integrals.

In [1], the authors introduced the concept of η-convexity as follows.
A function f : [a, b] → R, (a, b) ∈ R

2, a < b, is said to be η-convex iff for every
x, y ∈ [a, b] and t ∈ [0, 1], we have

f (t x + (1 − t)y) ≤ f (y) + tη( f (x), f (y)),

where η : f ([a, b]) × f ([a, b]) → R.
Observe that any convex function is an η-convex function with

η(x, y) = x − y.

Now, we introduce the following notion which extends the above concept.
A function f : [a, b] → R, (a, b) ∈ R

2, a < b, is said to be ηϕ-convex iff for every
x, y ∈ [a, b] and t ∈ [0, 1], we have

f (t x + (1 − t)y) ≤ f (y) + ϕ(t)η( f (x), f (y)), (1)

where η : R × R → R and ϕ : [0, 1] → [0,∞).
It can be easily seen that any η-convex function is an ηϕ-convex function withbreak
ϕ(t) = t .

Lemma 1 Let f : [a, b] → R, (a, b) ∈ R
2, a < b, be an ηϕ-convex function. Then,

for all x, y ∈ [a, b], we have

ϕ(0)η( f (x), f (y)) ≥ 0, (2)

ϕ(1)η( f (x), f (y)) ≥ f (x) − f (y), (3)

ϕ(t)η( f (x), f (x)) ≥ 0, t ∈ [0, 1]. (4)

Proof Inequality (2) follows from (1) by taking t = 0. Taking t = 1 in (1), we obtain
(3). Taking x = y in (1), we get (4).

Remark 1 Observe that from (3), if f : [a, b] → R is ηϕ-convex with ϕ(1) = 0,
then f is a constant function. Observe also that any constant function is ηϕ-convex
with ϕ ≡ 0.

The following example shows us that the set of ηϕ-convex functions is larger than
the set of η-convex functions.

Example 1 Let f : [0, 1] → R be the function defined by

f (x) = √
x, x ∈ [0, 1].

Obviously, f is a concave function. Next, for all x, y, t ∈ [0, 1], we have
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f (t x + (1 − t)y) = √
y + t (x − y) ≤ √

y + √
t
√|x − y|

= √
y + √

t
√∣∣(

√
x)2 − (

√
y)2

∣∣ = f (y) + ϕ(t)η( f (x), f (y)),

where
ϕ(t) = √

t, t ∈ [0, 1]

and
η(u, v) =

√
|u2 − v2|, u, v ∈ R.

Therefore, f is an ηϕ-convex function.
Note that there is no function η : [0, 1] × [0, 1] → R such that f is η-convex.

Indeed, suppose that f is an η-convex function for some η : [0, 1] × [0, 1] → R.
Then, for all x, y ∈ [0, 1], we have

√
t x + (1 − t)y ≤ √

y + tη(
√
x,

√
y), t ∈ [0, 1].

Let x > 0 be fixed and y = 0. Therefore, we get

√
t
√
x ≤ tη(

√
x, 0), t ∈ [0, 1],

which yields √
x ≤ √

tη(
√
x, 0), t ∈ (0, 1].

Passing to the limit as t → 0+, we obtain x = 0, which is a contradiction with x > 0.

2 Fejér Type Integral Inequalities

In this section, some Fejér type integral inequalities involving ηϕ-convex functions
are presented.

Theorem 1 Let f : [a, b] → R and g : (a, b) → [0,∞), (a, b) ∈ R
2, a < b, be

two given functions. Suppose that

(i) f is ηϕ-convex with η bounded above and ϕ ∈ L∞[0, 1];
(ii) f ∈ L∞[a, b];
(iii) g ∈ L1(a, b);
(iv) g(a + b − x) = g(x), for all x ∈ (a, b).

Then
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(
f

(
a + b

2

)
− ϕ

(
1

2

)
Mη

) ∫ b

a
g(x) dx

≤
∫ b

a
f (x)g(x) dx

≤
(

f (a) + f (b)

2

)∫ b

a
g(x) dx

+
(

η( f (a), f (b)) + η( f (b), f (a))

2

)∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx

≤
(

f (a) + f (b)

2

)∫ b

a
g(x) dx + Mη

∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx,

where Mη is an upper bound of η.

Proof For all t ∈ [0, 1], we can write that

f

(
a + b

2

)
= f

(
1

2

(
a + b + t (b − a)

2

)
+

(
1 − 1

2

)(
a + b − t (b − a)

2

))
.

Since f is ηϕ-convex, we have

f

(
a + b

2

)
≤ f

(
a + b − t (b − a)

2

)

+ ϕ

(
1

2

)
η

(
f

(
a + b + t (b − a)

2

)
, f

(
a + b − t (b − a)

2

))
,

for all t ∈ [0, 1]. Taking into consideration that Mη is an upper bound of η, we obtain

f

(
a + b

2

)
≤ f

(
a + b − t (b − a)

2

)
+ ϕ

(
1

2

)
Mη, t ∈ [0, 1],

that is,

f

(
a + b

2

)
− ϕ

(
1

2

)
Mη ≤ f

(
a + b − t (b − a)

2

)
, t ∈ [0, 1]. (5)

Similarly, for all t ∈ [0, 1], we can write that

f

(
a + b

2

)
= f

(
1

2

(
a + b − t (b − a)

2

)
+

(
1 − 1

2

)(
a + b + t (b − a)

2

))
.

We argue as previously to get

f

(
a + b

2

)
− ϕ

(
1

2

)
Mη ≤ f

(
a + b + t (b − a)

2

)
, t ∈ [0, 1]. (6)
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Adding (5) to (6), we obtain

f

(
a + b

2

)
− ϕ

(
1

2

)
Mη ≤ 1

2
f

(
a + b − t (b − a)

2

)
+ 1

2
f

(
a + b + t (b − a)

2

)
,

t ∈ [0, 1].
(7)

Multiplying (7) by

g

(
a + b + t (b − a)

2

)
,

integrating over (0, 1) with respect to the variable t , using (iv) and a change of
variable, we get

2

(
f

(
a + b

2

)
− ϕ

(
1

2

)
Mη

) ∫ b

a+b
2

g(x) dx ≤
∫ b

a
f (x)g(x) dx . (8)

Similarly, multiplying (7) by

g

(
a + b − t (b − a)

2

)

and integrating over (0, 1) with respect to the variable t , we get

2

(
f

(
a + b

2

)
− ϕ

(
1

2

)
Mη

) ∫ a+b
2

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx . (9)

Now, adding (8)–(9), we obtain

(
f

(
a + b

2

)
− ϕ

(
1

2

)
Mη

) ∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx,

which proves the first inequality.
In order to prove the second inequality, let x ∈ [a, b] be an arbitrary element. We

can write that

x = ta + (1 − t)b, t = b − x

b − a
.

Since f is ηϕ-convex, we have

f (x) ≤ f (b) + ϕ

(
b − x

b − a

)
η( f (a), f (b)).

Multiplying the above inequality by g(x) and integrating over (a, b) with respect to
the variable x , we obtain
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∫ b

a
f (x)g(x) dx ≤ f (b)

∫ b

a
g(x) dx + η( f (a), f (b))

∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx .

(10)
Similarly, we can write that

x = tb + (1 − t)a, t = x − a

b − a
.

Since f is ηϕ-convex, we have

f (x) ≤ f (a) + ϕ

(
x − a

b − a

)
η( f (b), f (a)).

Multiplying the above inequality by g(x), integrating over (a, b) with respect to the
variable x , using a change of variable and (iv), we obtain

∫ b

a
f (x)g(x) dx ≤ f (a)

∫ b

a
g(x) dx + η( f (b), f (a))

∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx .

(11)
Adding (10)–(11), we get

2
∫ b

a
f (x)g(x) dx ≤

(
f (a) + f (b)

) ∫ b

a
g(x) dx

+
(

η( f (a), f (b)) + η( f (b), f (a))

)∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx,

that is,

∫ b

a
f (x)g(x) dx ≤

(
f (a) + f (b)

2

)∫ b

a
g(x) dx

+
(

η( f (a), f (b)) + η( f (b), f (a))

2

) ∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx,

which proves the second inequality. Finally, using that Mη is an upper bound of η,
we obtain immediately

(
f (a) + f (b)

2

) ∫ b

a
g(x) dx +

(
η( f (a), f (b)) + η( f (b), f (a))

2

) ∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx

≤
(

f (a) + f (b)

2

) ∫ b

a
g(x) dx + Mη

∫ b

a
ϕ

(
b − x

b − a

)
g(x) dx,

which proves the third inequality.

Taking ϕ(t) = t in Theorem 1, we obtain the following result for η-convex func-
tions, which is due to Delavar and Dragomir [3].
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Corollary 1 Let f : [a, b] → R and g : (a, b) → [0,∞), (a, b) ∈ R
2, a < b, be

two given functions. Suppose that

(i) f is η-convex with η bounded above;
(ii) f ∈ L∞[a, b];
(iii) g ∈ L1(a, b);
(iv) g(a + b − x) = g(x), for all x ∈ (a, b).

Then

(
f

(
a + b

2

)
− Mη

2

) ∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx

≤
(

f (a) + f (b)

2

) ∫ b

a
g(x) dx +

(
η( f (a), f (b)) + η( f (b), f (a))

2(b − a)

)∫ b

a
(b − x)g(x) dx

≤
(

f (a) + f (b)

2

) ∫ b

a
g(x) dx + Mη

b − a

∫ b

a
(b − x)g(x) dx,

where Mη is an upper bound of η.

Taking g ≡ 1 in Corollary 1, we obtain the following result, which is due toGordji
et al. [1].

Corollary 2 Let f : [a, b] → R, (a, b) ∈ R
2, a < b, be a given function. Suppose

that

(i) f is η-convex with η bounded above;
(ii) f ∈ L∞[a, b].
Then

f

(
a + b

2

)
− Mη

2
≤ 1

b − a

∫ b

a
f (x) dx

≤ f (a) + f (b)

2
+ η( f (a), f (b)) + η( f (b), f (a))

4

≤ f (a) + f (b)

2
+ Mη

2
,

where Mη is an upper bound of η.

Corollary 3 Let f : [a, b] → R and w : (a, b) → [0,∞), (a, b) ∈ R
2, a < b, be

two given functions. Suppose that

(i) f is ηϕ-convex with η bounded above and ϕ ∈ L∞[0, 1];
(ii) f ∈ L∞[a, b];
(iii) w ∈ L1(a, b).

Then
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(
f

(
a + b

2

)
− ϕ

(
1

2

)
Mη

) ∫ b

a
w(x) dx ≤ 1

2

∫ b

a
f (x)

(
w(x) + w(a + b − x)

)
dx

≤
(

f (a) + f (b)

2

) ∫ b

a
w(x) dx

+
(

η( f (a), f (b)) + η( f (b), f (a))

4

) ∫ b

a

(
ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

))
w(x) dx

≤
(

f (a) + f (b)

2

) ∫ b

a
w(x) dx

+ Mη

2

∫ b

a

(
ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

) )
w(x) dx,

where Mη is an upper bound of η.

Proof Let g : (a, b) → R be the function defined by

g(x) = w(x) + w(a + b − x), x ∈ (a, b).

Observe that the function g satisfies all the assumptions of Theorem 1. In particular,
we have

g(a + b − x) = g(x), x ∈ (a, b).

Therefore, applying Theorem 1 with the function g defined as above, we get the
desired result.

Wewill see later that Corollary 3 allows us to deduce severalHermite–Hadamard’s
type inequalities via different kinds of fractional integrals.

The following lemma will be useful later.

Lemma 2 Let f : I ◦ → R and w : (a, b) → R be two given functions with a, b ∈
I ◦, a < b. Suppose that

(i) f is a differentiable mapping on I ◦;
(ii) w is continuous on (a, b);
(iii) w ∈ L1(a, b).

Let θ : [0, 1] → R be the function defined by

θ(t) =
∫ t

0
w(sb + (1 − s)a) ds, t ∈ [0, 1].

Then, the following equality holds:
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(
f (a) + f (b)

2

) ∫ b

a
w(x) dx − 1

2

∫ b

a

(
w(a + b − x) + w(x)

)
f (x) dx

= (b − a)2

2

∫ 1

0

(
θ(1 − t) − θ(t)

)
f ′(ta + (1 − t)b) dt (12)

= (b − a)2

2

∫ 1

0

(
θ(t) − θ(1 − t)

)
f ′(tb + (1 − t)a) dt. (13)

Proof We have

∫ 1

0

(
θ(1 − t) − θ(t)

)
f ′(ta + (1 − t)b) dt =

∫ 1

0
θ(1 − t) f ′(ta + (1 − t)b) dt

−
∫ 1

0
θ(t) f ′(ta + (1 − t)b) dt

:= I1 − I2. (14)

Using an integration by parts, we obtain

I1 = 1

a − b
[ f (ta + (1 − t)b)θ(1 − t)]1t=0 + 1

a − b

∫ 1

0
θ ′(1 − t) f (ta + (1 − t)b) dt

= 1

a − b

(
f (a)θ(0) − f (b)θ(1)

)
+ 1

a − b

∫ 1

0
w(ta + (1 − t)b) f (ta + (1 − t)b) dt

= f (b)θ(1)

b − a
− 1

b − a

∫ 1

0
w(ta + (1 − t)b) f (ta + (1 − t)b) dt

= f (b)θ(1)

b − a
− 1

(b − a)2

∫ b

a
w(x) f (x) dx .

Similarly, we have

I2 = 1

a − b
[ f (ta + (1 − t)b)θ(t)]1t=0 − 1

a − b

∫ 1

0
w(tb + (1 − t)a) f (ta + (1 − t)b) dt

= − f (a)θ(1)

b − a
+ 1

(b − a)2

∫ b

a
w(a + b − x) f (x) dx .

Therefore,

I1 − I2 =

(
f (a) + f (b)

)
θ(1)

b − a
− 1

(b − a)2

∫ b

a

(
w(x) + w(a + b − x)

)
f (x) dx .

Note that

θ(1) =
∫ 1

0
w(sb + (1 − s)a) ds,= 1

b − a

∫ b

a
w(x) dx .
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Hence, we have

I1 − I2 = 1

(b − a)2

((
f (a) + f (b)

) ∫ b

a
w(x) dx

−
∫ b

a

(
w(x) + w(a + b − x)

)
f (x) dx

)
.

(15)

Combining (14) with (15), we obtain the equality (12). Finally, (13) follows from
(12) by a change of variable.

Remark 2 If w ≡ 1 in Lemma 2, we obtain [13, Lemma 2.1].

As an application of identities (12) and (13), we have the following result.

Theorem 2 Suppose that all the assumptions of Lemma 2 are satisfied. Moreover,
suppose that | f ′| is ηϕ-convex in [a, b] with ϕ ∈ L∞[0, 1]. Then

4

(b − a)2

∣∣∣∣

(
f (a) + f (b)

2

) ∫ b

a
w(x) dx − 1

2

∫ b

a

(
w(a + b − x) + w(x)

)
f (x) dx

∣∣∣∣

≤
∫ 1

0

[
| f ′(a)| + | f ′(b)| +

(
η(| f ′(a)|, | f ′(b)|) + η(| f ′(b)|, | f ′(a)|)

)
ϕ(t)

]

|θ(1 − t) − θ(t)| dt.

Proof Using identity (12) and taking into consideration the ηϕ convexity of | f ′| in
[a, b], we obtain

2

(b − a)2

∣∣∣∣

(
f (a) + f (b)

2

) ∫ b

a
w(x) dx − 1

2

∫ b

a

(
w(a + b − x) + w(x)

)
f (x) dx

∣∣∣∣

≤
∫ 1

0

(
| f ′(b)| + η(| f ′(a)|, | f ′(b)|)ϕ(t)

)
|θ(1 − t) − θ(t)| dt. (16)

Similarly, using identity (13), we obtain

2

(b − a)2

∣∣∣∣

(
f (a) + f (b)

2

) ∫ b

a
w(x) dx − 1

2

∫ b

a

(
w(a + b − x) + w(x)

)
f (x) dx

∣∣∣∣

≤
∫ 1

0

(
| f ′(a)| + η(| f ′(b)|, | f ′(a)|)ϕ(t)

)
|θ(1 − t) − θ(t)| dt. (17)

Adding (16)–(17), we obtain the desired inequality.

If η is bounded above, we obtain immediately from Theorem 2 the following
result.
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Corollary 4 Suppose that all the assumptions of Lemma 2 are satisfied. Moreover,
suppose that | f ′| is ηϕ-convex in [a, b] with ϕ ∈ L∞[0, 1] and η bounded above.
Then

4

(b − a)2

∣∣∣∣

(
f (a) + f (b)

2

) ∫ b

a
w(x) dx − 1

2

∫ b

a

(
w(a + b − x) + w(x)

)
f (x) dx

∣∣∣∣

≤
∫ 1

0

(
| f ′(a)| + | f ′(b)| + 2Mηϕ(t)

)
|θ(1 − t) − θ(t)| dt,

where Mη is an upper bound of η.

Now, suppose that in Theorem 2, we have w ≥ 0 and ϕ(t) = t . In this case, θ is
a nondecreasing function. Therefore,

|θ(1 − t) − θ(t)| =
⎧
⎨

⎩

θ(1 − t) − θ(t) if 0 ≤ t ≤ 1/2,

θ(t) − θ(1 − t) if 1/2 ≤ t ≤ 1.

Hence,

∫ 1

0

[
| f ′(a)| + | f ′(b)| +

(
η(| f ′(a)|, | f ′(b)|) + η(| f ′(b)|, | f ′(a)|)

)
ϕ(t)

]

|θ(1 − t) − θ(t)| dt
= K1 + K2,

where

K1 =
(

| f ′(a)| + | f ′(b)|
) ∫ 1

2

0

(
θ(1 − t) − θ(t)

)
dt

+ M(η, a, b)

( ∫ 1
2

0
tθ(1 − t) dt −

∫ 1
2

0
tθ(t) dt

)
,

K2 =
(

| f ′(a)| + | f ′(b)|
) ∫ 1

1
2

(
θ(t) − θ(1 − t)

)
dt

+ M(η, a, b)

( ∫ 1

1
2

tθ(t) dt −
∫ 1

1
2

tθ(1 − t) dt

)
,

M(η, a, b) = η(| f ′(a)|, | f ′(b)|) + η(| f ′(b)|, | f ′(a)|).

Via integration by parts, we obtain
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K1 =
(

| f ′(a)| + | f ′(b)|
)(

θ̃ (1) − 2θ̃

(
1

2

) )

+ M(η, a, b)

(
− θ̃

(
1

2

)
+

∫ 1

0
θ̃ (t) dt

)
,

K2 =
(

| f ′(a)| + | f ′(b)|
)(

θ̃ (1) − 2θ̃

(
1

2

) )

+ M(η, a, b)

(
θ̃ (1) − θ̃

(
1

2

)
−

∫ 1

0
θ̃ (t) dt

)

and

K1 + K2 =
(

θ̃ (1) − 2θ̃

(
1

2

) )(
2(| f ′(a)| + | f ′(b)|) + M(η, a, b)

)
,

where

θ̃ (t) =
∫ t

0
θ(τ ) dτ.

Therefore, we deduce the following result.

Corollary 5 Suppose that all the assumptions of Lemma 2 are satisfied. Moreover,
suppose that w ≥ 0 and | f ′| is η-convex in [a, b]. Then

4

(b − a)2

∣∣∣∣

(
f (a) + f (b)

2

)∫ b

a
w(x) dx − 1

2

∫ b

a

(
w(a + b − x) + w(x)

)
f (x) dx

∣∣∣∣

≤
(

θ̃ (1) − 2θ̃

(
1

2

))(
2(| f ′(a)| + | f ′(b)|) + η(| f ′(a)|, | f ′(b)|) + η(| f ′(b)|, | f ′(a)|)

)
,

where

θ̃ (t) =
∫ t

0
θ(τ ) dτ, t ∈ [0, 1].

Taking w ≡ 1 in Corollary 5, we obtain the following result.

Corollary 6 Let f : I ◦ → R be a given function with a, b ∈ I ◦, a < b. Suppose
that

(i) f is a differentiable mapping on I ◦;
(ii) | f ′| is η-convex in [a, b].
Then

∣∣∣∣
f (a) + f (b)

2
− 1

b − a

∫ b

a
f (x) dx

∣∣∣∣

≤ (b − a)

4

( | f ′(a)| + | f ′(b)|
2

+ η(| f ′(a)|, | f ′(b)|) + η(| f ′(b)|, | f ′(a)|)
4

)
.
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Taking η(x, y) = x − y in Corollary 6, we obtain the following estimate due to
Dragomir and Agarwal [13].

Corollary 7 Let f : I ◦ → R be a given function with a, b ∈ I ◦, a < b. Suppose
that

(i) f is a differentiable mapping on I ◦;
(ii) | f ′| is convex in [a, b].
Then

∣∣∣∣
f (a) + f (b)

2
− 1

b − a

∫ b

a
f (x) dx

∣∣∣∣ ≤ (b − a)

8

(
| f ′(a)| + | f ′(b)|

)
.

3 Applications to Fractional Integral Inequalities

In this section, from the previous obtained results, we deduce several Hermite–
Hadamard’s integral inequalities involving different kinds of fractional integrals.
For more details on fractional calculus, we refer the reader to [23].

3.1 Hermite–Hadamard’s Inequalities Via
Riemann–Liouville Fractional Integrals

In the following,we recall the definition of theRiemann–Liouville fractional integral.
Let f : [a, b] → R, (a, b) ∈ R

2, a < b, be a given function.
The left-sided Riemann–Liouville fractional integral Jα

a+ of order α > 0 of f is
defined by

Jα
a+ f (x) = 1

Γ (α)

∫ x

a
(x − τ)α−1 f (τ ) dτ, x > a,

provided that the integral exists, where Γ (·) is the Gamma function.
The right-sided Riemann–Liouville fractional integral Jα

b− of order α > 0 of f is
defined by

Jα
b− f (x) = 1

Γ (α)

∫ b

x
(τ − x)α−1 f (τ ) dτ, x < b,

provided that the integral exists.
Now, let us define the function w : (a, b) → R, (a, b) ∈ R

2, a < b, by

w(x) = (b − x)α−1

Γ (α)
, x ∈ (a, b), (18)
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where α > 0. Observe that the functionw satisfies all the assumptions of Corollary 3.
Let f : [a, b] → R be a function that satisfies the assumptions of Corollary 3. Simple
computations yield

∫ b

a

(
ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

) )
w(x) dx = Jα

a+ ϕ̃(b),

∫ b

a
f (x)

(
w(x) + w(a + b − x)

)
dx = Jα

a+ f (b) + Jα
b− f (a),

∫ b

a
w(x) dx = (b − a)α

Γ (α + 1)
,

where

ϕ̃(x) = ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

)
, x ∈ [a, b].

Therefore, from Corollary 3, we deduce the following result.

Corollary 8 Let f : [a, b] → R, (a, b) ∈ R
2, a < b, be a given function. Suppose

that

(i) f is ηϕ-convex with η is bounded above and ϕ ∈ L∞[0, 1];
(ii) f ∈ L∞[a, b].
Then

f

(
a + b

2

)
− ϕ

(
1

2

)
Mη ≤ Γ (α + 1)

2(b − a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

≤ f (a) + f (b)

2
+ Γ (α + 1)

(b − a)α

(
η( f (a), f (b)) + η( f (b), f (a))

4

)
Jα
a+ ϕ̃(b)

≤ f (a) + f (b)

2
+ Γ (α + 1)

2(b − a)α
Mη J

α
a+ ϕ̃(b),

where Mη is an upper bound of η, α > 0, and

ϕ̃(x) = ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

)
, x ∈ [a, b].

Remark 3 It can be easily seen that Jα
a+ ϕ̃(b) = Jα

b− ϕ̃(a).

If ϕ(t) = t , t ∈ [0, 1], then

ϕ̃(x) = 1, x ∈ [a, b].

In this case, we have

Jα
a+ ϕ̃(b) = Jα

b− ϕ̃(a) = (b − a)α

Γ (α + 1)
.
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Therefore, taking ϕ(t) = t in Corollary 8, we deduce the following result for η-
convex functions.

Corollary 9 Let f : [a, b] → R, (a, b) ∈ R
2, a < b, be a given function. Suppose

that

(i) f is η-convex with η bounded above;
(ii) f ∈ L∞[a, b].
Then

f

(
a + b

2

)
− Mη

2
≤ Γ (α + 1)

2(b − a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

≤ f (a) + f (b)

2
+ η( f (a), f (b)) + η( f (b), f (a))

4

≤ f (a) + f (b)

2
+ Mη

2
,

where Mη is an upper bound of η and α > 0.

Now, taking in Corollary 5 the function w defined by (18), simple computations
yield

θ(t) = (b − a)α−1

Γ (α + 1)

(
1 − (1 − t)α

)

and

θ̃ (t) = (b − a)α−1

Γ (α + 1)

(
t + 1

α + 1

(
(1 − t)α+1 − 1

) )
.

Therefore, from Corollary 5, we deduce the following result.

Corollary 10 Let f : I ◦ → R be a given function with a, b ∈ I ◦, a < b. Suppose
that

(i) f is a differentiable mapping on I ◦;
(ii) | f ′| is η-convex in [a, b].
Then

∣∣∣∣
f (a) + f (b)

2
− Γ (α + 1)

2(b − a)α

[
Jα
a+ f (b) + Jα

b− f (a)
] ∣∣∣∣

≤ (b − a)

4(α + 1)

(
1 − 1

2α

)(
2(| f ′(a)| + | f ′(b)|) + η(| f ′(a)|, | f ′(b)|) + η(| f ′(b)|, | f ′(a)|)

)
,

where α > 0.

Taking η(x, y) = x − y in Corollary 10, we obtain the following result which is
due to Sarikaya et al. [21].
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Corollary 11 Let f : I ◦ → R be a given function with a, b ∈ I ◦, a < b. Suppose
that

(i) f is a differentiable mapping on I ◦;
(ii) | f ′| is convex in [a, b].
Then ∣∣∣∣

f (a) + f (b)

2
− Γ (α + 1)

2(b − a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]
∣∣∣∣

≤ (b − a)

2(α + 1)

(
1 − 1

2α

)(
| f ′(a)| + | f ′(b)|

)
,

where α > 0.

3.2 Hermite–Hadamard’s Inequalities Via Hadamard
Fractional Integrals

In the following, we recall the definition of the Hadamard fractional integral. Let
f : [a, b] → R, (a, b) ∈ R

2, 0 < a < b, be a given function.
The left-sided Hadamard fractional integral I α

a+ of order α > 0 of f is defined by

I α
a+ f (x) = 1

Γ (α)

∫ x

a

(
ln

x

τ

)α−1 f (τ )

τ
dτ, x > a,

provided that the integral exists.
The right-sided Hadamard fractional integral I α

b− of order α > 0 of f is defined
by

I α
b− f (x) = 1

Γ (α)

∫ b

x

(
ln

τ

x

)α−1 f (τ )

τ
dτ, x < b,

provided that the integral exists.
Now, let us define the function w : (a, b) → R, (a, b) ∈ R

2, 0 < a < b, by

w(x) = 1

Γ (α)

((
ln b

x

)α−1

x
+

(
ln x

a

)α−1

x

)
, x ∈ (a, b),

where α > 0. Observe that the functionw satisfies all the assumptions of Corollary 3.
Let f : [a, b] → R be a function that satisfies the assumptions of Corollary 3. Simple
computations yield
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∫ b

a

(
ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

) )
w(x) dx = I α

a+ ϕ̃(b) + I α
b− ϕ̃(a),

∫ b

a
f (x)

(
w(x) + w(a + b − x)

)
dx = I α

a+ F(b) + I α
b− F(a),

∫ b

a
w(x) dx = 2

Γ (α + 1)

(
ln

b

a

)α

,

where

ϕ̃(x) = ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

)
, x ∈ [a, b]

and
F(x) = f (a + b − x) + f (x), x ∈ [a, b].

Therefore, from Corollary 3, we deduce the following result.

Corollary 12 Let f : [a, b] → R, (a, b) ∈ R
2, 0 < a < b, be a given function. Sup-

pose that

(i) f is ηϕ-convex with η bounded above and ϕ ∈ L∞[0, 1];
(ii) f ∈ L∞[a, b].
Then

f

(
a + b

2

)
− ϕ

(
1

2

)
Mη ≤ Γ (α + 1)

4
(
ln b

a

)α

[
Iα
a+ F(b) + Iα

b− F(a)
]

≤ f (a) + f (b)

2
+ Γ (α + 1)

8
(
ln b

a

)α (η( f (a), f (b)) + η( f (b), f (a)))
[
Iα
a+ ϕ̃(b) + Iα

b− ϕ̃(a)
]

≤ f (a) + f (b)

2
+ Γ (α + 1)

4
(
ln b

a

)α

[
Iα
a+ ϕ̃(b) + Iα

b− ϕ̃(a)
]
Mη,

where Mη is an upper bound of η, α > 0,

ϕ̃(x) = ϕ

(
b − x

b − a

)
+ ϕ

(
x − a

b − a

)
, x ∈ [a, b],

and
F(x) = f (a + b − x) + f (x), x ∈ [a, b].

Taking ϕ(t) = t in Corollary 12, we obtain the following result for η-convex
functions.

Corollary 13 Let f : [a, b] → R, (a, b) ∈ R
2, 0 < a < b, be a given function. Sup-

pose that
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(i) f is η-convex with η bounded above;
(ii) f ∈ L∞[a, b].
Then

f

(
a + b

2

)
− Mη

2
≤ Γ (α + 1)

4
(
ln b

a

)α

[
I α
a+ F(b) + I α

b− F(a)
]

≤ f (a) + f (b)

2
+ η( f (a), f (b)) + η( f (b), f (a))

4

≤ f (a) + f (b)

2
+ Mη

2
,

where Mη is an upper bound of η, α > 0, and

F(x) = f (a + b − x) + f (x), x ∈ [a, b].

4 Conclusion

In this chapter, a new convexity concept is introduced. This concept generalizes
different types of convexity from the literature, including the η-convexity notion
introduced in [1]. We established different Fejér type integral inequalities involving
functions satisfying our convexity notion. Moreover, we showed that via particular
choices of the weight function w in Corollary 3, we can deduce easily fractional
versions of the obtained inequalities. From this fact, we can observe that many
fractional integral inequalities established recently by many authors are not real
generalizations of existing standard inequalities, but just particular cases of those
results. For further discussions on this subject, we refer the reader to the recent paper
[24].
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Redheffer-Type Inequalities
for the Fox–Wright Functions

Khaled Mehrez

Abstract In this chapter, new sharpened Redheffer-type inequalities related to the
Fox–Wright functions are established.As consequence,we shownewRedheffer-type
inequalities for hypergeometric functions and for the four-parametric Mittag-Leffler
functions with best possible exponents.
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1 Introduction and Main Results

In 1969, Redheffer [1] posed the problem of proving the inequality

π2 − x2

π2 + x2
≤ sin x

x
, x ∈ (0, π ]. (1)

Williams [2] proved this inequality. Motivated by this inequality recently, Zhu
and Sun, [3] using the fact that the hyperbolic functions sinh x and cosh x have no
zeros in (0,∞), established the following Redheffer-type inequalities:

(
r2 + x2

r2 − x2

)α

≤ sinh x

x
≤

(
r2 + x2

r2 − x2

)β

(2)

K. Mehrez (B)
Département de Mathématiques ISSAT Kasserine,
Université de Kairouan, Kairouan, Tunisia
e-mail: k.mehrez@yahoo.fr

© Springer Nature Singapore Pte Ltd. 2018
P. Agarwal et al. (eds.), Advances in Mathematical Inequalities
and Applications, Trends in Mathematics,
https://doi.org/10.1007/978-981-13-3013-1_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3013-1_5&domain=pdf
mailto:k.mehrez@yahoo.fr
https://doi.org/10.1007/978-981-13-3013-1_5


92 K. Mehrez

and

(
r2 + x2

r2 − x2

)α

≤ cosh x ≤
(
r2 + x2

r2 − x2

)β1

, (3)

where 0 < x < r, α ≤ 0, β ≥ r2

12 , and β1 ≥ r2

4 .
Recently, some extensions of inequalities (2) and (3) involving modified Bessel

function have been shown by Zhu [4] and Mehrez [5], as follows:

Theorem A Let 0 < x < r and ν > −1, then the following inequalities

(
r2 + z2

r2 − z2

)α

≤ Iν(z) ≤
(
r2 + z2

r2 − z2

)β

(4)

hold, if and only if α ≤ 0 and β ≥ r2

8(ν+1) , where Iν(z) is the normalized modified
Bessel function of the first kind, defined by

Iν(z) =
∞∑
k=0

�(ν + 1)z2k

22kk!�(ν + k + 1)
.

Moreover, the author of this paper extended and sharpened the inequalities (4),
as follows [6]:

Theorem A Let r > 0 and α, β > 0. Then the following inequalities

(
r + z

r − z

)σα,β

≤ Wα,β(z) ≤
(
r + z

r − z

)γα,β

(5)

hold for all 0 < z < r, where σα,β = 0 and γα,β = r�(β)

2�(β+α)
are the best possible

constants, and Wα,β(z) is the normalized Wright function defined by

Wα,β(z) = �(β)

∞∑
k=0

zk

k!�(β + kα)
, α > −1, β ∈ C.

The Fox–Wright function p	q is a generalization of the familiar hypergeometric
pFq function with p numerator and q denominator parameters (see [7]), defined by
(cf., e.g.,[8, p. 4, Eq. (2.4)]

p	q

[(α1,A1),...,(αp,Ap)

(β1,B1),...,(βq ,Bq )

∣∣∣z] =
∞∑
k=0

∏p
l=1 �(αl + k Al)∏q
l=1 �(βl + kBl)

zk

k! , (6)
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where Al ≥ 0, l = 1, . . . , p; Bl ≥ 0, l = 1, . . . , q; such that 1 + ∑q
l=1 Bl − ∑p

l=1
Al > 0, for suitably bounded values of |z|. The generalized hypergeometric function
pFq is defined by

pFq
[

α1,...,αp

β1,...,βq

∣∣∣z] =
∞∑
k=0

∏p
l=1(αl)k∏q
l=1(βl)k

zk

k! (7)

where, as usual, we make use of the following notation:

(τ )0 = 1, and (τ )k = τ(τ + 1) · · · (τ + k − 1) = �(τ + k)

�(τ)
, k ∈ N,

to denote the shifted factorial or the Pochhammer symbol. Obviously, we find from
the Definitions (6) and (7) that

p	q

[(α1,1),...,(αp,1)

(β1,1),...,(βq ,1)

∣∣∣z] = �(α1) · · · �(αp)

�(β1) · · · �(βq)
pFq

[
α1,...,αp

β1,...,βq

∣∣∣z] . (8)

The Mittag-Leffler functions with 2n parameters are defined for Bj ∈ R (B2
1 +

· · · + B2
n �= 0) and β j ∈ C ( j = 1, . . . , n ∈ N) by the series

E(β,B)n (z) =
∞∑
k=0

zk∏n
j=1 �(β j + kBj )

, z ∈ C. (9)

When n = 1, the definition in (9) coincides with the definition of the two-parametric
Mittag-Leffler function [9–11]

E(β,B)1(z) = Eβ,B(z) =
∞∑
k=0

zk

�(β + kB)
, z ∈ C, (10)

and similarly for n = 2, where E(β,B)2(z) coincides with the four-parametric Mittag-
Leffler function

E(β,B)2(z) = Eβ1,B1;β2,B2(z) =
∞∑
k=0

zk

�(β1 + kB1)�(β2 + kB2)
, z ∈ C. (11)

The generalized 2n−parametric Mittag-Leffler function E(β,B)n (z) can be repre-
sented in terms of the Fox–Wright hypergeometric function p	q(z) by

E(β,B)n (z) = 1	n

[ (1,1)

(β1,B1),...,(βq ,Bq )

∣∣∣z], z ∈ C. (12)
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In the following, we define the function �
(β1,B1)

α1,β2
: (0,∞) −→ R by

�
(β1,B1)

α1,β2
(z) = �(β1)�(β2)

�(α1)
1	2

[ (α1,1)

(β1,B1),(β2,1)

∣∣∣z],
where α1, β1, β2 > 0 and B1 > 0.

In this paper, we shall extend and sharpen the inequalities (4) and (5) and obtain
a general refinement of Redheffer-type inequality involving the normalized Fox–
Wright functions�

(β1,B1)

α1,β2
(z). As consequence, we show newRedheffer-type inequal-

ities for the hypergeometric function 1F2 and for the four-parametric Mittag-Leffler
function Ẽβ1,B1;β2,1(z) = �(β1)�(β2)Eβ1,B1;β2,1(z) as follows.

Theorem 1 Let r, α1, β1, β2, B1 > 0. If α1 ≥ β2, then the following inequalities

(
r + z

r − z

)λ
(β1 ,B1)

α1 ,β2 ≤ �
(β1,B1)

α1,β2
(z) ≤

(
r + z

r − z

)μ
(β1 ,B1)

α1 ,β2

(13)

hold true for all z ∈ (0, r), where λ
(β1,B1)

α1,β2
= 0, and μ

(β1,B1)

α1,β2
= α1�(β1)r

2β2�(β1+B1)
, are the

best possible constants.

Taking in (13) the value B1 = 1 and using the identities (8), we obtain the
Redheffer-type inequalities for hypergeometric function 1F2.

Corollary 1 Let r, α1, β1, β2 > 0. If α1 ≥ β2, then the following inequalities

(
r + z

r − z

)λ
(β1 ,B1)

α1 ,β2 ≤ 1F2(α1;β1, β2; z) ≤
(
r + z

r − z

)μ
(β1 ,1)
α1 ,β2

(14)

hold true for all z ∈ (0, r), where λ
(β1,1)
α1,β2

= 0, and μ
(β1,1)
α1,β2

= α1r
2β2β1

, are the best pos-
sible constants.

Letting in (13) the value α1 = 1 and using the identities (11), we obtain
the Redheffer-type inequalities for the four-parametric Mittag-Leffler function
Ẽβ1,B1;β2,1(z).

Corollary 2 Let r, β1, B1 > 0. If 0 < β2 ≤ 1, then the following inequalities

(
r + z

r − z

)λ
(β1 ,B1)

1,β2 ≤ Ẽβ1,B1;β2,1(z) ≤
(
r + z

r − z

)μ
(β1 ,B1)

1,β2

(15)

hold true for all z ∈ (0, r), where λ
(β1,B1)

1,β2
= 0, and μ

(β1,B1)

1,β2
= r�(β1)

2β2�(β1+B1)
, are the

best possible constants.
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Remark:

1. We note that choosing α1 = β2, β1 = β and B1 = α in (13), we obtain
Theorem B.

2. Taking in (13) the values α1 = β2, β1 = β, B1 = α, z = x2/4, α = 1, β = ν +
1 where ν > −1 and replacing r by r2/4 in (5), we obtain Theorem A.

2 Proof of the Main Results

In the proof of the main result, we will need the following two lemmas. The first
lemma is about the monotonicity of two power series. For more details, one may see
[12].

Lemma 1 Let {an}n≥0 and {bn}n≥0 be two sequences of real numbers, and let the
power series f (x) = ∑

n≥0 anx
n and g(x) = ∑

n≥0 bnx
n be convergent for |x | < r. If

bn > 0 for n ≥ 0 and if the sequence {an/bn}n≥0 is (strictly) increasing (decreasing),
then the function x �→ f (x)/g(x) is (strictly) increasing (decreasing) on (0, r).

The second lemma is the so-called monotone form of l’Hospital’s rule, see [13]
for a proof.

Lemma 2 Let f, g : [a, b] −→ R be two continuous functions which are differen-
tiable on (a, b). Further, let g′ �= 0 on (a, b). If f ′/g′ is increasing (decreasing) on
(a, b), then the functions

x �→ f (x) − f (a)

g(x) − g(a)
and x �→ f (x) − f (b)

g(x) − g(b)

are also increasing (decreasing) on (a, b).

Now, we are ready to prove the main result.
Proof of Theorem 1. By using the definition of the function �

(β1,B1)

α1,β2
(z), we have

(
�

(β1,B1)

α1,β2
(z)

)′ = �(β1)�(β2)

�(α1)

∞∑
k=0

�(α1 + k + 1)zk

k!�(β2 + k + 1)�(β1 + (k + 1)B1)
. (16)

Let

K (z) = log�
(β1,B1)

α1,β2
(z)

log
(
r+z
r−z

) = f (z)

g(z)
,
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where f (z) = log�
(β1,B1)

α1,β2
(z) and g(z) = log

(
r+z
r−z

)
. Then

f ′(z)
g′(z)

=
(r2 − z2)

(
�

(β1,B1)

α1,β2
(z)

)′

2r�(β1,B1)

α1,β2
(z)

= A(z)

2r B(z)
,

where A(z) = (r2 − z2)
(
�

(β1,B1)

α1,β2
(z)

)′
and B(z) = �

(β1,B1)

α1,β2
(z). By computation,

we get

A(z) = (r2 − z2)
(
�

(β1,B1)

α1,β2
(z)

)′

= �(β1)�(β2)

�(α1)
(r2 − z2)

∞∑
k=0

�(α1 + k + 1)zk

k!�(β2 + k + 1)�(β1 + (k + 1)B1)

= �(β1)�(β2)

�(α1)

( ∞∑
k=0

r2�(α1 + k + 1)zk

k!�(β2 + k + 1)�(β1 + (k + 1)B1)

−
∞∑
k=2

�(α1 + k − 1)zk

(k − 2)!�(β2 + k − 1)�(β1 + (k − 1)B1)

)

= �(β1)�(β2)�(α1 + 1)r2

�(α1)�(β2 + 1)�(β1 + B1)
+ �(β1)�(β2)�(α1 + 2)r2

�(β2 + 2)�(α1)�(β1 + 2B1)
z

+ �(β1)�(β2)

�(α1)

∞∑
k=2

(
r2�(α1 + k + 1)

k!�(β2 + k + 1)�(β1 + (k + 1)B1)

− �(α1 + k − 1)

(k − 2)!�(β2 + k − 1)�(β1 + (k − 1)B1)

)
zk

:=
∞∑
k=0

akz
k,

(17)
where a0 = �(β1)�(β2)�(α1+1)r2

�(α1)�(β2+1)�(β1+B1)
and a1 = �(β1)�(β2)�(α1+2)r2

�(β2+2)�(α1)�(β1+2B1)
and ak is defined for

k ≥ 2 by

ak = �(β1)�(β2)

�(α1)

(
r2�(α1 + k + 1)

k!�(β2 + k + 1)�(β1 + (k + 1)B1)

− �(α1 + k − 1)

(k − 2)!�(β2 + k − 1)�(β1 + (k − 1)B1)

)
.

On the other hand, we write B(z) in the following form:

B(z) =
∞∑
k=0

bkz
k,
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where

bk = �(β1)�(β2)�(α1 + k)

k!�(α1)�(β2 + k)�(β1 + kB1)
, for all k ≥ 0.

Now, we consider the sequence uk = ak/bk by u0 = a0, u1 = a1/b1 and for k ≥ 2

uk = �(β2 + k)�(β1 + kB1)�(α1 + k + 1)r2

�(α1 + k)�(β2 + k + 1)�(β1 + (k + 1)B1)

− k!�(α1 + k − 1)�(β2 + k)�(β1 + kB1)

(k − 2)!�(β2 + k − 1)�(α1 + k)�(β1 + (k − 1)B1)
.

Since α1 ≥ β2, we have

u1 − u0 = �(α1 + 2)�(β2 + 1)�(β1 + B1)r2

�(α1 + 1)�(β2 + 2)�(β1 + 2B1)
− �(β1)�(β2)�(α1 + 1)r2

�(α1)�(β2 + 1)�(β1 + B1)

= (α1 + 1)�(β1 + B1)

(β2 + 1)�(β1 + 2B1)
− α1�(β1)

β2�(β1 + B1)

≤ α1

β2

(
�(β1 + B1)

�(β1 + 2B1)
− �(β1)

�(β1 + B1)

)

≤ 0.
(18)

Indeed, due to log-convexity property of the Gamma function �(z), the ratio z �→
�(z + a)/�(z) is increasing on (0,∞), when a > 0.Thus implies that the following
inequality:

�(z + a)

�(z)
≤ �(z + a + b)

�(z + b)
, (19)

holds for all a, b, z > 0. Let z = β1 and a = b = B1 in (19) and using the inequality
(18), we deduce that u1 ≤ u0. On the other hand, we have

u2 − u1 = �(α1 + 2)�(β2 + 1)

�(α1 + 1)�(β2 + 2)

[
(α1 + 2)(β2 + 1)�(β1 + 2B1)

(α1 + 1)(β2 + 2)�(β1 + 3B1)
− �(β1 + B1)

�(β1 + 2B1)

]

− 2�(α1 + 1)�(β2 + 2)�(β1 + 2B1)

�(α1 + 2)�(β2 + 1)

≤ �(α1 + 2)�(β2 + 1)

�(α1 + 1)�(β2 + 2)

[
�(β1 + 2B1)

�(β1 + 3B1)
− �(β1 + B1)

�(β1 + 2B1)

]

− 2�(α1 + 1)�(β2 + 2)�(β1 + 2B1)

�(α1 + 2)�(β2 + 1)

≤ 0.
(20)
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Indeed, in view of inequality (19) when z = β1 + B1, a = b = B1 and inequality
(20), we deduce that u2 ≤ u1. Now, let k ≥ 2, we have

uk+1 − uk = r2
[

(α1 + k + 1)�(β1 + (k + 1)B1)

(β2 + k + 1)�(β1 + (k + 2)B1)
− (α1 + k)�(β1 + kB1)

(β2 + k)�(β1 + (k + 1)B1)

]

+ k!
(k − 2)!

[
(β2 + k − 1)�(β1 + kB1)

(α1 + k − 1)�(β1 + (k − 1)B1)

− (k + 1)(β2 + k)�(β1 + (k + 1)B1)

(k − 1)(α1 + k)�(β1 + kB1)

]

≤ (α1 + k)r2

(β2 + k)

[
�(β1 + (k + 1)B1)

�(β1 + (k + 2)B1)
− �(β1 + kB1)

�(β1 + (k + 1)B1)

]

+ k!(β2 + k − 1)

(k − 2)!(α1 + k − 1)

[
�(β1 + kB1)

�(β1 + (k − 1)B1)
− �(β1 + (k + 1)B1)

�(β1 + kB1)

]
.

(21)

Setting in (19) the values z = β1 + kB1 and a = b = B1, we obtain the following
Turán type inequality for the gamma function �(z)

�(β1 + kB1)�(β1 + (k + 2)B1) − �2(β1 + (k + 1)B1) ≥ 0. (22)

Similarly, letting in (19) the values z = β1 + (k − 1)B1 and a = b = B1, we get

�(β1 + (k − 1)B1)�(β1 + (k + 1)B1) − �2(β1 + kB1) ≥ 0. (23)

In view of (18), (20), (21), (22), and (23), we deduce that the sequence (uk)k≥0 is
decreasing. By using Lemma 1, we clearly have that f ′/g′ is decreasing on (0, r),
and consequently the function K (z) is also decreasing (0, r), by means of Lemma 2.
On the other hand, by using the Bernoulli–l’Hospital’s rule, we obtain

lim
z→0

K (z) = u0
2r

= α1�(β1)r

2β2�(β1 + B1)
, and lim

z→r
K (z) = 0.

It is important to mention here that there is another proof of the inequalities (13).
Namely, if we consider the function χ : (0, r) −→ R, defined by

χ(z) = α1�(β1)r

2β2�(β1 + B1)
log

(
r + z

r − z

)
− log�

(β1,B1)

α1,β2
(z).
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Then,

�
(β1,B1)
α1,β2

(z)χ ′(z) = α1�(β1)r
2

β2�(β1 + B1)(r2 − z2)
�

(β1,B1)
α1,β2

(z) −
(
�

(β1,B1)
α1,β2

(z)
)′

= �(β1)�(β2)

�(α1)

[
α1�(β1)r

2

β2�(β1 + B1)(r2 − z2)

∞∑
k=0

�(α1 + k)zk

k!�(β1 + kB1)�(β2 + k)

−
∞∑
k=0

�(α1 + k + 1)zk

k!�(β1 + kB1 + B1)�(β2 + k + 1)

]

≥ �(β1)�(β2)

�(α1)

[
α1�(β1)

β2�(β1 + B1)

∞∑
k=0

�(α1 + k)zk

k!�(β1 + kB1)�(β2 + k)

−
∞∑
k=0

�(α1 + k + 1)zk

k!�(β1 + kB1 + B1)�(β2 + k + 1)

]

= �(β1)�(β2)

�(α1)

∞∑
k=0

�(α1 + k)zk

k!�(β2 + k)

(
α1�(β1)

β2�(β1 + B1)�(β1 + kB1)

− α1 + k

(β2 + k)�((β1 + kB1 + B1)

)
zk .

On the other hand, using the fact that α1 ≥ β2, we have
α1
β2

≥ α1+k
β2+k for each k ≥ 0,

and consequently,

�
(β1,B1)

α1,β2
(z)χ ′(z) ≥ α1�(β1)�(β2)

β2�(α1)

∞∑
k=0

�(α1 + k)zk

k!�(β2 + k)

(
�(β1)

�(β1 + B1)�(β1 + kB1)

− 1

�((β1 + kB1 + B1)

)
zk .

(24)
Now, taking in (19) the values z = β1, a = B1 and b = kB1, we obtain

�(β1)�(β1 + kB1 + B1) ≥ �(β1 + B1)�(β1 + kB1). (25)

In viewof inequalities (24) and (25),we deduce that the functionχ(z) is increasing on
(0, r), and hence χ(z) ≥ χ(0) = 0,which implies the right-hand side of inequalities
(13). To prove the left-hand side of (13), by using (16), we deduce that the function
�

(β1,B1)

α1,β2
(z) is increasing on (0,∞), and hence

�
(β1,B1)

α1,β2
(z) ≥ �

(β1,B1)

α1,β2
(0) = 1.

This completes the proof of Theorem 1. �
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Relations of the Extended Voigt Function
with Other Families of Polynomials
and Numbers

M. A. Pathan

Abstract Author presents a new family of generalized Voigt functions related to
recently introduced k-Fibonacci–Hermite numbers, h(x)-Fibonacci–Hermite poly-
nomials, Lucas–Hermite numbers and h(x)-Lucas–Hermite polynomials where h(x)
is a polynomial with real coefficients. The multivariable extensions of these results
provide a natural generalization and unification of integral representationswhichmay
be viewed as a new relationship for the product of two different families of Lucas
and Hermite polynomials. Some interesting explicit series representations, integrals
and identities are obtained. The resulting formulas allow a considerable unification
of various special results which appear in the literature.

1 Introduction

The integral form of a generalization of the Voigt functions K (x, y) and L(x, y) is
(see, Srivastava and Miller [21]; Klusch [10])

Vμ,ν(x, y, z) =
√
x

2

∫ ∞

0
tμe−yt−zt2 Jν(xt) dt (1.1)

= z−αxν+ 1
2

2ν+ 1
2 �(ν + 1)

{
�(α)ψ2

[
α; ν + 1,

1

2
; − x2

4z
,− y2

4z

]

− y√
z
�(α + 1

2
) ψ2

[
α + 1

2
; ν + 1,

3

2
; − x2

4z
,− y2

4z

]}
(1.2)

(α = (μ + ν + 1)/2, x, y, z ∈ R
+, R(μ + ν) > −1)
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where ψ2 denotes one of Humbert’s confluent hypergeometric function of two vari-
ables, defined by [20, p. 59]

ψ2[α; γ, γ ′; x, y] =
∞∑

m,n=0

(α)m+n

(γ )m (γ ′)n
xm yn

m! n! , max{|x |, |y|} < ∞ (1.3)

and the classical Bessel function Jν(z) is defined by [20]

Jν(z) =
∞∑

m=0

(−1)m
(
z
2

)ν+2m

m! �(ν + m + 1)
, (z ∈ C \ (−∞, 0)) (1.4)

Note that

K (x, y) = V1/2,−1/2

(
x, y,

1

4

)
and L(x, y) = V1/2,1/2

(
x, y,

1

4

)
(1.5)

For a number of specializations of Voigt functions Vμ,ν(x, y, z) and their general-
izations in multivariables, we refer [14, 15, 17, 22].

The Fibonacci numbers Fn [5, 8, 9, 11, 19, 23] are the terms of the sequence
0, 1, 2, 3, 5, . . . , where Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0 and F1 = 1. Falcon and
Plaza [8] introduced a general Fibonacci sequence that generalizes among others both
the classical Fibonacci sequence and the Pell sequence. These general k-Fibonacci
numbers Fk,n are defined by Fk,n = kFk,n−1 + Fk,n−2, n ≥ 2, F0 = 0 and F1 = 1.
The Pell numbers are the 2-Fibonacci numbers. In [9] the k-Fibonacci numbers were
defined in explicit way andmany properties were given. In particular, the k-Fibonacci
numbers were related with the so called Pascal 2-triangle.
The polynomials Fn(x) studied by Catalan are defined by the recurrence relation

Fn(x) = xFn−1(x) + Fn−2(x); n ≥ 3 (1.6)

where F1(x) = 1, F2(x) = x . The Fibonacci polynomials studied by P. F. Byrd are
defined by

φn(x) = 2xφn−1(x) + φn−2(x); n ≥ 2 (1.7)

where φ0(x) = 0, φ1(x) = 1. The Lucas polynomials Ln(x) originally studied in
1970 by Bicknell are defined by

Ln(x) = xLn−1(x) + Ln−2(x); n ≥ 2 (1.8)

where L0(x) = 2, L1(x) = x .
In [12], Nalli et al. introduced the h(x)-Fibonacci polynomials. That generalize

Catalan’s Fibonacci polynomials Fn(x) and the k-Fibonacci numbers Fk,n . The h(x)-
Fibonacci polynomials are
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t

1 − h(x)t − t2
=

∞∑
n=0

Fh,n(x)t
n (1.9)

For h(x) = x , we obtain Catalan’s Fibonacci polynomials, and for h(x) = 2x , we
obtain Byrd’s Fibonacci polynomials. For h(x) = k, we obtain the k-Fibonacci num-
bers. For k = 1 and k = 2, we obtain the usual Fibonacci numbers and the Pell num-
bers.

The 2-variable Kampe de Feriet generalization of the Hermite polynomials (see
Dattoli et al. [1–4]) reads

Hn(x, y) = n!
[ n2 ]∑
r=0

yr xn−2r

r !(n − 2r)! (1.10)

These polynomials are usually defined by the generating function

ext+yt2 =
∞∑
n=0

Hn(x, y)
tn

n! (1.11)

and reduce to the ordinary Hermite polynomials Hn(x) (see [2]) when y = −1 and
x is replaced by 2x .
We recall that the Hermite numbers Hn are the values of the Hermite polynomials
Hn(x) at zero argument, that is, Hn(0) = 0. A closed formula for Hn is given by

Hn =
{
0, if n is odd
(−1)n/2n!

( n
2 )! , if n is even

(1.12)

Recently in a paper [16], Pathan and Khan introduced k-Fibonacci–Hermite
numbers, h(x)-Fibonacci–Hermite polynomials, Lucas–Hermite numbers and h(x)-
Lucas–Hermite polynomials and obtained new sums and identities. Their definition
for k-Fibonacci–Hermite numbers is given by means of the following generating
function

t

1 − kt − t2
e−t2 =

∞∑
n=0

H Fk,nt
n (1.13)

where H Fk,n are k-Fibonacci–Hermite numbers. When k = 1 and k = 2, we obtain
the usual Fibonacci–Hermite numbers H F1,n and the Pell–Hermite numbers H F2,n ,
respectively. Let h(x) be a polynomial with real coefficients. We recall the definition
of h(x)-Fibonacci–Hermite polynomials [16] given by the generating function

t

1 − h(x)t − t2
eyt+zt2 =

∞∑
n=0

H Fh,n(x, y, z)t
n (1.14)
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so that

H Fh,n(x, y, z) =
n∑

m=0

1

(n − m)! Fh,m(x)Hn−m(y, z) (1.15)

In this work, we will consider various generalizations of Voigt function. We will
show that generalized Voigt function is expressible in terms of a combination of
Fibonacci–Hermite polynomials andKampédeFériet’s functions. In thefinal section,
we give further generalizations (involving multivariables) of Voigt functions in terms
of multiple series and integrals.

2 Generalized Voigt Function �α
μ,ν,h(x, y, z)

In an attempt to generalize (1.1), we first investigate here the generalized Voigt func-
tion �α

μ,ν,h(x, y, z).

Definition Let h(ω) be a polynomial with real coefficients and α ≥ 0. Then

�α
μ,ν,h = �α

μ,ν,h(x, y, z) =
√
x

2

∫ ∞

0

tμe−yt−zt2

(1 − h(ω)t − t2)α
Jν(xt) dt (2.1)

where x, y, z ∈ R
+ and Re(μ + ν) > −1.

Clearly, the case α = 0 corresponds to (1.1) and (1.2) and we have

�
(α)
μ,ν,h(x, y, z) |α=0 = Vμ,ν(x, y, z) (2.2)

Moreover, �α
μ,ν,h(x, y, 0) |α=0 is the classical Laplace transform of tμ Jν(xt). The

case when z = 1/4 in (2.2) yields

�
(α)
1/2,−1/2.h

(
x, y,

1

4

)
|α=0 = K (x, y) and �

(α)
1/2,1/2,h

(
x, y,

1

4

)
|α=0 = L(x, y)

Using the Definition (2.1) and some manipulation in the integral results in a connec-
tion between Vμ,ν and �μ,ν,h

�α
μ,ν,h = �α+1

μ,ν,h − h(w)�α+1
μ+1,ν,h − �α+1

μ+2,ν,h

which on setting α = 0 reduces to

Vμ,ν,h = �μ,ν,h − h(w)�μ+1,ν,h − �μ+2,ν,h
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where �1
μ,ν,h = �μ,ν,h

Relationships (1.2) and (1.9) can indeedbeused to obtain an interesting connection
between �α

μ,ν(x, y, z), Vμ,ν(x, y, z) and Fn,h(w) when α = 1 by writing

�1
μ,ν,h(x, y, z) = �μ,ν,h(x, y, z) =

√
x

2

∞∑
n=0

Fh,n(w)

∫ ∞

0
tn+μ−1e−yt−zt2 Jν(xt) dt

(2.3)
which yields the formula

�μ,ν,h(x, y, z) =
∞∑
n=0

Fh,n(w)Vμ+n−1,ν(x, y, z) (2.4)

where Vμ+n+1,ν(x, y, z) is given by (1.2). This result seems in some way related to
the formula mentioned below

�μ,ν,h(x, y, z) =
∞∑
n=0

H Fh,n(w, u, v)Vμ+n−1,ν(x, y + u, z + v) (2.5)

where H Fh,n(x, u, v) is given by (1.14). This formula when u = v = 0 yields the
result (2.4).
The formula given by (2.1) for �α

μ,ν,h may be converted to generate

�α
μ,ν,h(x, y, z) =

∞∑
n=0

Fh,n(w)�α−1
μ+n−1,ν,h(x, y, z) (2.6)

which reduces to (2.4) when α = 1.

3 Explicit Representations for �α
μ,ν,h(x, y, z)

The use of (1.11) can be exploited to obtain the series representations of (2.1). We
have indeed

�α
μ,ν,h(x, y, z) ==

√
x

2

∞∑
n=0

1

n! Hn(u, v)

∫ ∞

0

tμ+ne−(y+u)t−(z+v)t2

(1 − h(ω)t − t2)α
Jν(xt) dt

=
∞∑
n=0

1

n! Hn(u, v)�α
μ+n,ν,h(x, y + u, z + v) (3.1)
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by applying (1.11) to the integral on the right of (2.1).
Since

lim
x→0

x−ν Jν(x) = 1

2ν �(ν + 1)
,

we may write a limiting case of (2.1) in the form

lim
x→0

�α
μ,ν,h(x, y, z)

xν+1/2
= 2−ν−1/2

�(ν + 1)

∫ ∞

0

tμ+νe−yt−zt2

(1 − h(ω)t − t2)α
dt

= 2−ν−1/2

�(ν + 1)

∞∑
n=0

1

n! Hn(u, v)

∫ ∞

0

tμ+ν+ne−(y+u)t−(z+v)t2

(1 − h(ω)t − t2)α
dt (3.2)

It may be of interest to observe here that result (3.2) yields a number of new
expressions. One class of expansions is given by setting α = 0 in (3.2) and using [6,
146(24)]

∫ ∞

0
tσ e−yt−zt2 dt = 2(σ+1)/2 �(σ + 1) ey

2/8z D−σ−1

(√
y

2z

)
(Re(σ + 1) > 0, Re y > 0)

(3.3)
where D−ν(x) is parabolic cylinder function [20]. Thus, we will be able to obtain

lim
x→0

Vμ,ν(x, y, z)

xν+1/2

= 2
μ−ν

2 e(y+u)2/8(z+v)

�(ν + 1)

∞∑
n=0

2n/2(μ + ν + 1)n
n! Hn (u, v)D−μ−ν−n−1

(√
y + u

2(z + v)

)

(3.4)
A reduction of interest involves the case of replacing y by y − u, z by z − v and μ

by μ − ν, and thus we obtain the following result (see [24])

∫ ∞

0
tμe−(y−u)t−(z−v)t2 dt

= �(μ + 1)e
y2

8z

∞∑
n=0

2
μ+n+1

2 (μ + 1)n
n! Hn (u, v)D−μ−n−1

(√
y

2z

)
(3.5)

A second class of expansions, a consequence of (3.2) may be obtained by setting
α = 1.

lim
x→0

�μ,ν,h(x, y, z)

xν+1/2
= 2−ν−1/2

�(ν + 1)

∞∑
n=0

1

n! Hn(u, v)

∫ ∞

0

tμ+ν+ne−(y+u)t−(z+v)t2

(1 − h(ω)t − t2)
dt
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= 2−ν−1/2

�(ν + 1)

∞∑
n=0

1

n! Hn(u, v)

∞∑
m=0

Fh,m(w)

∫ ∞

0
tμ+ν+n+m−1e−(y+u)t−(z+v)t2 dt

= 2−ν−1/2�(σ)

�(ν + 1)
e

(y+u)2

8(z+v)

∞∑
n,m=0

(σ )m+n2
σ+m+n

2
1

n! Hn(u, v)Fh,m(w)D−σ−m−n

(√
y + u

2(z + v)

)

where σ = μ + ν.

4 Representation of �μ,ν,h(x, y, z)

Theorem 4.1 For m ≥ 1

�μ,ν,h(x, y, z) =
∞∑

m=0

[ m−1
2 ]∑

i=0

(
m − i − 1
i

)
hm−2i−1(w)Vμ+m−1,ν(x, y, z) (4.1)

Proof Let

G(h(w), t) = t

1 − h(w)t − t2
= t

∞∑
n=0

(h(w)t + t2)n

=
∞∑
n=0

n∑
i=0

(
n
i

)
(h(w)t)n−i (tn+i+1)

On writing n + i + 1 = m in R.H.S of the above equation, we get

G(h(w), t) =
∞∑

m=0

⎡
⎣

[ m−1
2 ]∑

i=0

(
m − i − 1
i

)
hm−2i−1(w)

⎤
⎦ tm (4.2)

Now from (2.1), we can write

�μ,ν,h(x, y, z) =
√
x

2

∫ ∞

0
tμ−1G(h(w), t)e−yt−zt2 Jν(xt) dt

which on using (1.1) and (4.2) gives (4.1).
Next we write (1.14) in the form

t

1 − h(x)t − t2
eyt+zt2 = G(h(x), t)eyt+zt2 =

∞∑
n=0

H Fh,n(x, y, z)t
n (4.3)
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and using (1.11) and (4.2), we have

∞∑
n=0

H Fn(x, y, z)t
n =

∞∑
n=0

Hn(y, z)
tn

n!
∞∑

m=0

⎡
⎣

[ m−1
2 ]∑

i=0

(
m − i − 1
i

)
hm−2i−1(x)

⎤
⎦ tm

Replacing n by n−m and comparing the coefficients of tn , we get the following
theorem.

Theorem 4.2 For m ≥ 1

H Fn(x, y, z) =
∞∑

m=0

m∑
n=0

Hn−m(y, z)

(n − m)!

⎡
⎣

[ m−1
2 ]∑

i=0

(
m − i − 1
i

)
hm−2i−1(x)

⎤
⎦ (4.4)

For y = z = 0 in equation (4.4), the result reduces to known result of Nalli and
Haukkanen [12, p. 3181(2.8)].

5 Another Representation for �μ,ν,h(x, y, z)

Applying the result [18, p. 101(2)]

∫ ∞

0
tα e−zt2 Jν(xt) dt = sin νπ �(α + 1)/2

2νπ z(α+1)/2 2F2

[
1,

α + 1

2
; 1 + ν

2
, 1 − ν

2
; − x2

4z

]

− x sin νπ �(α + 2)/2

2π(1 − ν2) z(α+2)/2 2F2

[
1,

α + 2

2
; 3 + ν

2
,
3 − ν

2
; − x2

4z

]
(5.1)

[Re z, Re(α + 1) > 0],

we derive another class of representations of generalized Voigt function �μ,ν,h

(x, y, z) associated with the product of Fibonacci polynomials Fh,n(w) and hyper-
geometric functions 2F2 (see, e.g., [20, p. 42]) in the following form

�μ,ν,h(x, y, z) =
√
x

2

∞∑
n,m=0

Fh,n(w)
ym

m! {
sin νπ �(μ + n + m)/2

2νπ z(μ+n+m)/2

2F2

[
1,

μ + n + m

2
; 1 + ν

2
, 1 − ν

2
; − x2

4z

]

− x sin νπ �(μ + n + m + 1)/2

2π(1 − ν2) z(μ+n+m+1)/2 2F2

[
1,

μ + n + m + 1

2
; 3 + ν

2
,
3 − ν

2
; − x2

4z

]
}

(5.2)
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To prove (5.2), we expand the exponential function e−yt in (2.1) and then use (1.9)
and (5.1).
For y = 0, (5.2) reduces to

�μ,ν,h(x, 0, z) =
√
x

2

∞∑
n=0

Fh,n(w){ sin νπ �(μ + n)/2

2νπ z(μ+n)/2 2F2

[
1,

μ + n

2
; 1 + ν

2
, 1 − ν

2
; − x2

4z

]

− x sin νπ �(μ + n + 1)/2

2π(1 − ν2) z(μ+n+1)/2 2F2

[
1,

μ + n + 1

2
; 3 + ν

2
,
3 − ν

2
; − x2

4z

]
} (5.3)

Now we examine consequences of (5.2) for special values of y, z and h(w) in
�μ,ν,h(x, y, z). Let h(w) = k and z = 1. Then using (1.13), we have

�μ,ν,k(x, y, 1) =
√
x

2

∞∑
n=0

Fk,n

∫ ∞

0
tn+μ−1e−yt Jν(xt) dt (5.4)

where Fk,n are k-Fibonacci–Hermite numbers.
Solving Laplace transform involving in (5.4) with the help of [7, p. 29(7)], we get

�μ,ν,k(x, y, 1) = xν

2ν yμ+ν�(ν + 1)

∞∑
n=0

Fk,n
�(μ + ν + n)

yn

2F1

[
μ + ν + n

2
; μ + ν + n + 1

2
; ν + 1; − x2

y2

]
(5.5)

where 2F1 is Gauss hypergeometric function [20].
With again y = 0 and the use of the integral [7, p. 22(7)] for solving the Hankel
transform in (5.4) gives

�μ,ν,k(x, 0, 1) =
∞∑
n=0

Fk,n
2μ− 3

2 +n�(
ν−μ+n−2

2 )

xμ− 1
2 +n�(

ν−μ+2−n
2 )

(5.6)

6 Further Extension �
α, j
μ,ν,h(x, y, z) and Related Functions

A natural generalization of (2.1) is accomplished by defining the generalized Voigt
function �

α, j
μ,ν,h(x, y, z) by the introduction of a positive integer j .

Definition Let h(ω) be a polynomial with real coefficients, α ≥ 0 and j be a positive
integer. Then

�
α, j
μ,ν,h = �

α, j
μ,ν,h(x, y, z) =

√
x

2

∫ ∞

0

tμe−yt−zt j

(1 − h(ω)t − t2)α
Jν(xt) dt (6.1)
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where x, y, z ∈ R
+ and Re(μ + ν) > −1.

Clearly, the case j = 2 corresponds to (2.1) and we have
�

α,2
μ,ν,h(x, y, z) = �α

μ,ν,h(x, y, z) and �
α,2
μ,ν,h(x, y, z) |α=0 = Vμ,ν(x, y, z)

To obtain the various explicit representations for the generalized Voigt function
�

α, j
μ,ν,h , our starting point is (6.1). Making use of the series representation (1.4) and

(1.9) in (6.1) and integrating the resulting series term by term with the help of the
result

∫ ∞

0
tμe−pt−βtλ dt =

∞∑
r=0

(−β)r �(μ + 1 + λr)

r ! pμ+1+λr
, (6.2)

(Re(μ + 1) > 0, Re p > 0 and λ > 0),

we obtain

�α, j
μ,ν(x, y, z) = xν+ 1

2

2ν+ 1
2 yμ+ν

∞∑
n=0

Fh,n(w)

yn

∞∑
r,m=0

�(μ + ν + 2m + jr + n)

�(ν + m + 1)m! r !
(−z

y j

)r (−x2

4y2

)m

(6.3)

Formula (6.3) is an interesting generalization of a representation [13, p. 13,(4.3)]
in terms of Kampé de Feriét series F p:q;r

l:m;n [see (20, p. 63)] given by

�μ,ν(x, y, z) = xν+ 1
2 �(μ + ν + 1)

2ν+ 1
2 yμ+ν+1 �(ν + 1)

× F2:0;0
0:1;0

⎡
⎣

μ+ν+1
2 ,

μ+ν+2
2 : ; ;

−x2

y2 , −4z
y2

: ν + 1; ;

⎤
⎦ , (6.4)

which is given by recently, though in a slightly specialized form (for z = 1

4
), by

Pathan and Shahwan [17].
The representation (6.4) is derivable from (6.3) by setting j = 2, α = 0 and then
using Legendre’s duplication formula [20, p. 23(26)].

7 The Multivariable Extension of the Voigt Function

The definition of generalized Voigt function given in the preceding section may be
extended slightly to include the multivariable extension of the Voigt functions. Just
as in the previous sections, in order to obtain representations for the multivariable
Voigt functions we propose to make use of the multivariable Hermite polynomials
H (m)

n ({x}m1 ) which are specified by the generating function [4]
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∞∑
n=0

tn

n! H
(m)
n ({x}m1 ) = e

m∑
j=1

x j t j

(7.1)

where {x}m1 = x1, x2, . . . , xm .
We begin by recalling the relationship

H (1)
n (x) = H (2)

n (2x,−1) = Hn(x) (7.2)

where Hn(x1, x2) are two variable Hermite–Kampé de Feriét polynomials given by
(1.10).

A three variable generalized Hermite polynomials Hn(x, y, z) defined by the
generating function [see (1, p. 511)] is

∞∑
n=0

tn

n! Hn(x, y, z) = e2xt−yt2+zt3 (7.3)

where
H (3)

n (2x,−y, z) = Hn(x, y, z)

Among the numerous specializations of (1.10), considered by Dattoli et al. [3], we
mention the following generating function

∞∑
n=0

tn

n! hn(x, y; ξ) = e2xt−t2+2yξ t−ξ 2t2 (7.4)

straightforwardly yielding the following expansion in terms of ordinary Hermite
polynomials

H (2)
n (2x + 2yξ,−ξ 2 − 1) = hn(x, y; ξ) =

n∑
s=0

(
n

s

)
ξ s Hn−s(x) Hs(y) (7.5)

which can also be written as

hn(x, y; ξ) = (1 + ξ 2)n/2 Hn

(
x + ξ y√
1 + ξ 2

)
(7.6)

Definition Let h(ω) be a polynomial with real coefficients, α ≥ 0 and j be a positive
integer. Then multivariable extension of the Voigt function is

�
α,m
μ,ν,h = �

α,m
μ,ν,h(x, y, z, x1, . . . , xm) =

√
x

2

∫ ∞

0

tμe
−yt−zt2+

m∑
j=1

x j t j

(1 − h(ω)t − t2)α
Jν(xt) dt,

(7.7)
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where m is a positive integer, x, y, z, x1, . . . , xm ∈ R
+ and Re(μ + ν) > −1.

By comparing the definitions (1.2), (2.1), (2.2) and (6.1) with (7.7), we obtain the
following relationships

�
α,m
μ,ν,h(x, y, 0, 0, 0, . . . ,−z) = �

α,m
μ,ν,h(x, y, z)

�
α,m
μ,ν,h(x, y, z, 0, . . . , 0) = �

α,m
μ,ν,h(x, y, z)

�α
μ,ν,h(x, y, z, x1) = �α

μ,ν,h(x, y − x1, z),

�μ,ν(x, y, z, x1, x2) = �μ,ν(x, y − x1, z − x2).

Additionally, we record here

lim
x→0

�
α,m
μ,ν,h(x, y, z, x1, . . . , xm) = 1

�(ν + 1)

∫ ∞

0

tμ+νe
−yt−zt2+

m∑
j=1

x j t j

(1 − h(ω)t − t2)α
dt, (7.8)

which for α = 0 reduces to [13, p. 10(1.9)]

lim
x→0

�μ,ν(x, y, z, x1, . . . , xm) = 1

�(ν + 1)

∫ ∞

0
tμ+ν e

−yt−zt2+
m∑
j=1

x j t j

dt (7.9)

The use of (7.1) can be exploited to obtain the series representations of (7.7). We
have indeed

�α,m
μ,ν (x, y, z, x1, . . . , xm) =

√
x

2

∞∑
n=0

1

n! H
(m)
n ({x}m1 )

∫ ∞

0

tμ+n e−yt−zt2

(1 − h(ω)t − t2)α
Jν(xt) dt (7.10)

=
∞∑
n=0

1

n! H
(m)
n ({x}m1 )�α

μ+n,ν(x, y, z) (7.11)

by applying (7.1) to the integral on the right of (7.7)
Making use of α = 0 in the above result yields a known result [13, p. 14(5.2)]

�μ,ν(x, y, z, x1, . . . , xm) =
∞∑
n=0

1

n! H
(m)
n ({x}m1 )�μ+n,ν(x, y, z) (7.12)

It may be of interest to observe here that by letting x → 0 in the above result, we
have
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∫ ∞

0
tμ e

−yt−zt2+
m∑
j=1

x j t s

dt =
∞∑
n=0

2n/2(μ + 1)n
n! H (m)

n ({x})m1 )D−μ−n−1

(√
y

2z

)

(7.13)
where D−ν(x) is parabolic cylinder function [20].
Set m = 2, x1 = 2x and x2 = −1 in (7.10) to get

�α
μ,ν(x, y, z, 2x,−1) = �α

μ,ν(x, y − 2x, z + 1) =
∞∑
n=0

1

n! Hn(x)�α
μ,ν(x, y, z)

(7.14)
More generally, for m = 3 in (7.10) yields

�α
μ,ν(x, y, z, x1, x2, x3) =

∞∑
n=0

1

n! H
(3)
n (x1, x2, x3)�

α
μ,ν(x, y, z) (7.15)

where H (3)
n (x1, x2, x3) is defined by (7.3).

For m = 2, x1 = 2x + 2yξ and x2 = −ξ − 1, (7.10) gives

∞∑
n=0

1

n! hn(x, y; ξ)�α
μ,ν(x, y, z) = �α

μ,ν(x, y − 2x − 2yξ, z + ξ 2 + 1) (7.16)

where hn(x, y; ξ) is defined by (7.4) (or its equivalent form (7.5)).
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Nonlinear Dynamical Model for DNA

Haci Mehmet Baskonus and Carlo Cattani

Abstract This chapter deals with a nonlinear dynamical system arising in the anal-
ysis of the double-chain model in deoxyribonucleic acid (DNA). Bernoulli sub-
equation function method and modified exp (−�(ξ))-expansion function method
to obtain some novel dynamical structures to the nonlinear dynamical system are
used. We construct some new exponential, hyperbolic and complex periodic wave
solutions to this model. Under some suitable values of parameters, we plot the 2D
and 3D graphics of the solutions obtained in this study. All the solutions found in
this study satisfy the nonlinear dynamical system. Moreover, these solutions can be
used to explain some new significant physical meanings of the nonlinear dynamical
model for DNA.

Keywords The new double-chain model
Bernoulli sub-equation function method · Exponential · Rational
Complex function solutions

1 Introduction

Nonlinear partial differential equations and nonlinear mathematical models are play-
ing an important role in many phenomena arising in health applications such as
biology, biosciences, biochemical, physics, water sciences, fluid mechanics, hydro-
dynamics, nonlinear dynamical system, plasma physics [1–11]. The significance of
differential equations and inequalities in the investigation of mathematical equations
has been almost completely studied especially during recent years.
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Many differential inequalities such as the delay integral inequality, the differential
inequalities, the impulsive differential inequalities, and the Halanay inequalities and
so on [12–19] have been constructed. However, the linear differential inequalities are
not sufficient to describe nonlinear partial differential equations alongwith fractional
differential equations. Therefore, new nonlinear inequalities have been developed by
Xu and Wang [20]. These new mathematical inequalities have been used to discover
new significant properties of real-world problems. For example, the socio-territorial
inequalities have been investigated by Jorge Blanco in the field of Geography [21].
Yuhua Sun has studied on nonnegative solutions to the system of differential inequal-
ities onmanifolds which geodesically complete connected non-compact Riemannian
manifold [22]. Bin Qian has presented a study that they obtained differential Har-
nack inequalities for the positive solutions of the Schrödinger equation associated
with subelliptic operator with potential under the generalized curvature-dimension
inequality recently introduced by Baudoin and Garofalo [23]. Moreover, they have
derived the corresponding parabolic Harnack inequality along with the Perelman-
type entropy. Lyapunov-type inequalities for partial differential equations have been
submitted by de Nápoli and Pinasco [24].

When it comes to the real-world problems, nonlinear problems are usually related
to phenomena having a strong impact and consequences on human beings. For exam-
ple, the tsunami by earthquakes in 2011 in Japan, mostly related to short-distance
seismic activities (earthquakes from Mw 6.9 on 8.8) [25], is one of them. Moreover,
a study handling with first evidences of natural disasters which is namely “First Evi-
dence of Aleo-Tsunami Deposits of A Major Historic Event in Ecuador” presented
by Chunga and Toulkeridis has been submitted to the literature [25].

Another important real-world problem is the correct interpretation of the hidden
properties of the deoxyribonucleic acid (DNA). In recent years, Kong et al. [26],
Alka et al. [27] and Abdelrahman et al. [28] have introduced that a new double-chain
DNA consisting two long elastic homogeneous strands physical mathematical model
for a two polynucleotide chains. In this model, DNA is made of connected with each
other by an elastic membrane representing the hydrogen bonds between the base pair
of the two chains.

In this chapter, we will study the nonlinear dynamical model of DNA discovered
in [26–28]. Then by using the analytical methods of Bernoulli sub-equation function
method (BSEFM) and modified exp (−�(ξ))-expansion function method, we will
find some new solutions of this model. These solutions depend on some parameter
so that we will give, for the first time, a deep analysis of the parametric dependence
and show the biological consequences of some thresholds on parameters.

2 Preliminary Remarks on DNA

DNA is one the most complicated and comprehensive molecules in life. Many dif-
ferent models of DNA in the general properties of the DNA dynamics are very
complicated because there are many various items in everyone [26].
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First experimental evidence of resonant microwave absorption in DNA was stud-
ied by Webb and Booth [29]. After then, microwave absorption of DNA has been
investigated by Swicord and Davis [30, 31]. However, Gabriel et al. [32], Yakushe-
vich [33], Bixon et al. [34], Henderson [35] and Bruinsma [36] have mentioned that
such results and findings are still controversial. As a result,many different approaches
have been proposed to express of the model of DNA. Ludmila V. Yakushevich has
comprehensively studied on nonlinear properties of physics ofDNA [33]. Somemod-
els of DNA have been based on linear model [37–39] and other models expressed
by using nonlinear models [40–42].

Muto et al. have firstly submitted the nonlinear mathematical model of the inter-
action of DNA with an external microwave field which was proposed as

utt � C2uzz − (
ε
/
C2

)
uzztt + δ

(
u2z

)
z
,

where u(z, t) describes longitudinal displacements in DNA [40, 41]. After then, they
have developed this model by adding two extra terms as

utt � C2uzz − (
ε
/
C2

)
uzztt + δ

(
u2z

)
z − Aut + F(z) cos(�t),

where u(z, t) is the longitudinal displacement, C is the sound wave velocity, and
ε, δ are the dispersive and anharmonic parameters, respectively [33, 40, 41].

Later, Zhang [42] has improved the model of Muto et al. He took into account
both longitudinal and torsional degrees of freedom. Consequently, he proposed two
coupled equations:

utt � C2uzz − (
ε
/
C2

)
uzztt + δ

(
u2z

)
z + χ1

(
ϕ2
z

)
z + χ2

(
ϕzuz

)
z,

ϕt t � v2ϕzz − w2
0ϕ + sχ2

(
u2z

)
z + 4sχ1

(
ϕzuz

)
z,

where u(z, t), ϕ(z, t) are the longitudinal and rotational displacements, respectively;
C andν are the torsional and longitudinal acoustic velocities; ε and δ are the dispersive
and anharmonic parameters;w0 and s are the frequency parameter and the parameter
for dimensional transform; χ1 and χ2 are the coupling parameters.

The simplest model that describes the motions in this range of the timescale
has been presented by Barkley and Zimm [43]. They have settled the theory of
twisting andbendingof chainmacromolecules alongwith analysis of thefluorescence
depolarization of DNA [43]. Many authors have been applied different methods for
obtaining soliton and travellingwave solutions to thesemodels. Especially,Mahmoud
A. E. Abdelrahman, Emad H. M. Zahran and Mostafa M. A. Khater have applied the
exp(-φ(xi))-expansion method to the nonlinear dynamical system of double-chain
model in DNA [28].

In this chapter, the Bernoulli sub-equation function method (BSEFM) and modi-
fied exp (−�(ξ))-expansion function method are used to solve analytically the non-
linear dynamical system arising in a new double-chain model of DNA. This model
is based on the following nonlinear dynamical system [26–28]:
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utt − c21uxx � λ1u + γ1uv + μ1u
3 + β1uv2, (1a)

vt t − c22vxx � λ2v + γ2u
2 + μ2u

2v + β2v
3 + c0, (1b)

where

c1 � ±Y

ρ
, c2 � ± F

ρ
, λ1 � −2μ

ρσh
(c − l0), λ2 � −2μ

ρσh
,

γ1 � 2γ2 � 2
√
2μl0

ρσh2
, μ1 � μ2, β1 � β2 � 4μl0

ρσh3
, c0 �

√
2μ(h − l0)

ρσ
.

Here, ρ, σ,Y and F denote, respectively, the mass density, the area of transverse
cross-section, the Young’s modulus and tension density of each strand; μ is the
rigidity of the elastic membrance; h is the distance between the two strands, and l0
is the height of the membrance in the equilibrium positive [26–28]. In the system of
Eq. (1a, b), u(x, t) is the difference of the longitudinal displacements of the bottom
and top strands while v(x, t) is the difference of the transverse displacements of the
bottom and top strands [26–28]. In the nonlinear dynamics of DNA Eq. (1a, b), this
model consists of two long elastic homogeneous strands connected with each other
by an elastic membrane for longitudinal and transverse motions [27]. It is also in the
framework of the microscopic model of Peyrard and Bishop [27].

3 General Structures of Methods

3.1 Bernoulli Sub-equation Function Method (BSEFM)

In this section, an approach to the nonlinear partial differential equations (NLPDE)
will be given. In order to apply this method to the NLPDE, we consider the following
steps [44].

Step 1. We consider the partial differential equation in two variables such as x, t and
a dependent variable u

P(ux , ut , uxt , uxx , . . .) � 0, (2)

and take the wave transformation

u(x, t) � U (ξ), ξ � kx + wt, (3)

where k �� 0, w �� 0. Substituting Eq. (3) in Eq. (2), it gives us the following
nonlinear ordinary differential equation:

N
(
U,U ′,U ′′,U ′′′, . . .

) � 0. (4)
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Step 2. Take trial equation as follows:

U (ξ) �
n∑

i�0

ai F
i (ξ) � a0 + a1F(ξ) + a2F

2(ξ) + · · · + anF
n(ξ), (5)

being F(ξ) the solution of the following Bernoulli differential equation

F ′(ξ) � αF(ξ) + βFM(ξ), (6)

where α �� 0, β �� 0, M ∈ R − {0, 1, 2}. Substituting in Eq. (5), we can obtain
the following polynomial equation �(F) as a function of F :

�(F(ξ)) � ρs F(ξ)s + · · · + ρ1F(ξ) + ρ0 � 0. (7)

According to the balance principle, we can get the relationship between n and M .

Step 3. Let us consider the coefficients of �(F(ξ)) all be zero, and we will obtain
an algebraic equations system:

ρi � 0, i � 0, . . . , s. (8)

By solving this system, we obtain a0, a1, a2, . . . , an .

Step 4. When we solve the nonlinear Bernoulli Eq. (6) by knownmethods, we obtain
following two situations according to α and β:

F(ξ) �
[−β

α
+

c

eα(M−1)ξ

] 1
1−M

, α �� β, (9)

F(ξ) �
⎡

⎣
(c − 1) + (c + 1) tanh

(
α(1−M)ξ

2

)

1 − tanh
(

α(1−M)ξ

2

)

⎤

⎦

1
1−M

, α � β, (10)

where c ∈ R.By using a complete discrimination system for polynomials to classify
the roots of F(ξ), we solve Eq. (8) with the help of some computational software
and classify the exact solutions of Eq. (2). For a better interpretation of the obtained
results, we can plot two- and three-dimensional surfaces of solutions by choosing
suitable parameter.
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3.2 Modified exp(−Ω(ξ))-Expansion Function Method
(MEFM)

The general properties of MEFM have been proposed in this section. MEFM is
based on the exp(−�(ξ))-expansion function method [45–55]. In order to apply this
method to the nonlinear partial differential equations, we consider it as following:

P(u, ux , ut , uxx , utt , . . .) � 0, (11)

where u � u(x, t) is an unknown function, P is a polynomial in u(x, t), and its
derivative and the subscripts stand for the partial derivatives.

Step 1: Let us consider the following travelling wave transformation defined by

u(x, t) � U (ξ), ξ � kx − ct. (12)

Using Eq. (12), we convert Eq. (11) into nonlinear ordinary differential equation
(NODE) defined by

NODE
(
U,U ′,U ′′,U ′′′, . . .

) � 0. (13)

where NODE is a polynomial of U , and its derivatives and the superscripts indicate
the ordinary derivatives with respect to ξ .

Step 2: Suppose the travelling wave solution of Eq. (13) can be rewritten as follows:

U (ξ) �
∑N

i�0 Ai
[
exp(−�(ξ))

]i

∑M
j�0 Bj

[
exp(−�(ξ))

] j � A0 + A1 exp(−�) + · · · + AN exp(N(−�))

B0 + B1 exp(−�) + · · · + BM exp(M(−�))
,

(14)

where Ai , Bj , (0 ≤ i ≤ N , 0 ≤ j ≤ M) are constants to be determined later, such
that AN �� 0, BM �� 0, and � � �(ξ) verify the following ordinary differential
equation

Ω ′(ξ) � exp(−�(ξ)) + μ exp(�(ξ)) + λ. (15)

Equation (15) has the following solution families [55, 56]:
Family 1: When μ �� 0, λ2 − 4μ > 0,

�(ξ) � ln

(
−√

λ2 − 4μ

2μ
tanh

(√
λ2 − 4μ

2
(ξ + c1)

)

− λ

2μ

)

. (16)

Family 2: When μ �� 0, λ2 − 4μ < 0,
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�(ξ) � ln

(√−λ2 + 4μ

2μ
tan

(√−λ2 + 4μ

2
(ξ + c1)

)

− λ

2μ

)

. (17)

Family 3: When μ � 0, λ �� 0, and λ2 − 4μ > 0,

�(ξ) � − ln

(
λ

exp(λ(ξ + c1)) − 1

)
. (18)

Family 4: When μ �� 0, λ �� 0, and λ2 − 4μ � 0,

�(ξ) � ln

(
−2λ(ξ + E) + 4

λ2(ξ + c1)

)
. (19)

Family 5: When μ � 0, λ � 0, and λ2 − 4μ � 0

�(ξ) � ln(ξ + c1), (20)

being A0, A1, A2, . . . AN , B0, B1, B2, . . . BM , c1, λ, μ constants to be determined
later. The positive integer N and M can be determined by considering the homoge-
neous balancebetween thehighest order derivatives and thenonlinear termsoccurring
in (13).

Step 3: Setting (14) and (15) in (13), we get a polynomial of exp(−�(ξ)).

We equate all the coefficients of same power of exp(−�(ξ)) to zero.
This procedure yields a system of equations that can be solved to find
A0, A1, A2, . . . AN , B0, B1, B2, . . . BM , c1, λ, μ. Substituting these values in (13),
the general solutions of (13) complete the determination of the solution of (12).

4 Implementations of the Methods

4.1 Implementation of BSEFM

In this section, we obtain some new complex and exponential function solutions to
the DNA model by using BSEFM.

Application
Firstly, we assume that v(x, t) � au(x, t) + b [27, 28], so that from (1) we obtain
the following nonlinear partial differential equation [26–28]:

utt − r2uxx − mu3 − nu2 − pu � 0, (21)

where
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m � κ

h3
(−2 + 4a2

)
, n � 6

√
2aκ

h2
, p � 6κ

h
− 2κ

l0
,

κ � μl0
ρσ

, c21 � Y

ρ
, b � h√

2
, F � Y. (22)

If we are looking for travelling wave solutions of (21), we have:

u(x, t) � U (ξ), ξ � kx + wt, (23)
(
w2 − k2r2

)
U ′′ − mU 3 − nU 2 − pU � 0, (24)

where k, w are real constants and not zero [26–28]. So that from (5) and (6) by the
balance principle, we get the following relationships between n and M ;

U �
n∑

i�0

ai F
i � a0 + a1F + a2F

2 + · · · + anF
n,

U ≈ Fn,

U ′ ≈ Fn+M−1,

U ′′ ≈ Fn+2M−2,

U ′′ ≈ U 3

Fn+2M−2 ≈ F3n

n + 2M − 2 � 3n,

M � n + 1. (25)

According to suitable values ofM and n, we can obtain some novel different cases
as follows:

Case 1: If we take as M � 3 and n � 2 via (25), then we can write the following
equations

U � a0 + a1F + a2F
2, (26)

U ′ � a1F
′ + 2a2FF ′ � αa1F + 2αa2F

2 + βa1F
3 + 2a2βF

4, (27)

U ′′ � αa1F
′ + 4αa2FF ′ + 3βa1F

2F ′ + 8a2βF
3F ′, (28)

where F ′ � αF + βF3, α �� 0, β �� 0. By using (26), (28) in (24), we can get
an equation including various power of F . By setting the same power of F to zero,
we can find a system of equations. By solving this system, we obtain the following
coefficients.
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Case 1.1. For α �� β, we have the following coefficients:

a0 �
√
2p√
m

, a1 � 0, α �
√
p

2
√

w2 − k2r2
, β � a2

√
m

2
√
2
√

w2 − k2r2
, n � −3

√
mp√
2

,

(29)

where m � A, n � B, p � C. Substituting (29) in (26) along with (3), we obtain
the exponential function solution to the nonlinear dynamical system of double-chain
model in DNA in the following form:

u1(x, t) �
√
2p√
m

+
a2

− a2
√
m√

2p
+ Ee

−
√
p(kx+wt)√
w2−k2r2

,

v1(x, t) � au1(x, t) + b. (30)

In the system (1), u(x, t) is the difference of the longitudinal displacements of the
bottom and top strands while v(x, t) is the difference of the transverse displacements
of the bottom and top strands [26–28]. In the nonlinear dynamics of DNA Eq. (1a,
b), describe the model which consists of two long elastic homogeneous strands
connected with each other by an elastic membrane is for longitudinal and transverse
motions [27].

Case 1.2. For α �� β, we have the following coefficients:

a0 � −i
√
pa2

2β
√

w2 − k2r2
, a1 � 0, α � −i

√
p

2
√−w2 + k2r2

,m � 8

a22

(
w2 − k2r2

)
,

n � −6iβ

a2

√
p
(
k2r2 − w2

)
. (31)

Substituting (31) in (26) along with (3), we obtain the new complex function
solution to the nonlinear dynamical system of double-chain model in DNA in the
following form:

u2(x, t) � −i
√
pa2

2β
√
k2r2 − w2

+
a2

− iβ√
p

√
4k2r2 − 4w2 + Ee

2i
√
p(kx+wt)√

4k2r2−4w2

,

v2(x, t) � au2(x, t) + b. (32)

Case 1.3. For α �� β, we have the following coefficients

a0 � i
√
pa2

2β
√
k2r2 − w2

, a1 � 0, α � i
√
p√

4k2r2 − 4w2
,m � 8β2

a22

(
w2 − k2r2

)
,

n � 6iβ

a2

√
p
(
k2r2 − w2

)
. (33)
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Considering (33) in (26) along with (3), we obtain another complex function
solution to the nonlinear dynamical system of double-chain model in DNA in the
following form:

u3(x, t) � i
√
pa2

2β
√
k2r2 − w2

+
a2

Ee
−2i

√
p(kx+wt)√

4k2r2−4w2 + iβ√
p

√
4k2r2 − 4w2

,

v3(x, t) � au3(x, t) + b. (34)

Case 2: If we take as M � 4 and n � 3 via (25), then we can write the following
equations

U � a0 + a1F + a2F
2 + a3F

3, (35)

U ′ � a1F
′ + 2a2FF ′ + 3a3F

2F ′ � αa1F + 2αa2F
2

+ βa1F
3 + 2a2βF

4 + 3a3F
2F ′, (36)

U ′′ � αa1F
′ + 4αa2FF ′ + 3βa1F

2F ′ + 8a2βF
3F ′ + 9αa3F

2F ′ + 15βa3F
4F ′,

(37)

where F ′ � αF + βF4, α �� 0, β �� 0. When we use (35), (37) in Eq. (24), we get
an equation having various power of F . By setting all the same power of F to zero,
we can find a system of equations. By solving this system, we obtain the following
coefficients.

Case 2.1. For α �� β, it can be considered that the following coefficients:

a0 � −2n

3m
, a1 � a2 � 0, a3 �

3β
√
2
(
w2 − k2r2

)

√
m

,

α � −n
√
2

9
√
m

(
w2 − k2r2

) , p � 2n2

9m
. (38)

Taking (38) in (35) alongwith (3), we obtain another exponential function solution
to the nonlinear dynamical system of double-chain model in DNA in the form

u4(x, t) � −2n

3m
+

3β
√
2w2 − 2k2r2

E
√
me

n
√
2(kx+wt)

3
√
m
√

w2−k2r2 + 9β
√
mw2−mk2r2

n
√
2

,

v4(x, t) � au4(x, t) + b. (39)
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Case 2.2. For α �� β, we have the following coefficients:

a0 � −i
√
pa3

3β
√

w2 − k2r2
, a1 � a2 � 0, α � −i

√
p√

9k2r2 − 9w2
,m � 18

a23
β2

(
w2 − k2r2

)
,

n � −9iβ

a3

√
p
(
k2r2 − w2

)
. (40)

By considering (40) in (35) along with (3), we obtain another complex function
solution to the nonlinear dynamical system of double-chain model in DNA in the
following form:

u5(x, t) � −ia3
√
p

3β
√
k2r2 − w2

+
a3

Ee
i

√
p√

k2r2−w2
(kx+wt) − iβ√

p

√
9k2r2 − 9w2

,

v5(x, t) � au5(x, t) + b. (41)

Case 2.3. For α �� β, we have the following coefficients:

a0 � i
√
pa3

3β
√−w2 + k2r2

, a1 � a2 � 0, α � i
√
p√

9k2r2 − 9w2
,m � 18

a23
β2

(
w2 − k2r2

)
,

n � 9iβ

a3

√
p
(
k2r2 − w2

)
. (42)

With the help of (42), (35) along with (3), we get another complex function
solution of the nonlinear dynamical system of double-chain model in DNA in the
form

u6(x, t) � ia3
√
p

3β
√
k2r2 − w2

+
a3

√
p

E
√
pe

−3
√
p√

k2r2−w2
(kx+wt)

+ iβ
√
9k2r2 − 9w2

,

v6(x, t) � au6(x, t) + b. (43)

Case 2.4. For α �� β, we have the following coefficients:

a0 � 9ακ
√
m − 3|ακ|√m

2m
√
2κ

, a1 � a2 � 0, β � a3
√
m√

18κ
, n � 9

(−κα
√
m + |ακ|√m

)

2
√
2κ

,

p � 9

4
α

(
ακ − 3|ακ|√m√

m

)
, (44)

where κ � w2−k2r2. Considering (44) in (35) alongwith (3), we get the exponential
function solution to the DNA model in the form
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u7(x, t) � 9ακ
√
m − 3|ακ|√m

2m
√
2κ

+
a3

Ee−3α(kx+wt) + a3
√
m

α
√
18κ

,

v7(x, t) � au7(x, t) + b, (45)

where κ � w2 − k2r2.

Case 3: If we take as M � 5 and n � 4 via (25), then we get the equations:

U � a0 + a1F + a2F
2 + a3F

3 + a4F
4, (46)

U ′ � a1F
′ + 2a2FF ′ + 3a3F

2F ′ � αa1F + 2αa2F
2 + βa1F

3 + 2a2βF
4

+ 3a3F
2F ′ + 4a4F

3F ′,
U ′′ � · · · , (47)

where F ′ � αF + βF5, α �� 0, β �� 0. When we use (46), (47) in (24), we get an
equation with various power of F . By setting all the same power of F to zero, we get
a system of equations. By solving this system, we obtain the following coefficients.

Case 3.1. For α �� β, we have the following coefficients:

a0 � −i
√

(pkr − pw)(2kr + 2w)√−mk2r2 + mw2
, a1 � a2 � 0, a3 � 0, α � −i

√
p

4
√−w2 + k2r2

,

β � a4
√
m

4
√
2w2 − 2k2r2

, n � 3i
√
mp

√
(kr − w)(kr + w)√

2
√−k2r2 + w2

. (48)

Taking (48) in (46) along with (3), we obtain the complex exponential function
solution of the nonlinear dynamical system of double-chain model in DNA in the
form

u8(x, t) � −i
√

(pkr − pw)(2kr + 2w)√−mk2r2 + mw2
+

a4

Ee
i
√
p(kx+wt)√

−w2+k2r2 + −ia4
√

(mkr−mw)(kr+w)√
−2pk2r2+2pw2

,

v8(x, t) � au8(x, t) + b. (49)

Case 3.2. For α �� β, we have the following coefficients:

a0 �
√
2
(
3i

√
mκα +

√
−m(−κ)2α2

)

m
√

κ
, a1 � a2 � a3 � 0, β � −ia4

√
m√

32κ
,

n � 3
√
2
(
iακ

√
m + |κα|√−m

)

√
κ

, p � 4α

(
−ακ +

3i |κα|√−m√
m

)
, (50)
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where κ � k2r2 − w2. If we consider (50) in (46) along with (3), we obtain the
complex exponential function solution of the nonlinear dynamical system of double-
chain model in DNA as follows:

u9(x, t) �
√
2
(
3iκα

√
m + |ακ|√−m

)

m
√

κ
+

a4

Ee−4α(kx+wt) + ia4
√
m

α
√
32κ

,

v9(x, t) � au9(x, t) + b, (51)

where κ � w2 − k2r2.

Case 3.3. For α �� β, we have the following coefficients:

a0 � −2n

3m
, a1 � a2 � 0, a3 � 0, α � n

6
√
2m

(
w2 − k2r2

) , β � −a4m

4
√
2m

(
w2 − k2r2

) ,

p � 2n2

9m
. (52)

Taking (52) in (46) with (3), we obtain the exponential function solution of the
DNA model in the form

u10(x, t) � −2n

3m
+

a4

Ee
−√

2n(kx+wt)

3
√

mw2−mk2r2 + 3ma4
2n

,

v10(x, t) � au10(x, t) + b. (53)

4.2 Implementation of MEFM

If we reconsider (14) and (15) along with the help of balance principle between U ′′
and U 3, we obtain the following relationship between M and N ;

N � M + 1. (54)

This relationship gives us some new exact solutions for the DNA model in (1a)
as follows:

Case 1: If we choose M � 1 and N � 2, we can write

U � A0 + A1 exp(−�) + A2 exp(2(−�))

B0 + B1 exp(−�)
� ϒ

�
, (55)

and

U ′ � ϒ ′� − � ′ϒ
�2

, (56)
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U ′′ � ϒ ′′�3 − �2ϒ ′� ′ − (� ′′ϒ + � ′ϒ ′)�2 + 2(� ′)2ϒ�

�4
,

..., (57)

where A2 �� 0 and B1 �� 0. When we use (55) and (57) in (24), we get an algebraic
equation for the coefficients of polynomial of exp(−�(ξ)).By solving, this algebraic
equation yields the following coefficients.

Case 1.1:

A0 � λ

4A1

(
A2
1 − 2pB2

1

m

)
, A2 � A1

λ
, B0 � λB1

6

(
3 +

2nB1

mA1

)
,

μ � λ2

4

(
1 − 2pB2

1

mA2
1

)
, r � −

i
√
3mA1 + nB1 −

√
mA2

1 − 2w2λ2B2
1

√
2
√
k2λ2B2

1

(
3mA1 + nB1

) . (58)

Substituting (58) in (55) along with (16), we obtain the hyperbolic function solu-
tion of the nonlinear dynamical system of double-chain model in DNA in the form

u11(x, t) � 3p sec h2( f1(x, t))
(−mA2

1 + 2pB2
1

)

[√
mA1 +

√
2pB1 tanh( f1(x, t))

]
[A1 f2(x, t) + 2B1 f3(x, t)]

,

v11(x, t) � au11(x, t) + b, (59)

where f1(x, t) � λB1
√
p(E+kx+wt)√
2mA1

, f2(x, t) � 2n
√
m +

3m
√
2p tanh( f1(x, t)), f3(x, t) � 3p

√
m + n

√
2p tanh( f1(x, t)).

Case 1.2:

A2 � −(λκ − 2μ)A0 + κμA1

2μ2
, B1 � −B0

2μA0
(κA0 − 2μA1),

m � 1

A2
0

(
k2r2 − w2

)
B2
0 (λ(κ − 2λ) + 2μ), p � −(

k2r2 − w2
)(

λ2 − 4μ
)
,

n � −3

2A0

B0

(
k2r2 − w2)(λ(κ − 2λ) + 4μ), (60)

where κ � λ +
√

λ2 − 4μ. When we substitute (60) into (55) along with (16), we
obtain the soliton solution to the nonlinear dynamical system of double-chain model
in DNA in the form:

u12(x, t) �
√

λ2 − 4μA0

(
−1 + tanh

(
1
2 (E + kx + wt)

√
λ2 − 4μ

))

B0

(
λ +

√
λ2 − 4μ tanh

(
1
2 (E + kx + wt)

√
λ2 − 4μ

)) ,

v12(x, t) � au12(x, t) + b. (61)
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Case 1.3:

A1 � 1

4

(
λA2 − κ

√
A2

)
, B1 � −3λA2B0 + κB0

√
A2

4(A0 − μA2)
,

m � 1

4A2

(A0 − μA2)
−2

(
k2r2 − w2

)(−24A0 +
(−5λ2 + 8μ

)
A2 + 3λκB2

0

√
A2

)
,

n � −3

2A2(−A0 + μA2)
B0

(
k2r2 − w2

)(
8A0 + λ2A2 − λκ

√
A2

)
,

p � − 1

4A2

(
k2r2 − w2)

(
24A0 +

(
λ2 + 8μ

)
A2 − 3λκ

√
A2

)
, (62)

where κ �
√
48A0 +

(
λ2 − 16μ

)
A2. If we consider (62) in (55) along with (16), we

obtain the new hyperbolic and rational function solution to the nonlinear dynamical
system of double-chain model in DNA in the form:

u13(x, t) � 2

B0

(
A0 +

μ

2 f2(x, t)
2

(
−√

A2κ f2(x, t) − A2
(
λ2 − 8μ + f2(x, t)

)))

×
(

2 +
μ

(
3λA2 − √

A2κ
)

(A0 − μA2) f2(x, t)

)−1

,

v13(x, t) �au13(x, t) + b, (63)

where f1(x, t) � tanh
(
1
2 (E + kx + wt)

√
λ2 − 4μ

)
, κ �

√
48A0 +

(
λ2 − 16μ

)
A2, f2(x, t) � λ +

√
λ2 − 4μ f1(x, t).

Case 1.4:

A1 � 1

6

(
−λA1 +

2A2
1

A2
+ 2A2

)
, B1 � 6A2(−A1 + λA2)B0

−2A2
1 + λA1A2 + 4μA2

2

,

m � −72
(
k2r2 − w2

)
(A1 − λA2)B

2
0

(−2A2
1 + λA1A2 + 4μA2

2

)−2
,

n � −6

A2

(
k2r2 − w2

)(
4A2

1 − 8λA1A2 +
(
3λ2 + 8μ

)
A2
2

)
B0

(−2A2
1 + λA1A2 + 4μA2

2

)−1
,

p � −A−2
2

(
k2r2 − w2)(2A2

1 − 4λA1A2 +
(
λ2 + 4μ

)
A2
2

)
. (64)

Substituting (64) in (55) along with (16), we obtain the rational function solution
to the DNA model in the form:

u14(x, t) �
A2
1

A2
+ μA2

(
1 + 12μ

f 21 (x,t)

)
+ A1

(
− λ

2 − 6μ
f1(x,t)

)

3B0

(
1 + 12μA2(A1−λA2)

(−2A2
1+λA1A2+4μA2

2) f1(x,t)

) ,

v14(x, t) � au14(x, t) + b, (65)
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where f1(x, t) � λ +
√

λ2 − 4μ tanh
(
1
2 (E + kx + wt)

√
λ2 − 4μ

)
.

Case 1.5:

A1 � 1

4
(λA2 − �), B1 � −(3λA2 + �)B0

4(A0 − μA2)
,

m � −1

4A2(A0 − μA2)
2

(
k2r2 − w2

)(
24A0 +

(
5λ2 − 8μ

)
A2 + 3λ�

)
B2
0 ,

n � −3

2A2

(
k2r2 − w2

)(
8A0 + λ2A2 + λ�

)
B0(−A0 + μA2)

−1,

p � −1

4
A−1
2

(
k2r2 − w2

)(
24A0 +

(
λ2 + 8μ

)
A2 + 3λ�

)
, (66)

where� � √
A2

√
48A0 +

(
λ2 − 16μ

)
A2. Considering (66) in (55) along with (16),

we obtain the following rational function solution to the nonlinear dynamical system
of double-chain model in DNA in the form:

u15(x, t) � A0 +
μ

2

(
� f1(x, t) − A2

(
λ2 − 8μ + λ( f1(x, t) − λ)

))
f −2
1 (x, t)

B0 +
μ(3λA2+�)B0

2(A0−μA2) f1(x,t)

,

v15(x, t) � au15(x, t) + b, (67)

where � � √
A2

√
48A0 +

(
λ2 − 16μ

)
A2, f1(x, t) � λ +

√
λ2 − 4μ tanh

(
1
2 (E + kx + wt)

√
λ2 − 4μ

)
.

5 A Biological Perspective Point of View on the Obtained
Results

Aswementioned in section “PreliminaryRemarks onDNA”, u(x, t) is the difference
of the longitudinal displacements of the bottom and top strands while v(x, t) is the
difference of the transverse displacements of the bottom and top strands [26–28]. In
this chapter, we have found several interesting solutions to the nonlinear dynamics
of DNA. This model consists of two long elastic homogeneous strands connected
with each other by an elastic membrane. In this model, we study the longitudinal and
transverse motions [27]. Therefore, it is estimated that the u1, u7, u11, u12, u14, and
u15 solutions are new positions of longitudinal displacements of strands. Moreover,
we can observe the corresponding simulations in Figs. 1, 7, 8, 11, 14 and 15. We also
found that the u2, u3, u5, u6, u8 and u9 solutions are complex so that we can observe
new positions of two long elastic homogeneous strands. As can be seen also from
simulations in Figs. 2, 3, 5, 6, 8 and 9, it is also predicted that the u4 and u10 solutions
along with Figs. 4 and 19 are almost basic and smooth longitudinal displacements
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Fig. 1 3D and 2D surfaces of the exponential solution (30) by considering the values p � 2,m �
5, E � 1, a2 � 0.6, w � 3, r � 0.5, k � 0.7 for 3D graphics and t � 0.5 for 2D surfaces

Fig. 2 3D surfaces of the complex exponential function solution (32) by considering the values
p � 1, E � 2, a2 � 3, w � 0.2, r � 3, k � 0.1, β � 5,−12 < x < 12, 0 < t < 15.
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Fig. 3 2D surfaces of the complex exponential function solution (32) by considering the values
p � 1, E � 2, a2 � 3, w � 0.2, r � 3, k � 0.1, β � 5, t � 0.2,−12 < x < 12.

of two long elastic homogeneous strands. When it comes to the u13 solution with
Fig. 13, it is made inferences that the longitudinal displacements of two long elastic
homogeneous strands are very strict and, even, break off both strands each other.
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Fig. 4 3D surfaces of the complex exponential function solution (34) by considering the values
p � 1, E � 2, a2 � 3, w � 0.2, r � 3, k � 0.1, β � 5,−12 < x < 12, 0 < t < 15.
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Fig. 5 2D surfaces of the complex exponential function solution (34) by considering the values
p � 1, E � 2, a2 � 3, w � 0.2, r � 3, k � 0.1, β � 5, t � 0.2,−120 < x < 120.
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Fig. 6 3D and 2D surfaces of the exponential solution (39) by considering the values n � 4,m �
0.2, β � 0.3, E � 4, w � 3, r � 0.5, k � 0.7,−55 < x < 55, 0 < t < 1 and t � 0.8 for 2D
surfaces
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Fig. 7 3D surfaces of the complex exponential function solution (41) by considering the values
p � 1, E � 2, a2 � 3, w � 0.2, r � 3, k � 0.1, β � 5,−12 < x < 12, 0 < t < 15.
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Fig. 8 2D surfaces of the complex exponential function solution (41) by considering the values
p � 1, E � 2, a2 � 3, w � 0.2, r � 3, k � 0.1, β � 5, t � 0.2,−12 < x < 12.

Fig. 9 3D surfaces of the complex exponential function solution (43) by considering the values
p � 1, E � 2, a3 � 3, w � 0.2, r � 3, k � 0.1, β � 5,−12 < x < 12, 0 < t < 15.
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6 Discussions, Remarks and Conclusions

Two powerful mathematical and analytical tools described as Bernoulli sub-equation
function method and modified exp (−�(ξ))-expansion function method have been
applied to the nonlinear dynamical system arising in a new double-chain model in
DNA.Wehave obtained several hundred coefficientswhich are giving novel solutions
to the model considered. By choosing several cases of them, we have found some
new exponential, rational and complex function solutions to the nonlinear dynamical
system arising in a new double-chain model in DNA. It has been observed that all
solutions fulfil (21) obtained by considering suitable transformations from (1a, b).

When we compare our results obtained by using two methods, first
of all, we can start with BSEFM. We can say that the solutions of
u2(x, t), u3(x, t), u5(x, t), u6(x, t), u8(x, t) and u9(x, t) are new complex expo-
nential rational function solutions to the nonlinear dynamical system arising in a
new double-chain model in DNA comparing with the results in [28]. The solutions
of u1(x, t), u4(x, t), u7(x, t) and u10(x, t) are exponential rational function solu-
tions to the nonlinear dynamical system arising in a new double-chainmodel inDNA.
Furthermore, if we can consider more values of M and N , of course, we can find
more different solutions to the model considered in this manuscript.

Secondly,when it comes to themodified exp (−�(ξ))-expansion functionmethod,
firstly, this method is based on extended version of the exp (−�(ξ))-expansion
function method [28]. Therefore, it has one more parameter like M in Eq. (14). This
gives muchmore coefficient for the system obtained by putting necessary derivations
of the solution form being Eq. (14) into Eq. (24). For example, if we choose M � 2
and N � 3, we can write as follows:

U � A0 + A1 exp(−�) + A2 exp(2(−�)) + A3 exp(3(−�))

B0 + B1 exp(−�) + B2 exp(−2�)
� ϒ

�
, (68)

and

U ′ � ϒ ′� − � ′ϒ
�2

, (69)

U ′′ � ϒ ′′�3 − �2ϒ ′� ′ − (� ′′ϒ + � ′ϒ ′)�2 + 2(� ′)2ϒ�

�4
,

..., (70)

where A3 �� 0 and B2 �� 0. When we use (68) and (70) in (24), we get an alge-
braic equation from the coefficients of polynomial of exp(−�(ξ)). By solving this
algebraic equation, we can obtain much more different solutions to the nonlinear
dynamical system arising in a new double-chain model in DNA. This parameter
M is one of the most fundamental properties of MEFM when we reconsider exp
(−�(ξ))-expansion function method.



Nonlinear Dynamical Model for DNA 135

Thirdly, comparing with the results found by Mahmoud A. E. Abdelrah-
man et al. in [28], they have gained some exponential solutions to the model
considered in this chapter. However, the hyperbolic function solutions such as
u11(x, t), u12(x, t), u13(x, t), u14(x, t) and u15(x, t) found by MEFM in this
chapter are fully different and new. Comparing the results obtained by the two meth-
ods, the solutions from u1 to u10 obtained by using IBSEFM are exponential and
complex function solutions including new replacement position of longitudinal dis-
placements of two long elastic homogeneous strands. On the other hand, the solutions
obtained with the help of MEFM are hyperbolic and complex function solutions to
the DNA model.

Consequently, as can be seen on Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19 and 20, BSEFM and MEFM are a powerful and reliable tools for
obtaining novel soliton hyperbolic and complex function solutions of such systems.
Therefore, we think that these methods can also be conducted to other nonlinear
evaluation equations and inequalities.

-100 -50 50 100
x

-1.0

-0.5
-100 -50 50 100

x

-0.5

0.5

Im[u] Re[u]

Fig. 10 2D surfaces of the complex exponential function solution (43) by considering the values
p � 1, E � 2, a3 � 3, w � 0.2, r � 3, k � 0.1, β � 5, t � 0.2,−120 < x < 120.
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Fig. 11 3Dand2Dsurfaces of the exponential solution (45) by considering the valuesα � 0.1,m �
0.2, a3 � 0.3, E � 0.4, w � 0.6, r � 0.5, k � 0.7,−15 < x < 15, 0 < t < 0.1 and t � 0.04 for
2D surfaces
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Fig. 12 3D and 2D surfaces of the exponential solution (49) by considering the values p � 1,m �
2, k � 3, E � 5, w � 15, r � 4, a4 � 7,−25 < x < 25, 0 < t < 1 and t � 0.001 for 2D
surfaces

Fig. 13 3D surfaces of the complex exponential function solution (51) by considering the values
m � 9, E � 0.2, a4 � 0.3, w � 0.04, r � 3, k � 2, α � 0.6,−12 < x < 12,−5 < t < 5.
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Fig. 14 2D surfaces of the complex exponential function solution (51) by considering the values
m � 9, E � 0.2, a4 � 0.3, w � 0.04, r � 3, k � 2, α � 0.6, t � 4,−12 < x < 12.
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Fig. 15 3D and 2D surfaces of the exponential solution (53) by considering the valuesm � 1, E �
2, a4 � 3, w � 8, r � 2, k � 0.1, n � 5,−12 < x < 12,−15 < t < 15. and t � 0.71 and
−235 < x < 235 for 2D surfaces
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Fig. 16 3D and 2D surfaces of the exponential solution (59) by considering the valuesm � 5, n �
3, p � 2, k � 4, E � 1, A1 � 0.6, w � 3, B1 � 0.5, λ � 0.7,−5 < x < 3, 0 < t < 1 for 3D
graphics and t � 0.01 for 2D surfaces
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Fig. 17 3D and 2D surfaces of the exponential solution (61) by considering the values λ � 1, μ �
−2, A0 � 3, k � 4, w � 5, E � 1, A1 � 6, B0 � 7,−2 < x < 1, 0 < t < 1 for 3D graphics and
t � 0.4 for 2D surfaces
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Fig. 18 3D and 2D surfaces of the exponential solution (63) by considering the values λ � 1, μ �
−2, A0 � 3, k � 4, w � 5, E � 1, A1 � 6, B0 � 7, A2 � 4,−2 < x < 1, 0 < t < 0.3 for 3D
graphics and t � 0.5 for 2D surfaces
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Fig. 19 3D and 2D surfaces of the exponential solution (65) by considering the values λ � 1, μ �
−2, A0 � 3, k � 4, w � 5, E � 1, A1 � 6, B0 � 7, A2 � 4,−2 < x < 1, 0 < t < 0.3 for 3D
graphics and t � 0.5 for 2D surfaces
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Fig. 20 3D and 2D surfaces of the exponential solution (67) by considering the values λ � 1, μ �
−2, A0 � 3, k � 4, w � 5, E � 1, B0 � −7, A2 � 4,−3 < x < 3, 0 < t < 0.3 for 3D graphics
and t � 0.08 for 2D surfaces
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A Variety of Nonlinear Retarded Integral
Inequalities of Gronwall Type and Their
Applications

A. A. El-Deeb

1 Introduction

Integral inequalities that provide explicit bounds on unknown functions have proved
to be useful in the study of qualitative properties of the solutions of differential,
integral, and integro-differential equations. The Gronwall inequality [1] states that
if f and u are real-valued nonnegative continuous functions defined on I = [0,∞),
with a positive constant u0, then

u(t) ≤ u0 +
∫ t

0
f (s)u(s)ds,∀t ∈ I , (1.1)

implies

u(t) ≤ u0 exp

(∫ t

0
f (s)ds

)
,∀t ∈ I .

As a generalization of (1.1), Bellman [2] proved that: If u, f, a ∈ C(I , I) and a
is a nondecreasing, then the inequality

u(t) ≤ a(t) +
∫ t

0
f (s)u(s)ds,∀t ∈ I , (1.2)

implies

u(t) ≤ a(t) exp

(∫ t

0
f (s)ds

)
,∀t ∈ I .
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Because of its fundamental importance, over the years, many generalizations and
analogous results of Gronwall–Bellman inequality have been established, such as
[3–13].

A fairly general linear version of the Gronwall–Bellman inequality established
by Pachpatte [14] is given in the following theorem:

Theorem 1.1 Let u, f and g be nonnegative continuous functions defined on I , for
which the inequality

u(t) ≤ u0 +
∫ t

0
f (s)u(s)ds +

∫ t

0
f (s)

(∫ s

0
g(σ )u(σ )dσ

)
ds, t ∈ I ,

holds, where u0 is a nonnegative constant. Then

u(t) ≤ u0

[
1 +

∫ t

0
f (s) exp

( ∫ s

0
[ f (σ ) + g(σ )]dσ

)
ds

]
, t ∈ I .

Remark 1.1 It is interesting to note that, in the special case when g(t) = 0, the above
inequality reduces to Bellman’s inequality (1.1).

In the following two theorems, we present some useful generalizations of Theorem
1.1 given by Pachpatte [15–17].

Theorem 1.2 Let u, f , g, h and p be nonnegative continuous functions defined on
I , and u0 be a nonnegative constant.

(1) If the inequality

u(t) ≤ u0 +
∫ t

0
[ f (s)u(s) + p(s)]ds +

∫ t

0
f (s)

(∫ s

0
g(σ )u(σ )dσ

)
ds, (1.3)

holds for t ∈ I , then

u(t) ≤ u0 +
∫ t

0

[
p(s) + f (s)

{
u0 exp

(∫ s

0
[ f (σ ) + g(σ )]dσ

)

+
∫ s

0
p(σ ) exp

(∫ s

σ

[ f (τ ) + g(τ )]dτ

)
dσ

}]
ds,

for t ∈ I .
(2) If the inequality

u(t) ≤ u0 +
∫ t

0
f (s)u(s)ds +

∫ t

0
f (s)

(∫ s

0
[g(σ )u(σ ) + p(t)]dσ

)
ds,
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holds for t ∈ I , then

u(t) ≤ u0 +
∫ t

0
f (s)

{
u0 exp

( ∫ s

0
[ f (σ ) + g(σ )]dσ

)

+
∫ t

0
p(σ ) exp

( ∫ s

σ

[ f (τ ) + g(τ )]dτ

)
dσ

}
ds,

for t ∈ I .
(3) If the inequality

u(t) ≤ u0 +
∫ t

0
f (s)u(s)ds +

∫ t

0
g(s)

(
u(s) +

∫ s

0
h(σ )u(σ )dσ

)
ds,

holds for t ∈ I , then

u(t) ≤ u0

[
exp

( ∫ t

0
f (σ )dσ

)
+

∫ t

0
g(s)

× exp

( ∫ s

0
[ f (σ ) + g(σ ) + h(σ )]dσ

)
exp

( ∫ t

s
f (σ )dσ

)
ds

]
,

for t ∈ I .
(4) If the inequality

u(t) ≤ h(t) + p(t)

[ ∫ t

0
f (s)u(s)ds +

∫ t

0
f (s)p(s)

(∫ s

0
g(σ )u(σ )dσ

)
ds

]
,

holds for t ∈ I , then

u(t) ≤ h(t) + p(t)

[ ∫ t

0
f (s)

{
h(s) + p(s)

∫ s

0
h(σ )[ f (σ ) + g(σ )]

× exp

( ∫ s

σ

p(τ )[ f (τ ) + g(τ )]dτ

)
dσ

}
ds

]
,

for t ∈ I .

In some certain problems, the bounds obtained by the inequalities mentioned
above are not directly applicable, and it is desirable to prove some new integral
inequalities that will be equally important in order to achieve a diversity of desired
goals. In the present chapter, we prove the retarded version of Bellman and Pachpatte-
like inequalities mentioned above. We introduce some applications of some of our
inequalities to study the qualitative properties of nonlinear retarded differential, inte-
gral, and integro-differential equations.

Throughout this chapter, unless otherwise stated, all the functions which appear
in the inequalities are assumed to be real-valued in their domains of definitions. R
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denotes the set of real numbers, I = [0,∞),R+ = (0,∞), I1 = [a, b],R1 = [1,∞)

and C(I , I) denotes the set of all nonnegative real-valued continuous functions from
I into I and C1(I , I) denotes the set of all nonnegative real-valued continuously
differentiable functions from I into I . The ordinary first-order derivative of a function
u defined for t ∈ R is denoted by u′ and u̇ or du

dt , and the higher-order derivatives are
denoted in the usual way. The notations, definitions, and symbols used throughout
this thesis are standard and explained if necessary at appropriate places.

2 Nonlinear Retarded Integral Inequalities

We prove the following useful nonlinear retarded generalization of Gronwall–
Bellman’s inequality. The results in this section are adapted from [5, 18].

Theorem 2.1 Let u, g, h ∈ C(I1,R+), and f ∈ C(I1,R+), α ∈ C1(I1, I1) be nonde-
creasing functions with α(a) = a, α(t) ≤ t on I1. If the inequality

u(t) ≤ f (t) +
∫ α(t)

a
g(s)u(s)ds +

∫ α(t)

a
g(s)u(s)

[
u(s) +

∫ α(s)

a
h(λ)u(λ)dλ

]
ds,

(2.1)
holds for all t ∈ I1. Then

u(t) ≤ f (t) exp

( ∫ α(t)

a
g(s)(1 + f (s)�1(s))ds

)
,∀ t ∈ I1, (2.2)

where

�1(t) =
exp

(∫ α(t)
a [g(s) + h(s)]ds

)

1 − ∫ α(t)
a g(s) f (s) exp

( ∫ s
a [g(τ ) + h(τ )]dτ

)
ds

,∀ t ∈ I1, (2.3)

such that

∫ α(t)

a
g(s) f (s) exp

(∫ α(s)

a
[g(τ ) + h(τ )]dτ

)
ds < 1,∀ t ∈ I1.

Proof Since f is a positive, monotonic, nondecreasing function, we observe from
(2.1) that

u(t)

f (t)
≤ 1 +

∫ α(t)

a
g(s)

u(s)

f (s)
ds +

∫ α(t)

a
g(s) f (s)

u(s)

f (s)

[
u(s)

f (s)

+
∫ α(s)

a
h(λ)

u(λ)

f (λ)
dλ

]
ds,
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for all t ∈ I1. Let

r2(t) = u(t)

f (t)
,∀ t ∈ I1 r2(a) ≤ 1, (2.4)

hence

r2(t) ≤ 1 +
∫ α(t)

a
g(s)r2(s)ds +

∫ α(t)

a
g(s) f (s)r2(s)

[
r2(s)

+
∫ α(s)

a
h(λ)r2(λ)dλ

]
ds,

for all t ∈ I1. Let V equals the right-hand side in the above inequality, we have

r2(t) ≤ V (t), r2(α(t)) ≤ V (α(t)) ≤ V (t), V (a) = 1,∀ t ∈ I1. (2.5)

Differentiating V with respect to t, and using (2.5), we obtain

V ′(t) ≤ g(α(t))α′(t)V (t)[1 + f (α(t))γ (t)],∀ t ∈ I1, (2.6)

where γ (t) = V (t) + ∫ α(t)
a h(s)V (s)ds, hence γ (a) = 1, and V (t) ≤ γ (t).

Differentiating γ (t) with respect to t, and using (2.6), we get

γ ′(t) ≤ [g(α(t)) + h(α(t))]α′(t)γ (t) + g(α(t))α′(t) f (α(t))γ 2(t),∀ t ∈ I1,

but γ (t) > 0, thus from the above inequality, we get

γ −2(t)γ ′(t) − [g(α(t)) + h(α(t))]α′(t)γ −1(t) ≤ g(α(t))α′(t) f (α(t)),∀ t ∈ I1.
(2.7)

If we let
l(t) = γ −1(t),∀ t ∈ I1, (2.8)

then we get l(a) = 1 and γ −2γ ′(t) = −l′(t), thus from (2.7) we have

l′(t) + [g(α(t)) + h(α(t))]α′(t)l(t) ≥ −g(α(t))α′(t) f (α(t)).

The above inequality implies the estimation for l(t) such that

l(t) ≥
1 − ∫ α(t)

a g(s) f (s) exp

(∫ s
a [g(τ ) + h(τ )]dτ

)
ds

exp

(∫ α(t)
a [g(s) + h(s)]ds

) ,∀ t ∈ I1.
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Then from the above inequality in (2.8), we have

γ (t) ≤ �1(t),∀ t ∈ I1,

where �1(t) as defined in (2.3), thus from (2.6) and the above inequality, we have

V ′(t) ≤ g(α(t))α′(t)V (t)[1 + f (t)�1(t)],∀ t ∈ I1.

Integrating the above inequality from a to t, and making the change of variable yield

V (t) ≤ exp

(∫ α(t)

a
g(s)(1 + f (s)�1(s)ds

)
,∀ t ∈ I1.

Using the above inequality and (2.5) in (2.4), we get the required inequality in (2.2).
The proof is complete. �

We prove the following generalization of Theorem 2.1.

Theorem 2.2 Let u, g, h ∈ C(I , I) be nonnegative functions, and f be a positive,
monotonic, nondecreasing function. We suppose that ϕ, ϕ′, α ∈ C1(I , I) are increas-
ing functions and ϕ(u(t))

f (t) ≤ ϕ( u(t)
f (t) ), with ϕ′(t) ≤ k, α(t) ≤ t, α(0) = 0, for all t ∈ I;

k, u0 be positive constants. If the inequality

u(t) ≤ f (t) +
∫ α(t)

0
g(s)ϕ(u(s))ds

+
∫ α(t)

0
g(s)ϕ(u(s))

[
ϕ(u(s)) +

∫ s

0
h(λ)ϕ(u(λ))dλ

]
ds,

(2.9)

holds for all t ∈ I . Then

u(t) ≤ f (t)	−1

(
	(1) +

∫ α(t)

0
g(s)[1 + f (s)�(α−1(s))]ds

)
, (2.10)

for all t ∈ I , where 	 as defined in (2.40) and

�(t) =
exp

(∫ α(t)
0 [kg(s) + h(s)]ds

)

ϕ−1(1) − ∫ α(t)
0 kg(s) f (s) exp

(∫ s
0 [kg(τ ) + h(τ )]dτ

)
ds

,∀ t ∈ I , (2.11)

such that

∫ α(t)

0
g(s) f (s) exp

(∫ s

0
[g(τ ) + h(τ )]dτ

)
ds < ϕ−1(1),∀ t ∈ I .
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Proof Since f is a positive, monotonic, nondecreasing function, we observe from
(2.9) that

u(t)

f (t)
≤ 1 +

∫ α(t)

0
g(s)

ϕ(u(s))

f (s)
ds

+
∫ α(t)

0
g(s) f (s)

ϕ(u(s))

f (s)

[
ϕ(u(s))

f (s)
+

∫ s

0
h(λ)

ϕ(u(λ))

f (λ)
dλ

]
ds,

for all t ∈ I . By the relation ϕ(u(t))
f (t) ≤ ϕ( u(t)

f (t) ), then the above inequality can bewritten
as

u(t)

f (t)
≤ 1 +

∫ α(t)

0
g(s)ϕ(

u(t)

f (t)
)ds

+
∫ α(t)

0
g(s) f (s)ϕ(

u(t)

f (t)
)

[
ϕ(

u(t)

f (t)
) +

∫ s

0
h(λ)ϕ(

u(λ)

f (λ)
)dλ

]
ds,

for all t ∈ I . Let

r(t) = u(t)

f (t)
,∀ t ∈ I , r(0) ≤ 1, (2.12)

hence

r(t) ≤1 +
∫ α(t)

0
g(s)ϕ(r(s))ds

+
∫ α(t)

0
g(s) f (s)ϕ(r(s))

[
ϕ(r(s)) +

∫ s

0
h(λ)ϕ(r(λ))dλ

]
ds,

(2.13)

for all t ∈ I . Let V denotes the function on the right-hand side of (2.13), which
is a nonnegative and nondecreasing function on I with V (0) = 1. Then (2.13) is
equivalent to

r(t) ≤ V (t), r(α(t)) ≤ V (α(t)) ≤ V (t), ∀t ∈ I . (2.14)

Differentiating V with respect to t, and using (2.14), we get

V ′(t) ≤ g(α(t))α′(t)ϕ(V (t))[1 + f (α(t))γ (t)],∀ t ∈ I , (2.15)

where γ (t) = ϕ(V (t)) + ∫ α(t)
0 h(s)ϕ(V (s))ds, hence γ (0) = ϕ(1), and ϕ(V (t)) ≤

γ (t), γ (t) is a nonnegative and nondecreasing function on I . By the monotonicity of
ϕ, ϕ′, V and α(t) ≤ t, we have ϕ(V (t)) ≤ γ (t), ϕ′(V (t)) ≤ k. Differentiating γ (t)
with respect to t, and using (2.15), we get

γ ′(t) ≤ [kg(α(t)) + h(α(t))]α′(t)γ (t) + kg(α(t))α′(t) f (α(t))γ 2(t),∀ t ∈ I ,
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but γ (t) > 0, thus from the above inequality, we get

γ −2(t)γ ′(t) − [kg(α(t)) + h(α(t))]α′(t)γ −1(t) ≤ kg(α(t))α′(t) f (α(t)),∀ t ∈ I .
(2.16)

If we let
l(t) = γ −1(t),∀ t ∈ I , (2.17)

then we get l(0) = ϕ−1(1) and γ −2γ ′(t) = −l′(t), thus from (2.16), we have

l′(t) + [kg(α(t)) + h(α(t))]α′(t)l(t) ≥ −kg(α(t))α′(t) f (α(t)),∀ t ∈ I .

The above inequality implies the estimation for l such that

l(t) ≥
ϕ−1(1) − k

∫ α(t)
0 g(s) f (s) exp

(∫ s
0 [kg(τ ) + h(τ )]dτ

)
ds

exp

(∫ α(t)
0 [kg(s) + h(s)]ds

) ,∀ t ∈ I .

Then from the above inequality in (2.17), we have

γ (t) ≤ �(t),∀ t ∈ I ,

where � as defined in (2.11), thus from (2.15) and the above inequality, we obtain

V ′(t) ≤ g(α(t))α′(t)ϕ(V (t))[1 + f (α(t))�(t)],∀ t ∈ I . (2.18)

Since ϕ(V (t)) > 0, for all t > 0, then from (2.18), we have

V ′(t)
ϕ(V (t))

≤ g(α(t))α′(t)[1 + f (α(t))�(t)],

for all t ∈ I . By taking t = s in the above inequality and integrating it from 0 to t,
and using the definition of 	 in (2.40), we get

	(V (t)) ≤ 	(1) +
∫ α(t)

0
g(s)[1 + f (s)�(α−1(s))], (2.19)

for all t ∈ I , where 	 is defined by (2.40), from (2.19), we have

V (t) ≤ 	−1

(
	(1) +

∫ α(t)

0
g(s)[1 + f (s)�(α−1(s))]ds

)
, (2.20)

for all t ∈ I , from (2.12), (2.14), and (2.20), we get the required inequality in (2.10).
This completes the proof. �
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Remark 2.1 Theorem 2.2 gives the explicit estimation in Theorem 2.1, when
ϕ(u(t)) = u(t).

In the following two theorems, we prove some new nonlinear retarded integral
inequalities.

Theorem 2.3 Let u, g, f ∈ C(I , I) be nonnegative functions. We suppose that ϕ1,
ϕ2,α ∈ C1(I , I) are increasing functions withα(t) ≤ t,ϕi(t) > 0, i = 1, 2,α(0) = 0
and ϕ′

1(t) = ϕ2(t), for all t ∈ I; u0 be positive constant. If the inequality

ϕ1(u(t)) ≤ u0 +
∫ α(t)

0
f (s)ϕ2(u(s))

[
u(s) +

∫ s

0
g(λ)ϕ1(u(λ))dλ

]p

ds,∀t ∈ I ,

(2.21)
holds, for all t ∈ I . Then

u(t) ≤ ϕ−1
1 (u0) +

∫ α(t)

0
f (s)β1(α

−1)(s)ds,∀t < T1, (2.22)

where

β1(t) = �−1

{
�

([
ϕ
p−1
1 (u0) + (1 − p)

∫ α(t)

0
f (s)ds

] 1
1−p

)
+

∫ α(t)

0
g(s)ds

}
,

(2.23)

�(t) =
∫ t

1

ds

ϕ1(s)
,∀t > 0, (2.24)

�−1, ϕ−1
1 are the inverse functions of�, ϕ1, respectively, and T1 is the largest number

such that

�

([
ϕ
p−1
1 (u0) + (1 − p)

∫ α(t)

0
f (s)ds

] 1
1−p

)
+

∫ α(t)

0
g(s)ds ≤

∫ ∞

1

ds

ϕ1(s)
, (2.25)

for all t < T1.

Proof Let ϕ1(J ) denotes the function on the right-hand side of (2.21), which is a
nonnegative and nondecreasing function on I with J (0) = ϕ−1

1 (u0). Then (2.21) is
equivalent to

u(t) ≤ J (t), u(α(t)) ≤ J (α(t)) ≤ J (t), ∀t ∈ I . (2.26)

Differentiating ϕ1(J ) with respect to t, and using (3.34), we get

ϕ′
1(J (t))

dJ

dt
(t) = α′(t) f (α(t))ϕ2(u(α(t)))

[
u(α(t)) +

∫ α(t)

0
g(λ)ϕ1(u(λ))dλ

]p

≤ α′(t) f (α(t))ϕ2(J (t))

[
J (t) +

∫ α(t)

0
g(λ)ϕ1(J (λ))dλ

]p

,∀t ∈ I .
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Using the relation ϕ′
1(J (t)) = ϕ2(J (t)), then from the above inequality, we obtain

dJ

dt
(t) ≤ α′(t) f (α(t))wp(t), (2.27)

wherew(t) = J (t) + ∫ α(t)
0 g(s)ϕ1(J (s))ds,w(0) = J (0) = ϕ−1

1 (u0) and J (t) ≤ w(t),
w is a nonnegative and nondecreasing function on I . Differentiating w with respect
to t, and using (3.30), we have

dw

dt
(t) ≤ α′(t) f (α(t))wp(t) + α′(t)g(α(t))ϕ1(J (α(t)))

≤ α′(t) f (α(t))wp(t) + α′(t)g(α(t))ϕ1(w(α(t))),∀t ∈ I . (2.28)

By w(t) > 0, from (2.28), we get

dw

wp
(t) ≤ α′(t) f (α(t))dt + α′(t)g(α(t))

ϕ1(w(α(t)))

wp(α(t))
dt,∀t ∈ I . (2.29)

Integrating (2.29) from 0 to t, we have

w1−p(t) ≤ ϕ
p−1
1 (u0) + (1 − p)

∫ α(t)

0
f (s)ds + (1 − p)

∫ α(t)

0
g(s)

ϕ1(w(s))

wp(s)
ds,

(2.30)
for all t ∈ I , from (2.30), we have

w1−p(t) ≤ ϕ
p−1
1 (u0) + (1 − p)

∫ α(T )

0
f (s)ds + (1 − p)

∫ α(t)

0
g(s)

ϕ1(w(s)

wp(s)
ds,

(2.31)
for all t ≤ T , where 0 ≤ T < T1 is chosen arbitrarily, T1 is defined by (2.25). Let
m1−p(t) denotes the function on the right-hand side of (2.31), which is a positive and

nondecreasing function on I withm(0) =
[
ϕ
p−1
1 (u0) + (1 − p)

∫ α(T )

0 f (s)ds

] 1
1−p

and

w(t) ≤ m(t),∀t < T . (2.32)

Differentiating m1−p with respect to t, and using (2.32), we get

dm

ϕ1(m)
(t) ≤ α′(t)g(α(t)),∀t < T , (2.33)
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by the definition of � in (2.24), then from (2.33), we obtain

�(m(t)) ≤ �(m(0)) +
∫ α(t)

0
g(s)ds

≤ �

([
ϕ
p−1
1 (u0) + (1 − p)

∫ α(T )

0
f (s)ds

] 1
1−p

)
+

∫ α(t)

0
g(s)ds,

for all t < T . Let t = T , then from the above inequality, we get

�(m(t)) ≤ �

([
ϕ
p−1
1 (u0) + (1 − p)

∫ α(T )

0
f (s)ds

] 1
1−p

)
+

∫ α(T )

0
g(s)ds. (2.34)

Since 0 < T < T1 is chosen arbitrary, then from (2.34) in (2.32), we obtain

w(t) ≤ β1(t),∀t < T1, (2.35)

where β1 as defined in (2.23), thus from (2.27) and (2.35), we obtain

dJ

dt
(t) ≤ α′(t) f (α(t))β1(t),∀t < T1. (2.36)

By taking t = s in (2.36) and integrating it from 0 to t we have

J (t) ≤ ϕ−1
1 (u0) +

∫ α(t)

0
f (s)β1(α

−1)(s)ds,∀t < T1. (2.37)

Using (2.37) in (2.26), we get the required inequality in (2.22). This completes the
proof. �

Theorem 2.4 Let u, g, f ∈ C(I , I) be nonnegative functions. We suppose that
ϕ, ϕ′, α ∈ C1(I , I) are increasing functions, with ϕ′(t) ≤ k, ϕ > 0, α(t) ≤ t, α(0) =
0, for all t ∈ I; k, u0 be positive constants. If the inequality

u(t) ≤ u0 +
∫ α(t)

0
f (s)ϕ(u(s))

[
ϕ(u(s)) +

∫ s

0
g(λ)ϕ(u(λ))dλ

]
ds, (2.38)

holds, for all t ∈ I . Then

u(t) ≤ 	−1

(
	(u0) +

∫ α(t)

0
f (s)β(α−1(s))ds

)
,∀t ∈ I , (2.39)

where

	(r) =
∫ r

1

dt

ϕ(t)
, r > 0, (2.40)
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and

β(t) = exp

( ∫ α(t)

0
g(s)ds

)(
(ϕ−1(u0)) − k

∫ α(t)

0
f (s) exp

( ∫ s

0
g(λ)dλ

)
ds

)−1

,

(2.41)

for all t ∈ I , such that (ϕ−1(u0)) − k
∫ α(t)
0 f (s) exp

( ∫ s
0 g(λ)dλ

)
ds > 0,∀t ∈ I .

Proof Let z denotes the function on the right-hand side of (2.38), which is a non-
negative and nondecreasing function on I with z(0) = u0. Then (2.38) is equivalent
to

u(t) ≤ z(t), u(α(t)) ≤ z(α(t)) ≤ z(t), ∀t ∈ I . (2.42)

Differentiating z with respect to t, we get

dz

dt
(t) = α′(t) f (α(t))ϕ(u(α(t)))

[
ϕ(u(α(t))) +

∫ α(t)

0
g(s)ϕ(u(s))ds

]
,∀t ∈ I .

Using (2.42), we get

dz

dt
(t) ≤ α′(t) f (α(t))ϕ(z(α(t)))y(t),∀t ∈ I , (2.43)

where y(t) = ϕ(z(t)) + ∫ α(t)
0 g(s)ϕ(z(s))ds, y(0) = ϕ(z(0)) = ϕ(u0), y is a nonneg-

ative and nondecreasing function on I . By the monotonicity ϕ, ϕ′, z and α(t) ≤ t
we have ϕ(z(t)) ≤ y(t), ϕ′(z(t)) ≤ k. Differentiating y with respect to t, and using
(2.43), we have

dy

dt
(t) ≤ ϕ′(z(t))α′(t) f (α(t))y2(t) + α′(t)g(α(t))ϕ(z(t))

≤ kα′(t) f (α(t))y2(t) + α′(t)g(α(t))y(t),∀t ∈ I . (2.44)

But y(t) > 0, from (2.44) we get

y−2(t)
dy

dt
(t) − α′(t)g(α(t))y−1(t) ≤ kα′(t) f (α(t)),∀t ∈ I . (2.45)

If we let
v(t) = y−1(t),∀t ∈ I , (2.46)

then we get v(0) = ϕ−1(u0) and y−2(t) dydt (t) = − dv
dt (t), thus from (2.45) and (2.46),

we have
dv

dt
(t) + α′(t)g(α(t)) ≥ −kα′(t) f (α(t)),∀t ∈ I .
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The above inequality implies an estimation for v as in the following

v(t) ≥ exp

(
−

∫ α(t)

0
g(s)ds

)(
(ϕ−1(u0)) − k

∫ α(t)

0
f (s) exp

( ∫ s

0
g(λ)dλ

)
ds

)
,

(2.47)

for all t ∈ I , from (2.41), (2.46), and (2.47), we get y(t) ≤ β(t), where β as defined
in (2.41). Thus from (2.43), we have

dz

dt
(t) ≤ α′(t) f (α(t))ϕ(z(t))β(t),∀t ∈ I . (2.48)

By taking t = s in (2.48) and integrating it from 0 to t, using (2.40), we obtain

z(t) ≤ 	−1

(
	(u0) +

∫ t

0
α′(s) f (α(s))β(s)

)
ds,

≤ 	−1

(
	(u0) +

∫ α(t)

0
f (s)β(α−1(s))

)
ds,∀t ∈ I . (2.49)

Using (2.49) in (2.42) , we get the required inequality in (2.39). This completes the
proof. �

3 More Nonlinear Retarded Integral Inequalities

In this section, we state and prove some new retarded nonlinear integral inequalities
of Gronwall–Bellman–Pachpatte type, which can be used in the analysis of various
problems in the theory of retarded nonlinear differential equations. The results proved
in this section are adapted from [4].

Theorem 3.1 Let u, g, f ∈ C(I , I), α ∈ C1(I , I) be nondecreasing with α(t) ≤ t on
I with α(0) = 0 and u0 be a nonnegative constant. If the inequality

u(t) ≤ u0 +
∫ α(t)

0
[ f (s)u(s) + q(s)]ds +

∫ α(t)

0
f (s)

(∫ s

0
g(s)u(s)ds

)
ds, (3.1)

for all t ∈ I . Then

u(t) ≤u0 +
∫ t

0

(
α′(s)p(α(s)) + α′(s) f (α(s)) exp

( ∫ α(s)

0
[ f (τ ) + g(τ )]dτ

)[
u0

+
∫ α(s)

0
p(σ ) exp

( ∫ σ

0
[ f (τ ) + g(τ )]dτ

)
dσ

])
,

(3.2)
for all t ∈ I .
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Proof Define a function z by the right-hand side of (3.1) which is a nonnegative and
nondecreasing function on I with z(0) = u0. Then (3.1) is equivalent to

u(t) ≤ z(t), u(α(t)) ≤ z(α(t)) ≤ z(t), ∀t ∈ I . (3.3)

Differentiating z with respect to t, and using (3.3), we get

z′(t) = α′(t)[ f (α(t))u(α(t)) + p(α(t))] + α′(t) f (α(t))
∫ α(t)

0
g(σ )u(σ )dσ

≤ α′(t)p(α(t)) + α′(t) f (α(t))

[
z(t) +

∫ α(t)

0
g(σ )z(σ )dσ

]
, (3.4)

for all t ∈ I . Define a function v by

v(t) = z(t) +
∫ α(t)

0
g(σ )z(σ )dσ,∀t ∈ I , (3.5)

then v(0) = z(0) = u0, z′(t) ≤ α′(t)(p(α(t)) + f (t)v(t)) from (3.4), and from (3.5)
z(t) ≤ v(t), z(α(t)) ≤ v(α(t)) ≤ v(t). Differentiating v, with respect to t, we get

v′(t) = z′(t) + α′(t)g(α(t))z(α(t))

≤ α′(t)p(α(t)) + α′(t)[ f (α(t)) + g(α(t))]v(t),∀t ∈ I . (3.6)

Integrating the inequality (3.6) from 0 to t implies the estimation

v(t) ≤ exp

(∫ α(t)

0
[ f (τ ) + g(τ )]dτ

)[
u0 +

∫ α(t)

0
p(σ ) exp

(∫ σ

0
[ f (τ ) + g(τ )]dτ

)
dσ

]
,

(3.7)
for all t ∈ I . Using (3.7) in (3.4), we have

z′(t) ≤ α′(t)p(α(t)) + α′(t) f (α(t)) exp

( ∫ α(t)

0
[ f (τ ) + g(τ )]dτ

)[
u0

+
∫ α(t)

0
p(σ ) exp

( ∫ σ

0
[ f (τ ) + g(τ )]dτ

)
dσ

]
,∀t ∈ I .

(3.8)

Now by sitting t = s in (3.8) and integrating it from 0 to t and substituting the
bound on z in (3.3), we obtain the required inequality in (3.2). This completes the
proof. �

Remark 3.1 Theorem 3.1 gives the explicit estimation (3.2) for the inequality (3.1),
which is just the inequality (1.3) in Theorem 1.2 when α(t) = t.

Theorem 3.2 Let u, g, f ∈ C(I , I), be nonnegative functions. We suppose that ϕ,
ϕ′, α,∈ C1(I , I) are increasing functions, with ϕ′(t) ≤ k, ϕ > 0, α(t) ≤ t, α(0) = 0,
for all t ∈ I; k, u0 be positive constants. If the inequality
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u(t) ≤ u0 +
∫ α(t)

0
ϕ(u(s))[ f (s)ϕ(u(s)) + q(s)]ds

+
∫ α(t)

0
ϕ(u(s)) f (s)

(∫ s

0
g(s)ϕ(u(s))ds

)
ds, (3.9)

holds, for all t ∈ I . Then

u(t) ≤ 	−1

(
	(u0) +

∫ α(t)

0
[p(s) + f (s)β(s)]ds

)
,∀t ∈ I , (3.10)

where 	 as defined in (2.40), and

β(t) ≤
exp

( ∫ α(t)
0 [kp(s) + g(s)]ds

)
[
ϕ−1(u0) − ∫ α(t)

0 k f (s) exp

( ∫ s
0 [kp(σ ) + g(σ )]dσ

)] ,∀t ∈ I . (3.11)

Proof Define a function z1 by the right-hand side of (3.9), which is a nonnegative
and nondecreasing function on I with z1(0) = u0. Then (3.9) is equivalent to

u(t) ≤ z1(t), u(α(t)) ≤ z1(α(t)) ≤ z1(t), ∀t ∈ I . (3.12)

Differentiating z1 with respect to t, and using (3.12), we get

z′
1(t) = α′(t)ϕ(u(α(t)))[ f (α(t))ϕ(u(α(t))) + p(α(t))]

+α′(t) f (α(t))ϕ(u(α(t)))
∫ α(t)

0
g(σ )ϕ(u(σ ))dσ

≤ α′(t)p(α(t))ϕ(z1(t)) + α′(t) f (α(t))ϕ(z1(t))

[
ϕ(z1(t))

+
∫ α(t)

0
g(σ )ϕ(z1(σ ))dσ

]

≤ α′(t)p(α(t))ϕ(z1(t)) + α′(t) f (α(t))ϕ(z1(t)(t))v(t), (3.13)

for all t ∈ I , where

v1(t) = ϕ(z1(t) +
∫ α(t)

0
g(σ )ϕ(z1(σ ))dσ,∀t ∈ I . (3.14)

Hence v(0) = ϕ(z(0)) = ϕ(u0), and

ϕ(z1(t)) ≤ v(t),∀t ∈ I . (3.15)
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Differentiating (3.14) with respect to t, and using the relation ϕ′(z1(t) < k and (3.13),
(3.15), we get

v′(t) = ϕ′(z1(t)z′
1(t) + α′(t)g(α(t))ϕ(z1(t))

≤ kα′(t)p(α(t))ϕ(z1(t)) + kα′(t) f (α(t))v(t)ϕ(z1(t)) + α′(t)g(α(t))ϕ(z1(t))

≤ [kα′(t)p(α(t)) + α′(t)g(α(t))]v(t) + kα′(t) f (α(t))v2(t), (3.16)

for all t ∈ I , since v(t) > 0 then we can write the inequality (3.16) in the following
form

v−2(t)v′(t) − [kα′(t)p(α(t)) + α′(t)g(α(t))]v−1(t) ≤ kα′(t) f (α(t)),∀t ∈ I .
(3.17)

If we let
v−1(t) = S(t),∀t ∈ I . (3.18)

We have S(0) = v−1(0) = ϕ−1(u0), and v−2(t)v′(t) = −S ′(t), then we can write the
inequality (3.17) as follows

S ′(t) + [kα′(t)p(α(t)) + α′(t)g(α(t))]S(t) ≥ −kα′(t) f (α(t)),∀t ∈ I . (3.19)

The inequality (3.19) implies an estimation for S(t) as in the following

S(t) ≥

[
ϕ−1(u0) − ∫ α(t)

0 k f (s) exp

( ∫ s
0 [kp(σ ) + g(σ )]dσ

)]

exp

( ∫ α(t)
0 [kp(s) + g(s)]ds

) , (3.20)

for all t ∈ I , then from (3.18) and (3.20), we have

v(t) ≤ β(t),∀t ∈ I , (3.21)

where β as defined in (3.11), thus from (3.21) in (3.13), we have

z′
1(t) ≤ α′(t)p(α(t))ϕ(z1(t)) + α′(t) f (α(t))ϕ(z1(t)(t))β(t)∀t ∈ I . (3.22)

Hence, we can write the inequality (3.22) as follows

z′
1(t)

ϕ(z1(t))
≤ α′(t)p(α(t)) + α′(t) f (α(t))β(t)∀t ∈ I . (3.23)

By taking t = s in (3.23) and integrating it from 0 to t, using (2.40), we have

z1(t) ≤ 	−1

(
	(u0) +

∫ α(t)

0
[p(s) + f (s)β(s)]ds

)
,∀t ∈ I . (3.24)
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Using (3.24) in (3.12) , we get the required inequality in (3.10). This completes the
proof. �

Theorem 3.3 Let u, g, f ∈ C(I , I), be nonnegative functions.We suppose thatϕ1,ϕ2,
α ∈ C1(I , I) are increasing functions with α(t) ≤ t, ϕi(t) > 0, i = 1, 2, α(0) = 0,
ϕ′
1(t) = ϕ2(t), and ϕ−1

1 (t) is a submultiplicative function for all t ∈ I; u0 be positive
constants. If the inequality

ϕ1(u(t)) ≤ u0 +
∫ α(t)

0
g(s)ϕ1(u(s))ds +

∫ α(t)

0
h(s)ϕ2(u(s))ds,∀t ∈ I , (3.25)

holds, for all t ∈ I . Then

u(t) ≤
(

ϕ−1
1 (u0) +

∫ α(t)

0
h(s)ds

)
ϕ−1
1

(
exp(

∫ α(t)

0
g(s)ds)

)
, (3.26)

for all t ∈ [0,T1], where ϕ−1
1 is the inverse function of ϕ1 and T1 is the largest number

such that

ϕ−1
1 (u0) +

∫ α(T )

0
h(s)ds > 0,∀t ∈ [0,T1]. (3.27)

Proof Let ϕ1(J ) denotes the function on the right-hand side of (2.21), which is a
nonnegative and nondecreasing function on I with J (0) = ϕ−1

1 (u0). Then (2.21) is
equivalent to

u(t) ≤ J (t), u(α(t)) ≤ J (α(t)) ≤ J (t), ∀t ∈ I . (3.28)

Differentiating ϕ1(J ), with respect to t, we get

ϕ′
1(J (t))

dJ

dt
)(t) = α′(t)g(α(t))ϕ1(u(α(t))) + α′(t)h(α(t))ϕ2(u(α(t)))

≤ α′(t)g(α(t))ϕ1(J (t)) + α′(t)h(α(t))ϕ2(J (t)). (3.29)

Using the relation ϕ′
1(J (t)) = ϕ2(J (t)), from (3.29) we obtain

dJ

dt
(t) ≤ α′(t)h(α(t)) + g(α(t))

ϕ1(J (t))

ϕ′
1(J (t))

,∀t ∈ I . (3.30)

Integrating both sides of (3.30) from 0 to t, we get

J (t) = ϕ−1
1 (u0) +

∫ α(t)

0
h(s)ds +

∫ α(t)

0
g(s)

ϕ1(J (s))

ϕ′
1(J (s))

ds,

≤ ϕ−1
1 (u0) +

∫ α(T )

0
h(s)ds +

∫ α(t)

0
g(s)

ϕ1(J (s))

ϕ′
1(J (s))

ds,∀t ∈ [0,T ], (3.31)
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where T ∈ [0,T1] is a positive constant chosen arbitrary, T1 is defined by (3.27). Let

R(t) = ϕ−1
1 (u0) +

∫ α(T )

0
h(s)ds +

∫ α(t)

0
g(s)

ϕ1(J (s))

ϕ′
1(J (s))

ds,∀t ∈ [0,T ], (3.32)

then R is a nonnegative and nondecreasing function on I with R(0) = ϕ−1
1 (u0) +∫ α(T )

0 h(s)ds, then (3.32) is equivalent to

J (t) ≤ R(t),∀t ∈ [0,T ]. (3.33)

Differentiating (3.32) with respect to t, and using (3.33), we obtain

dR

dt
(t) = g(t)

ϕ1(J (t))

ϕ′
1(J (t))

,

≤ g(t)
ϕ1(R(t))

ϕ′
1(R(t))

,∀t ∈ [0,T ]. (3.34)

The inequality given in (3.34) can be written as

ϕ′
1(R)dR

ϕ1(R)
(t) ≤ g(t)dt,∀t ∈ [0,T ]. (3.35)

Integrating both sides of (3.35) from 0 to t and using the multiplicity of the inverse
function ϕ−1

1 , we have

R(t) ≤
(

ϕ−1
1 (u0) +

∫ α(T )

0
h(s)ds

)
ϕ−1
1

(
exp(

∫ α(t)

0
g(s)ds)

)
, (3.36)

for all t ∈ [0,T ]. Letting t = T in (3.36), from (3.28), (3.33), and (3.36), we get

u(T ) ≤
(

ϕ−1
1 (u0) +

∫ α(T )

0
h(s)ds

)
ϕ−1
1

(
exp(

∫ α(T )

0
g(s)ds)

)
. (3.37)

Because T ∈ [0,T1] is chosen arbitrarily. This completes the proof. �

4 Applications

In this section,we present some applications for the resultswhichwe have established
above and apply them to qualitative and quantitative analysis of solutions of certain
delay differential equations to which the inequalities available in the literature do not
apply directly.
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4.1 Differential Equations with Delay

We apply our result obtained in Theorem 2.4 to study the boundedness and the
existence of the solutions of the initial value problem for nonlinear delay differential
equation of the form:

⎧⎨
⎩

du
dt (t) = M (t, u(α(t)),H (t, u(α(t)))),∀t ∈ I ,

u(0) = u0,
(4.1)

where u0 is a constant,M ∈ C(I3,R), H ∈ C(I × I ,R), satisfy the following condi-
tions:

|M (t, u,H )| ≤ f (α(t))ϕ(u(α(t)))

[
|u(α(t))| +

∫ t

0
|K(s, u(α(s)))|ds

]
, (4.2)

|K(t, u(α(t)))| ≤ g(α(t))ϕ(u(α(t))), (4.3)

where f , g as defined in Theorem 2.4.

Theorem 4.1 Consider nonlinear system (4.1) and suppose that M , H satisfy the
conditions (4.2) and (4.3).We suppose thatϕ,ϕ′,α ∈ C1(I , I)are increasing functions
with ϕ′

1(t) ≤ k, α(t) ≤ t, α(0) = 0, for all t ∈ I; k, u0 are positive constants, then
each solution u of (4.1) under discussion verifies the following estimation:

u(t) ≤ 	−1

(
	(u0) +

∫ α(t)

0

f (s)

α′(α−1(s))
β2(α

−1(s))ds

)
, ∀t ∈ I , (4.4)

where 	 as defined in (2.40), and

β2(t) = exp

(∫ α(t)

0

g(s)

α′(α−1(s))
ds

)

×
(

(ϕ−1(u0)) − k
∫ α(t)

0

f (s)

α′(α−1(s))
exp

( ∫ s

0

g(λ)

α′(α−1(λ))
dλ

)
ds

)−1

,∀t ∈ I .

(4.5)

Proof Integrating both sides of (4.1) from 0 to t, we have

u(t) = u0 +
∫ t

0
M (s, u(α(s)),H (s, u(α(s))))ds,∀t ∈ I , (4.6)
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using the conditions (4.2) and (4.3), then from (4.6), we get

|u(t)| ≤ u0 +
∫ t

0
f (s)|ϕ(u(α(s)))|

[
|ϕ(u(α(s)))| +

∫ s

0
g(α(λ))|ϕ(u(α(λ)))|dλ

]
ds

≤ u0 +
∫ α(t)

0

f (s)|ϕ(u(s))|
α′(α−1(s))

[
|ϕ(u(s))| +

∫ s

0

g(λ)|ϕ(u(λ))

α′(α−1(s))
|dλ

]
ds,

for all t ∈ I , applying Theorem 2.4 to the above inequality, we obtain the required
estimation (4.4). This completes the proof. �

4.2 Retarded Integro-Differential Equations

We show that our main results are useful in showing the global existence of solutions
to certain integro-differential equations of the form:

u′(t) = F

(
t, u(α(t)),

∫ t

0
h(s, u(α(s)))ds

)
, (4.7)

for any t ∈ I with the initial condition

u(0) = u0, (4.8)

where h ∈ C(R2,R), F ∈ C(R3,R), and u0 ≥ 0 is constant.
Assume that

∫ t

0
|F(s, u(α(s)), ν)|ds ≤

∫ t

0
(ϕ(|u(s)|)[ f (s)ϕ(|u(s)|) + p(s)] + ϕ(|u(s)|) f (s)|ν|)ds,

(4.9)

h(t, u(t)) ≤ g(t)(ϕ(|u(t)|) (4.10)

where the functions f , α, and g are defined as in Theorem 3.2. If u is a solution of
the equation (4.7) with (4.8), then the solution u can be written as

u(t) = u0 +
∫ t

0
F

(
s, u(α(s)),

∫ s

0
f (σ, u(α(σ )))dσ

)
ds, (4.11)

for any t ∈ I . Using (4.9) and (4.10) in (4.11) and making the change of variables,
we get
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|u(t)| ≤ u0 +
∫ t

0
ϕ(|u(α(s))|)[ f (s)ϕ(|u(α(s))|) + q(s)]ds

+
∫ α(t)

0
ϕ(|u(α(s))|) f (s)

(∫ s

0
g(σ )ϕ(|u(α(σ ))|)dσ

)
ds

≤ u0 +
∫ α(t)

0

ϕ(|u(s)|)
α′(α−1(s))

[ f (s)ϕ(|u(s)|) + q(s)]ds

+
∫ α(t)

0

f (α−1(s))

α′(α−1(s))
ϕ(|u(s)|)

(∫ s

0
g(σ )ϕ(|u(σ )|)dσ

)
ds, (4.12)

holds, for all t ∈ I . Now, a suitable application of Theorem 3.2 to (4.12) yields

u(t) ≤ 	−1

(
	(u0) +

∫ α(t)

0

1

α′(α−1(s))
[p(s) + f (s)β(s)]ds

)
,∀t ∈ I , (4.13)

which implies that u is bounded, where 	 is defined as in Theorem 3.2 and

β(t) ≤
exp

(∫ α(t)
0

1
α′(α−1(s)) [kp(s) + g(s)]ds

)
[
ϕ−1(u0) − ∫ α(t)

0
f (α−1(s))
α′(α−1(s)) exp

(∫ s
0 [kp(σ ) + g(σ )]dσ

)] ,∀t ∈ I . (4.14)

Remark 4.1 Gronwall-like inequality can be applied to the analysis of the behavior
of the solutions of some retarded nonlinear differential equations. Our results also
can be used to prove the global existence, uniqueness, stability, and other properties
of the solutions of various nonlinear retarded differential and integral equations. The
importance of these inequalities stems from the fact that it is applicable in certain
situations in which other available inequalities do not apply directly.
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On the Integral Inequalities
for Riemann–Liouville and Conformable
Fractional Integrals

M. Emin Ozdemir, Ahmet Ocak Akdemir, Erhan Set and Alper Ekinci

Abstract An integral operator is sometimes called an integral transformation. In the
fractional analysis, Riemann–Liouville integral operator (transformation) of frac-
tional integral is defined as

Sα(x) = 1

�(x)

∫ x

0
(x − t)α−1 f (t)dt

where f (t) is any integrable function on [0, 1] and α > 0, t is in domain of f .

1 Introduction

The history of fractional analysis goes back to the arising of classical differential
theory. Despite the fact that history is based on extreme ages, the interpretation of
classical analysis as a result of the complexity of its physical structure has not been
postponed and the science has not been very popular in engineering. However, the
fact that fractional derivatives and integrals are not local or punctate has made the
matter of fractional analysis remarkable in terms of better expressing the reality of
nature. Thus, making this more widespread in science and engineering will play an
important role in better interpreting and expressing nature.
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Fractional analysis can be considered as an extension of classical analysis. Frac-
tional analysis does not have the definition of a single derivative as it is in the classical
analysis, but the presence of more than one derivative gives the opportunity to obtain
the best solution to the problems.

Fractional analysis has been studied by many scholars, and they have expressed
fractional derivatives and integrals in different forms with different notations. But
although these expressions are transitions between each other, they differ in terms of
definitions and physical interpretations of their definitions. For the first time in 1695,
the notion of fractional derivative and integral was raised by asking whether it would
bemeaningful if the derivation orderwas 1/2 in a letter sent byL’Hospital to Leibnitz.
Thus, the origin of fractional analysis begins with the question of L’Hospital.

This question on fractional derivatives and integrals has been a subject of study by
many famous mathematicians such as Liouville, Riemann, Weyl, Fourier, Laplace,
Lagrange, Euler, Abel, Lacroix, Grünwald, and Letnikov for more than 300 years.
Since then, fractional differential equations have found many application areas
including the theory of transmission lines, chemical analysis of fluids, heat transfer,
diffusion, Schrödinger equation, material science, fluids, electrochemistry, fractal
processes. Much of the mathematical application of fractional computing techniques
has been put into place before the end of the twentieth century, but it has only been
possible within a hundred years to achieve exciting achievements in engineering and
scientific applications.

The fractional differential calculation technique not only contributes to a new
dimension to mathematical approaches to explain physical phenomena, but also
contributes to the interpretation of physical phenomena. The ranks of the differential
equations describing the physical phenomena determine the rate of change in the
physical state involved. The fractional-order differential at this point plays a major
role in understanding the character of the physical phenomenon as well as closing
the weaknesses of differential equations of integer order to explain some physical
phenomena.

There are many definitions in the literature of the fractional derivative and inte-
grals.Many of these definitionsmake use of the integral formwhenmaking fractional
derivative definitions. The most famous of these definitions is Riemann–Liouville.

Some authors discussed whether the fractional derivative is indeed a fractional
operator. Today, this question is still open to debate. Perhaps this is a philosophical
issue. Moreover, this new definition can be considered as a transformation for the
solution of differential equations of fractional order even if there is no definition of
a fractional derivative. Obviously, this discussion is an argument of what the new
theory is to be given. It is always a matter of deserving to study the definition of this
new fractional derivative and fractional integral.

Various types of fractional derivative and integral operatorwere studied:Riemann–
Liouville, conformable fractional integral operators, Caputo, Hadamard, Erdelyi–
Kober, Grünwald–Letnikov, Marchaud, and Riesz are just a few to name.

In the present chapter, we shall recall some of fractional integral operators, which
generalizes the classical integrals. We shall start this chapter with some results and
definitions to refresh our memories about some of the remarkable milestones in the
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theory of fractional calculus and recall some inequalities involving two kinds of
fractional integral operators.

Finally, we will give inequalities of Hermite–Hadamard type, Grüss type,
Ostrowski type involving other types of fractional integral operators. All of this
will be presented chronologically.

2 Riemann–Liouville Fractional Integral Operators
and Inequalities

The following definitions are well-known in the fractional calculus and have been
used in many fields of mathematics (see the references [1–4]).

Definition 2.1 ([5]) Let f ∈ L1[a, b]. The Riemann–Liouville integrals Jα
a+ f and

Jα
b− f of order α > 0 are defined by

Jα
a+ f (t) = 1

�(α)

∫ t

a
(t − x)α−1 f (x)dx, t > a,

and

Jα
b− f (t) = 1

�(α)

∫ b

t
(x − t)α−1 f (x)dx, t < b,

respectively, where �(α) = ∫∞
0 e−t tα−1dt . Here J 0

a+ f (t) = J 0
b− f (t) = f (t).

In the case of α = 1, the fractional integral reduces to classical integral.
In this paper, some new integral inequalities have been proved by using con-

formable fractional integrals for functions whose derivatives of absolute values are
quasi-convex, s-convex and log-convex functions.

Several researches have proved different types of integral inequalities via
Riemann–Liouville fractional integrals. We will start with the new representation
of celebrated Montgomery identity for fractional calculus that was proved Anastas-
siou et al. in 2009.

Lemma 2.1 ([6]) Let f : [a, b] → R be differentiable on [a, b], and f ′ : [a, b] →
R be integrable on [a, b], then the following Montgomery identity for fractional
integrals holds:

f (x) = �(α)

b − a
(b − x)1−α Jα

a f (b) − Jα−1
a (P2(x, b) f (b)) + Jα

a (P2(x, b) f
′(b)), α ≥ 1

where P2(x, t) is the fractional Peano kernel defined by:

P2(x, t) =
{

t−a
b−a (b − x)1−α�(α), a ≤ t ≤ x,
t−b
b−a (b − x)1−α�(α), x ≤ t ≤ b.
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The authors have also extended Ostrowski’s inequality and Gruss inequality to
fractional calculus as follows.

Theorem 2.1 ([6]) Let f : [a, b] → R be differentiable on [a, b] and | f ′(x)| ≤ M,
for every x ∈ [a, b] and α ≥ 1. Then, the following Ostrowski fractional inequality
holds:

∣∣∣∣ f (x) − �(α)

b − a
(b − x)1−α Jα

a f (b) + Jα−1
a P2(x, b) f (b)

∣∣∣∣
≤ M

α(α + 1)

[
(b − x)

(
2α

(
b − x

b − a

)
− α − 1

)
+ (b − a)α(b − x)1−α

]
.

Proposition 1 ([6]) Suppose that f (x) and g(x) are two integrable functions for all
x ∈ [a, b], and satisfy the conditions

m ≤ (b − x)α−1 f (x) ≤ M, n ≤ (b − x)α−1g(x) ≤ N ,

where α > 1/2, and m, M, n, N are real constants. Then, the following Gruss frac-
tional inequality holds:

∣∣∣∣ �(2α − 1)

(b − a)�2(α)
J 2α−1
a ( f g)(b) − 1

(b − a)2
Jα
a f (b)Jα

a g(b)

∣∣∣∣
≤ 1

4�2(α)
(M − m)(N − n).

Another important study on the Riemann–Liouville fractional integrals has been
written by Dahmani in 2010. The following results are concerning with Minkowski
inequality.

Theorem 2.2 ([7]) Letα > 0, p ≥ 1 and let f, g be two positive functions on [0,∞)

such that for all t > 0, Jα f p(t) < ∞, Jαgp(t) < ∞. If 0 < m ≤ f (τ )

g(τ )
≤ M, τ ∈

[0, t], then we have

[
Jα f p(t)

] 1
p + [

Jαgp(t)
] 1

p ≤ 1 + M(m + 2)

(m + 1)(M + 1)

[
Jα( f + g)p(t)

] 1
p .

Theorem 2.3 ([7]) Letα > 0, p ≥ 1 and let f, g be two positive functions on [0,∞)

such that for all t > 0, Jα f p(t) < ∞, Jαgp(t) < ∞. If 0 < m ≤ f (τ )

g(τ )
≤ M, τ ∈

[0, t], then we have

[
Jα f p(t)

] 2
p + [

Jαgp(t)
] 2

p ≤
(

(M + 1)(m + 1)

M
− 2

)

[
Jα f p(t)

] 1
p
[
Jαgp(t)

] 1
p .

Theorem 2.4 ([7])Letα > 0, p ≥ 1and let f, g be twopositive functions on [0,∞).
If f p, g p are two concave functions on [0,∞), then we have
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2−p−q( f (0) + f (t))p(g(0) + g(t))q(Jα(tα−1))2

≤ Jα(tα−1 f p(t))Jα(tα−1gq(t)).

We will remind an integral identity that was proved by Set in 2012.

Lemma 2.2 ([8]) Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b. If f ′ ∈ L[a, b], then for all x ∈ [a, b] and α > 0 we have:

(
(x − a)α + (b − x)α

b − a

)
f (x) − �(α + 1)

b − a
[Jα

x− f (a) + Jα
x+ f (b)]

= (x − a)α+1

b − a

∫ 1

0
tα f ′(t x + (1 − t)a)dt − (b − x)α+1

b − a

∫ 1

0
tα f ′(t x + (1 − t)b)dt

where �(α) = ∫∞
0 e−1uα−1du.

By using this identity, the author has been given Ostrowski-type integral inequal-
ities for s-convex functions where � is Euler gamma function.

Theorem 2.5 ([8]) Let f : [a, b] ⊂ [0,∞) → R be a differentiable mapping on
(a, b) with a < b such that f ′ ∈ L[a, b]. If | f ′| is s-convex in the second sense
on [a, b] for some fixed s ∈ (0, 1] and | f ′(x)| ≤ M, x ∈ [a, b], then the following
inequality for fractional integrals with α > 0 holds:

∣∣∣∣
(

(x − a)α + (b − x)α

b − a

)
f (x) − �(α + 1)

(b − a)
[Jα

x− f (a) + Jα
x+ f (b)]

∣∣∣∣
≤ M

b − a

(
1 + �(α + 1)�(s + 1)

�(α + s + 1)

)[
(x − a)α+1 + (b − x)α+1

α + s + 1

]
.

Theorem 2.6 ([8]) Let f : [a, b] ⊂ [0,∞) → R be a differentiable mapping on
(a, b) with a < b such that f ′ ∈ L[a, b]. If | f ′|q is s-convex in the second sense
on [a, b] for some fixed s ∈ (0, 1], p, q > 1 and | f ′(x)| ≤ M, x ∈ [a, b], then the
following inequality for fractional integrals holds:

∣∣∣∣
(

(x − a)α + (b − x)α

b − a

)
f (x) − �(α + 1)

(b − a)
[Jα

x− f (a) + Jα
x+ f (b)]

∣∣∣∣

≤ M

(1 + pα)
1
p

(
2

s + 1

) 1
q
[
(x − a)α+1 + (b − x)α+1

b − a

]

where 1
p + 1

q = 1.

Theorem 2.7 ([8]) Let f : [a, b] ⊂ [0,∞) → R be a differentiable mapping on
(a, b) with a < b such that f ′ ∈ L[a, b]. If | f ′|q is s-convex in the second sense on
[a, b] for some fixed s ∈ (0, 1], q ≥ 1, and | f ′(x)| ≤ M, x ∈ [a, b], then the follow-
ing inequality for fractional integrals holds:
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∣∣∣∣
(

(x − a)α + (b − x)α

b − a

)
f (x) − �(α + 1)

(b − a)
[Jα

x− f (a) + Jα
x+ f (b)]

∣∣∣∣

≤ M

(
1

1 + α

)1− 1
q
(

1

α + s + 1

) 1
q

×
(
1 + �(α + 1)�(s + 1)

�(α + s + 1)

) 1
q
[
(x − a)α+1 + (b − x)α+1

b − a

]

where α > 0.

Sarıkaya andÖǧünmezhave extended theMontgomery identities for theRiemann–
Liouville fractional integrals by using a different proof method; they have used these
Montgomery identities to establish some new integral inequalities. The authors have
also developed some integral inequalities for the fractional integral using differen-
tiable convex functions.

Lemma 2.3 ([9]) Let f : I ⊂ R → R be a differentiable function on I o with a, b ∈
I (a < b) and f ′ ∈ L1[a, b], then

f (x) = �(α)

b − a
(b − x)1−α Jα

a f (b) − Jα−1
a (P2(x, b) f (b)) + Jα

a
(
P2(x, b) f

′(b)
)
, α ≥ 1,

where P2(x, t) is as in Lemma 2.1

P2(x, t) :=
{ (t−a)

b−a (b − x)1−α�(α), a ≤ t < x,
(t−b)
b−a (b − x)1−α�(α), x ≤ t ≤ b.

Theorem 2.8 ([9]) Let f : I ⊂ R → R be a differentiable function on I o with f ′ ∈
L1[a, b], then the following identity holds:

(1 − 2λ) f (x) = �(α)

b − a
(b − x)1−α Jα

a f (b) − λ

(
b − a

b − x

)α−1

f (a)

− Jα−1
a (P3(x, b) f (b)) + Jα

a

(
P3(x, b) f

′(b)
)
, α ≥ 1,

where P3(x, t) is the fractional Peano kernel defined by

P3(x, t) :=
{ t−(1−λ)a−λb

b−a (b − x)1−α�(α), a ≤ t < x,
t−(1−λ)b−λa

b−a (b − x)1−α�(α), x ≤ t ≤ b.

for 0 ≤ λ ≤ 1.

Theorem 2.9 ([9]) Let f : [a, b] → R be differentiable on (a, b) such that f ′ ∈
L1[a, b], where a < b. If | f ′(x)| ≤ M for every x ∈ [a, b] and α ≥ 1, then the fol-
lowing inequality holds:



On the Integral Inequalities for Riemann–Liouville … 171

∣∣∣∣(1 − 2λ) f (x) − �(α)

b − a
(b − x)1−α Jα

a f (b)

+ λ

(
b − a

b − x

)α−1

f (a) + Jα−1
a (P3(x, b) f (b))

∣∣∣∣
≤ M

α(α + 1)

{
(b − a)α(b − x)1−α

[
2λα+1 + 2(1 − λ)α+1 + λ(b − a) − 1

]

+ (b − x)

[
2α

b − x

b − a
− (α + 1)

]}
.

Theorem 2.10 ([9])Let f : [a, b] → R be a differentiable convex function on (a, b)
and f ′ ∈ L1[a, b]. Then for any x ∈ (a, b), the following inequality holds:

1

α(α + 1)

[
α

(b − x)2

b − a
f ′
+(x) −

(
(b − a)α(b − x)1−α

+α
(b − x)2

b − a
− (α + 1)(b − x)

)
f ′
−(x)

]

≤ �(α)

b − a
(b − x)1−α Jα

a f (b) − Jα−1
a (P2(x, b) f (b)) − f (x), α ≥ 1

The fractional integral form of Hermite–Hadamard inequality was proved by
Sarıkaya et al. in 2013 as follows.

Theorem 2.11 ([10]) Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1[a, b]. If f is a convex function on [a,b], then the following inequalities for
fractional integrals hold:

f

(
a + b

2

)
≤ �(α + 1)

2 (b − a)α

[
Jαa+ f (b) + Jαb− f (a)

] ≤ f (a) + f (b)

2

with α > 0.

In the same paper, the authors have given a new integral identity and generalized
Dragomir and Agarwal’s results to fractional calculus.

Lemma 2.4 ([10]) Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b. If f ′ ∈ L[a, b], then the following equality for fractional integrals holds:

f (a) + f (b)

2
− �(α + 1)

2 (b − a)α

[
Jαa+ f (b) + Jαb− f (a)

]

= b − a

2

∫ 1

0
[(1 − t)α − tα] f ′(ta + (1 − t)b)dt.

Theorem 2.12 ([10]) Let f : [a, b] → R be a differentiable mapping on (a, b)with
a < b. If | f ′| is convex on [a,b], then the following inequality for fractional integrals
holds:
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∣∣∣∣ f (a) + f (b)

2
− �(α + 1)

2 (b − a)α

[
Jαa+ f (b) + Jαb− f (a)

] ∣∣∣∣
≤ b − a

2(α + 1)

(
1 − 1

2α

)[ f ′(a) + f ′(b)].

Tariboon et al. have proved some newGruss-type inequalities involvingRiemann–
Liouville fractional integrals.

Theorem 2.13 ([11]) Let f be integrable function on [0,∞). Assume that (H1)

there exist two integrable functions ϕ1 and ϕ2 on [0,∞) such that

ϕ1(t) ≤ f (t) ≤ ϕ2(t), ∀t ∈ [0,∞),

Then, for t > 0, α, β > 0, one has:

J βϕ1(t)J
α f (t) + Jαϕ2(t)J

β f (t) ≥ Jαϕ2(t)J
βϕ1(t) + Jα f (t)J β f (t).

Theorem 2.14 ([11]) Let f and g be two integrable functions on [0,∞). Suppose
that (H1) holds, andmoreover, one assumes that (H2) there existψ1 andψ2 integrable
functions on [0,∞) such that

ψ1(t) ≤ g(t) ≤ ψ2(t), ∀t ∈ [0,∞),

Then for t > 0, α, β > 0 the following inequalities hold:

(a) J βψ1(t)J
α f (t) + Jαϕ2(t)J

βg(t) ≥ J βψ1(t)J
αϕ2(t) + Jα f (t)J βg(t),

(b) J βϕ1(t)J
αg(t) + Jαψ2(t)J

β f (t) ≥ J βψ1(t)J
αψ2(t) + J β f (t)J βg(t),

(c) Jαϕ2(t)J
βψ2 + Jα f (t)J βg(t) ≥ Jαϕ2(t)J

βg(t) + J βψ2(t)J
α f (t),

(d) Jαϕ1(t)J
βψ1 + Jα f (t)J βg(t) ≥ Jαϕ1(t)J

βg(t) + J βψ1(t)J
α f (t).

Theorem 2.15 ([11]) Let f and g be integrable functions on [0,∞) and let
ϕ1, ϕ2, ψ1 and ψ2 be integrable functions on [0,∞), satisfying the conditions (H1)

and (H2) on [0,∞). Then, for all t > 0, α > 0, one has

∣∣∣∣ tα

�(α + 1)
Jα f g(t) − Jα f (t)Jαg(t)

∣∣∣∣ ≤ √
T ( f, ϕ1, ϕ2)T (g, ψ1, ψ2),



On the Integral Inequalities for Riemann–Liouville … 173

where T (u, v, w) is defined by

T (u, v, w) = (Jαw(t) − Jαu(t))(Jαu(t) − Jαv(t))

+ tα

�(α + 1)
Jαvu(t) − Jαv(t)Jαu(t)

+ tα

�(α + 1)
Jαwu(t) − Jαw(t)Jαu(t)

+ Jαv(t)Jαw(t) − tα

�(α + 1)
Jαvw(t).

A new generalization of Montgomery identity has been given by Sarıkaya et
al., and the authors have established new Ostrowski-type inequalities by using this
identity as follows.

Throughout this study, we assume that Peano kernels defined by

K1(x, t) =
{[

t − a − λ
2 (x − a)

]
, a ≤ t < x[

t − b + λ
2 (b − x)

]
, x ≤ t ≤ b

K2(x, t) =
{ 1

b−a

[
t − a − λ

2 (x − a)
]
(b − x)1−α�(α), a ≤ t < x

1
b−a

[
t − b + λ

2 (b − x)
]
(b − x)1−α�(α), x ≤ t ≤ b

h(x, t) =
{ 1

b−a

[
t − a − λ

2 (x − a)
]
(b − x)1−α�(α), a ≤ t < x

1
b−a

[
b − t + λ

2 (b − x)
]
(b − x)1−α�(α), x ≤ t ≤ b.

Lemma 2.5 ([12]) Let f : I ⊂ R → R be a differentiable function on I 0 with
a, b ∈ I (a < b), α ≥ 1, 0 ≤ λ ≤ 1, and f ′ ∈ L1[a, b], then the generalization of
Montgomery identity for fractional integral holds:

(
1 − λ

2

)
f (x) = Jα

a (K2(x, b) f
′(b)) + (b − x)1−α

b − a
�(α)Jα

a f (b)

= −Jα−1
a (K2(x, b) f (b)) − λ

2
(b − a)α−2(x − a)(b − x)α−1 f (a)

Theorem 2.16 ([12]) Let f : [a, b] → R be differentiable on (a, b) such that f ′ ∈
L1[a, b], where a < b and 0 ≤ λ ≤ 1. If | f ′(x)| ≤ M for every x ∈ [a, b] andα ≥ 1,
then the following Ostrowski fractional inequality holds:

∣∣∣∣
(
1 − λ

2

)
f (x) − (b − x)1−α

b − a
�(α)Jα

a f (b)

+ Jα−1
a (K2(x, b) f (b)) + λ

2
(b − a)α−2(x − a)(b − x)α−1 f (a)

∣∣∣∣
≤ M

�(α)
A(x),
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where

A(x)

= �(α)(b − x)1−α

b − a

{
(b − a)

[
2(b − a) + λ(x − a)

2α
− b − a

α + 1

]

+ (b − x)α
[
2(b − x)

α + 1
− (b − a) + λ(x − a+b

2

α

]}
.

Theorem 2.17 ([12]) Let f : [a, b] → R be differentiable on (a, b) such that f ′ ∈
L1[a, b], where a < b, 0 ≤ λ ≤ 1, and α ≥ 1. If the mapping | f ′|q is convex on
[a, b], q ≥ 1, then the following fractional inequality holds:

∣∣∣∣
(
1 − λ

2

)
f (x) − (b − x)1−α

b − a
�(α)Jα

a f (b) + Jα−1
a (K2(x, b) f (b))

+λ

2
(b − a)α−2(x − a)(b − x)α−1 f (a)

∣∣∣∣
≤ 1

�(α)
(A(x))1−

1
q (| f ′(a)|q B(x) + | f ′(b)|q C(x))

1
q

where

B(x) = �(α)(b − a)1−α

(b − a)2

{
(b − a)α+1

[
2(b − a) + λ(x − a)

2(α + 1)
− b − a

α + 2

]

+ (b − x)α+1

[
2(b − x)

α + 2
− (b − a) + λ(x − a+b

2

α + 1

]}

and

C(x) = �(α)(b − x)1−α

(b − a)

{
(b − a)α

[
2(b − a) + λ(x − a)

2α(α + 1)
−
(
b − a

α + 1
− 1

α + 2

)]

+ 2(b − x)α+1

(
1

α + 1
− (b − x)

(α + 2)(b − a)

)

− (b − x)α
(

(b − a) + λ

(
x − a + b

2

))(
b − x

(b − a)(α + 1)
− 1

α

)}
.

Set et al. have given a new integral identity by using Riemann–Liouville fractional
integrals and proved several new Simpson-type integral inequalities that generalize
previous results.

Lemma 2.6 ([13]) f : [a, b] → R be a differentiable function on (a, b)with a < b.
If f ′ ∈ L[a, b], n ≥ 0, and α > 0, then the following equality holds:
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I (a, b; n, α) = 1

6

[
f (a) + f (b) + 2 f

(
a + nb

n + 1

)
+ 2 f

(
na + b

n + 1

)]

−�(α + 1) (n + 1)α

6(b − a)α

[
Jα
a+ f

(
na + b

n + 1

)
+ Jα

b− f

(
a + nb

n + 1

)]

−�(α + 1) (n + 1)α

3(b − a)α

[
Jα

a+nb
n+1

+ f (b) + Jα
na+b
n+1

− f (a)

]

= b − a

2 (n + 1)

(∫ 1

0

[
2 (1 − t)α − tα

3

]
f ′
(
n + t

n + 1
a + 1 − t

n + 1
b

)
dt

+
∫ 1

0

[
tα − 2 (1 − t)α

3

]
f ′
(
1 − t

n + 1
a + n + t

n + 1
b

)
dt

)

for all x ∈ [a, b] and where �(α) = ∫∞
0 e−uuα−1du.

Proof By using integration by parts, we have

I1 =
∫ 1

0

[
2 (1 − t)α − tα

3

]
f ′
(
n + t

n + 1
a + 1 − t

n + 1
b

)
dt

= n + 1

3 (b − a)

[
f (a) + 2 f

(
na + b

n + 1

)]

−α (n + 1)α+1

3(b − a)α+1

∫ na+b
n+1

a
f (x)

(
na + b

n + 1
− x

)α−1

dx

−2α (n + 1)α+1

3(b − a)α+1

∫ na+b
n+1

a
f (x) (x − a)α−1 dx

and

I2 =
∫ 1

0

[
tα − 2 (1 − t)α

3

]
f ′
(
1 − t

n + 1
a + n + t

n + 1
b

)
dt

= n + 1

3 (b − a)

[
f (b) + 2 f

(
a + nb

n + 1

)]

−α (n + 1)α+1

3(b − a)α+1

∫ b

a+nb
n+1

f (x)

(
x − a + nb

n + 1

)α−1

dx

−2α (n + 1)α+1

3(b − a)α+1

∫ b

a+nb
n+1

f (x) (b − x)α−1 dx .

By adding I1 and I2 and multiplying the both sides b−a
2(n+1) , we can write
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I1 + I2 = 1

6

[
f (a) + f (b) + 2 f

(
a + nb

n + 1

)
+ 2 f

(
na + b

n + 1

)]

−α (n + 1)α

6(b − a)α

∫ na+b
n+1

a
f (x)

(
na + b

n + 1
− x

)α−1

dx

−α (n + 1)α

3(b − a)α

∫ na+b
n+1

a
f (x) (x − a)α−1 dx

−α (n + 1)α

6(b − a)α

∫ b

a+nb
n+1

f (x)

(
x − a + nb

n + 1

)α−1

dx

−α (n + 1)α

3(b − a)α

∫ b

a+nb
n+1

f (x) (b − x)α−1 dx .

From the facts that

1

� (α)

∫ na+b
n+1

a
f (x) (x − a)α−1 dx = Jα

na+b
n+1

− f (a)

1

� (α)

∫ b

a+nb
n+1

f (x) (b − x)α−1 dx = Jα
a+nb
n+1

+ f (b)

1

� (α)

∫ na+b
n+1

a
f (x)

(
na + b

n + 1
− x

)α−1

dx = Jα
a+ f

(
na + b

n + 1

)

1

� (α)

∫ b

a+nb
n+1

f (x)

(
x − a + nb

n + 1

)α−1

dx = Jα
b− f

(
a + nb

n + 1

)
,

we get the result. �

Theorem 2.18 ([13]) Let f : [a, b] → R be a differentiable function on [a, b]. If
f ′ ∈ L[a, b] and ∣∣ f ′ (x)

∣∣ is convex function, then the following inequality holds for
fractional integrals with α > 0;

|I (a, b; n, α)|

≤ b − a

2 (n + 1)

⎡
⎢⎣
3 − 2

(
2

1
α

2
1
α +1

)α+1
− 4

(
1 − 2

1
α

2
1
α +1

)α+1

3 (α + 1)

⎤
⎥⎦(∣∣ f ′ (a)

∣∣+ ∣∣ f ′ (b)
∣∣)

where � (α) is Euler gamma function.

Proof From the integral identity given in Lemma 1 and by using the properties of
modulus, we have
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|I (a, b; n, α)|
≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
∣∣∣∣ f ′

(
n + t

n + 1
a + 1 − t

n + 1
b

)∣∣∣∣ dt

+
∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
∣∣∣∣ f ′

(
1 − t

n + 1
a + n + t

n + 1
b

)∣∣∣∣ dt
)

.

Since
∣∣ f ′ (x)

∣∣ is convex function, we can write

|I (a, b; n, α)|
≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
(
n + t

n + 1

∣∣ f ′ (a)
∣∣+ 1 − t

n + 1

∣∣ f ′ (b)
∣∣
)
dt

+
∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
(
1 − t

n + 1

∣∣ f ′ (a)
∣∣+ n + t

n + 1

∣∣ f ′ (b)
∣∣
)
dt

)

= b − a

2 (n + 1)

⎛
⎜⎜⎜⎜⎝

2
1
α

2
1
α +1∫

0

(
2 (1 − t)α − tα

3

)(
n + t

n + 1

∣∣ f ′ (a)
∣∣+ 1 − t

n + 1

∣∣ f ′ (b)
∣∣
)
dt

+
1∫

2
1
α

2
1
α +1

(
tα − 2 (1 − t)α

3

)(
n + t

n + 1

∣∣ f ′ (a)
∣∣+ 1 − t

n + 1

∣∣ f ′ (b)
∣∣
)
dt

+

2
1
α

2
1
α +1∫

0

(
2 (1 − t)α − tα

3

)(
1 − t

n + 1

∣∣ f ′ (a)
∣∣+ n + t

n + 1

∣∣ f ′ (b)
∣∣
)
dt

+
1∫

2
1
α

2
1
α +1

(
tα − 2 (1 − t)α

3

)(
1 − t

n + 1

∣∣ f ′ (a)
∣∣+ n + t

n + 1

∣∣ f ′ (b)
∣∣
)
dt

⎞
⎟⎟⎟⎟⎠ .

By a simple computation, we obtain the desired result. �

Theorem 2.19 ([13]) Let f : [a, b] → R be a differentiable function on [a, b]. If
f ′ ∈ L[a, b] and ∣∣ f ′ (x)

∣∣q is convex function, then the following inequality holds for
fractional integrals with α > 0, q > 1, and p−1 + q−1 = 1;
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|I (a, b; n, α)|

≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
p

dt

) 1
p

×
[(

2n + 1

2 (n + 1)

∣∣ f ′ (a)
∣∣q + 1

2 (n + 1)

∣∣ f ′ (b)
∣∣q
) 1

q

+
(

1

2 (n + 1)

∣∣ f ′ (a)
∣∣q + 2n + 1

2 (n + 1)

∣∣ f ′ (b)
∣∣q
) 1

q

]
.

where � (α) is Euler gamma function.

Proof By using Lemma 1 and Hölder integral inequality, we can write

|I (a, b; n, α)|

≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
∣∣∣∣ f ′

(
n + t

n + 1
a + 1 − t

n + 1
b

)∣∣∣∣ dt

+
∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
∣∣∣∣ f ′

(
1 − t

n + 1
a + n + t

n + 1
b

)∣∣∣∣ dt
)

≤ b − a

2 (n + 1)

⎛
⎝
(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
p
dt

) 1
p
(∫ 1

0

∣∣∣∣ f ′
(
n + t

n + 1
a + 1 − t

n + 1
b

)∣∣∣∣
q
dt

) 1
q

+
(∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
p
dt

) 1
p
(∫ 1

0

∣∣∣∣ f ′
(
1 − t

n + 1
a + n + t

n + 1
b

)∣∣∣∣
q
dt

) 1
q
⎞
⎠ .

Since
∣∣ f ′ (x)

∣∣q is convex function, we can write

|I (a, b; n, α)|
≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
∣∣∣∣ f ′

(
n + t

n + 1
a + 1 − t

n + 1
b

)∣∣∣∣ dt

+
∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
∣∣∣∣ f ′

(
1 − t

n + 1
a + n + t

n + 1
b

)∣∣∣∣ dt
)

≤ b − a

2 (n + 1)

((∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
p

dt

) 1
p
(∫ 1

0

(
n + t

n + 1

∣∣ f ′ (a)
∣∣q

+ 1 − t

n + 1

∣∣ f ′ (b)
∣∣q
)
dt

) 1
q
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+
(∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
p

dt

) 1
p
(∫ 1

0

(
1 − t

n + 1

∣∣ f ′ (a)
∣∣q

+ n + t

n + 1

∣∣ f ′ (b)
∣∣q
)
dt

) 1
q

)
.

By taking into account,

∫ 1

0

(
n + t

n + 1

∣∣ f ′ (a)
∣∣q + 1 − t

n + 1

∣∣ f ′ (b)
∣∣q
)
dt = 2n + 1

2 (n + 1)

∣∣ f ′ (a)
∣∣q

+ 1

2 (n + 1)

∣∣ f ′ (b)
∣∣q

∫ 1

0

(
1 − t

n + 1

∣∣ f ′ (a)
∣∣q + n + t

n + 1

∣∣ f ′ (b)
∣∣q
)
dt = 1

2 (n + 1)

∣∣ f ′ (a)
∣∣q

+ 2n + 1

2 (n + 1)

∣∣ f ′ (b)
∣∣q ,

we obtain

|I (a, b; n, α)|

≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
p

dt

) 1
p

×
[(

2n + 1

2 (n + 1)

∣∣ f ′ (a)
∣∣q + 1

2 (n + 1)

∣∣ f ′ (b)
∣∣q
) 1

q

+
(

1

2 (n + 1)

∣∣ f ′ (a)
∣∣q + 2n + 1

2 (n + 1)

∣∣ f ′ (b)
∣∣q
) 1

q

]
.

which completes the proof. �

Theorem 2.20 ([13]) Let f : [a, b] → R be a differentiable function on [a, b]. If
f ′ ∈ L[a, b] and ∣∣ f ′ (x)

∣∣q is convex function, then the following inequality holds for
fractional integrals with α > 0 and q ≥ 1 ;

|I (a, b; n, α)|

≤ b − a

2 (n + 1)

⎛
⎜⎝
3 − 2

(
2

1
α

2
1
α +1

)α+1
− 4

(
1 − 2

1
α

2
1
α +1

)α+1

3 (α + 1)

⎞
⎟⎠

1− 1
q

×
((

K1(α, n)
∣∣ f ′ (a)

∣∣q + K2(α, n)
∣∣ f ′ (b)

∣∣q) 1
q

+ (
K2(α, n)

∣∣ f ′ (a)
∣∣q + K1(α, n)

∣∣ f ′ (b)
∣∣q) 1

q

)
.
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where � (α) is Euler gamma function and

K1(α, n) =
(−4n − 4)

(
1 − 2

1
α

2
1
α +1

)α+1
+ 3n + 2 − 2n

(
2

1
α

2
1
α +1

)α+1

3 (α + 1) (n + 1)

+
4
(
1 − 2

1
α

2
1
α +1

)α+2
− 2

(
2

1
α

2
1
α +1

)α+2
− 1

3 (α + 2) (n + 1)

K2(α, n) =
1 − 2

(
2

1
α

2
1
α +1

)α+1

3 (α + 1) (n + 1)
+

1 − 4
(
1 − 2

1
α

2
1
α +1

)α+2
+ 2

(
2

1
α

2
1
α +1

)α+2

3 (α + 2) (n + 1)
.

Proof By Lemma 1 and power-mean integral inequality, we can write

|I (a, b; n, α)|

≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣ dt
)1− 1

q

×
((∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
∣∣∣∣ f ′

(
n + t

n + 1
a + 1 − t

n + 1
b

)∣∣∣∣
q

dt

) 1
q

+
∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
∣∣∣∣ f ′

(
1 − t

n + 1
a + n + t

n + 1
b

)∣∣∣∣
q

dt

) 1
q

.

By taking into account convexity of
∣∣ f ′ (x)

∣∣q , we get
|I (a, b; n, α)|

≤ b − a

2 (n + 1)

(∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣ dt
)1− 1

q

×
((∫ 1

0

∣∣∣∣2 (1 − t)α − tα

3

∣∣∣∣
(
n + t

n + 1

∣∣ f ′ (a)
∣∣q + 1 − t

n + 1

∣∣ f ′ (b)
∣∣q
)
dt

) 1
q

+
(∫ 1

0

∣∣∣∣ t
α − 2 (1 − t)α

3

∣∣∣∣
(
1 − t

n + 1

∣∣ f ′ (a)
∣∣q + n + t

n + 1

∣∣ f ′ (b)
∣∣q
)
dt

) 1
q
)

.

Computing the above integrals, we get the result. �

Sarıkaya and Yıldırım have given a new refinement of Hermite–Hadamard
inequality for Riemann–Liouville fractional integrals. They have proved an integral
identity that gives some results for left side of Hermite–Hadamard inequality as
follows.

Theorem 2.21 ([14]) Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequalities for
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fractional integrals hold:

f

(
a + b

2

)
≤ 2α−1�(α + 1)

(b − a)α

[
Jα

( a+b
2 )

+ f (b) + Jα

( a+b
2 )

− f (a)
]

≤ f (a) + f (b)

2
,

with α > 0.

Lemma 2.7 ([14]) Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b. If f ′ ∈ L[a, b], then the following equality for fractional integrals holds:

2α−1�(α + 1)

(b − a)α

[
Jα

( a+b
2 )

+ f (b) + Jα

( a+b
2 )

− f (a)
]

− f

(
a + b

2

)

= b − a

4

{∫ 1

0
tα f ′

(
t

2
a + 2 − t

2
b

)
dt −

∫ 1

0
tα f ′

(
2 − t

2
a + t

2
b

)
dt

}
,

with α > 0.

Theorem 2.22 ([14]) Let f : [a, b] → R be a differentiable mapping on (a, b)with
a < b. If | f ′|q is a convex function on [a, b] for q ≥ 1, then the following inequality
for fractional integrals holds:

∣∣∣∣2
α−1�(α + 1)

(b − a)α

[
Jα

( a+b
2 )

+ f (b) + Jα

( a+b
2 )

− f (a)
]

− f

(
a + b

2

) ∣∣∣∣

≤ (b − a)

4(α + 1)

(
1

2(α + 2)

) 1
q
{[

(α + 1)| f ′(a)|q + (α + 3)| f ′(b)|q
] 1

q

+
[
(α + 3)| f ′(a)|q + (α + 1)| f ′(b)|q

] 1
q

}
.

Theorem 2.23 ([14]) Let f : [a, b] → R be a differentiable mapping on (a, b)with
a < b. If | f ′|q is a convex on [a, b] for q > 1, then the following inequality for
fractional integrals holds:

∣∣∣∣2
α−1�(α + 1)

(b − a)α

[
Jα

( a+b
2 )

+ f (b) + Jα

( a+b
2 )

− f (a)
]

− f (
a + b

2
)

∣∣∣∣

≤ (b − a)

4

(
1

αp + 1

) 1
p
{[ | f ′(a)| + 3| f ′(b)|

4

] 1
q +

[3| f ′(a)| + | f ′(b)|
4

] 1
q

}

≤ b − a

4

( 4

αp + 1

) 1
p [| f ′(a)| + | f ′(b)|] ,

where 1
p + 1

q = 1.
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3 Conformable Fractional Integrals and Inequalities

The conformable fractional derivative attracts attention with conformity to classical
derivative. Khalil et al. have introduced the conformable fractional derivative by
the equation which has a limit form similar to the classical derivative. Khalil et
al. have proved that this definition provides multiplication and division rules. They
also express the Rolle theorem and the mean value theorem for functions which are
differentiable with conformable fractional order.

The analysis of the conformable fractional was developed by Abdeljawad. In
his work, he has presented left and right conformable fractional derivative concepts,
fractional chain rule, andGronwall inequality for a conformable fractional derivative.
We will mention the beta function (see [5]):

B (a, b) = �(a)�(b)

�(a + b)
=
∫ 1

0
ta−1 (1 − t)b−1 dt, a, b > 0,

where � (α) = ∫∞
0 e−t tα−1dt is gamma function.

Incomplete beta function is defined as:

Bx (a, b) =
∫ x

0
ta−1 (1 − t)b−1 dt, a, b > 0.

In spite of its valuable contributions to mathematical analysis, the Riemann–
Liouvile fractional integrals have deficiencies. For example, the solution of the dif-
ferential equation is given as:

y( 1
2 ) + y = x ( 1

2 ) + 2

�(2.5)
x ( 3

2 ), y(0) = 0

where y( 1
2 ) is the fractional derivative of y of order 1

2 .
The solution of the above differential equation has caused to imagine on a new

and simple representation of the definition of fractional derivative. In [15] , Khalil
et al. gave a new definition that is called “conformable fractional derivative.” They
not only proved further properties of these definitions but also gave the differences
with the other fractional derivatives. Besides, another considerable study has been
presented by Abdeljawad to discuss the basic concepts of fractional calculus.

In [16], Abdeljawad gave the following definitions of right–left conformable frac-
tional integrals:

Definition 3.1 Let α ∈ (n, n + 1], n = 0, 1, 2, . . . and set β = α − n. Then, the left
conformable fractional integral of any order α > 0 is defined by

(I aα f )(t) = 1

n!
∫ t

a
(t − x)n(x − a)β−1 f (x)dx .
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Definition 3.2 Analogously, the right conformable fractional integral of any order
α > 0 is defined by

(b Iα f )(t) = 1

n!
∫ b

t
(x − t)n(b − x)β−1 f (x)dx .

Notice that if α = n + 1, then β = α − n = n + 1 − n = 1; hence, (I an+1 f )(t) =
(J n+1

a+ f )(t) and (b In+1 f )(t) = (
J n+1
b− f

)
(t).

In [15, 16], the authors have pointed that the Riemann–Liouville derivatives are
not valid for product of two functions. In this case, the inequalities that have been
proved by Riemann–Liouville integrals are not valid. The results which are obtained
by using the conformable fractional integrals have a wide range of validity. (Let us
consider the function f defined as f : R+ → R , f = x2ex which is convex.)

Several researchers have focused on new integral inequalities involving con-
formable fractional integrals in recent years. In [17], Set et al. have given some
more general Hadamard-type inequalities for convex functions. Set, Akdemir, and
Mumcu have proved several Ostrowski-type inequalities by using conformable frac-
tional integrals involving special functions in [18]. In [19–21], the authors have
obtained new inequalities of Hermite–Hadamard type associated with conformable
fractional integrals. In [22], several new integral inequalities have been established
via conformable fractional integrals for pre-invex functions by Awan et al. In [23],
Sarıkaya and Budak have proved some Opial-type inequalities.

Set, Akdemir, and Mumcu have established a new form of Hermite–Hadamard
inequality via conformable fractional integrals and also proved an extension of
Hermite–Hadamard inequality as follows.

Theorem 3.1 ([24]) Let f : [a, b] → R be a mapping with 0 ≤ a < b and f ∈
L1[a, b]. If f is a convex mapping on [a, b], then one can obtain the following
inequalities for conformable fractional integrals:

f

(
a + b

2

)
≤ �(α + 1)

2(b − a)α�(α − n)
[(I aα f )(b) + (b Iα f )(a)] ≤ f (a) + f (b)

2
,

(3.1)
with α ∈ (n, n + 1].

3.1 Extensions of HH-Inequality

Theorem 3.2 ([24]) Assume that f : [a, b] → R is a twice differentiable mapping
with a < b and f ∈ L1[a, b]. If f ′′

is bounded on [a, b], then we have
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m�(α + 1)

2(b − a)α�(α − n)n!
∫ a+b

2

a

(
a + b

2
− x

)2

×[(b − x)n(x − a)α−n−1 + (x − a)n(b − x)α−n−1]dx
≤ �(α + 1)

2(b − a)α�(α − n)
[(I aα f )(b) + (b Iα f )(a)] − f

(
a + b

2

)
(3.2)

≤ M�(α + 1)

2(b − a)α�(α − n)n!
∫ a+b

2

a

(
a + b

2
− x

)2

,

×[(b − x)n(x − a)α−n−1 + (x − a)n(b − x)α−n−1]dx,

and

−M�(α + 1)

2(b − a)α�(α − n)n!
∫ a+b

2

a
(x − a)(b − x)

×[(b − x)n(x − a)α−n−1 + (x − a)n(b − x)α−n−1]dx
≤ �(α + 1)

2(b − a)α�(α − n)
[(I aα f )(b) + (b Iα f )(a)] − f (a) + f (b)

2
(3.3)

≤ −m�(α + 1)

2(b − a)α�(α − n)n!
∫ a+b

2

a
(x − a)(b − x)

×[(b − x)n(x − a)α−n−1 + (x − a)n(b − x)α−n−1]dx,

with α ∈ (n, n + 1], where m = in ft∈[a,b] f
′′
(t), M = supt∈[a,b] f

′′
(t).

It is obvious that f
′′ ≥ 0 implies that f

′
non-decreasing. Therefore,

f
′
(a + b − x) ≥ f

′
(x), (3.4)

holds for all x ∈ [a, a+b
2 ]. So, we establish the following theorem using inequality

of (3.4).

Theorem 3.3 ([24]) Let f : [a, b] → R be a positive, differentiable mapping with
a < b and f ∈ L1[a, b]. If f

′
(a + b − x) ≥ f

′
(x) for all x ∈ [a, a+b

2 ]. Then, the
following inequalities for fractional integrals hold

f

(
a + b

2

)
≤ �(α + 1)

2(b − a)α�(α − n)
[(I aα f )(b) + (b Iα f )(a)] ≤ f (a) + f (b)

2
.

The following results have been obtained by Set et. al. involving Ostrowski-type
inequalities for conformable fractional integrals.

Lemma 3.1 ([25]) Let f : [a, b] → R be a differentiable mapping in the interior
I ◦ on (a, b) with a < b. If f

′ ∈ L[a, b], then for all x ∈ [a, b] and α ∈ [n, n + 1)
we have:
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(x − a)α+1

n!(b − a)

∫ 1

0
Bt (n + 1, α − n) f

′
(t x + (1 − t)a)dt

− (b − x)α+1

n!(b − a)

∫ 1

0
Bt (n + 1, α − n) f

′
(t x + (1 − t)b)dt (3.5)

= �(α − n)[(x − a)α + (b − x)α]
�(α + 1)(b − a)

f (x) − 1

b − a
[ x Iα f (a) + I xα f (b)],

where �(α) = ∫ 1
0 e−t uα−1du.

Theorem 3.4 ([25]) Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b such that f

′ ∈ L[a, b]. If | f ′ | is convex and | f ′
(x)| ≤ M, x ∈ [a, b], then the

following inequality for fractional integrals with α ∈ [n, n + 1) holds:

∣∣∣∣�(α − n)[(x − a)α + (b − x)α]
�(α + 1)(b − a)

f (x) − 1

b − a
[ x Iα f (a) + I xα f (b)]

∣∣∣∣
≤ M�(α − n + 1)

�(α + 2)(b − a)
[(x − a)α+1 + (b − x)α+1]. (3.6)

Theorem 3.5 ([25]) Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b such that f

′ ∈ L[a, b]. If | f ′ |q is convex, p, q > 1, and | f ′
(x)| ≤ M, x ∈

[a, b], then the following inequality for fractional integrals holds:

∣∣∣∣�(α − n)[(x − a)α + (b − x)α]
�(α + 1)(b − a)

f (x) − 1

b − a
[ x Iα f (a) + I xα f (b)]

∣∣∣∣

≤ M

n!(b − a)
[(x − a)α+1 + (b − x)α+1]

(∫ 1

0
Bt (n + 1, α − n)pdt

) 1
p

,

where 1
p + 1

q = 1, α ∈ [n, n + 1).

Theorem 3.6 ([25]) Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b such that f

′ ∈ L[a, b]. If | f ′ |q is convex, q ≥ 1, and | f ′
(x)| ≤ M, x ∈ [a, b],

then the following inequality for fractional integrals holds:

∣∣∣∣�(α − n)[(x − a)α + (b − x)α]
�(α + 1)(b − a)

f (x) − 1

b − a
[ x Iα f (a) + I xα f (b)]

∣∣∣∣
≤ M

�(α − n + 1)

�(α + 2)(b − a)

[
(x − a)α+1 + (b − x)α+1

]
,

where α ∈ [n, n + 1).

Theorem 3.7 ([25]) Let f : [a, b] ⊂ [0,∞) → R be a differentiable mapping on
(a,b) with a < b such that f

′ ∈ L[a, b]. If | f ′ |q is a concave on [a, b] and p, q > 1,
then the following inequality for conformable fractional integrals holds:
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∣∣∣∣�(α − n)[(x − a)α + (b − x)α]
�(α + 1)(b − a)

f (x) − 1

b − a
[ x Iα f (a) + I xα f (b)]

∣∣∣∣

≤
(∫ 1

0
Bt (n + 1, α − n)pdt

) 1
p

×
[
(x − a)α+1

n!(b − a)

∣∣∣∣ f ′
(
x + a

2

)∣∣∣∣+ (b − x)α+1

n!(b − a)

∣∣∣∣ f ′
(
b + x

2

)∣∣∣∣
]

,

where 1
p + 1

q = 1, α ∈ [n, n + 1).

In [26], Akdemir, Ekinci, and Set have proved some inequalities involving con-
formable fractional integral operators as follows:

Theorem 3.8 Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b
such that f ′ ∈ L [a, b]. Suppose that there exist two integrable functions ϕ1, ϕ2 on
[a, b] such that

ϕ1 (t) ≤ f (t) ≤ ϕ2 (t) , ∀t ∈ [a, b] . (3.7)

Then, the inequality

x Iαϕ2 (a) I xα f (b) + I xα ϕ1 (b)x Iα f (a) ≥ I xα ϕ1 (b)x Iαϕ2 (a) + I xα f (b)x Iα f (a)

holds true, where x ∈ [a, b].

Proof From the inequality (3.7), for all u, v ∈ [a, b], we have

(ϕ2 (u) − f (u)) ( f (v) − ϕ1 (v)) ≥ 0.

This implies that

ϕ2 (u) f (v) + ϕ1 (v) f (u) ≥ ϕ1 (v) ϕ2 (u) + f (u) f (v) .

For x ∈ [a, b], if we use the change of variables u = r x + (1 − r) a and v = sx +
(1 − s) b for r, s ∈ [0, 1] and multiply both sides of the above inequality by

[
rn (1 − r)α−n−1] [sn (1 − s)α−n−1] ,

later by integrating the resulting expression with respect to r and s, we have the
following equality for the first integral

1∫

0

1∫

0

[
rn (1 − r)α−n−1

] [
sn (1 − s)α−n−1

]
ϕ2 (r x + (1 − r) a) f (sx + (1 − s) b) drds

=
1∫

0

[
sn (1 − s)α−n−1

]
f (sx + (1 − s) b) ds

1∫

0

[
rn (1 − r)α−n−1

]
ϕ2 (r x + (1 − r) a) dr.
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By using the change of variables above, we get

1∫

0

[
sn (1 − s)α−n−1

]
f (sx + (1 − s) b) ds

1∫

0

[
rn (1 − r)α−n−1

]
ϕ2 (r x + (1 − r) a) dr

=
⎡
⎣

b∫

x

(
x − v

x − b

)n (
v − b

x − b

)α−n−1 f (v)

x − b
dv

⎤
⎦

⎡
⎣

x∫

a

(
u − a

x − a

)n ( x − u

x − a

)α−n−1
ϕ2 (u)

x − a
du

⎤
⎦

=
⎡
⎣ 1

(b − x)α

b∫

x

(x − v)n (v − b)α−n−1 f (v) dv

⎤
⎦

⎡
⎣ 1

(x − a)α

x∫

a

(u − a)n (x − u)α−n−1 ϕ2 (u) du

⎤
⎦

= (n!)2 x Iαϕ2 (a) I xα f (b) .

If we proceed the similar methods for the other integrals, we deduce the desired
result. �

Theorem 3.9 Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b
such that f ′ ∈ L [a, b]. Suppose that m ≤ f (t) ≤ M, for all t ∈ [a, b] and for some
m, M ∈ R. Then, the following inequality holds:

(n!)mI xα f (b)

(b − x)α
+ (n!) Mx Iα f (a)

(x − a)α
≥ (n!)2 I xα f (b)x Iα f (a)

(b − x)α (x − a)α
+ B (n + 1, α − n)mM.

Proof Since
m ≤ f (t) ≤ M,

for all t, u, v ∈ [a, b], we have

(m − f (u)) ( f (v) − M) ≥ 0.

By using the above inequality and a similar argument to the proof of Theorem 3.8,
we get the desired result. �

Theorem 3.10 Let f : [a, b] → R be a differentiable mapping on (a, b)with a < b
such that f ′ ∈ L [a, b]. Suppose that there exist two integrable functions ϕ1, ϕ2 on
[a, b] such that

ϕ1 (t) ≤ f (t) ≤ ϕ2 (t) , ∀t ∈ [a, b] .

Then, the inequality
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x Iαϕ2 (a) I xα f (b) + I xα ϕ1 (b)x Iα f (a) ≥ I xα ϕ1 (b)x Iαϕ2 (a) + I xα f (b)x Iα f (a)

holds true, where x ∈ [a, b].

Proof From inequality (3.7), for all u, v ∈ [a, b], we have

(
ϕ2 (u) − f ′ (u)

) (
f ′ (v) − ϕ1 (v)

) ≥ 0.

This implies

ϕ2 (u) f ′ (v) + ϕ1 (v) f ′ (u) ≥ ϕ1 (v) ϕ2 (u) + f ′ (u) f ′ (v) .

For x ∈ [a, b], if we use the change of variables u = r x + (1 − r) a and v = sb +
(1 − s) x for r, s ∈ [0, 1] and multiply both sides of the above inequality by

Br (n + 1, α − n) Bs (n + 1, α − n) ,

and then integrate it with respect to r and s, for the first integral, we have

1∫

0

1∫

0

Br (n + 1, α − n) Bs (n + 1, α − n) ϕ2 (r x + (1 − r) a) f ′ (sb + (1 − s) x) drds

=
1∫

0

Bs (n + 1, α − n) f ′ (sb + (1 − s) x) ds

1∫

0

Br (n + 1, α − n) ϕ2 (r x + (1 − r) a) dr.

By using integration by parts and the change of variables above, we get

1∫

0

B (n + 1, α − n) f ′ (sb + (1 − s) x) ds

= Bs (n + 1, α − n)
f (sb + (1 − s) x)

b − x

∣∣∣∣
1

0
−

1∫

0

sn (1 − s)α−n−1 f (sb + (1 − s) x)

b − x
ds

= B (n + 1, α − n)
f (b)

b − x
− 1

b − x

b∫

x

(
v − x

b − x

)n (b − v

b − x

)α−n−1

f (v) dv

= � (n + 1) � (α − n)

� (α + 1)

f (b)

b − x
− 1

(b − x)α+1

b∫

x

(v − x)n (b − v)α−n−1 f (v) dv

= B (n + 1, α − n)
f (b) n!
b − x

− n!
(b − x)α+1 I

x
α f (b) ,

and
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1∫

0

Br (n + 1, α − n) ϕ2 (r x + (1 − r) a) dr

= B (n + 1, α − n)

x∫

a

ϕ2 (u) du.

By changing of the variables above, we get

=
⎡
⎣

b∫

x

(
x − v

x − b

)n (
v − b

x − b

)α−n−1 f (v)

x − b
dv

⎤
⎦

⎡
⎣

x∫

a

(
u − a

x − a

)n ( x − u

x − a

)α−n−1 f (u)

x − a
du

⎤
⎦

=
⎡
⎣ 1

(b − x)α

b∫

x

(x − v)n (v − b)α−n−1 dv

⎤
⎦

⎡
⎣ 1

(x − a)α

x∫

a

(u − a)n (x − u)α−n−1 du

⎤
⎦

= (n!)2 x Iαϕ2 (a) I xα f (b) .

By using the similar methods for the other integrals, we deduce the desired result.�

Theorem 3.11 Let f, g : [a, b] → R be two Lipschitzian mappings with the con-
stants L1 > 0 and L2 > 0, i.e.,

| f (x) − f (y)| ≤ L1 |x − y| , |g (x) − g (y)| ≤ L2 |x − y| , (3.8)

for all x, y ∈ [a, b]. Then, the following inequality holds for conformable fractional
integrals

∣∣� (α − n)
[
x Iα ( f g) (a) + I xα ( f g) (b)

]
−� (n + 1)

[
x Iαg (a) I xα f (b) + I xα g (b)x Iα f (a)

]∣∣

≤ L1L2

� (n + 1)

[
B (n + 1, α − n)

(x − a)α
K1 + B (n + 1, α − n)

(b − x)α
K2

− 2

(x − a)α (b − x)α
K3K4

]
,

where
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K1 = (x − a)α

� (α + 3)

(
(n + 1) (n + 2) x2 − 2ax (n + 1) (n − α) + a2 (n − α) (n − α − 1)

)
,

K2 = � (n + 1) � (α − n) (x − b)α

� (α + 3)

× (
(n + 1) (n + 2) b2 − 2bx (n + 1) (α − n) + x2 (n − α) (n − α − 1)

)
,

K3 = � (n + 1) � (α − n) (x − a)α

� (α + 3)

× (
(n + 1) (n + 2) x2 − 2ax (n + 1) (n − α) + a2 (n − α) (n − α − 1)

)
,

K4 = � (n + 1) � (α − n) (x − b)α

� (α + 2)
((n + 1) b − x (n − α)) .

Proof By (3.8), we can write

|( f (x) − f (y)) (g (x) − g (y))| ≤ L1L2 (x − y)2

for all x, y ∈ [a, b]. For x ∈ [a, b], if we use the change of variables u = r x +
(1 − r) a and v = sx + (1 − s) b for r, s ∈ [0, 1] and multiply both sides of the
above inequality by

[
rn (1 − r)α−n−1

] [
sn (1 − s)α−n−1

]
, we get

[
rn (1 − r)α−n−1

] [
sn (1 − s)α−n−1

]
[| f (r x + (1 − r) a) g (r x + (1 − r) a)

f (sx + (1 − s) b) g (sx + (1 − s) b) − f (r x + (1 − r) a) g (sx + (1 − s) b)

+ f (sx + (1 − s) b) g (r x + (1 − r) a)|]
≤
[
rn (1 − r)α−n−1

] [
sn (1 − s)α−n−1

]
L1L2 ((r x + (1 − r) a) − (sx + (1 − s) b))2 .

Then by integrating the resulting inequality with respect to r and s, we have

1∫

0

1∫

0

[
rn (1 − r)α−n−1

] [
sn (1 − s)α−n−1

]
[| f (r x + (1 − r) a) g (r x + (1 − r) a)

f (sx + (1 − s) b) g (sx + (1 − s) b) − f (r x + (1 − r) a) g (sx + (1 − s) b)

+ f (sx + (1 − s) b) g (r x + (1 − r) a)|] drds

≤ L1L2

1∫

0

1∫

0

[
rn (1 − r)α−n−1

] [
sn (1 − s)α−n−1

]

((r x + (1 − r) a) − (sx + (1 − s) b))2 drds.
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By computing above integrals and by using the definition of conformable fractional
integrals, we get the result. �

Theorem 3.12 Let f : I ⊂ (0,∞) → R be a function such that f ∈ L1[a, b],
where a, b ∈ I with a < b. If f is GA-convex function on [a, b], we have the fol-
lowing inequalities for conformable fractional integrals:

f
(√

ab
)

≤ �(α + 1)

2(ln b − ln a)α�(α − n)
[I aα f (b) +b Iα f (a)] ≤ f (a) + f (b)

2
.

Proof Since f is GA-convex function on [a, b], we have

f
(√

xy
) ≤ f (x) + f (y)

2
.

for all x, y ∈ [a, b] (with t = 1
2 in the definition of GA-convexity). By setting x =

atb1−t and y = bta1−t , we get

2 f
(√

ab
)

≤ f
(
atb1−t

)+ f
(
bta1−t

)
.

Bymultiplying both sides of this inequality by 1
n! t

n(1 − t)α−n−1, then integrating the
resulting inequality with respect to t over [0, 1], we obtain

2

n! f
(√

ab
) 1∫

0

tn(1 − t)α−n−1dt

≤ 1

n!
1∫

0

tn(1 − t)α−n−1 f
(
atb1−t

)
dt

+ 1

n!
1∫

0

tn(1 − t)α−n−1 f
(
bta1−t

)
dt.

Namely,

f
(√

ab
)

≤ �(α + 1)

2(ln b
a )

α�(α − n)
[I aα f (b) +b Iα f (a)],

which completes the proof of the first inequality. For the proof of the second inequal-
ity, we can write

f
(
atb1−t

) ≤ t f (a) + (1 − t) f (b)

and
f
(
bta1−t

) ≤ t f (b) + (1 − t) f (a).
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By adding these inequalities, we have

f
(
atb1−t

)+ f
(
bta1−t

) ≤ f (a) + f (b).

Multiplying both sides of this inequality by 1
n! t

n(1 − t)α−n−1, then integrating the
resulting inequality with respect to t over [0, 1], we deduce

�(α + 1)

(ln b − ln a)α�(α − n)
[I aα f (b) +b Iα f (a)] ≤ f (a) + f (b) .

This completes the proof. �

Lemma 3.2 Let f : I ⊂ (0,∞) → R be a differentiable function on I o such that
f ′ ∈ L1[a, b], where a, b ∈ I with a < b.Then, for all x ∈ [a, b] andα ∈ (n, n + 1],
we have

(
ln

x

a

)α
1∫

0

Bt (n + 1, α − n) d f
(
xta1−t

)

+
(
ln

b

x

)α
1∫

0

Bt (n + 1, α − n) d f
(
bt x1−t

)

= �(n + 1)�(α − n)

�(α + 1)

[(
ln

x

a

)α

f (x) +
(
ln

b

x

)α

f (b)

]

− n![I ln aα ( f ◦ exp) (ln x) +ln b Iα ( f ◦ exp) (ln x)].

Proof By using integration by parts in the left-hand side of the above inequality, one
can obtain the right-hand side. We omit the details. �

For simplicity, we will use following notation

Ff (α, n; x)
= �(n + 1)�(α − n)

�(α + 1)

[(
ln

x

a

)α

f (x) +
(
ln

b

x

)α

f (b)

]

− n![I ln aα ( f ◦ exp) (ln x) +ln b Iα ( f ◦ exp) (ln x)].

Theorem 3.13 Let f : I ⊂ (0,∞) → R be a differentiable function on I o such that
f ′ ∈ L1[a, b], where a, b ∈ I with a < b. If

∣∣ f ′∣∣q is quasi-geometrically convex on
[a, b] and q > 1, then we have the following inequality for conformable fractional
integrals
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∣∣Ff (α, n; x)∣∣

≤
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p (

ln
x

a

)α

L
1
q
(
aq , xq

)
sup

{∣∣ f ′ (x)
∣∣ , ∣∣ f ′ (a)

∣∣}

+
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p (

ln
b

x

)α

L
1
q
(
xq , bq

)
sup

{∣∣ f ′ (b)
∣∣ , ∣∣ f ′ (x)

∣∣} ,

for all x ∈ [a, b], p−1 + q−1 = 1 and α ∈ (n, n + 1].
Proof By using Lemma 3.2 and by applying Hölder integral inequality, we can write

∣∣Ff (α, n; x)∣∣

≤
(
ln

x

a

)α
1∫

0

Bt (n + 1, α − n) d f
(
xta1−t

)

+
(
ln

b

x

)α
1∫

0

Bt (n + 1, α − n) d f
(
bt x1−t

)

≤
(
ln

x

a

)α

⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p
⎛
⎝

1∫

0

xqtaq(1−t)
∣∣ f ′ (xta1−t

)∣∣q dt
⎞
⎠

1
q

+
(
ln

b

x

)α

⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p
⎛
⎝

1∫

0

bqt xq(1−t)
∣∣ f ′ (bt x1−t

)∣∣q dt
⎞
⎠

1
q

.

Since
∣∣ f ′∣∣q is quasi-geometrically convex, we get

∣∣Ff (α, n; x)∣∣

≤
(
ln

x

a

)α

sup
{∣∣ f ′ (x)

∣∣ , ∣∣ f ′ (a)
∣∣}
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p
⎛
⎝

1∫

0

xqt aq(1−t)dt

⎞
⎠

1
q

+
(
ln

b

x

)α

sup
{∣∣ f ′ (b)

∣∣ , ∣∣ f ′ (x)
∣∣}
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p
⎛
⎝

1∫

0

bqt xq(1−t)dt

⎞
⎠

1
q

.

By computing the above integrals, one can easily obtain the desired inequality.�

Theorem 3.14 Let f : I ⊂ (0,∞) → R be a differentiable function on I o such that
f ′ ∈ L1[a, b], where a, b ∈ I with a < b. If

∣∣ f ′∣∣q is quasi-geometrically convex on
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[a, b], then we have the following inequality for conformable fractional integrals

∣∣Ff (α, n; x)∣∣
≤
(
ln

x

a

)α

sup
{∣∣ f ′ (x)

∣∣ , ∣∣ f ′ (a)
∣∣}

×
(
n!� (α − n + 1)

� (α + 2)

)1− 1
q

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| xqtaq(1−t)dt

⎞
⎠

1
q

+
(
ln

b

x

)α

sup
{∣∣ f ′ (b)

∣∣ , ∣∣ f ′ (x)
∣∣}

×
(
n!� (α − n + 1)

� (α + 2)

)1− 1
q

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| bqt xq(1−t)dt

⎞
⎠

1
q

,

for all x ∈ [a, b], α ∈ (n, n + 1] where q ≥ 1.

Proof From Lemma 3.2 and the power-mean integral inequality, we have

∣∣Ff (α, n; x)∣∣

≤
(
ln

x

a

)α
1∫

0

Bt (n + 1, α − n) d f
(
xta1−t

)

+
(
ln

b

x

)α
1∫

0

Bt (n + 1, α − n) d f
(
bt x1−t

)

≤
(
ln

x

a

)α

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| dt
⎞
⎠

1− 1
q

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| xqtaq(1−t)
∣∣ f ′ (xta1−t

)∣∣q dt
⎞
⎠

1
q

+
(
ln

b

x

)α

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| dt
⎞
⎠

1− 1
q

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| bqt xq(1−t)
∣∣ f ′ (bt x1−t

)∣∣q dt
⎞
⎠

1
q

.

By taking into account quasi-geometrically convexity of
∣∣ f ′∣∣q , we obtain
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∣∣Ff (α, n; x)∣∣

≤ τ
1− 1

q

(
ln

x

a

)α

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| xqtaq(1−t)dt

⎞
⎠

1
q

× sup
{∣∣ f ′ (x)

∣∣ , ∣∣ f ′ (a)
∣∣}

+τ
1− 1

q

(
ln

b

x

)α

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| bqt xq(1−t)dt

⎞
⎠

1
q

× sup
{∣∣ f ′ (b)

∣∣ , ∣∣ f ′ (x)
∣∣} .

Then, use the following formula:

1∫

0

|Bt (n + 1, α − n)| dt = B (n + 1, α − n) − B (n + 2, α − n)

= n!� (α − n + 1)

� (α + 2)
.

This completes the proof. �

Corollary 3.1 Let f : I ⊂ (0,∞) → R be a differentiable function on I o such that
f ′ ∈ L1[a, b], where a, b ∈ I with a < b. If

∣∣ f ′∣∣q is quasi-geometrically convex on
[a, b] and q > 1, then we have the following inequality for conformable fractional
integrals

∣∣Ff (α, n; x)∣∣

≤
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p (

ln
x

a

)α

L
1
q
q (a, x) sup

{∣∣ f ′ (x)
∣∣ , ∣∣ f ′ (a)

∣∣}

+
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p (

ln
b

x

)α

L
1
q
q
(
xq , bq

)
sup

{∣∣ f ′ (b)
∣∣ , ∣∣ f ′ (x)

∣∣} ,

for all x ∈ [a, b], p−1 + q−1 = 1 and α ∈ (n, n + 1].
Proof By using a similar argument as in the proof of Theorem 3.14, we can write
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∣∣Ff (α, n; x)∣∣

≤
(
ln

x

a

)α
1∫

0

Bt (n + 1, α − n) d f
(
xta1−t

)

+
(
ln

b

x

)α
1∫

0

Bt (n + 1, α − n) d f
(
bt x1−t

)
.

By using the general Cauchy inequality, we have

∣∣Ff (α, n; x)∣∣

≤
(
ln

x

a

)α
1∫

0

Bt (n + 1, α − n) (t x + (1 − t)a)
∣∣ f ′ (xta1−t

)∣∣ dt

+
(
ln

b

x

)α
1∫

0

Bt (n + 1, α − n) (tb + (1 − t)x)
∣∣ f ′ (bt x1−t

)∣∣ dt.

By applying the Hölder integral inequality and from quasi-geometrically convex-
ity of

∣∣ f ′∣∣q , we obtain
∣∣Ff (α, n; x)∣∣

≤
(
ln

x

a

)α

sup
{∣∣ f ′ (x)

∣∣ , ∣∣ f ′ (a)
∣∣}
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p

⎛
⎝

1∫

0

(t x + (1 − t)a)q dt

⎞
⎠

1
q

+
(
ln

b

x

)α

sup
{∣∣ f ′ (b)

∣∣ , ∣∣ f ′ (x)
∣∣}
⎛
⎝

1∫

0

|Bt (n + 1, α − n)|p dt
⎞
⎠

1
p

⎛
⎝

1∫

0

(tb + (1 − t)x)q dt

⎞
⎠

1
q

.

By computing the above integrals, we get the result. �

Corollary 3.2 Let f : I ⊂ (0,∞) → R be a differentiable function on I o such that
f ′ ∈ L1[a, b], where a, b ∈ I with a < b. If

∣∣ f ′∣∣q is quasi-geometrically convex on
[a, b], then we have the following inequality for conformable fractional integrals
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∣∣Ff (α, n; x)∣∣

≤
(
ln

x

a

)α

sup
{∣∣ f ′ (x)

∣∣ , ∣∣ f ′ (a)
∣∣}
(
n!� (α − n + 1)

� (α + 2)

)1− 1
q

×
(
B (n + 1, α − n) A

(
aq , xq

)− xq

2
B (n + 3, α − n) − aq

2
τ1

) 1
q

+
(
ln

b

x

)α

sup
{∣∣ f ′ (b)

∣∣ , ∣∣ f ′ (x)
∣∣}
(
n!� (α − n + 1)

� (α + 2)

)1− 1
q

×
(
B (n + 1, α − n) A

(
xq , bq

)− bq

2
B (n + 3, α − n) − xq

2
τ1

) 1
q

for all x ∈ [a, b], α ∈ (n, n + 1] where q ≥ 1 and τ1 = (2α−n+2)�(n+2)�(α−n)

�(α+3) .

Proof If we use the general Cauchy inequality and power-mean inequality in the
proof of Theorem 3.14, we can write

∣∣Ff (α, n; x)∣∣
≤
(
ln

x

a

)α

sup
{∣∣ f ′ (x)

∣∣ , ∣∣ f ′ (a)
∣∣}

×
(
n!� (α − n + 1)

� (α + 2)

)1− 1
q

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| (t xq + (1 − t) aq
)
dt

⎞
⎠

1
q

+
(
ln

b

x

)α

sup
{∣∣ f ′ (b)

∣∣ , ∣∣ f ′ (x)
∣∣}

×
(
n!� (α − n + 1)

� (α + 2)

)1− 1
q

⎛
⎝

1∫

0

|Bt (n + 1, α − n)| (tbq + (1 − t) xq
)
dt

⎞
⎠

1
q

.

By computing the above integrals, we get the desired result. �
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exhaustive results [15], is staying an essential gap in fractional calculus since 1974,
except very few works, [21–27, 41].
In this work, a multivariable analog of M. M. Djrbashian’s operator

Lω f (z) = −
∫ 1

0
f (t z)dω(t), |z| < 1,

is used to get some ω-weighted generalizations of several classical fractional inte-
gral inequalities. The ω-generalizations of the following inequalities are established:
Pólya–Szegö inequality, Chebyshev integral inequality, Minkowski reverse integral
inequality, Hölder reverse integral inequality, integral inequalities for arithmetic and
geometric means, and some other integral inequalities.

The consideredmultivariable analog of the operator Lω turns tomanywell-known
fractional integro-differentiation operators under some particular choices of the func-
tional parameter ω. Under these choices, the established in this work inequalities
become the above-mentioned classical inequalities, and some unexpected results are
obtained, which perhaps are new.

In Sect. 2, we introduce our general operator and give some necessary remarks. In
Sects. 3 and 4, some new Pólya–Szegö-type integral inequalities are proved. Then,
these inequalities are used to establish some fractional integral inequalities of Cheby-
shev type. In Sect. 5, we establish some ω-weighted Chebyshev fractional integral
inequalities. In Sects. 6 and 7, several ω-weighted reverse inequalities are proved.
Namely, weighted Minkowski reverse fractional integral inequalities and weighted
Hölder reverse fractional integral inequalities. Sections8 and 9 are devoted to some
ω-weighted integral inequalities for arithmetic and geometric means and some other
integral inequalities.

2 The Generalized M. M. Djrbashian Fractional Integral

Everywhere below, we assume that the function ω is of the class �, i.e., ω : Rn+2 →
[0,∞) is an integrable function with respect to the second variable. Further, ifω ∈ �

and f (t) is a real-valued, integrable function on R, we formally define the operator

Ia,ω f (t) :=
∫ t

a
ω(t, τ, x1, . . . , xn) f (τ )dτ, −∞ < a < t < +∞, (2.1)

where x1, . . . , xn are real parameters. Note that this operator is a real, multivariable
generalization of the M. M. Djrbashian fractional integral considered in [15], [43,
Sect. 18.6] (see also [23–27, 39–41]).
Before giving some remarks on the form of the operator Ia,ω for some particular
cases of the functional parameterω, we remind one extension of the classical Gamma
function called the generalized k-gamma function and introduced in [14]:
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�k(x) = lim
n→∞

n!kn(nk)
x
k −1

(x)n,k
, k > 0, x ∈ C \ kZ−

(not to be confused with a similar notation of a different object in [18]), where (x)n,k

is the Pochhammer k-symbol defined as (x)n,k = x(x + k)(x + 2k) . . . (x + (n −
1)k) (n ≥ 1). Also, if Re x > 0, we can write the function �k as:

�k(x) =
∫ ∞

0
t x−1e− tk

k dt.

The k-gamma function has the following properties: �(x) = lim
k→1

�k(x), �k(x) =
k

x
k −1�

(
x
k

)
, �k(x + k) = x�k(x).

Remark 2.1 Ifω(t, τ, k, α) = (t − τ)α/k−1[k�k(α)]−1 with b ≥ t ≥ τ ≥ a ≥ 0 and
k > 0, then

Ia,ω f (t) = 1

k�k(α)

∫ t

a
(t − τ)α/k−1 f (τ )dτ, t ∈ [a, b], (2.2)

is theRiemann–Liouville k-fractional integral of orderα > 0 for a real-valued contin-
uous function f (t) [2, 46]. Besides, for k = 1, this operator becomes to the classical
Riemann–Liouville fractional integral. Also, if r ∈ R \ {−1}, then

Ia,ω f (t) = (1 + r)1−
α
k

k�k(α)

∫ t

a
(tr+1 − τ r+1)

α
k −1 f (τ )dτ, t ∈ [a, b], (2.3)

is a generalization of an Erdélyi–Kober fractional integral [17, 31, 44].

Remark 2.2 Ifω(t, τ, x, y, k) = τ x/k−1(1 − τ)y/k−1[k f (τ )]−1 with 0 ≤ τ ≤ t ≤ 1,
x > 0, y > 0, k > 0 and f is a continuous function on [0, 1], then

Ia,ω f (t) = 1

k

∫ t

0
τ x/k−1(1 − τ)y/k−1dτ = β

[0,t]
k (x, y),

is the k-beta function of [14] for t = 1.

Remark 2.3 If ω(t, τ, s, k, α) = (1 + s)1−α/k[k�k(α)]−1(t s+1 − τ s+1)α/k−1τ s with
t ∈ [a, b], t ≥ τ ≥ a, k > 0, α > 0, s ∈ R \ {−1} and f is a continuous function on
[a, b], then

Ia,ω f (t) = (1 + s)1−α/k

k�k(α)

∫ t

a
(t s+1 − τ s+1)α/k−1τ s f (τ )dτ = s

k Jα
a f (t),

is the (k; s)-Riemann–Liouville fractional integral of f of the order α > 0 [44].



202 P. Agarwal et al.

Remark 2.4 If ω(t, τ, x, η, α) = xη
(
1 − τ

t

) η

1−α with η > 0, x > 0, a > 0 and α <

1, then, Ia,ω f
(

x
a(1−α)

)
is the pathway fractional integral operator for the functions

f (t) ∈ L(0, b) [36].

Remark 2.5 If ω(t, τ, α) = 1
τ

(
log t

τ

)α−1
with α > 0 and t ≥ τ ∈ [a, b] (a ≥ 1),

then

Ia,ω f (t) =
∫ t

a

(
log

t

τ

)α−1 f (τ )

τ
dτ, t ∈ [a, b],

is the classical left-sided Hadamard integral of the fractional order α [35].

Remark 2.6 If λ(t, τ, α) = [h(t) − h(τ )]α−1h′(τ )[�(α)]−1 (τ ∈ (a, t))withα > 0,
and h(τ ) is an increasing, positive, monotone, continuously differentiable function
on (a, b), then Ia,ω f (t) becomes the operator Jα

a+,h f considered in [30].

Remark 2.7 If ω(t, τ, ρ, α) = ρ1−α

�(α)
τρ−1

(tρ−τρ)1−α with α > 0 and ρ ∈ R �= {−1}, then

Ia,ω f (t) = ρ1−α

�(α)

∫ t

a

τρ−1

(tρ − τρ)1−α
f (τ )dτ = (ρ I α

a+ f )(t), t > a,

is the left-sided Katugampola fractional integral [28, 29].

Remark 2.8 If ω(t, τ, α, β, η) = t−α−β

�(α)
(t − τ)α−1

2F1

(
α + β,−η;α; 1 − τ

t

)
(t ≥

τ ≥ 0) with α > 0 and β, η ∈ R \ Z−, then Ia,ω f (t) becomes the Saigo general-
ized fractional integral [42].

The next two remarks show that the operator Ia,ω turns to themost common fractional
derivatives for some particular weights.

Remark 2.9 If ω(t, τ, α) = (t − τ)−α/�(1 − α) (t ≥ τ) with 0 < α < 1, then the
operator

(Dα
a+ f )(x) = d

dt
Ia,ω f (t) = 1

�(1 − α)

d

dt

∫ t

a

f (τ )

(t − τ)α
dτ,

is the Riemann–Liouville fractional derivative [43].

Remark 2.10 If ω(t, τ, α) = (t − τ)m−α−1/�(m − α) (t ≥ τ) with m − 1 < α <

m and m ∈ N, then

I0,ω f (m)(t) = Dα f (t) = 1

�(m − α)

∫ t

0

f (m)(τ )

(t − τ)α+1−m
dτ,

and Dα f (t) = f (m)(t) for m = α. This operator is being called Caputo fractional
derivative [8].
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3 Some ω-Weighted Pólya–Szegö-Type Inequalities

In this section, we established some ω-weighted generalizations of the well-known
inequality ∫ b

a f 2(x)dx
∫ b

a g2(x)dx(∫ b
a f (x)g(x)dx

)2 ≤ 1

4

(√
M N

mn
+

√
mn

M N

)2

, (3.1)

where it is assumed that f and g are positive, integrable functions which are syn-
chronous on [a, b], i.e., ( f (x) − f (y))(g(x) − g(y)) ≥ 0 for any x, y ∈ [a, b] and
such that 0 < m ≤ f (x) ≤ M < ∞, 0 < n ≤ g(y) ≤ N < ∞ for any x, y ∈ [a, b]
and some m, M, n, N ∈ R.
Note that the inequality (3.1) mainly is being attributed to Pólya and Szegö [38] in
the literature, in spite of the fact that first it was established by Pal Schweitzer in
1914 [45]. For such kind of inequalities see also [4].
Now, we proceed to our ω-weighted inequalities.

Theorem 3.1 Let ω ∈ � and let f and g be positive, square-integrable functions
on an interval (a,+∞) with a > −∞. If ϕ1, ϕ2, ψ1 and ψ2 are integrable functions
on (a,+∞), such that

0 < ϕ1(τ ) ≤ f (τ ) ≤ ϕ2(τ ) and 0 < ψ1(τ ) ≤ g(τ ) ≤ ψ2(τ ), τ ∈ (a, t), (I)

for some t ∈ (a,+∞). Then

Ia,ω

(
ψ1ψ2 f 2

)
(t)Ia,ω

(
ϕ1ϕ2g2

)
(t)(

Ia,ω

(
(ϕ1ψ1 + ϕ2ψ2) f g

)
(t)

)2 ≤ 1

4
. (3.2)

Proof If f (τ ) ≤ ϕ2(τ ) and ψ1(τ ) ≤ g(τ ) for τ ∈ (a, t), then

(
ϕ2(τ )

ψ1(τ )
− f (τ )

g(τ )

)
≥ 0, τ ∈ (a, t).

Similarly, if ϕ1(τ ) ≤ f (τ ) and g(τ ) ≤ ψ2(τ ), then

(
f (τ )

g(τ )
− ϕ1(τ )

ψ2(τ )

)
≥ 0, τ ∈ (a, t).

Multiplying these two inequalities, we get

(
ϕ2(τ )

ψ1(τ )
+ ϕ1(τ )

ψ2(τ )

)
f (τ )

g(τ )
≥ f 2(τ )

g2(τ )
+ ϕ1(τ )ϕ2(τ )

ψ1(τ )ψ2(τ )
, τ ∈ (a, t),

or, what is the same,
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(
ϕ1(τ )ψ1(τ )+ϕ2(τ )ψ2(τ )

)
f (τ )g(τ )

≥ ψ1(τ )ψ2(τ ) f 2(τ ) + ϕ1(τ )ϕ2(τ )g2(τ ), τ ∈ (a, t).

Further, multiplying both sides of this inequality by ω(t, τ, x1, . . . , xn) and integrat-
ing with respect to τ over (a, t), we come to

Ia,ω

(
(ϕ1ψ1 + ϕ2ψ2) f g

)
(t) ≥ Ia,ω

(
ψ1ψ2 f 2

)
(t) + Ia,ω

(
ϕ1ϕ2g2

)
(t)

and applying the inequality a + b ≥ 2
√

ab (a, b ≥ 0), we get

Ia,ω

(
(ϕ1ψ1 + ϕ2ψ2) f g

)
(t) ≥ 2

√
Ia,ω

(
ψ1ψ2 f 2

)
(t)Ia,ω

(
ϕ1ϕ2g2

)
(t)

which implies (3.2).

Corollary 3.1 Let ω ∈ � and let f and g be two positive square-integrable functions
on (a,+∞) (a > −∞), such that

0 < m ≤ f (τ ) ≤ M and 0 < n ≤ g(τ ) ≤ N (J)

for τ ∈ (a, t) with some t ∈ (a,+∞). Then

Ia,ω f 2(t)Ia,ωg2(t)(
Ia,ω( f g)(t)

)2 ≤ 1

4

( √
mn√
M N

+
√

M N√
mn

)2

.

Remark 3.1 The well-known inequality (3.1) follows by Corollary 3.1 for ω ≡ 1.

From Corollary 3.1 and Remark 2.3, we get the following statement.

Corollary 3.2 Let ω ∈ � and let f and g be two positive square-integrable functions
on (a,+∞) (a > −∞), which satisfy the condition (J) for some τ ∈ (a, t) with
t ∈ (a,+∞). Then

s
k Jα

a f 2(t)s
k Jα

a g2(t)(
s
k Jα

a ( f g)(t)
)2 ≤ 1

4

( √
mn√
M N

+
√

M N√
mn

)2

.

Lemma 3.1 Let ω1,2 ∈ � and let f and g be positive, square-integrable functions
on (a,+∞) with a > −∞. If ϕ1, ϕ2, ψ1 and ψ2 are integrable functions on (a,+∞),
which satisfy (I ) with some t ∈ (a,+∞), then

Ia,ω1(ϕ1ϕ2)(t)Ia,ω2(ψ1ψ2)(t)Ia,ω1 f 2(t)Ia,ω2g
2(t)(

Ia,ω1(ϕ1 f )(t)Ia,ω2(ψ1g)(t) + Ia,ω1(ϕ2 f )(t)Ia,ω2(ψ2g)(t)
)2 ≤ 1

4
. (3.3)

Proof By (I ), it follows that
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(
ϕ2(τ )

ψ1(ρ)
− f (τ )

g(ρ)

)
≥ 0 and

(
f (τ )

g(ρ)
− ϕ1(τ )

ψ2(ρ)

)
≥ 0 for τ, ρ ∈ (a, t).

These inequalities imply

(
ϕ1(τ )

ψ2(ρ)
+ ϕ2(τ )

ψ1(ρ)

)
f (τ )

g(ρ)
≥ f 2(τ )

g2(ρ)
+ ϕ1(τ )ϕ2(τ )

ψ1(ρ)ψ2(ρ)
, τ, ρ ∈ (a, t).

Multiplying both sides of this inequality by ψ1(ρ)ψ2(ρ)g2(ρ), we obtain

ϕ1(τ ) f (τ )ψ1(ρ)g(ρ) + ϕ2(τ ) f (τ )ψ2(ρ)g(ρ) ≥ ψ1(ρ)ψ2(ρ) f 2(τ ) + ϕ1(τ )ϕ2(τ )g2(ρ).

Then, multiplying both sides by ω1(t, τ, x1, . . . , xn)ω2(t, ρ, x1, . . . , xn) and inte-
grating with respect to τ and ρ over (a, t), we get

Ia,ω1(ϕ1 f )(t)Ia,ω2(ψ1g)(t) + Ia,ω1(ϕ2 f )(t)Ia,ω2(ψ2g)(t)

≥ Ia,ω1 f 2(t)Ia,ω2(ψ1ψ2)(t) + Ia,ω1(ϕ1ϕ2)(t)Ia,ω2g
2(t),

and an application of the inequality a + b ≥ 2
√

ab (a, b ≥ 0) yields (3.3).

Lemma 3.2 Let ω1,2 ∈ � and let f and g be positive, square-integrable functions
on (a,+∞) with a > −∞. If ϕ1, ϕ2, ψ1 and ψ2 are integrable functions on (a,+∞),
which satisfy (I ) with some t ∈ (a,+∞), then

Ia,ω1 f 2(t)Ia,ω2g
2(t) ≤ Ia,ω1

(
(ϕ2 f g)/ψ1

)
(t)Ia,ω2

(
(ψ2 f g)/ϕ1

)
(t). (3.4)

Proof Obviously f (τ )ψ1(τ ) ≤ g(τ )ϕ2(τ ) (τ ∈ (a, t)), and hence

∫ t

a
ω1(t, τ, x1, . . . , xn) f 2(t)dτ ≤

∫ t

a
ω1(t, τ, x1, . . . , xn)

ϕ2(τ )

ψ1(τ )
f (τ )g(τ )dτ

which implies
Ia,ω1 f 2(t) ≤ Ia,ω1

(
(ϕ2 f g)/ψ1

)
(t).

Similarly ϕ1(τ ) ≤ f (τ ) and g(τ ) ≤ ψ2(τ ) for τ ∈ (a, t), and hence

Ia,ω2g
2(t) ≤ Ia,ω2

(
(ψ2 f g)/ϕ1

)
(t).

These two inequalities imply (3.4).

Corollary 3.3 Let ω1,2 ∈ � and let f and g be positive, square-integrable functions
on (a,+∞), which satisfy (J ). Then

Ia,ω1 f 2(t)Ia,ω2g
2(t)

Ia,ω1( f g)(t)Ia,ω2( f g)(t)
≤ M N

mn
. (3.5)
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4 ω-Weighted Chebyshev Functional Inequalities

In this section, some ω-weighted Chebyshev-type integral inequalities are obtained
by the use of Chebyshev’s well-known functional [11]

T ( f, g) = 1

b − a

∫ b

a
f (x)g(x)dx −

(
1

b − a

∫ b

a
f (x)dx

) (
1

b − a

∫ b

a
g(x)dx

)
,

where f and g are supposed to be integrable functions. Note that T ( f, g) ≥ 0, if
additionally the functions f and g are synchronous on [a, b]. This functional has
been used for many researchers to find some new inequalities and their applications,
see e.g., [2, 5, 13, 33, 37, 48, 50]. One of the most famous ones is that of Grüss
[20]: |T ( f, g)| ≤ (M − m)(N − m)/4, where f and g are supposed to be integrable,
synchronous on [a, b] and such that m ≤ f (x) ≤ M, n ≤ g(x) ≤ N for any x ∈
[a, b] and some m, M, n, N ∈ R. Besides, Dragomir and Diamond [16] proved that

|T ( f, g)| ≤ (M − m)(N − n)

4(b − a)2
√

Mm Nn

∫ b

a
f (x)dx

∫ b

a
g(x)dx . (4.1)

Below,we establish ourω-weightedChebyshev-type integral inequalities by an appli-
cation of the ω-weighted Pólya–Szegö fractional integral inequality of Theorem 3.1.
Then, we present a particular case of the inequality (4.1).

Theorem 4.1 Let ω1,2 ∈ � and let f and g be positive, square-integrable functions
on (a,+∞) with a > −∞. If ϕ1, ϕ2 are integrable functions on (a,+∞), such that
ϕ1(τ ) ≤ f (τ ) ≤ ϕ2(τ ) and ϕ1(τ ) ≤ g(τ ) ≤ ϕ2(τ ) for τ ∈ (a, t), then

∣∣Ia,ω1 ( f g)(t)Ia,ω21(t)+Ia,ω2 ( f g)(t)Ia,ω11(t) − Ia,ω1 f (t)Ia,ω2 g(t) − Ia,ω1g(t)Ia,ω2 f (t)
∣∣

≤ 2
(
Tω1,ω2 ( f, ϕ1, ϕ2)(t)Tω1,ω2 (g, ϕ1, ϕ2)(t)

)1/2
,

where

Tω1,ω2(x, y, z)(t) =1

8

(
Ia,ω1((y + z)x)(t)

)2
Ia,ω1(yz)(t)

Ia,ω21(t)

+ 1

8

(
Ia,ω2((y + z)x)(t)

)2
Ia,ω2(yz)(t)

Ia,ω11(t) − Ia,ω1 x(t)Ia,ω2 x(t).

Proof Setting

R(τ, ρ) = f (τ )g(τ ) + f (ρ)g(ρ) − f (τ )g(ρ) − f (ρ)g(τ ), τ, ρ ∈ (a, t),

andmultiplyingboth sides of this equality byω1(t, τ, x1, . . . , xn)ω2(t, ρ, x1, . . . , xn)

with ω1,2 ∈ � and integrating with respect to τ and ρ over (a, t) we get
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∫ t

a

∫ t

a
ω1(t, τ, x1, . . . , xn)ω2(t, ρ, x1, . . . , xn)R(τ, ρ)dτdρ (4.2)

= Ia,ω1( f g)(t)Ia,ω21(t) + Ia,ω2( f g)(t)Ia,ω11(t)

− Ia,ω1 f (t)Ia,ω2g(t) − Ia,ω1g(t)Ia,ω2 f (t).

Then, setting μ(τ) = ∫ τ

a ω1(t, τ1, x1, . . . , xn)dτ1 and ν(ρ) = ∫ ρ

a ω2(t, ρ1, x1, . . . ,
xn)dρ1, by the Cauchy–Schwartz inequality, we obtain

∣∣∣∣
∫ t

a

∫ t

a
R(τ, ρ)dμ(τ)dν(ρ)

∣∣∣∣
≤

(∫ t

a

∫ t

a

(
f (τ ) − f (ρ)

)2
ω1(t, τ, x1, . . . , xn)ω2(t, ρ, x1, . . . , xn)dτdρ

)1/2

×
(∫ t

a

∫ t

a

(
g(τ ) − g(ρ)

)2
ω1(t, τ, x1, . . . , xn)ω2(t, ρ, x1, . . . , xn)dτdρ

)1/2

≤ 2
(
1/2Ia,ω1 f 2(t)Ia,ω21(t) + 1/2Ia,ω2 f 2(t)Ia,ω11(t) − Ia,ω1 f (t)Ia,ω2 f (t)

)1/2
× (

1/2Ia,ω1g
2(t)Ia,ω21(t) + 1/2Ia,ω2g

2(t)Ia,ω11(t) − Ia,ω1g(t)Ia,ω2g(t)
)1/2

.

Applying Lemma 3.2, where we set ψ1(t) = ψ2(t) = g(t) = 1, we get

Ia,ω1,2 f 2(t) ≤ 1

4

(
Ia,ω1,2

(
(ϕ1 + ϕ2) f

)
(t)

)2
Ia,ω1,2(ϕ1ϕ2)(t)

,

and hence

1/2Ia,ω1 f 2(t)Ia,ω21(t) + 1/2Ia,ω2 f 2(t)Ia,ω11(t) − Ia,ω1 f (t)Ia,ω2 f (t) (4.3)

≤ 1

8

(
Ia,ω1((ϕ1 + ϕ2) f )(t)

)2
Ia,ω1(ϕ1ϕ2)(t)

Ia,ω21(t) + 1

8

(
Ia,ω2((ϕ1 + ϕ2) f )(t)

)2
Ia,ω2(ϕ1ϕ2)(t)

Ia,ω11(t)

− Ia,ω1 f (t)Ia,ω2 f (t) = Tω1,ω2( f, ϕ1, ϕ2)(t).

Similarly, we get

1/2Ia,ω1g
2(t)Ia,ω21(t) + 1/2Ia,ω2 g2(t)Ia,ω11(t) − Ia,ω1g(t)Ia,ω2g(t) (4.4)

≤ 1

8

(
Ia,ω1((ϕ1 + ϕ2)g)(t)

)2
Ia,ω1(ϕ1ϕ2)(t)

Ia,ω21(t) + 1

8

(
Ia,ω2((ϕ1 + ϕ2)g)(t)

)2
Ia,ω2(ϕ1ϕ2)(t)

Ia,ω11(t)

− Ia,ω1g(t)Ia,ω2g(t) = Tω1,ω2(g, ϕ1, ϕ2)(t).

The desired inequality holds by (4.2), (4.3), and (4.4).

Corollary 4.1 Let ω ∈ � and let f and g be positive, square-integrable functions
on (a,+∞) (a > −∞). If ϕ1, ϕ2 are any functions which are integrable on (a,+∞)

and such that ϕ1(τ ) ≤ f (τ ) ≤ ϕ2(τ ) and ϕ1(τ ) ≤ g(τ ) ≤ ϕ2(τ ) for τ ∈ (a, t), then
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∣∣Ia,ω( f g)(t)Ia,ω1(t) − Ia,ωg(t)Ia,ω f (t)
∣∣ ≤ (

Tω,ω( f, ϕ1, ϕ2)(t)Tω,ω(g, ϕ1, ϕ2)(t)
)1/2

.

Remark 4.1 If ω = 1 and m ≤ f, g ≤ M , then the inequality of Corollary 4.1
becomes the inequality (4.1) in [16].

Remark 4.2 When the parameter-function ω = ω1 = ω2 is that of formula (2.3), the
results of this section become almost the same as those in [2].

5 ω-Weighted Chebyshev Fractional Inequalities

In this section, someω-weighted Chebyshev integral inequalities are obtained, which
extend and generalize some recent [1, 13, 44] and classical [11, 20] results in the
field, see also [6, 9, 10]. For some special case of the parameter-function ω, our
inequalities become the classical Chebyshev integral inequality [19]

∫ b

a
f1(x)dx

∫ b

a
f2(x)dx · · ·

∫ b

a
fn(x)dx ≤ (b − a)n−1

∫ b

a
f1(x) f2(x) · · · fn(x)dx,

where f1, f2, . . . , fn are supposed to be nonnegative, integrable, all monotone
increasing or decreasing functions on [a, b].
Theorem 5.1 Let f and g be any synchronous functions on (a,+∞) (a > −∞).
Then for any ω ∈ �

Ia,ω1(t) Ia,ω( f g)(t) ≥ Ia,ω f (t)Ia,ωg(t), t ∈ (a + ∞).

Proof As f and g are synchronous on (a,+∞), we get

f (τ )g(τ ) + f (ρ)g(ρ) ≥ f (τ )g(ρ) + f (ρ)g(τ ), τ, ρ ∈ (a,+∞).

Multiplying both sides of this inequality by ω(t, τ, x1, . . . , xn) with t ≥ τ and inte-
grating with respect to τ over (a, t), we obtain

Ia,ω( f g)(t) + f (ρ)g(ρ)Ia,ω1(t) ≥ g(ρ)Ia,ω f (t) + f (ρ)Ia,ωg(t). (5.1)

Multiplication of both sides of this inequality by ω(t, ρ, x1, . . . , xn) with ρ ∈ (a, t)
and integration with respect to ρ over (a, t) complete the proof.

Theorem 5.2 Let f and g be any synchronous functions on (a,+∞) (a > −∞).
Then for any t > a and ω1,2 ∈ �

Ia,ω1 ( f g)(t)Ia,ω21(t) + Ia,ω11(t)Ia,ω2 ( f g)(t) ≥ Ia,ω1 f (t)Ia,ω2 g(t) + Ia,ω1g(t)Ia,ω2 f (t).
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Proof Taking ω1 ∈ � in the equality (5.1), then multiplying its both sides by
ω2(t, ρ, x1, . . . , xn) with ρ ∈ (a, t) and integrating with respect to ρ over (a, t),
we come to the desired inequality.

Theorem 5.3 Let { fi }n
i=1 be positive, increasing functions on (a,+∞) (a > −∞),

and let ω ∈ �. Then

Ia,ω

(
n∏

i=1

fi

)
(t) ≥ (

Ia,ω1(t)
)1−n

n∏
i=1

Ia,ω fi (t), t ∈ (a,+∞). (5.2)

Proof The inequality is obvious for n = 1. Now, assume

Ia,ω

(
n−1∏
i=1

fi

)
(t) ≥ (

Ia,ω1(t)
)2−n

n−1∏
i=1

Ia,ω fi (t), t ∈ (a,+∞). (5.3)

The functions { fi }n
i=1 are positive and increase on (a,+∞), therefore also

∏n−1
i=1 fi

is an increasing function. By Theorem 5.1 with g = ∏n−1
i=1 fi and f = fn , we get

Ia,ω

(
n∏

i=1

fi

)
(t) ≥ (

Ia,ω1(t)
)−1

Ia,ω

(
n−1∏
i=1

fi

)
(t) Ia,ω fn(t), t ∈ (a,+∞). (5.4)

The inequalities (5.3) and (5.4) imply (5.2).

Corollary 5.1 Chebyshev’s classical integral inequality follows from (5.2). Namely,
for ω ≡ 1 and t = b, the inequality (5.2) takes the form

∫ b

a
f1(x)dx

∫ b

a
f2(x)dx · · ·

∫ b

a
fn(x)dx ≤ (b − a)n−1

∫ b

a
f1(x) f2(x) · · · fn(x)dx .

6 ω-Weighted Minkowski Reverse Fractional Inequalities

In this section, some generalizations of the Minkowski reverse fractional integral
inequalities are established. Note that sometimes such inequalities are called reverse
Cauchy–Bunyakowsky inequalities, see [4].

Theorem 6.1 Let a ∈ R, p ≥ 1, ω ∈ �, and let f and g be any positive functions
on (a,+∞), such that

Ia,ω f p(t) < ∞ and Ia,ωg p(t) < ∞, t ∈ (a,+∞),

If 0 < m ≤ f (τ )

g(τ )
≤ M < +∞ for τ ∈ (a, t), then
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(
Ia,ω f p(t)

)1/p + (
Ia,ωg p(t)

)1/p ≤ M(m + 2) + 1

(m + 1)(M + 1)

(
Ia,ω( f + g)p(t)

)1/p
. (6.1)

Proof As f (τ ) ≤ Mg(τ ) for τ ∈ (a, t),wehave (M + 1)p f p(τ ) ≤ M p( f + g)p(τ ).
Multiplying both sides of this inequality by ω(t, τ, x1, . . . , xn), integrating with
respect to τ over (a, t) and reminding the definition (2.1) of the operator Ia,ω, we
obtain

(M + 1)p Ia,ω f p(t) ≤ M p Ia,ω( f + g)p(t).

Hence (
Ia,ω f p(t)

)1/p ≤ M

M + 1

(
Ia,ω( f + g)p(t)

)1/p
. (6.2)

Further, by mg(τ ) ≤ f (τ ), τ ∈ (a, t) it follows that

(
1 + 1

m

)p

g p(τ ) ≤ 1

m p

(
f (τ ) + g(τ )

)p
, τ ∈ (a, t).

Multiplying both sides of this inequality by ω(t, τ, x1, . . . , xn) and integrating with
respect to τ over (a, t), we get

(
Ia,ωg p(t)

)1/p ≤ 1

m + 1

(
Ia,ω( f + g)p(t)

)1/p
. (6.3)

By (6.2) and (6.3), we arrive at (6.1).

Remark 6.1 For ω ≡ 1, Theorem 6.1 becomes the statement of Theorem 1.2 in [7]
for [a, t]. For ω(t, τ, α) = (t − τ)α−1/�(α) (t ≥ τ > 0) with α > 0, Theorem 6.1
becomes the statement of Theorem 2.1 in [12] for (0, t).

Theorem 6.2 Let a ∈ R, p ≥ 1, ω ∈ �, and let f and g be any positive functions
on (a,+∞), such that Ia,ω f p(t) < ∞ and Ia,ωg p(t) < ∞ for all t ∈ (a,+∞). If
0 < c < m ≤ f (τ )

g(τ )
≤ M < +∞ for all τ ∈ (a, t), then

M + 1

M − c

(
Ia,ω( f − cg)p(t)

) 1
p ≤ (

Ia,ω f p(t)
) 1

p + (
Ia,ωg p(t)

) 1
p

≤ m + 1

m − c

(
Ia,ω( f − cg)p(t)

) 1
p .

Proof Under our hypotheses

f (τ ) − cg(τ )

M − c
≤ g(τ ) ≤ f (τ ) − cg(τ )

m − c
, τ ∈ (a, t).

Multiplying this inequality byω(t, τ, x1, . . . , xn) and integrating with respect τ over
(a, t), we obtain
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1

M − c

(
Ia,ω( f − cg)p(t)

)1/p ≤ (
Ia,ωg p(t)

)1/p ≤ 1

m − c

(
Ia,ω( f − cg)p(t)

)1/p
.

(6.4)

On the other hand, by a straightforward calculation, we get

M

M − c
( f (τ ) − cg(τ )) ≤ f (τ ) ≤ m

m − c
( f (τ ) − cg(τ )), τ ∈ (a, t).

Multiplying this inequalities by ω(t, τ, x1, . . . , xn) and integrating with respect to τ

over (a, t), we get

M

M − c

(
Ia,ω( f − cg)p(t)

)1/p ≤ (
Ia,ω f p(t)

)1/p ≤ m

m − c

(
Ia,ω( f − cg)p(t)

)1/p
.

(6.5)
Now, by (6.4) and (6.5), we come to the desired inequalities.

Remark 6.2 Taking ω ≡ 1 in Theorem 6.2, we get Theorem 2.2 of [47]. And if, in
addition, c = 1, then we get Theorem 1.1 of [49].

7 ω-Weighted Hölder Reverse Fractional Inequality

In this section, two weighted Hölder reverse fractional integral inequalities are estab-
lished, which differ from the known ones [32].

Theorem 7.1 Let a ∈ R, p > 1, 1/p + 1/q = 1, ω ∈ � and let f and g be any
positive functions on (a,∞), such that Ia,ω f (t) < +∞ and Ia,ωg(t) < +∞ for all
t > a. If 0 < m ≤ f (τ )

g(τ )
≤ M < +∞ for all τ ∈ (a, t), then

(
Ia,ω f (t)

)1/p(
Ia,ωg(t)

)1/q ≤
(

M

m

) 1
pq

Ia,ω( f 1/pg1/q)(t). (7.1)

Proof Using the inequality f (τ ) ≤ Mg(τ ), τ ∈ (a, t), one can be convinced that

M−1/q f (τ ) ≤ (
f (τ )

)1/p(
g(τ )

)1/q
, τ ∈ (a, t).

Multiplying this inequality by ω(t, τ, x1, . . . , xn) and integrating with respect to τ

over (a, t), we get

(
Ia,ω( f 1/pg1/q)(t)

)1/p ≥ M− 1
pq

(
Ia,ω f (t)

)1/p
. (7.2)

Further, the inequality m g(τ ) ≤ f (τ ), τ ∈ (a, t), yields

(
f (τ )

)1/p(
g(τ )

)1/q ≥ m1/pg(τ ), τ ∈ (a, t).
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Multiplying this inequality by ω(t, τ, x1, . . . , xn) and integrating with respect to τ

over (a, t), we get

(
Ia,ω( f 1/pg1/q)(t)

)1/q ≥ m
1
pq

(
Ia,ωg(t)

)1/q
. (7.3)

The inequality (7.1) follows by multiplying (7.2) by (7.3).

As a corollary to the above theorem, we get the following ω-weighted Hölder’s
reverse fractional integral inequality

Corollary 7.1 Let a ∈ R, p > 1, 1/p + 1/q = 1, ω ∈ �, and let f and g be
any positive functions on (a,+∞) (a > −∞), such that Ia,ω f p(t) < +∞ and
Ia,ωgq(t) < +∞ for some t > a. If 0 < m ≤ f (τ )p

g(τ )q ≤ M < +∞ for any τ ∈ (a, t),
then (

Ia,ω f p(t)
)1/p(

Ia,ωgq(t)
)1/q ≤

(
M

m

) 1
pq

Ia,ω( f g)(t).

8 ω-Weighted Arithmetic and Geometric Mean Inequalities

In this section, some ω-weighted integral inequalities of arithmetic and geometric
means are proved.

Theorem 8.1 Let a ∈ R, p ≥ 1, ω ∈ �, and let f and g be any positive functions
on (a,+∞) (a > −∞), such that Ia,ω f p(t) < +∞ and Ia,ωg p(t) < +∞ for all
t > a. If 0 < m ≤ f (τ )

g(τ )
≤ M < +∞ for all τ ∈ (a, t), then

(
(M + 1)(m + 1)

M
− 2

) (
Ia,ω f p(t)

)1/p(
Ia,ωg p(t)

)1/p ≤ (
Ia,ω f p(t)

)2/p + (
Ia,ωg p(t)

)2/p
.

Proof Multiplying the inequalities (6.2) and (6.3), we obtain

(M + 1)(m + 1)

M

(
Ia,ω f p(t)

)1/p(
Ia,ωg p(t)

)1/p ≤ (
Ia,ω( f + g)p(t)

)2/p
.

Applying Minkowski’s inequality to the right-hand side of this inequality, we get

(
Ia,ω( f + g)p(t)

)2/p ≤
((

Ia,ω f p(t)
)1/p + (

Ia,ωg p(t)
)1/p

)2
.

The below two inequalities yield the desired one.

Theorem 8.2 Let a ∈ R, p > 1, 1/p + 1/q = 1, ω ∈ �, and let f and g be any
positive, continuous functions on (a,+∞) (a > −∞), such that 0 < m <

f (τ )

g(τ )
<

M < +∞ for all τ ∈ (a, t). Then
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Ia,ω( f g)(t) ≤ 2p−1M p

p(M + 1)p
Ia,ω( f p + g p)(t) + 2q−1

q(m + 1)q
Ia,ω( f q + gq)(t).

(8.1)

Proof Obviously (M + 1) f (τ ) ≤ M( f + g)(τ ), τ ∈ (a, t). Multiplying the p-th
orders of both sides of this inequality by ω(t, τ, x1, . . . , xn) and integrating with
respect τ over (a, t), we arrive at the inequality

Ia,ω f p(t) ≤ M p

(M + 1)p
Ia,ω( f + g)p(t). (8.2)

Further, (m + 1)g(τ ) ≤ ( f + g)(τ ), τ ∈ (a, t). Multiplying this inequality by
ω(t, τ, x1, . . . , xn) and integrating with respect to τ over (a, t), we get

Ia,ωgq(t) ≤ 1

(m + 1)q
Ia,ω( f + g)q(t). (8.3)

Now observe that by the Young inequality

f (τ )g(τ ) ≤ f p(τ )

p
+ gq(τ )

q
, τ ∈ (a, t).

Multiplying both sides of this inequality by ω(t, τ, x1, . . . , xn) and integrating with
respect to τ over (a, t), we obtain

Ia,ω( f g)(t) ≤ 1

p
Ia,ω f p(t) + 1

q
Ia,ωgq(t). (8.4)

By (8.2), (8.3) and (8.4), we get

Ia,ω( f g)(t) ≤ M p

p(M + 1)p
Ia,ω( f + g)p(t) + 1

q(m + 1)q
Ia,ω( f + g)q(t). (8.5)

Further, the next two estimates follow by the inequality (a + b)p ≤ 2p−1(a p + bp)

(p > 1, a, b ≥ 0):

Ia,ω( f + g)p(t) ≤ 2p−1 Ia,ω( f p + g p)(t), (8.6)

Ia,ω( f + g)q(t) ≤ 2q−1 Ia,ω( f q + gq)(t). (8.7)

The desired inequality (8.1) follows by applying (8.6) and (8.7) to (8.5).
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9 Some Other Integral Inequalities

The integral inequalities proved in this section are the ω-weighted generalizations of
some results of [3, 34] and become some classical inequalities for particular cases
of the parameter-function ω.

Theorem 9.1 Let { fi }n
i=1 be positive, continuous, decreasing functions on (a,+∞)

(a > −∞) and let ω ∈ �. Then, for any fixed p ∈ {1, · · · , n}, μ > 0, σ ≥ λp > 0

Ia,ω

(
(t − a)μ

n∏
i=1

f λi
i (t)

)
Ia,ω

⎛
⎝ n∏

i �=p

f λi
i f σ

p (t)

⎞
⎠ (9.1)

≥ Ia,ω

⎛
⎝(t − a)μ

n∏
i �=p

f λi
i f σ

p (t)

⎞
⎠ Ia,ω

(
n∏

i=1

f λi
i (t)

)
, t ∈ (a,+∞).

Proof As f p is a decreasing function for p ∈ {1, · · · , n},
(
(ρ − a)μ − (τ − a)μ

)(
f

σ−λp
p (τ ) − f

σ−λp
p (ρ)

) ≥ 0, ρ, τ ∈ (a, t),

for any t ∈ (a,+∞) and σ ≥ λp. Further, { fi }n
i=1 are positive functions on (a,+∞)

and ω(t, τ, x1, . . . , xn) ≥ 0 for any τ ∈ (a, t), and therefore

ω(t, τ, x1, . . . , xn)

n∏
i=1

f λi
i (τ )

(
(ρ − a)μ − (τ − a)μ

)(
f

σ−λp
p (τ ) − f

σ−λp
p (ρ)

) ≥ 0.

Integrating this inequality with respect to τ over (a, t), we obtain

(ρ − a)μ f
σ−λp
p (ρ)Ia,ω

(
n∏

i=1

f λi
i (t)

)
+ Ia,ω

⎛
⎝(t − a)μ

n∏
i �=p

f λi
i f σ

p (t)

⎞
⎠

≤ (ρ − a)μ Ia,ω

⎛
⎝ n∏

i �=p

f λi
i f σ

p (t)

⎞
⎠ + f

σ−λp
p (ρ)Ia,ω

(
(t − a)μ

n∏
i=1

f λi
i (t)

)
.

At last, multiplying both sides of this inequality by ω(t, ρ, x1, . . . , xn)
∏n

i=1 f λi
i (ρ),

integrating with respect to ρ over (a, t) we come to the inequality (9.1).

Remark 9.1 If in Theorem 9.1 { fi }n
i=1 are supposed to be increasing functions on

(a,+∞), then the converse to (9.1) inequality is true. Besides, for ω ≡ 1, Theorem
9.1 becomes Theorem 3 of [34], and by Remark 2.3, Theorem 9.1 becomes Theorem
2.1 of [3] with s ∈ R

+.
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Theorem 9.2 Let { fi }n
i=1 be positive, continuous, decreasing functions on (a,+∞)

(a > −∞), let g be a positive, continuous, increasing function on (a,+∞) and let
ω ∈ �. Then for any fixed p ∈ {1, · · · , n}, μ > 0 and σ ≥ λp > 0

Ia,ω

(
gμ(t)

n∏
i=1

f λi
i (t)

)
Ia,ω

⎛
⎝ n∏

i �=p

f λi
i f σ

p (t)

⎞
⎠ (9.2)

≥ Ia,ω

⎛
⎝gμ(t)

n∏
i �=p

f λi
i f σ

p (t)

⎞
⎠ Ia,ω

(
n∏

i=1

f λi
i (t)

)
, t ∈ (a,+∞).

Proof Evidently

(
gμ(ρ) − gμ(τ)

)(
f

σ−λp
p (τ ) − f

σ−λp
p (ρ)

) ≥ 0, ρ, τ ∈ (a, t),

for any t ∈ (a,+∞). Further, since f1, . . . , fn are positive functions on (a,+∞)

and ω(t, τ, x1, . . . , xn) ≥ 0

ω(t, τ, x1, . . . , xn)

n∏
i=1

f λi
i (τ )

(
gμ(ρ) − gμ(τ)

)(
f

σ−λp
p (τ ) − f

σ−λp
p (ρ)

) ≥ 0

for any τ ∈ (a, t). Integrating this inequality with respect to τ over (a, t), we get

gμ(ρ) f
σ−λp
p (ρ)Ia,ω

(
n∏

i=1

f λi
i (t)

)
+ Ia,ω

⎛
⎝gμ(t)

n∏
i �=p

f λi
i f σ

p (t)

⎞
⎠

≤ gμ(ρ)Ia,ω

⎛
⎝ n∏

i �=p

f λi
i f σ

p (t)

⎞
⎠ + f

σ−λp
p (ρ)Ia,ω

(
gμ(t)

n∏
i=1

f λi
i (t)

)
.

At last, multiplying both sides of the last inequality by ω(t, ρ, x1, . . . , xn)
∏n

i=1

f λi
i (ρ), then integrating with respect to ρ over (a, t), we come to the inequality

(9.2).

Remark 9.2 For ω ≡ 1, Theorem 9.2 becomes Theorem 4 of [34]. Besides, by
Remark 2.3, Theorem 9.2 becomes Theorem 2.5 of [3] with s ∈ R

+.
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20. G. Grüss, Über das maximum des absoluten Betrages von 1
b−a

∫ b
a f (x)g(x)dx −

1
(b−a)2

∫ b
a f (x)dx

∫ b
a g(x)dx . Math. Z. 39 (1935)

21. A.M. Jerbashian, An Extension of the Factorization Theory of M. M. Djrbashian. Izv. Natl.
Ac. Sci. Armenia, Matematika [J. Contemp. Math. Ana. (National Academy of Sciences of
Armenia)] 30(2), 39–61 (1995)

22. A.M. Jerbashian, Evaluation of M. M. Djrbashian ω-kernels. Arch. Inequalities Appl. 1, 399–
422 (2003)

23. A.M. Jerbashian, V.A. Jerbashian, Functions of ω-bounded type in the half-plane. Comput.
Methods Funct. Theor. (CMFT) 7, 205–238 (2007)

24. A.M. Jerbashian, J.E. Restrepo, Riesz type minimal omega-representations on the half-plane.
J. Math. Sci.: Adv. Appl. India, 17, 1–37 (2012)

25. A.M. Jerbashian, J.E. Restrepo, On some classes of harmonic functions with nonnegative
harmonic majorants in the half-plane. J. Contemp. Math. Anal. 51(2), 51–61 (2016)

26. A.M. Jerbashian, J.E. Restrepo, On some subclasses of delta-subharmonic functions with non-
negative harmonic majorants in the half-plane. J. Contemp.Math. Anal. 51(3), 111–124 (2016)



Weighted Integral Inequalities in Terms of Omega-Fractional … 217

27. A.M. Jerbashian, J.E. Restrepo, A boundary property of some subclasses of functions of
bounded type in the half-plane. Fract. Calc. Appl. Anal. 20, (2017)

28. U. Katugampola, New approach to a generalized fractional integral. Appl. Math. Comput. 218
(2011)

29. U. Katugampola, On Generalized Fractional Integrals and Derivatives, Ph.D. Dissertation,
Southern Illinois University, Carbondale (2011)

30. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Diferential
Equations (Elsevier B.V, Amsterdam, Netherlands, 2006)

31. H. Kober, On fractional integrals and derivatives. Q. J. Math. 11 (Oxford Series) (1940)
32. A.A. Korenovskii, Mean Oscillations and Equimeasurable Rearrangements of Functions. Lec-

ture Notes Unione Mat. Ital., vol. 4 (Springer, Berlin, 2007)
33. Lakshmikantham, V., Vatsala, A. Theory of fractional differential inequalities and applications,

Commun. Appl. Anal. 11, (2007)
34. W.J. Liu, Q.A. Ngô, V.N. Huy, Several interesting integral inequalities. J. Math. Inequal. 3,

(2009)
35. A. Malinowska, T. Odzijewicz, D. Torres, Advanced Methods in the Fractional Calculus of

Variations (SpringerBriefs in Applied Sciences and Technology, Springer, Berlin, 2015)
36. A.M. Mathai, A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl.

396 (2005)
37. S. Ntouyas, P. Agarwal, J. Tariboon, On Pólya-Szegö and Chebyshev types inequalities involv-

ing the Riemann-Liouville fractional integral operators. J. Math. Inequal. 10 (2016)
38. G. Pólya, G. Szegö, Aufgaben und Lehrsatze aus der Analysis. Bd. 1. Die Grundlehren der

mathmatischen Wissenschaften. Bd. 19. (Springer, Berlin, 1925)
39. J.E. Restrepo, A. Kilicman, P. Agarwal, O. Altun, Weighted hypergeometric functions and

fractional derivative. Adv. Differ. Equ. 1, (2017)
40. J.E. Restrepo, A.M. Jerbashian, P. Agarwal, On some subclasses of hypergeometric functions

with Djrbashian Cauchy type kernel. J. Nonlinear Sci. Appl. 10, 23402349 (2017)
41. J.E. Restrepo, On some subclasses of delta-subharmonic functions of bounded type in the disc.

J. Contemp. Math. Anal. 53(5) (2018)
42. M. Saigo, A remark on integral operators involving the Gauss hypergeometric function. Rep.

College General Ed. Kyushu Univ. 11, 135–143 (1978)
43. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives (Gordon and

Breach, Yverdon, Switzerland, 1993)
44. M. Sarikaya, Z. Dahmani, M. Kiris, F. Ahmad, (k; s)-Riemann-Liouville fractional integral

and applications. Hacet. J. Math. Stat. 45, (2016)
45. P. Schweitzer, Egy egyenlotlenség az aritrnetikai kôzépértékrol [in Hungarian: “An inequal-

ity about the arithrnetic rneall”]. Matematikai és Physikl1i LapaI.: 23, 25–261 (1914) [JFM
45:1245]. [English translation by Levente T . Tolnai and Robert Verrnes is Appendix A of this.]

46. E. Set,M. Tomar,M. Sarikaya, On generalizedGrüss type inequalities for k-fractional integrals.
Appl. Math. Comput. 269 (2015)

47. B. Sroysang,More on reverses ofMinkowski’s integral inequality.Math.Aeterna 3(7), 597–600
(2013)

48. W. Sudsutad, S. Ntouyas, J. Tariboon, Fractional integral inequalities via Hadamards fractional
integral. Abstr. Appl. Anal. 2014 (2014)

49. W.T. Sulaiman, Reverses of Minkowski’s, Hölder’s, and Hardy’s integral inequalities. Int. J.
Mod. Math. Sci. 1, (2012)

50. G. Wang, P. Agarwal, M. Chand, Certain Grüss type inequalities involving the generalized
fractional integral operator. J. Inequal. Appl. 1, (2014)



On Sherman Method to Deriving
Inequalities for Some Classes
of Functions Related to Convexity

Marek Niezgoda

Keywords Convex function · Uniformly convex function · Strongly convex
function · Superquadratic function · Jensen’s inequality · Sherman’s inequality
Jensen’s functional

Mathematics Subject Classification (2010): 26A51 · 26D15 · 15A45

1 Introduction, Notation, and Summary

In this chapter, we show the usefulness of Sherman method in deriving inequalities
for convex, strongly convex, uniformly convex, and superquadratic functions. The
inequality due to Sherman [32] generalizes the well-known inequality by Hardy,
Littlewood, and Pólya in majorization theory [17, 21]. In addition, the HLP inequal-
ity includes the celebrated Jensen’s inequality. These results have been extensively
studied by many researchers.

The theory of majorization has many applications in linear algebra, convex analy-
sis, probability, statistics, geometry, optimization, approximation, numerical analy-
sis, statistical mechanics, econometrics, etc [21]. So, Sherman method gives further
perspectives to find somenice applications. Therefore, this research topic is important
and intriguing.

In this work, we provide a unified framework for generalizations of some classical
results. First,wedemonstrate themethodbygiving alternative unifiedproofs for some
known inequalities involving convex functions. To do so, we use suitable column
stochastic matrices. In particular, we deal with (i) the converse of Jensen’s inequality
[28], (ii) the monotonicity property of the Jensen’s functional [16], (iii) an extension
of Jensen’s inequality by Mitroi-Symeonidis and Minculete [22], and (iv) Simić’s
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results on global upper bounds for Jensen’s functional [30, 31]. Also, we discuss (v)
Csiszár f -divergence [13]. This divergence, which is used for appropriate convex
functions f , leads to many important notions as the Kullback–Leibler distance, α-
order Rényi entropy, Hellinger distance, variational distance, and χ2-distance [14].
We interpret Csiszár–Körner’s inequality for Csiszár f -divergence as a specialization
of Sherman’s inequality.

Next, we extend the above-mentioned results to uniformly convex, strongly con-
vex, and superquadratic functions. Firstly, we establish a Sherman-like inequality for
each of these classes of functions. Secondly, by using such inequalities, we derive
some relevant results for the above-mentioned problems (i)–(v). For instance, we
obtain the converse of Jensen’s inequality generated by a strongly convex function
(respectively by a uniformly convex or by a superquadratic function). The remaining
problems (ii)–(v) are also explored in this context. Some results are new, and the
others generalize some known inequalities.

The presented approach is very general and innovative. Its implementation in con-
crete situationdepends on the possibility of constructionof suitable column stochastic
matrix generating the required inequality. We deliver such matrix separately for each
of the mentioned problems (i)–(v).

It is known that ϕ-uniformly convex and c-strongly convex functions are convex
as well. Likewise, nonnegative superquadratic functions are also convex. Therefore,
for such functions the (known) results of Sect. 2 and the (new) ones of Sects. 3–7 are
applicable. However, it is worth emphasizing that the new inequalities derived for
uniformly convex, strongly convex, and nonnegative superquadratic functions are
the refinements of the corresponding inequalities related to convex functions.

In the sequel, the cited theorems will be numbered by capital letters like Theo-
rem A, Theorem B, ... , Theorem H. The original author’s results are numbered like
Theorem 3.4, Theorem 4.1, Theorem 5.1.

We begin our discussion with quoting some notation, definitions, and basic facts.

Definition 1.1 ([10, pp. 72–73]) A function f : I → R is said to be convex on
interval I ⊂ R, if

f

(
n∑

i=1

pi xi

)
≤

n∑
i=1

pi f (xi ) (1)

for all x1, x2, . . . , xn ∈ I and p1, p2, . . . , pn ≥ 0 with
∑n

i=1 pi = 1. Statement (1)
is called Jensen’s inequality.

Definition 1.2 ([21, pp. 29–30]) A k × n real matrix S = (si j ) is said to be column
stochastic if si j ≥ 0 for i = 1, . . . , k, j = 1, . . . , n, and all column sums of S are
equal to 1, i.e.,

∑k
i=1 si j = 1 for j = 1, . . . , n.
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An n × n real matrix S = (si j ) is called doubly stochastic if si j ≥ 0 for i, j =
1, . . . , n, and all column and row sums of S are equal to 1, i.e.,

∑n
i=1 si j = 1 =∑n

j=1 si j for i, j = 1, . . . , n.

Definition 1.3 ([21, p. 8]) We say that a vector y = (y1, y2, . . . , yn) ∈ R
n is

majorized by a vector x = (x1, x2, . . . , xn) ∈ R
n , in symbols y ≺ x, if

l∑
i=1

y[i] ≤
l∑

i=1

x[i] for l = 1, 2, . . . , n

with equality for l = n. Here the symbols x[i] and y[i] stand for the i th largest entry
of x and y, respectively.

It is known by Birkhoff’s and Rado’s Theorems [21, pp. 10, 34, 162] that y ≺ x
if and only if y = xS for some n × n doubly stochastic matrix S.

Weare now in aposition to presentHardy–Littlewood–Pólya–Karamata’s theorem
showing a relationship between majorization and convexity [17, 18, 21].

Theorem A (HLPK’s inequality [17, p. 75], [21, p. 92]) Let f : I → R be a convex
continuous function on an interval I ⊂ R. Let x = (x1, x2, . . . , xn) ∈ I n and y =
(y1, y2, . . . , yn) ∈ I n.

If y ≺ x, then
n∑

i=1

f (yi ) ≤
n∑

i=1

f (xi ). (2)

If f is concave, then the inequality (2) is reversed.

We now demonstrate Sherman’s inequality (4) (cf. [32], see also [9, 11, 24, 26]).

Theorem B (Sherman’s inequality [9, 11, 32]) Let f : I → R be a convex function
defined on an interval I ⊂ R. Let x = (x1, x2, . . . , xk) ∈ I k , y = (y1, y2, . . . , yn)

∈ I n, a = (a1, a2, . . . , ak) ∈ R
k+ and b = (b1, b2, . . . , bn) ∈ R

n+.
If

y = xS and a = bST (3)

for some k × n column stochastic matrix S = (si j ), then

n∑
j=1

b j f (y j ) ≤
k∑

i=1

ai f (xi ). (4)

If f is concave, then the inequality (4) is reversed.

The relation (3) is called weighted majorization of pairs (x,b) and (y, a) (see [9,
11]).
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Remark 1.4 The proof of Theorem B requires Jensen’s inequality. Conversely,
Jensen’s inequality is a special form of Sherman’s inequality (4) with n = 1 and
b1 = 1.

Moreover, in the case when S is an n × n doubly stochastic matrix and b =
(1, 1, . . . , 1) ∈ R

n+, then Theorem B reduces to Theorem A.

This work is organized as follows. In the next section, our aim is to demonstrate
alternative unified proofs, based on Sherman inequality, of some known results for
convex functions. In Sect. 2.1, we point out that the converse of Jensen’s inequality
[28] is a special case of Sherman’s inequality. In a similar manner, we prove that the
monotonicity property of the Jensen’s functional [16] is a consequence of Sherman’s
inequality (see Sect. 2.2). Section2.3 is devoted to analyzing an extension of Jensen’s
inequality [22] via Theorem B. Next, in Sect. 2.4 we show that some Simić’s results
[30, 31] follow from Theorems C and D. Finally, in Sect. 2.5, we conclude our
discussion by interpreting Csiszár–Körner’s inequality for Csiszár’s f -divergence
[13] as a specialization of Sherman’s inequality.

In the subsequent sections we extend the mentioned results (i)-(v) from con-
vex functions to uniformly convex, strongly convex, and superquadratic functions,
respectively. In doing so, we begin with the version of the Sherman’s inequality for
these three classes of functions (see Theorem H). The difference with the standard
case of convex functions (see Theorem B) lies in the existence of an extra term R
in the new Sherman-like inequality. The term R plays an essential role in all appli-
cations of Theorem H in Sections 3–7. Each of these sections deals with one of the
problems (i)–(v) for all of the above-mentioned classes of functions. In the described
situations, we give concrete form of R.

In summary, we establish some new generalizations of the statements (i)–(v). The
usedmethod is based on TheoremH. The obtained inequalities for uniformly convex,
strongly convex, and nonnegative superquadratic functions are the refinements of the
corresponding inequalities for convex functions.

2 Proving Inequalities for Convex Functions

Theorems discussed in this section are known and are due to Pečarić et al. [28],
Dragomir et al. [16], Kian [19], Mitroi-Symeonidis and Minculete [22], Simić [30,
31], and Csiszár and Körner [13], respectively. However, we give some alternative
unified proofs by using the Sherman method described in Theorem B.

2.1 Converse of Jensen’s Inequality

In [28], Pečarić et al. showed the following result (see also [8]).
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Theorem C ([28, p. 105], [8, p. 513]) Let f : I → R be a convex function on an
interval I ⊂ R, xi ∈ [m, M] ⊂ I , −∞ < m < M < ∞, and pi ≥ 0, i = 1, . . . , n,
be such that Pn = ∑n

i=1 pi > 0.
Then the following converse of Jensen’s inequality holds:

1

Pn

n∑
i=1

pi f (xi ) ≤ M − x

M − m
f (m) + x − m

M − m
f (M), (5)

where x = 1
Pn

∑n
i=1 pi xi .

Proof Since xi ∈ [m, M], we have the identity

xi = M − xi

M − m
m + xi − m

M − m
M

with αi = M−xi
M−m ≥ 0, βi = xi −m

M−m ≥ 0 and αi + βi = 1 for i = 1, . . . , n.
In other words, in matrix notation we obtain

(x1, x2, . . . , xn) = (m, M) ·
(

α1, α2, · · · , αn

β1, β2, · · · , βn

)
.

It is clear that the above 2 × n matrix, denoted S, is column stochastic.
According to Sherman’s inequality (see Theorem B), we get

1

Pn

n∑
i=1

pi f (xi ) ≤ a1 f (m) + a2 f (M), (6)

where the coefficients a1 and a2 can be derived from the formula (see (3))

(a1, a2) = 1

Pn
(p1, p2, . . . , pn) ·

⎛
⎜⎜⎝

α1, β1

α2, β2

· · · , · · ·
αn, βn

⎞
⎟⎟⎠ .

Hence

a1 = 1

Pn

n∑
i=1

pi
M − xi

M − m
= 1

Pn

Pn M − Pn x

M − m
= M − x

M − m
, (7)

a2 = 1

Pn

n∑
i=1

pi
xi − m

M − m
= 1

Pn

Pn x − Pnm

M − m
= x − m

M − m
. (8)

Now, the required result (5) is due to (6). �
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2.2 Monotonicity of Jensen Functional

Given a function f : I → R on an interval I ⊂ R, x = (x1, x2, . . . , xn) ∈ I n and
p ∈ P0

n , where

P0
n = {p = (p1, p2, . . . , pn) ∈ R

n : pi ≥ 0, Pn > 0} with Pn =
n∑

i=1

pi , (9)

the Jensen’s functional is defined by

J ( f, x,p) =
n∑

i=1

pi f (xi ) − Pn f

(
1

Pn

n∑
i=1

pi xi

)
(10)

(see [16]).
In light of Jensen’s inequality (1),

J ( f, x,p) ≥ 0 whenever f is a convex function.

Theorem D [16] If f : I → R is a convex function, then the functionp → J ( f, x,p)

is monotone for any fixed x = (x1, . . . , xn) ∈ I n, i.e., for p,q ∈ P0
n ,

p ≤ q implies J ( f, x,p) ≤ J ( f, x,q). (11)

Proof Fix any p,q ∈ P0
n such that p ≤ q. Then qi − pi ≥ 0 for i = 1, . . . , n.

It is not hard to check that

1

Qn

n∑
i=1

qi xi = Pn

Qn

(
1

Pn

n∑
i=1

pi xi

)
+

n∑
i=1

qi − pi

Qn
xi . (12)

By denoting

y = 1

Qn

n∑
i=1

qi xi , x0 = 1

Pn

n∑
i=1

pi xi , α0 = Pn

Qn
and αi = qi − pi

Qn
for i = 1, . . . , n,

we can rewrite (12) in the matrix form

y = (x0, x1, x2, . . . , xn) ·

⎛
⎜⎜⎜⎜⎜⎝

α0

α1

α2
...

αn

⎞
⎟⎟⎟⎟⎟⎠ ,
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where the above n × 1 matrix is column stochastic.
In this case, Sherman’s inequality becomes the following (see Theorem B):

f (y) ≤ a0 f (x0) +
n∑

i=1

ai f (xi ) (13)

with
(a0, a1, a2, . . . , an) = (α0, α1, α2, . . . , αn)

(see (3)), i.e.,

a0 = α0 = Pn

Qn
and ai = αi = qi − pi

Qn
for i = 1, . . . , n. (14)

It is now sufficient to apply (13) and (14) in order to get

f

(
1

Qn

n∑
i=1

qi xi

)
≤ Pn

Qn
f

(
1

Pn

n∑
i=1

pi xi

)
+

n∑
i=1

qi − pi

Qn
f (xi ). (15)

We complete the proof of (11) with the observation that (15) is equivalent to
J ( f, x,p) ≤ J ( f, x,q). �

As a consequence of the last theorem, we present a result by Kian [19, Corol-
lary 2.4]. Namely, if f : I → R is a convex function, then

r

(
n∑

i=1

f (xi ) − n f

(
n∑

i=1

xi

n

))
≤

n∑
i=1

ti f (xi ) − f

(
n∑

i=1

ti xi

)
(16)

≤
n∑

i=1

f (xi ) − n f

(
n∑

i=1

xi

n

)

for all xi ∈ I , ti ∈ [0, 1] with
n∑

i=1
ti = 1, where r = min

i∈{1,...,n} ti .

In fact, to see this, it is enough to appeal to Theorem D, because

(r, r, . . . , r) ≤ (t1, t2, . . . , tn) ≤ (1, 1, . . . , 1).

�
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2.3 An extension of Jensen’s Inequality

The special case of [22, Theorem 1] for convex functions is incorporated in Theo-
rem E. We shall analyze it from the point of view of Sherman method.

Theorem E Let f : I → R be a convex function on an interval I ⊂ R, xi ∈ I , and

pi ∈ (0, 1), i = 1, . . . , n, with
n∑

i=1
pi = 1, and λ,μ ∈ [0, 1].

Then

n∑
i=1

pi f ((1 − λμ)x + λμxi ) ≤ (1 − λ) f (x) + λ

n∑
i=1

pi f ((1 − μ)x + μxi ),

(17)

where x =
n∑

i=1
pi xi .

Proof We denote

Ai = (1 − μ)x + μxi and Bi = (1 − λμ)x + λμxi for i = 1, . . . , n.

But λ ∈ [0, 1], so we have the identity

Bi = Ai − Bi

Ai − x
x + Bi − x

Ai − x
Ai for i = 1, . . . , n

withαi = Ai −Bi
Ai −x = 1 − λ ≥ 0,βi = Bi −x

Ai −x = λ ≥ 0 andαi + βi = 1 for i = 1, . . . , n.
In matrix notation, the above can be restated as follows:

(B1, B2, . . . , Bn) = (x, A1, x, A2, . . . , x, An) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 0 · · · 0
β1 0 · · · 0
0 α2 · · · 0
0 β2 · · · 0
...

...
. . .

...

0 0 · · · αn

0 0 · · · βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Obviously, the above 2n × n matrix, denoted by S, is column stochastic.
By virtue of Sherman’s inequality (see Theorem B), we find that

n∑
i=1

pi f (Bi ) ≤
n∑

i=1

(ai f (x) + bi f (Ai )), (18)

where the coefficients ai and bi satisfy
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(a1, b1, a2, b2, . . . , an, bn) = (p1, p2, . . . , pn) ·

⎛
⎜⎜⎝

α1 β1 0 0 · · · 0 0
0 0 α2 β2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · αn βn

⎞
⎟⎟⎠

(see (3)). A bit of algebra yields

ai = piαi = pi
Ai − Bi

Ai − x
= (1 − λ)pi and bi = piβi = pi

Bi − x

Ai − x
= λpi .

(19)
In consequence (17) follows from (18) and (19). This completes the proof of Theo-
rem E. �

2.4 Global Upper Bounds for Jensen’s Inequality

Simić [30, 31] proved the following inequalities (20) and (21). We shall show that
they are direct consequences of Theorems C and D.

Theorem F ([31, Theorem C], [30, Theorem 1]) Let f : [m, M] → R be a convex
function on an interval [m, M] ⊂ R, xi ∈ [m, M], and pi ≥ 0, i = 1, . . . , n, with∑n

i=1 pi = 1.
Then

n∑
i=1

pi f (xi ) ≤ max
p∈[0,1]{p f (m) + q f (M) − f (pm + q M)} with q = 1 − p,

(20)
n∑

i=1

pi f (xi ) ≤ f (m) + f (M) − 2 f

(
m + M

2

)
. (21)

Proof We proceed as in the proof of Theorem C to derive Sherman’s inequality (see
Theorem B) as follows

n∑
i=1

pi f (xi ) ≤ a1 f (m) + a2 f (M), (22)

where αi = M−xi
M−m , βi = xi −m

M−m and

a1 =
n∑

i=1

piαi = M − x

M − m
and a2 =

n∑
i=1

piβi = x − m

M − m
. (23)

Simultaneously, (22) is equivalent to



228 M. Niezgoda

n∑
i=1

pi f (xi ) − f

(
n∑

i=1

pi xi

)
≤ a1 f (m) + a2 f (M) − f (a1m + a2M), (24)

since xi = αi m + βi M , i = 1, . . . , n, and

f

(
n∑

i=1

pi xi

)
= f

(
n∑

i=1

pi (αi m + βi M)

)

= f

(
n∑

i=1

piαi m +
n∑

i=1

piβi M

)
= f (a1m + a2M).

Clearly, a1 + a2 = 1, a1, a2 ≥ 0 by (23). For this reason the inequality (24) easily
implies (20), as required.

On the other hand, to prove (21) it is sufficient to combine (24) with the inequality

a1 f (m) + a2 f (M) − f (a1m + a2M) ≤ f (m) + f (M) − 2 f

(
m + M

2

)
(25)

being a consequence of the property of monotonicity of Jensen’s functional (see
Theorem D), because (a1, a2) ≤ (1, 1). �

2.5 Csiszár–Körner’s Inequality

We conclude our discussion by pointing out that Csiszár–Körner’s inequality for
Csiszár f -divergence can be derived via Sherman’s inequality.

Given a convex function f : (0,∞) → R and two n-tuples of positive numbers
p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn), the Csiszár f -divergence is defined
by

I f (p,q) =
n∑

i=1

pi f

(
qi

pi

)
(26)

(see [12–15, 25]).

Theorem G (Csiszár–Körner’s inequality [13–15]) Let f : (0,∞) → R be a con-
vex function, and p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) be two n-tuples of
positive numbers.

Then

n∑
i=1

pi f

⎛
⎜⎜⎝

n∑
i=1

qi

n∑
i=1

pi

⎞
⎟⎟⎠ ≤ I f (p,q). (27)
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Proof It is easily seen that

n∑
i=1

qi

n∑
i=1

pi

= p1
n∑

i=1
pi

· q1

p1
+ p2

n∑
i=1

pi

· q2

p2
+ . . . + pn

n∑
i=1

pi

· qn

pn
. (28)

By denoting

y =

n∑
i=1

qi

n∑
i=1

pi

, xi = qi

pi
, and αi = pi

n∑
i=1

pi

for i = 1, . . . , n,

we can state (28) in the matrix form

y = (x1, x2, . . . , xn) ·

⎛
⎜⎜⎜⎝

α1

α2
...

αn

⎞
⎟⎟⎟⎠ .

In consequence, Sherman’s inequality reduces to the form (see Theorem B):

(
n∑

i=1

pi

)
f (y) ≤

n∑
i=1

ai f (xi ), (29)

where

(a1, a2, . . . , an) =
(

n∑
i=1

pi

)
(α1, α2, . . . , αn)

(see (3)), i.e.,

ai =
(

n∑
i=1

pi

)
αi = pi for i = 1, . . . , n. (30)

Now, the result (27) can be deduced from (29) and (30). �

Remark 2.1 In light of (27) we see that if in addition
n∑

k=1
pk =

n∑
k=1

qk and f (1) = 0,

then we obtain a Shannon-type inequality:

0 ≤ I f (p,q) (31)

(see [14, Corollary 1]).
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3 Converse of Jensen’s Inequality for Some Functions

Some analogs of Jensen’s inequality hold for certain classes of functions (see [27];
cf. also [2, 20, 23]). In this section, we establish some converse results. To do so, we
begin with some relevant definitions.

Definition 3.1 ([33]) A function f : I → R defined on an interval I ⊂ R is said to
be uniformly convex with modulus ϕ : R+ → R+, if the following inequality holds
for all points x, y ∈ I and p ∈ [0, 1]:

f (px + (1 − p)y) + p(1 − p)ϕ(|x − y|) ≤ p f (x) + (1 − p) f (y). (32)

In the case of differentiable f , condition (32) gives

f (x) − f (y) ≥ f ′(y)(x − y) + ϕ(|x − y|) for x, y ∈ I . (33)

Definition 3.2 ([5, 29]) A function f : I → R defined on an interval I ⊂ R is said
to be c-strongly convex on I , where c ∈ R+, if the following inequality holds for all
points x, y ∈ I and p ∈ [0, 1]:

f (px + (1 − p)y) + c

2
p(1 − p)|x − y|2 ≤ p f (x) + (1 − p) f (y). (34)

For differentiable f , condition (34) implies

f (x) − f (y) ≥ f ′(y)(x − y) + c

2
|x − y|2 for x, y ∈ I

(see [5, p. 684]).
It is readily seen that if f is a c-strongly convex function, then f is uniformly

convex with modulus ϕ(t) = c
2 t2.

Definition 3.3 ([1]) A function f : R+ → R defined on the interval I = R+ is said
to be superquadratic, if for each point y ∈ R+ there exists a number C(y) ∈ R such
that the following condition is fulfilled:

f (x) − f (y) ≥ C(y)(x − y) + f (|x − y|) for x ∈ I . (35)

An equivalent condition for the superquadracity of f is as follows (see [7, Theo-
rem 9]):

f (px + (1 − p)y) + p f ((1 − p)|x − y|) + (1 − p) f (p|x − y|) ≤ p f (x) + (1 − p) f (y)

holds for x, y ≥ 0 and p ∈ [0, 1].
If f is superquadratic and differentiable with f (0) = f ′(0) = 0, then C(y) =

f ′(y) for y > 0 (see [7, p. 720]).
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For further information on superquadratic functions, consult [1, 3, 4, 6].
We can now state Sherman’s inequality for uniformly convex functions, c-strongly

convex functions, and superquadratic functions [27].

Theorem H ([27, p. 4794, Theorems 6.2 and 7.2]) Let I ⊂ R be an interval. Let
f : I → R be a differentiable function of type (i), (ii), or (iii) as described below.
Let x = (x1, . . . , xk) ∈ I k , y = (y1, . . . , yn) ∈ I n, a = (a1, . . . , ak) ∈ R

k+, and b =
(b1, . . . , bn) ∈ R

n+.
If

y = xS and a = bST (36)

for some k × n column stochastic matrix S = (si j ), then

n∑
j=1

b j f (y j ) + R ≤
k∑

i=1

ai f (xi ) (37)

for R defined as follows:

(i) If f is uniformly convex with modulus ϕ, then

R =
n∑

j=1

b j

k∑
i=1

si jϕ(|xi − y j |). (38)

(ii) If f is c-strongly convex, then

R = c

2

n∑
j=1

b j

k∑
i=1

si j |xi − y j |2. (39)

(iii) If f is superquadratic on I = R+, then

R =
n∑

j=1

b j

k∑
i=1

si j f (|xi − y j |). (40)

The following theorem is a complement to a result of Pečarić et al. [28, p. 105]
(see also [8, p. 513]) for uniformly convex, strongly convex, and superquadratic
functions, respectively, in place of convex functions.

Theorem 3.4 Let f : I → R be a differentiable function on an interval I ⊂ R,
−∞ < m < M < ∞, xi ∈ [m, M] ⊂ I , and pi ≥ 0, i = 1, . . . , n, be such that Pn =∑n

i=1 pi > 0. Denote x = 1
Pn

n∑
i=1

pi xi .

Then the following converses of Jensen-type inequalities hold.
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(i) If f is uniformly convex with modulus ϕ, then

1

Pn

n∑
i=1

pi f (xi ) + 1

Pn

n∑
i=1

pi

[
M − xi

M − m
ϕ(|xi − m|) + xi − m

M − m
ϕ(|M − xi |)

]

≤ M − x

M − m
f (m) + x − m

M − m
f (M). (41)

(ii) If f is c-strongly convex, then

1

Pn

n∑
i=1

pi f (xi ) + c

2Pn

n∑
i=1

pi

[
M − xi

M − m
|xi − m|2 + xi − m

M − m
|M − xi |2

]

≤ M − x

M − m
f (m) + x − m

M − m
f (M). (42)

(iii) If f is superquadratic on I = R+, then

1

Pn

n∑
i=1

pi f (xi ) + 1

Pn

n∑
i=1

pi

[
M − xi

M − m
f (|m − xi |) + xi − m

M − m
f (|M − xi |)

]

≤ M − x

M − m
f (m) + x − m

M − m
f (M). (43)

Proof We begin as in the proof of Theorem C in the previous section.
Because m ≤ xi ≤ M for i = 1, . . . , n, we obtain

xi = M − xi

M − m
m + xi − m

M − m
M

with

αi = M − xi

M − m
≥ 0 , βi = xi − m

M − m
≥ 0 for i = 1, . . . , n, (44)

and αi + βi = 1 for i = 1, . . . , n.
Hence

(x1, x2, . . . , xn) = (m, M) ·
(

α1, α2, · · · , αn

β1, β2, · · · , βn

)
,

where above 2 × n matrix is column stochastic.
Let the coefficients a1 and a2 be defined by the following condition (see (3))
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(a1, a2) = 1

Pn
(p1, p2, . . . , pn) ·

⎛
⎜⎜⎜⎝

α1, β1

α2, β2
...

...

αn, βn

⎞
⎟⎟⎟⎠ .

Some algebra (cf. (7) and (8)) gives

a1 = M − x

M − m
and a2 = x − m

M − m
. (45)

(i). According to Sherman’s inequality (37)with R given by (38) (see TheoremH),
we find

1

Pn

n∑
i=1

pi f (xi ) + 1

Pn

n∑
i=1

pi [αiϕ(|m − xi |) + βiϕ(|M − xi |)]

≤ a1 f (m) + a2 f (M). (46)

It now follows from (44) and (45) that (41) is proved, as required.
(ii). If f is a c-strongly convex function, then f is a uniformly convex function

with modulus ϕ(t) = c
2 t2. Therefore, (42) is an easy consequence of (41).

(iii). It follows from (37) and (40) that

1

Pn

n∑
i=1

pi f (xi ) + 1

Pn

n∑
i=1

pi [αi f (|m − xi |) + βi f (|M − xi |)]

≤ a1 f (m) + a2 f (M). (47)

Combining this with (44) and (45) leads to (43).
This completes the proof. �

Remark 3.5 In Theorem 3.4, the case (iii) for superquadratic functions is in the same
line as a result for linear isotonic functionals byBanić andVarošanec [7, Theorem15].

Remark 3.6 We have some observations concerning Theorem 3.4.

(i) Let f be ϕ-uniformly convex. Since the modulus ϕ is nonnegative, f is convex
and the term on the left-hand side of inequality (41) is nonnegative, i.e.,

1

Pn

n∑
i=1

pi

[
M − xi

M − m
ϕ(|xi − m|) + xi − m

M − m
ϕ(|M − xi |)

]
≥ 0.

In consequence, if f is ϕ-uniformly convex, then inequality (41) is a refinement
of the converse of Jensen’s inequality (5).
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(ii) Let f be c-strongly convex with c ≥ 0. Then f is convex. Moreover, the term

c

2Pn

n∑
i=1

pi

[
M − xi

M − m
|xi − m|2 + xi − m

M − m
|M − xi |2

]
≥ 0

on the left-hand side of inequality (42) is nonnegative.
Therefore, if f is c-strongly convex, then inequality (42) is a refinement of the
converse of Jensen’s inequality (5).

(iii) Let f be nonnegative superquadratic on I = R+. Then f must be convex.
Furthermore, the term

1

Pn

n∑
i=1

pi

[
M − xi

M − m
f (|m − xi |) + xi − m

M − m
f (|M − xi |)

]
≥ 0

on the left-hand side of inequality (43) is nonnegative.
So,we deduce that if f is both nonnegative and superquadratic, then the inequal-
ity (43) is a refinement of the converse of Jensen’s inequality (5).

4 Generalized Monotonicity of Jensen’s Functional

In this section, we study Jensen’s functional J ( f, x,p) (see (10)) defined for uni-
formly convex, strongly convex, and superquadratic functions f : I → R, respec-
tively, with an interval I ⊂ R and x = (x1, x2, . . . , xn) ∈ I n and p ∈ P0

n , where P0
n

is defined by (9).
The next theorem corresponds to a result due to Dragomir, Pečarić, and Persson

[16] on monotonicity of the Jensen’s functional for a convex function.

Theorem 4.1 Let f : I → R be a differentiable function, p = (p1, . . . , pn) ∈ P0
n ,

and q = (q1, . . . , qn) ∈ P0
n be such that p ≤ q.

(i) If f is uniformly convex with modulus ϕ, then

Pnϕ

(∣∣∣∣∣ 1

Pn

n∑
i=1

pi xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
)

+
n∑

i=1

(qi − pi )ϕ

(∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
)

≤ J ( f, x,q) − J ( f, x,p). (48)

(ii) If f is c-strongly convex, then

c

2
Pn

∣∣∣∣∣ 1

Pn

n∑
i=1

pi xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
2

+ c

2

n∑
i=1

(qi − pi )

∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
2
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≤ J ( f, x,q) − J ( f, x,p). (49)

(iii) If f is superquadratic on I = R+, then

Pn f

(∣∣∣∣∣ 1

Pn

n∑
i=1

pi xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
)

+
n∑

i=1

(qi − pi ) f

(∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
)

≤ J ( f, x,q) − J ( f, x,p). (50)

Proof Similarly as in the proof of Theorem D, we find

1

Qn

n∑
i=1

qi xi = Pn

Qn

(
1

Pn

n∑
i=1

pi xi

)
+

n∑
i=1

qi − pi

Qn
xi (51)

with qi − pi ≥ 0 for i = 1, . . . , n.
By making use of the notation

y = 1

Qn

n∑
i=1

qi xi and x0 = 1

Pn

n∑
i=1

pi xi , (52)

α0 = Pn

Qn
and αi = qi − pi

Qn
for i = 1, . . . , n, (53)

we can restate (51) as

y = (x0, x1, x2, . . . , xn) ·

⎛
⎜⎜⎜⎜⎜⎝

α0

α1

α2
...

αn

⎞
⎟⎟⎟⎟⎟⎠ .

Evidently, the above n × 1 matrix S is column stochastic.
In light of (3) we define

(a0, a1, a2, . . . , an) = (α0, α1, α2, . . . , αn)

i.e.,

a0 = α0 = Pn

Qn
and ai = αi = qi − pi

Qn
for i = 1, . . . , n. (54)

(i). If f is uniformly convex with modulus ϕ, then Sherman-type inequality (see
Theorem H) with b1 = 1, y = y1 and si1 = αi for i = 0, 1, . . . , n yields



236 M. Niezgoda

f (y) +
n∑

i=0

αiϕ(|xi − y|) ≤
n∑

i=0

ai f (xi ). (55)

By employing (55) and (54) we get

f

(
1

Qn

n∑
i=1

qi xi

)
+

n∑
i=0

αiϕ

(∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
)

≤ Pn

Qn
f

(
1

Pn

n∑
i=1

pi xi

)
+

n∑
i=1

qi − pi

Qn
f (xi ). (56)

Equivalently,

Pn

Qn
ϕ

(∣∣∣∣∣x0 − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
)

+
n∑

i=1

qi − pi

Qn
ϕ

(∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
)

≤ Pn

Qn
f

(
1

Pn

n∑
i=1

pi xi

)
+

n∑
i=1

qi − pi

Qn
f (xi ) − f

(
1

Qn

n∑
i=1

qi xi

)
. (57)

It is easy to check that the right-hand side of the inequality (30) is equal to
1

Qn
[J ( f, x,q) − J ( f, x,p)]. Multiplying both the sides of the above inequality (57)

by Qn > 0 leads to (48). This completes the proof of (i).
(ii). If f is a c-strongly convex function, then f is a uniformly convex function

with modulus ϕ(t) = c
2 t2. Therefore, (49) is an easy consequence of (48).

(iii). If f is superquadratic, then we obtain three inequalities as in (55)–(57) with
ϕ replaced by f . In summary, the last of them is equivalent to (50), as desired. �

Remark 4.2 Here we give some comments on Theorem 4.1.

(i) Let f be ϕ-uniformly convex with (nonnegative) modulus ϕ. Then f is convex
and the left-hand side of inequality (41) is nonnegative, that is

Pnϕ

⎛
⎝

∣∣∣∣∣∣
1

Pn

n∑
i=1

pi xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣∣
⎞
⎠ +

n∑
i=1

(qi − pi )ϕ

⎛
⎝

∣∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣∣
⎞
⎠ ≥ 0.

For this reason, if f is ϕ-uniformly convex, then inequality (48) is a refine-
ment of the monotonicity property (11) of the Jensen’s functional for convex
functions.

(ii) Let f be c-strongly convex with c ≥ 0. Then f is convex. It is easy to see that
the left-hand side of inequality (49) is nonnegative, i.e.,
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c

2
Pn

∣∣∣∣∣ 1

Pn

n∑
i=1

pi xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
2

+ c

2

n∑
i=1

(qi − pi )

∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣
2

≥ 0.

Therefore, the following implication is valid. If f is c-strongly convex, then
inequality (49) is a refinement of the monotonicity property (11) of the Jensen’s
functional for convex functions.

(iii) Let f be nonnegative superquadratic on I = R+. Then f is convex, and the
left-hand side of inequality (50) is nonnegative as follows:

Pn f

⎛
⎝

∣∣∣∣∣∣
1

Pn

n∑
i=1

pi xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣∣
⎞
⎠ +

n∑
i=1

(qi − pi ) f

⎛
⎝

∣∣∣∣∣∣xi − 1

Qn

n∑
i=1

qi xi

∣∣∣∣∣∣
⎞
⎠ ≥ 0.

So, if f is both nonnegative and superquadratic, then inequality (50) is a
refinement of the monotonicity of Jensen’s functional (11).

5 An Extension of Jensen’s Inequality

TheoremE in Sect. 2 is a special case of [22, Theorem1] (see also item (ii) below) and
is devoted to convex functions. The following result is a development of Theorem E
established for other classes of functions related to convexity.

Theorem 5.1 Let f : I → R be a differentiable function on an interval I ⊂ R,

xi ∈ I , and pi ∈ (0, 1), i = 1, . . . , n, with
n∑

i=1
pi = 1, and λ,μ ∈ [0, 1]. Denote

x =
n∑

i=1
pi xi .

(i) If f is uniformly convex with modulus ϕ, then

n∑
i=1

pi f ((1 − λμ)x + λμxi ) + (1 − λ)

n∑
i=1

piϕ(λμ|x − xi |)

+ λ

n∑
i=1

piϕ(μ(1 − λ)|xi − x |)

≤ (1 − λ) f (x) + λ

n∑
i=1

pi f ((1 − μ)x + μxi ). (58)

(ii) If f is c-strongly convex, then
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n∑
i=1

pi f ((1 − λμ)x + λμxi ) + c

2
λ(1 − λ)μ2

n∑
i=1

pi (xi − x)2

≤ (1 − λ) f (x) + λ

n∑
i=1

pi f ((1 − μ)x + μxi ). (59)

(iii) If f is superquadratic on I = R+, then

n∑
i=1

pi f ((1 − λμ)x + λμxi ) + (1 − λ)

n∑
i=1

pi f (λμ|x − xi |)

+ λ

n∑
i=1

pi f (μ(1 − λ)|xi − x |)

≤ (1 − λ) f (x) + λ

n∑
i=1

pi f ((1 − μ)x + μxi ). (60)

Proof Analogously as in the proof of Theorem E, we use the notation

Ai = (1 − μ)x + μxi and Bi = (1 − λμ)x + λμxi for i = 1, . . . , n.

It is readily seen that

Bi = Ai − Bi

Ai − x
x + Bi − x

Ai − x
Ai for i = 1, . . . , n

with

αi = Ai − Bi

Ai − x
= 1 − λ ≥ 0 and βi = Bi − x

Ai − x
= λ ≥ 0 (61)

and αi + βi = 1 for i = 1, . . . , n.
The above can be rewritten as

(B1, B2, . . . , Bn) = (x, A1, x, A2, . . . , x, An) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 0 · · · 0
β1 0 · · · 0
0 α2 · · · 0
0 β2 · · · 0
...

...
. . .

...

0 0 · · · αn

0 0 · · · βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (62)

It is not hard to verify that the above 2n × n matrix is column stochastic.
We introduce coefficients ai and bi by
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(a1, b1, a2, b2, . . . , an, bn) = (p1, p2, . . . , pn) ·

⎛
⎜⎜⎝

α1 β1 0 0 · · · 0 0
0 0 α2 β2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · αn βn

⎞
⎟⎟⎠
(63)

(see (3)). Moreover, we have

ai = piαi = pi
Ai − Bi

Ai − x
= (1 − λ)pi and bi = piβi = pi

Bi − x

Ai − x
= λpi .

(64)
(i). Assume that f is ϕ-uniformly convex. On account of Sherman’s inequality

(see Theorem H) with the help of (61)–(63), we infer that

n∑
i=1

pi f (Bi ) +
n∑

i=1

pi [αiϕ(|x − Bi |) + βiϕ(|Ak − Bi |)]

≤
n∑

i=1

(ai f (x) + bi f (Ai )) =
n∑

i=1

ai f (x) +
n∑

i=1

bi f (Ai ) (65)

=
n∑

i=1

(1 − λ)pi f (x) +
n∑

i=1

λpi f (Ai ) = (1 − λ) f (x) + λ

n∑
i=1

pi f (Ai ).

Thus we obtain the desired result (i) of Theorem 5.1.
(ii). If f is c-strongly convex, then f is ϕ-uniformly convex for ϕ(t) = c

2 t2. In
this situation we employ (58) to get (59).

(iii). Let f be superquadratic. It is enough to apply the same argument as for (i)
with ϕ replaced by f . �

Remark 5.2 In Theorem 5.1, item (ii) for strongly convex functions is due toMitroi-
Symeonidis and Minculete [22, Theorem 1].

Remark 5.3 We now present some remarks on Theorem 5.1.

(i) Let f be ϕ-uniformly convex with (nonnegative) modulus ϕ. Then f is convex
and the left-hand side of inequality (41) is nonnegative, that is

(1 − λ)

n∑
i=1

piϕ(λμ|x − xi |) + λ

n∑
i=1

piϕ(μ(1 − λ)|xi − x |) ≥ 0.

If f is ϕ-uniformly convex, then inequality (58) refines inequality (17), which
is adequate for convex functions.

(ii) Let f be c-strongly convex with c ≥ 0. Then f is convex. It is easy to see that
the left-hand side of inequality (49) is nonnegative, i.e.,
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c

2
(1 − λ)

n∑
i=1

pi (λμ|x − xi |)2 + c

2
λ

n∑
i=1

pi (μ(1 − λ)|xi − x |)2 ≥ 0.

In the case f is c-strongly convex, inequality (59) refines inequality (17).
(iii) Let f be nonnegative superquadratic on I = R+. Then f is convex, and the

left-hand side of inequality (50) is nonnegative as follows:

(1 − λ)

n∑
i=1

pi f (λμ|x − xi |) + λ

n∑
i=1

pi f (μ(1 − λ)|xi − x |) ≥ 0.

In the case f is both nonnegative and superquadratic, inequality (60) is a refine-
ment of inequality (17).

6 Refined Global Upper Bounds for Jensen’s Functional

In this section, we extend the results of Simić [30, 31] (see Sect. 2.4) for uniformly
convex, strongly convex, and superquadratic functions, respectively.

Theorem 6.1 Let f : [m, M] → R be a differentiable convex function on an inter-
val [m, M] ⊂ R, xi ∈ [m, M], and pi ≥ 0, i = 1, . . . , n, with

∑n
i=1 pi = 1. Denote

a1 = M−x
M−m and a2 = x−m

M−m , where x = 1
Pn

n∑
i=1

pi xi .

Then
n∑

i=1

pi f (xi ) − f

(
n∑

i=1

pi xi

)
+ T

≤ max
p∈[0,1]{p f (m) + q f (M) − f (pm + q M)} with q = 1 − p, (66)

and

n∑
i=1

pi f (xi ) − f

(
n∑

i=1

pi xi

)
+ T ≤ f (m) + f (M) − 2 f

(
m + M

2

)
− U, (67)

where T and U are defined as follows:

(i) If f is uniformly convex with modulus ϕ, then

T = 1

Pn

n∑
i=1

pi

[
M − xi

M − m
ϕ(|xi − m|) + xi − m

M − m
ϕ(|M − xi |)

]
,
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U = ϕ

(∣∣∣∣∣
2∑

i=1

(
1

2
− ai

)
xi

∣∣∣∣∣
)

+
2∑

i=1

(1 − ai )ϕ

(∣∣∣∣∣xi − 1

2

2∑
i=1

xi

∣∣∣∣∣
)

.

(ii) If f is c-strongly convex, then

T = c

2Pn

n∑
i=1

pi

[
M − xi

M − m
|xi − m|2 + xi − m

M − m
|M − xi |2

]
,

U = c

2

∣∣∣∣∣
2∑

i=1

(
1

2
− ai

)
xi

∣∣∣∣∣
2

+ c

2

2∑
i=1

(1 − ai )

∣∣∣∣∣xi − 1

2

2∑
i=1

xi

∣∣∣∣∣
2

.

(iii) If f is superquadratic on I = R+, then

T = 1

Pn

n∑
i=1

pi

[
M − xi

M − m
f (|m − xi |) + xi − m

M − m
f (|M − xi |)

]
,

U = f

(∣∣∣∣∣
2∑

i=1

(
1

2
− ai

)
xi

∣∣∣∣∣
)

+
2∑

i=1

(1 − ai ) f

(∣∣∣∣∣xi − 1

2

2∑
i=1

xi

∣∣∣∣∣
)

.

Proof By Theorem 3.4 we have

n∑
i=1

pi f (xi ) + T ≤ M − x

M − m
f (m) + x − m

M − m
f (M). (68)

As in the proof of Theorem 3.4, we introduce αi = M−xi
M−m , βi = xi −m

M−m . So, we have

a1 = M − x

M − m
=

n∑
i=1

piαi and a2 = x − m

M − m
=

n∑
i=1

piβi . (69)

Because xi = αi m + βi M , i = 1, . . . , n, we get

f

(
n∑

i=1

pi xi

)
= f

(
n∑

i=1

piαi m +
n∑

i=1

piβi M

)
= f (a1m + a2M).

Therefore, (68) is equivalent to

n∑
i=1

pi f (xi ) + T − f

(
n∑

i=1

pi xi

)
≤ a1 f (m) + a2 f (M) − f (a1m + a2M). (70)
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It is obvious by (69) thata1 + a2 = 1witha1, a2 ≥ 0. In consequence, the inequal-
ity (70) gives (66).

In order to prove (21), we notice that 0 ≤ a1 ≤ 1 and 0 ≤ a2 ≤ 1, and hence
(a1, a2) ≤ (1, 1). Bymaking use of Theorem 4.1 for n = 2, p = (a1, a2), q = (1, 1),
P2 = 1, and Q2 = 2, we obtain the inequality

a1 f (m) + a2 f (M) − f (a1m + a2M) ≤ f (m) + f (M) − 2 f

(
m + M

2

)
− U.

(71)
It is now sufficient to combine (24) with (71). �

Remark 6.2 In Theorem 6.1, since the components T and U are nonnegative, in all
the three cases of f being ϕ-uniformly convex or c-strongly convex or nonnegative
superquadratic, inequalities (66) and (67) are refinements of Simič’s inequalities (20)
and (21) corresponding to convex functions.

7 Csiszár–Körner’s Inequality for Some Functions

Here we use Sherman-like inequalities (see Theorem H) to establish some exten-
sions of Csiszár–Körner’s inequality (see Theorem G) for the Csiszár f -divergence
I f (p,q), where f : (0,∞) → R is a function. In what follows, we consider f to be
uniformly convex, strongly convex, and superquadratic, respectively.

Theorem 7.1 [Csiszár–Körner-type inequalities] Let f : (0,∞) → R be a differ-
entiable function, andp = (p1, p2, . . . , pn)andq = (q1, q2, . . . , qn)be two n-tuples
of positive numbers.

Then

n∑
i=1

pi f

⎛
⎜⎜⎝

n∑
i=1

qi

n∑
i=1

pi

⎞
⎟⎟⎠ + R ≤

n∑
i=1

pi f

(
qi

pi

)
, (72)

where R is defined as follows:

(i) If f is uniformly convex with modulus ϕ, then

R =
n∑

i=1

pi ϕ

⎛
⎜⎜⎝

∣∣∣∣∣∣∣∣
qi

pi
−

n∑
i=1

qi

n∑
i=1

pi

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ .

(ii) If f is c-strongly convex, then
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R = c

2

n∑
i=1

pi

∣∣∣∣∣∣∣∣
qi

pi
−

n∑
i=1

qi

n∑
i=1

pi

∣∣∣∣∣∣∣∣

2

.

(iii) If f is superquadratic on I = R+, then

R =
n∑

i=1

pi f

⎛
⎜⎜⎝

∣∣∣∣∣∣∣∣
qi

pi
−

n∑
i=1

qi

n∑
i=1

pi

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ .

Proof As in the proof of Theorem G (see Sect. 2.5), with the aid of the notation

y =

n∑
i=1

qi

n∑
i=1

pi

, xi = qi

pi
, and αi = pi

n∑
i=1

pi

for i = 1, . . . , n,

we find

y = (x1, x2, . . . , xn) ·

⎛
⎜⎜⎜⎝

α1

α2
...

αn

⎞
⎟⎟⎟⎠ ,

where the above n × 1 matrix is column stochastic.
Furthermore, according to (3), we define

(a1, a2, . . . , an) =
(

n∑
i=1

pi

)
(α1, α2, . . . , αn).

For this reason we obtain

ai =
(

n∑
i=1

pi

)
αi = pi for i = 1, . . . , n. (73)

In this context, Sherman-type inequality (see Theorem H with n and k replaced

by 1 and n, respectively, and b1 =
n∑

i=1
pi , y1 = y, si1 = αi = pi

n∑
i=1

pi

and ai = pi for

i = 1, . . . , n) yields
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(
n∑

i=1

pi

)
f (y) + R ≤

n∑
i=1

ai f (xi ), (74)

It now follows from (74) and (73) that (72) holds. �

Remark 7.2 In Theorem 7.1, since the expression R is nonnegative, in all the
three cases of f being ϕ-uniformly convex or c-strongly convex or nonnegative
superquadratic, the inequality (72) refines the standard Csiszár–Körner inequality
(27) devoted to convex functions.

Remark 7.3 Inequality (72) in the version for superquadratic functions has been
shown in [20, Corollary 2.5].
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Divisibility of Class Numbers
of Quadratic Fields: Qualitative Aspects

Kalyan Chakraborty, Azizul Hoque and Richa Sharma

Abstract Class numbers of quadratic fields have been the object of attention for
many years, and there exist a large number of interesting results. This is a survey
aimed at reviewing results concerning the divisibility of class numbers of both real
and imaginary quadratic fields. More precisely, to review the question ‘do there exist
infinitely many real (respectively imaginary) quadratic fields whose class numbers
are divisible by a given integer?’ This survey also contains the current status of a
quantitative version of this question.

Keywords Quadratic fields · Discriminant · Class number · Hilbert class field
2010 Mathematics Subject Classification Primary: 11R29 · Secondary: 11R11

1 Introduction

A number field K is a finite extension of the field of rational numbers Q. A degree
2 extension of Q is called quadratic field. Every quadratic field K is of the form
Q(

√
d), where d is a square-free integer. The field K = Q(

√
d) is real (respectively

imaginary) if d is positive (respectively negative). A complex number α is called an
algebraic integer if it is a root of a nonzero, monic polynomial over Z. The ring of
integers of K is the set of all algebraic integers in K , and is traditionally denoted by
OK . When K = Q(

√
d) with d square-free integer, then OK is given by
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OK =
{

Z[ 1+
√
d

2 ] if d ≡ 1 (mod 4),

Z[√d] if d ≡ 2, 3 (mod 4).

Unlike inZ, the unique factorization of (algebraic) integers into primes (irreducibles)
does not hold in general inOK . That is,OK is not a principal ideal domain (PID) in
general. For example, let K = Q(

√−6), then OK = Z[√−6]. In OK , we have

−2 × 3 = −6 = (
√−6)2.

These are two distinct factorizations of −6 since −2, 3 and
√−6 are irreducible in

OK , and thus, OK is not a unique factorization domain (UFD).
It is interesting and of considerable importance too, to understand ‘how far’ the

ring of (algebraic) integers of a number field fails to be a PID. As a result, the concept
of the ideal class group or simply class group of a number field was introduced to
measure this failure. A fractional ideal in a number field K is a nonzeroOK -module
I ⊂ K such that for some nonzero element α ∈ OK , αI ⊂ OK . The ideal class
group (in short, class group) CK of K is defined as

CK := The group of all fractional ideals of K

The group of all principal fractional ideals of K
.

Thus, one can say that CK is the group of all non-principal fractional ideals of K . It
is a well-known fact in algebraic number theory that the order of this quotient group
is finite. The class number of K is defined to be the order of CK . Thus, class number
is 1 if and only if the ring of integers of that particular field is a PID. We refer the
reader [1, 2] for detail information on class group of number fields.

The class number of quadratic fields is one of the fundamental and mysterious
objects in algebraic number theory. Starting from Gauss, this topic has been studied
extensively bymany authors, and thus, there exist a large number of research articles.
In this survey article, we discuss some interesting results concerning the divisibility
of class numbers of real as well as imaginary quadratic fields. We also provide the
outlines of the proof of some of these results. Due to the versatility of the question,
this surveymaymiss out some interesting references and thus some interesting results
too, and thus, this article is never claimed to be a complete one. It is interesting to ask
the following two questions while one investigates the class numbers of quadratic
fields:

(I) Qualitative Aspect: Do there exist infinitely many real (respectively imaginary)
quadratic fields whose class number is divisible by a given integer n ≥ 2?

(II) Quantitative Aspect: Find a good lower bound on the number of real (respec-
tively imaginary) quadratic fields whose class number is divisible by a given
integer n ≥ 2 and whose absolute discriminant is bounded by a large real num-
ber?

We intend mainly to focus on the first question. Let us fix some notations before we
proceed further which will be used throughout the article.



Divisibility of Class Numbers of Quadratic Fields … 249

Notations:
K → a number field (mostly quadratic number field);
�K → the discriminant of K ;
OK → the ring of integers of K ;
d → a square-free integer;
h(d) → the class number of Q(

√
d);

NK/Q → the norm map of K ;
TK/Q → the trace map of K ;(
a
b

) → Legendre symbol;
vp(n) → the greatest exponent μ of p such that pμ | n for an integer n and for a
prime number p.

2 Imaginary Quadratic Fields

It is well known as mentioned earlier that in general the ring of integers of quadratic
fields are not unique factorization domain, and the class number, which is the order of
the ideal class groupof the quadratic fields,measures how far this unique factorization
fails in the corresponding ring of integers. It is proven that only nine imaginary
quadratic fields have class number 1 and thus admits unique factorization, whereas
in case of real quadratic fields, it is a folk-lore conjecture due to Gauss that there
exist infinitely many real quadratic fields with class number 1. Thus, it is important
to get information about class number of a given quadratic field, and in this quest,
the divisibility questions assume considerable significance.

The answer to the first question is well understood in case when n = 2 since the
beginning of the nineteenth century. In fact, if the discriminant of a quadratic field
contains more than two prime factors, then 2 divides its class number. Gut [3] gener-
alized this result to show that there exist infinitely many quadratic imaginary fields
each with class number divisible by 3. In 1970, Yamamoto [4] gave an affirmative
answer to this question. Here, we revisit some of the important results towards the
answer to this question. More precisely, we discuss some infinite families of imagi-
nary quadratic fields each with class number divisible by a given integer n ≥ 2.

2.1 The Family Q(
√
x2 − yn)

We start with the family
Kx,y,n := Q(

√
x2 − yn),

where x, y and n are positive integers. In 1922, Nagell [5] proved the following:

Theorem 2.1 (Nagel [5], Satz V) Let n > 0 be an odd integer. Let x and y be two
positive integers satisfying:
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(Ni) gcd(x, y) = 1,
(Nii) x2 < yn,
(Niii) 2 � y,
(Niv) q || y (i.e. no higher power of q divides y), for any prime divisor q of n.

Let y = ∏
i q

ei
i be the prime decomposition of y. Then

(
x2−yn

qi

)
= 1 and Qi =

(qi , x + √
x2 − yn) is a prime ideal of OKx,y,n over qi . Set A = ∏

i Qei
i . Then the

ideal class of A is of order n (i.e. n divides the class number).

On the other hand, for an even integer n ≥ 2, N. C. Ankeny and S. Chowla proved
the divisibility by n of the class numbers of a similar family Kx,3,n . Namely, they
proved:

Theorem 2.2 (Ankeny and Chowla [6], Theorem 1) The class number of Kx,3,n is
divisible by n if x and n satisfy the following:

(Ai) x is even and 0 < x < (2 × 3n−1)1/2,
(Aii) n is even and sufficiently large,
(Aiii) x2 − 3n is square-free.

To show the existence of infinitely many imaginary quadratic fields each with
class number divisible by n, we recall the following lemma.

Lemma 2.1 (Ankeny and Chowla [6], Lemma 1) Let x and n be the integers as in
Theorem 2.2 satisfying the conditions (Ai) and (Aii). Then the number of square-free
integers of the form x2 − 3n is at least 1

25 × 3n/2.

Theorem 2.2 and Lemma 2.1 clearly shows that there are at least 1
25 × 3n/2 imag-

inary quadratic fields each with class number divisible by n. Set n1 = nt (t > 0
integer) in such a way that the class number of none of these fields are divisible by
n1. Then, as in the earlier case, one can find at least 1

25 × 3n1/2 fields each with class
number divisible by n1. In fact, all these fields are distinct from the previous fields.
Repeating this one concluded that there exist infinitely many imaginary quadratic
fields with class number divisible by n.

Another particular case of the family Kx,y,n was considered by J. H. E. Cohn. He
proved the following result.

Theorem 2.3 (Cohn [7], Theorem) (n − 2) divides the class number of K1,2,n, for
an integer n > 2, except for the case n = 6.

Y. Kishi in 2009 was able to remove the conditions ‘even’ and ‘square-free’ in
Theorem 2.2 by putting x = 22t . His result is:

Theorem 2.4 (Kishi [8], Theorem 1.2) For any positive integers t and n with 22t <

3n, the class number of K2t ,3,n is divisible by n, except the case (t, n) �= (2, 3).

In the case when t = 1, he also proved:
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Theorem 2.5 (Kishi [9], Theorem 1) Let n ≥ 3 be an odd integer. Then the class
number of K2,3,n is divisible by 3.

A. Ito gave a generalized version of Theorem 2.4. More precisely, she proved the
following:

Theorem 2.6 (Ito [10], Theorem 1) Let q be an odd prime, n and k be positive
integers with 22k < qn. Then the following hold:

(I1) For the case q ≡ 3 (mod 8), if n and k satisfy either k ≡ 1 (mod 2) or n �≡ 3
(mod 6), then the class number of K2k ,q,n is divisible by n, except for the case
K2k ,q,n �= Q(

√−3).
(I2) For the case q ≡ 1 (mod 4), the class number of K2k ,q,n is divisible by n, except

for the case K2k ,q,n = Q(
√−1).

(I3) For the case q ≡ 7 (mod 8), the class number of K2k ,q,n is divisible by n, except
for the case K2k ,q,n = Q(

√−3).

One can see that for the primes q ≡ 11, 23 (mod 24) that K2k ,q,n �= Q(
√−3).

In this case, both (I1) and (I3) hold without the exception. Similarly, for even n and
the primes q ≡ 3 (mod 4), one can easily show K2k ,q,n �= Q(

√−3). Thus, in this
case also both (I1) and (I3) hold without the exception. She also proved another
result in [11] along the similar line by utilizing some strong conditions. Recently,
Chakraborty et al. [12] gave a more general result along this line.

Theorem 2.7 (Chakraborty et al. [12], Theorem1.1)Let n ≥ 3 be an odd integer and
p, q be distinct odd primes with q2 < pn. Let d be the square-free part of q2 − pn.
Assume that q �≡ ±1 (mod |d|). Moreover, we assume pn/3 �= (2q + 1)/3, (q2 +
2)/3 whenever both d ≡ 1 (mod 4) and 3 | n. Then the class number of K p,q,n =
Q(

√
d) is divisible by n.

We intend to sketch the proof of Theorem 2.7. Here, d is the square-free part of
q2 − pn and thus q2 − pn = m2d for some positive integer m. Let α = q + m

√
d,

and thus (α) = An for some integral ideal A (usual ideal in the ring of integers) of
Kp,q,n . The idea here is to produce an element of order n in the class group. Thus,
one proves more than just divisibility.

Claim: O([A]) = n (i.e. the order of A is exactly n).
Suppose on the contrary that the claim is not true. Then there exist an odd prime
divisor � of n and an integer β in Kp,q,n such that (α) = (β)�. The condition ‘q �≡ ±1
(mod |d|)’ ensures that d < −3 since q and p are distinct odd primes. Thus ±1 are
the only units in the ring of integers of Kp,q,n , and therefore, we can write α = γ �

for some integer γ in Kp,q,n . This contradicts the following:

Proposition 2.1 (Chakraborty et al. [12]) Let n, q, p, d be as in Theorem 2.7, and
let m be the positive integer with q2 − pn = m2d. Then the element α = q + m

√
d

is not an �th power of an element in the ring of integers of K p,q for any prime divisor
� of n.

To prove this proposition, the main ingredient used is an important result by
Bugeaud and Shorey [13] on the number of solutions in positive integers of the



252 K. Chakraborty et al.

generalized Ramanujan–Nagell equation. We need to introduce further definitions
and notations before stating their result.

Let Fk denote the kth term in the Fibonacci sequence defined by F0 = 0, F1 = 1
and Fk+2 = Fk + Fk+1 for k ≥ 0. Similarly Lk denotes the kth term in the Lucas
sequence defined by L0 = 2, L1 = 1 and Lk+2 = Lk + Lk+1 for k ≥ 0. For λ ∈
{1,√2, 2}, we define the subsets F , Gλ, Hλ ⊂ N × N × N by

F := {(Fk−2ε, Lk+ε, Fk) | k ≥ 2, ε ∈ {±1}},
Gλ := {(1, 4pr − 1, p) | p is an odd prime, r ≥ 1},

Hλ :=

⎧⎪⎨
⎪⎩(D1, D2, p)

∣∣∣∣∣∣∣
D1, D2 and p are mutually co-prime positive integers

with p an odd prime and there exist positive integers

r, s such that D1s
2 + D2 = λ2 pr and 3D1s

2 − D2 = ±λ2

⎫⎪⎬
⎪⎭ ,

except when λ = 2, in which case the condition ‘odd’ on the prime p should be
removed in the definitions of Gλ and Hλ.

Theorem 2.8 (Bugeaud and Shorey [13], Theorem 1)Given λ ∈ {1,√2, 2}, a prime
p and positive co-prime integers D1 and D2, the number of positive integer solutions
(x, y) of the Diophantine equation

D1x
2 + D2 = λ2 py (1)

is at most one except for

(λ, D1, D2, p) ∈ E :=
{

(2, 13, 3, 2), (
√
2, 7, 11, 3), (1, 2, 1, 3), (2, 7, 1, 2),

(
√
2, 1, 1, 5), (

√
2, 1, 1, 13), (2, 1, 3, 7)

}

and (D1, D2, p) ∈ F ∪ Gλ ∪ Hλ.

The proof of the Proposition 2.1 uses the above-mentioned result by exhibiting a
Diophantine equation of the form (1) with two distinct positive integer solutions after
sorting out all the exceptions in Theorem 2.8 and thus gets the required contradiction.
The following two propositions help in getting the result.

Proposition 2.2 (Chakraborty et al. [12]) Let d ≡ 5 (mod 8) be an integer and �

be a prime. For odd integers a, b we have

(
a + b

√
d

2

)�

∈ Z[√d] if and only if � = 3.

Proposition 2.3 (Cohn [14]) The only perfect squares appearing in the Lucas
sequence are L1 = 1 and L3 = 4.

One can easily prove, by reading modulo 4, that the condition ‘pn/3 �= (2q +
1)/3, (q2 + 2)/3’ in Theorem 2.7 holds whenever p ≡ 3 (mod 4). Further, if one
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fixes an odd prime q, then the condition ‘q �≡ ±1 (mod |d|)’ in Theorem 2.7 holds
almost always, and this can be proved using the celebrated Siegel’s theorem on
integral points on affine curves. More precisely, the following result was proved to
show the existence of infinitely many imaginary quadratic fields in Theorem 2.7.

Theorem 2.9 (Chakraborty et al. [12], Theorem 1.2) Let n ≥ 3 be an odd integer
not divisible by 3. For each odd prime q the class number of K p,q,n is divisible by n
for all but finitely many p’s. Furthermore, for each q there are infinitely many fields
K p,q,n.

The following question naturally arise in the opposite direction from Theorem
2.9.
Question 1: Are there infinitely many choices of distinct odd primes p and q such
that the class number of Kp,q,n is not divisible by a given integer n?

2.2 The Family Q(
√
x2 − 4 yn)

We move into the next family of quadratic fields:

Lx,y,n := Q(
√
x2 − 4yn),

where x, y and n are positive integers. The notation [a] would mean the principal
ideal inOLx,y,n (the ring of integers in the field Lx,y,n) generated by the element a. For
any two elements a and b inOLx,y,n and an idealA ⊂ OLx,y,n ; [a] = [b]A implies that
there exists an element c ∈ OLx,y,n such that a = bc. Therefore, [a] = [b]A can be
written as [b][c] = [b]which gives [c] = A. Applying this fact, M. J. Cowles proved
the following result.

Theorem 2.10 (Cowles [15], Theorem) Let y and n be odd primes. Suppose x > 0
is an integer satisfying:

(C1) gcd(x, y) = 1,
(C2) x2 − yn is odd and square-free,
(C3) x2 < yn,
(C4) atleast one of the prime divisors of [y] is not principal.
Then the class number of Lx,y,n is divisible by n.

Here, the conditions (C1)–(C4) are very strongwhich lead to a almost trivial proof.
Gross and Rohrlick [16] were able to prove that with x = 1, the conditions ‘square-
free’ in (C2) and ‘q a prime’ can be eliminated. In fact, their result holds for any
odd integer n. In 2002, Cohn [7] entered into this family and proved that n �= 4, be it
odd or even, always divides the class number of the field L1,2,n . This generalized the
result ([16], Theorem 5.3) of B. Gross and D. Rohrlick and provides a simple proof
of the existence of infinitely many imaginary quadratic fields whose class number is
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divisible by any given integer n ≥ 2. S. R. Louboutin in 2009 revisited this family
of imaginary quadratic fields with the following objectives:

(L1) to expound the proof of B. Gross and D. Rohrlich ((Li) of Theorem 2.11),
(L2) to prove a result stronger than [[16], Theorem 5.3] ((Lii) of Theorem 2.11).

Theorem 2.11 (Louboutin [17], Theorem 1) Let n > 1 be an integer.

(Li) If n is odd, then for any integer y ≥ 2 the ideal class groups of L1,y,n contain
an element of order n.

(Lii) If at least one of the prime divisors of an odd integer y ≥ 3 is equal to 3
(mod 4), then the ideal class groups of L1,y,n contain an element of order n.

He used an interesting and indigenous idea to prove this theorem. The main ingredi-
ents of his proof of Theorem 2.11 are the following three propositions.

Proposition 2.4 (Louboutin [17], Lemma 2) For a quadratic field K , let α ∈ OK . If
k ≥ 1 is odd, then TK/Q(α) divides TK/Q(αk). If p is an odd prime, then TK/Q(αp) ≡
TK/Q(α) (mod p). Hence, if TK/Q(α) = 1 and if α is a p-th power inOK , then α is
a unit of OK .

Proposition 2.5 (Louboutin [17], Proposition 3) Let K be an imaginary quadratic
field. If α ∈ OK with TK/Q(α) = 1 is ‘associated’ with a p-th power for some odd
prime p, then α is a unit of OK .

Proposition 2.6 (Louboutin [17], Lemma 4) Let K be a quadratic field. If α ∈ OK ,
then α is a square in OK if and only if there exists A ∈ Z such that NK/Q(α) = A2

and such that TK/Q(α) + 2A is a square in Z. If K is an imaginary quadratic field,
then we may assume that A ≥ 0.

In 2011, K. Ishii proved a stronger version for ‘even’ n of Theorem 2.11 by
adapting the method of S. R. Louboutin in [17]. He proved:

Theorem 2.12 (Ishii [18], Theorem) Let y > 1 be an integer. If n is even with n ≥ 6,
then the class number of L1,y,n is divisible by n, except (y, n) = (13, 8).

Recently, A. Ito derived some interesting results for certain cases of the family
Lx,y,n in [19]. She cleverly used Theorem 2.8 and applied the method of Yamomoto
[4]. Here, we revisit her results in brief. We first treat the case where y is an odd
integer including the case where all prime divisors of y are congruent to 1 modulo 4.

Theorem 2.13 (Ito [19], Theorem 1.4) Let n > 1 be an integer and y > 1 be an odd
integer. Then the following hold:

(I4) Assume y �= 5, 13. Then the class number of L1,y,n is divisible by n, except for
at most one n. The exceptional case is either n = 2 or n = 4 and then the class
number of the field is divisible by n/2.

(I5) Assume y = 5. Then the class number of L1,y,n is divisible by n, except for the
two cases n = 2 and n = 4. The class numbers of the fields L1,5,2 = Q(

√−11)
and L1,5,4 = Q(

√−51) are 1 and 2, respectively. These class numbers are
divisible by n/2 but are not divisible by n.
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(I6) Assume y = 13. Then the class number of L1,y,n is divisible by n, except for the
two cases n = 2 and n = 8. The class numbers of the fields L1,13,2 = Q(

√−3)
and L1,13,8 = Q(

√−6347) are 1 and 28, respectively. These class numbers are
divisible by n/2 but are not divisible by n.

In Theorem 2.13 (I4), there exists an imaginary quadratic field whose class num-
ber is divisible by n/2 but not divisible by n. That field corresponds to n = 4, viz.
L1,29,4 = Q(

√−187). The class number of this field is 2. She mainly used Proposi-
tions 2.4–2.6 in proving Theorem 2.13.

We now treat the case where y is a prime and x is a power of 3. A. Ito used the
methods of Kishi [8] and herself [10] to prove the next result. The main ingredient
used here is Theorem 2.8.

Theorem 2.14 (Ito [19], Theorem 1.6) Let y be a prime other than 3, and let n and
e be positive integers with 32e < 4yn. Then the following hold:

(I7) Assume y ≡ 1 (mod 3) or n �≡ 2 (mod 4). Then the class number of L3e,y,n is
divisible by n.

(I8) Assume y ≡ 2 (mod 3) with y �= 2 and n ≡ 2 (mod 4).

(I8.1) If 2yn/2 − (−3)e �= �, then the class number of L3e,y,n is divisible by n.
(I8.2) If 2yn/2 − (−3)e = �, then the class number of L3e,y,n is divisible by

n/2.

(I9) Assume y = 2 and n ≡ 2 (mod 4).

(I9.1) When (n, e) �= (6, 2), we have the following:
(I9.1.1) If e is even, then the class number of L3e,y,n is divisible by n.
(I9.1.2) If e is odd and 2(n/2)+1 − 3e �= �, then the class number of L3e,y,n

is divisible by n.
(I9.1.3) If e is odd and 2(n/2)+1 − 3e = �, then the class number of L3e,y,n

is divisible by n/2.
(I9.2) When (n, e) = (6, 2), we have L3e,y,n = Q(

√−7) whose class number
is 1.

Further we give existence of imaginary quadratic fields satisfying Theorem
2.14 (I8.2) and (I9.1.3) where the class numbers are divisible by n/2 but not
by n. Let (y, n, e) = (5, 2, 2), then L3,y,n = Q(

√−19) and 2yn/2 − (−3)e = 1, a
perfect square. The class number in this case, h(−19) = 1. Again if we choose
(y, n, e) = (2, 2, 1), then L3,y,n = Q(

√−7) and 2(n/2)+1 − 3e = 1, a perfect square.
Here also h(−7) = 1. One of the extended versions of Theorem 2.14 is the following
result:

Theorem 2.15 (Ito [19], Theorem 4.1) Let n > 2 be an integer, y > 1 an integer and
x > 0 an odd integer such that gcd(x, y) = 1 and x2 < 4yn. Assume x2 − 4yn =
a2d, where a is a positive integer and d is a square-free integer less than −3. If
yn < (1−d)2

16 , then the class number of Lx,y,n = Q(
√
d) is divisible by n.
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2.3 Other Families of Imaginary Quadratic Fields

In 1974, P. Hartung proved the following general result to show the existence of
infinitely many imaginary quadratic fields each with class number divisible by 3.
This is an existential result, i.e. here the family is not explicit as in the other cases
we have mentioned so far.

Theorem 2.16 (Hartung [20], Theorem) Let d be a positive integer satisfying:

(HA1) d ≡ 7 (mod 12),
(HA2) d is square-free,
(HA3) d is of the form (t2 − 4)/27, where t is an integer.

Then the class number of Q(
√−d) is divisible by 3.

A. Hoque and H. K. Saikia along the similar lines provided a more specific family
of imaginary quadratic fields whose class number is divisible by 3. Namely, they
proved:

Theorem 2.17 (Hoque and Saikia [21], Theorem 3.1) If d = 3m p2n + r is square-
free, where p is an odd prime, r is either 4 or −2, m > 1 is an odd integer and n is
a positive integer, then the class number of Q(

√−d) is a multiple of 3.

The proof of this theorem is based on the following identity of Ankeny et al. [22]:

h(q) ≡ −u

t
h(d) (mod 3),

where q ≡ 1 (mod 3) is a square-free positive integer such that d = 3q, and u and
v are the coefficients of the fundamental unit in Q(

√
d).

Recently, Chakraborty and Hoque [23] extended Theorem 2.17. More precisely,
they proved the following:

Theorem 2.18 (Chakraborty and Hoque [23], Theorem 2.3) Let m > 1 and t be odd
integers and n be any positive integer. Let d be the square-free part of 3mt2n + r with
r ∈ {−2, 4}. Then the class number of K = Q(

√−d) is divisible by 3.

This is an existential result, i.e. without explicitly constructing the family as in
the other cases we have mentioned so far.

To prove this theorem, the authors mainly constructed a cubic unramified cyclic
extension of K . Before proceeding further, we clarify the term ‘unramification’. Let
K be a number field, and let p be a prime number. Then we can write

pOK =
g∏

i=1

Pei
i , (ei ∈ N),

where thePi ’s are district prime ideals inOK . The number ei is called the ramification
index of Pi (over p) in OK and is denoted by eK/Q(Pi ). Here, p is said to be
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ramified in OK if eK/Q(Pi ) > 1, for some i and the ideals Pi those satisfy the
condition eK/Q(Pi ) > 1 are called ramified inOK . Further, p is said to be completely
ramified or totally ramified in OK if eK/Q(Pi) is equal to the degree of K for some
i = 1, 2, 3, . . . , g. Furthermore, p is said to be unramified (also called completely
split) in OK if eK/Q(Pi ) = 1, for all i . In this case, g is equal to the degree of K .
Moreover, p is said to be inert in OK if it remains prime in OK . The number g is
called the decomposition number of p in OK , denoted by gK/Q(p). The field K is
said to be unramified if every prime number is unramified in OK . Otherwise, it is
ramified.

For example, let K = Q(
√
10). Then OK = Z[√10]. Now, 2OK = P2, where

P = (2,
√
10). Thus we have the following:

• 2 is (completely) ramified in Z[√10].
• eK/Q(P) = 2, and hence, prime ideal P itself is ramified in Z[√10].
• gK/Q(P) = 1.

Again 3OK = PQ, whereP = (3, 1 + √
10) andQ = (3, 1 − √

10) are the prime
ideals in OK . Here, we have the following:

• 3 is unramified (split completely) in Z[√10].
• eK/Q(P) = 1, and hence, P in Z[√10] is unramified in Z[√10]. Similarly, Q is
also unramified in Z[√10].

• gK/Q(p) = 2.

Lastly 7 remains prime in Z[√10], and thus, 7 is inert in Z[√10].
Let us now look at the construction of a cubic extension of K which is cyclic and

unramified everywhere that is involved in the proof. Firstly, one choses an element
α ∈ OK satisfying NK/Q(α) ∈ Z3, i.e. a cube, and then considers the following cubic
equation involving norm and trace of α:

fα(X) := X3 − 3[NK/Q(α)]1/3X − TK/Q(α).

Then used the following lemmas to construct the required unramified extension.

Lemma 2.2 (Chakraborty and Hoque [23], Lemma 2.1) Let K = Q(
√
d). Suppose

α = a+b
√
d

2 ∈ OK with NK/Q(α) ∈ Z3. Then fα(X) is reducible over Q if and only
if α is a cube in K .

Let d( �= 1,−3) be a square-free integer and

D =
{ −d/3 if d is a multiple of 3,

−3d otherwise.

Let K = Q(
√
d) and L = Q(

√
D). Also,

Rd := {α ∈ OK : α is not a cube in K and NK/Q(α) is a cube in Z}

and
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RD := {α ∈ OL : α is not a cube in L and NL/Q(α) is a cube in Z}.

It is clear that the subset Rd (respectively RD) contains all those units in K which
are not cubes in K (respectively in L). Further let,

R∗
d := {α ∈ Rd : gcd(NK/Q(α), TK/Q(α)) = 1}

and
R∗
D := {α ∈ RD : gcd(NL/Q(α), TL/Q(α)) = 1}.

Lemma 2.3 (Kishi [24], Proposition 6.5) Let α ∈ R∗
D (respectively α ∈ R∗

d ). Then
SQ( fα) is an S3-field containing K = Q(

√
d) (respectively L = Q(

√
D)) which is a

cyclic cubic extension of K (respectively L) unramified outside 3 and contains a cubic
subfield K ′ with v3(�K ′) �= 5. Conversely, every S3-field containing K (respectively
L)which is unramified outside 3 over K (respectively L) and contains a cubic subfield
K ′ satisfying v3(�K ′) �= 5 is given by SQ( fα) with α ∈ R∗

D (respectively α ∈ R∗
d ).

One is now left with verifying the ramification at 3, and the following result of
Llorente and Nart ([25], Theorem 1) talks about the ramification at p = 3.

Lemma 2.4 Suppose that

g(X) := X3 − aX − b ∈ Z[X ]

is irreducible over Q and that either v3(a) < 2 or v3(b) < 3 holds. Let θ be a root
of g(X). Then 3 is totally ramified in Q(θ)/Q if and only if one of the following
conditions holds:

(LN-1) 1 ≤ v3(b) ≤ v3(a),

(LN-2) 3 | a, a �≡ 3 (mod 9), 3 � b and b2 �≡ a + 1 (mod 9),
(LN-3) a ≡ 3 (mod 9), 3 � b and b2 �≡ a + 1 (mod 27).

In [26], A. Hoque and H. K. Saikia studied prime numbers of the form

Mp,q = pq − p + 1,

where p and q are positive integers. Some authors do use the terminology generalized
Mersenne primes (GMP) for these primes. In [27], the authors proved that if p is
a prime and q is a positive integer, then pq−1Mp,q is (p − 1)-hyperperfect number.
The authors in [26] used these primes to construct an infinite family of imaginary
quadratic fields whose class numbers are divisible by 3. More precisely, they proved:

Theorem 2.19 (Hoque and Saikia [26], Theorem 2.8) The class number of
Q

(√−(3(Mp,q + 2)2 + 4)
)
, where p is prime and q is an odd positive integer, is

divisible by 3.
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Recently, Chakraborty and Hoque [23] proved by producing an element of order
n that the class number of Q(

√
1 − 2mn), where m is an odd integer and n is an odd

prime, is divisible by n. They also proved a more general version of this result in
[28].

3 Real Quadratic Fields

Wedealwith the divisibility questions in the real quadratic set-up here. Real quadratic
fields are relatively harder to handle due to the existence of non-trivial units, and thus,
there exist very few results in this direction for real quadratic fields. Yamamoto [4] in
1970 first gave an affirmative answer to the question of existence of infinitely many
real quadratic fields with class number divisible by a given integer n. However, a
couple of years later T. Honda proved the following result to showcase the existence
of infinitely many real quadratic fields with class number 3 divisibility property.

Theorem 3.1 (Honda [29], Proposition) Let m and n be two integers satisfying
gcd(m, 3n) = 1. If m cannot be represented in a form n+h3

h with h ∈ Z, then class

number of Km,n = Q(
√
4m3 − 27n2) is a multiple of 3.

Weinberger [30] in 1973 also gave an affirmative answer to the question (I) for
real quadratic fields. He considered discriminants of the type d = m2n + 4 with
m > n a prime. Then the fundamental unit of Q(

√
d) is mn+√

d
2 (one needs to avoid

d = 5). Now suppose that t k − 4 is irreducible in Fm[t] for all k|n. In this set-up, one
considers the ideal A = (m2, 2 + √

d). Clearly, the order of A in the class group of
Q(

√
d) is a divisor of n. Then it is not difficult to show that the order of A is exactly

n or n/2 according as n is odd or even respectively with the above assumptions.
Here, one uses the fundamental unit. Next, one applies some density result (more
precisely, Chebotarev density theorem) to conclude that there exist infinitely many
primes m such that t k − 4 is irreducible in Fm[t] for all k|n.

Now repetitions of the fields possible only when

Q(
√
d1) = Q(

√
m2n + 4).

It is well known that theDiophantine equation x2n + 4 = d1y2 has only finitelymany
solutions. This implies that repetitions of the resulting fields are possible only for
finitely many m. This shows the existence of infinitely many such fields.

H. Ichimura in [31] showed that the conditions assumed in Weinberger’s proof
are not necessary and proved that for all integers n ≥ 2 and each odd integer m ≥ 3,
the class number of Q(

√
m2n + 4) is divisible by n.

We now consider the polynomial

f (x) = x3 − Mp,q x + p,
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where p is an odd prime and q is an odd integer. The discriminant of f (x) is D f =
4M3

p,q − 27p2. In [32], A. Hoque and H. K. Saikia proved that the class number of
Q(

√
D f ) is divisible by 3. In fact, there are infinitely many such real quadratic fields

each with class number divisible by 3.
In [33], Y. Kishi and K. Miyake gave a parametrization of quadratic fields whose

class numbers are divisible by 3. Namely, they proved:

Theorem 3.2 (Kishi and Miyake [33], Theorem 1) Let u and v be two integers and

fu,v(x) = x3 − uvx − u2.

If

(K1) u and v are relatively prime;
(K2) fu,v(x) is irreducible over Q;
(K3) discriminant D fu,v

of fu,v(x) is not a perfect square in Z;
(K4) one of the following conditions hold:

(K4.1) 3 � v,

(K4.2) 3 | v, uv �≡ 3 (mod 9) and u ≡ v ± 1 (mod 9),
(K4.3) 3 | v, uv ≡ 3 (mod 9) and u ≡ v ± 1 (mod 27),

then 3 divides the class number of Q(
√
D fu,v

). Conversely, every quadratic number
field Q(

√
D fu,v

) with class number divisible by 3 arises in the above way from a
suitable choices of integers u and v.

Recently, K. Chakraborty and A. Hoque used this parametrization to prove:

Theorem 3.3 (Chakraborty andHoque [23], Theorem3.1 (II))Letm ≡ 4 (mod 15)
be an odd positive integer. Then for any odd integer n ≥ 3, 3 divides the class number
of the field Q(

√
3(2m3n − 1).

Along the same line, they also produced a simple family of real quadratic fields
having infinitely many members each with class number divisible by 3. They then
used this family of fields to understand the class numbers of associated cyclotomic
fields. More precisely, they proved the following:

Theorem 3.4 (Chakraborty and Hoque [34], Theorem 3.1) For a positive integer n
satisfying n ≡ 0 (mod 3), the class number

k = Q(
√
3(4 × 3n − 1))

is divisible by 3. In fact, there are infinitely many such real quadratic fields with class
number divisible by 3.
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4 Concluding Remarks

A lot more work has been done towards the second question, i.e. in the quantitative
direction. Here, we give the current status of this question. Let us denote by

Nn(X) = #{d ≤ X : n|h(d)},

where X is a large real number. Thus, the problem is to find a good (non-trivial)
lower bound of Nn(X) in terms of X .

The famous Cohen-Lenstra heuristics [35] predict that quadratic fields (in fact,
for any number field of degree larger than 1) with class number divisible by n should
have ‘positive density’ among all quadratic fields (respectively for all number fields
of degree larger than 1). Thus, the prediction is

Nn(X) ∼ cn X

for a positive constant cn . For odd primes n, it predicts

cn =
{

6
π2 (1 − ∏∞

i=2(1 − 1
ni )) (In the real quadratic field case)

6
π2 (1 − ∏∞

i=1(1 − 1
ni )) (In the imaginary quadratic field case).

This implies a positive proportion of quadratic fields contain a non-trivial p-part
in the class group. So far a very little progress has been made towards settling this
conjecture.

Murty [36, 37] was the first who considered getting a lower bound in the case of
imaginary field, and he proved the following result.

Theorem 4.1 (Murty [37], Theorem) For any integer n ≥ 3,

Nn(X) >> X1/2+1/n .

Soundararajan [38] improved this bound, and this is the best known bound till the
date. More precisely, he proved:

Theorem 4.2 (Soundararajan [38], Theorem 1) For large X, we have

Nn(X) >>

{
X

1
2 + 2

n −ε if n ≡ 0 (mod 4),

X
1
2 + 3

n+2 −ε if n ≡ 2 (mod 4).

It is to be noted that Theorem 4.2 contains bounds for Nn(X) when n is odd since
Nn(X) ≥ Neven(X). Also to be noted that Cohen-Lenstra heuristics predict the bound
should be a constant times X .

Murty [37] once again was the first to consider getting a lower bound in real
quadratic case and he proved:
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Theorem 4.3 (Murty [37], Theorem 2) For any odd integer n,

Nn(X) � X
1
2n −ε,

for any ε > 0.

In [39], G. Yu used Yamamoto’s construction [4] of discriminants and by quan-
tifying it improved Murty’s bound in Theorem 4.3. He proved the following result
which is the best known bound in the general case in this direction.

Theorem 4.4 (Yu [39], Theorem 2) Let n be an odd integer. Then for any ε > 0

Nn(X) >> X
1
n −ε .

Analogously, Chakraborty et al. [40] proved that the number of real quadratic
fields K of discriminant �K < X whose class group has an element of order n (with
n even) is ≥ X1/n

5 if X > X0, uniformly for positive integers n ≤ log log X
8 log log log X . They

used this result to find real quadratic number fields whose class numbers have many
prime factors.

In another work, Chakraborty and Murty [41] gave the following improvement in
the case when n = 3.

Theorem 4.5 (Chakraborty and Murty [41], Theorem 1) For a large real number
X,

N3(X) � X
5
6 .

Recently, A. Hoque and H. K. Saikia further improved the above bound and that
is the best known bound in this case.

Theorem 4.6 (Hoque and Saikia [42], Theorem 3.2) For a large real number X,

N3(X) � X
15
16 .

In [43], D. Byeon considered the case for n = 5, 7 and he could managed to derive
the following:

Theorem 4.7 (Byeon [43], Theorem 1.1) For n = 5, 7,

Nn(X) � X
1
2 .

This is the best known bound till the date for n = 5, 7. It is worth mentioning that
his method can give as strong as Nn(X) � X

2
3 −ε for n = 5, 7.
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Some Identities on Derangement
and Degenerate Derangement
Polynomials

Taekyun Kim and Dae San Kim

Abstract In combinatorics, a derangement is a permutation that has no fixed points.
The number of derangements of an n-element set is called the nth derangement
number. In this paper, as natural companions to derangement numbers and degenerate
versions of the companions we introduce derangement polynomials and degenerate
derangement polynomials. We give some of their properties, recurrence relations,
and identities for those polynomials which are related to some special numbers and
polynomials.
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1 Introduction

It is known that the Fubini polynomials are defined by the generating function

1

1 − y(et − 1)
=

∞∑

n=0

Fn(y)
tn

n! , (see [7, 11]). (1.1)

Thus, by (1.1), we get
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Fn(y) =
n∑

k=0

S2(n, k)k!yk, (see [7, 11]). (1.2)

Here S2(n, k) is the Stirling number of the second kind which is defined by

xn =
n∑

l=0

S2(n, l)(x)l , (n ≥ 0), (1.3)

where (x)0 = 1, (x)n = x(x − 1) . . . (x − n + 1), (n ≥ 1).
As is well known, the Bell polynomials are given by the generating function as

follows:

ex(e
t−1) =

∞∑

n=0

Beln(x)
tn

n! , (see [5, 6, 12]). (1.4)

When x = 1, Beln = Beln(1) are called the Bell numbers. For λ ∈ R, the partially
degenerate Bell polynomials were introduced by Kim–Kim–Dolgy as

ex
(
(1+λt)

1
λ −1

)
=

∞∑

n=0

Beln,λ(x)
tn

n! , (see [12]). (1.5)

Note that limλ→0 Beln,λ(x) = Beln(x), (n ≥ 0).When x = 1, Beln,λ = Bell,λ(1)
are called the partially degenerate Bell numbers.

From (1.5), we have

Beln,λ(x) =
n∑

k=0

k∑

m=0

S2(k,m)S1(n, k)λn−k xm, (1.6)

where S1(n, k) is the Stirling number of the first kind given by

(x)n =
n∑

l=0

S1(n, l)xl , (n ≥ 0), (see [8]). (1.7)

In [1], Carlitz introduced the degenerate Bernoulli and Euler polynomials which
are defined by

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑

n=0

βn,λ(x)
tn

n! , (1.8)

and
2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞∑

n=0

En,λ(x)
tn

n! . (1.9)
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When x = 0,βn,λ = βn,λ(0),En,λ = En,λ(0) are called the degenerateBernoulli num-
bers and degenerate Euler numbers.

Recently, the degenerate Stirling numbers of the second kind are defined by

S2,λ(n + 1, k) = kS2,λ(n, k) + S2,λ(n, k − 1) − nλS2,λ(n, k), (1.10)

where n ≥ 0 (see [10]).
Note that limλ→0 S2,λ(n, k) = S2(n, k). For λ ∈ R, the λ-analogue of falling fac-

torial sequence is defined by

(x)0,λ = 1, (x)n,λ = x(x − λ) . . . (x − (n − 1)λ), (n ≥ 1), (see [6, 8]).
(1.11)

Note that limλ→1(x)n,λ = (x)n , (n ≥ 0), (see [14]).
A derangement is a permutation with no fixed points. In other words, a derange-

ment of a set leaves no elements in the original place. The number of derangements
of a set of size n, denoted dn , is called the nth derangement number (see [9, 15, 16]).

For n ≥ 0, it is well known that the recurrence relation of derangement numbers
is given by

dn =
n∑

k=0

(
n

k

)
(n − k)!(−1)k = n!

n∑

k=0

(−1)k

k! , (see [9]). (1.12)

It is not difficult to show that

∞∑

n=0

dn
tn

n! = 1

1 − t
e−t , (see [2, 3, 4, 5, 9]). (1.13)

From (1.13), we note that

dn = n · dn−1 + (−1)n, (n ≥ 1), (see [9, 13, 14, 16, 17]). (1.14)

and
dn = (n − 1)(dn−1 + dn−2), (n ≥ 2). (1.15)

In this paper, as natural companions to derangement numbers and degenerate ver-
sions of the companions we introduce derangement polynomials and degenerate
derangement polynomials. We give some of their properties, recurrence relations,
and identities for those polynomials which are related to some special numbers and
polynomials.
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2 Derangement Polynomials

Now, we define the derangement polynomials which are given by the generating
function

1

1 − xt
e−t =

∞∑

n=0

dn(x)
tn

n! . (2.1)

When x = 1, dn(1) = dn are the derangement numbers.
From (1.1), we note that

1

1 − yt
=

∞∑

m=0

Fm(y)
1

m!
(
log(1 + t)

)m

=
∞∑

m=0

Fm(y)
∞∑

n=m

S1(n,m)
tn

n!

=
∞∑

n=0

(
n∑

m=0

Fm(y)S1(n,m)

)
tn

n! .

(2.2)

On the other hand,
1

1 − yt
=

∞∑

n=0

ynn! t
n

n! . (2.3)

Therefore, by (2.2) and (2.3), we obtain the following lemma.

Lemma 2.1 For n ≥ 0, we have

yn = 1

n!
n∑

m=0

Fm(y)S1(n,m).

We observe that

1

1 − yt
=

(
1

1 − yt
e−t

)
et =

( ∞∑

l=0

dl(y)
t l

l!

) ( ∞∑

m=0

tm

m!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
dl(y)

)
tn

n! .
(2.4)

From (2.2) and (2.4), we obtain the following theorem.

Theorem 2.2 For n ≥ 0, we have

n∑

l=0

(
n

l

)
dl(y) =

n∑

m=0

Fm(y)S1(n,m).
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By (2.1), we get

∞∑

n=0

dn(x)
tn

n! = 1

1 − xt
e−t =

( ∞∑

m=0

xmtm
) ( ∞∑

k=0

(−1)k

k! t k
)

=
∞∑

n=0

(
n!

n∑

k=0

(−1)k

k! xn−k

)
tn

n! .
(2.5)

By comparing the coefficients on both sides of (2.5),weobtain the following theorem.

Theorem 2.3 For n ≥ 0, we have

dn(x) = n!
n∑

k=0

(−1)k

k! xn−k .

From (2.1), we have

e−t = (1 − xt)
∞∑

n=0

dn(x)
tn

n!

= d0(x) +
∞∑

n=1

(dn(x) − nxdn−1(x))
tn

n! .
(2.6)

On the other hand,

e−t =
∞∑

n=0

(−1)n
tn

n! . (2.7)

Thus, by (2.6) and (2.7), we get

d0(x) = 1, dn(x) = nxdn−1(x) + (−1)n, (n ≥ 1). (2.8)

From (2.8), we note that

dn(x) = (nx − 1)dn−1(x) + dn−1(x) + (−1)n

= (nx − 1)dn−1(x) + (n − 1)xdn−2(x) + (−1)n−1 + (−1)n

= (nx − 1)
[
dn−1(x) + dn−2(x)

] + (1 − x)dn−2(x), (n ≥ 2).

(2.9)

Therefore, we obtain the following theorem.

Theorem 2.4 For n ≥ 1, we have

dn(x) = nxdn−1(x) + (−1)n.
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In particular, for n ≥ 2, we have

dn(x) = (nx − 1)
[
dn−1(x) + dn−2(x)

] + (1 − x)dn−2(x).

Replacing t by et − 1 in (2.1), we get

1

1 − x(et − 1)
e−(et−1) =

∞∑

m=0

dm(x)
1

m! (e
t − 1)m

=
∞∑

m=0

dm(x)
∞∑

n=m

S2(n,m)
tn

n!

=
∞∑

n=0

(
n∑

m=0

dm(x)S2(n,m)

)
tn

n! .

(2.10)

By (2.10), we see that

1

1 − x(et − 1)
= e(et−1)

∞∑

k=0

(
k∑

m=0

dm(x)S2(k,m)

)
t k

k!

=
( ∞∑

l=0

Bell
t l

l!

) ( ∞∑

k=0

(
k∑

m=0

dm(x)S2(k,m)

)
t k

k!

)

=
∞∑

n=0

(
n∑

k=0

k∑

m=0

(
n

k

)
dm(x)S2(k,m)Beln−k

)
tn

n! .

(2.11)

From (1.1), we note that

1

1 − x(et − 1)
=

∞∑

n=0

Fn(x)
tn

n! . (2.12)

Therefore, by (2.11) and (2.12), we obtain the following theorem.

Theorem 2.5 For n ≥ 0, we have

Fn(x) =
n∑

k=0

k∑

m=0

(
n

k

)
dm(x)S2(k,m)Beln−k .

From (1.1), we can derive the following Eq. (2.13):
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1

1 − xt
e−t =

( ∞∑

k=0

(
k∑

m=0

Fm(x)S1(k,m)

)
t k

k!

)
e−t

=
( ∞∑

k=0

(
k∑

m=0

Fm(x)S1(k,m)

)
t k

k!

)( ∞∑

l=0

(−1)l

l! t l
)

=
∞∑

n=0

(
n∑

k=0

k∑

m=0

(
n

k

)
Fm(x)S1(k,m)

(−1)n−k

(n − k)!

)
tn

n! .

(2.13)

On the other hand,
1

1 − xt
e−t =

∞∑

n=0

dn(x)
tn

n! . (2.14)

Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 2.6 For n ≥ 0, we have

dn(x) =
n∑

k=0

k∑

m=0

(
n

k

)
Fm(x)S1(k,m)

(−1)n−k

(n − k)! .

As is known, Bernoulli polynomials are defined by the generating function

t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n! , (see [15]). (2.15)

When x = 0, Bn = Bn(0) are Bernoulli numbers. By (2.15), we easily get

m−1∑

k=0

ekt = 1

et − 1

(
emt − 1

) = 1

t

{
t

et − 1
emt − t

et − 1

}

=
∞∑

n=0

(
Bn+1(m) − Bn+1

n + 1

)
tn

n! , (n ≥ 1).

(2.16)

By Taylor expansion, we get

m−1∑

k=0

ekt =
∞∑

n=0

(
m−1∑

k=0

kn
)
tn

n! , (m ≥ 1). (2.17)

From (2.16) and (2.17), we get

m−1∑

k=0

kn = Bn+1(m) − Bn+1

n + 1
. (2.18)
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By Lemma 2.1, we easily get

m−1∑

k=0

kn = 1

n!
m−1∑

k=0

n∑

l=0

Fl(k)S1(n, l). (2.19)

Therefore, by Theorem 2.2, (2.18), and (2.19), we obtain the following theorem.

Theorem 2.7 For m ≥ 1 and n ≥ 0, we have

Bn+1(m) − Bn+1

n + 1
= 1

n!
m−1∑

k=0

n∑

l=0

Fl(k)S1(n, l)

= 1

n!
m−1∑

k=0

n∑

l=0

(
n

l

)
dl(k).

3 Degenerate Derangement Polynomials

Here we consider the degenerate derangement polynomials which are given by

1

1 − xt
(1 − λt)

1
λ =

∞∑

n=0

dn,λ(x)
tn

n! , (λ ∈ R). (3.1)

When x = 1, dn,λ = dn,λ(1) are called the degenerate derangement numbers.
From (3.1), we note that

(1 − λt)
1
λ =

( ∞∑

n=0

dn,λ(x)
tn

n!

)
(1 − xt)

=
∞∑

n=0

dn,λ(x)
tn

n! −
∞∑

n=0

xdn,λ(x)
tn+1

n!

= d0,λ(x) +
∞∑

n=1

(
dn,λ(x) − xndn−1,λ(x)

) tn

n! .

(3.2)

On the other hand,

(1 − λt)
1
λ =

∞∑

m=0

( 1
λ

m

)
(−λ)mtm =

∞∑

m=0

(−1)m(1)m,λ

tm

m! . (3.3)

Therefore, by (3.2) and (3.3), we obtain the following theorem.
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Theorem 3.1 For n ≥ 0, we have

d0,λ(x) = 1, dn,λ(x) = nxdn−1,λ(x) + (−1)n(1)n,λ, (n ≥ 1).

Note that limλ→0 dn,λ(x) = dn(x), limλ→0 dn,λ = dn , (n ≥ 0).
From (3.1), we note that

∞∑

n=0

dn,λ(x)
tn

n! = 1

1 − xt
(1 − λt)

1
λ =

( ∞∑

m=0

xmtm
) ( ∞∑

k=0

(−1)k(1)k,λ
t k

k!

)

=
∞∑

n=0

(
n∑

k=0

(−1)k

k! (1)k,λx
n−k

)
tn.

(3.4)

Comparing the coefficients on both sides of (3.4), we obtain the following theo-
rem.

Theorem 3.2 For n ≥ 0, we have

dn,λ(x) = n!
n∑

k=0

(−1)k

k! (1)k,λx
n−k .

In particular, for x = 1,

dn,λ = n!
n∑

k=0

(−1)k

k! (1)k,λ.

Now, we observe that

1

1 − xt
=

(
1

1 − xt

)
(1 − λt)

1
λ · (1 − λt)−

1
λ

=
( ∞∑

l=0

dl,λ(x)
t l

l!

) ( ∞∑

m=0

(− 1
λ

m

)
(−λ)mtm

)

=
( ∞∑

l=0

dl,λ(x)
t l

l!

) ( ∞∑

m=0

1(1 + λ) . . . (1 + (m − 1)λ)
tm

m!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
dl,λ(x)(1)n−l,−λ

)
tn

n! .

(3.5)

On the other hand,
1

1 − xt
=

∞∑

n=0

xnn! t
n

n! . (3.6)

Therefore, by (3.5) and (3.6), we obtain the following theorem.
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Theorem 3.3 For n ≥ 0, we have

xn = 1

n!
n∑

l=0

(
n

l

)
dl,λ(x)(1)n−l,−λ.

From Theorem 3.1, we have

dn,λ(x) = nxdn−1,λ(x) + (−1)n(1)n,λ

= (nx − 1)dn−1,λ(x) + dn−1,λ(x) + (−1)n(1)n,λ

= (nx − 1)dn−1,λ(x) + (n − 1)xdn−2,λ(x)

+ (−1)n−1(1)n−1,λ + (−1)n(1)n,λ

= (nx − 1)
[
dn−1,λ(x) + dn−2,λ(x)

]

+ (1 − x)dn−2,λ(x) + (−1)n−1(1)n−1,λ(n − 1)λ,

(3.7)

where n ≥ 2.
Therefore, by (3.7), we obtain the following theorem.

Theorem 3.4 For n ≥ 2, we have

dn,λ(x) = (nx − 1)
[
dn−1,λ(x) + dn−2,λ(x)

]

+ (1 − x)dn−2,λ(x) + (−1)n−1(1)n−1,λ(n − 1)λ.

In particular, x = 1,

dn,λ = (n − 1)
[
dn−1,λ + dn−2,λ

] + λ(n − 1)(−1)n−1(1)n−1,λ.

Note that
dn = lim

λ→0
dn,λ = (n − 1)

[
dn−1 + dn−2

]
(n ≥ 2).

By using Taylor expansion, we get

(1 − λt)
1
λ = e

1
λ
log(1−λt) =

∞∑

m=0

λ−m 1

m!
(
log(1 − λt)

)m

=
∞∑

n=0

(
n∑

m=0

λn−m(−1)n S1(n,m)

)
tn

n! .
(3.8)

On the other hand,
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(1 − λt)
1
λ = 1

1 − xt
(1 − λt)

1
λ (1 − xt)

=
∞∑

n=0

dn,λ(x)
tn

n! −
∞∑

n=1

nxdn−1,λ(x)
tn

n!

= d0,λ(x) +
∞∑

n=1

{
dn,λ(x) − nxdn−1,λ(x)

} tn

n!

= 1 +
∞∑

n=1

(
dn,λ(x) − nxdn−1,λ(x)

) tn

n!

(3.9)

From (3.8) and (3.9), we have

(−1)n
n∑

m=0

λn−mS1(n,m) = dn,λ(x) − nxdn−1,λ(x) = (−1)n(1)n,λ, (n ≥ 1).

(3.10)
Therefore, by (3.10), we obtain the following theorem.

Theorem 3.5 For n ≥ 1, we have

n∑

m=0

λn−mS1(n,m) = (1)n,λ.

By (1.13), we get

1

(1 + λt)
1
λ + 1

e(1+λt)
1
λ =

∞∑

m=0

(−1)mdm
1

m! (1 + λt)
m
λ

=
∞∑

m=0

(−1)mdm
1

m!
∞∑

n=0

(m)n,λ

tn

n!

=
∞∑

n=0

( ∞∑

m=0

(−1)mdm
(m)n,λ

m!

)
tn

n! .

(3.11)

On the other hand,

1

(1 + λt)
1
λ + 1

e(1+λt)
1
λ = e

2

2

(1 + λt)
1
λ + 1

e(1+λt)
1
λ −1

= e

2

( ∞∑

l=0

El,λ t
l

l!

)( ∞∑

m=0

Belm,λ

tm

m!

)

= e

2

∞∑

n=0

(
n∑

m=0

(
n

m

)
Belm,λEn−m,λ

)
tn

n! .

(3.12)
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Therefore, by (3.11) and (3.12), we obtain the following theorem.

Theorem 3.6 For n ≥ 0, we have

n∑

m=0

(
n

m

)
Belm,λEn−m,λ = 2

e

∞∑

m=0

(−1)mdm
(m)n,λ

m! .

From (3.11), we note that

e(1+λt)
1
λ =

∞∑

m=0

dm
(−1)m

m! (1 + λt)
m
λ

(
1 + (1 + λt)

1
λ

)

=
∞∑

m=0

dm
(−1)m

m! (1 + λt)
m
λ +

∞∑

m=0

dm
(−1)m

m! (1 + λt)
m+1

λ

=
∞∑

n=0

{ ∞∑

m=0

dm
(−1)m

m!
(
(m)n,λ + (m + 1)n,λ

)
}
tn

n! .

(3.13)

On the other hand,

e(1+λt)
1
λ = e · e(1+λt)

1
λ −1 = e

∞∑

k=0

1

k!
(
(1 + t)

1
λ − 1

)k

= e
∞∑

k=0

∞∑

n=k

S2,λ(n, k)
tn

n! = e
∞∑

n=0

(
n∑

k=0

S2,λ(n, k)

)
tn

n! .
(3.14)

Therefore, by (3.13) and (3.14), we obtain the following theorem.

Theorem 3.7 For n ≥ 0, we have

n∑

m=0

S2,λ(n,m) = 1

e

∞∑

m=0

dm
(−1)m

m!
(
(m)n,λ + (m + 1)n,λ

)
.

Indeed,

∞∑

n=0

Beln,λ

tn

n! = e

(
(1+λt)

1
λ −1

)

=
∞∑

m=0

1

m!
(
(1 + λt)

1
λ − 1

)m

=
∞∑

m=0

∞∑

n=m

S2,λ(n,m)
tn

n! =
∞∑

n=0

(
n∑

m=0

S2,λ(n,m)

)
tn

n! .
(3.15)

Thus, by (3.15), we get
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Beln,λ =
n∑

m=0

S2,λ(n,m), (n ≥ 0). (3.16)

Therefore, by (3.16), we obtain the following corollary.

Corollary 3.8 For n ≥ 0, we have

Beln,λ = 1

e

∞∑

m=0

dm
(−1)m

m!
(
(m)n,λ + (m + 1)n,λ

)
.
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Some Perturbed Ostrowski Type
Inequalities for Twice Differentiable
Functions

Hüseyin Budak, Mehmet Zeki Sarikaya and Silvestru Sever Dragomir

Abstract In this study, we first obtain an identity for twice differentiable functions.
Then we establish some perturbed Ostrowski type integral inequalities for func-
tions whose second derivatives are bounded. Moreover, some perturbed versions
of Ostrowski type inequalities for mapping whose second derivatives are either of
bounded variation or Lipschitzian.

Keywords Function of bounded variation · Ostrowski type inequalities
2000 Mathematics Subject Classification 26D15 · 26A45 · 26D10

1 Introduction

In 1938, Ostrowski [1] established the following useful inequality:

Theorem 1 Let f : [a, b] → R be a differentiable mapping on (a, b)whose deriva-
tive f ′ : (a, b) → R is bounded on (a, b), i.e.

∥
∥ f ′∥∥∞ := sup

t∈(a,b)

∣
∣ f ′(t)

∣
∣ < ∞. Then,

we have the inequality
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∣
∣
∣
∣
∣
∣

f (x) − 1

b − a

b∫

a

f (t)dt

∣
∣
∣
∣
∣
∣

≤
[

1

4
+
(

x − a+b
2

)2

(b − a)2

]

(b − a)
∥
∥ f ′∥∥∞ , (1.1)

for all x ∈ [a, b].

The constant 1
4 is the best possible.

Definition 1 Let P : a = x0 < x1 < · · · < xn = b be any partition of [a, b] and let
� f (xi) = f (xi+1) − f (xi). Then f is said to be of bounded variation if the sum

m
∑

i=1

|� f (xi)|

is bounded for all such partitions [2].

Definition 2 Let f be of bounded variation on [a, b], and
∑

� f (P) denote the sum
n∑

i=1
|� f (xi)| corresponding to the partition P of [a, b]. The number

b
∨

a

( f ) := sup
{∑

� f (P) : P ∈ P([a, b])
}

,

is called the total variation of f on [a, b]. Here P ([a, b]) denotes the family of
partitions of [a, b] [2].

In [3], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:

Theorem 2 Let f : [a, b] → R be a mapping of bounded variation on [a, b]. Then

∣
∣
∣
∣
∣
∣

b∫

a

f (t)dt − (b − a) f (x)

∣
∣
∣
∣
∣
∣

≤
[
1

2
(b − a) +

∣
∣
∣
∣
x − a + b

2

∣
∣
∣
∣

] b
∨

a

( f ) (1.2)

holds for all x ∈ [a, b]. The constant 1
2 is the best possible.

In [4], Dragomir and Barnett obtained the following Ostrowski type inequalities
for functions whose second derivatives are bounded:

Theorem 3 Let f : [a, b] → R be continuous on [a, b] and twice differentiable on
(a, b), whose second derivative f ′′ : (a, b) → R is bounded on (a; b). Then we have
the inequality
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∣
∣
∣
∣
∣
∣

f (x) − 1

b − a

b∫

a

f (t)dt − f (b) − f (a)

b − a

(

x − a + b

2

)
∣
∣
∣
∣
∣
∣

≤ 1

2

⎧

⎨

⎩

[(

x − a+b
2

)2

(b − a)2
+ 1

4

]2

+ 1

12

⎫

⎬

⎭
(b − a)2

∥
∥ f ′′∥∥∞

≤
∥
∥ f ′′∥∥∞

6
(b − a)2

for all x ∈ [a, b].

Ostrowski inequality has potential applications in Mathematical Sciences. It has
applications in numerical integration, probability and optimization theory, stochas-
tic, statistics, information and integral operator theory. In the past, many authors have
worked on Ostrowski type inequalities for functions (bounded, of bounded variation,
etc.) see for example [3–28]. Moreover, Dragomir proved some perturbed Ostrowski
type inequalities for bounded functions and functions of bounded variation, please
refer to [29–35]. In this study, we establish some perturbed Ostrowski type inequal-
ities for twice differentiable functions whose second derivatives are either bounded
or of bounded variation.

2 Some Identities

Before we start our main results, we state and prove the following lemma:

Lemma 1 Let f : [a, b] → C be a twice differantiable function on (a, b). Then for
any λ1(x) and λ2(x) complex number the following identity holds

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt

− 1

2(b − a)

[
λ1(x)(x − a)3 + λ2(x)(b − x)3

3

]

= 1

2

⎡

⎣
1

b − a

x∫

a

(t − a)2
[

f ′′(t) − λ1(x)
]

dt + 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − λ2(x)
]

dt

⎤

⎦ ,

(2.1)

for all x ∈ [a, b], where the integrals in the right hand side are taken in the Lebesgue
sense.



282 H. Budak et al.

Proof Using the integration by parts, we have

x∫

a

(t − a)2
[

f ′′(t) − λ1(x)
]

dt

=
x∫

a

(t − a)2 f ′′(t)dt − λ1(x)

x∫

a

(t − a)2 dt

= (t − a)2 f ′(t)
∣
∣
x

a
− 2

x∫

a

(t − a) f ′(t)dt − λ1(x)

3
(t − a)3

∣
∣
∣
∣

x

a

= (x − a)2 f ′(x) − 2

⎡

⎣ (t − a) f (t)|xa −
x∫

a

f (t)dt

⎤

⎦− λ1(x)

3
(x − a)3

= (x − a)2 f ′(x) − 2 (x − a) f (x) + 2

x∫

a

f (t)dt − λ1(x)

3
(x − a)3 (2.2)

and

b∫

x

(t − b)2
[

f ′′(t) − λ2(x)
]

dt

=
b∫

x

(t − b)2 f ′′(t)dt − λ2(x)

b∫

x

(t − b)2 dt

= (t − b)2 f ′(t)
∣
∣
b

x − 2

b∫

x

(t − b) f ′(t)dt − λ1(x)

3
(t − b)3

∣
∣
∣
∣

b

x

= − (b − x)2 f ′(x) − 2

⎡

⎣ (t − b) f (t)|bx −
b∫

x

f (t)dt

⎤

⎦− λ2(x)

3
(b − x)3

= − (b − x)2 f ′(x) − 2 (b − x) f (x) + 2

b∫

x

f (t)dt − λ1(x)

3
(x − a)3 . (2.3)

If we add the equalities (2.2) and (2.3) and divide by 2(b − a), then we obtain
required identity. �



Some Perturbed Ostrowski Type Inequalities for Twice Differentiable Functions 283

Corollary 1 Under assumption of Lemma 1 with λ1(x) = λ2(x) = λ(x), we have

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − λ(x)

6(b − a)

[

(x − a)3 + (b − x)3
]

= 1

2

⎡

⎢
⎣

1

b − a

x∫

a

(t − a)2
[

f ′′(t) − λ(x)
]

dt + 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − λ(x)
]

dt

⎤

⎥
⎦ (2.4)

for all x ∈ [a, b].

Remark 1 If we choose λ(x) = 0 in (2.4), then for all x ∈ [a, b] we have the follow-
ing identity

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt

= 1

2

⎡

⎣
1

b − a

x∫

a

(t − a)2 f ′′(t)dt + 1

b − a

b∫

x

(t − b)2 f ′′(t)dt

⎤

⎦ (2.5)

which is given by [16].

Corollary 2 Under assumption of Lemma 1withλ1(x) = λ1 ∈ C andλ2(x) = λ2 ∈
C, we get

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt

− 1

6(b − a)

[

λ1(x − a)3 + λ2(b − x)3
]

= 1

2

⎡

⎣
1

b − a

x∫

a

(t − a)2
[

f ′′(t) − λ1
]

dt + 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − λ2
]

dt

⎤

⎦ .

(2.6)

for all x ∈ [a, b].
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In particular, taking λ1 = λ2 = λ we have

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − λ

6(b − a)

[

(x − a)3 + (b − x)3
]

= 1

2

⎡

⎣
1

b − a

x∫

a

(t − a)2
[

f ′′(t) − λ
]

dt + 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − λ
]

dt

⎤

⎦ (2.7)

for all x ∈ [a, b].

Corollary 3 Under assumption of Lemma 1 with λ1(x) = λ2(x) = f ′′(x), x ∈
(a, b), we have the equality

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − f ′′(x)
6(b − a)

[

(x − a)3 + (b − x)3
]

= 1

2

⎡

⎢
⎣

1

b − a

x∫

a

(t − a)2
[

f ′′(t) − f ′′(x)
]

dt + 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − f ′′(x)
]

dt

⎤

⎥
⎦

(2.8)

for all x ∈ [a, b].

Corollary 4 Under assumption of Lemma 1, we assume that the lateral derivatives
f ′′+(a) and f ′′−(b) exist and finite. If we take λ1(x) = f ′′+(a) and λ2(x) = f ′′−(b) in
(2.1), then we have

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt

− 1

2(b − a)

[

f ′′+(a)(x − a)3 + f ′′−(b)(b − x)3

3

]

= 1

2

⎡

⎢
⎣

1

b − a

x∫

a

(t − a)2
[

f ′′(t) − f ′′+(a)
]

dt + 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − f ′′−(b)
]

dt

⎤

⎥
⎦ .

(2.9)

for all x ∈ [a, b].
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In particular, we get

1

b − a

b∫

a

f (t)dt − f

(
a + b

2

)

− (b − a)2

48

[

f ′′+(a) + f ′′−(b)
]

= 1

2 (b − a)

⎡

⎢
⎢
⎣

a+b
2∫

a

(t − a)2
[

f ′′(t) − f ′′+(a)
]

dt +
b∫

a+b
2

(t − b)2
[

f ′′(t) − f ′′−(b)
]

dt

⎤

⎥
⎥
⎦

.

(2.10)

Corollary 5 Under assumption of Lemma 1, we assume that the derivatives f ′′+(a),

f ′′−(b) and f ′′(x) exist and finite. If we choose λ1(x) = f ′′+(a)+ f ′′(x)
2 and λ2(x) =

f ′′(x)+ f ′′−(b)
2 in (2.1), then we have

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − (x − a)3 + (b − x)3

12(b − a)
f ′′(x)

− 1

12(b − a)

[

(x − a)3 f ′′+(a) + (b − x)3 f ′′−(b)
]

= 1

2

⎡

⎣
1

b − a

x∫

a

(t − a)2
[

f ′′(t) − f ′′+(a) + f ′′(x)
2

]

dt

+ 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − f ′′(x) + f ′′−(b)

2

]

dt

⎤

⎦ . (2.11)

for all x ∈ [a, b].
In particular, we have

1

b − a

b∫

a

f (t)dt − f

(
a + b

2

)

− (b − a)2

24
f ′′
(
a + b

2

)

− (b − a)

48

[

f ′′+(a) + f ′′−(b)
]

= 1

2

⎡

⎢
⎢
⎣

1

b − a

a+b
2∫

a

(t − a)2

⎡

⎣ f ′′(t) −
f ′′+(a) + f ′′ ( a+b

2

)

2

⎤

⎦ dt

+ 1

b − a

b∫

a+b
2

(t − b)2

⎡

⎣ f ′′(t) −
f ′′ ( a+b

2

)

+ f ′′−(b)

2

⎤

⎦ dt

⎤

⎥
⎥
⎦

. (2.12)
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3 Inequalities for Functions Whose Second Derivatives
are Bounded

Recall the sets of complex-valued functions:

U [a,b] (γ, �)

: =
{

f : [a, b] → C :
[

(� − f (t))
(

f (t)
)

− γ
]

≥ 0 for almast every t ∈ [a, b]
}

and

�[a,b] (γ, �) :=
{

f : [a, b] → C :
∣
∣
∣
∣
f (t) − γ + �

2

∣
∣
∣
∣
≤ 1

2
|� − γ| for a.e. t ∈ [a, b]

}

.

Proposition 1 For anyγ, � ∈ C,γ �= �, we have thatU [a,b] (γ, �) and�[a,b] (γ, �)

are nonempty and closed sets and

U [a,b] (γ, �) = �[a,b] (γ, �) .

Theorem 4 Let f : [a, b] → C be a twice differantiable function on (a, b) and
x ∈ (a, b). Suppose that γi, �i ∈ C, γi �= �i, i = 1, 2 and f ′′ ∈ U [a,x] (γ1, �1) ∩
U [x,b] (γ2, �2). Then we have the inequalities

∣
∣
∣
∣
∣
∣

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt

− (γ1 + �1) (x − a)3 + (γ2 + �2) (b − x)3

12(b − a)

∣
∣
∣
∣

≤ (b − a)2

12

[

|�1 − γ1|
(
x − a

b − a

)3

+ |�2 − γ2|
(
b − x

b − a

)3
]

≤ (b − a)2

12

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
x−a
b−a

)3 + (
b−x
b−a

)3
]

max {|�1 − γ1| , |�2 − γ2| , }
[(

x−a
b−a

)3p + (
b−x
b−a

)3p
] 1

p
(|�1 − γ1|q + |�2 − γ2|q) 1

q ,

p > 1, 1
p + 1

q = 1,

[
1
2 +

∣
∣
∣
x− a+b

2
b−a

∣
∣
∣

]3
[|�1 − γ1| + |�2 − γ2|] .

(3.1)
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Proof Taking the modulus identity (2.1) for λ1(x) = γ1+�1

2 and λ2(x) = γ2+�2

2 , since
f ′′ ∈ U [a,x] (γ1, �2) ∩U [x,b] (γ2, �2), we have

∣
∣
∣
∣
∣
∣

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt

− (γ1 + �1) (x − a)3 + (γ2 + �2) (b − x)3

12(b − a)

∣
∣
∣
∣

≤ 1

2 (b − a)

⎡

⎣

x∫

a

(t − a)2
∣
∣
∣
∣
f ′′(t) − γ1 + �1

2

∣
∣
∣
∣
dt

+
b∫

x

(t − b)2
∣
∣
∣
∣
f ′′(t) − γ2 + �2

2

∣
∣
∣
∣
dt

⎤

⎦

≤ 1

2 (b − a)

⎡

⎣
|�1 − γ1|

2

x∫

a

(t − a)2 dt + |�2 − γ2|
2

b∫

x

(t − b)2 dt

⎤

⎦

= (b − a)2

12

[

|�1 − γ1|
(
x − a

b − a

)3

+ |�2 − γ2|
(
b − x

b − a

)3
]

which completes the first inequality in (3.1).
The proofs of the first and third branches of the second inequality in (3.1) are

obvious. Using Hölder’s inequality

mn + pq ≤ (mα + pα)
1
α
(

nβ + qβ
) 1

β , m, n, p, q ≥ 0 and α > 1 with
1

α
+ 1

β
= 1

we can easily obtain the second branch of second inequality in (3.1). �

Corollary 6 Let f : [a, b] → C be a twice differantiable function on (a, b) and
x ∈ (a, b). If γ, � ∈ C, γ �= �and f ′′ ∈ U [a,b] (γ, �), then we have

∣
∣
∣
∣
∣
∣
∣

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − γ + �

12(b − a)

[

(x − a)3 + (b − x)3
]

∣
∣
∣
∣
∣
∣
∣

≤ |� − γ|
12(b − a)

[

(x − a)3 + (b − x)3
]

for all x ∈ [a, b].
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Corollary 7 Under assumption of Theorem 4 with x = a+b
2 , we have

∣
∣
∣
∣
∣
∣

1

b − a

b∫

a

f (t)dt − f

(
a + b

2

)

− (b − a)2

48

[
γ1 + �1

2
+ γ2 + �2

2

]
∣
∣
∣
∣
∣
∣

≤ 1

96
[|�1 − γ1| + |�2 − γ2|] (b − a)2.

4 Inequalities for Functions Whose Second Derivatives
are of Bounded Variation

Assume that f : [a, b] → C be a twice differantiable function on I◦ (the interior of
I ) and [a, b] ⊂ I◦. Then, as in (2.11), we have the identity

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − (x − a)3 + (b − x)3

12(b − a)
f ′′(x)

− 1

12(b − a)

[

(x − a)3 f ′′(a) + (b − x)3 f ′′(b)
]

= 1

2

⎡

⎣
1

b − a

x∫

a

(t − a)2
[

f ′′(t) − f ′′(a) + f ′′(x)
2

]

dt

+ 1

b − a

b∫

x

(t − b)2
[

f ′′(t) − f ′′(x) + f ′′(b)
2

]

dt

⎤

⎥
⎦ , (4.1)

for any x ∈ [a, b].

Theorem 5 Let: f : [a, b] → Cbea twice differantiable function on I◦ and [a, b] ⊂
I◦. If the second derivative f ′′ is of bounded variation on [a, b], then

∣
∣
∣
∣
∣
∣
∣

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − (x − a)3 + (b − x)3

12(b − a)
f ′′(x)

− 1

12(b − a)

[

(x − a)3 f ′′(a) + (b − x)3 f ′′(b)
]
∣
∣
∣
∣

≤ (b − a)2

12

⎡

⎣

(
x − a

b − a

)3 x
∨

a
( f ′′) +

(
b − x

b − a

)3 b
∨

x
( f ′′)

⎤

⎦
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≤ (b − a)2

12

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
x−a
b−a

)3 +
(
b−x
b−a

)3
][

1
2

b∨

a
( f ′′) + 1

2

∣
∣
∣
∣
∣

x∨

a
( f ′′) −

b∨

x
( f ′′)

∣
∣
∣
∣
∣

]

,

[(
x−a
b−a

)3p +
(
b−x
b−a

)3p
] 1

p
[( x∨

a
( f ′′)

)q
+
(

b∨

x
( f ′′)

)q] 1
q

p > 1, 1
p + 1

q = 1,

[

1
2 +

∣
∣
∣
∣

x− a+b
2

b−a

∣
∣
∣
∣

]3 b∨

a
( f ′′),

(4.2)

for any x ∈ [a, b].

Proof Taking modulus (4.1), we get

∣
∣
∣
∣
∣
∣
∣

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − (x − a)3 + (b − x)3

12(b − a)
f ′′(x)

− 1

12(b − a)

[

(x − a)3 f ′′(a) + (b − x)3 f ′′(b)
]
∣
∣
∣
∣

≤1

2

⎡

⎣
1

b − a

x∫

a

(t − a)2
∣
∣
∣
∣
f ′′(t) − f ′′(a) + f ′′(x)

2

∣
∣
∣
∣
dt

+ 1

b − a

b∫

x

(t − b)2
∣
∣
∣
∣
f ′′(t) − f ′′(x) + f ′′(b)

2

∣
∣
∣
∣
dt

⎤

⎥
⎦ . (4.3)

Since f ′′ is of bounded variation on [a, x], we get

∣
∣
∣
∣
f ′′(t) − f ′′(a) + f ′′(x)

2

∣
∣
∣
∣
≤
∣
∣2 f ′′(t) − f ′′(a) − f ′′(x)

∣
∣

2

≤
∣
∣ f ′′(t) − f ′′(a)

∣
∣+ ∣

∣ f ′′(x) − f ′′(t)
∣
∣

2

≤ 1

2

x
∨

a

( f ′′).
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Thus,

x∫

a

(t − a)2
∣
∣
∣
∣
f ′′(t) − f ′′(a) + f ′′(x)

2

∣
∣
∣
∣
dt ≤ 1

2

x
∨

a

( f ′′)
x∫

a

(t − a)2 dt

≤ (x − a)3

6

x
∨

a

( f ′′). (4.4)

Similarly, since f ′′ is of bounded variation on [x, b], we have

∣
∣
∣
∣
f ′′(t) − f ′′(x) + f ′′(b)

2

∣
∣
∣
∣
≤ 1

2

b
∨

x

( f ′′)

and thus,

b∫

x

(t − b)2
∣
∣
∣
∣
f ′′(t) − f ′′(x) + f ′′(b)

2

∣
∣
∣
∣
dt ≤ (b − x)3

6

b
∨

x

( f ′′). (4.5)

If we substitute the inequalities (4.4) and (4.5) in (4.3), we obtain the first inequality
in (4.2). The second inequality follows by Hölder’s inequality

mn + pq ≤ (mα + pα)
1
α
(

nβ + qβ
) 1

β , m, n, p, q ≥ 0 and α > 1 with
1

α
+ 1

β
= 1.

�

Corollary 8 Under assumptions of Theorem 5with x = a+b
2 ,we have the inequality

∣
∣
∣
∣
∣
∣
∣

1

b − a

b∫

a

f (t)dt − f

(
a + b

2

)

− (b − a)2

48
f ′′
(
a + b

2

)

− (b − a)

96

[

f ′′(a) + f ′′(b)
]

∣
∣
∣
∣
∣
∣
∣

≤ (b − a)2

96

b
∨

a
( f ′′).

5 Inequalities for Functions Whose Second Derivatives
are Lipschitzian

Theorem 6 Let : f : [a, b] → C be a twice differantiable function on I◦ and
[a, b] ⊂ I◦. If the second derivative f ′′ is Lipschitzian with the constant L1(x) on
[a, x] and L2(x) on [x, b], then we have
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∣
∣
∣
∣
∣
∣

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − (x − a)3 + (b − x)3

12(b − a)
f ′′(x)

− 1

12(b − a)

[

(x − a)3 f ′′(a) + (b − x)3 f ′′(b)
]
∣
∣
∣
∣

≤ (b − a)3

12

[(
x − a

b − a

)4

L1(x) +
(
b − x

b − a

)4

L2(x)

]

≤ (b − a)3

12

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
x−a
b−a

)4 + (
b−x
b−a

)4
]

max {L1(x),L2(x)} ,

[(
x−a
b−a

)4p + (
b−x
b−a

)4p
] 1

p [

(L1(x))
q + (L1(x))

q
] 1

q

p > 1, 1
p + 1

q = 1,

max
{(

x−a
b−a

)4
,
(
b−x
b−a

)4
}

[L1(x) + L2(x)] ,

(5.1)

for any x ∈ [a, b].

Proof Since f ′′ is Lipschitzian with the costant L1(x) on [a, x], we get

∣
∣
∣
∣
f ′′(t) − f ′′(a) + f ′′(x)

2

∣
∣
∣
∣
≤
∣
∣2 f ′′(t) − f ′′(a) − f ′′(x)

∣
∣

2

≤
∣
∣ f ′′(t) − f ′′(a)

∣
∣+ ∣

∣ f ′′(x) − f ′′(t)
∣
∣

2

≤ 1

2
L1(x) [|t − a| + |x − t|]

= 1

2
L1(x)(x − a).

Thus,

x∫

a

(t − a)2
∣
∣
∣
∣
f ′′(t) − f ′′(a) + f ′′(x)

2

∣
∣
∣
∣
dt ≤ 1

2
L1(x)(x − a)

x∫

a

(t − a)2 dt

≤ 1

6
(x − a)4L1(x). (5.2)



292 H. Budak et al.

Similarly, f ′′ is Lipschitzian with the costant L2(x) on [x, b], we get

∣
∣
∣
∣
f ′′(t) − f ′′(x) + f ′′(b)

2

∣
∣
∣
∣
≤ 1

2
L2(x)(b − x)

and thus,

b∫

x

(t − b)2
∣
∣
∣
∣
f ′′(t) − f ′′(x) + f ′′(b)

2

∣
∣
∣
∣
dt ≤ 1

6
(b − x)4L2(x). (5.3)

If we substitute the inequalities (5.2) and (5.3) in (4.3), we obtain the first inequality
in (5.1). The second inequalities can be proved as in Theorems 4 and 5. �
Corollary 9 Under assumption of Theorem 6 with L1(x) = L2(x) = L, we have

∣
∣
∣
∣
∣
∣

(

x − a + b

2

)

f ′(x) − f (x) + 1

b − a

b∫

a

f (t)dt − (x − a)3 + (b − x)3

12(b − a)
f ′′(x)

− 1

12(b − a)

[

(x − a)3 f ′′(a) + (b − x)3 f ′′(b)
]
∣
∣
∣
∣

= 1

12

[(
x − a

b − a

)4

+
(
b − x

b − a

)4
]

L(b − a)3 (5.4)

for all x ∈ [a, b].

Corollary 10 If we choose x = a+ b
2 in (5.4), we get the inequality

∣
∣
∣
∣
∣
∣
∣

1

b − a

b∫

a

f (t)dt − f

(
a + b

2

)

− (b − a)2

48
f ′′
(
a + b

2

)

− (b − a)

96

[

f ′′(a) + f ′′(b)
]

∣
∣
∣
∣
∣
∣
∣

≤ 1

192
L(b − a)3.
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Comprehensive Inequalities
and Equations Specified by the
Mittag-Leffler Functions and Fractional
Calculus in the Complex Plane

Hüseyin Irmak and Praveen Agarwal

Abstract Inequalities or equations appertaining to (generalized) Mittag-Leffler
functions and/or asserted by (generalized) fractional calculus play important roles in
themselves and also in their diverse applications in nearly all sciences and engineer-
ing. Many inequalities or equations involving (one variable and three parameters of)
the Mittag-Leffler (type) functions and also (generalized) fractional calculus have
been established by several researchers in many different ways. In this investigation,
many comprehensive results containing several differential inequalities and/or equa-
tions (in the complex plane C) in relation with (one variable and three parameters
of) the Mittag-Leffler (type) functions given by

Eγ
α,β(z) := ∑∞

n=0
(γ )n

n!�(nα+β)
zn

(
β, γ ∈ C; �e(α) > 0

)
,

in its kernel, here throughout this investigation, (γ )n being the familiar Pochhammer
symbol or the shifted factorial, and/or fractional calculus (i.e., differentiation and
integration of an arbitrary real or complex order) are presented, for a function f (z),
by the familiar differ-integral operator cDμ

z [·], defined by

cDμ
z
[
f (z)

] :=

⎧
⎪⎪⎨

⎪⎪⎩

1

�(−μ)

∫ z

c

f (τ )

(z − τ)1−μ
dτ

(
c ∈ R; �e(μ) < 0

)

dm

dzm

(

cDμ−m
z

[
f (z)

]) (
m − 1 ≤ �e(μ) < m;m ∈ N

)
,

provided that the integral exists, are first established and several consequences of our
results are then pointed out.
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1 Introduction, Definitions, and Preliminaries

The basic processes of diffusion, oscillations, relaxation, and wave propagation have
been generalized by several researchers by applying or introducing fractional calcu-
lus in the governing (ordinary or partial differential) equations. This leads to super-
slow or intermediate processes that, in mathematical physics, we may refer to as
fractional phenomena. Recent advances in the theory and applications of fractional
differential equations are stimulated by new examples of applications in the fluid
mechanics, viscoelasticity, mathematical biology, electrochemistry, physics, and so
on. As is known, fractional (differential) equations are very useful tools for modeling
(or applications) many anomalous phenomena in nature and in the theory of complex
systems. More particularly, the main physical purpose for adopting and investigat-
ing diffusion equations of fractional order is to describe phenomena of anomalous
diffusion usually met in transport processes through complex or disordered systems
involving (for instance) fractal media.

Motivated essentially by the success of the applications of (generalized) Mittag-
Leffler functions in many areas of science and engineering, several authors present,
in a unified manner, a detailed account or rather a brief survey of the Mittag-Leffler
function, generalized Mittag-Leffler functions, (one variable and three parameters)
of Mittag-Leffler (type) functions, and their interesting and also useful properties.
Many applications of the Mittag-Leffler functions in certain areas of physical and
applied sciences are also demonstrated. During the last two decades, this function
has come into prominence after about nine decades of its discovery by a Swedish
Mathematician Mittag-Leffler, due to the vast potential of its applications in solving
the problems of physical, biological, engineering, and earth sciences, and so forth.

Our analysis of these phenomena carried out by means of certain equations or
inequalities constituted by (generalized) fractional calculus leads to several special
functions in one variable and several parameters of the Mittag-Leffler-type. (For the
details and also, for example, see the works given in [3, 4, 6–8, 17, 18, 22–24].)

The aim of this investigation, as a novel investigation, certain complex equations
and inequalities consisting of (one variable and three parameters of) the Mittag-
Leffler (type) functions and/or (generalized) fractional calculus, that is, that deriva-
tive(s), are first presented and several useful consequences of the related complex
equations and/or inequalities are also emphasized. For example, in the near time, cer-
tain interesting and comprehensive results consisting of several inequalities in rela-
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tion with the (one variable and several parameters) Mittag-Leffler (type) functions
were saved to the literature as novel investigation consisting of various theoretical
or elementary results appertaining to relation with some applications of fractional
calculus and Mittag-Leffler (type) functions in the complex plane. See, for their
details, [5] and also [8].

For the main purpose indicated above, there is a need to introduce or recall certain
well-known definitions and also notations.

Firstly, let us denote by the notations N, R, C, and U the set of natural numbers,
the set of real numbers, the set of complex numbers and unit open disk, namely{
z ∈ C : |z| < 1

}
, respectively.

Also let D := U − {0}, C∗ := C − {0}, R∗ := R − {0} and N
∗ := N − {0}.

We now begin by recalling the (one variable and three parameters) Mittag-Leffler
(type) function is denoted by Eγ

α,β(z) and also defined by

Eγ

α,β(z) :=
∞∑

n=0

(γ )n

n!�(nα + β)
zn (1.1)

where z ∈ C, β ∈ C, γ ∈ C, �e(α) > 0, and �e(β) > 0 and (here and throughout
this work) (ω)τ denotes the familiar Pochhammer symbol or the shifted factorial,
since

(1)n = n! (
n ∈ N0

)
,

defined (for ω ∈ C , τ ∈ C and in terms of the familiar Gamma function) by

(ω) := �(ω + τ)

�(τ)

=
{

1 when τ = 0 and ω ∈ C
∗

ω(ω + 1) · · · (ω + n − 1) when τ = n ∈ N and ω ∈ C.

For γ = 1, we then recover from (1.1) (one variable and two parameters) of the
Mittag-Leffler function denoted by Eα,β(z) and also defined by

Eα,β(z) := E1
α,β(z) =

∞∑

n=0

zn

�(nα + β)
, (1.2)

where z ∈ C, β ∈ C, α ∈ C, �e(α) > 0 and �e(β) > 0.
Moreover, for β := 1 and γ := 1, we also get the (classical) Mittag-Leffler func-

tion or (one variable and one parameter) of the Mittag-Leffler function denoted by
Eα(z) and also defined by
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Eα(z) := E1
α,1(z) =

∞∑

n=0

zn

�(nα + 1)
, (1.3)

where z ∈ C, α ∈ C and �e(α) > 0.
For a detailed account of the various properties, generalizations, and applications

of the Mittag-Leffler functions, the researcher may refer to the recent investigations,
for example, Gorenflo et al. [3, 4] and Kilbas et al. [10–12]. The Mittag-Leffler
function (1.3) and some of its various generalizations have only recently been deter-
mined numerically in the whole complex plane [12, 21, 24]. By means of the series
representation, a generalization of the Mittag-Leffler function given by (1.1) was
introduced by Prabhakar [16]. Indeed, for the various special results relating to the
functions in (1.1)–(1.3), one looks overall works concerning to the (one variable and
three parameters) Mittag-Leffler (type) functions in the references.

Next, the most frequently encountered tools in the theory of fractional calcu-
lus (i.e., differentiation and integration of an arbitrary real or complex order) are
presented by the familiar differ-integral operator cDμ

z [·], defined by

cDμ
z

[
f (z)

] :=

⎧
⎪⎪⎨

⎪⎪⎩

1

�(−μ)

∫ z

c

f (τ )

(z − τ)1−μ
dτ when �e(μ) < 0

dm

dzm

(

cDμ−m
z

[
f (z)

])
when m − 1 ≤ �e(μ) < m,

provided that the integral exists, where c ∈ R and m ∈ N.

For c := 0, the operator Dμ
z [·] given by

Dμ
z

[
f (z)

] := 0Dμ
z

[
f (z)

] (
μ ∈ C

)

corresponds essentially to the classical Riemann–Liouville fractional derivative (or
integral) of order μ

(
or − μ

)
.

In special, for the function f (z) = zκ , of course, with c := 0, it is easily seen that

Dμ
z

[
zκ

] := �(κ + 1)

�(κ − μ + 1)
zκ−μ

(�e(κ) > −1
)
, (1.4)

and, more importantly, that

�(γ )Eγ

α,β(z) = Dγ−1
z

(
zγ−1Eα,β(z)

)
(1.5)

and

α
(
Eγ

α,β(z)
)′ = Eγ

α,β−1(z) + (
1 − β

)
Eγ

α,β(z), (1.6)

where z, α, β, γ ∈ C, �e(α) > 0, �e(β) > 0, �e(γ ) > 0,
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Moreover, there are several interesting and/or important relationships among the
definitions identified by the series representation given by (1.1), (1.2), and (1.3). We
want to point out a number of those special relationships that we find useful for
certain special consequences of our main results. Some of them are in the following
forms:

Eα(z) = E1
α,1(z) (1.7)

(
z, α ∈ C ; �e(α) > 0

)
,

Eα,β(z) = E1
α,β(z) (1.8)

(
z, α, β ∈ C ; �e(α) > 0 ; �e(β) > 0

)
,

Eα,β(z) = zEα,α+β(z) + 1

�(β)
(1.9)

(
z, α, β ∈ C ; �e(α) > 0 ; �e(β) > 0

)
,

zm Eα,β+mα(z) = Eα,β(z) −
m−1∑

n=0

zn

�(β + nα)
(1.10)

(
m ∈ N

∗ ; z, α, β ∈ C ; �e(α) > 0 ; �e(β) > 0
)
,

Eα,β(z) = βEα,1+β(z) + αz
d

dz

(
Eα,1+β(z)

)
(1.11)

(
z, α, β ∈ C ; �e(α) > 0 ; �e(β) > 0

)
,

dn

dzn

(
Eα,β

(
zα

)) = zβ−n−1Eα,β−n
(
zα

)
(1.12)

(
n ∈ N ; z, α, β ∈ C ; �e(α) > 0 ; �e(β) > n

)
,

dn

dzn

(
zn−βEn,β

(
κz−n

)) = κ(−1)nz−n−βEn,β

(
κz−n

)
(1.13)

(
n ∈ N ; κ ∈ C

∗ ; z, α, β ∈ C ; �e(α) > 0 ; �e(β) > 0
)
,
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αz
d

dz

(
Eα,β(z)

)
= Eα,β−1(z) + (1 − β)Eα,β(z) (1.14)

(
z, α, β ∈ C ; �e(α) > 0 ; �e(β) > 0

)
,

αγ E1+γ

α,β (z) = (1 + αγ − β)Eγ

α,β(z) + Eγ

α,β−1(z) (1.15)

(
z ∈ C

∗ ; z, α, β, γ ∈ C ; �e(α) > 0 ; �e(β) > 0 ; �e(γ ) > 0
)
,

dn

dzn

(
Eα(z)

)
= n!E1+n

α,1+nα(z) (1.16)

(
n ∈ N ; z ∈ C

∗ ; α ∈ C ; �e(α) > 0
)
,

dn

dzn

(
Eα,β(z)

)
= n!E1+n

α,β+nα(z) (1.17)

(
n ∈ N ; z ∈ C

∗ ; α, β ∈ C ; �e(α) > 0 ; �e(β) > 0
)
,

dn

dzn

(
zβ−1Eα,β

(
κzα

)) = zβ−n−1Eγ

α,β−n

(
κzα

)
(1.18)

(
n ∈ N ; α, β ∈ C ; z, κ ∈ C

∗ ; �e(α) > 0 ; �e(β) > n
)
,

dn

dzn

(
Eγ

α,β(z)
)

= (γ )n E
n+γ

α,β+nα(z) (1.19)

(
n ∈ N ; z ∈ C

∗ ; α, β, γ ∈ C ; �e(α) > 0 ; �e(β) > 0 ; �e(γ ) > 0
)
,

dn

dzn

(
zβ−1Eγ

α,β

(
κzα

)) = zβ−n−1Eγ

α,β−n

(
κzα

)
(1.20)

(
n ∈ N ; α, β ∈ C ; z, κ ∈ C

∗ ; �e(α) > 0 ; �e(β) > n ; �e(γ ) > 0
)
,

and

dn

dzn

(
zβ−1	

(
γ, β; κz

)) = �(β)

�(β − n)
zβ−n−1	

(
γ ;β − n; κz

)
(1.21)
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(
n ∈ N ; α, β ∈ C ; z, κ ∈ C

∗ ; �e(α) > 0 ; �e(β) > n ; �e(γ ) > 0
)
.

For someof the earlier results,which are also consist of certain relationships indicated
by (1.6)–(1.22), specially, see the recent works given by [5, 8].

Especially, for positive integer m ∈ N, Eγ

α,β(z) coincides with the generalized
hypergeometric function with p = 1 and q = m, apart from a constant multiplier
given by

�(β)Eγ

m,β(z) =1 Fm

(
γ ; β

m
,
1 + β

m
, · · · ,

m − 1 + β

m
; z

mm

)
,

and, as its special case, form := 1, Eγ

1,β(z) also coincideswith theKummer confluent
hypergeometric function 	(γ, β; z) that is that

�(β)Eγ

1,β(z) = 	(γ, β; z), (1.22)

where γ ∈ C, β ∈ C, z ∈ C, �e(γ ) > 0 and �e(β) > 0.
As we indicated before, in recent years, a great deal of literature has appeared

discussing the application of the aforementioned fractional calculus operators in a
number of areas of mathematical analysis (cf., e.g., [1, 2, 7, 13, 17]; see also (for
example) the results in [1, 2, 7].Wealso note that the fractional calculus operator (1.3)
was investigated earlier by Kilbas et al. [12] and its generalization involving a family
of more general Mittag-Leffler-type functions than Eα,β(z) was studied recently by
Srivastava and Tomovski [22]. (For more information and also, for example, see the
results in [1, 7, 19, 22, 23].)

For the main results, there is a need to recall the well-known assertions, which
are Lemma 1.1 given by [9] (see, also [14]) and Lemma 1.2 given by [15], below.

Lemma 1.1 Let w(z) defined by

w(z) = anz
n + an+1z

n+1 + an+2z
n+2 + · · · (an �= 0; n ∈ N)

be an analytic function in U. If the maximum value of|w(z)| on the circle |z| = r is
attained at z = z0 ∈ U, then

zw′(z)
∣
∣
z=z0

= ρw(z)
∣
∣
z=z0

, (1.23)

where ρ ≥ n and n ∈ N.

Lemma 1.2 Let q(z) be an analytic function in U with q(0) = 1. If there exists a
point z0 in U such that

�e
(
q(z)

)
> 0

(
|z| < |z0|

)
, �e

(
q(z0)

)
= 0 and q(z0) �= 0, (1.24)

then
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q(z0) = ia and zq ′(z)
∣
∣
z=z0

= iρ
(
a + 1

a

)
q(z)

∣
∣
z=z0

, (1.25)

where a ∈ R
∗ and ρ ≥ 1/2.

2 Main Results and Conclusions

We now begin by setting and then by proving the main results consisting of several
comprehensive consequences dealing with certain complex equations and inequal-
ities constituted by the (one variable and three parameters) Mittag-Leffler (type)
functions and the (generalized) fractional calculus, which are given by theorems in
the following forms.

Theorem 2.1 Let φ(z) be an analytic function that satisfies the inequality:

∣
∣φ(z)

∣
∣ < ρ(1 + κ)

(
ρ > 0; κ ∈ N; z ∈ U

)
(2.1)

and also let the function W (z) be in the form:

W (z) = zκEγ

α,β(z)
(
κ ∈ N

)
, (2.2)

where Eγ

α,β(z) is the (three parameters) Mittag-Leffler (type) function given as in
(1.1).

If an analytic function W := W (z) is a any solution of the following (fractional
type) complex equation:

zD1+μ
z

[
W

] + (1 + μ)Dμ
z

[
W

] − φ(z)

zμ
= 0, (2.3)

then ∣
∣
∣Dμ

z

[
W

]∣∣
∣ <

ρ

|zμ|
(
ρ > 0; 0 ≤ μ < 1; z ∈ D

)
, (2.4)

where and the values of all complex powers above are taken to be as their principal
values.

Proof Firstly, let the functions Eγ

α,β(z) and W (z) be defined by (1.1) and (2.2),
respectively. By the help of (1.1) and (1.4), the following:

Dμ
z

[
W

] ≡ Dμ
z

[
W (z)

] = z−μ

( ∞∑

n=0

�α,β,γ
μ,κ (n)zn+κ

)

= z−μ
(
�α,β,γ

μ (κ; 0)zκ + �α,β,γ
μ (κ; 1)z1+κ + · · ·

)
,
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is then determined, where

�α,β,γ
μ (κ; n) := (γ )n�(n + κ + 1)

n!�(nα + β), �(n + κ − μ + 1)

for all n ∈ N0 and κ ∈ N.

Let us now define a function w(z) in the form:

zμDμ
z

[
W

] = w(z)
(
0 ≤ μ < 1; κ ∈ N; z ∈ U

)
. (2.5)

Since κ ∈ N, it is obvious that the function w(z) is analytic in the domain U. It
follows from (2.5), we then obtain

z
(
zμDμ

z

[
W

])′ = μzμDμ
z
[
W

] + z1+μD1+μ
z

[
W

] = zw′(z). (2.6)

By combining the identities given by (2.5) and (2.6), we also get that

z1+μD1+μ
z

[
W

] + (1 + μ)zμDμ
z
[
W

]

= w(z) + zw′(z)
( =: φ(z)

)
. (say.) (2.7)

It is clear that the function φ(z) satisfies the fractional complex-type equation given
by (2.3), when one takes in consideration the function W as in the form given by
(2.2).

We now suppose that there exists a point z0 ∈ U such that

max
{
|w(z)| : |z| ≤ |z0|

}
= |w(z0)| = ρ (ρ > 0),

then the assertion (1.15) (of Lemma 1.1) gives us

w(z0) = ρeiθ (0 ≤ θ < 2π) and z0w
′(z0) = cw(z0),

where c is real and c ≥ κ (κ ∈ N).
We thus obtain that

∣
∣φ(z0)

∣
∣ = ∣

∣w(z0) + z0w
′(z0)

∣
∣

= (1 + c)
∣
∣w(z0)

∣
∣ = ρ(1 + c) ≥ ρ(1 + κ),

which is a contradiction with the assumption given by (2.1). Therefore, there is not
any z0 in the domain U such that |w(z0)| = ρ (ρ > 0). This means that |w(z)| <

ρ (ρ > 0) for all z ∈ U. Hence, the equality given in (2.5) immediately yields that
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∣
∣
∣zμDμ

z

[
W

]∣∣
∣ = |w(z)| < ρ

(
ρ > 0; z ∈ U

)
,

which completes the proof of Theorem 2.1.

Theorem 2.2 Let φ(z) be an analytic function that satisfies the inequality given by
(2.1) and also let the function Ŵ (z) be in the form:

Ŵ (z) := zκ Eα,β(z)
(
κ ∈ N

)
, (2.8)

where Eα,β(z) is the (two parameters)Mittag-Leffler (type) function given as in (1.2).
If an analytic function Ŵ := Ŵ (z) is a any solution of the following (fractional-

type complex) equation:

zD1+μ
z

[
Ŵ

] + (1 + μ)Dμ
z

[
Ŵ

] − φ(z)

zμ
= 0,

then ∣
∣
∣Dμ

z

[
Ŵ

]∣∣
∣ <

ρ

|zμ|
(
ρ > 0; 0 ≤ μ < 1; z ∈ D

)
,

where the values of the related complex powers are taken to be as their principal
values.

Proof For the proof of Theorem 2.2, it is enough to choose the value of the parameter
γ as γ := 1 in the proof of Theorem 2.1 and to take into account the well-known
identity given by (1.8).

Theorem 2.3 Let φ(z) be an analytic function and satisfy the inequality given by
(2.1) and also let the function W̃ (z) be in the form:

W̃ (z) := Eγ

α,β(z), (2.9)

where Eγ

α,β(z) is the (three parameters) Mittag-Leffler (type) function given as in
(1.1).

If an analytic function W̃ := W̃ (z) is a any solution of the following (fractional-
type complex) equation:

z�(γ )W̃ ′ + �(1 + γ )W̃ − φ(z)

zγ
= 0,

then ∣
∣�(γ )zγ W̃ (z)

∣
∣ < ρ |z| (

ρ > 0; γ ∈ N; z ∈ D
)
,

where the values of the related powers are taken to be as their principal values.
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Proof By setting κ := γ − 1 and μ := γ − 1 in Theorem 2.1 and also by taking in
consideration the well-known identity given by (1.5), the desired proof of Theorem
2.3 can be easily obtained.

Theorem 2.4 Let φ(z) be an analytic function that satisfies any one of the inequal-
ities:

�m
(
φ(z)

)
= 0 and �e

(
φ(z)

)
≥ −1

2

(
z ∈ U

)
(2.10)

and also let the function W (z) be defined as in (2.2) with κ := 1.
If the function W := W (z) is any solution of the following (complex fractional

type) equation:

z1+μD1+μ
z

[
W

] + μzμDμ
z

[
W

] − �(β)�(2 − μ)zφ(z) = 0, (2.11)

then

�e

(
zμ−1Dμ

z
[
W

]

�(β)�(2 − μ)

)

> 0 (2.12)

(
0 ≤ μ < 1; �e(β) > 0; z ∈ D

)
,

where the values of the related complex powers here are taken to be as their principal
values.

Proof Firstly, here and throughout the proof of this theorem, let the functions Eγ

α,β(z)
and W := W (z) be defined as in (1.1) and (2.2) with κ := 1. Then, by the help of
(1.1) and (1.4), we easily calculate that

Dμ
z

[
W

] = z−μ

( ∞∑

n=0

�α,β,γ
μ (n)zn+1

)

= z−μ
(
�α,β,γ

μ (0)z + �α,β,γ
μ (1)z2 + · · ·

)
,

where

�α,β,γ
μ (n) := (γ )n�(n + 1)

n!�(nα + β)�(n − μ + 2)

for all n ∈ N0.

Next, we define a function q(z) in the form:

zμ−1Dμ
z

(
zEγ

α,β(z)
)

= �(β)�(2 − μ)q(z)z1−μ, (2.13)

where 0 ≤ μ < 1, �e
(
β
)

> 0 and z ∈ U. Obviously, q(z) is an analytic function in
U with q(0) = 1. From the statement (2.13), we also obtain
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z
(
Dμ

z

[
W

])′ = �(β)�(2 − μ)z1−μ
(
(1 − μ)q(z) + zq ′(z)

)
(2.14)

After simple calculations, (2.13) and (2.14) give us

zD1+μ
z

[
W

] + μDμ
z

[
W

] = �(β)�(2 − μ)z1−μ
(
zq ′(z) + q(z)

)
(2.15)

( =: �(β)�(2 − μ)z1−μφ(z)
)
. (say.)

Clearly, the function φ(z) satisfies the (fractional complex) equation given by (2.11).
We now assume that there exists a point z0 ∈ U satisfying the hypotheses given

by (1.24). Under the conditions ρ ≥ 1
2 and a ∈ R

∗, from (1.24) of Lemma 1.2, we
then get

q(z0) = ia and zq ′(z)
∣
∣
z=z0

= iρ
(
a + 1/a

)
q(z)

∣
∣
z=z0

.

If we take into consideration the hypotheses (above) in (2.15), since

φ(z)
∣
∣
z=z0

= zq ′(z) + q(z)
∣
∣
z=z0

= ia − ρ
(
1 + a2

)
,

we easily obtain that

�m
(
φ(z0)

)
= a �= 0

and

�e
(
φ(z0)

)
= −ρ

(
1 + a2

) ≤ −1 + a2

2
< −1

2
,

which are contradictions with the assumptions given by (2.10), respectively. Hence,
the equality in (2.13) yields that

�e
(
q(z)

)
= �e

(
zμ−1Dμ

z
(
z Eγ

α,β(z)
)

�(β)�(2 − μ)

)

> 0,

where 0 ≤ μ < 1, �e(β) > 0, z ∈ D. This completes the proof of Theorem 2.4.

Theorem 2.5 Let φ(z) be an analytic function that satisfies any one of the inequali-
ties given by (2.7) and also let the function Ŵ (z) be defined as in the form (2.8) with
κ := 1.

If the function Ŵ := Ŵ (z) is any solution of the following (fractional-type com-
plex) equation:

z1+μD1+μ
z

[
Ŵ

] + μzμDμ
z

[
Ŵ

] − �(β)�(2 − μ)zφ(z) = 0,

then

�e

(
zμ−1Dμ

z
[
Ŵ

]

�(β)�(2 − μ)

)

> 0
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(
0 ≤ μ < 1; �e(β) > 0; z ∈ D

)
,

where the values of the complex powers there are taken to be as their principal values.

Proof By setting γ := 1 in the proof of Theorem 2.4, the proof of Theorem 2.5 can
be easily achieved.

By a simple investigation, it can be easily seen the complex-valued functions
defined by the special series given in (1.1), (1.2), and (1.3) contain several specific
complex (elementary) functions which are analytic in the open unit disk U, in the
punctured open unit disk D or in the complex plane C. All right, it is not possible
to reveal all of them. But, especially, we want to bring out a number of them into
the open for the readers. Namely, some particular cases of the Mittag-Leffler (type)
functions are presented by the following forms.

E0(z) =
∞∑

n=0

zn = 1

1 − z

(
z ∈ {z ∈ C : |z| < 1}), (2.16)

E1(z) =
∞∑

n=0

zn

n! = exp(z) (z ∈ C), (2.17)

E1
( − z2

) =
∞∑

n=0

(−1)n
z2n

n! = exp
( − z2

)
(z ∈ C), (2.18)

E2(z) =
∞∑

n=0

(−1)n
z2n

(2n + 1)! = cosz (z ∈ C), (2.19)

E2(z
2) =

∞∑

n=0

z2n

(2n)! = coshz
(
z ∈ C

)
(2.20)

and

E1/2
( ± √

z
) =

∞∑

n=0

(−1)n
zn/2

�(n/2 + 1)

= exp(z)
[
1 + erf

( ± √
z
)]

= exp(z)erfc
( ± √

z
)
, (2.21)

where erfc(z) denotes the complementary error function and the error function erf(z)
defined by
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erf(z) = 2√
π

∫ ∞

z
e−t2dt (z ∈ C).

We also note that

E1
1,1

(
z3

) = E1,1
(
z3

) = E1
(
z3

) = exp
(
z3

)
(z ∈ C), (2.22)

E1
1,2(z) = E1,2(z) = ez − 1

z
(z ∈ C − {0}), (2.23)

E2,2
(
z2

) = sinhz

z
(z ∈ C − {0}), (2.24)

E1
1,3(z) = E1,3

(
z
) = ez − z − 1

z2
(z ∈ C − {0}), (2.25)

E1
2,2(z) = E2,2

( − z2
) = sinz

z
(z ∈ C − {0}) (2.26)

and so on.
In addition, as various interpretations or applications of the (generalized) frac-

tional calculus to the Mittag-Leffler (type) functions, by looking over all theorems,
which are Theorems 2.1–2.5, it is easily observed that it also includes several compre-
hensive results relating to some connections between certain analytic functions and
certain complex (differential) equations constituted by generalized fractional deriva-
tive operators and Mittag-Leffler (type) functions. Namely, they also involve several
consequences consisting of the (three parameters)Mittag-Leffler (type) functions and
some types of certain complex equations and inequalities connecting with fractional
type functions. Particularly, certain special results of those consequences containing
results dealing with elementary complex functions (and also their applications to
all theorems) will be interesting for the researchers who have been working on the
theory and applications of complex (fractional) differential equation. Accordingly,
for example, we want to present only one of them. The other possible consequences
of the main results (and also their possible applications which can be related to (1.5)–
(1.22) and also certain elementary-special type functions like (2.16)–(2.26), which
are here omitted are presented to the attention of the researchers.

Proposition Let ρ > 0, z ∈ D and let the function W̃ be also defined as in (2.9).
If the inequality: ∣

∣
∣
∣
∣
z
dW̃

dz
+ 2W̃

∣
∣
∣
∣
∣
<

2ρ

|z|

is satisfied, then the equality:
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∣
∣
∣W̃

∣
∣
∣ <

ρ

|z|
holds, or, equivalently, if the inequality:

∣
∣
∣
∣
∣
2 + �(β)

∞∑

n=1

(n + 2)(γ )n

n!�(nα + β)
zn

∣
∣
∣
∣
∣
<

∣
∣
∣
∣
�(β)

z

∣
∣
∣
∣ 2ρ

is also satisfied, then the inequality:

∣
∣
∣
∣
∣

∞∑

n=0

(γ )n

n!�(nα + β)
zn

∣
∣
∣
∣
∣
<

ρ

|z|

is also true.

Proof By setting κ := 1 and μ := 0 in Theorem 2.1, the proof of proposition can be
then obtained.
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Novel Results on Hermite–Hadamard
Kind Inequalities for η-Convex Functions
by Means of (k, r)-Fractional Integral
Operators

Eze R. Nwaeze and Delfim F. M. Torres

Abstract We establish new integral inequalities of Hermite–Hadamard type for the
recent class of η-convex functions. This is done via generalized (k, r)-Riemann–
Liouville fractional integral operators. Our results generalize some known theorems
in the literature. By choosing different values for the parameters k and r , one obtains
interesting new results.

Keywords Hermite–Hadamard inequalities · η-convexity · Riemann–Liouville
integrals

2010 Mathematics Subject Classification 26A51 · 26D15

1 Introduction

Throughout this work, I ⊂ R shall denote an interval and I ◦ the interior of I . We
say that a function g : I → R is convex if, for every x, y ∈ I and β ∈ [0, 1], one has

g(βx + (1 − β)y) ≤ βg(x) + (1 − β)g(y). (1)

Let a, b ∈ I . For a function g satisfying (1), the following inequalities hold:

g

(
a + b

2

)
≤ 1

b − a

∫ b

a
g(x) dx ≤ g(a) + g(b)

2
. (2)
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Result (2) was proved by Hadamard in 1893 [6] and is celebrated in the literature as
the Hermite–Hadamard integral inequality for convex functions [2]. Along the years,
it has been extended to different classes of convex functions: see, e.g., [3, 8, 15] and
references therein.

In 2016, the so-called ϕ-convexity was introduced [5], subsequently denoted as
η-convexity [4, 12]. Let us recall its definition here.

Definition 1 (See [5]) A function g : I → R is called convex with respect to η (for
short, η-convex), if

g(βx + (1 − β)y) ≤ g(y) + βη(g(x), g(y))

for all x, y ∈ I and β ∈ [0, 1].
By taking η(x, y) = x − y, Definition 1 reduces to the classical notion (1) of

convexity. It was further shown in [5] that for every convex function g there exists
some η, different from η(x, y) = x − y, for which the function g is η-convex. The
converse is, however, not necessarily true, that is, there are η-convex functions that
are not convex.

Example 2 Consider function g : R → R defined piecewisely by

g(x) =
{

−x, x ≥ 0,

x, x < 0,

and let η : [−∞, 0] × [−∞, 0] → R be given by η(x, y) = −x − y. Function g is
clearly not convex, but it is easy to see that it is η-convex. Indeed, in [12, Remark 4],
it is noted that an η-convex function g : [a, b] → R is integrable if η is bounded
from above on g([a, b]) × g([a, b]).

For the class of η-convex functions, the following theorem was obtained as an
analog of (2).

Theorem 3 (See [5]) Suppose that g : I → R is an η-convex function such that η

is bounded from above on g(I ) × g(I ). Then, for any a, b ∈ I with a < b,

2g

(
a + b

2

)
− Mη ≤ 1

b − a

∫ b

a
g(x) dx ≤ f (b) + η(g(a), g(b))

2
,

where Mη is an upper bound of η on g([a, b]) × g([a, b]).
Recently, Rostamian Delavar and De La Sen obtained, among other results, the

following theorem associated to η-convex functions [12].

Theorem 4 (See [12]) Suppose g : [a, b] → R is a differentiable function and |g′|
is an η-convex function with η bounded from above on [a, b]. Then,



Novel Results on Hermite–Hadamard Kind Inequalities . . . 313

∣∣∣∣g(a) + g(b)

2
− 1

b − a

∫ b

a
g(x) dx

∣∣∣∣ ≤ 1

8
(b − a)K ,

where K = min
{
|g′(b)| + |η(g′(a),g′(b))|

2 , |g′(a)| + |η(g′(b),g′(a))|
2

}
.

Still in the same spirit, Khan et al. established in 2017 the following result for
η-convex functions via Riemann–Liouville fractional integral operators [9].

Theorem 5 (See [9]) Let g : [a, b] → R be a differentiable function on (a, b) with
a < b. If |g′| is an η-convex function on [a, b], then for α > 0 the inequality

∣∣∣∣g(a) + g(b)

2
− �(α + 1)

2(b − a)α

[
Jα

a+ g(b) + Jα
b− g(a)

]∣∣∣∣
≤ b − a

2(α + 1)

(
1 − 1

2α

) (
2|g′(b)| + η(|g′(a)|, |g′(b)|))

holds, where

Jα
a+ g(x) = 1

�1(α)

∫ x

a
(x − t)α−1g(t) dt

is the left Riemann–Liouville fractional integral and

Jα
b− g(x) = 1

�1(α)

∫ b

x
(t − x)α−1g(t) dt

is the right Riemann–Liouville fractional integral.

Fractional calculus is an area under strong development [11, 13]. Sarikaya et
al. proposed the following broader definition of the Riemann–Liouville fractional
integral operators.

Definition 6 (See [13]) The (k, r)-Riemann–Liouville fractional integral operators
r
kJ α

a+ and r
kJ α

b− of order α > 0, for a real-valued continuous function g(x), are defined
as

r
kJ α

a+ g(x) = (r + 1)1−
α
k

k�k(α)

∫ x

a
(xr+1 − tr+1)

α
k −1tr g(t) dt, x > a, (3)

and
r
kJ α

b− g(x) = (r + 1)1−
α
k

k�k(α)

∫ b

x

(
tr+1 − xr+1) α

k −1
tr g(t) dt, x < b, (4)

where k > 0, r ∈ R \ {−1}, and �k is the k-gamma function given by

�k(x) :=
∫ ∞

0
t x−1e− tk

k dt, Re(x) > 0,

with the properties �k(x + k) = x�k(x) and �k(k) = 1.
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For some results related to the operators (3) and (4), we refer the interested readers
to [7, 10, 14, 16]. Using these operators, Agarwal et al. established the following
Hermite–Hadamard type result for convex functions [1].

Theorem 7 (See [1]) Let α, k > 0 and r ∈ R \ {−1}. If g is a convex function on
[a, b], then

g

(
a + b

2

)
≤ (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[
r
kJ α

a+ G(b) + s
kJ α

b− G(a)
] ≤ g(a) + g(b)

2
,

where function G is defined by (5) below.

Inspired by the above works, it is our purpose to obtain here more general inte-
gral inequalities associated to η-convex functions via the (k, r)-Riemann–Liouville
fractional operators. Theorems 8 and 12 generalize Theorems 7 and 5, respectively
(see Remarks 9 and 13). In addition, two more fractional Hermite–Hadamard type
inequalities are also established (see Theorems 14 and 15).

2 Main Results

Weestablish four new results. For this,we start bymaking the following observations.
Let g be a functiondefinedon I with [a, b] ⊂ I ◦ anddefine functionsG, g̃ : [a, b] →
R by

g̃(x) := g(a + b − x) and G(x) := g(x) + g̃(x). (5)

For the fractional operators to be well defined, we shall assume g ∈ L∞[a, b]. By
making use of the substitutions w = t−a

x−a and w = b−t
b−x in (3) and (4), respectively,

one gets that

r
kJ α

a+ g(x) = (x − a)
(r + 1)1−

α
k

k�k(α)

∫ 1

0

(wx + (1 − w)a)r g(wx + (1 − w)a)[
xr+1 − (wx + (1 − w)a)r+1

]1− α
k

dw

(6)
and

r
kJ α

b− g(x) = (b − x)
(r + 1)1−

α
k

k�k(α)

∫ 1

0

(wx + (1 − w)b)r g(wx + (1 − w)b)[
(wx + (1 − w)b)r+1 − xr+1

]1− α
k

dw.

(7)
Noting that g̃ ((1 − w)a + wb) = g (wa + (1 − w)b), we also obtain

r
kJ α

a+ g̃(x) = (x − a)
(r + 1)1−

α
k

k�k(α)

∫ 1

0

(wx + (1 − w)a)r g((1 − w)x + wa)[
xr+1 − (wx + (1 − w)a)r+1

]1− α
k

dw

(8)
and
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r
kJ α

b− g̃(x) = (b − x)
(r + 1)1−

α
k

k�k(α)

∫ 1

0

(wx + (1 − w)b)r g((1 − w)x + wb)[
(wx + (1 − w)b)r+1 − xr+1

]1− α
k

dw.

(9)
We are now ready to formulate and prove our first result.

Theorem 8 Let α, k > 0, r ∈ R \ {−1}, and g : I → R be a positive function on
[a, b] ⊂ I ◦ with a < b. If, in addition, g is η-convex on [a, b] with η bounded on
g([a, b]) × g([a, b]), then the (k, r)-fractional integral inequality

(r + 1)
α
k �k(α + k)

4(br+1 − ar+1)
α
k

[
r
kJ α

a+ G(b) + r
kJ α

b− G(a)
] ≤ g(b) + η(g(a), g(b))

2

holds.

Proof Function g is η-convex on [a, b], which implies, by definition, the following
inequalities for t ∈ [0, 1]:

g(ta + (1 − t)b) ≤ g(b) + tη(g(a), g(b)) (10)

and
g((1 − t)a + tb) ≤ g(b) + (1 − t)η(g(a), g(b)). (11)

Adding inequalities (10) and (11), we get

g(ta + (1 − t)b) + g((1 − t)a + tb) ≤ 2g(b) + η(g(a), g(b)). (12)

Multiplying both sides of (12) by

(b − a)
(r + 1)1−

α
k

k�k(α)

(tb + (1 − t)a)r

[
br+1 − (tb + (1 − t)a)r+1

]1− α
k
,

and integrating over [0, 1] with respect to t , we get

(b − a)
(r + 1)1− α

k

k�k(α)

∫ 1

0

(tb + (1 − t)a)r g((1 − t)b + ta)[
br+1 − (tb + (1 − t)a)r+1

]1− α
k

dt

+ (b − a)
(r + 1)1− α

k

k�k(α)

∫ 1

0

(tb + (1 − t)a)r g(tb + (1 − t)a)[
br+1 − (tb + (1 − t)a)r+1

]1− α
k

dt

≤ [2g(b) + η(g(a), g(b))] (b − a)
(r + 1)1− α

k

k�k(α)

∫ 1

0

(tb + (1 − t)a)r

[
br+1 − (tb + (1 − t)a)r+1

]1− α
k

dt.

Now, using (6) and (8) in the above inequality, we get

r
kJ α

a+ g̃(b) +r
k J α

a+ g(b) ≤ (s + 1)1−
α
k (bs+1 − as+1)

α
k

(s + 1)α�k(α)
[2g(b) + η(g(a), g(b))] ,
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that is,

r
kJ α

a+ G(b) ≤ (br+1 − ar+1)
α
k

(r + 1)
α
k �k(α + k)

[2g(b) + η(g(a), g(b))] . (13)

Similarly, multiplying again both sides of (12) by

(b − a)
(r + 1)1−

α
k

k�k(α)

(tb + (1 − t)a)r

[
(tb + (1 − t)a)r+1 − ar+1

]1− α
k

and integrating with respect to t over [0, 1], we obtain that

r
kJ α

b− G(a) ≤ (br+1 − ar+1)
α
k

(r + 1)
α
k �k(α + k)

[2g(b) + η(g(a), g(b))] . (14)

Hence, the intended inequality follows by adding (13) and (14).

Remark 9 By taking η(x, y) = x − y in our Theorem 8, we recover the right-hand
side of the inequalities in Theorem 7.

For the rest of our results, we will need the following two lemmas.

Lemma 10 (See [1]) Let α, k > 0 and r ∈ R \ {−1}. If g : I → R is differentiable
on I ◦ and a, b ∈ I ◦ such that g′ ∈ L[a, b] with a < b, then the following identity
holds:

g(a) + g(b)

2
− (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[
r
kJ α

a+ G(b) + s
kJ α

b− G(a)
]

= b − a

4(br+1 − ar+1)
α
k

∫ 1

0
�α,r (t)g

′(ta + (1 − t)b) dt,

where �α,r : [0, 1] → R is defined by

�α,r (t) := [
(ta + (1 − t)b)r+1 − ar+1

] α
k − [

(tb + (1 − t)a)r+1 − ar+1
] α

k

+ [
br+1 − (tb + (1 − t)a)r+1

] α
k − [

br+1 − (ta + (1 − t)b)r+1
] α

k .

Lemma 11 Under the conditions of Lemma 10, we have that

∫ 1

0
|�α,r (t)| dt = 1

b − a
(
1 + 
2 + 
3 + 
4) ,

where


1 =
∫ b

a+b
2

(
wr+1 − ar+1

) α
k dw −

∫ a+b
2

a

(
wr+1 − ar+1

) α
k dw,



Novel Results on Hermite–Hadamard Kind Inequalities . . . 317


2 =
∫ b

a+b
2

[
br+1 − (b + a − w)r+1] α

k dw −
∫ a+b

2

a

[
br+1 − (b + a − w)r+1] α

k dw,


3 =
∫ a+b

2

a

(
br+1 − wr+1

) α
k dw −

∫ b

a+b
2

(
br+1 − wr+1

) α
k dw,

and


4 =
∫ a+b

2

a

[
(b + a − w)r+1 − ar+1

] α
k dw −

∫ b

a+b
2

[
(b + a − w)r+1 − ar+1

] α
k dw.

Proof Using the substitution w = ta + (1 − t)b, we get

∫ 1

0
|�α,r (t)| dt = 1

b − a

∫ b

a
|℘(w)| dw, (15)

where

℘(w) = (
wr+1 − ar+1) α

k − [
(b + a − w)r+1 − ar+1] α

k

+ [
br+1 − (b + a − w)r+1] α

k − (
br+1 − wr+1) α

k .

The required result follows from (15) and by observing that ℘ is a nondecreasing
function on [a, b], ℘(a) = −2(br+1 − ar+1)

α
k < 0, ℘

(
a+b
2

) = 0, and thus

{
℘(w) ≤ 0 if a ≤ w ≤ a+b

2 ,

℘ (w) > 0 if a+b
2 < w ≤ b.

This concludes the proof.

Theorem 12 Let α, k > 0, r ∈ R \ {−1}, g : I → R be a differentiable function
on I ◦ and a, b ∈ I ◦ with a < b. Suppose |g′| is η-convex on [a, b] with η bounded
on |g′|([a, b]) × |g′|([a, b]). Then the following (k, r)-fractional integral inequality
holds:

∣∣∣∣g(a) + g(b)

2
− (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[
r
kJ α

a+ G(b) + r
kJ α

b− G(a)
]∣∣∣∣

≤ 1

4(br+1 − ar+1)
α
k

[

|g′(b)| + 	

b − a
η(|g′(a)|, |g′(b)|)

]
,

where 
 = 
1 + 
2 + 
3 + 
4 (see Lemma 11) and 	 = ξ1 + ξ2 + ξ3 + ξ4 with

ξ1 =
∫ a+b

2

a
(b − w)(br+1 − wr+1)

α
k dw −

∫ b

a+b
2

(b − w)(br+1 − wr+1)
α
k dw,
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ξ2 =
∫ b

a+b
2

(b − w)(wr+1 − ar+1)
α
k dw −

∫ a+b
2

a
(b − w)(wr+1 − ar+1)

α
k dw,

ξ3 =
∫ a+b

2

a
(b − w)((b + a − w)r+1 − ar+1)

α
k dw

−
∫ b

a+b
2

(b − w)((b + a − w)r+1 − ar+1)
α
k dw,

ξ4 =
∫ b

a+b
2

(b − w)(br+1 − (b + a − w)r+1)
α
k dw

−
∫ a+b

2

a
(b − w)(br+1 − (b + a − w)r+1)

α
k dw.

Proof Since | f ′| is η-convex, it follows, by definition, that

∣∣g′(ta + (1 − t)b)
∣∣ ≤ |g′(b)| + tη

(|g′(a)|, |g′(b)|) (16)

for t ∈ [0, 1]. From [1, p. 9], we have

∫ 1

0
t |�α,r (t)| dt = ξ1 + ξ2 + ξ3 + ξ4

(b − a)2
. (17)

Using Lemmas 10 and 11, inequality (16), identity (17), and properties of the mod-
ulus, we obtain

∣∣∣∣∣
g(a) + g(b)

2
− (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[r
kJ α

a+ G(b) + r
kJ α

b− G(a)
]∣∣∣∣∣

≤ b − a

4(br+1 − ar+1)
α
k

∫ 1

0
|�α,r (t)||g′(ta + (1 − t)b)| dt

≤ b − a

4(br+1 − ar+1)
α
k

∫ 1

0
|�α,r (t)|

[|g′(b)| + tη(|g′(a)|, |g′(b)|)] dt

= b − a

4(br+1 − ar+1)
α
k

(
|g′(b)|

∫ 1

0
|�α,r (t)| dt + η(|g′(a)|, |g′(b)|)

∫ 1

0
t |�α,r (t)| dt

)

= b − a

4(bs+1 − as+1)
α
k

[
|g′(b)| 1

b − a
(
1 + 
2 + 
3 + 
4)

+η(|g′(a)|, |g′(b)|) ξ1 + ξ2 + ξ3 + ξ4

(b − a)2

]
.

The desired result follows.
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Remark 13 By taking r = 0 and k = 1 in Theorem 12, we recover Theorem 5. In
this case,


 = 4

α + 1
(b − a)α+1

(
1 − 1

2α

)

and

	 = 2

α + 1
(b − a)α+2

(
1 − 1

2α

)
.

Theorem 14 Let g be differentiable on I ◦ with a, b ∈ I ◦. If |g′|q is η-convex on [a, b]
and q > 1 with η bounded on |g′|q([a, b]) × |g′|q([a, b]), then the (k, r)-fractional
integral inequality

∣∣∣∣g(a) + g(b)

2
− (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[
r
kJ α

a+ G(b) + r
kJ α

b− G(a)
]∣∣∣∣

≤ b − a

4(br+1 − ar+1)
α
k

(
|g′(b)|q + η(|g′(a)|q , |g′(b)|q)

2

) 1
q

||�α,r ||p

holds, where 1
p + 1

q = 1 and ||�α,r ||p =
(∫ 1

0 |�α,r (t)|p dt
) 1

p
.

Proof Function |g′|q is η-convex, which implies

|g′(ta + (1 − t)b)|q ≤ |g′(b)|q + tη(|g′(a)|q , |g′(b)|q), (18)

t ∈ [0, 1]. Using Lemma 10, inequality (18), Hölder’s inequality, and the properties
of modulus, we get

∣∣∣∣∣
g(a) + g(b)

2
− (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[
r
kJ α

a+ G(b) + r
kJ α

b− G(a)
]∣∣∣∣∣

≤ b − a

4(br+1 − ar+1)
α
k

∫ 1

0
|�α,r (t)||g′(ta + (1 − t)b)| dt

≤ b − a

4(br+1 − ar+1)
α
k

(∫ 1

0
|�α,r (t)|p dt

) 1
p

(∫ 1

0
|g′(ta + (1 − t)b)|q dt

) 1
q

≤ b − a

4(br+1 − ar+1)
α
k

(∫ 1

0
|�α,r (t)|p dt

) 1
p

(∫ 1

0

[|g′(b)|q + tη(|g′(a)|q , |g′(b)|q )
]

dt

) 1
q

= b − a

4(br+1 − ar+1)
α
k

(∫ 1

0
|�α,r (t)|p dt

) 1
p (

|g′(b)|q + η(|g′(a)|q , |g′(b)|q )

2

) 1
q

.

This completes the proof.
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Theorem 15 Let g be differentiable on I ◦ with a, b ∈ I ◦. If |g′|q is η-convex on [a, b]
and q > 1 with η bounded on |g′|q([a, b]) × |g′|q([a, b]), then the (k, r)-fractional
integral inequality

∣∣∣∣g(a) + g(b)

2
− (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[
r
kJ α

a+ G(b) + r
kJ α

b− G(a)
]∣∣∣∣

≤ 
 1
p

4(br+1 − ar+1)
α
k

[∣∣g′(b)
∣∣q + 	

b − a
η

(|g′(a)|q , |g′(b)|q)
] 1

q

holds, where 1
p + 1

q = 1 and 
 and 	 are defined as in Theorem 12.

Proof Following a similar approach as in the proof of Theorem 14, we have, by using
Lemmas 10 and 11 combined with the power mean inequality plus inequality (18),
that
∣∣∣∣∣
g(a) + g(b)

2
− (r + 1)

α
k �k(α + k)

4(br+1 − ar+1)
α
k

[r
kJ α

a+ G(b) + r
kJ α

b− G(a)
]∣∣∣∣∣

≤ b − a

4(br+1 − ar+1)
α
k

∫ 1

0
|�α,r (t)||g′(ta + (1 − t)b)| dt

≤ b − a

4(br+1 − ar+1)
α
k

(∫ 1

0
|�α,r (t)| dt

)1− 1
q

(∫ 1

0
|�α,r (t)||g′(ta + (1 − t)b)|q dt

) 1
q

≤ b − a

4(br+1 − ar+1)
α
k

(∫ 1

0
|�α,r (t)| dt

)1− 1
q

(∫ 1

0
|�α,r (t)|

[|g′(b)|q + tη(|g′(a)|q , |g′(b)|q)
]

dt

) 1
q

.

The required inequality follows.
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A Family of Integral Inequalities
on the Interval [−1, 1]
Ali Hafidi, Moulay Rchid Sidi Ammi and Praveen Agarwal

Abstract We study the heat semigroup (Pn
t )t≥0 = {exp(t Ln)}t≥0 generated by the

Gegenbauer operator Ln := (1 − x2) d2

dx2 − nx d
dx , on the interval [−1, 1] equipped

with the probability measure μn(dx) := cn(1 − x2)
n
2 −1, where cn the normalization

constant and n is a strictly positive real number. By means of a simple method
involving essentially a commutation property between the semigroup and derivation,
we describe a large family of optimal integral inequalities with logarithmic Sobolev
and Poincaré inequalities as particular cases.

Keywords Heat semigroup · Gegenbauer operator · Spectral gap · Poincaré’s
inequality · Sobolev’s inequality · Logarithmic Sobolev inequality · ϕ-entropy
inequality

Mathematics Subject Classification 2010 39B62 · 39B72 · 44A15 · 46E35
60J25

1 Introduction

Let γd be the standard Gaussian measure onRd . The celebrated logarithmic Sobolev
inequality [5] states that for all nonnegative smooth functions f on R
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∫
Rd

f log f dγd −
(∫

Rd

f dγd

)
log

(∫
Rd

f dγd

)
≤ 1

2

∫
Rd

|∇ f |2
f

dγd , (1)

where |∇ f | is the length of the usual gradient of. This inequality is in fact a reinforced
form of the classical Poincaré inequality:

∫
Rd

f 2 dγd −
(∫

Rd

f dγd

)2

≤
∫
Rd

|∇ f |2 dγd . (2)

Recently, Bentaleb, Fahlaoui, and Hafidi proposed in ([2], Sect. 2) a generaliza-
tion of the inequality (2) and obtained, under some assumptions on function ψ , the
following inequality: for all smooth functions on R

d ,

Entψt ( f ) :=
∫
Rd

ψ( f ) dγd −
∫
Rd

ψ(Pt f ) dγd ≤ 1 − e−2t

2∫
Rd

ψ ′′( f )|∇ f |2 dγd , t ∈ [0,+∞].

Similar investigation on this kind of inequalities for general probability measure
generated by diffusion has been done by many authors (see, for instance, [1, 3, 4,
8]).

As mentioned in the abstract, the main investigation of this paper is to establish
similar inequalities for the probability measureμn(dx) := cn(1 − x2)

n
2 −1 on [−1, 1]

related to Dirichlet form
∫ 1

−1
(1 − x2) f ′2(x) dμn(x). These types of integral inequal-

ities are deeply connected to the aspects of the large-time behavior of prabolic PDEs
(see for example [7]).

2 Preliminaries

In the present section, we recall briefly some needed spectral properties of theGegen-
bauer operator. We denote the Gegenbauer operator L acting on C2([−1, 1]) by:

Ln := (1 − x2)
d2

dx2
− nx

d

dx
, (x ∈ I := [−1, 1]).

Note that if n ∈ N
∗ the operator Ln may be obtained as the projection of the Laplacian

on the unit sphere Sn.
The classical Gegenbauer polynomials (Gn

k )k∈N are defined by the Rodrigues
formula (see for instance, [6])

2k(−1)kk!Gn
k = 1

(1 − x2)
n
2 −1

dk

dxk
(1 − x2)

n
2 +k−1, (x ∈] − 1, 1[).
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These polynomials (Gn
k )k∈N are orthonormalwith the respective probabilitymeasure

μn(dx) := cn(1 − x2)
n
2 −1, where cn is the normalization constant. Each Gegenbauer

polynomialGn
k is an eigenfunction of the differential operator−Ln with correspond-

ing eigenvalue
k(n + k − 1) k = 0, 1, 2, . . .

In fact, the distribution μn is symmetrizing for L and the sequence (−k(k +
n − 1), Vect (Gk)k) forms the spectral decomposition of the minimal self-adjoint
extension of this operator on L2([−1, 1], μn). By integration by parts, it is easy to
establish the symmetry and dissipativity formulas: for all f, g ∈ C2([−1, 1]),

∫ 1

−1
(−Ln f )g dμn =

∫ 1

−1
f (−Lng) dμn =

∫ 1

−1
(1 − x2) f ′(x)g′(x) dμn(x), (3)

The Gegenbauer semigroup Pn
t := e−t Ln for t ≥ 0 applied to f =

∞∑
k=0

akG
n
k in

L2([−1, 1], μn) is given by:

Pn
t f =

∞∑
k=0

ake
−tk(k+n−1)Gn

k (4)

(Pn
t )t≥0≥0 defines thus a Markovian semigroup of positive contractions in all

Lp([−1, 1], μn),
(p ∈ [1,+∞]) with the measure μn as the symmetric (and invariant) measure:

∫ 1

−1
(Pn

t f )g dμn =
∫ 1

−1
f (Pn

t g) dμn, f, g ∈ L2([−1, 1], μn).

According to (4), Pn
t is ergodic,i.e, Pn

t −→
∫ 1

−1
f dμn in L2([−1, 1], μn) as

t −→ ∞

The commutation relation between the action of the operator L and the derivation
is given as

d

dx
Ln = L̃

(
d

dx

)
− n

d

dx
,

where

L̃ := (1 − x2)
d2

dx2
− (2 + n)x

d

dx
= Ln+2.

This commutation formula translates for the semigroup (Pn
t )t≥0 by
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d

dx
Pn
t = e−nt P̃t

(
d

dx

)
, (5)

where P̃t designates the heat semigroup generated by L̃ . Notice that P̃t = Pn+2
t so it

is symmetric (and invariant) with respect to the probability measure μ̃ = μn+2 The
generator L̃ satisfies the following dissipativity formula

∫
(−L̃ f )g dμ̃ =

∫
(1 − x2) f ′g′ dμ̃, (6)

for f, g sufficiently smooth functions on [−1, 1].

3 ϕ Entropy Inequalities

Our objective in this section is to establish a family of integral inequalities on I =
[−1, 1] which provide interpolation between Sobolev and Poincaré inequalities.

Letϕ : [0,+∞[−→ R be a strictly convex function such thatϕ(0) = 0.We define
the ϕ-entropy functional of a nonnegative smooth function f : Rd −→ [0,+∞[ by:

Ent (t,ϕ)
μn

( f ) =
∫

ϕ( f )dμn −
∫

ϕ(Pn
t f ) dμn, t ∈ [0,+∞].

The quantity Ent (t,ϕ)
μn

( f ) is always nonnegative since Pn
t is invariant for the proba-

bility measure μn . By the ergodic property of the semigroup, we have

Ent (∞,ϕ)
μn

( f ) :=
∫

ϕ( f ) dμn − ϕ

(∫
f dμn

)
.

When ϕ(x) = x2, Ent (∞,ϕ)
μn

( f ) coincides with the classical notion of variance,

Ent (∞,ϕ)
μn

( f ) := Varμn ( f ) =
∫

f 2 dμn −
(∫

f dμn

)2

.

When ϕ(x) = xlogx , we have

Ent (∞,ϕ)
μn

( f ) := Entμn ( f ) =
∫

f log f dμn −
∫

f dμn log

(∫
f dμn

)
.

In the sequel, we shall restrict ourself to the class Cn of real functions ϕ ∈ C∞(R+):
ϕ ∈ Cn means that ϕ(0) = 0, ϕ′′ is strictly positive on R

+ and

(2n + 1)2

2n(n + 2)
(ϕ′′′)2 ≤ ϕ′′ψ(I V ) on R

+.
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Having in our disposal enough basic background, we are now ready to prove the
following estimate of ϕ-entropy functional Ent (t,ϕ)

μn

Theorem 3.1 Letϕ ∈ Cn. Then, for all nonnegative smooth function f : [−1, 1] −→
[0,+∞[ and t ∈ [0,+∞], we have

Ent (t,ϕ)
μn

( f ) ≤ 1

2n
(1 − e−2nt )

∫
ϕ′′( f )�( f, f ) dμn . (7)

Moreover, the numeric constant at the right-hand side of inequality (7) is optimal.
To illustrate this theorem, let analyze some practical applications. The most im-

portant examples of the class Cn when n >
1

4
in our mind are

ϕp = −x
2
p + x

p − 2
f or p ∈

[
1,

2n2 + 1

(n − 1)2

]
, p 
= 2; n 
= 1

and

ϕ2 = 1

2
xlogx,

which corresponds to the limiting case of ϕp as p −→ 2. If ϕ = ϕp, inequality (7),
written for t = +∞, describes the Sobolev inequality: for all nonnegative smooth
function f : [−1, 1] −→ [0,+∞[

‖ f ‖2p − ‖ f ‖22
p − 2

≤ 1

n

∫
�( f, f ) dμn. (8)

Forϕ = ϕ2 and t = +∞, (7) is exactly the Sobolev logarithmic inequality. Replacing
f positive by f 2, it yields for all smooth function f : [−1, 1] −→ R, that

Ent ( f 2) ≤ 2

n

∫
�( f, f ) dμn . (9)

Let D2(Ln) denotes the domain of the generator Ln of (Pn
t )t≥0 in L2([−1, 1], μn).

Taking into account that

∫
�(| f |, | f |) dμn ≤

∫
�( f, f ) dμn,

and using the fact that set of bounded functions inC2([−1, 1]) is dense in D2(Ln), we
can extend inequalities (8) and (9) to D2(Ln). The above inequality (9) is equivalent
to the hypercontractivity estimate for the semigroup (Pn

t )t≥0: whenever 1 < p <

q < +∞ and t > 0 satisfy e2nt ≥ q−1
p−1 , then, for all function f ∈ L p([−1, 1], μn),

we have
‖Pn

t f ‖q ≤ ‖ f ‖p.
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In other words, Pt maps L p([−1, 1], μn) in Lq([−1, 1], μn) (q > p) with norm
one.

Proof of Theorem 3.1 By the Fubini theorem, it follows from the definition of
Ent (t,ϕ)

μn
( f ) that for any t > 0,

Ent (t,ϕ)
μn

( f ) = −
∫

ϕ(Pn
t f ) − ϕ(Pn

0 f ), dμn

=
∫ t

0

d

ds

[∫
ϕ(Pn

s f ) − ϕ(Pn
0 f ), dμn

]
ds

=
∫ t

0

(∫
−(Ln P

n
s f )ϕ′(Pn

s f )dμn

)
ds

=
∫ t

0

(∫
(1 − x2)(Pn

s f )′2ϕ′′(Pn
s f )dμn

)
ds

=
∫ t

0
e−2ns

(∫
(1 − x2)(P̃s f

′)2ϕ′′(Pn
s f )dμn

)
ds.

The last two equalities follow from the dissipativity property (3). An integration
by parts over the time variable yields

Ent (t,ϕ)
μn

( f ) = − 1

2n
e−2nt

∫
(1 − x2)(P̃t f

′)2ϕ′′(Pn
t f )dμn

+ 1

4

∫
(1 − x2) f ′2ϕ′′( f )dμn

+ 1

2n

∫ t

0
e−2ns d

ds

[∫
(1 − x2)(P̃s f

′)2ϕ′′(Pn
s f )dμn

]
ds.

Since

∫ t

0

d

ds

[∫
(1 − x2)(P̃s f

′)2ϕ′′(Pn
s f )dμn

]
ds =

∫
(1 − x2)(P̃t f

′)2ϕ′′(Pn
t f )dμn

−
∫

(1 − x2) f ′2ϕ′′( f )dμn,

we get

Ent (t,ϕ)
μn

( f ) = 1

2n
(1 − e−2nt )

∫
(1 − x2) f ′2ϕ′′( f )dμn

+ 1

2n

∫ t

0
(e−2ns − e−2nt )

d

ds

[∫
(1 − x2)(P̃s f

′)2ϕ′′(Pn
s f )dμn

]
ds.

We also have
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e−2ns d

ds

[∫
(1 − x2)(P̃s f

′)2ϕ′′(Pn
s f )dμn

]
ds

= 2
∫

(1 − x2)L̃(Ps f )
′ϕ′′(Pn

s f )(Pn
s f )′dμn

+
∫

(1 − x2)Ln(P
n
s f )′ϕ′′′(Pn

s f )(Pn
s f )′2dμn .

Applying successively (3) and (6), the first integral in this sum is reduced to

− 2
∫

(1 − x2)2(Pn
s f )′′2ϕ′′(Pn

s f )dμn

− 2
∫

(1 − x2)2(Pn
s f )′′(Pn

s f )′2ϕ′′′(Pn
s f )(Pn

s f )′dμn,

while the second integral is equal to

− 2
∫

(1 − x2)2(Pn
s f )′2(Pn

s f )′′ϕ′′′(Pn
s f )dμn

−
∫

(1 − x2)2(Pn
s f )′4ϕ′′′′(Pn

s f )dμn

+ 2
∫

x(1 − x2)(Pn
s f )′3ϕ′′(Pn

s f )dμn .

Replacing x by −L̃(x)
(n+2) and invoking again the dissipativity formula (6), the lastmember

in the preceding sum becomes

6

(n + 2)

∫
(1 − x2)2(Pn

s f )′2(Pn
s f )′′ϕ′′′(Pn

s f )dμn

+ 2

(n + 2)

∫
(1 − x2)2(Pn

s f )′4ϕ′′′′(Pn
s f )dμn.

As a consequence, after gathering the different terms, we find

Ent (t,ϕ)
μn

( f )

1 − e−2nt
= 1

2n

∫
(1 − x2) f ′2ϕ′′( f )dμn − 1

2n

∫ t

0

1 − e−2n(t−s)

1 − e−2nt

×
(∫

(1 − x2)2ξ(s, f, ϕ)dμn

)
ds, (10)

with
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ξ(s, f, ϕ) = 2 f ′′2
s ϕ′′( fs) +

(
4n + 2

n + 2

)
f ′2
s f ′′

s ϕ′′′( fs) +
(

n

n + 2

)
f ′4
s ϕ′′′′( fs)

= 2

[
f ′′
s

√
ϕ′′( fs) +

(
4n + 2

2n + 4

)
f ′2
s ϕ′′′( fs)√
ϕ′′( fs)

]2

+
(

n

n + 2

)
f ′4
s

ϕ′′( fs)

[
ϕ′′′′( fs)ϕ′′( fs) − (2n + 1)2

2n(n + 2)
(ϕ′′′( fs))2

]
,

where we have posed fs = Pn
s f . The positivity of ξ(s, f, ϕ) then allows us to obtain

the desired inequality (7) from (10). It remains to show that the numeric constant
1
2n (1 − e−2nt ) at the right-hand side of inequality (7) is optimal. As usual, let us
consider c ∈ ]0,+∞[ such that ϕ′′(c) > 0. If f is replaced by c + ε f in (7), and if
we pass to limit as ε tends to 0+, we easily recover the Poincaré inequality with best
constant

∫
f 2dμn −

∫
(Pn

t f )2dμn ≤ (1 − e−2nt )

n

∫
�( f, f )dμn.

∀t ∈ [0,+∞]. The proof is now complete. We end the paper by the following con-
cluding remark.

Remark 3.1 Of course letting t = +∞, inequality (7) in Theorem 3.1 gives rise to

Ent (t,∞)
μn

( f ) ≤ 1

2n

∫
�( f, f )dμn. (11)

Moreover, it is easy to observe that (7) provides a smooth nonincreasing interpolation
for inequality (11)

Ent (t,∞)
μn

( f ) ≤ Ent (t,ϕ)
μn

( f )

1 − e−2nt
≤ 1

2n

∫
�( f, f )dμn.

By (10), we point out that, if (2n+1)2

2n(n+2) (ϕ
′′′)2 ≤ ϕ′′ψ(I V ), the equality holds in (7) if and

only if f is constant. In particular, inequalities (8) and (9) do not admit nonconstant
extremal functions.
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A Generalization of
Cauchy–Bunyakovsky Integral
Inequality Via Means with Max
and Min Values

P. Agarwal, A. A. Korenovskii and S. M. Sitnik

Abstract In the paper, we give a brief survey of a method for constructing general-
izations ofCauchy–Bunyakovsky integral inequality using abstractmean values. One
special inequality of this type is considered in details in terms of min and max func-
tions. Some direct proofs of this inequality are given and application to inequalities
for special functions. Also related recent references are briefly considered.

1 Means and Generalizations of Cauchy–Bunyakovsky
Integral Inequality

1.1 Introduction

Cauchy–Bunyakovsky inequalities for finite sums, series and integrals are among the
most important inequalities withmany applications in different fields of mathematics
and applied sciences. For references, we mention just well-known general books on
inequalities [1–4] and very informative and concise the specialized ones of Dragomir
[5] and Steel [6], cf. also the survey [7].
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The Cauchy–Bunyakovsky inequality for sums was found by Cauchy in 1821 [8]
and for integrals by Bunyakovsky in 1859 [9]. It was rediscovered for integrals 26
years later in 1885 by Schwarz [10]. Different important applications derived from
original text of Bunyakovsky’s paper [9] were considered recently by J.Sándor in
[11, 12]. Inequality for inner product spaces oppositely to general opinion ascribed
it to Schwarz was in fact first published only in 1932 by von Neumann in his book
on mathematical foundations of quantum mechanics [13].

A new method for generalization of Cauchy–Bunyakovsky inequalities for finite
sums, series and integrals was proposed by the third named author in early 1990s,
these results are summed up in the survey [7], cf. also references to previous papers
on this method in this survey. Shortly, an idea of this method is that every mean of
two numbers defined by natural axioms leads to some classes of generalizations of
Cauchy–Bunyakovsky inequalities.
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1.2 Means

To demonstrate the results from [7] let us remind well-known definitions for
arithmetic, geometric, quadratic and harmonic means for two positive numbers
x > 0, y > 0:

A(x, y) = x + y

2
, G(x, y) = √

x, y, Q(x, y) =
√

x2 + y2

2
, x, y ≥ 0,

H(x, y) = A(
1

x
,
1

y
) = 2xy

x + y
, x, y > 0.

These classical means are:
(1) intermediate

min(x, y) ≤ M(x, y) ≤ max(x, y),

(2) homogenic
M(λx, λy) = λ M(x, y), λ > 0,
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(3) monotonic

x2 > x1 ⇒ M(x2, y) > M(x1, y), y2 > y1 ⇒ M(x, y2) > M(x, y1);

(4) symmetric
M(x, y) = M(y, x).

For general mean, it is natural to define it as a function M(x, y) for which all con-
ditions (1)–(4) (or just some of them) are valid. This approach is not new and was
used in many papers started from Cauchy.

From now to the end of the paper, we fix a condition for numbers in mean values
M(x, y) to be strictly positive, x > 0, y > 0.

We need also a notion of complementary mean.

Definition 1 For a mean M(x, y) a complementary mean is defined by

M∗(x, y) = xy

M(x, y)
;

The most known classes of means are power means and Radó means. The power
means are defined by cf. [1–3, 14, 15]

M(x, y) = Mα(x, y) =
(

xα + yα

2

) 1
α

,−∞ ≤ α ≤ ∞ , α �= 0 ;

M−∞(x, y) = min(x, y) , M0 = √
xy , M∞(x, y) = max(x, y).

They form a parametric scale

α1 > α2 ⇒ Mα1(x, y) ≥ Mα2(x, y), ∀ x, y.

Three exceptional values α = −∞, 0,+∞ are defined by limits.
So for classical means

M−1(x, y) = H(x, y) ≤ M0(x, y) = G(x, y)

≤ M1(x, y) = A(x, y) ≤ M2(x, y) = Q(x, y).

For power mean the complementary mean is

(Mα)∗ = M−α.

Power means have many applications in different fields of mathematics and other
sciences. And even two simplest arithmetical operations +,× are expressed via
them:
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x + y = 2M1(x, y), x · y = (M0(x, y))2,

the same is true for max and min values.
The second important class are the Radó means:

Rβ(x, y) =
(

xβ+1 − yβ+1

(β + 1)(x − y)

) 1
β

,−∞ ≤ β ≤ ∞, β �= 0,−1;

R−∞(x, y) = min(x, y), R∞(x, y) = max(x, y).

Obviously
R−2(x, y) = M0(x, y), R1(x, y) = M1(x, y).

Exceptional values gives logarithmic mean

R−1(x, y) = L(x, y) = y − x

ln y − ln x

and identric mean (the author prefer a name “multi–floored”)

R0(x, y) = 1

e

(
yy

x x

) 1
y−x

.

The Radó means also form a parametric scale

β1 > β2 ⇒ Rβ1(x, y) ≥ Rβ2(x, y), ∀x, y;
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with four exceptional valuesβ = {−∞,−1, 0,+∞}. The complementarymean now
is

R∗
β(x, y) = 1

Rβ( 1x , 1
y )

.

The Radó means were introduced explicitly and studied by Tibor Radó in 1935 in
[16], cf. also [3, 7]. Radó applied these means in his study of subharmonic functions.
He proved important and non-trivial results on comparing of these means and power
means. His results may be formulated in two main theorems.

Theorem R1 (T. Radó, 1935). Radó and power means coincides only for five values
of parameters:

M−∞ = R−∞, M0 = R−2, M 1
2

= R 1
2
, M1 = R1, M∞ = R∞.

So the most popular classical means are in both scales.
His another important result was a finding of parameter sets (α, β) for which the

next inequalities are valid:

Mα1 ≤ Rβ ≤ Mα2 , Rβ1 ≤ Mα ≤ Rβ2 ,

Theorem R2 (T. Radó, 1935). The next best possible two-sided inequalities are
valid for Radó means via power means:

M α+2
3

≤ Rα ≤ M0 , for α ∈ (−∞,−2],

M0 ≤ Rα ≤ M α+2
3

, for α ∈ [−2,−1],

M α ln 2
ln(1+α)

≤ Rα ≤ M α+2
3

, for α ∈ (−1,−1/2],

M α+2
3

≤ Rα ≤ M α ln 2
ln(1+α)

, for α ∈ [−1/2, 1),

(forα = 0 the above inequality is understood in the limiting sense M 2
3

≤ R0 ≤ Mln 2),

M α ln 2
ln(1+α)

≤ Rα ≤ M α+2
3

, for α ∈ [1,∞].

Note that all indices in Theorem R2 are sharp and cannot be improved.
As spectacular consequences of T. Radó inequalities from Theorem R2 two folk-

lore inequalities follow. First, it follows that beside the well-known inequality for
logarithmic mean M0 ≤ L ≤ M1, which is as old as published by V. Bunyakovsky
in his seminal work [9], the next inequality is valid

M0(x, y) = √
xy ≤ L(x, y) = x − y

ln x − ln y



A Generalization of Cauchy–Bunyakovsky Integral Inequality … 339

≤ M 1
3
(x, y) =

(
x

1
3 + y

1
3

2

)3

,

and mean indices 0 ?1/3 are the best ones. Also for identric mean Theorem R2 gives:

M 2
3
(x, y) =

(
x

2
3 + y

2
3

2

) 2
3

≤ R0(x, y)

= 1

e

(
yy

x x

) 1
y−x

≤ Mln 2(x, y) =
(

x ln 2 + yln 2

2

) 1
ln 2

,

and again indices are the best possible. Note that the simple estimate M0 ≤ R0 ≤ M1

was also published by Bunyakovsky in [9].
Tibor Radó was a prominent mathematician in many fields, and his results on

inequalities are very important too. Theyweremany times reopened by and attributed
to other researchers.

The world of means is very large and rich. Among other means just mention:
(1) Gini means, introduced by Corradó Gini in 1938

Giu,v(x, y) =
(

xu + yu

xv + yv

) 1
u−v

, u �= v, u, v ∈ R,

Giu,v(x, y) = exp

(
xu ln x + yu ln y

xu + yu

)
, u = v �= 0,

Giu,v(x, y) = G(x, y), u = v = 0.

(2) Special case of Gini means — Lehmer means

Leu(x, y) = xu+1 + yu+1

xu + yu
, u ∈ R.

(3) Quasi-arithmetic means for non-negative values x = (x1, x2, . . . , xn) and
weights p = (p1, p2, . . . , pn)

K p(x) = f −1

(
n∑

k=1

pk f (xk)

)
,

n∑
k=1

pk = 1.

(4) Iterated means starting from values x0, y0 and defined by a pair of means
(M, N ) and a limit process:

xn+1 = M(xn, yn), yn+1 = N (xn, yn),
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μ(M, N | x0, y0) = μ(x0, y0) = lim
n→∞ xn = lim

n→∞ yn.

The most celebrated of iterated means is of course Gauss AGM one for a choice
M = M1 , N = M0 , it equals

μ(M, N | x0, y0) =
π
2 x0

K

(√
1 −

(
y0
x0

)2
) , 0 < y0 < x0,

K (x) — the complete Legendre elliptic integral of the first kind.
Now let us stop here. There are much more known means of different kinds. In

the survey [7] even there are general theorems characterizing all possible means.
Our aim is to demonstrate that there are many concrete examples for constructions
using general means. Let consider a method of generalizing Cauchy–Bunyakovsky
inequalities using any means.

1.3 Means Method for Generalizations of
Cauchy–Bunyakovsky Inequalities

Before formulations of our results let fix the next conditions: all functions below
are continuous and integrals are of Riemann type. Further such restrictions will be
omitted.

Now let us list some main results from the survey [7].

Theorem 1 Let M be any abstract mean for which above formulated properties
(1)–(4) are fulfilled, M∗—its complimentary mean. Then the next generalization of
Cauchy–Bunyakovsky inequality is valid

(∫ b

a
f (x)g(x) dx

)2

≤
∫ b

a
(M( f, g))2 dx ·

∫ b

a
(M∗( f, g))2 dx ≤

≤
∫ b

a
( f (x))2 dx ·

∫ b

a
(g(x))2 dx,

So we may state that an integral analogue of sufficient part of Carlitz–Daykin–
Eliezer theorem (CDE theorem) is valid reformulated via means and complimentary
means as proposed in [7]. Suddenly enough the necessary part of this theorem as it
was proved in [7] is not valid contrary to the discrete version. For the discrete version
Carlitz–Daykin–Eliezer theorem is necessary and sufficient, cf. [5]. This is a differ-
ence of discrete and integral generalizations of Cauchy–Bunyakovsky inequalities.

Note that only RHS of the Theorem 1 is non-trivial inequality, the LHS is trivial
and being Cauchy–Bunyakovsky inequality itself.
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Now a choice of any known means and its complimentary ones generates by the
Theorem 1 a number of generalizations of the Cauchy–Bunyakovsky LHS inequality.
For example a choice of power means leads to the next

Theorem 2 For any positive functions f (x), g(x), x ∈ [a, b], the next generaliza-
tion of the Cauchy–Bunyakovsky inequality holds:

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a
[Mα( f, g)]2dx ·

∫ b

a
[M−α( f, g)]2dx =

=
∫ b

a
( f α + gα)2/αdx ·

∫ b

a
f 2g2( f α + gα)−2/αdx ≤

∫ b

a
f 2dx ·

∫ b

a
g2dx .

Consider special cases.

(∫ b

a
f (x)g(x) dx

)2

≤
∫ b

a

(√
f (x) + √

g(x)
)4

dx ·

·
∫ b

a
f 2g2/

(√
f (x) + √

g(x)
)4

dx ≤
∫ b

a
f 2(x) dx ·

∫ b

a
g2(x) dx,

(∫ b

a
f (x)g(x) dx

)2

≤
∫ b

a
( f (x) + g(x))2 dx ·

·
∫ b

a
f 2g2/( f (x) + g(x))2 dx ≤

∫ b

a
f 2(x) dx ·

∫ b

a
g2(x) dx,

(∫ b

a
f (x)g(x) dx

)2

≤
∫ b

a

(
f 2(x) + g2(x)

)
dx ·

·
∫ b

a
f 2g2/

(
f 2(x) + g2(x)

)
, dx ≤

∫ b

a
f 2(x) dx ·

∫ b

a
g2(x) dx .

The case α = 2 is an integral variant of Milne inequality, cf. [1, 5, 7].
A choice of Radó means leads to the next

Theorem 3 For non-negative continuous functions f (x), g(x), f (x), g(x) �= 0, x ∈
[a, b], the next generalization of the Cauchy–Bunyakovsky inequality holds:

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a

[
Rβ( f, g)

]2
dx ·

∫ b

a

⎡
⎣ 1

Rβ

(
1
f , 1

g

)
⎤
⎦

2

dx

≤
∫ b

a
f 2(x)dx

∫ b

a
g2(x)dx .

Special cases:
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(∫ b

a
f (x)g(x)dx

)2

≤ ∫ b
a

(
f −g
ln f

g

)2

dx · ∫ b
a f 2g2/

(
f −g
ln f

g

)2

dx

≤ ∫ b
a f 2(x) dx · ∫ b

a g2(x) dx,(∫ b

a
f (x)g(x)dx

)2

≤ ∫ b
a

[
f f

gg

] 2
f −g

dx · ∫ b
a f 2g2/

(
f f

gg

) 2
f −g

dx

≤ ∫ b
a f 2(x) dx · ∫ b

a g2(x) dx,(∫ b

a
f (x)g(x)dx

)2

≤ ∫ b
a

(
f 2 + f g + g2

)
dx · ∫ b

a
f 2g2

f 2+ f g+g2 dx

≤ ∫ b
a f 2(x) dx · ∫ b

a g2(x) dx .

A choice of AGM mean leads to the next wonderful inequality

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a

⎡
⎢⎢⎢⎢⎣

max( f, g)

K

(√
1 −

(
min( f,g)

max( f,g)

)2
)

⎤
⎥⎥⎥⎥⎦

2

dx ·

·
∫ b

a
(min( f, g))2

(
K

⎛
⎝

√
1 −

(
min( f, g)

max( f, g)

)2
⎞
⎠

)2

dx ≤
∫ b

a
f 2 dx

∫ b

a
g2 dx,

K (x) — the complete Legendre elliptic integral of the first kind. In the last inequality,
arbitrary functions are arguments of a concrete special function — the complete
Legendre elliptic integral of the first kind!

2 Generalization of Cauchy–Bunyakovsky Inequality
with Max–Min Values

Now let consider the central inequality of this paper. It is a consequence of Theorem 1
(or of Theorem 2) for a choice α = +∞.

In this case, a mean is a maximum and its complimentary mean is a minimum.

Theorem 4 Let functions f (x, y), g(x, y) be nonnegative on [a, b]. Then the next
generalization of Cauchy–Bunyakovsky inequality holds

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a
[max( f, g)]2dx ·

∫ b

a
[min( f, g)]2dx ≤
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≤
∫ b

a
f 2(x)dx ·

∫ b

a
g2(x)dx . (∗ ∗ ∗)

From the first glance, there is a chance that all three parts in Theorem 4 are just
equal. But it is not the case. For example for functions f (x) = x, g(x) = 1 − x and
limits a = 0, b = 1 it reduces to the numerical inequality 1

36 < 7
144 < 1

9 .

It is hard to believe — but the simple inequality from Theorem 4 is new, it was
somehow missed by researches in inequalities. It was first published in 1995 by
S.M.Sitnik as a special case of the Theorem 1 above, cf. [7] and references to earlier
1990s papers therein. In turn, it would be interesting to prove directly this surprising
result. Here we give three direct proofs of the mentioned inequality independently
of Theorems 1 and 2.

Further in thepaper,we consider real-valued continuousRiemann-integrable func-
tions. These restrictions may be weaker, but it needs careful special considerations.

2.1 Proofs of Min–Max Inequality

First proof. It is an application of above Theorems 1 or 2. This is an original indirect
proof of 1995, included with proper references in [7].

Second proof.

x

0,2

0,6
0

0,40,20

y

1

1

0,8

0,6

0,8

0,4

Example of “envelope” f (x), g(x) = 1 − x, a = 0, b = 1

Let introduce functions

E1 = {x : f (x) ≥ g(x)}, E2 = {x : f (x) < g(x)};

pi =
∫

Ei

f (x) dx, qi =
∫

Ei

g(x) dx, i = 1, 2.
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It follows ∫
E1

( f (x) − g(x)) dx ·
∫

E2

( f (x) − g(x)) dx ≤ 0.

Now ∫
E1

( f (x) − g(x)) dx ·
∫

E2

( f (x) − g(x)) dx ≤ 0 ⇔

⇔ (p1 − q1)(p2 − q2) ≤ 0 ⇔ (p1 + q2)(p2 + q1) ≤ (p1 + p2)(q1 + q2) ⇔

⇔
∫ b

a
[max( f, g)] dx ·

∫ b

a
[min( f, g)] dx ≤

∫ b

a
f (x)dx ·

∫ b

a
g(x)dx .

For non-negative functions we may use equalities

[max( f, g)]2 = max( f 2, g2), [min( f, g)]2 = min( f 2, g2),

and so substituting in the last inequality f, g to f 2, g2 we derive the inequality (***)
and prove the Theorem 4.

�
Third proof.
It is well-known that the next formulas are valid for max and min as consequences

of Vieta’s theorem

m = a + b − |a − b|
2

, M = a + b + |a − b|
2

, m = min(a, b), M = max(a, b).

So to prove (***) denote

I ( f ) =
∫ b

a
f (x) dx .

Then the LHS of (***) equals

I ((min( f, g))2)I ((max( f, g))2)

= I

((
f + g − | f − g|

2

)2
)

· I

((
f + g + | f − g|

2

)2
)

= 1

16
I
(
( f + g)2 − 2( f + g)| f − g| + ( f − g)2

) ·
I
(
( f + g)2 + 2( f + g)| f − g| + ( f − g)2

)
= 1

16
I
(
2 f 2 + 2g2 − 2( f + g)| f − g|) · I

(
2 f 2 + 2g2 + 2( f + g)| f − g|)

= 1

4
I
(

f 2 + g2 − ( f + g)| f − g|) · I
(

f 2 + g2 + 2( f + g)| f − g|) .



A Generalization of Cauchy–Bunyakovsky Integral Inequality … 345

After some obvious simplification it follows

1

4

[
(I ( f 2))2 + (I (g2))2 − (I (( f + g)| f − g|))2 + 2I ( f 2)I (g2)

]
.

Then the difference of the RHS and LHS in (***) is represented as

RHS − LHS = I ( f 2)I (g2)

−1

4

[
(I ( f 2))2 + (I (g2))2 − (I (( f + g)| f − g|))2 + 2I ( f 2)I (g2)

]

= 1

4
[I (( f + g)| f − g|)]2 − 1

4

[
I ( f 2) − I (g2)

]2

= 1

4
· [I (( f + g)| f − g|) + I (( f + g)( f − g))] ·
· [I (( f + g)| f − g|) − I (( f + g)( f − g))]

= 1

4
· I (( f + g)(( f − g) + | f − g|)) · I (( f + g)(( f − g) − | f − g|))

=
∫

E( f ≥g)

( f + g)( f − g) dx ·
∫

E( f ≤g)

( f + g)(g − f ) dx

=
∫

E( f ≥g)

( f 2 − g2) dx ·
∫

E( f ≤g)

(g2 − f 2) dx .

Obviously, the last expression is non-negative, and so the inequality (***) is
proved.

�

Corollary 1 Let f (x), g(x) be functions of ANY signs, not necessary positive. Then
the next identity is valid for the difference of RHS and LHS of (***)

RHS of (***) − LHS of (***) =∫ b

a
f 2(x)dx ·

∫ b

a
g2(x) dx −

∫ b

a
[max( f, g)]2dx ·

∫ b

a
[min( f, g)]2 dx =

=
∫

E( f ≥g)

( f 2 − g2) dx ·
∫

E( f ≤g)

(g2 − f 2) dx .

We emphasize that the last identity is valid for functions of arbitrary sign. So some
generalizations of Cauchy–Bunyakovsky inequality of the form (***) are valid for
functions of any sign.

Corollary 2 Let for functions f (x), g(x) the condition f (x) + g(x) ≥ 0 is fulfilled.
Then the inequality-chain (***) holds true.

It follows from the above identity that if f (x) + g(x) ≤ 0, then (***) is reversed,
and equality conditions in (***) also follows.
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3 Application to Inequalities for Special Functions with
Mellin Transform Representations

The inequality (***) from Theorem 4 may be applied to many special functions,
especially represented as Mellin transform. Just as an example of such applications
consider gamma and incomplete gamma functions, respectively [17]:

�(a) =
∫ ∞

0
ta−1e−t dt, �(a, x) =

∫ ∞

x
ta−1e−t dt, γ (a, x) =

∫ x

0
ta−1e−t dt,

Now, specify in (***):

f (x) = x
a+1
2 e− x

2 , g(x) = x
a−1
2 e− x

2 , a > 0.

It follows that

max( f, g) =
{

f (x), x ≥ 1,

g(x), x ≤ 1,
min( f, g) =

{
g(x), x ≥ 1,

f (x), x ≤ 1.

So by (***) we infer

�2(a + 1) ≤ (γ (a + 1, 1) + �(a − 1, 1)) · (γ (a − 1, 1) + �(a + 1, 1)) ≤
≤ �(a + 2) · �(a)

which is aTurán type inequalitywith respect to the argument a, cf. [18–21]. Therefore
the following result is proved.

Theorem 5 Let a > 0, then the above inequality for gamma and incomplete gamma
functions is valid.

Note that this is a stronger result than log-convexity of classical gamma function.
It may be combined with known results on log-convexity of some special functions
[18, 19] to derive new inequalities. In fact, the above inequality in the same way may
be proved for any functions represented as Mellin transform.

4 Concluding Remarks and Bibliography Comments

The above proofs of refinements of Cauchy–Bunyakovsky inequalities may be also
applied in more general settings: infinite domains of integration, Lebesgue integrals,
multivariate functions and its domains. But accurate proofs for such generalizations
are not always direct and easy.

Our results are also generalized to integral Minkowski and discrete Cauchy–
Bunyakovsky and Minkowski inequalities.
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It seems that before publications in 1990s summed up in the survey [7] inequality
(***) from Theorem 4 was never published. But for recent years it became popular
and was reopened not once and also generalized in interesting directions. Let us
mention some of them.

In 2013 the inequality (***) was reopened in [22], the proofs are based on an
equality like Corollary 1 to Theorem 4. Starting from the discrete case the author
went to integral case by limits. For the discrete case, an interesting combinatorial
proof is proposed. The author also considered some examples to demonstrate non-
triviality of (***), but instead of our ‘envelope’ piecewise constant functions are
used. In this paper (***) is considered in equivalent form

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a
[max( f 2, g2)] dx ·

∫ b

a
[min( f 2, g2)] dx

≤
∫ b

a
f 2(x)dx ·

∫ b

a
g2(x)dx,

as for positive functions

max( f 2, g2) = (max( f, g))2,min( f 2, g2) = (min( f, g))2.

Here, input functions f, g, f (x) + g(x) ≥ 0 also can be considered in the manner
exposed previously.

In interesting papers of Pinelis [23, 24] also inequality (***) was considered
with proper references to the original result in [7]. The author proved an intriguing
result, that generalizations of the form (***) exist only for the Cauchy–Bunyakovsky
inequality and do not exist for Rogers–Hölder–Riesz inequality. Exactly it is proved
that refinements to Rogers–Hölder–Riesz inequality of the form

∫ b

a
f (x)g(x) dx ≤

(∫ b

a
(max( f, g))p dx

) 1
p

·
(∫ b

a
(min( f, g))q dx

) 1
q

≤
(∫ b

a
f p(x) dx

) 1
p

·
(∫ b

a
gq(x) dx

) 1
q

does not hold for p > 1, 1/p + 1/q = 1, except for p = q = 2 which turns out to
be the Cauchy–Bunyakovsky inequality’s interpolation.Moreover, those refinements
do not hold in the dual form

∫ b

a
f (x)g(x) dx ≤

(∫ b

a
(max( f, g))q dx

) 1
q

·
(∫ b

a
(min( f, g))p dx

) 1
p

≤
(∫ b

a
f p(x) dx

) 1
p

·
(∫ b

a
gq(x) dx

) 1
q

.
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And more, even a compound of last two inequalities in the weakest form do not hold,
it means that the next inequality do not hold

min

{(∫ b

a
(max( f, g))p dx

) 1
p

·
(∫ b

a
(min( f, g))q dx

) 1
q

,

(∫ b

a
(max( f, g))q dx

) 1
q

·
(∫ b

a
(min( f, g))p dx

) 1
p
}

≤ max

{(∫ b

a
f p(x) dx

) 1
p

·
(∫ b

a
gq(x) dx

) 1
q

,

(∫ b

a
f q(x) dx

) 1
q

·
(∫ b

a
g p(x) dx

) 1
p
}

for some choice of f (x), g(x). A counterexample is found in [23, 24] that even
such minimized variant of LHS can be greater than maximized variant of RHS for
Rogers–Hölder–Riesz inequality. It is worth to mention that in the case of Young
inequality this kind of optimization is successfully used in [7].

So the case we consider in this paper of refinement of Cauchy–Bunyakovsky
inequality in the form (***) is exceptional! Due to it it is even more interesting.

The author in [23, 24] also considered generalizations not only with max and min
values, but also with more general transformations. In turn, it seems that these are
covered by the famous Carlitz–Daykin–Eliezer theorem (CDE theorem), (cf. [3, 5]
for classical formulation and [7] for the formulation via means).

Mention also papers of 2015–2016 [25, 26] which do not contain original new re-
sults and are compiled of consequences of Carlitz–Daykin–Eliezer theorem (authors
do not mention this theorem), known results from [7] and further trivial applications.

Another important connected line of results is the reverse Cauchy–Bunyakovsky
inequality, including Schweitzer, Kantorovich, Pólya–Szegó, Shisha–Mond, Diaz–
Metcalf, Rennie and similar inequalities, see e.g. [5, 27–29].
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14. P.S.Bullen,D.S.Mitrinović, P.M.Vasić,Means and Their Inequalities, 2nd edn. 2015 (D.Reidel

Publishing Company, Dordrecht, 1988), 480 p
15. P.S. Bullen, Handbook of Means and Their Inequalities (Kluwer, 2003), 587 p
16. T. Radó, On convex functions. Trans. Amer. Math. Soc. 37, 266–285 (1935)
17. F.W.J. Ed. Olver, NIST Handbook of Mathematical Functions (Cambridge University Press,

Cambridge, 2010), 968 p
18. D.B. Karp, S.M. Sitnik, Log–convexity and log–concavity of hypergeometric–like functions.

J. Math. Anal. Appl. 364(2), 384–394 (2010)
19. D.B. Karp, S.M. Sitnik, Inequalities and monotonicity of ratios for generalized hypergeometric

function. J. Approximation Theory 161, 337–352 (2009)
20. S.M. Sitnik, K.h. Mehrez, Proofs of some conjectures on monotonicity of ratios of Kummer,

Gauss and generalized hypergeometric functions.Analysis (DeGruyter) 36(4), 263–268 (2016)
21. Kh. Mehrez, S.M. Sitnik, Results in mathematics (Springer International Publishing). Funct.

Inequalities Mittag-Leffler Funct. 72(1–2), 703–714 (2017)
22. J.X. Xiang, A note on the Cauchy–Schwarz inequality. Am. Math. Monthly 120(5), 456–459

(2013)
23. I. Pinelis, On the Hölder and Cauchy–Schwarz Inequalities, 3 p (2015). arXiv:1503.00348v2
24. I. Pinelis, On the Hölder and Cauchy–Schwarz inequalities. Am. Math. Monthly 121, 1 (2015)
25. E. Omey, On Xiang’s observations concerning the Cauchy–Schwarz inequality. Am. Math.

Monthly 122(7), 696–698 (2015)
26. M. Masjed-Jamei, E. Omey, Improvement of some classical inequalities. J. Inequalities Spec.

Funct. 7(1), 18–28 (2016)
27. G. Alpargu, The Kantorovich Inequality, with Some Extensions and with Some Statistical Ap-

plications (Thesis, McGill University, Montréale, Canada, 1996)
28. N.S. Barnett, S.S. Dragomir, An additive reverse of the Cauchy-Bunyakovsky-Schwarz integral

inequality. Appl. Math. Lett. 21(4), 388–393 (2008)
29. T.K. Pogány, A new (probabilistic) proof of the Diaz-Metcalf and Pólya-Szegó inequalities and

some of their consequences. Theory Probab. Math. Statist. 70, 113–122 (2005)

http://arxiv.org/abs/1012.3864
http://arxiv.org/abs/1503.00348v2

	Contents
	Editors and Contributors
	Inequalities for the Generalized k-g-Fractional Integrals in Terms  of Double Integral Means
	1 Introduction
	2 The Main Results
	3 Applications for Generalized Riemann–Liouville Fractional Integrals
	4 Example for an Exponential Kernel
	References

	Existence Theory on Modular Metric Spaces
	1 Geraghty-Type Theorems and Application to Partial Differential Equation
	2 Fixed Point Results Based on α-Type F-Contractions
	3 Coincidence Point Results Endowed with a Graph
	4 Coincidence Point Theorems Base on (CLRT)-property
	5 An Observation on Set-Valued Contraction Mappings
	6 Fixed Point Results Based on Multivalued Mappings
	References

	Lyapunov Inequalities for Some Differential Equations with Integral-Type Boundary Conditions
	1 Introduction
	2 Main Results
	References

	A New Class of Generalized Convex Functions and Integral Inequalities
	1 Introduction and Preliminaries
	2 Fejér Type Integral Inequalities
	3 Applications to Fractional Integral Inequalities
	3.1 Hermite–Hadamard's Inequalities Via Riemann–Liouville Fractional Integrals
	3.2 Hermite–Hadamard's Inequalities Via Hadamard Fractional Integrals

	4 Conclusion
	References

	Redheffer-Type Inequalities  for the Fox–Wright Functions
	1 Introduction and Main Results
	2 Proof of the Main Results
	References

	Relations of the Extended Voigt Function with Other Families of Polynomials  and Numbers
	1 Introduction
	2 Generalized Voigt Function Ωµ,ν,hα(x,y,z)
	3 Explicit Representations for  Ωµ,ν,hα(x,y,z) 
	4 Representation of  Ωµ,ν,h (x,y,z) 
	5 Another Representation for Ωµ,ν,h (x,y,z)
	6 Further Extension Ωµ,ν,hα,j (x,y,z) and Related Functions
	7 The Multivariable Extension of the Voigt Function
	References

	Nonlinear Dynamical Model for DNA
	1 Introduction
	2 Preliminary Remarks on DNA
	3 General Structures of Methods
	3.1 Bernoulli Sub-equation Function Method (BSEFM)
	3.2 Modified exp (  -Ω() ) -Expansion Function Method (MEFM)

	4 Implementations of the Methods
	4.1 Implementation of BSEFM
	4.2 Implementation of MEFM

	5 A Biological Perspective Point of View on the Obtained Results
	6 Discussions, Remarks and Conclusions
	References

	A Variety of Nonlinear Retarded Integral Inequalities of Gronwall Type and Their Applications
	1 Introduction
	2 Nonlinear Retarded Integral Inequalities
	3 More Nonlinear Retarded Integral Inequalities
	4 Applications
	4.1 Differential Equations with Delay
	4.2 Retarded Integro-Differential Equations

	References

	On the Integral Inequalities  for Riemann–Liouville and Conformable Fractional Integrals
	1 Introduction
	2 Riemann–Liouville Fractional Integral Operators and Inequalities
	3 Conformable Fractional Integrals and Inequalities
	3.1 Extensions of HH-Inequality

	References

	Weighted Integral Inequalities  in Terms of Omega-Fractional  Integro-Differentiation
	1 Introduction
	2 The Generalized M. M. Djrbashian Fractional Integral
	3 Some ω-Weighted Pólya–Szegö-Type Inequalities
	4 ω-Weighted Chebyshev Functional Inequalities
	5 ω-Weighted Chebyshev Fractional Inequalities
	6 ω-Weighted Minkowski Reverse Fractional Inequalities
	7 ω-Weighted Hölder Reverse Fractional Inequality
	8 ω-Weighted Arithmetic and Geometric Mean Inequalities
	9 Some Other Integral Inequalities
	References

	On Sherman Method to Deriving Inequalities for Some Classes  of Functions Related to Convexity
	1 Introduction, Notation, and Summary
	2 Proving Inequalities for Convex Functions
	2.1 Converse of Jensen's Inequality
	2.2 Monotonicity of Jensen Functional
	2.3 An extension of Jensen's Inequality
	2.4 Global Upper Bounds for Jensen's Inequality
	2.5 Csiszár–Körner's Inequality

	3 Converse of Jensen's Inequality for Some Functions
	4 Generalized Monotonicity of Jensen's Functional
	5 An Extension of Jensen's Inequality
	6 Refined Global Upper Bounds for Jensen's Functional
	7 Csiszár–Körner's Inequality for Some Functions
	References

	Divisibility of Class Numbers  of Quadratic Fields: Qualitative Aspects
	1 Introduction
	2 Imaginary Quadratic Fields
	2.1 The Family mathbbQ(sqrtx2-yn)
	2.2 The Family mathbbQ(sqrtx2-4yn)
	2.3 Other Families of Imaginary Quadratic Fields

	3 Real Quadratic Fields
	4 Concluding Remarks
	References

	Some Identities on Derangement  and Degenerate Derangement Polynomials
	1 Introduction
	2 Derangement Polynomials
	3 Degenerate Derangement Polynomials
	References

	Some Perturbed Ostrowski Type Inequalities for Twice Differentiable Functions
	1 Introduction
	2 Some Identities
	3 Inequalities for Functions Whose Second Derivatives are Bounded
	4 Inequalities for Functions Whose Second Derivatives are of Bounded Variation
	5 Inequalities for Functions Whose Second Derivatives are Lipschitzian
	References

	Comprehensive Inequalities  and Equations Specified by the Mittag-Leffler Functions and Fractional Calculus in the Complex Plane
	1 Introduction, Definitions, and Preliminaries
	2 Main Results and Conclusions
	References

	Novel Results on Hermite–Hadamard Kind Inequalities for η-Convex Functions by Means of (k,r)-Fractional Integral Operators
	1 Introduction
	2 Main Results
	References

	A Family of Integral Inequalities  on the Interval [-1,1]
	1 Introduction
	2 Preliminaries
	3  Entropy Inequalities
	References

	A Generalization of Cauchy–Bunyakovsky Integral Inequality Via Means with Max  and Min Values
	1 Means and Generalizations of Cauchy–Bunyakovsky Integral Inequality
	1.1 Introduction
	1.2 Means
	1.3 Means Method for Generalizations of Cauchy–Bunyakovsky Inequalities

	2 Generalization of Cauchy–Bunyakovsky Inequality with Max–Min Values
	2.1 Proofs of Min–Max Inequality

	3 Application to Inequalities for Special Functions with Mellin Transform Representations
	4 Concluding Remarks and Bibliography Comments
	References




