
Chapter 1
Overview

This book describes a coherent framework for analysing managerial performance.
The focus is on measures of performance that are useful for policy makers. The title
of the book reflects the fact that most, if not all, of these measures can be viewed as
measures of productivity and/or efficiency. This chapter provides an overview of the
main concepts and analytical methods described later in the book.

1.1 Basic Concepts and Terminology

The first step in analysing managerial performance is to identify the manager(s).
A manager is a person or other accountable body responsible for controlling (or
administering) a firm. In this book, the term ‘firm’ refers to a production unit (e.g., a
school, an assembly line, or an economy). Firm managers are decision makers. For
this reason, firms are often1 referred to as decision-making units (DMUs).

Assessments of managerial performance often depend on the way different vari-
ables involved in production processes are classified. In this book, all of the possibly
millions of variables that are physically involved in production processes are clas-
sified into those that are controlled by managers and those that are not. Those that
are controlled by managers are then further classified into inputs (i.e., products and
services that go in to production processes) and outputs (i.e., products and services
that come out of production processes). Those that are never controlled by man-
agers are referred to as environmental variables (e.g., rainfall in crop production).
Classifying variables in this way means that managers will not be held responsible
for the effects of variables they do not control. For example, farm managers will
not be labelled as inefficient when relatively low crop yields are due to low rainfall,

1See, for example, Charnes et al. (1981), Cooper et al. (2004) and Färe and Grosskopf (2010).

© Springer Nature Singapore Pte Ltd. 2018
C. J. O’Donnell, Productivity and Efficiency Analysis,
https://doi.org/10.1007/978-981-13-2984-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2984-5_1&domain=pdf
https://doi.org/10.1007/978-981-13-2984-5_1


2 1 Overview

and truckers will not be labelled as inefficient when delivery delays are due to poor
roads. Unless explicitly stated otherwise, the term ‘environmental variable’ is used
in this book to refer to a characteristic of a production environment. Characteristics
of production environments are variables that are physically involved in production
processes. They should not be confused with characteristics of market environments
(e.g., the degree of competition in output markets) or institutional environments (e.g.,
laws that prevent the use of child labour). Characteristics of market and institutional
environments do not generally affect the input-output combinations that are physi-
cally possible (i.e., they do not affect the physics). However, as we shall see, they
often affect the input-output combinations that managers choose.

One of the most important concepts in efficiency and productivity analysis is
the concept of a production technology. In this book, a production technology (or
simply ‘technology’) is defined as a technique, method or system for transforming
inputs into outputs (e.g., a technique for transforming seeds and other inputs into
vegetables). For most practical purposes, it is convenient to think of a technology as
a book of instructions, or recipe. The set of technologies that exist in a given period is
called a ‘technology set’ (e.g., the set of sustainable, hydroponic, organic, multilayer
and vertical-farming techniques for growing vegetables). If we think of a technology
as a book of instructions, or recipe, then we can think of a technology set as a library.
Measures of ‘technical efficiency’ are viewed as measures of how well technologies
are chosen and used (i.e., howwell managers ‘choose books/recipes from the library’
and ‘follow the instructions’). The term ‘technical progress’ refers to the discovery
of new technologies. Investigative activities aimed at discovering new technologies
are referred to as ‘research and development’ (R&D) activities. The term ‘technical
regress’ refers to the loss of existing technologies. An important assumption that is
maintained throughout the book is that there is no technical regress (i.e., as a society,
we do not forget the techniques, methods and systems we know).

The input-output combinations that are possible using different technologies can
usually be represented by distance, revenue, cost and/or profit functions. The exis-
tence of these functions has few, if any, implications for managerial behaviour. The
existence of a cost function, for example, does not imply that managers will aim to
minimise costs. Rather, different managers will tend to behave differently depend-
ing on what they value, and on what they can and cannot choose. For example, if
managers value goods and services at market prices, then, if possible, they will tend
to choose inputs and outputs to maximise profits. On the other hand, if managers
value products and services differently to the market, then they may instead choose
inputs and outputs to maximise measures of productivity. In this book, measures of
productivity are defined as measures of output quantity divided by measures of input
quantity. Government and community interest in productivity stems from the fact that
productivity change is often associated with changes in social welfare; according to
Kendrick (1961, p. 3), for example, “[t]he story of productivity, the ratio of output
to input, is at heart the record of man’s efforts to raise himself from poverty”.

Decision makers are often interested in measuring levels of efficiency. Measures
of efficiency can be viewed ex post measures of how well firmmanagers have solved
different optimisation problems. For example, measures of output-oriented technical
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efficiency can be viewed as measures of how well managers have maximised outputs
when inputs and output mixes have been predetermined. On the other hand, measures
of profit efficiency can be viewed asmeasures of howwell managers havemaximised
profits when inputs and outputs have been chosen freely.

Many decisionmakers are also interested inmeasuring productivity. This involves
assigning numbers to baskets of inputs and outputs.Measurement theory says that so-
called index numbers must be assigned in such a way that the relationships between
the numbers reflect the relationships between the baskets. For example, if we are
measuring changes in output quantities, and if basket A contains exactly twice as
much of every output as basket B, then the index number assigned to basket A
should be exactly twice as big as the number assigned to basket B. Index numbers
that are consistent with measurement theory can be computed using various additive,
multiplicative, primal and dual indices (i.e., formulas). Most of the indices currently
used in the productivity and efficiency literature yield numbers that are not consistent
with measurement theory.

Measuring changes in productivity is one thing. Explaining changes in productiv-
ity is another. In this book, changes in productivity are explained using a combination
of economic theory,measurement theory and statisticalmethods. Using this so-called
econometric approach, changes in productivity can be attributed to four main factors:
(a) technical progress (i.e., the discovery of new technologies), (b) environmental
change (i.e., changes in variables that are physically involved in production processes
but never controlled by managers), (c) technical efficiency change (i.e., changes in
how well technologies are chosen and used) and (d) scale and mix efficiency change
(i.e., changes in economies of scale and substitution). In practice, estimating these
different components involves estimating changes in the limits to production (i.e.,
changes in production frontiers). As we shall see, the choice of estimator depends
partly on what is known, or assumed, about production technologies.

1.2 Production Technologies

It is common to make assumptions about technologies by way of assumptions about
what they can and cannot produce. For example, it is common to assume that, with
a given set of technologies,

A1 it is possible to produce zero output (i.e., inactivity is possible);
A2 there is a limit to what can be produced using a finite amount of inputs (i.e.,

output sets are bounded);
A3 a positive amount of at least one input is needed in order to produce a strictly

positive amount of any output (i.e., inputs are weakly essential; there is ‘no free
lunch’);

A4 the set of outputs that can be produced using given inputs contains all the points
on its boundary (i.e., output sets are closed);
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A5 the set of inputs that can produce given outputs contains all the points on its
boundary (i.e., input sets are closed);

A6 if particular inputs can be used to produce a given output vector, then they can
also be used to produce a scalar contraction of that output vector (i.e., outputs
are weakly disposable); and

A7 if particular outputs can be produced using a given input vector, then they can
also be produced using a scalar magnification of that input vector (i.e., inputs
are weakly disposable).

Assumptions A1–A7 are maintained throughout this book. Other assumptions that
are made from time to time include the following:

A6s if given inputs can be used to produce particular outputs, then they can also be
used to produce fewer outputs (i.e., outputs are strongly disposable);

A7s if given outputs can be produced using particular inputs, then they can also be
produced using more inputs (i.e., inputs are strongly disposable);

A8s if a given output-input combination is possible in a particular production en-
vironment, then it is also possible in a better production environment (i.e.,
environmental variables are strongly disposable).

The word ‘strong’ is used in A6s and A7s to reflect the fact that A6s implies A6
and A7s implies A7 (symbolically, A6s ⇒ A6 and A7s ⇒ A7). The input-output
combinations that are possible using different sets of technologies can be represented
by output sets, input sets and production possibilities sets. If A2, A6 and A7 are true,
then they can also be represented by output and input distance functions.

1.2.1 Output Sets

Anoutput set is a set containing all outputs that can be produced using given inputs. In
this book, the focus is on period-and-environment-specific output sets. A period-and-
environment-specific output set is a set containing all outputs that can be produced
using given inputs in a given period in a given production environment. For a precise
definition, let x = (x1, . . . , xM )′, q = (q1, . . . , qN )′ and z = (z1, . . . , zJ )′ denote
vectors of nonnegative inputs, outputs and environmental variables (respectively). In
mathematical terms, the set of outputs that can be produced using the input vector x
in period t in a production environment characterised by z is

Pt (x, z) = {q : x can produce q in period t in environment z}. (1.1)

To illustrate, Table 1.1 reports artificial (or ‘toy’) data on I = 5 firms over T = 5
time periods. Each firm has used two inputs to produce two outputs in one of two
production environments. Figure 1.1 depicts the set of outputs that could have been
produced using the input vector ι = (1, 1)′ in period 1 in environment 1. The dots
in this figure mark the observed output combinations of the two firms that used this
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Table 1.1 Toy data

Row Firm Period q1 q2 x1 x2 z

A 1 1 1 1 1 1 1

B 2 1 1 1 0.56 0.56 1

C 3 1 2.37 2.37 1 1 1

D 4 1 2.11 2.11 1.05 0.7 1

E 5 1 1.81 3.62 1.05 0.7 1

F 1 2 1 1 0.996 0.316 2

G 2 2 1.777 3.503 1.472 0.546 2

H 3 2 0.96 0.94 0.017 0.346 1

I 4 2 5.82 0.001 4.545 0.01 2

J 5 2 6.685 0.001 4.45 0.001 1

K 1 3 1.381 4.732 1 1 1

L 2 3 0.566 4.818 1 1 1

M 3 3 1 3 1.354 1 1

N 4 3 0.7 0.7 0.33 0.16 1

O 5 3 2 2 1 1 2

P 1 4 1 1 0.657 0.479 1

R 2 4 1 3 1 1 1

S 3 4 1 1 1.933 0.283 2

T 4 4 1.925 3.722 1 1 2

U 5 4 1 1 1 0.31 1

V 1 5 1 5.166 1 1 1

W 2 5 2 2 0.919 0.919 2

X 3 5 1 1 1.464 0.215 2

Y 4 5 1 1 0.74 0.74 1

Z 5 5 1.81 3.62 2.1 1.4 1

input vector in this period in this environment (in this book, letters in figures generally
correspond to rows in tables). The set P1(ι, 1) is the area bounded by the two axes
and the curve passing through point C.

1.2.2 Input Sets

An input set is a set containing all inputs that can produce given outputs. Again,
this book focuses on period-and-environment-specific input sets. A period-and-
environment-specific input set is a set containing all inputs that can produce given
outputs in a given period in a given production environment. For example, the set of
inputs that can produce the output vector q in period t in an environment characterised
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Fig. 1.1 The outputs that could have been produced using one unit of each input in period 1 in
environment 1. The set P1(ι, 1) is the area bounded by the two axes and the curve passing through
point C

by z is
Lt (q, z) = {x : x can produce q in period t in environment z}. (1.2)

To illustrate, reconsider the toy data in Table 1.1. Figure 1.2 depicts the set of inputs
that could have produced one unit of each output in period 1 in environment 1.
The dots in this figure mark the observed input combinations of the two firms that
produced these outputs in this period in this environment. The set L1(ι, 1) comprises
all points on and above the curve passing through point B.

1.2.3 Production Possibilities Sets

A production possibilities set is a set containing all input-output combinations that
are physically possible. In this book, the focus is on two specific types of production
possibilities set: period-and-environment-specific production possibilities sets and
period-environment-and-mix-specific production possibilities sets.

A period-and-environment-specific production possibilities set is a set containing
all input-output combinations that are physically possible in a given period in a given
production environment. For example, the set of input-output combinations that are
physically possible in period t in a production environment characterised by z is

T t (z) = {(x, q) : x can produce q in period t in environment z}. (1.3)
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Fig. 1.2 The inputs that could have produced one unit of each output in period 1 in environment
1. The set L1(ι, 1) comprises all points on and above the frontier passing through point B

If there aremore than two outputs and inputs, then the onlyway to represent this set in
a two-dimensional figure is tomapmanyvariables into just twovariables. Throughout
this book, outputs are mapped into scalar-valued measures of total output and inputs
are mapped into scalar-valued measures of total input. In the case of outputs, the
measure of total (or aggregate) output associated with the vector q is given by Q(q),
whereQ(.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. In the case of inputs, the measure of total (or aggregate) input
associated with the vector x is given by X (x), where, again, X (.) is any nonnegative,
nondecreasing, linearly-homogeneous, scalar-valued aggregator function.

For a simple illustration, reconsider the toy data in Table 1.1, and let Q(q) =
0.484q1 + 0.516q2 and X (x) = 0.23x1 + 0.77x2. The associated aggregate outputs
and inputs are reported in Table 1.2. Figure 1.3 plots the aggregate outputs and inputs
of the five firms that operated in period 1 in environment 1. In this figure, the set
T 1(1) is represented by the area bounded by the horizontal axis and the curve passing
through point E.

A period-environment-and-mix-specific production possibilities set is a set con-
taining all input-output combinations that are physically possiblewhen using a scalar
multiple of a given input vector to produce a scalar multiple of a given output vector
in a given period in a given production environment. For example, the set of input-
output combinations that are possible when using a scalar multiple of x̄ to produce
a scalar multiple of q̄ in period t in an environment characterised by z is

T t (x̄, q̄, z) = {(x, q) : x ∝ x̄, q ∝ q̄, (x, q) ∈ T t (z)}. (1.4)
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Table 1.2 Aggregate outputs and inputsa

Row Firm Period Q(q) X (x)

A 1 1 1 1

B 2 1 1 0.56

C 3 1 2.37 1

D 4 1 2.11 0.7805

E 5 1 2.744 0.7805

F 1 2 1 0.472

G 2 2 2.668 0.759

H 3 2 0.950 0.270

I 4 2 2.817 1.053

J 5 2 3.236 1.024

K 1 3 3.110 1

L 2 3 2.76 1

M 3 3 2.032 1.081

N 4 3 0.7 0.199

O 5 3 2 1

P 1 4 1 0.520

R 2 4 2.032 1

S 3 4 1 0.663

T 4 4 2.852 1

U 5 4 1 0.469

V 1 5 3.150 1

W 2 5 2 0.919

X 3 5 1 0.502

Y 4 5 1 0.74

Z 5 5 2.744 1.561
aNumbers reported to less than three decimal places are exact in the sense that they have not been
rounded. Some of the other numbers may have been rounded

To illustrate, reconsider the toy data in Tables 1.1 and 1.2. Figure 1.4 plots the
aggregate outputs and inputs of the three firms that used a scalar multiple of ι to
produce a scalar multiple of ι in period 1 in environment 1. In this figure, the set
T 1(ι, ι, 1) is represented by the area bounded by the horizontal axis and the curve
passing through points B and C.

1.2.4 Output Distance Functions

Set representations of technologies can be difficult to work with mathematically. In
practice, it is common to work with distance functions. An output distance function
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Fig. 1.3 The input-output combinations that were possible in period 1 in environment 1. The set
T 1(1) is the area bounded by the horizontal axis and the curve passing through point E
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Fig. 1.4 The input-output combinations that were possible when using a scalar multiple of ι to
produce a scalar multiple of ι in period 1 in environment 1. The set T 1(ι, ι, 1) is the area bounded
by the horizontal axis and the curve passing through points B and C
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gives the reciprocal of the largest factor bywhich it is possible to scale up a given out-
put vector when using a given input vector. For example, if it is technically possible
to use given inputs to produce four times asmuch of every output, then the output dis-
tance function takes the value 1/4 = 0.25. Again, this book focuses on period-and-
environment-specific output distance functions. A period-and-environment-specific
output distance function gives the reciprocal of the largest factor by which it is pos-
sible to scale up a given output vector when using a given input vector in a given
period in a given production environment. For example, the reciprocal of the largest
factor by which it is possible to scale up q when using x in period t in environment
z is

Dt
O(x, q, z) = inf{ρ > 0 : q/ρ ∈ Pt (x, z)}. (1.5)

For a numerical example, reconsider the toy data reported in Table 1.1. The outputs
of firm 1 in period 1 (hereafter firmA) were previously mapped to point A in Fig. 1.1.
That figure reveals that it would have been technically possible to hold the inputs of
thefirmfixed and scale up its outputs by a factor of nomore than2.37.Thus, in the case
of firmA, the output distance function takes the valueD1

O(ι, ι, 1) = 1/2.37 = 0.422.

1.2.5 Input Distance Functions

An input distance function gives the reciprocal of the smallest fraction of a given
input vector that can produce a given output vector. For example, if it is technically
possible to produce a given output vector using as little as one-half of a given input
vector, then the input distance function takes the value 1/0.5 = 2. Again, this book
focuses on period-and-environment-specific input distance functions. A period-and-
environment-specific input distance function gives the reciprocal of the smallest
fraction of a given input vector that can produce a given output vector in a given
period in a given production environment. For example, the reciprocal of the smallest
fraction of x that can produce q in period t in environment z is

Dt
I (x, q, z) = sup{θ > 0 : x/θ ∈ Lt (q, z)}. (1.6)

For a numerical example, reconsider the toy data in Table 1.1. The inputs of firm 1
in period 1 (i.e., firm A) were previously mapped to point A in Fig. 1.2. That figure
reveals that it would have been technically possible to produce the outputs of the
firm using as little as 0.56/1 = 56% of its inputs. Thus, in the case of firm A, the
input distance function takes the value D1

I (ι, ι, 1) = 1/0.56 = 1.786.
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1.2.6 Other Sets and Functions

If assumptions A1–A7 are true, then the input-output combinations that are possible
using different technologies can also be represented by revenue and cost functions.
A revenue function gives the maximum revenue that can be earned using given
inputs. A cost function gives the minimum cost of producing given outputs. Other
sets and functions that are discussed in this book include profit functions, production
functions, input requirement functions, directional distance functions, hyperbolic
distance functions, technology-and-environment-specific sets and functions, period-
specific sets and functions, and state-contingent sets and functions.

1.3 Measures of Productivity Change

In this book, measures of productivity change are defined as measures of output
quantity change divided by measures of input quantity change. Computing measures
of output and input quantity change involves assigning numbers to baskets of outputs
and inputs.Measurement theory says that so-called index numbers cannot be assigned
in an arbitrary way. Rather, they must be assigned in such a way that the relationships
between the numbers mirror the relationships between the baskets. To illustrate, con-
sider the baskets of maple syrup and Vegemite and the associated sets of quantity
index numbers presented in Table 1.3. Among other things, the index numbers in col-
umn L indicate that basket W contains twice as much syrup and Vegemite as basket
A. The other index numbers in the table can be interpreted in a similar way. The index
numbers in column L are the only numbers that are consistent with measurement

Table 1.3 Quantity index numbers

L F CF EKS

Basket A 1 1 1 1

Basket M 2.032 1.892 2.389 1.942

Basket R 2.032 1.893 2.854 1.943

Basket W 2 2 3.642 2.027
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theory. Observe, for example, that basket M contains the same amount of syrup and
Vegemite as basket R, and only in column L is the index number in rowM the same as
the index number in rowR.Arguably themost important distinguishing feature of this
book is that it assigns numbers to baskets of outputs and inputs in a way that is con-
sistent with measurement theory. To clarify the approach, this section introduces firm
and time subscripts into the notation. Thus, for example, qit = (q1i t , . . . , qNit )

′ and
xit = (x1i t , . . . , xM it )

′ now denote the output and input vectors of firm i in period t .

1.3.1 Output Quantity Indices

An index is a rule or a formula that tells us how to use data to measure the change in
one or more variables over time and/or space. An index number is the value obtained
after data have been substituted into the formula. In this book, an output quantity
index (or simply ‘output index’) that compares qit with qks is defined as any variable
of the form

QI(qks, qit ) ≡ Q(qit )/Q(qks) (1.7)

where Q(.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. All output indices of this type yield numbers that are consistent
with measurement theory. They are also proper indices in the sense that, if outputs
are positive, then they satisfy axioms Q1 to Q8 listed in O’Donnell (2016). Two of
the most important axioms are a transitivity axiom and a proportionality axiom. The
transitivity axiom says that a direct comparison of the outputs of two firms should
yield the same index number as an indirect comparison through a third firm. If, for
example, firm R produced the same amount of every output as firm M, and firm M
produced λ times as much as firm A, then the index that compares the outputs of firm
R with the outputs of firm A must take the value λ (indicating that firm R produced
λ times as much as firm A). The proportionality axiom says that if firm W produced
λ times as much as firm A, then the index that compares the outputs of firm W
with the outputs of firm A must take the value λ. The class of proper output indices
includes the Lowe index defined by O’Donnell (2012, Eq. 3). Output indices that do
not satisfy the transitivity axiom and are therefore not proper include the well-known
Fisher and Törnqvist indices. Output indices that do not satisfy the proportionality
axiom and are therefore not proper include the chained Fisher (CF) index and an
index proposed by Elteto and Koves (1964) and Szulc (1964) (hereafter, EKS).

To illustrate, consider the output quantities, output prices and output index num-
bers reported inTable 1.4.Theoutput quantities reported in this table are the quantities
reported earlier in Table 1.1. The index numbers in the different columns are Lowe
(L), Fisher (F), CF and EKS index numbers that compare the output quantities in
each row with the output quantities in row A. The Lowe index numbers were com-
puted using the same aggregator function that was used to compute the aggregate
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Table 1.4 Output quantities, output prices and output index numbersa,b

Row q1 q2 p1 p2 L F CF EKS

A 1 1 0.57 0.41 1 1 1 1

B 1 1 0.26 0.25 1 1 1 0.992∗

C 2.37 2.37 0.57 0.41 2.37 2.37 2.37 2.37

D 2.11 2.11 0.58 0.53 2.11 2.11 2.11 2.096∗

E 1.81 3.62 0.26 0.26 2.744 2.640∗ 2.695∗ 2.677∗

F 1 1 0.59 0.76 1 1 0.972∗ 0.986∗

G 1.777 3.503 0.63 0.65 2.668 2.575 2.626 2.608

H 0.96 0.94 0.34 0.31 0.950 0.951 0.950 0.944

I 5.82 0.001 0.46 0.58 2.817 2.952 2.800 2.672

J 6.685 0.001 0.61 1.43 3.236 2.789 3.217 2.508

K 1.381 4.732 0.57 0.41 3.110 2.783 3.716 2.883

L 0.566 4.818 0.49 0.65 2.760 2.648 3.251 2.737

M 1 3 0.51 0.46 2.032 1.892∗ 2.389∗ 1.942∗

N 0.7 0.7 0.52 0.23 0.7 0.7 0.943∗ 0.711∗

O 2 2 0.37 0.17 2 2 2.695∗ 2.029∗

P 1 1 0.41 0.76 1 1 1.348∗ 0.982∗

R 1 3 0.53 0.48 2.032 1.893∗ 2.854∗ 1.943∗

S 1 1 0.53 0.37 1 1 1.514∗ 1.001∗

T 1.925 3.722 0.91 0.53 2.852 2.631 3.973 2.706

U 1 1 0.31 1.03 1 1 1.359∗ 0.981∗

V 1 5.166 0.47 0.08 3.150 2.099 3.530 2.296

W 2 2 0.57 0.27 2 2 3.642∗ 2.027∗

X 1 1 0.31 0.51 1 1 1.821∗ 0.983∗

Y 1 1 0.31 0.67 1 1 1.821∗ 0.981∗

Z 1.81 3.62 0.42 0.69 2.744 2.745∗ 5.447∗ 2.759∗
aL = Lowe; F = Fisher; CF = chained Fisher; EKS = Elteto-Koves-Szulc
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
∗Incoherent (not because of rounding)

outputs in Table 1.2. Lowe index numbers are consistent with measurement theory.
Observe, for example, that the output vector in row M is the same as the output
vector in row R, and the Lowe index number in rowM is the same as the Lowe index
number in row R (the index numbers in these particular rows are, in fact, the index
numbers reported above in Table 1.3). The Fisher, CF and EKS index numbers are
not consistent with measurement theory.2 Numbers that are clearly incoherent are
marked with an asterisk (∗). Observe, for example, that the outputs in row E are the

2In practice, CF (resp. EKS) indices are mainly used for time-series (resp. cross-section) compar-
isons. For this reason, the CF numbers in Table 1.4 were computed by treating the observations in
the dataset as observations on one firm over twenty-five periods. The EKS numbers were computed
by treating the observations in the dataset as observations on twenty-five firms in one period.
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same as the outputs in row Z, but the CF index number in row E differs from the CF
index number in row Z.

1.3.2 Input Quantity Indices

In this book, an input quantity index (or simply ‘input index’) that compares xit with
xks is defined as any variable of the form

XI(xks, xit ) ≡ X (xit )/X (xks) (1.8)

where X (.) is a nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function. Again, all input indices of this type yield numbers that are
consistent with measurement theory. They are also proper indices in the sense that,
if inputs are positive, then they satisfy axioms X1 to X8 listed in O’Donnell (2016).
The class of proper input indices includes the Lowe index defined by O’Donnell
(2012, Eq. 4). Again, input indices that are not proper include the Fisher, CF and
EKS indices.

To illustrate, consider the input quantities, input prices and input index numbers
reported in Table 1.5. The input quantities reported in this table are the quantities
reported earlier in Table 1.1. The index numbers in the different columns are Lowe
(L), Fisher (F), CF and EKS index numbers that compare the input quantities in each
row with the input quantities in row A. The Lowe index numbers were computed
using the same aggregator function that was used to compute the aggregate inputs
in Table 1.2. Again, these numbers are consistent with measurement theory. For
example, the input vector in row D is the same as the input vector in row E, and the
Lowe index number in row D is the same as the Lowe index number in row E. Again,
the Fisher, CF and EKS index numbers are not consistent with measurement theory.3

Again, numbers that are clearly incoherent are marked with an asterisk (∗). Observe,
for example, that the input vector in row Z is twice as big as the input vector in row
E, but the EKS index number in row Z is not twice as big as the EKS index number
in row E.

1.3.3 Productivity Indices

Productivity indices are measures of productivity change. Without loss of generality,
this book focuses on measures of total factor productivity (TFP) change. An index
that compares the TFP of firm i in period t with the TFP of firm k in period s is defined

3Again, the CF numbers were computed by treating the observations in the dataset as observations
on one firm over twenty-five periods. The EKS index numbers were computed by treating the
observations in the dataset as observations on twenty-five firms in one period.
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Table 1.5 Input quantities, input prices and input index numbersa,b

Row x1 x2 w1 w2 L F CF EKS

A 1 1 0.28 1.91 1 1 1 1

B 0.56 0.56 0.22 0.58 0.56 0.56 0.56 0.525∗

C 1 1 0.28 1.91 1 1 1 1

D 1.05 0.7 0.16 0.41 0.781 0.771∗ 0.771∗ 0.749∗

E 1.05 0.7 0.07 1.02 0.781 0.734∗ 0.771∗ 0.797∗

F 0.996 0.316 0.24 0.29 0.472 0.501 0.464 0.502

G 1.472 0.546 0.16 0.16 0.759 0.819 0.715 0.798

H 0.017 0.346 0.17 0.7 0.270 0.293 0.189 0.253

I 4.545 0.01 0.27 0.39 1.053 1.049 1.001 1.339

J 4.45 0.001 0.29 0.79 1.024 0.825 0.976 1.102

K 1 1 0.28 1.91 1 1 1.182∗ 1

L 1 1 0.21 0.56 1 1 1.182∗ 0.939∗

M 1.354 1 0.16 0.74 1.081 1.054 1.276 1.056

N 0.33 0.16 0.24 2.3 0.199 0.179 0.223 0.196

O 1 1 0.24 0.15 1 1 1.032∗ 0.863∗

P 0.657 0.479 0.26 0.61 0.520 0.517 0.578 0.495

R 1 1 0.16 0.22 1 1 1.064∗ 0.899∗

S 1.933 0.283 0.19 0.62 0.663 0.575 0.861 0.668

T 1 1 0.17 0.26 1 1 1.088∗ 0.905∗

U 1 0.31 0.27 0.91 0.469 0.432 0.568 0.464

V 1 1 0.29 0.78 1 1 1.178∗ 0.939∗

W 0.919 0.919 0.39 0.81 0.919 0.919 1.083∗ 0.848∗

X 1.464 0.215 0.21 0.31 0.502 0.519 0.787 0.572

Y 0.74 0.74 0.23 0.69 0.74 0.74 0.946∗ 0.700∗

Z 2.1 1.4 0.31 0.22 1.561 1.642∗ 2.159∗ 1.479∗
aL = Lowe; F = Fisher; CF = chained Fisher; EKS = Elteto-Koves-Szulc
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
∗Incoherent (not because of rounding)

as any variable of the form TFPI(xks, qks, xit , qit ) ≡ QI(qks, qit )/XI(xks, xit ) where
QI(.) is any proper output index and XI(.) is any proper input index. Equivalently,

TFPI(xks, qks, xit , qit ) ≡ TFP(xit , qit )/TFP(xks, qks) (1.9)

where TFP(xit , qit ) ≡ Q(qit )/X (xit ) denotes the TFP of firm i in period t . All TFP
indices (TFPIs) of this type are said to be proper. If outputs and inputs are positive,
then they satisfy axioms T1 to T8 listed in O’Donnell (2017). The class of proper
TFPIs includes the Lowe index defined by O’Donnell (2012, Eq. 5). TFPIs that are
not proper include the Fisher, CF and EKS indices.
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Table 1.6 Output quantities, input quantities and TFPI numbersa,b

Row q1 q2 x1 x2 L F CF EKS

A 1 1 1 1 1 1 1 1

B 1 1 0.56 0.56 1.786 1.786 1.786 1.889∗

C 2.37 2.37 1 1 2.37 2.37 2.37 2.37

D 2.11 2.11 1.05 0.7 2.703 2.737 2.737 2.799

E 1.81 3.62 1.05 0.7 3.516 3.599∗ 3.495∗ 3.359∗

F 1 1 0.996 0.316 2.117 1.994 2.096 1.963

G 1.777 3.503 1.472 0.546 3.515 3.145 3.670 3.269

H 0.96 0.94 0.017 0.346 3.513 3.250 5.028 3.728

I 5.82 0.001 4.545 0.01 2.675 2.815 2.798 1.996

J 6.685 0.001 4.45 0.001 3.159 3.378 3.296 2.276

K 1.381 4.732 1 1 3.110 2.783 3.144 2.883

L 0.566 4.818 1 1 2.760 2.648 2.750 2.916

M 1 3 1.354 1 1.879 1.795 1.872 1.840

N 0.7 0.7 0.33 0.16 3.516 3.913 4.233 3.629

O 2 2 1 1 2 2 2.611∗ 2.350∗

P 1 1 0.657 0.479 1.923 1.935 2.332 1.985

R 1 3 1 1 2.032 1.893 2.682 2.162

S 1 1 1.933 0.283 1.509 1.738 1.757 1.498

T 1.925 3.722 1 1 2.852 2.631 3.652 2.991

U 1 1 1 0.31 2.134 2.317 2.391 2.117

V 1 5.166 1 1 3.150 2.099 2.996 2.445

W 2 2 0.919 0.919 2.176 2.176 3.364∗ 2.390∗

X 1 1 1.464 0.215 1.991 1.926 2.313 1.719

Y 1 1 0.74 0.74 1.351 1.351 1.925∗ 1.401∗

Z 1.81 3.62 2.1 1.4 1.758 1.672∗ 2.523∗ 1.866∗
aL = Lowe; F = Fisher; CF = chained Fisher; EKS = Elteto-Koves-Szulc
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
∗Incoherent (not because of rounding)

To illustrate, consider the output quantities, input quantities and TFPI numbers
reported in Table 1.6. The output and input quantities reported in this table are the
quantities reported earlier inTables 1.1, 1.4 and1.5. TheTFPI numbers in the columns
labelled L, F, CF and EKS were obtained by dividing the output index numbers in
Table 1.4 by the corresponding input index numbers in Table 1.5. The index numbers
in Table 1.6 compare the output-input combinations in each rowwith the output-input
combinations in rowA. The Lowe index numbers reported in column L are coherent.
Observe, for example, that (a) the output vector in rowW is twice as big as the output
vector in row A, (b) the input vector in rowW is only 0.919 times as big as the input
vector in row A, and (c) the Lowe TFPI number is 2/0.919 = 2.176. Again, the
Fisher, CF and EKS index numbers are not coherent. Observe, for example, that (a)
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the output vector in row Z is the same as the output vector in row E, (b) the input
vector in row Z is twice as big as the input vector in row E, but (c) the CF index
number in row Z is not half as big as the CF index number in row E.

1.3.4 Other Indices

Other indices discussed in this book include output price indices, input price in-
dices, terms-of-trade (TT) indices, implicit output indices, implicit input indices and
implicit productivity indices. Implicit output (resp. input) indices are obtained by di-
viding revenue (resp. cost) indices by output price (resp. input price) indices. Implicit
productivity indices are obtained by dividing profitability indices by TT indices. Ex-
cept in restrictive special cases, implicit indices yield numbers that are not consistent
with measurement theory.

1.4 Managerial Behaviour

To explain changes in outputs and inputs, and therefore changes in productivity,
we need to know something about managerial behaviour. The existence of differ-
ent sets and functions has few, if any, implications for behaviour. The existence of
revenue functions, for example, does not mean that managers will choose outputs
in order to maximise revenues, and the existence of cost functions does not mean
they will choose inputs to minimise costs. Instead, different managers will tend to
behave differently depending on what they value, and on what they can and cannot
choose. Some of the simplest optimisation problems faced by firm managers involve
maximising outputs, minimising inputs and/or maximising productivity.

1.4.1 Output Maximisation

Themanagers of some firms (e.g., themanagers of government departments, benevo-
lent societies, conservation groups and socially-responsible corporations) often value
products and services differently to the market. There are also many products and
services that are not exchanged in a market and therefore do not have a market price
(e.g., city parks). If a firm manager places nonnegative values on outputs (not neces-
sarily market values) and all other variables involved in the production process have
been predetermined (i.e., have been determined in a previous period), then (s)he will
generally aim to maximise a measure of total output. If there is more than one output,
then the precise form of the output maximisation problem will depend on how easily
the manager can choose the output mix. Suppose, for example, the manager of firm
i can only choose output vectors that are scalar multiples of qit . In this case, his/her
period-t output-maximisation problem can be written as
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Fig. 1.5 Output maximisation. If the output mix of firm A had been predetermined, then the
manager could have maximised total output by operating the firm at point C

max
q

{Q(q) : q ∝ qit , Dt
O(xit , q, zit ) ≤ 1} (1.10)

whereQ(.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
function satisfying Q(qit ) > 0. The output vector that solves this problem is q̄i t ≡
q̄ t (xit , qit , zit ) = qit/Dt

O(xit , qit , zit ). The associated aggregate output is Q(q̄i t ) =
Q(qit )/Dt

O(xit , qit , zit ).
For a numerical example, reconsider the toy data in Table 1.1. Also let Q(q) =

0.484q1 + 0.516q2. Figure 1.5 depicts the output maximisation problem that would
have faced the manager of firm 1 in period 1 (i.e., firm A) had the firm’s output mix
been predetermined. In this figure, the frontier passing through point C is the frontier
depicted earlier in Fig. 1.1. The outputs of firm 1 in period 1 map to point A. The
aggregate output at this point is Q(q11) = 1. The dashed line passing through point
A is an iso-output line with a slope of −0.938 and a q2 intercept of Q(q11)/0.516 =
1.938. The other dashed line is an iso-output line with the same slope but a higher
intercept. Output maximisation involves choosing the iso-output line with the highest
intercept that passes through a technically-feasible point. If the output mix of firm
A had been predetermined, then the output-maximising iso-output line would have
been the one passing through point C. The aggregate output at this point isQ(q̄11) =
4.593 × 0.516 = 2.37.
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1.4.2 Input Minimisation

If a firm manager places nonnegative values on inputs (again, not necessarily market
values) and all other variables involved in the production process have been prede-
termined, then (s)he will generally aim to minimise a measure of total input. If there
is more than one input, then the precise form of the input minimisation problem will
depend on how easily the manager can choose the input mix. Suppose, for example,
the manager of firm i can only use input vectors that are scalar multiples of xit . In
this case, his/her period-t input-minimisation problem can be written as

min
x

{X (x) : x ∝ xit , Dt
I (x, qit , zit ) ≥ 1} (1.11)

where X (.) is any nonnegative, nondecreasing, linearly-homogeneous, scalar-valued
aggregator function satisfying X (xit ) > 0. The input vector that solves this prob-
lem is x̄i t ≡ x̄ t (xit , qit , zit ) = xit/Dt

I (xit , qit , zit ). The associated aggregate input is
X (x̄i t ) = X (xit )/Dt

I (xit , qit , zit ).
For a numerical example, reconsider the toy data in Table 1.1. Also let X (x) =

0.23x1 + 0.77x2. Figure 1.6 depicts the input minimisation problem that would have
faced the manager of firm 1 in period 1 (i.e., firm A) had the firm’s input mix been
predetermined. In this figure, the frontier passing through point B is the frontier
depicted earlier in Fig. 1.2. The inputs of firm 1 in period 1 map to point A. The
aggregate input at this point isX (x11) = 1. The dashed line passing through pointA is
an iso-input line with a slope of−0.299 and an x2 intercept of X (x11)/0.77 = 1.299.
The other dashed line is an iso-input line with the same slope but a lower intercept.

0

x2

x1

A

B

1.299

0.727

1

1

0.56

Fig. 1.6 Input minimisation. If the input mix of firm A had been predetermined, then the manager
could have minimised total input use by operating the firm at point B
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Input minimisation involves choosing the iso-input line with the lowest intercept
that passes through a technically-feasible point. If the input mix of firm A had been
predetermined, then the input-minimising iso-input line would have been the one
passing through point B. The aggregate input at this point is X (x̄11) = 0.727 ×
0.77 = 0.56.

1.4.3 Productivity Maximisation

If a firm manager places nonnegative values on outputs and inputs (again, not nec-
essarily market values) and all environmental variables have been predetermined,
then (s)he may aim to maximise a measure of TFP. If there is more than one output
and more than one input, then the precise form of the manager’s TFP maximisation
problem will depend on how easily (s)he can choose the output mix and the input
mix. Suppose, for example, the manager of firm i can choose all outputs and inputs
freely. In this case, his/her period-t TFP-maximisation problem can be written as

max
q,x

{Q(q)/X (x) : Dt
O(x, q, zit ) ≤ 1} (1.12)

whereQ(.) and X (.) are nonnegative, nondecreasing, linearly-homogeneous, scalar-
valued aggregator functions with parameters (or weights) that represent the values
the manager places on outputs and inputs. There may be several pairs of output and
input vectors that solve this problem. Let q∗

i t ≡ qt (zit ) and x∗
i t ≡ xt (zit ) denote one

such pair. The associated maximum TFP is TFPt (zit ) = Q(q∗
i t )/X (x∗

i t ).
For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. Figure 1.7

depicts the TFP maximisation problem that would have faced the manager of firm 1
in period 1 (i.e., firm A). The frontier in this figure is the frontier depicted earlier in
Fig. 1.3. The outputs and inputs of firm 1 in period 1 map to point A. The dashed line
passing through point A is an iso-productivity ray with a slope of TFP(x11, q11) =
slope 0A = 1/1 = 1. The other dashed lines are iso-productivity rays with higher
slopes. TFP maximisation involves choosing the iso-productivity ray that has the
highest slope and passes through a technically-feasible point. If the manager of firm
A had been able to choose all outputs and inputs freely, then the TFP-maximising
iso-productivity ray would have been the one passing through points N and E. The
TFP at any point on the line connecting these two points is TFP1(z11) = slope
0N = slope 0E = 0.7/0.1991 = 2.744/0.7805 = 3.516.
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Fig. 1.7 Productivity maximisation. If the manager of firm A had been able to choose all outputs
and inputs freely, then (s)he could have maximised TFP by operating the firm anywhere on the line
connecting points N and E

1.4.4 Other Types of Behaviour

Other optimisation problems (and therefore other types of managerial behaviour)
discussed in this book involve maximising revenue, minimising cost, maximising
profit, maximising net output, and maximising return to the dollar.

1.5 Measures of Efficiency

Measures of efficiency can be viewed as ex post measures of how well firm man-
agers have solved different optimisation problems. Except where explicitly stated
otherwise, all measures of efficiency defined in this book take values in the closed
unit interval. A firm manager is said to have been fully efficient by some measure if
and only if that measure takes the value one.

1.5.1 Output-Oriented Measures

Output-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situations where managers have placed nonnegative values on outputs (not
necessarily market values) and inputs have been predetermined. In these situations,
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the relevance of a particular measure depends on how easily the manager has been
able to choose the outputmix. If, for example, the outputmix of the firm has been pre-
determined, then the most relevant measure is output-oriented technical efficiency
(OTE). Several measures of OTE can be found in the literature. In this book, the
OTE of manager i in period t is defined as OTEt (xit , qit , zit ) = Dt

O(xit , qit , zit ).
Equivalently,

OTEt (xit , qit , zit ) = Q(qit )/Q(q̄i t ) (1.13)

whereQ(qit ) is the aggregate output of the firm andQ(q̄i t ) = Q(qit )/Dt
O(xit , qit , zit )

is the maximum aggregate output that is possible in period t when using xit to
produce a scalar multiple of qit in an environment characterised by zit . The right-
hand side of (1.13) is, in fact, an output index. If environmental variables have been
predetermined, then it can be viewed as a measure of how well the manager has
solved problem (1.10).

For a numerical example, reconsider the output maximisation problem depicted
earlier in Fig. 1.5. In that figure, the outputs of firm 1 in period 1 were represented
by point A. The aggregate output at point A is Q(q11) = 1.938 × 0.516 = 1. The
aggregate output at point C isQ(q̄11) = 4.593 × 0.516 = 2.37. The OTE ofmanager
1 in period 1 is OTE1(x11, q11, z11) = Q(q11)/Q(q̄11) = 0.422 (i.e., the aggregate
output at point A divided by the aggregate output at point C).

The fact that the OTE of a manager can be defined in terms of aggregate outputs
means it can be depicted in input-output space. It can also be viewed as a TFPI.
For example, points A and C in Fig. 1.5 map to points A and C in Fig. 1.8. The
frontier depicted in this figure is the frontier depicted earlier in Fig. 1.4. The TFP
at point A is TFP(x11, q11) = Q(q11)/X (x11) = slope 0A = 1. The TFP at point

Fig. 1.8 Output-oriented technical inefficiency. The gap between the rays passing through points
A and C is due to technical inefficiency
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C is TFP(x11, q̄11) = Q(q̄11)/X (x11) = slope 0C = 2.37. The OTE of manager 1
in period 1 is OTE1(x11, q11, z11) = TFP(x11, q11)/TFP(x11, q̄11) = 0.422 (i.e., the
TFP at point A divided by the TFP at point C).

1.5.2 Input-Oriented Measures

Input-oriented measures of efficiency are relevant measures of managerial perfor-
mance in situationswheremanagers have placed nonnegative values on inputs (again,
not necessarily market values) and outputs have been predetermined. In these situa-
tions, the relevance of a particular measure depends on how easily the manager has
been able to choose the input mix. If, for example, the input mix of the firm has been
predetermined, then the most relevant measure is input-oriented technical efficiency
(ITE). Again, several measures of ITE can be found in the literature. In this book,
the ITE of manager i in period t is defined as ITEt (xit , qit , zit ) = 1/Dt

I (xit , qit , zit ).
Equivalently,

ITEt (xit , qit , zit ) = X (x̄i t )/X (xit ) (1.14)

where X (xit ) is the aggregate input of the firm and X (x̄i t ) = X (xit )/Dt
I (xit , qit , zit )

is the minimum aggregate input needed to produce qit in period t when using a scalar
multiple of xit in an environment characterised by zit . The right-hand side of (1.14)
is an input index. If environmental variables have been predetermined, then it can be
viewed as a measure of how well the manager has solved problem (1.11).

For a numerical example, reconsider the input minimisation problem depicted
earlier in Fig. 1.6. In that figure, the inputs of firm 1 in period 1 were represented by
pointA. The aggregate input at pointA isX (x11) = 1.299 × 0.77 = 1. The aggregate
input at point B is X (x̄11) = 0.727 × 0.77 = 0.56. The ITE of manager 1 in period
1 is ITE1(x11, q11, z11) = X (x̄11)/X (x11) = 0.56/1 = 0.56 (i.e., the aggregate input
at point B divided by the aggregate input at point A).

The fact that the ITE of a manager can be defined in terms of aggregate inputs
means it can also be depicted in input-output space. It can also be viewed as a TFPI.
For example, points A and B in Fig. 1.6 map to points A and B in Fig. 1.9. The
frontier passing through point B in Fig. 1.9 is the frontier depicted earlier in Figs.
1.4 and 1.8. The TFP at point A is TFP(x11, q11) = Q(q11)/X (x11) = slope 0A = 1.
The TFP at point B is TFP(x̄11, q11) = Q(q11)/X (x̄11) = slope 0B= 1.786. The ITE
of manager 1 in period 1 is ITE1(x11, q11, z11) = TFP(x11, q11)/TFP(x̄11, q11) =
1/1.786 = 0.56 (i.e., the TFP at point A divided by the TFP at point B).
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Fig. 1.9 Input-oriented technical inefficiency. The gap between the rays passing through points A
and B is due to technical inefficiency

1.5.3 Productivity-Oriented Measures

Productivity-oriented measures of efficiency are relevant measures of managerial
performance in situationswheremanagers have placed nonnegative values on outputs
and inputs (again, not necessarily market values) and chosen at least one output and
at least one input freely. In these situations, the relevance of a particular measure
depends on how easily the manager has been able to choose the output mix and the
input mix. If, for example, all outputs and inputs have been chosen freely, then the
most relevant measure is technical, scale and mix efficiency (TSME). The TSME of
manager i in period t is

TSMEt (xit , qit , zit ) = TFP(xit , qit )/TFP
t (zit ) (1.15)

where TFP(xit , qit ) = Q(qit )/X (xit ) is the TFP of the firm and TFPt (zit ) is the
maximum TFP that is possible in period t in an environment characterised by zit .
The right-hand side of (1.15) is a TFPI. If environmental variables have been prede-
termined, then it can be viewed as a measure of how well the manager has solved
problem (1.12).

For a numerical example, reconsider the TFPmaximisation problem depicted ear-
lier in Fig. 1.7. Relevant parts of that figure are now reproduced in Fig. 1.10. In these
figures, the outputs and inputs of firm 1 in period 1map to point A. The TFP at point A
is TFP(x11, q11) = slope 0A= 1/1 = 1. The TFP at any point on the line connecting
points N and E is TFP1(z11) = slope 0E = 2.744/0.7805 = 3.516. The TSME of
manager 1 in period 1 is TSME1(x11, q11, z11) = TFP(x11, q11)/TFP1(z11) = 0.284
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Fig. 1.10 Technical, scale and mix inefficiency. The gap between the rays passing through points
A and E is due to technical, scale and mix inefficiency

(i.e., the TFP at point A divided by the TFP at any point on the line connecting points
N and E).

The measure of TSME defined by (1.15) can be decomposed into a measure of
technical efficiency and a measure of scale and mix efficiency. Both output- and
input-oriented decompositions are available. The technical efficiency components
are the measures of OTE and ITE defined by (1.13) and (1.14). The scale and mix
efficiency components are productivity-oriented measures of economies of scale
and substitution. Economies of scale and substitution are the benefits obtained by
changing the scale of operations, the output mix, and the input mix. On the output
side, the so-called output-oriented scale and mix efficiency (OSME) of manager i in
period t is

OSMEt (xit , qit , zit ) = TFP(xit , q̄i t )/TFP
t (zit ) (1.16)

where TFP(xit , q̄i t ) = Q(q̄i t )/X (xit ) is the maximum TFP possible when using xit
to produce a scalar multiple of qit in period t in an environment characterised by zit .
Equations (1.13), (1.15) and (1.16) imply that

OSMEt (xit , qit , zit ) = TSMEt (xit , qit , zit )/OTE
t (xit , qit , zit ). (1.17)

This equation says that OSME is the component of TSME that remains after account-
ing for OTE. On the input side, the so-called input-oriented scale and mix efficiency
(ISME) of manager i in period t is

ISMEt (xit , qit , zit ) = TFP(x̄i t , qit )/TFP
t (zit ) (1.18)
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Fig. 1.11 Technical, scale and mix inefficiency. The gap between the rays passing through points
A and C is due to technical inefficiency. The gap between the rays passing through points C and E
is due to scale and mix inefficiency

where TFP(x̄i t , qit ) = Q(qit )/X (x̄i t ) is the maximum TFP possible when using a
scalar multiple of xit to produce qit in period t in an environment characterised by
zit . Equations (1.14), (1.15) and (1.18) imply that

ISMEt (xit , qit , zit ) = TSMEt (xit , qit , zit )/ITE
t (xit , qit , zit ). (1.19)

This equation says that ISME is the component of TSME that remains after account-
ing for ITE.

For a numerical example, reconsider the measures of OTE, ITE and TSME
depicted in Figs. 1.8, 1.9 and 1.10. Relevant parts of those figures are now re-
produced in Figs. 1.11 and 1.12. In Fig. 1.11, the OSME of manager 1 in pe-
riod 1 is OSME1(x11, q11, z11) = TFP(x11, q̄11)/TFP1(z11) = 0.674 (i.e., the TFP
at point C divided by the TFP at any point on the line connecting points N and
E). In Fig. 1.12, the ISME of manager 1 in period 1 is ISME1(x11, q11, z11) =
TFP(x̄11, q11)/TFP1(z11) = 0.508 (i.e., the TFP at point B divided by the TFP at
any point on the line connecting points N and E).

1.5.4 Other Measures

Other measures of efficiency discussed in this book include metatechnology ratios
and measures of revenue, cost, profit, mix, allocative and scale efficiency. Metatech-
nology ratios can be viewed asmeasures of howwellmanagers have chosen their pro-
duction technologies (i.e., how well they have chosen their ‘books of instructions’).
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Fig. 1.12 Technical, scale and mix inefficiency. The gap between the rays passing through points
A and B is due to technical inefficiency. The gap between the rays passing through points B and E
is due to scale and mix inefficiency

Measures of revenue, cost and profit efficiency are measures of how well managers
have maximised revenue, minimised cost and maximised profit. Measures of mix ef-
ficiency are measures of howwell managers have captured economies of substitution
(i.e., the benefits obtained by substituting some outputs for others, or by substitut-
ing some inputs for others). Measures of scale efficiency are measures of how well
managers have captured economies of scale (i.e., the benefits obtained by changing
the scale of operations).

1.6 Piecewise Frontier Analysis

Estimating and/or predicting levels of efficiency involves estimating production fron-
tiers. A widely-used estimation approach involves enveloping scatterplots of data
points as tightly as possible without violating any assumed properties of production
technologies. Some of the most common assumptions lead to estimated frontiers that
are comprised of multiple linear segments (or pieces). The associated frontiers are
known as piecewise frontiers.4

4In mathematics, a piecewise function is a function defined on a sequence of intervals (or sub-
domains). Examples include the absolute value function and the Heaviside step function.
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1.6.1 Basic Models

The most common piecewise frontier models (PFMs) are underpinned by the fol-
lowing assumptions:

PF1: production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

PF2: all relevant quantities, prices and environmental variables are observed and
measured without error;

PF3: production frontiers are locally (or piecewise) linear;
PF4: outputs, inputs and environmental variables are strongly disposable; and
PF5: production possibilities sets are convex.

If these assumptions are true, then most measures of efficiency can be estimated
using linear programming (LP). The associatedmodels and estimators are commonly
known as data envelopment analysis (DEA) and estimators.

Output-Oriented Models

Output-oriented PFMs are mainly used to estimate the measure of OTE defined
by (1.13). If there are I firms in the dataset and assumptions PF1 to PF5 are true,
then the DEA estimation problem can be written as

max
μ,λ11,...,λI t

{
μ : μqit ≤

I∑
h=1

t∑
r=1

λhrqhr ,
I∑

h=1

t∑
r=1

λhr zhr ≤ zit ,

I∑
h=1

t∑
r=1

λhr xhr ≤ xit ,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (1.20)

This LP problem seeks to scale up the output vector while holding inputs and en-
vironmental variables fixed. The value of μ at the optimum is an estimate of the
reciprocal of OTEt (xit , qit , zit ).

For a numerical example, reconsider the toy data in Table 1.1. The estimation
problem for manager 1 in period 1 is

max
μ,λ11,...,λ51

μ

s.t. 1μ − 1λ11 − 1λ21 − 2.37λ31 − 2.11λ41 − 1.81λ51 ≤ 0
1μ − 1λ11 − 1λ21 − 2.37λ31 − 2.11λ41 − 3.62λ51 ≤ 0

1λ11 + 1λ21 + 1λ31 + 1λ41 + 1λ51 ≤ 1
1λ11 + 0.56λ21 + 1λ31 + 1.05λ41 + 1.05λ51 ≤ 1
1λ11 + 0.56λ21 + 1λ31 + 0.7λ41 + 0.7λ51 ≤ 1

λ11 + λ21 + λ31 + λ41 + λ51 = 1

and λ11, . . . , λ51 ≥ 0.

The value of the μ at the optimum is 2.37. The associated estimate of OTE is
OT̂E1(x11, q11, z11) = 1/2.37 = 0.422. DEA estimates of OTE for other managers
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Table 1.7 DEA estimates of OTEa

Row Firm Period OTE

A 1 1 0.422

B 2 1 1

C 3 1 1

D 4 1 1

E 5 1 1

F 1 2 0.865

G 2 2 1

H 3 2 1

I 4 2 0.871

J 5 2 1

K 1 3 1

L 2 3 1

M 3 3 0.653

N 4 3 1

O 5 3 0.844

P 1 4 0.594

R 2 4 0.671

S 3 4 0.583

T 4 4 1

U 5 4 0.654

V 1 5 1

W 2 5 0.895

X 3 5 0.836

Y 4 5 0.516

Z 5 5 0.867
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

in other periods can be obtained in a similar way and are reported in Table 1.7. The
solution for manager 1 in period 1 is depicted in Fig. 1.13. In this figure, the outputs
of firm 1 in period 1 map to point A. The piecewise frontier passing through point C
is an estimate of the true frontier depicted earlier in Fig. 1.5.

Input-Oriented Models

Input-oriented PFMs are mainly used to estimate the measure of ITE defined by
(1.14). If there are I firms in the dataset and assumptions PF1 to PF5 are true, then
the DEA estimation problem can be written as
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Fig. 1.13 An estimate of output-oriented technical efficiency. In the case of firm A, the DEA
estimate of OTE is OT̂E1(x11, q11, z11) = 1/2.37 = 0.422

min
μ,λ11,...,λI t

{
μ :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit ,
I∑

h=1

t∑
r=1

λhr zhr ≤ zit ,

μxit ≥
I∑

h=1

t∑
r=1

λhr xhr ,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r
}
. (1.21)

This LP problem seeks to scale down the input vector while holding outputs and
environmental variables fixed. The value of μ at the optimum is an estimate of
ITEt (xit , qit , zit ).

For a numerical example, reconsider the toy data in Table 1.1. The estimation
problem for firm 1 in period 1 is

min
μ,λ11,...,λI t

μ

s.t. 1λ11 + 1λ21 + 2.37λ31 + 2.11λ41 + 1.81λ51 ≥ 1
1λ11 + 1λ21 + 2.37λ31 + 2.11λ41 + 3.62λ51 ≥ 1
1λ11 + 1λ21 + 1λ31 + 1λ41 + 1λ51 ≤ 1

1μ − 1λ11 − 0.56λ21 − 1λ31 − 1.05λ41 − 1.05λ51 ≥ 0
1μ − 1λ11 − 0.56λ21 − 1λ31 − 0.7λ41 − 0.7λ51 ≥ 0

λ11 + λ21 + λ31 + λ41 + λ51 = 1

and λ11, . . . , λ51 ≥ 0.

The value of μ at the optimum is I T̂E1(x11, q11, z11) = 0.56. DEA estimates of ITE
for other firms in other periods can be obtained in a similar way and are reported in
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Table 1.8 DEA estimates of ITEa

Row Firm Period ITE

A 1 1 0.56

B 2 1 1

C 3 1 1

D 4 1 1

E 5 1 1

F 1 2 0.954

G 2 2 1

H 3 2 1

I 4 2 0.955

J 5 2 1

K 1 3 1

L 2 3 1

M 3 3 0.604

N 4 3 1

O 5 3 0.777

P 1 4 0.551

R 2 4 0.657

S 3 4 0.669

T 4 4 1

U 5 4 0.689

V 1 5 1

W 2 5 0.846

X 3 5 0.881

Y 4 5 0.387

Z 5 5 0.5
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

Table 1.8. The solution for firm 1 in period 1 is depicted in Fig. 1.14. In this figure, the
inputs of firm 1 in period 1 map to point A. The piecewise frontier passing through
point B is an estimate of the true frontier depicted earlier in Fig. 1.6.

Productivity-Oriented Models

Productivity-oriented PFMs are mainly used to estimate the measure of TSME
defined by (1.15). If estimates of OTE and ITE are available, then Eqs. (1.17) and
(1.19) can subsequently be used to estimate themeasures ofOSMEand ISMEdefined
by (1.16) and (1.18).
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Fig. 1.14 An estimate of input-oriented technical efficiency. In the case of firmA, theDEAestimate
of ITE is I T̂E1(x11, q11, z11) = 0.56/1 = 0.56

Estimating the measure of TSME of defined by (1.15) involves estimating
TFPt (zit ). If there are I firms in the dataset and assumptions PF1 to PF5 are true,
then the DEA estimation problem can be written as

max
q,x,μ,θ11,...,θI t

{
Q(q) : q ≤

I∑
h=1

t∑
r=1

θhrqhr ,
I∑

h=1

t∑
r=1

θhr zhr ≤ μzit , X (x) = 1,

I∑
h=1

t∑
r=1

θhr xhr ≤ x,
I∑

h=1

t∑
r=1

θhr = μ, θhr ≥ 0 for all h and r
}
. (1.22)

If the aggregator functions are linear, then this problem is an LP problem. Whether
or not the aggregator functions are linear, the value of the objective function at the
optimum is an estimate of TFPt (zit ). This can be substituted into (1.15) to obtain an
estimate of TSMEt (xit , qit , zit ).

For a numerical example, reconsider the toy data in Table 1.1. Also suppose
that Q(q) = 0.484q1 + 0.516q2 and X (x) = 0.23x1 + 0.77x2 (these functions were
used earlier to compute the aggregate outputs and inputs in Table 1.2). The estimation
problem for firm 1 in period 1 is
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max
q,x,μ,θ

0.484q1 + 0.516q2

s.t. q1 − 1θ11 − 1θ21 − 2.37θ31 − 2.11θ41 − 1.81θ51 ≤ 0
q2 − 1θ11 − 1θ21 − 2.37θ31 − 2.11θ41 − 3.62θ51 ≤ 0

1θ11 + 1θ21 + 1θ31 + 1θ41 + 1θ51 − 1μ ≤ 0
0.23x1 + 0.77x2 = 1

1θ11 + 0.56θ21 + 1θ31 + 1.05θ41 + 1.05θ51 − x1 ≤ 0
1θ11 + 0.56θ21 + 1θ31 + 0.7θ41 + 0.7θ51 − x2 ≤ 0
θ11 + θ21 + θ31 + θ41 + θ51 − μ = 0

and q1, q2, x1, x2, θ11, . . . , θ51 ≥ 0.

The value of the objective function at the optimum is TF̂P1(z11) = 3.516. The TFP
of firm 1 in period 1 is TFP(x11, q11) = 1. The associated DEA estimate of TSME
is T ŜME1(x11, q11, z11) = TFP(x11, q11)/TF̂P1(z11) = 0.284. DEA estimates of
TSME for other managers in other periods can be obtained in a similar way and
are reported in Table 1.9. This table also reports estimates of OTE, OSME, ITE and
ISME. The OTE and ITE estimates are the ones reported earlier in Tables 1.7 and 1.8.
The OSME (resp. ISME) estimates were obtained by dividing the TSME estimates
by the OTE (resp. ITE) estimates. The results for manager 1 in period 1 are depicted
in Fig. 1.15. In this figure, the piecewise frontier passing through points B and E is
an estimate of the true frontier passing through point E in Fig. 1.3. The piecewise
frontier passing through points B and C is an estimate of the true frontier passing
through points B and C in Fig. 1.4. The outputs and inputs of firm 1 in period 1 map
to point A. The TFP-maximising point is point E. Points B and C are technically effi-
cient points. The dashed lines passing through these points are iso-productivity rays
with different slopes. The DEA estimates of TSME, OSME and ISME for manager
1 in period 1 are given by the ratios of these slopes.

Other Models

Other PFMs discussed in this book include revenue-, cost- and profit-oriented
models. These models are mainly used to estimate measures of revenue, cost, profit,
allocative, pure mix and pure scale efficiency.

1.6.2 Productivity Analysis

Productivity analysis involves both measuring and explaining changes in productiv-
ity. This section focuses on explaining changes in TFP. This involves decomposing
proper TFPI numbers into measures of environmental change, technical change, and
efficiency change. If production frontiers are piecewise linear, then the easiest way
to proceed is to rewrite (1.15) as TFP(xit , qit ) = TFPt (zit ) × TSMEt (xit , qit , zit ). A
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Table 1.9 DEA estimates of TSME, OSME, OTE, ISME and ITEa,b

Row Firm Period TSME OTE OSME ITE ISME

A 1 1 0.284 0.422 0.674 0.56 0.508

B 2 1 0.508 1 0.508 1 0.508

C 3 1 0.674 1 0.674 1 0.674

D 4 1 0.769 1 0.769 1 0.769

E 5 1 1 1 1 1 1

F 1 2 0.602 0.865 0.696 0.954 0.631

G 2 2 1 1 1 1 1

H 3 2 0.999 1 0.999 1 0.999

I 4 2 0.761 0.871 0.874 0.955 0.797

J 5 2 0.899 1 0.899 1 0.899

K 1 3 0.885 1 0.885 1 0.885

L 2 3 0.785 1 0.785 1 0.785

M 3 3 0.534 0.653 0.819 0.604 0.886

N 4 3 1 1 1 1 1

O 5 3 0.569 0.844 0.674 0.777 0.732

P 1 4 0.547 0.594 0.921 0.551 0.992

R 2 4 0.578 0.671 0.861 0.657 0.880

S 3 4 0.429 0.583 0.737 0.669 0.642

T 4 4 0.811 1 0.811 1 0.811

U 5 4 0.607 0.654 0.928 0.689 0.881

V 1 5 0.896 1 0.896 1 0.896

W 2 5 0.619 0.895 0.692 0.846 0.732

X 3 5 0.566 0.836 0.677 0.881 0.643

Y 4 5 0.384 0.516 0.745 0.387 0.994

Z 5 5 0.5 0.867 0.577 0.5 1
aTSME = OTE × OSME = ITE × ISME. Some estimates may be incoherent at the third decimal
place due to rounding (e.g., the product of the OTE and OSME estimates in row Z is not exactly
equal to 0.5 due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks, xit , qit ) = TFPt (zit )/TFP
s(zks)

× TSMEt (xit , qit , zit )/TSMEs(xks, qks, zks). (1.23)

The first ratio on the right-hand side is an environment and technology index (ETI)
(i.e., a combined measure of environmental and technical change). The second ratio
is a technical, scale and mix efficiency index (TSMEI).

Output- and input-oriented decompositions of TFPI numbers are also available.
For an output-oriented decomposition, the easiest way to proceed is to rewrite
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Fig. 1.15 Estimates of technical, scale and mix efficiency. The DEA estimates of TSME,
OSME and ISME for manager 1 in period 1 are T ŜME1(x11, q11, z11) = (slope 0A)/(slope 0E)
= 0.2844, OŜME1(x11, q11, z11) = (slope 0C)/(slope 0E) = 0.674 and I ŜME1(x11, q11, z11) =
(slope 0B)/(slope 0E) = 0.508

(1.17) as TSMEt (xit , qit , zit ) = OTEt (xit , qit , zit ) × OSMEt (xit , qit , zit ). A similar
equation holds for firm k in period s. Substituting these equations into (1.23) yields

TFPI(xks, qks, xit , qit ) = TFPt (zit )/TFP
s(zks)

× OTEt (xit , qit , zit )/OTE
s(xks, qks, zks)

× OSMEt (xit , qit , zit )/OSMEs(xks, qks, zks). (1.24)

The first ratio on the right-hand side is the ETI in (1.23). The second ratio is an output-
oriented technical efficiency index (OTEI). The last ratio is an output-oriented scale
and mix efficiency index (OSMEI).

For an input-oriented decomposition, the easiestway to proceed is to rewrite (1.19)
as TSMEt (xit , qit , zit ) = ITEt (xit , qit , zit ) × ISMEt (xit , qit , zit ). A similar equation
holds for firm k in period s. Substituting these equations into (1.23) yields

TFPI(xks, qks, xit , qit ) = TFPt (zit )/TFP
s(zks)

× ITEt (xit , qit , zit )/ITE
s(xks, qks, zks)

× ISMEt (xit , qit , zit )/ISMEs(xks, qks, zks). (1.25)

The first ratio on the right-hand side is the ETI in (1.23) and (1.24). The second ratio is
an input-oriented technical efficiency index (ITEI). The last ratio is an input-oriented
scale and mix efficiency index (ISMEI).
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For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. Associated
Lowe TFPI numbers were reported earlier in column L of Table 1.6. Associated
DEA estimates of OTE, OSME, ITE and ISME were reported earlier in Table 1.9.
Output- and input-oriented decompositions of the TFPI numbers are now reported in
Table 1.10. The OTEI, OSMEI, ITEI and ISMEI numbers were obtained by dividing
the estimates of OTE, OSME, ITE and ISME for each firm in each period by the
corresponding estimates for firm 1 in period 1. The ETI numbers were obtained as
residuals (i.e., ETI = TFPI/(OTEI×OSMEI) = TFPI/(ITEI×ISMEI)).

Table 1.10 Output- and input-oriented decompositions of Lowe TFPI numbers using DEAa,b

Firm Period TFPI ETI OTEI OSMEI ETI ITEI ISMEI

1 1 1 1 1 1 1 1 1

2 1 1.786 1 2.37 0.753 1 1.786 1

3 1 2.37 1 2.37 1 1 1.786 1.327

4 1 2.703 1 2.37 1.141 1 1.786 1.514

5 1 3.516 1 2.37 1.483 1 1.786 1.969

1 2 2.117 1 2.05 1.033 1 1.704 1.243

2 2 3.515 1 2.37 1.483 1 1.786 1.968

3 2 3.513 1 2.37 1.482 1 1.786 1.967

4 2 2.675 1 2.063 1.297 1 1.705 1.569

5 2 3.159 1 2.37 1.333 1 1.786 1.769

1 3 3.110 1.000 2.370 1.312 1.000 1.786 1.742

2 3 2.760 1.000 2.370 1.165 1.000 1.786 1.546

3 3 1.879 1.000 1.547 1.215 1.000 1.078 1.743

4 3 3.516 1.000 2.370 1.483 1.000 1.786 1.969

5 3 2 1.000 2.000 1.000 1.000 1.388 1.441

1 4 1.923 1.000 1.408 1.366 1.000 0.984 1.954

2 4 2.032 1.000 1.590 1.278 1.000 1.173 1.732

3 4 1.509 1.000 1.381 1.093 1.000 1.195 1.263

4 4 2.852 1.000 2.370 1.203 1.000 1.786 1.597

5 4 2.134 1.000 1.550 1.376 1.000 1.230 1.735

1 5 3.150 1.000 2.370 1.329 1.000 1.786 1.764

2 5 2.176 1.000 2.120 1.026 1.000 1.510 1.441

3 5 1.991 1.000 1.982 1.004 1.000 1.573 1.266

4 5 1.351 1.000 1.223 1.105 1.000 0.691 1.956

5 5 1.758 1.000 2.054 0.856 1.000 0.893 1.969
aTFPI = ETI × OTEI × OSMEI = ETI × ITEI × ISMEI. Some index numbersmay be incoherent
at the third decimal place due to rounding (e.g., the product of the ETI, OTEI and OSMEI numbers
in row 2 is not exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
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1.6.3 Other Models

Other PFMs discussed in this book include free disposal hull (FDH) andmetafrontier
models. FDHmodels are obtained by relaxing the assumption that production possi-
bilities sets are convex. Metafrontier models can be used to decompose measures of
technical efficiency into metatechnology ratios and associated measures of residual
technical efficiency.

1.7 Deterministic Frontier Analysis

Production frontiers are often represented by distance, revenue, cost and/or profit
functions. These functions can sometimes bewritten in the form of regressionmodels
inwhich the explanatory variables are deterministic (i.e., not random). The associated
frontiers are known as deterministic frontiers.

1.7.1 Basic Models

Deterministic frontier models (DFMs) are underpinned by the following assump-
tions:

DF1 production possibilities sets can be represented by distance, revenue, cost
and/or profit functions;

DF2 all relevant quantities, prices and environmental variables are observed and
measured without error; and

DF3 the functional forms of relevant functions are known.

If these assumptions are true, then production frontiers can be estimated using single-
equation regression models with error terms representing inefficiency.

Output-Oriented Models

Output-oriented DFMs are mainly used to estimate the measure of OTE defined
by (1.13). This involves estimating the output distance function. Output distance
functions can be written in the form of regression models with nonnegative errors
representing output-oriented technical inefficiency. For example, consider the fol-
lowing output distance function:

Dt
O(xit , qit , zit ) =

⎛
⎝A(t)

J∏
j=1

z
δ j

j i t

M∏
m=1

xβm

mit

⎞
⎠

−1 (
N∑

n=1

γnq
τ
nit

)1/τ

(1.26)

whereA(t) > 0,A(t) ≥ A(t − 1),β = (β1, . . . , βM )′ ≥ 0,γ = (γ1, . . . , γN )′ ≥ 0,τ ≥
1 and γ ′ι = 1. After some simple algebra, this function can be rewritten as
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ln q1i t = α(t) +
J∑
j=1

δ j ln z ji t +
M∑

m=1

βm ln xmit − 1

τ
ln

(
N∑

n=1

γnq
∗τ
nit

)
− uit (1.27)

where α(t) ≡ lnA(t) is an output-oriented measure of technical change, q∗
nit ≡

qnit/q1i t denotes a normalised output, and uit ≡ − lnOTEt (xit , qit , zit ) ≥ 0 denotes
an output-oriented technical inefficiency effect.

Input-Oriented Models

Input-oriented DFMs are mainly used to estimate the measure of ITE defined by
(1.14). This involves estimating the input distance function. Input distance functions
can be written in the form of regression models with nonnegative errors representing
input-oriented technical inefficiency. For example, if the output distance function is
given by (1.26), then the input distance function is

Dt
I (xit , qit , zit ) =

⎛
⎝B(t)

J∏
j=1

z
κ j

j i t

M∏
m=1

xλm
mit

⎞
⎠

(
N∑

n=1

γnq
τ
nit

)−1/(τη)

(1.28)

where η = β ′ι, B(t) = A(t)1/η, κ j = δ j/η and λm = βm/η. After some simple alge-
bra, this function can be rewritten as

− ln x1i t = ξ(t) +
J∑
j=1

κ j ln z ji t +
M∑

m=2

λm ln x∗
mit − 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)
− uit

(1.29)

where ξ(t) ≡ lnB(t) is an input-oriented measure of technical change, x∗
mit ≡

xmit/x1i t denotes a normalised input, and, in a slight abuse of notation, uit ≡
− ln ITEt (xit , qit , zit ) ≥ 0 now denotes an input-oriented technical inefficiency
effect.

Other Models

DFMs can also be used to estimate measures of revenue, cost and profit efficiency.
This involves estimating revenue, cost and profit functions. These functions can also
be written in the form of regression models with nonnegative errors representing
inefficiency.

1.7.2 Least Squares Estimation

Least squares (LS) estimation of DFMs involves choosing the unknown parameters
to minimise the sum of squared inefficiency effects. In the efficiency literature, it is
common to assume that uit is a random variable with the following properties:
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LS1 E(uit ) = μ ≥ 0 for all i and t .
LS2 var(uit ) ∝ σ 2

u for all i and t .
LS3 cov(uit , uks) = 0 if i 
= k or t 
= s.
LS4 uit is uncorrelated with the explanatory variables.

LS1 says the inefficiency effects have the samemean. LS2 says they are homoskedas-
tic. LS3 says they are serially and spatially uncorrelated. LS4 is self-explanatory.

If a DFM contains an intercept and LS1 to LS4 are true, then LS estimators
for the slope parameters are consistent. A consistent estimator for the intercept can
be obtained by adjusting the LS estimator for the intercept upwards by an amount
equal to the maximum of the LS residuals. In this book, the associated estimators
for the intercept and slope parameters are collectively referred to as corrected least
squares (CLS) estimators. In practice, it is common to impose restrictions on the
parameters so that the estimated frontier is consistent with any assumed properties
of production technologies. If the restrictions are true, then associated restricted least
squares (RLS) estimators for the slope parameters are consistent. Again, a consistent
estimator for the intercept can be obtained by adjusting the RLS estimator for the
intercept upwards by an amount equal to the largest RLS residual. In this book, the
associated estimators for the intercept and slope parameters are collectively referred
to as corrected restricted least squares (CRLS) estimators.

For a numerical example, reconsider the toy data inTable 1.1. These data have been
used to obtain CLS and CRLS estimates of the parameters in (1.27). The estimates
are reported in Table 1.11. The CRLS estimates were obtained by restricting α(t) ≥
α(t − 1), β = (β1, . . . , βM )′ ≥ 0 and τ ≥ 1. The CRLS estimates have been used to
predict levels of OTE and ITE. The predictions are reported in Table 1.12. The OTE

Table 1.11 LS parameter estimates

Parameter CLS CRLS

α(1) ≡ lnA(1) 0.954 1.159

α(2) ≡ lnA(2) 0.903 1.159

α(3) ≡ lnA(3) 0.702 1.159

α(4) ≡ lnA(4) 0.723 1.159

α(5) ≡ lnA(5) 0.782 1.159

δ1 0.188 −0.056

β1 0.093 0.280

β2 0.259 0

γ1 0.771 0.724

γ2 0.229 0.276

τ −0.083 1
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Table 1.12 CRLS predictions of OTE and ITEa

Row Firm Period OTE ITE

A 1 1 0.314 0.016

B 2 1 0.369 0.029

C 3 1 0.744 0.348

D 4 1 0.653 0.219

E 5 1 0.715 0.302

F 1 2 0.327 0.018

G 2 2 0.660 0.226

H 3 2 0.938 0.795

I 4 2 0.900 0.686

J 5 2 1 1

K 1 3 0.724 0.315

L 2 3 0.546 0.115

M 3 3 0.447 0.057

N 4 3 0.300 0.014

O 5 3 0.652 0.218

P 1 4 0.353 0.024

R 2 4 0.487 0.077

S 3 4 0.271 0.009

T 4 4 0.790 0.430

U 5 4 0.314 0.016

V 1 5 0.675 0.245

W 2 5 0.668 0.237

X 3 5 0.293 0.013

Y 4 5 0.341 0.022

Z 5 5 0.589 0.151
aNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

predictions were obtained by evaluating (1.26). The ITE predictions were obtained
by evaluating the reciprocal of (1.28). The predictions for manager 1 in period 1 are
depicted in Figs. 1.16 and 1.17. In Fig. 1.16 (resp. 1.17), the outputs (resp. inputs)
of firm 1 in period 1 map to point A. In Fig. 1.16, the frontier passing through point
A∗ is an estimate of the true frontier depicted earlier in Fig. 1.5. In Fig. 1.17, the
frontier passing through point B∗ is an estimate of the true frontier depicted earlier
in Fig. 1.6.



1.7 Deterministic Frontier Analysis 41

0

q2

q1

A∗

A

C

1 2.37

1

2.37

3.186

1 3.186

Fig. 1.16 A prediction of output-oriented technical efficiency. In the case of firm A, the CRLS
prediction of OTE is OT̂E1(x11, q11, z11) = 1/3.186 = 0.314
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Fig. 1.17 A prediction of input-oriented technical efficiency. In the case of firm A, the CRLS
prediction of ITE is I T̂E1(x11, q11, z11) = 0.016/1 = 0.016
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1.7.3 Productivity Analysis

For purposes of comparison with Sect. 1.6.2, this section focuses on decomposing
proper TFPI numbers. Again, both output- and input-oriented decompositions are
available.

For an output-oriented decomposition, a relatively easy way to proceed is to
write TFP(xit , qit ) = TFP(xit , qit ) exp(−uit )/Dt

O(xit , qit , zit ) where uit denotes an
output-oriented technical inefficiency effect. The precise form of this equation
depends partly on the form of the output distance function. If the output distance
function is given by (1.26), for example, then

TFP(xit , qit ) = A(t)

⎡
⎣

J∏
j=1

z
δ j

j i t

⎤
⎦

×
⎡
⎣TFP(xit , qit )

M∏
m=1

xβm
mit

(
N∑

n=1

γnq
τ
nit

)−1/τ
⎤
⎦ exp(−uit ).

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks, xit , qit ) =
[
A(t)

A(s)

] ⎡
⎣

J∏
j=1

(
z ji t
z jks

)δ j

⎤
⎦

×
[
TFPI(xks, qks, xit , qit )

M∏
m=1

(
xmit

xmks

)βm
(∑

n γnqτ
nks∑

n γnqτ
nit

)1/τ
]

×
[
exp(−uit )

exp(−uks)

]
. (1.30)

The first term on the right-hand side is an output-oriented technology index (OTI)
(i.e., a measure of technical change). The second term is an output-oriented envi-
ronment index (OEI) (i.e., a measure of environmental change). The third term is an
output-oriented scale and mix efficiency index (OSMEI). The last term is an output-
oriented technical efficiency index (OTEI). If there are no environmental variables
involved in the production process, then the second term vanishes. The conditions
under which other terms vanish is left as an exercise for the reader.

For an input-oriented decomposition, a relatively easy way to proceed is to write
TFP(xit , qit ) = TFP(xit , qit )Dt

I (xit , qit , zit ) exp(−uit ) where uit now denotes an
input-oriented technical inefficiency effect. Again, the precise form of this equation
depends partly on the form of the distance function. If the input distance function is
given by (1.28), for example, then
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TFP(xit , qit ) = B(t)

⎡
⎣

J∏
j=1

z
κ j

j i t

⎤
⎦

×
⎡
⎣TFP(xit , qit )

M∏
m=1

xλm
mit

(
N∑

n=1

γnq
τ
nit

)−1/(τη)
⎤
⎦ exp(−uit ).

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks , xit , qit ) =
[
B(t)

B(s)

] ⎡
⎣

J∏
j=1

(
z ji t
z jks

)κ j

⎤
⎦

×
[
TFPI(xks, qks , xit , qit )

M∏
m=1

(
xmit

xmks

)λm
(∑

n γnqτ
nks∑

n γnqτ
nit

)1/(τη)
]

×
[
exp(−uit )

exp(−uks)

]
. (1.31)

The first term on the right-hand side is an input-oriented technology index (ITI).
The second term is an input-oriented environment index (IEI). The third term is an
input-oriented scale and mix efficiency index (ISMEI). The last term is an input-
oriented technical efficiency index (ITEI). Again, the conditions under which these
terms vanish is left as an exercise for the reader.

For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. Asso-
ciated Lowe TFPI numbers were reported earlier in Table 1.6. Output- and input-
oriented decompositions of these numbers are now reported in Table 1.13. The OTI,
OEI, OSMEI, ITI, IEI and ISMEI numbers in each row were obtained by using
the CRLS estimates reported in Table 1.11 to evaluate the relevant terms in (1.30)
and (1.31). The OTEI and ITEI numbers were obtained as residuals (i.e., OTEI =
TFPI/(OTI×OEI×OSMEI) and ITEI = TFPI/(ITI×IEI×ISMEI); these numbers
could also have been obtained by taking ratios of the CRLS estimates of OTE and
ITE reported earlier in Table 1.12).

1.7.4 Other Models

Other DFMs discussed in this book include various systems of equations. These
systems can be used to explain variations in metafrontiers, output supplies and input
demands.
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Table 1.13 Output- and input-oriented decompositions of Lowe TFPI numbers using CRLSa,b

Firm Period TFPI OTI OEI OTEI OSMEI ITI IEI ITEI ISMEI

1 1 1 1 1 1 1 1 1 1 1

2 1 1.786 1 1 1.176 1.518 1 1 1.786 1

3 1 2.37 1 1 2.37 1 1 1 21.773 0.109

4 1 2.703 1 1 2.081 1.299 1 1 13.695 0.197

5 1 3.516 1 1 2.278 1.543 1 1 18.905 0.186

1 2 2.117 1 0.962 1.041 2.114 1 0.871 1.153 2.108

2 2 3.515 1 0.962 2.102 1.738 1 0.871 14.181 0.285

3 2 3.513 1 1 2.988 1.176 1 1 49.810 0.071

4 2 2.675 1 0.962 2.867 0.970 1 0.871 42.949 0.072

5 2 3.159 1 1 3.186 0.991 1 1 62.651 0.050

1 3 3.110 1 1 2.306 1.349 1 1 19.734 0.158

2 3 2.760 1 1 1.739 1.587 1 1 7.213 0.383

3 3 1.879 1 1 1.426 1.318 1 1 3.546 0.530

4 3 3.516 1 1 0.955 3.682 1 1 0.848 4.145

5 3 2 1 0.962 2.079 1 1 0.871 13.639 0.168

1 4 1.923 1 1 1.125 1.710 1 1 1.522 1.264

2 4 2.032 1 1 1.552 1.309 1 1 4.801 0.423

3 4 1.509 1 0.962 0.864 1.815 1 0.871 0.594 2.918

4 4 2.852 1 0.962 2.516 1.178 1 0.871 26.969 0.121

5 4 2.134 1 1 1 2.134 1 1 1 2.134

1 5 3.150 1 1 2.149 1.465 1 1 15.363 0.205

2 5 2.176 1 0.962 2.129 1.063 1 0.871 14.841 0.168

3 5 1.991 1 0.962 0.934 2.215 1 0.871 0.784 2.915

4 5 1.351 1 1 1.088 1.242 1 1 1.351 1

5 5 1.758 1 1 1.876 0.937 1 1 9.453 0.186
aTFPI = OTI × OEI × OTEI × OSMEI = ITI × IEI × ITEI × ISMEI. Some index numbers may
be incoherent at the third decimal place due to rounding (e.g., the product of the OTI, OEI, OTEI
and OSMEI numbers in row 2 is not exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8

1.8 Stochastic Frontier Analysis

Distance, revenue, cost and profit functions can always be written in the form of
regression models with unobserved error terms representing statistical noise and
different types of inefficiency. In practice, the noise components are almost always
assumed to be stochastic. The associated frontiers are known as stochastic frontiers.
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1.8.1 Basic Models

Stochastic frontier models (SFMs) are underpinned by only one assumption, namely
that production possibilities sets can be represented by distance, revenue, cost and/or
profit functions.

Output-Oriented Models

Output-oriented SFMs are mainly used to estimate the measure of OTE defined
by (1.13). This involves estimating the output distance function. Any output distance
function can be written in the form of a regression model with an error representing
statistical noise and another error representing output-oriented technical inefficiency.
For example, any output distance function can be written as

ln q1i t = α + λt +
J∑
j=1

δ j ln z ji t +
M∑

m=1

βm ln xmit −
N∑

n=1

γn ln q
∗
nit + vi t − uit

(1.32)

where q∗
nit ≡ qnit/q1i t is a normalised output, γ = (γ1, . . . , γN )′ is a vector of pa-

rameters that sum to one, vi t is an error representing statistical noise, and uit ≡
− lnDt

O(xit , qit , zit ) is a nonnegative output-oriented technical inefficiency effect.
The exact nature of the noise component depends on the unknown output distance
function. If the output distance function is given by (1.26), for example, then

vi t = [α(t) − α − λt] +
[

N∑
n=1

γn ln q
∗
nit − 1

τ
ln

(
N∑

n=1

γnq
∗τ
nit

)]
. (1.33)

These terms can be viewed as functional form errors.

Input-Oriented Models

Input-oriented SFMs are mainly used to estimate the measure of ITE defined
by (1.14). This involves estimating the input distance function. Any input distance
function can be written in the form of a regression model with an error representing
statistical noise and another error representing input-oriented technical inefficiency.
For example, any input distance function can be written as

− ln x1i t = ξ(t) +
M∑

m=1

λm ln x∗
mit −

N∑
n=1

φn ln qnit + vi t − uit (1.34)

where x∗
mit ≡ xmit/x1i t is a normalised input, λ = (λ1, . . . , λM )′ is a vector of pa-

rameters that sum to one, vi t is an error representing statistical noise, and uit ≡
− ln ITEt (xit , qit , zit ) is now a nonnegative input-oriented technical inefficiency ef-
fect. In this case, the exact nature of the noise component depends on the unknown
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input distance function. If the input distance function is given by (1.28), for example,
then

vi t =
⎡
⎣

J∑
j=1

κ j ln z ji t

⎤
⎦ +

[
N∑

n=1

φn ln qnit − 1

τη
ln

(
N∑

n=1

γnq
τ
nit

)]
. (1.35)

The first term is an omitted variable error. The second term can be viewed as a
functional form error.

Other Models

Revenue-, cost- and profit-oriented SFMs are also available. These models are
mainly used to estimate measures of revenue, cost and profit efficiency. This involves
estimating revenue, cost and profit functions. These functions can also be written in
the form of regression models with error terms representing statistical noise and
different types of inefficiency.

1.8.2 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation of SFMs involves choosing the unknown
parameters to maximise the joint density (or ‘likelihood’) of the observed data. For
simplicity, consider the output-oriented model defined by (1.32). This model can be
written more compactly as

yit = α + λt +
J∑
j=1

δ j ln z ji t +
M∑

m=1

βm ln xmit −
N∑

n=1

γn ln q
∗
nit + εi t (1.36)

where yit ≡ ln q1i t denotes the logarithm of the first output and εi t ≡ vi t − uit is
a composite error representing statistical noise and output-oriented technical inef-
ficiency. The likelihood of the observed data depends on the assumed probability
distributions of vi t and uit . It is common to assume that

ML3 vi t is an independent N (0, σ 2
v ) random variable, and

ML4 uit is an independent N+(μ, σ 2
u ) random variable.

If these assumptions are true, then the ML estimators for the unknown parameters in
the model are consistent, asymptotically efficient, and asymptotically normal. Fol-
lowing estimation, ML predictions of uit can be obtained by using theML parameter
estimates to evaluate

E(uit |εi t ) = μ∗
i t + σ∗

(
φ(μ∗

i t/σ∗)
�(μ∗

i t/σ∗)

)
(1.37)

where μ∗
i t ≡ (μσ 2

v − εi tσ
2
u )/(σ 2

v + σ 2
u ) and σ 2∗ ≡ σ 2

v σ 2
u /(σ 2

v + σ 2
u ). Let ũi t denote

the ML predictor for uit . The associated predictor for OTE is exp(−ũi t ).
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Table 1.14 ML parameter estimates

Parameter ML RML

α 0.990 0.480

λ −0.069 0

δ1 0.258 0.110

β1 0.148 0.092

β2 0.279 0.289

γ1 0.682 0.676

γ2 0.318 0.324

σ 2
u 0.225 0.000

σ 2
v 0.000 0.083

μ −0.139 −0.026

Table 1.15 ML predictions of OTE

Row Firm Period ML RML

A 1 1 0.398 0.995

B 2 1 0.510 0.995

C 3 1 0.944 0.995

D 4 1 0.921 0.995

E 5 1 0.985 0.995

F 1 2 0.492 0.995

G 2 2 0.880 0.995

H 3 2 1.000 0.995

I 4 2 0.381 0.995

J 5 2 0.956 0.995

K 1 3 0.933 0.995

L 2 3 0.511 0.995

M 3 3 0.620 0.995

N 4 3 0.628 0.995

O 5 3 0.765 0.995

P 1 4 0.640 0.995

R 2 4 0.694 0.995

S 3 4 0.528 0.995

T 4 4 0.972 0.995

U 5 4 0.679 0.995

V 1 5 0.884 0.995

W 2 5 0.910 0.995

X 3 5 0.637 0.995

Y 4 5 0.597 0.995

Z 5 5 0.965 0.995
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Fig. 1.18 A prediction of output-oriented technical efficiency. In the case of firm A, the ML
prediction of OTE is OT̂E1(x11, q11, z11) = 1/2.511 = 0.398

For a numerical example, reconsider the toy data inTable 1.1. These data have been
used to obtain ML and restricted ML (RML) estimates of the unknown parameters
in (1.32). The estimates are reported in Table 1.14. Both sets of estimates were
obtained under assumptions ML3 and ML4. The RML estimates were obtained by
restricting λ ≥ 0. Both sets of estimates have been used to predict levels of OTE. The
predictions are reported in Table 1.15. The ML prediction for manager 1 in period 1
is depicted in Fig. 1.18. In this figure, the outputs of firm 1 in period 1 map to point
A. The associated predicted frontier output is represented by A∗. The dashed line is
an estimate of a function that provides an approximation to the true frontier depicted
earlier in Fig. 1.5.

1.8.3 Productivity Analysis

For purposes of comparison with Sects. 1.6.2 and 1.7.3, this section again focuses on
decomposing proper TFPI numbers. Again, both output- and input-oriented decom-
positions are available. In each case, the precise form of the decomposition depends
partly on the SFM.

For an output-oriented example, consider the model defined by (1.32). After some
simple algebra, the antilogarithm of this equation can be written as:

1 = exp(α + λt)

⎡
⎣

J∏
j=1

z
δ j

j i t

⎤
⎦

[
M∏

m=1

xβm

mit

N∏
n=1

q−γn
ni t

]
exp(−uit ) exp(vi t ). (1.38)
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Multiplying both sides of this equation by TFP(xit , qit ) yields

TFP(xit , qit ) = exp(α + λt)

⎡
⎣

J∏
j=1

z
δ j

j i t

⎤
⎦

[
TFP(xit , qit )

M∏
m=1

xβm
mit

N∏
n=1

q−γn
ni t

]

× exp(−uit ) exp(vi t ) (1.39)

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields

TFPI(xks, qks, xit , qit ) =
[
exp(λt)

exp(λs)

] ⎡
⎣

J∏
j=1

(
z ji t
z jks

)δ j

⎤
⎦

×
[
TFPI(xks, qks, xit , qit )

M∏
m=1

(
xmit

xmks

)βm N∏
n=1

(
qnks
qnit

)γn
]

×
[
exp(−uit )

exp(−uks)

] [
exp(vi t )

exp(vks)

]
(1.40)

In theory, the presence of statistical noise means we cannot interpret the first three
terms in this equation in the same way we interpreted the first three terms in (1.30).
However, in practice, the first term would normally be viewed as an output-oriented
technology index (OTI), the second term would normally be viewed as an output-
oriented environment index (OEI), and the third term would normally be viewed
as an output-oriented scale and mix efficiency index (OSMEI). In both theory and
practice, the fourth term is an output-oriented technical efficiency index (OTEI), and
the last term is a statistical noise index (SNI). Again, the conditions under which
these various terms vanish is left as an exercise for the reader.

For an input-oriented example, consider the model defined by (1.34). After some
simple algebra, the antilogarithm of this equation can be written as:

1 = exp[ξ(t)]
[

M∏
m=1

xλm
mit

N∏
n=1

q−φn
ni t

]
exp(−uit ) exp(vi t ). (1.41)

Multiplying both sides of this equation by TFP(xit , qit ) yields

TFP(xit , qit ) = exp[ξ(t)]
[
TFP(xit , qit )

M∏
m=1

xλm
mit

N∏
n=1

q−φn
ni t

]

× exp(−uit ) exp(vi t ) (1.42)

A similar equation holds for firm k in period s. Substituting these equations into (1.9)
yields
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TFPI(xks, qks, xit , qit ) =
[
exp[ξ(t)]
exp[ξ(s)]

]

×
[
TFPI(xks, qks, xit , qit )

M∏
m=1

(
xmit

xmks

)λm N∏
n=1

(
qnks
qnit

)φn
]

×
[
exp(−uit )

exp(−uks)

] [
exp(vi t )

exp(vks)

]
(1.43)

Again, the presence of statistical noise means we cannot interpret the first two terms
in this equation in the same way we interpreted the first and third terms in (1.31).
However, in practice, the first term would normally be viewed as an input-oriented

Table 1.16 An output-oriented decomposition of Lowe TFPI numbers using MLa,b

Firm Period TFPI OTI OEI OTEI OSMEI SNI

1 1 1 1 1 1 1 1

2 1 1.786 1 1 1.281 1.394 1.000

3 1 2.37 1 1 2.37 1 1.000

4 1 2.703 1 1 2.314 1.168 1.000

5 1 3.516 1 1 2.474 1.421 1.000

1 2 2.117 0.933 1.196 1.236 1.534 1.000

2 2 3.515 0.933 1.196 2.209 1.426 1.000

3 2 3.513 0.933 1 2.511 1.499 1.000

4 2 2.675 0.933 1.196 0.958 2.503 1.000

5 2 3.159 0.933 1 2.400 1.410 1.000

1 3 3.110 0.871 1 2.344 1.523 1.000

2 3 2.760 0.871 1 1.283 2.469 1.000

3 3 1.879 0.871 1 1.556 1.386 1.000

4 3 3.516 0.871 1 1.578 2.557 1.000

5 3 2 0.871 1.196 1.920 1 1.000

1 4 1.923 0.813 1 1.607 1.472 1.000

2 4 2.032 0.813 1 1.743 1.433 1.000

3 4 1.509 0.813 1.196 1.327 1.170 1.000

4 4 2.852 0.813 1.196 2.441 1.202 1.000

5 4 2.134 0.813 1 1.705 1.539 1.000

1 5 3.150 0.759 1 2.220 1.869 1.000

2 5 2.176 0.759 1.196 2.285 1.050 1.000

3 5 1.991 0.759 1.196 1.599 1.372 1.000

4 5 1.351 0.759 1 1.498 1.188 1.000

5 5 1.758 0.759 1 2.424 0.955 1.000
aTFPI = OTI × OEI × OTEI × OSMEI × SNI. Some index numbers may be incoherent at the
third decimal place due to rounding (e.g., the product of the OTI, OEI, OTEI, OSMEI and SNI
numbers in row 6 is not exactly equal to the TFPI number due to rounding)
bNumbers reported to less than three decimal places are exact; see the footnote to Table 1.2 on p. 8
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technology index (ITI), and the second term would normally be viewed as an input-
oriented scale and mix efficiency index (ISMEI). In both theory and practice, the
third term is an input-oriented technical efficiency index (ITEI), and the last term is
a statistical noise index (SNI). Again, the conditions under which these terms vanish
is left as an exercise for the reader.

For a numerical example, reconsider the toy data in Tables 1.1 and 1.2. The
associatedLoweTFPI numberswere reported earlier in Table 1.6.An output-oriented
decomposition of these numbers is now reported in Table 1.16. The OTI, OEI and
OSMEI numbers in each row were obtained by using the ML estimates in Table 1.14
to evaluate the relevant terms in (1.40). The OTEI numbers were obtained by taking
ratios of the ML predictions of OTE reported earlier in Table 1.15. The SNI numbers
were obtained as residuals (i.e., SNI = TFPI/(OTI×OEI×OTEI×OSMEI)).

1.8.4 Other Models

Other SFMs discussed in this book include various systems of equations. These
systems can be used to explain variations in metafrontiers, output supplies and input
demands.

1.9 Practical Considerations

This section considers some of the steps involved in conducting a policy-oriented
analysis of managerial performance. It also considers government policies that can
be used to target themain drivers of performance. In this book, the term ‘government’
refers to a group of people with the authority to control any variables that are not
controlled by firm managers.

1.9.1 The Main Steps

Policy-oriented performance analysis involves a number of steps that are best com-
pleted in a prescribed order or sequence. Themain steps are the following (immediate
predecessor steps are in parentheses):

1. Identify the manager(s).
2. Classify the variables that are physically involved in the production process (1).
3. Identify relevant measures of comparative performance (2).
4. Make assumptions about production technologies (2).
5. Assemble relevant data (3).
6. Select functions to represent production possibilities sets (4, 5).
7. Choose an estimation approach (4, 5).
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8. Estimate the model and test the model assumptions (6, 7).
9. Check if the main results are robust to the assumptions and choices made in steps

4, 6 and 7 (8).

Researchers with little interest in policy often complete these steps in a different
order. For example, academic researchers who are primarily interested in getting
their work published often start at Step 7 (i.e., they choose the estimation approach
first).

1.9.2 Government Policies

Changes in most measures of managerial performance can be attributed to four main
factors: (a) technical progress, (b) environmental change, (c) technical efficiency
change, and (c) scale, mix and/or allocative efficiency change. Different government
policies affect, and can therefore be used to target, these different components. For
example, governments can often increase rates of technical progress by conducting
their ownR&D, or by directly funding others to conduct R&D.They can often change
production environments by, for example, regulating (or failing to regulate) the im-
pact of production processes on the natural environment, and by providing and/or
decommissioning different types of public infrastructure. They can often raise levels
of technical efficiency by, for example, removing barriers to the adoption of particular
technologies, and by providing education and training services to advise managers
about the existence and proper use of new technologies. Finally, governments can
often raise levels of scale and mix efficiency by changing the variables that drive
managerial behaviour. For example, if firms are price-takers in output and input mar-
kets, and if managers seek to maximise profits, then governments can often raise
levels of scale and mix efficiency by changing relative output and input prices (e.g.,
by changing minimum wages, interest rates, taxes and/or subsidies).

1.10 Summary and Further Reading

This book is concerned with measuring and explaining changes in managerial per-
formance. The focus is onmeasures of performance that are useful for policymakers.
Most, if not all, of these measures can be viewed as measures of efficiency and/or
productivity. The measures of efficiency discussed in this book include measures
of technical, scale, mix, revenue, cost, profit and allocative efficiency. Measures of
efficiency that are not discussed include the measure of marginal cost efficiency dis-
cussed by Kutlu and Wang (2018), the measure of environmental efficiency defined
by Coelli et al. (2007, Eq. 7), and the measure of irrigation water efficiency defined
by Karagiannis et al. (2003, Eq. 2). Most of these other measures can, in fact, be
viewed as special cases of the measures discussed in this book.
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The measures of productivity discussed in this book include measures of total
factor productivity (TFP), multifactor productivity (MFP) and partial factor produc-
tivity (PFP). In this book, TFP is defined as ameasure of total output quantity divided
by a measure of total input quantity. Measures of MFP and PFP can be viewed as
measures of TFP in which one or more inputs have been assigned a weight of zero.
The definition of TFP used in this book is consistent with concepts and definitions of
TFP and/or TFP change that can be found in, for example, Barton and Cooper (1948,
p. 123),5 Jorgenson and Griliches (1967, pp. 249, 250), Christensen and Jorgenson
(1970, p. 42), Nadiri (1970, pp. 1138, 1139), Chambers and Pope (1996, p. 1360),
Prescott (1998, p. 526) and Good et al. (1999, Sect. 2.1). Elsewhere in the literature,
measures of TFP and/or TFP change are often defined in terms of incomes, revenues
and/or costs (e.g., Kendrick 1961, p. 10; Foster et al. 2008, p. 400; Lien et al. 2017,
p. 253).

This book attributes changes in TFP to four main factors: technical change, envi-
ronmental change, technical efficiency change, and scale and mix efficiency change.
Elsewhere in the literature, it is common to attribute TFP change to (a) technical
change only (e.g., Diewert and Morrison 1986, p. 659; Kumbhakar 2002, pp. 469,
471; Orea and Wall 2012, p. 103), (b) a combination of technical change and tech-
nical efficiency change (e.g., Nishimizu and Page 1982, pp. 920, 921; Färe et al.
1994, p. 71; Coelli et al. 2003, p. 323), or (c) a combination of technical change and
economies of scale (e.g., Kumbhakar et al. 2000, p. 496; Hranaiova and Stefanou
2002, p. 79). In the macroeconomics literature, it is common to equate TFP change
with the residuals from regression models (e.g., Olley and Pakes 1996, p. 1287).
These alternative approaches are not generally consistent with the way TFP is de-
fined in this book.

Finally, there are several other measures of managerial performance that are not
explicitly discussed in this book. These include various measures of corporate social
performance. Most of these measures can, in fact, be viewed as measures of TFP.
The literature on these measures can be accessed from Siegel and Vitaliano (2007),
Chen and Delmas (2011) and Gregory et al. (2016).
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