
1© Springer Nature Singapore Pte Ltd. 2018 
P. Arivaradarajan, G. Misra (eds.), Omics Approaches, Technologies  
And Applications, https://doi.org/10.1007/978-981-13-2925-8_1

Chapter 1
Introduction to Omics

Priyanka Narad and S. V. Kirthanashri

Abstract Omics technologies also referred as high-dimensional biology encom-
passes the cells, tissues, and organisms in a manner that integrates the data from 
various platforms and helps in its interpretation. It primarily detects the genes 
(genomics), mRNAs (transcriptomics), proteins (proteomics), and metabolites 
(metabolomics) in a nontargeted and non-biased manner. The integration and inter-
relationships between networks of biological processes is termed as systems biol-
ogy. The approach provides hope for unravelling the intricate details in various 
aspects of biology and accelerates innovation in healthcare. Understanding the vari-
ous dimensions encompassing not only the three levels constituting the central 
dogma of life but also the intermediate metabolites is significant for the scientists to 
cover new horizons in drug discovery and disease regulation. This chapter outlines 
the scope of omics, experimental design in omics research, and its applications. It 
will also provide an overview to the usage of languages like R for analyzing high- 
throughput data from all branches of “omics” technologies.
The primary focus is to understand omics approaches that enable the validation of 
large-scale data that is generated from various experimental platforms. Systems 
biology and omics data are way apart from hypothesis-driven traditional studies. 
The systems biology experiments generate hypothesis by employing all data that 
needs to be further analyzed.

Omics technology applied majorly for accurate understanding of normal physi-
ological processes and gaining knowledge related to disease processes which 
involves screening, diagnosis, and prognosis that provides an understanding of the 
etiology of diseases.
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1.1  Background

In biology the suffix -omics refers to huge biological molecules; the broad analysis 
of large biological molecules was needed to be studied in detail as the conclusion of 
human genome project (HGP) in 2001. The HGP revealed that the human genome 
contained lesser number of genes and biological process were regulated not particu-
larly on DNA sequence but involved various other processes, and with this evolved 
the new branch of study termed the omics (Hood and Rowen 2013).

This technology deciphered the cell, tissue, and organism in a holistic way 
around central dogma for the detection of genes (genomics), mRNA (transcrip-
tomics), proteins (proteomics), and metabolites (metabolomics) in the samples 
(specific biological component). Since the technology is non-biased, they are also 
referred to as high-dimensional biology, while the integration of these is the systems 
biology. Following the discovery of DNA structure by Watson-Crick in 1953, a 
series of inventions and discoveries followed. The development of PCR by Kary 
Mullis opened all possible channels in molecular biology research. The progress in 
Omics started from the development of genomics further followed by transcrip-
tomics and finally the proteomics, and the term was coined in 1994 by Marc Wilkins. 
This was possible because of advanced development in techniques like high- 
resolution two-dimensional electrophoresis. The cascade of events in Omics is 
depicted in Fig. 1.1. The advantage of the omics study is that they reveal specific 
results that promote understanding. As the omics technology is of immense poten-
tial, they have been explored in various branches of medical and health science. This 
technology can help to understand the etiology of disease condition through the 
process of screening, diagnosis, and prognosis and also for the biomarker discovery 
to be made easy as they involve simultaneous investigation of multiple molecules 
(Poisot et al. 2013). Further Omics is of great use in drug discovery and toxicity 
assessment. Pharmacogenomics deals with the connection of genomics and phar-
macology to examine the role of inheritance in individual variation in drug response 
utilized to individualize and optimize drug therapy. They help in the field of oncol-
ogy to evaluate rigorous systemic toxicity and unpredictable efficacies that are 

Fig. 1.1 Cascade of Omics development

P. Narad and S. V. Kirthanashri



3

 hallmarks of cancer therapies. These technologies are helpful in selecting novel 
targets for the treatment including conditions like cancer, cardiovascular disease, 
and obesity. In the future, systems biology promises to develop new approaches that 
will be predictive, preventive, and personalized (Sagner et al. 2017). Research in the 
field of obstetrics and gynecology is currently taking advantage of these possibili-
ties which can be used to solve the problems related to fertility. This review aims to 
provide a complete overview of various omics technologies available.

1.2  Overview of Omics

The omics technology can be classified into various types depending on their func-
tion. Figure 1.2 highlights a few of various omics technologies that are presented in 
detail in the following chapters.

1.2.1  Genomics

This refers to the interdisciplinary study based on evaluating the structure and func-
tion and mapping of the genomes. In short this is the study of a set of genes, the 
inheritance substance. The term genomics was coined by Tom Roderick in 1986 on 
mapping the human gene. The possible and highly researched areas under genomics 
include the functional genomics, metagenomics, and epigenomics (Feinberg 2010).

Fig. 1.2 Various omics technologies
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1.2.2  Transcriptomics

The presence of mRNA in the sample reflects the abundance level of the corre-
sponding gene. Gene expression involves the detection and classification of mRNA 
mixture in a specific sample. The goal of gene expression profiling is to differentiate 
the mRNA mixtures from different samples. Contrary to genotyping, gene expres-
sion categorizes the level of gene expression. The variation of the transcriptome can 
be seen over time between cell types and change according to environmental condi-
tions (Hubank 2004).

1.2.3  Proteomics

The proteome refers to the total proteins expressed by a cell, tissue, or organism. 
The proteome is highly variable over time, shows species variation, and alters 
depending on environmental conditions. Proteomics is defined as the study that pro-
vides insights to protein functions in biological systems. Due to the variability and 
abundance of proteins in biological samples, there is a requirement to develop tech-
nologies to detect a wide range of proteins in samples of different origins. Currently 
exploited proteomic technologies are mass spectrometry (MS) and protein microar-
rays using capturing agents such as antibodies. However, the high dynamic range 
(abundance and concentration) of proteins complicates this type of proteomic anal-
ysis (Chandramouli and Qian 2009).

1.2.4  Metabolomics

The small molecules (e.g., lipids or vitamins) referred to as metabolites constitute 
the metabolome. The interaction between genetic, environmental, lifestyle, and 
other factors results in metabolic phenotypes. Interaction of metabolome with other 
biological macromolecules in the cell results in metabolic pathways. The metabolic 
profiles of biological sample represent the metabolomics which are changeable and 
time dependent and had a wide range of chemical structures (Bino et al. 2004).

1.3  Overview of Systems Biology

1.3.1  Systems Biology

The genome is the total DNA of a cell in the organism. The human genome contains 
about 3.2 billion bases with 30,000–40,000 protein-coding genes. The microarray 
technique enables quick analysis of the genes and also helps in examining the 
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differences in the DNA sequences and expression of genes, which help to analyze 
the chromosomal abnormalities. Variation in DNA sequence leads to single nucleo-
tide polymorphism (SNP), which plays an important role in pharmacogenomics to 
explore individual patient responses to drugs. The total mRNA in the cell or organ-
ism is called the transcriptome, and they are the template for protein synthesis and 
are known as translation. The transcriptome reflects the genes that are actively 
expressed at any given moment. The advent of microarray techniques has led to the 
advancement of the genomics and transcriptomics. Microarrays measure changes 
only in mRNA that makes it complex for data interpretation. Most of the mechanis-
tic and mathematical models are used in systems biology approach for data interpre-
tation. Due to the large number of parameters, variables, and constraints in cellular 
networks, numerical and computational techniques are often used (Likić et al. 2010).

1.4  Techniques Involved in Systems Biology

1.4.1  Analytical Techniques

Reproducibility of the samples is the major concern for omics experiments. 
Expression profiling is one of the dominant modes of DNA microarray. 
Complementary DNA (cDNA)/oligonucleotide is the probe to estimate the amount 
of mRNA in gene expression microarray. The probe gets amplified by polymerase 
chain reaction (PCR) and immobilized on a solid support (glass slide) by spotting 
them. Extraction of RNA from the sample is carried out followed by reverse tran-
scription along with the addition of fluorescent dyes where cDNA are generated 
which are hybridized in the microarray slide. The chips which are the microarray 
glass slides are scanned by ultraviolet laser to detect the fluorescent signal produced 
by each gene to carry out image analysis. Samples for analysis in metabolomic 
experiments require fractionation (chromatography or electrophoresis) utilizing 
various chemical/physical properties of molecules that fasten the separation of the 
metabolites in liquid or gas phase. The commonly used tool for analysis of the 
metabolite is the mass spectrometry. The analytical techniques had their own limita-
tions and advantages in terms of instrument sensitivity, resolution, mass accuracy, 
and dynamic range, while various techniques are researched to analyze the entire 
proteome or metabolome. For instance, the proteomics study involves characteriza-
tion of proteins using electrospray ionization (ESI), matrix-assisted laser desorp-
tion/ionization (MALDI), and surface-enhanced laser desorption/ionization 
(SELDI) though reproducibility, accuracy, and mass range are always a limitation. 
The use of fluorescent tags in gel-based techniques like differential image gel elec-
trophoresis (DIGE) and isotope-coded affinity tag (ICAT) labeling is employed with 
mass spectrometry to achieve better resolution. The nuclear magnetic resonance 
(NMR) spectroscopy and infrared spectroscopy have been routinely used for metab-
olite identification (van der Greef et al. 2004). Thus each technique has its unique 
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and meritorious way of detection compared to the other techniques; it all depends 
also on the sample and the objective of the experiment.

1.4.2  Data Analysis

The analysis techniques generate huge data that mandates sophisticated software 
(bioinformatics and statistics). The results of the genomics and transcriptomics 
microarray are often huge and complicated that often conclude in false-positive 
results, if not accurately analyzed. Proteomics theoretical database is often matched 
with the experimental analysis to enable protein identification and/or quantification, 
while in metabolomics, raw data processing is carried out to generate meaningful 
and interpretable data. Thus, the prime aim of the data analysis is to represent the 
data in readable/understandable format which can be used to generate further 
hypotheses for testing with no false-positive results (van der Greef et al. 2004).

In the following text, we will discuss few of these packages using R language 
and their utility for analysis of “omics” data.

1.4.3  R Language in Omics Analysis

R is a statistical language which is fully featured and equipped with several packages 
useful for the “omics” and other life sciences research. It has an interactive and user-
friendly interface where one can make plenty of debugging. The use of the language 
is coherent, and there is an extensive documentation available on the Internet to per-
form the data analysis. Integration to the Bioconductor platform has extended the 
ability of performing analysis and an easy approach for high- throughput “omics” data 
analysis. Within the last decades, huge amount of data has been generated through 
various sophisticated techniques of genomics/proteomics and metabolomics. There 
has been an array of new technologies in the past which have made new discoveries 
and research easier. It is a common practice to analyze each of the “omics” data like 
proteomics, genomics, and transcriptomics through statistical approaches like t-test 
and ANOVA. The task at hand is to make sense of the sea of data; else data generation 
is of no use. Toward this, R and Bioconductor platforms together provide packages 
for the interpretation of high-throughput data generated from “omics.” There are 
numerous data analysis packages which offer great features to the person working on 
these samples. These include the packages which are computationally highly efficient 
for the purpose of handling large sample data; secondly these packages are able to 
perform reduction of the dimension by creating smaller spaces and analyzing the 
data; thirdly they are helpful in providing better insights to the biological system 
under observation. When we talk about the integrative approach for systems biology, 
analyzing both the datasets together is required for the understanding of the different 
levels of “omics.” For instance, now it is clear that any integration would need inputs 
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from all branches of “omics” like transcriptomics, genomics, metabolomics, and pro-
teomics in order to understand the biological processes in a comprehensive manner. 
Figure 1.3 provides a general workflow of an omics data analysis.

R and Bioconductor play an important role in extracting useful information from 
large-scale high-throughput “omics” data. R console is an interactive and user- 
friendly coherent language for data analysis. What makes R not the same as other 
programming dialects is its GUI for fast and simple transfer of information. 
Bioconductor (www.bioconductor.org) contains in silico software packages for 
interpretation of “omics” data which is generated from a number of experiments 
like microarray, SAGE, MS, and MS-MS. The packages at the Bioconductor plat-
form can be split into three branches like the Annotation Data, the Experiment Data, 
and the Software. Some of the important packages are listed in Table 1.1.

1.4.4  cpma

This package performs phenotype analysis. Numeric values from the data are treated 
as the input.

1.4.5  mlm

This package is useful for fitting multiple linear models together. The argument 
consists of a formula, which consists of the description of the models, and data, 
which consists of the variable of the model.

Experimenta
l Design

Data
Generation Sequencing

Quality
Control
Analysis

Alignment
format

Differential
Expression

Analysis

Visualization
of data using

GUI

Fig. 1.3 General workflow for “omics” data analysis
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1.4.6  mixOmics

This package describes a multiple variable-based system for the “omics”-based data 
and its analysis of information examination to the scientist who wants to give a few 
appealing properties. Mostly, the package is computationally productive to deal 
with huge informational collections, where the quantity of sample sets is signifi-
cantly bigger than the quantity of tests. Furthermore, the package performs mea-
surement lessening by anticipating the information into a littler subspace while 
catching and featuring the biggest feature selection from a variety of information, 
bringing about great perception of the natural framework under investigation. 
Finally, the information appropriation makes it profoundly adaptable to answer 
topical inquiries over various science-related fields (Rohart et al. 2017). mixOmics 
multivariate strategies have been effectively connected to factually coordinate infor-
mational collections created from contrast sciences ranging from the field of 
“omics” comprising of transcriptomics, proteomics, and metabolomics.

1.4.7  integrOmics

integrOmics productively performs integrative investigations of two kinds of 
“omics” factors that are estimated on similar examples. It incorporates a regularized 
form of standard connection investigation to illuminate relationships between two 
datasets and a scanty rendition of incomplete slightest squares (PLS) relapse that 
incorporates synchronous variable choice in both datasets. The helpfulness of the 
two methodologies has been shown already and effectively connected in different 
integrative examinations (Lê Cao et al. 2009).

1.4.8  supraHex

supraHex is an R package for preprocessing, normalizing, and imagining omics 
information. This console package devises a supra-hexagonal manual to process the 
information, and it gives a versatile functionality for after-dissection of the guide 

Table 1.1 List of the packages for quality control and analysis of gene/protein microarray data

S. no. Name of the package Description

1. Affy package Oligonucleotide array analysis
2. affylmGUI GUI for analysis of one-color affymetrix data
3. ExpressionView Visualization of possibly overlapping biclusters
4. annmap Genome annotation and visualization package
5. DEGseq Differential expressed gene analysis from RNA-Seq data
6. Dexus Differentially expressed genes in RNA-Seq
7. MiChip Differentially expressed data of miRNA for multiple species
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and, all the more imperatively, takes into consideration overlaying extra information 
for multilayer omics information examinations. The application of supraHex was 
exhibited through its ability to apply DNA replication timing data, and it performs 
the same level of grouping and provides a real-time picture of the natural process. 
The scientist also observed that CpG overlaying to the replication map resulted in 
demonstrating the ability of supraHex to establish connections between CpG thick-
ness and late replication data. Being part of the Bioconductor venture, supraHex is 
useful in making available to a wide network basically what might somehow or 
another be an unpredictable structure for the ultrafast comprehension of any forbid-
den omics information, both deductively and aesthetically (Fang and Gough 2014).

1.4.9  OmicCircos

OmicCircos is an R programming bundle used to create great roundabout plots for 
envisioning genomic varieties, including change designs, duplicate number variet-
ies (CNVs), articulation examples, and also methylation designs. This method can 
be used to generate scatterplots for the abovementioned examples. Using the factual 
and realistic capacities in an R/Bioconductor condition, OmicCircos performs mea-
surable examinations and presentations that come about utilizing bunch, boxplot, 
histogram, and heatmap groups. Moreover, OmicCircos offers various one of a kind 
capacity, including free track drawing for simple adjustment and combination, 
zoom capacities, connect polygons, and position-autonomous heatmaps supporting 
small representation (Hu et al. 2014).
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