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Foreword

This book examines omics technologies and introduces the subject for new readers. 
It is particularly suitable for students (graduate, postgraduate, and doctoral), ana-
lytical scientists, and lab technicians. However, it has enough information to allow 
established scientists in related fields to understand the power and limitations of 
omics technology.

Omics is a relatively new area of study and cuts across all the biological disci-
plines and is relevant to all biological sciences. It attempts to look at biological 
systems in a holistic way and to account for all the interactions between, genes, 
proteins, RNA, and metabolites. It is divided into various disciplines which are dis-
cussed in the book. The chapters span from genomics that studies the structure and 
function of the whole genomes of organisms, proteomics describing the expressed 
proteins in a cell or tissue, transcriptomics dealing with the RNA present in a cell or 
tissue leading to an understanding about differential gene expression under particu-
lar conditions to metabolomics which provides a glimpse of the end products of 
metabolism contributing most to phenotypes. The book also contributes toward an 
in-depth understanding of the microbiome that encompasses the total genes of all 
the microorganisms in a particular ecological niche. Humans have their own micro-
biome (as do almost all environments on Earth), and there are more microbial cells 
in a human than there are human cells. The microbiome has gathered a lot of scien-
tific attention recently for exploitation of its therapeutic relevance in humans, other 
animals, and plants; thus, it is sometimes considered as a separate discipline.

The book is edited by two exciting young scientists, one of whom I had the privi-
lege of supervising for part of her PhD. They have invited the experts in the thematic 
areas to design a contributed volume delving into different omics branches.

 
Eastman Dental Institute� Peter Mullany
University College London
London, UK�  
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Preface

Our exposure to the omics world during doctoral program in India and abroad laid 
the foundation for this book. The advent of highly parallel assays led to the transi-
tion of biological research from discrete knowledge of gene/transcript/protein/
metabolite to a complete interlinked biological picture. This field has gained 
momentum with its immense usefulness across various dimensions including dis-
ease prognosis, therapeutics, personalized medicine, and drug discovery. Therefore, 
it is imperative to design a resource that will not only be useful for beginners but 
also for the experts seeking the advancement of their knowledge in this field.

The present book is divided into seven chapters with an aim to address the fun-
damental questions of diverse audience pertaining to the interdisciplinary field of 
omics. The introductory chapter describes the scope of omics, experimental design 
in omics research, its applications, and the usage of R language for analyzing high-
throughput omics data. The second chapter outlines a coherent view of the human 
genome architecture, DNA sequencing approaches, and new technological advances 
in genomics. The third chapter discusses the principle of transcriptomics, technolo-
gies (expression sequence tag, serial/cap analysis of gene expression, microarray, 
RNA-seq) used to study transcriptomes, and applications of transcriptomics in dis-
ease profiling, ecology, evolution, and gene function annotation. The fourth chapter 
details different types of proteomics and advanced proteomic techniques such as 
two-dimensional electrophoresis, isotype-coded affinity tag peptide labeling, mass 
spectrometry, and multidimensional protein identification technique. The fifth chap-
ter describes metabolome, its applications, and integrated platforms for analysis and 
interpretation of the metabolomics data. The sixth chapter provides an insight to 
soil, plant, marine, and human microbiome. A special emphasis is laid on human 
coinhabitants, wherein microbiome of various niches such as the gut, skin, oral, and 
urine is discussed in detail. The last chapter on bioinformatics resources gives an 
in-depth description about various bioinformatics approaches available to analyze 
genomics, transcriptomics, proteomics, and metabolomics data.
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We believe our effort will be a priceless treasure for the general audience. The 
text has been enriched with the help of appropriate annotations, tables, and further 
readings. A positive feedback and scientific appreciation will be the true reward that 
the editors genuinely seek.

Noida, Uttar Pradesh, India� Preeti Arivaradarajan 
 � Gauri Misra 

Preface
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Chapter 1
Introduction to Omics

Priyanka Narad and S. V. Kirthanashri

Abstract  Omics technologies also referred as high-dimensional biology encom-
passes the cells, tissues, and organisms in a manner that integrates the data from 
various platforms and helps in its interpretation. It primarily detects the genes 
(genomics), mRNAs (transcriptomics), proteins (proteomics), and metabolites 
(metabolomics) in a nontargeted and non-biased manner. The integration and inter-
relationships between networks of biological processes is termed as systems biol-
ogy. The approach provides hope for unravelling the intricate details in various 
aspects of biology and accelerates innovation in healthcare. Understanding the vari-
ous dimensions encompassing not only the three levels constituting the central 
dogma of life but also the intermediate metabolites is significant for the scientists to 
cover new horizons in drug discovery and disease regulation. This chapter outlines 
the scope of omics, experimental design in omics research, and its applications. It 
will also provide an overview to the usage of languages like R for analyzing high-
throughput data from all branches of “omics” technologies.
The primary focus is to understand omics approaches that enable the validation of 
large-scale data that is generated from various experimental platforms. Systems 
biology and omics data are way apart from hypothesis-driven traditional studies. 
The systems biology experiments generate hypothesis by employing all data that 
needs to be further analyzed.

Omics technology applied majorly for accurate understanding of normal physi-
ological processes and gaining knowledge related to disease processes which 
involves screening, diagnosis, and prognosis that provides an understanding of the 
etiology of diseases.

Keywords  Omics · Systems biology · R language
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1.1  �Background

In biology the suffix -omics refers to huge biological molecules; the broad analysis 
of large biological molecules was needed to be studied in detail as the conclusion of 
human genome project (HGP) in 2001. The HGP revealed that the human genome 
contained lesser number of genes and biological process were regulated not particu-
larly on DNA sequence but involved various other processes, and with this evolved 
the new branch of study termed the omics (Hood and Rowen 2013).

This technology deciphered the cell, tissue, and organism in a holistic way 
around central dogma for the detection of genes (genomics), mRNA (transcrip-
tomics), proteins (proteomics), and metabolites (metabolomics) in the samples 
(specific biological component). Since the technology is non-biased, they are also 
referred to as high-dimensional biology, while the integration of these is the systems 
biology. Following the discovery of DNA structure by Watson-Crick in 1953, a 
series of inventions and discoveries followed. The development of PCR by Kary 
Mullis opened all possible channels in molecular biology research. The progress in 
Omics started from the development of genomics further followed by transcrip-
tomics and finally the proteomics, and the term was coined in 1994 by Marc Wilkins. 
This was possible because of advanced development in techniques like high-
resolution two-dimensional electrophoresis. The cascade of events in Omics is 
depicted in Fig. 1.1. The advantage of the omics study is that they reveal specific 
results that promote understanding. As the omics technology is of immense poten-
tial, they have been explored in various branches of medical and health science. This 
technology can help to understand the etiology of disease condition through the 
process of screening, diagnosis, and prognosis and also for the biomarker discovery 
to be made easy as they involve simultaneous investigation of multiple molecules 
(Poisot et al. 2013). Further Omics is of great use in drug discovery and toxicity 
assessment. Pharmacogenomics deals with the connection of genomics and phar-
macology to examine the role of inheritance in individual variation in drug response 
utilized to individualize and optimize drug therapy. They help in the field of oncol-
ogy to evaluate rigorous systemic toxicity and unpredictable efficacies that are 

Fig. 1.1  Cascade of Omics development
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hallmarks of cancer therapies. These technologies are helpful in selecting novel 
targets for the treatment including conditions like cancer, cardiovascular disease, 
and obesity. In the future, systems biology promises to develop new approaches that 
will be predictive, preventive, and personalized (Sagner et al. 2017). Research in the 
field of obstetrics and gynecology is currently taking advantage of these possibili-
ties which can be used to solve the problems related to fertility. This review aims to 
provide a complete overview of various omics technologies available.

1.2  �Overview of Omics

The omics technology can be classified into various types depending on their func-
tion. Figure 1.2 highlights a few of various omics technologies that are presented in 
detail in the following chapters.

1.2.1  �Genomics

This refers to the interdisciplinary study based on evaluating the structure and func-
tion and mapping of the genomes. In short this is the study of a set of genes, the 
inheritance substance. The term genomics was coined by Tom Roderick in 1986 on 
mapping the human gene. The possible and highly researched areas under genomics 
include the functional genomics, metagenomics, and epigenomics (Feinberg 2010).

Fig. 1.2  Various omics technologies

1  Introduction to Omics
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1.2.2  �Transcriptomics

The presence of mRNA in the sample reflects the abundance level of the corre-
sponding gene. Gene expression involves the detection and classification of mRNA 
mixture in a specific sample. The goal of gene expression profiling is to differentiate 
the mRNA mixtures from different samples. Contrary to genotyping, gene expres-
sion categorizes the level of gene expression. The variation of the transcriptome can 
be seen over time between cell types and change according to environmental condi-
tions (Hubank 2004).

1.2.3  �Proteomics

The proteome refers to the total proteins expressed by a cell, tissue, or organism. 
The proteome is highly variable over time, shows species variation, and alters 
depending on environmental conditions. Proteomics is defined as the study that pro-
vides insights to protein functions in biological systems. Due to the variability and 
abundance of proteins in biological samples, there is a requirement to develop tech-
nologies to detect a wide range of proteins in samples of different origins. Currently 
exploited proteomic technologies are mass spectrometry (MS) and protein microar-
rays using capturing agents such as antibodies. However, the high dynamic range 
(abundance and concentration) of proteins complicates this type of proteomic anal-
ysis (Chandramouli and Qian 2009).

1.2.4  �Metabolomics

The small molecules (e.g., lipids or vitamins) referred to as metabolites constitute 
the metabolome. The interaction between genetic, environmental, lifestyle, and 
other factors results in metabolic phenotypes. Interaction of metabolome with other 
biological macromolecules in the cell results in metabolic pathways. The metabolic 
profiles of biological sample represent the metabolomics which are changeable and 
time dependent and had a wide range of chemical structures (Bino et al. 2004).

1.3  �Overview of Systems Biology

1.3.1  �Systems Biology

The genome is the total DNA of a cell in the organism. The human genome contains 
about 3.2 billion bases with 30,000–40,000 protein-coding genes. The microarray 
technique enables quick analysis of the genes and also helps in examining the 
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differences in the DNA sequences and expression of genes, which help to analyze 
the chromosomal abnormalities. Variation in DNA sequence leads to single nucleo-
tide polymorphism (SNP), which plays an important role in pharmacogenomics to 
explore individual patient responses to drugs. The total mRNA in the cell or organ-
ism is called the transcriptome, and they are the template for protein synthesis and 
are known as translation. The transcriptome reflects the genes that are actively 
expressed at any given moment. The advent of microarray techniques has led to the 
advancement of the genomics and transcriptomics. Microarrays measure changes 
only in mRNA that makes it complex for data interpretation. Most of the mechanis-
tic and mathematical models are used in systems biology approach for data interpre-
tation. Due to the large number of parameters, variables, and constraints in cellular 
networks, numerical and computational techniques are often used (Likić et al. 2010).

1.4  �Techniques Involved in Systems Biology

1.4.1  �Analytical Techniques

Reproducibility of the samples is the major concern for omics experiments. 
Expression profiling is one of the dominant modes of DNA microarray. 
Complementary DNA (cDNA)/oligonucleotide is the probe to estimate the amount 
of mRNA in gene expression microarray. The probe gets amplified by polymerase 
chain reaction (PCR) and immobilized on a solid support (glass slide) by spotting 
them. Extraction of RNA from the sample is carried out followed by reverse tran-
scription along with the addition of fluorescent dyes where cDNA are generated 
which are hybridized in the microarray slide. The chips which are the microarray 
glass slides are scanned by ultraviolet laser to detect the fluorescent signal produced 
by each gene to carry out image analysis. Samples for analysis in metabolomic 
experiments require fractionation (chromatography or electrophoresis) utilizing 
various chemical/physical properties of molecules that fasten the separation of the 
metabolites in liquid or gas phase. The commonly used tool for analysis of the 
metabolite is the mass spectrometry. The analytical techniques had their own limita-
tions and advantages in terms of instrument sensitivity, resolution, mass accuracy, 
and dynamic range, while various techniques are researched to analyze the entire 
proteome or metabolome. For instance, the proteomics study involves characteriza-
tion of proteins using electrospray ionization (ESI), matrix-assisted laser desorp-
tion/ionization (MALDI), and surface-enhanced laser desorption/ionization 
(SELDI) though reproducibility, accuracy, and mass range are always a limitation. 
The use of fluorescent tags in gel-based techniques like differential image gel elec-
trophoresis (DIGE) and isotope-coded affinity tag (ICAT) labeling is employed with 
mass spectrometry to achieve better resolution. The nuclear magnetic resonance 
(NMR) spectroscopy and infrared spectroscopy have been routinely used for metab-
olite identification (van der Greef et al. 2004). Thus each technique has its unique 

1  Introduction to Omics
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and meritorious way of detection compared to the other techniques; it all depends 
also on the sample and the objective of the experiment.

1.4.2  �Data Analysis

The analysis techniques generate huge data that mandates sophisticated software 
(bioinformatics and statistics). The results of the genomics and transcriptomics 
microarray are often huge and complicated that often conclude in false-positive 
results, if not accurately analyzed. Proteomics theoretical database is often matched 
with the experimental analysis to enable protein identification and/or quantification, 
while in metabolomics, raw data processing is carried out to generate meaningful 
and interpretable data. Thus, the prime aim of the data analysis is to represent the 
data in readable/understandable format which can be used to generate further 
hypotheses for testing with no false-positive results (van der Greef et al. 2004).

In the following text, we will discuss few of these packages using R language 
and their utility for analysis of “omics” data.

1.4.3  �R Language in Omics Analysis

R is a statistical language which is fully featured and equipped with several packages 
useful for the “omics” and other life sciences research. It has an interactive and user-
friendly interface where one can make plenty of debugging. The use of the language 
is coherent, and there is an extensive documentation available on the Internet to per-
form the data analysis. Integration to the Bioconductor platform has extended the 
ability of performing analysis and an easy approach for high-throughput “omics” data 
analysis. Within the last decades, huge amount of data has been generated through 
various sophisticated techniques of genomics/proteomics and metabolomics. There 
has been an array of new technologies in the past which have made new discoveries 
and research easier. It is a common practice to analyze each of the “omics” data like 
proteomics, genomics, and transcriptomics through statistical approaches like t-test 
and ANOVA. The task at hand is to make sense of the sea of data; else data generation 
is of no use. Toward this, R and Bioconductor platforms together provide packages 
for the interpretation of high-throughput data generated from “omics.” There are 
numerous data analysis packages which offer great features to the person working on 
these samples. These include the packages which are computationally highly efficient 
for the purpose of handling large sample data; secondly these packages are able to 
perform reduction of the dimension by creating smaller spaces and analyzing the 
data; thirdly they are helpful in providing better insights to the biological system 
under observation. When we talk about the integrative approach for systems biology, 
analyzing both the datasets together is required for the understanding of the different 
levels of “omics.” For instance, now it is clear that any integration would need inputs 
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from all branches of “omics” like transcriptomics, genomics, metabolomics, and pro-
teomics in order to understand the biological processes in a comprehensive manner. 
Figure 1.3 provides a general workflow of an omics data analysis.

R and Bioconductor play an important role in extracting useful information from 
large-scale high-throughput “omics” data. R console is an interactive and user-
friendly coherent language for data analysis. What makes R not the same as other 
programming dialects is its GUI for fast and simple transfer of information. 
Bioconductor (www.bioconductor.org) contains in silico software packages for 
interpretation of “omics” data which is generated from a number of experiments 
like microarray, SAGE, MS, and MS-MS. The packages at the Bioconductor plat-
form can be split into three branches like the Annotation Data, the Experiment Data, 
and the Software. Some of the important packages are listed in Table 1.1.

1.4.4  �cpma

This package performs phenotype analysis. Numeric values from the data are treated 
as the input.

1.4.5  �mlm

This package is useful for fitting multiple linear models together. The argument 
consists of a formula, which consists of the description of the models, and data, 
which consists of the variable of the model.

Experimenta
l Design

Data
Generation Sequencing

Quality
Control
Analysis

Alignment
format

Differential
Expression

Analysis

Visualization
of data using

GUI

Fig. 1.3  General workflow for “omics” data analysis

1  Introduction to Omics
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1.4.6  �mixOmics

This package describes a multiple variable-based system for the “omics”-based data 
and its analysis of information examination to the scientist who wants to give a few 
appealing properties. Mostly, the package is computationally productive to deal 
with huge informational collections, where the quantity of sample sets is signifi-
cantly bigger than the quantity of tests. Furthermore, the package performs mea-
surement lessening by anticipating the information into a littler subspace while 
catching and featuring the biggest feature selection from a variety of information, 
bringing about great perception of the natural framework under investigation. 
Finally, the information appropriation makes it profoundly adaptable to answer 
topical inquiries over various science-related fields (Rohart et al. 2017). mixOmics 
multivariate strategies have been effectively connected to factually coordinate infor-
mational collections created from contrast sciences ranging from the field of 
“omics” comprising of transcriptomics, proteomics, and metabolomics.

1.4.7  �integrOmics

integrOmics productively performs integrative investigations of two kinds of 
“omics” factors that are estimated on similar examples. It incorporates a regularized 
form of standard connection investigation to illuminate relationships between two 
datasets and a scanty rendition of incomplete slightest squares (PLS) relapse that 
incorporates synchronous variable choice in both datasets. The helpfulness of the 
two methodologies has been shown already and effectively connected in different 
integrative examinations (Lê Cao et al. 2009).

1.4.8  �supraHex

supraHex is an R package for preprocessing, normalizing, and imagining omics 
information. This console package devises a supra-hexagonal manual to process the 
information, and it gives a versatile functionality for after-dissection of the guide 

Table 1.1  List of the packages for quality control and analysis of gene/protein microarray data

S. no. Name of the package Description

1. Affy package Oligonucleotide array analysis
2. affylmGUI GUI for analysis of one-color affymetrix data
3. ExpressionView Visualization of possibly overlapping biclusters
4. annmap Genome annotation and visualization package
5. DEGseq Differential expressed gene analysis from RNA-Seq data
6. Dexus Differentially expressed genes in RNA-Seq
7. MiChip Differentially expressed data of miRNA for multiple species

P. Narad and S. V. Kirthanashri
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and, all the more imperatively, takes into consideration overlaying extra information 
for multilayer omics information examinations. The application of supraHex was 
exhibited through its ability to apply DNA replication timing data, and it performs 
the same level of grouping and provides a real-time picture of the natural process. 
The scientist also observed that CpG overlaying to the replication map resulted in 
demonstrating the ability of supraHex to establish connections between CpG thick-
ness and late replication data. Being part of the Bioconductor venture, supraHex is 
useful in making available to a wide network basically what might somehow or 
another be an unpredictable structure for the ultrafast comprehension of any forbid-
den omics information, both deductively and aesthetically (Fang and Gough 2014).

1.4.9  �OmicCircos

OmicCircos is an R programming bundle used to create great roundabout plots for 
envisioning genomic varieties, including change designs, duplicate number variet-
ies (CNVs), articulation examples, and also methylation designs. This method can 
be used to generate scatterplots for the abovementioned examples. Using the factual 
and realistic capacities in an R/Bioconductor condition, OmicCircos performs mea-
surable examinations and presentations that come about utilizing bunch, boxplot, 
histogram, and heatmap groups. Moreover, OmicCircos offers various one of a kind 
capacity, including free track drawing for simple adjustment and combination, 
zoom capacities, connect polygons, and position-autonomous heatmaps supporting 
small representation (Hu et al. 2014).
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Chapter 2
Genomics

Desh Deepak Singh and Manali Datta

Abstract  Genomics refers to the study of function, structure, and interactions of 
the genome, and it is one of the most rapidly developing scientific areas. An organ-
ism’s complete set of DNA, including both protein-coding and noncoding genes, 
constitutes the genome. The completion of the Human Genome Project in 2003 laid 
a foundation for in-depth study of genomics and led to the beginning of the “genom-
ics era.” Next-generation sequencing including exome and DNA sequencing has 
provided a plethora of means by which we can dissect the genome at structural and 
functional levels. During the last decade, developments and advances in the field of 
genomics have led to a better understanding of human genome architecture, discov-
ery of disease-associated genetic variants, and development of newer diagnostic 
methods in the field of clinical genomics. The Encyclopedia of DNA Elements 
(ENCODE) Project in 2010 established yet another landmark for the genomics era. 
The ENCODE Project characterized and annotated the functional elements hidden 
within the human genome’s 3.2  billion bases with the aid of next-generation 
sequencing technologies, chromosomal conformation capture techniques, and epig-
enomic methods. It resolved the widespread myth about junk DNA being nonfunc-
tional and provided evidence that the DNA between protein-coding genes consists 
of myriad elements (such as enhancers, silencers, and insulators) that regulate gene 
expression by switching transcription on or off, or by regulating messenger RNA 
turnover and consequently affecting translational efficiency.

This chapter provides readers with an up-to-date and coherent view of human 
genome architecture and also provides information about different milestones in the 
genomics era and new technological advances in the field.

Keywords  Human Genome Project · ENCODE · Sequencing · Comparative 
genomics · Functional genomics · Clinical genomics

D. D. Singh · M. Datta (*) 
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
e-mail: ddsingh@jpr.amity.edu; mdatta@jpr.amity.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2925-8_2&domain=pdf
mailto:ddsingh@jpr.amity.edu
mailto:mdatta@jpr.amity.edu


12

2.1  �Introduction

The word “genome” is a conjunction of the words “gene” and “chromosome.” The 
genome is the complete set of hereditary information for each living entity and is 
needed for its development and functioning. The study of genomics enables explo-
ration of issues raised by the genomic foundation. In the 1990s, the entire genome 
of Haemophilus influenzae, a free-living organism, was sequenced, and this is con-
sidered a significant contribution to the field of genomics. The study of genomics 
collectively characterizes, quantifies expression and its associated regulatory net-
work. In short, such study facilitates analysis of transcriptomic, proteomic, and 
epigenomic data in relation to the biological systems in prokaryotes, eukaryotes, 
and humans. Till date, the genomes of 6070 eukaryotes, 145,357 prokaryotes, 
17,614 viruses, 12,924 plasmids, and 11,732 organelles have been sequenced and 
are easily accessible in the public domain in the National Center for Biotechnology 
Information (NCBI) genome database. This chapter describes the journey from the 
discovery of the human genome to application of sequencing technologies in 
genomics research.

2.2  �The Human Genome Project

The Human Genome Project (HGP) create a landmark in genomic research and 
development. It was all initiated with the detection of the double-helical DNA struc-
ture by James Watson and Francis Crick. The possibility that the entirety of the 
coded information may lie in this simple coiled structure of DNA was intriguing, 
and more and more techniques were discovered that could make the decoding easier. 
The first formal proposal to study the HGP was initiated in 1984 by the Department 
of Energy (DOE) and the National Institutes of Health (NIH) in the USA.

After that, approvals were given in 1984 by the National Academy of Sciences 
(NAS) and further adapted for 5 years jointly by the NIH. The HGP was initiated in 
1990 by the International Human Genome Sequencing Consortium (IGHSC)—a 
consortium of 20 research centers (Fig.  2.1)—with goals to make physical and 
genetic maps of the human genome.

The IGHSC followed hierarchical shotgun sequencing (HSS) methods and shot-
gun technology fragments the DNA into smaller lengths, followed by sequencing of 
each of the fragments. Following this, the fragments are overlapped to recreate the 
genome.

In 1996, the “Bermuda principles” were laid down, which agreed that any data 
discovered would be put in the public domain within 24 h of discovery. The Bermuda 
Principle was initiated to maximize the utilization of the data for research and devel-
opment. Two early goals of the HGP included the preparation of genetic and physi-
cal maps of the human and mouse genomes with improved DNA sequencing 
technologies sequencing of smaller genomes (Yeast and worms) were taken as test 
template, with projected aim of technology transfer. The project took on impetus 
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when Dr.  Craig Venter—the founder of Celera Genomics, a highly competitive 
enterprise—joined the race to sequence the human genome. This led to discovery of 
cutting-edge technologies with collaborative and competitive sharing of data, 
enabling improvements in data generation and collection.

Celera Genomics used Applied Biosystems automatic sequencing methodology 
to map the sequences and positions of expressed sequence tags (ESTs). In 1999, a 
sequence for human chromosome 22 (Chr 22) was reported, with the first draft of 
the HGP being detailed in 2001. Chr 22 was particularly chosen because of its small 
size and its association with various diseases. Three billion letters of the Homo 
sapiens genome were finally shared in the final draft of the publicly-funded HGP in 
2003. This draft, although relatively complete, had some major gaps such as incom-
plete annotations and discontinuous sequences. A more updated version was finally 
supplemented in 2006, which gave the complete sequence of Chr  1, the largest 
chromosome of the human genome, containing 8% of the genetic material. Seven 
years later, the genome of Homo neanderthalensis was made public.

The first catalog, known as the “Index Marker Catalog,” detailed the complete 
mapping with 10–15 cM resolution. The human genome was basically found to be 
98.6% junk DNA. The HGP has enabled discovery of 1800 disease-causing genes, 
with the first one being found to be associated with Parkinson’s disease and, surpris-
ingly, 850 sites being concerned with common diseases. Most of the hot spots were 
found to be in the vicinity of the flanking sequences rather than within them. More 
than thousand genetic tests and three hundred biotechnology baased products have 
resulted from clinical trials based on HGP data.

Members of International Human Genome Sequencing Consortium
� The Whitehead Institute/MIT Center for Genome Research, Cambridge, Mass., U.S.
� The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, 

U. K.
� Washington University School of Medicine Genome Sequencing Center, St. Louis, Mo., U.S.
� United States DOE Joint Genome Institute, Walnut Creek, Calif., U.S.
� Baylor College of Medicine Human Genome Sequencing Center, Department of Molecular and Human 

Genetics, Houston, Tex., U.S.
� RIKEN Genomic Sciences Center, Yokohama, Japan
� Genoscope and CNRS UMR-8030, Evry, France
� GTC Sequencing Center, Genome Therapeutics Corporation, Waltham, Mass., USA
� Department of Genome Analysis, Institute of Molecular Biotechnology, Jena, Germany
� Beijing Genomics Institute/Human Genome Center, Institute of Genetics, Chinese Academy of 

Sciences, Beijing, China
� Multimegabase Sequencing Center, The Institute for Systems Biology, Seattle, Wash.
� Stanford Genome Technology Center, Stanford, Calif., U.S.
� Stanford Human Genome Center and Department of Genetics, Stanford University School of Medicine, 

Stanford, Calif., U.S.
� University of Washington Genome Center, Seattle, Wash., U.S.
� Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
� University of Texas Southwestern Medical Center at Dallas, Dallas, Tex., U.S.
� University of Oklahoma's Advanced Center for Genome Technology, Dept. of Chemistry and 

Biochemistry, University of Oklahoma, Norman, Okla., U.S.
� Max Planck Institute for Molecular Genetics, Berlin, Germany
� Cold Spring Harbor Laboratory, Lita Annenberg Hazen Genome Center, Cold Spring Harbor, N.Y., U.S.
� GBF - German Research Centre for Biotechnology, Braunschweig, Germany

Fig. 2.1  International Human Genome Sequencing Consortium (IHGSC) members
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During the HGP formulation, three major organizations—the Human Genome 
Organization (HUGO), the European Commission (EC), and the United Nations 
Educational, Scientific and Cultural Organization (UNESCO)—were involved in 
dissemination of knowledge, creating a framework for process functioning and 
assessing the ethical and sociolegal aspects of data sharing (Chial 2008; Cavalli-
Sforza 2005).

2.3  �Mapping of the Human Genome

Human genome mapping consists of different techniques involved in assigning a 
particular location of gene on a chromosome and assessing the relative distance 
between genes on chromosomes. The publicly funded consortium utilized HSS, in 
which the genome is broken into many fragments and each fragment is cloned in a 
bacterial artificial chromosome (BAC), using a combination of restriction enzymes 
and ligases. In silico assembling of the sequenced fragments results in recreation of 
the whole genome. This technique was utilized by the consortium to generate the 
first draft of the HGP with 23 billion base pairs (bp).

In contrast, Celera Genomics used a whole-genome assembly (WGA) and a 
compartmentalized shotgun assembly (CSA) for genome mapping. WGA follows a 
similar protocol to HSS strategies, whereas CSA subdivides the human genome into 
segments, followed by use of a shotgun sequencing method on the segments sepa-
rately. In the following sections we discuss the various mapping techniques in detail.

2.3.1  �Hierarchical Shotgun Sequencing

The HSS mechanism involves a combination of a classical strategy and a whole-
genome sequencing strategy. The large genomic target is fragmented and a library 
is created. There are various vectors such as phages (30 kb), cosmids (50 kb), BAC 
(100–300 kb), and yeast artificial chromosomes (500–1000 kb) The HGP used BAC 
vectors for creating the library. These vectors possess the capability to replicate in 
bacterial hosts and hence provide an easy step for clone amplification. Generation 
of physical maps involves identification, as well as determination, of landmark loci 
within the BACs. A physical map of each insert was created using classical sequenc-
ing associated with DNA fingerprinting and fluorescence in situ hybridization 
(FISH) data. The locations of the contiguous DNA sequences were established by 
screening the sequence-tagged sites (STSs) and restriction sites. Each STS consists 
of a polynucleotide sequence that can be specifically detected either by a poly-
merase chain reaction (PCR) assay employing two oligo-deoxynucleotide primers 
or by hybridization experiments. Hence any two clones possessing the same STS 
may indicate an overlapping sequence. Similarly, each clone was digested with a set 
of 3–5 restriction enzymes and the profile for each was generated on agarose gel. 
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Two clones giving same banding pattern might contain overlapping sequences from 
the genome. On the basis of the data from the fingerprinting pattern, overlapping 
clones were identified. Subsequently, tiling was performed to involve the minimum 
number of BACs to cover the whole genome. The sequences thus generated are 
assembled into ordered arrays resulting in long-range physical maps. The contigs of 
the library are thus sequenced from either end using fluorescent chemical labels 
(Waterson et al. 2005).

2.3.2  �Whole-Genome Sequencing

Instead of relying on a BAC-based end sequencing method, the WGA method relied 
on linkage maps and markers such as long interspersed nucleotide elements (LINE) 
and minisatellites for recreating the genome assembly. In WGA, the genome is 
sheared into fragments of 2 kb, 10 kb, and 50 kb, and unique sequences are identi-
fied by DNA sequencing. Any genome tends to contain multiple copies of nonfunc-
tional repeat sequences, LINE, and minisatellites. Computational methods based on 
sophisticated algorithms were used to identify overlapping DNA sequences on the 
basis of the presence of repeat elements at either end; this method was aptly named 
mate pairing. Contigs with mate pairs are parsed together and addressed as uniquely 
assemblable contigs (unitigs). A 30-fold reduction in “sheared pieces” and a 100-
fold reduction in overlaps were observed with unitig identification. Unitigs were 
subsequently reassembled as scaffolds on the basis of appearance of the same repeat 
elements and consensus sequence comparison, and the genome was reconstructed 
from the sets of scaffolds.

2.3.3  �Haplotype Genome Sequencing

In eukaryotes, the genome tends to possess different levels of ploidy. In humans, two 
sets of chromosomes are present and hence are known as diploids. With the data gen-
erated from HSS and WGS, it is extremely difficult to identify the haplotype of the 
given individual; hence, haplotype genome sequencing has become a requirement. 
Haplotype information is crucial for understanding linkage analysis, genomics stud-
ies, and clinical genetics for diagnosis and treatment of patients. Haplotype mapping 
(HM) can be broadly classified into sparse and dense HM (DHM). In DHM, genomic 
DNA can be extracted from a sample containing a total population of cells.

Genomic DNA is gently extracted from cells. The extracted sample tends to be a 
mixture of both haplotypes from the whole genome. High molecular weight (HMW) 
DNA is categorized by size on the basis of the gel electrophoresis profile. Enrichment 
of fragments with sizes ranging from 10 to 100 kb is done by compartmentalization. 
Pooled DNA is subsequently cloned in fosmid vector, packaged in phage, and used 
to transduce bacteria for library propagation and outgrowth, then the library is errat-
ically diluted to a large number of reaction blocks, so that respectively each block 
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has zero to one copy of any region of the genome containing a single haplotype at 
any locus. The library is sequenced and indexed to generate information about the 
presence of heterozygous variants.

An additional adapted procedure of HM is contiguity preserving transposition 
(CPT)Seq that utilizes Tn5 transposase. This barcoded enzyme binds strongly to 
HMW DNA after “tagmentation” through indexed DNA connectors. Alleles co-
occurring in the similar HMW haplotype are physically preserved at this stage; 
afterward sequence of transposition and thinning ladders, a protein denaturation 
step leading to the removal of Tn5 transposase and formation of pronounced and 
indexed disjointed templates. The templates are subsequently amplified by PCR to 
introduce a second index. As this intensification step functions on ~200-bp frag-
ments rather than on HMW DNA the subsequent public library consistency is better 
as comparable to other in vitro methods. In each method, all libraries are sequenced, 
employing the properties of conventional shotgun sequencing followed by variant 
calling.

Fluorophore-labeled metaphase chromosomes are separated from single nucleus 
based on fluorescence-activated cell sorting (FACS) into different reaction cham-
bers. Every chamber containing one chromosome therefore contains a single haplo-
type. Discrete chromosomes thus separated are immobilized on a microscope slide 
followed by targeted genotyping by PCR and single-base extensions. Sequenced 
reads are aligned to the genome and matched up to heterozygous variants orthogo-
nally. Since the same haplotypes produce the sequenced fragments, heterozygous 
sites falling within “islands” of coverage are connected to form chromosome-length 
haplotypes (Snyder et al. 2015).

2.4  �DNA Sequencing

Sequencing of DNA involves determining the order of the four biochemical struc-
ture chunks—called “bases”—that make up the DNA molecule. With the advent of 
knowledge and the requirement for ultra-low-cost sequencing (ULCS) methodolo-
gies, three main generations of sequencing technology have arisen. These encom-
pass any one of five technologies namely microelectrophoretic methods, cyclic-array 
sequencing on amplified molecules, ‘sequencing by hybridization’, cyclic-array 
sequencing on single molecules and non-cyclical, single-molecule, and real-time 
methods (Fig. 2.2).

2.4.1  �First-Generation Sequencing

Sequencing techniques have advanced by leaps and bounds. The first-generation 
sequencing methods are basically modified methods of Sanger’s sequencing with 
fluorophores being used for detection by fluorescence based techniques.
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2.4.1.1  �Sanger Method

One of the foremost mechanisms of DNA sequencing is the dideoxy chain termina-
tion method. It was discovered by Sanger so it is also known as the Sanger method. 
This is a micro electrophoretic method that replicates the template strand of DNA to 
be sequenced and impede the replication procedure by insertion of dideoxy nucleo-
tide bases. Knowledge of nucleotide end sequences of the target is a prerequisite for 
this technique. A replica of the respective template is separated into four groups, 
and each group is applied for a diverse duplication response. Copies of a standard 
primer and DNA polymerase I are used in all four batches. To produce fragments 
that terminate at A, ddATP is added to the reaction mixture in batch 1 along with 
dATP, dTTP, dCTP, and dGTP, average primer, and DNA polymerase I. A maxi-
mum of 384 capillary mechanized parallel reactions can be run for Sanger sequenc-
ing. An advancement in Sanger sequencing, known as dye terminator sequencing, 
comprises four ddNTP chain terminators labeled with fluorescent dyes, each of 
which emits light at a different wavelength. As the fragments of different lengths are 
being resolved in the capillary, an excitation laser shines through it and enables 
detection of bands emitting different colors owing to their fluorescent tags. As the 
respectively colored band is identified, a signal is fashioned, administered by the 
sequencer, and obtainable as a peak on a graph, whereby the respectively peaks 
characterize a diverse base.

2.4.2  �Second-Generation Sequencing

Second-generation sequencing (SGS) is the current industry standard and is used to 
read lengths that are roughly 100–500 base pairs at most. The number of sequences 
that all cover the same region is known as “coverage” and is essential as possible 
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Fig. 2.2  Next-generation 
sequencing techniques, 
highlighting sequencing 
methodologies of the first, 
second, and third 
generations
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errors may happen in the sequencing preparation or in amplification, or as a result 
of the sample being heterogeneous, (Difference in ploidy of genome). SGS tech-
niques rely on emulsion PCR and bridge PCR for amplification of signals. We will 
briefly discuss these two PCR modifications.

2.4.2.1  �Emulsion PCR

Emulsion PCR (EmPCR) works on the principle of dilution and compartmentaliza-
tion of the sample. Genomic DNA is fragmented either by sonication or by nebuli-
zation, and adaptors are attached to the 3′ and 5′ ends. Streptavidin-conjugated 
beads immobilized with the same adaptors are synthesized and placed with the 
modified fragmented DNA. Each conjuction procedure generates one bead with a 
specific type of dsDNA acting as a multiple microreactor. A denaturation step sepa-
rates the library fragment into two distinct elements, with subsequent annealing of 
the complementary element to the bead. The annealed DNA is amplified by poly-
merase starting from the bead towards the primer site. The process is then repeated 
over 30–60 cycles leading to clusters of DNA. The amplified DNA is obtained by 
breaking the emulsion, followed by bead enrichment.

2.4.2.2  �Bridge PCR

Genomic DNA for bridge PCR is processed in a similar way with attachment of 
adaptors. A flow cell is designed whereby the surface is thickly coated with adaptors 
that have ability to bind the connecters conjugated to the DNA library fragments. 
The amplified sample is denatured and passed through this flow cell, tends to get 
attached to the surface of the flowcell at random. On addition of nucleotides and 
enzymes, the free ends of the single strands of DNA forms bridged structures, where 
it is exposed to reagents for polymerase based extension. The linked structure 
enables formation of clonal clusters of localized identical dsDNA.

2.4.2.3  �454 Sequencing

A pioneer technique developed by the 454 Corporation, this was the first commer-
cially available next-generation sequencer. 454 sequencing works on the ‘sequenc-
ing by synthesis’ principle, whereby complementary strand synthesis is mediated 
by polymerase enzyme. Pyrosequencing relies on the release of pyrophosphate with 
addition of nucleotide to each DNA chain. Release of pyrophosphate ensures a 
sequential reaction of adenosine phosphosulphonate in the presence of adenosine 
triphosphate (ATP) sulfurylase and subsequent conversion to ATP. The ATP reacts 
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with the luciferin present as a constituent of the reaction mixture in luciferase-
catalyzed conversion and emits pulses of light (oxyluciferin). The relative intensity 
of light is proportional to the amount of base added (i.e., a peak of twice the inten-
sity indicates two identical bases have been added in succession).

2.4.2.4  �Sequencing by Ligation (SOLiD)

This method was developed in 2007 and involves genomic library construction and 
ligation followed by sequencing. EmPCR is utilized to amplify the target sample 
followed by anchoring of agarose beads on a glass surface. Once attached, the 
arrangement is flooded with fluorescent-labeled oligonucleotides. The presence of 
complementarity between the template and the oligonucleotide allows annealing 
followed by ligation mediated by DNA ligase. A phosphonothioate linkage between 
bases enables fluorescent dye to be removed from the fragment using silver ions. 
This allows four different fluorescent peaks to be detected, each corresponding to 
different nucleotides. Removal of the fluorophore makes a 5′- become vulnerable to 
additional ligation.

2.4.2.5  �Reversible Terminator Sequencing (Illumina)

Reversible terminator sequencing, also known as sequencing by synthesis, is a part 
of NGS technology and was developed by Solexa in 2006. Modified nucleotides 
that are fluorescently labeled are used as reversible terminators. Reversible termina-
tors can be gathered into two categories: 3′-O-blocked rescindable terminators and 
3′-unblocked reversible terminators. Each of the four DNA bases has a diverse fluo-
rophore attached to a nitrogenous base in addition to a 3′-O-azidomethyl group. The 
fluorescent tag is cleaved using tris(2-carboxyethyl) phosphine (TCEP), concur-
rently eliminating the 3′-O-azidomethyl group and recreating 3′-OH, and the cycle 
may proceed repeatedly. 3′ reversible terminators are attached to both the nucleo-
tide and the fluorescence group, thereby acting both as part of the termination group 
and as a reporter. This technique varies as the 3′-position is not congested (i.e., the 
base has a free 3′-OH); the fluorophore remains the same for all four bases, and each 
modified base is flooded successively rather than at the same time. Adjustable ter-
mination uses bridge PCR, whereby addition of the nucleotide is followed by cleav-
age of the fluorescent terminator, generating a pulse that improves the efficiency of 
this stage of the procedure. The scheme practically eliminates error-prone reading 
and missed reads associated with strings of homopolymers. Pioneered by Illumina 
(HiSeq and MiSeq), second-generation sequencers can analyze a million bases at a 
cost of $0.02. With a high data output of 600 Gb per run, it takes 8 days to com-
pletely sequence the human genome.
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2.4.2.6  �Affymetrix Microarray Technique

Affymetrix GeneChips are generated using solid-phase chemical synthesis. 
Photolithography oligoprobes are directly synthesized onto a glass wafer and may 
contain as many as 900,000 different variations of similar oligos. The locally syn-
thesized probes tend to have a known location and hence hybridization designs and 
signal strengths can be understood in footings of gene individuality and compara-
tive appearance heights by Affymetrix GeneChip Operating Software.

2.4.3  �Third-Generation Sequencing

Some novel methods have subsequently been prepared using single-molecule 
sequencing (SMS) and single real-time sequencing, thereby reducing costs and 
avoiding potential biases. SMS is currently being employed by the Pacific 
Biosciences platform (single-molecule real-time), Oxford Nanopore Technologies, 
and Helicos Biosciences.

2.4.3.1  �Ion Torrent Semiconductor Sequencing

In ion torrent sequencing a semiconductor chip detects the hydrogen ions formed 
during DNA polymerization. Ion torrent sequencing is the first commercial tech-
nique not to use fluorescence and camera scanning; it translates nucleotide compo-
sition directly into digital information (0, 1) on the chip. Hence, it is a faster and less 
expensive as compared to previous sequencing platforms. Nucleotide incorporation 
into extending DNA results in release of a hydronium ion and is detected by the 
sequencer’s pH sensor. This is instantly converted into a voltage by the semiconduc-
tor chip.

The Personal Genome Machine (PGM) sequencer, from ThermoFisher Scientific, 
sequentially floods the chip with one nucleotide after another. If the next nucleotide 
that floods the chip is not a match, no voltage charge will be recorded. The recording 
of the data occurs in a matter of seconds and thus it is a simple, scalable sequencing 
solution.

2.4.3.2  �Single-Molecule Real-Time Sequencing

This innovative technique was developed by PacBio and is built upon two key nov-
elties: phospholinked nucleotide bases and zero-mode waveguides (ZMWs). A sin-
gle molecule of DNA is immobilized on a ZMW and incubated with a single moiety 
of DNA polymerase. ZMWs allow light to illuminate only the bottom of a well in 
which a DNA polymerase/template complex is immobilized and creates an 
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observation volume small enough to monitor addition of single nucleotides to the 
extending template. Phospholinked nucleotides permit identification of the immobi-
lized complex as the DNA polymerase produces a completely natural DNA strand.

2.4.3.3  �True Single-Molecule Sequencing

Sample DNA is treated with restriction enzymes and tagged with polyA tails. polyT 
chains bound to HeliScope flow cell plates are used to immobilize the tagged sam-
ple DNA. Labeling is performed in “quads” consisting of four cycles each, for each 
type of base. Fluorescent-labeled bases are added, and a laser illuminates the label, 
thus eliciting a signal, which can be picked up by detector. Each hybridized tem-
plate is sequenced simultaneously, enabling multiple reads in a single time frame. 
The label is then cleaved, and the next cycle begins with a new base.

2.4.3.4  �Nanopore Technology

Oxford Nanopore has developed a working principle in which ss-polynucleotides 
container is passed in a single-file through a hemolysin nanopore on a plate with 
millions of tiny wells with the bottom layered with DNA polymerase. The poly-
merase tends to grab a piece of DNA that is exposed in the well and is made to pass 
through a 1.5-nm nanopore. Obstruction of the pore to varying degrees by four 
distinct nucleotides tends to generate tiny differences in electrical conductance 
across the pore. As a consequence, a sequence is generated each time a piece of 
DNA goes through a well. The accuracy of base calling range from 60% for single 
events to 99.9% for 15 events (Kchouk et al. 2017).

2.5  �Genome Annotations

Genome annotation is a procedure for of classifying the loci with assigned function-
ality of each gene thus identified. Genome annotation includes mapping of topogra-
phies such as protein-coding genes and their corresponding messenger RNA 
(mRNA), pseudogenes, transposons, repeats, noncoding RNA (NcRNA), and 
single-nucleotide polymorphisms (SNPs), as well as regions of resemblance to 
other genomes, onto genomic scaffolds. Annotation basically gives an overview as 
to what the species will look like through its life cycle, its mechanisms for various 
life processes, and its responses to the environment. There are various approaches 
for annotating a genome. Here, we discuss the various dimensions of annotation.
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2.5.1  �Nucleotide Annotation

This encompasses the identification of the sequence of a gene. Eukaryotic genes 
comprise introns and exons, which are unique and serve as markers for identifica-
tion. Many computational platforms are available that annotate the start sites, termi-
nation sites, exons, introns, and exon–intron boundary for a given gene sequence. A 
key feature distinguishing each of these programs are sensor algorithms that identi-
fies structural attributes, such as presence of consensus splice site junctions (GT/
AG). Once the loci and sequence are characterized, the next step is naming of genes.

2.5.2  �Naming of Genes

The software most commonly used to designate a gene name is the Basic Local 
Alignment Search Tool (BLAST). On the basis of the query string, this program 
looks through a database for sequence similarities. The most typical databases 
searched are GenBank and Swiss-Prot and can be either a protein or nucleotide 
sequence. Another database frequently referenced is the EST database, which 
houses the coding tags of the various sequences spread across the genome. ESTs are 
tags of expressed genes identified in the complementary DNA (cDNA) library. They 
are transcribed from functioning genes; hence, the EST database is a direct indicator 
of predicted coding genes. Nucleotide stretches present in the genome may be non-
coding genes or marker sequences.

2.5.3  �Annotation of Nongene DNA Sequences

RNA sequences such as ribosomal RNA and transfer RNA (tRNA), which are 
essential for protein translation and RNA splicing, and piwi RNA constitute this 
fraction of the genome. These sequences show a high degree of conservation and 
consequently are easily identifiable. Specific regulatory regions described by short 
sequences (motifs) are the key features identifying whether a gene will be expressed 
or not. Repetitive elements can populate genomes to larger degrees. For example, 
Cis-regulatory elements (CREs) are regions of non-coding DNA which control the 
transcription of neighboring genes. CREs constitute significant elements of genetic 
regulatory networks, which in turn direct morphogenesis, the growth of anatomy, 
and other aspects of embryonic expansion.  Transposons and retrotransposons are 
movable genetic elements. Retrotransposon repeat sequences, which comprise long 
interspersed nuclear elements (LINEs) and small interspersed nuclear elements 
(SINEs), provide clarification for a great number of the genomic arrangements in 
numerous species. More than 8% of the human genome is made up of endogenous 
retrovirus sequences, out of which 42% fraction results from retrotransposon based 
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events, and 3% can be recognized to be the leftovers of DNA transposons mediated 
events. Hence, annotation confers an identity on the other string of nucleotides 
arranged in a primary structure (Koonin and Galperin 2003).

2.6  �Functional Genomics

Functional genomics is a branch of genomics where sequence data are functionally 
annotated and their effects are studied in generation of a cellular phenotype. It quan-
tifies the expression levels of RNA and proteins, and allows us to comprehend the 
biological importance of the genes in a cell. A genome-wide approach is a preferred 
way of studying functional genomics, as the cross play between different moieties 
determines the functioning of the cell. Various techniques have now arisen to gener-
ate data for functional annotation. In the following sections, we briefly discuss some 
cutting-edge technologies currently in practice (Jia et al. 2017).

2.6.1  �qPCR

Quantitative PCR (qPCR) is also known as real-time PCR. qPCR may be used to 
study gene expression and copy number variation, SNP genotyping, detection of 
rare mutations, and miRNA analysis. Real-time PCR allows dependable reliable 
detection and measurement of products generated during each cycle of the PCR 
process on the basis of detection of fluorescent probes. The TaqMan assay is one of 
the original options for real-time PCR. The method exploits the 5′ endonuclease 
activity of Taq DNA polymerase to cut an oligonucleotide probe throughout the 
PCR, thus producing a visible signal. The probes are fluorescently labeled at their 5′ 
end and are non-extendable at their 3′ end due to chemical modification. Specificity 
is conferred at three levels: via two PCR primers and the probe.

2.6.2  �Two-Hybrid System

The yeast two-hybrid (Y2H) technique is used in recombinant yeast strains. 
Transcription of a discerning marker allows expression of a detailed phenotype, 
typically by growth on a selective medium or a change in the color of the yeast colo-
nies (Selective marker). In colorimetric assays, for example, HIS3 enables selection 
of recombinant yeast on a medium lacking histidine, and LacZ to screen recombi-
nant strains. Various yeast two-hybrid have been developed to develop screen for 
detection of co-factor, or identification of post-translational modification of the pro-
tein partners. Lastly, yeast n-hybrid protocols have been used to screen for novel 
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molecular interactions such as protein–protein, DNA–protein, and RNA–protein 
interactions. Utilization of yeast cells has a major disadvantage: protein tends to be 
overtly glycosylated, hence mammalian two-hybrid systems have been designed 
and are being utilized. The vectors expressin fusion proteins are cotransfected with 
a reporter chloramphenicol acetyltransferase (CAT) vector into a mammalian cell 
line. The reporter plasmid contains a CAT gene under the control of five consensus 
Gal4 binding sites. Interaction of both fusion proteins leads to a significant increase 
in expression of the CAT reporter gene. 

2.6.3  �RNA-seq

RNA sequencing is the study of transcriptomic expression. It allows detection of 
variations of events in disease states and responses to therapeutics, different envi-
ronmental stresses, and a broad range of stimuli. RNA-seq is dependent on deep-
sequencing technologies whereby a population of RNA is reverse transcribed to 
cDNA and tagged with adaptors at one or both ends. Each molecule, with or without 
amplification, is formerly sequenced by either single-end sequencing or pair-end 
sequencing. High-throughput sequencing has been used for RNA-seq, such as 
Illumina, SOLiD, and 454 sequencing systems.

2.6.4  �DNA Microarrays

In the microarray technique, DNA fragments are fixed to a substrate and then probed 
with a known gene sequence. An array experiment makes use of common assay 
templates such as microplates or membranes. The sample spots are less than 200 
microns in diameter and regularly comprise thousands of spots containing probes 
with known sequences of DNA, cDNA, or oligonucleotides. The analysis involves 
binding of the probe to the target sequence, therefore determining whether expres-
sion of the target genes has occured. Instantaenously thousands of gene are detected 
on a one DNA chip. DNA microarrays are set up for numerous experimental goals. 
For monitoring expression analysis, cDNA resulting from the mRNA of identified 
genes is immobilized on a solid support and identified from normal and diseased 
tissues. Higher intensity reads are gained for a disease gene if the gene is overex-
pressed in the active disease. This expression design is then associated with the 
expression pattern of the gene responsible for the disease.
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2.7  �The ENCODE Project

The Encyclopedia of DNA Elements (ENCODE) Project was launched as a follow-
up to the HGP. ENCODE was initiated in September 2003 by the National Human 
Genome Research Institute (NHGRI) to overcome the shortfalls of the HGP. The 
aim of the project was to identify functional regions as coding or noncoding. In the 
human genome, the topographies are mapped and consistent methods for RNA 
expression analysis (RNA-seq, CAGE, RNA-PET, and manual annotation), protein-
coding regions (mass spectrometry), TF-binding sites (ChIP-seq and DNase-seq), 
chromatin structure (DNase-seq, FAIRE-seq, histone ChIP-seq and MNase-seq), 
and DNA methylation sites (RRBS assay) are covered (Table 2.1). In the primary 
stage of the project, covering 1% of the genome, the ENCODE Project annotated 
60% of mammalian bases. Then, construction and preliminary examination of 1640 
data sets was performed to annotate functional elements in the complete human 
genome (ENCODE Project Consortium 2012). As a result of ENCODE, the follow-
ing observations and interpretations were made:

	1.	 About 80.4% of the human genome is involved in at least one event in at least 
one cell type.

	2.	 Ninety-five percent of the genome lies within 8 kb of a DNA–protein interacting 
region.

	3.	 Eighty-six percent of the DNA segments occupied by sequence-specific tran-
scription factors contain a strong DNA-binding motif; 2.89 million nonoverlap-
ping DNaseI-sensitive sites (DHSs) were identified by DNase-seq in 125 cell 
types.

Table 2.1  Techniques and their principles used in the Encyclopedia of DNA Elements (ENCODE) 
Project

Technique Principle

RNA-seq Seperation of an RNA sample from sequences tracked by high-throughput 
sequencing analysis

CAGE Capture of methylated cap at the 5′ end of RNA sequences followed by high-
throughput sequencing analysis

RNA-PET Simultaneous capture of RNAs at 5′ methyl cap and polyA tail followed by 
sequencing of a short tag from each end

ChIP-seq Chromatin immunoprecipitation followed by sequencing to map DNA-binding 
proteins

DNaseI-
Seq

Identify regulatory sequences with DNase I as it preferentially cleaves chromatin at 
specific sites followed by high throughput sequencing

FAIRE-seq Exploits the difference in crosslinking efficiency between nucleosomes and 
sequence-specific regulatory factors

RRBS Documentation and description of methylated and nonmethylated CpG stretches

CAGE cap analysis gene expression, ChIP chromatin immunoprecipitation, FAIRE formaldehyde-
assisted isolation of regulatory elements, PET paired end tag, RRBS reduced representation bisul-
fite sequencing, seq sequencing
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	4.	 Genome enhancers and 70,292 regions with probable promoters were 
identified.

	5.	 Sixty-two percent of the genome was found to be highly enriched for histone 
modifications.

	6.	 Noncoding variants in genome sequences were ascertained as ENCODE-
annotated functional regions.

	7.	 Disease-associated SNPs were found to be functional elements in the vicinity of 
the protein-coding regions 

2.8  �Comparative Genomics

With the advent of cutting-edge technologies, many genomes are being discovered 
and curated. The study of the alignment of sequences of available genomic data 
using computer-based tools is known as comparative genomics. Researchers have 
sequenced the complete genomes of numerous animals (more than 250 animal spe-
cies and 50 species of birds) and plants, which includes almost 250 animal and 50 
birds alone, and the list continues to grow daily. Comparative genomics enables 
scientists to identify genes and obtain a broader insight into the structure–function 
relationships of genes. Comparative in silico analysis identifies gene expression 
profiles, protein–protein interactions, and genetic and regulatory interactions. These 
in turn enable us to obtain a broad insight into the origin and evolution of cellular 
interactions. Such comparisons have shown that 90% of the human genome is simi-
lar to that of the mouse, while 60% conservation is observed between humans and 
fruit flies.

Surprisingly, regions that are highly conserved in vertebrates are prone to accel-
erated evolution in humans, and most frequently they constitute the regulatory 
regions (human accelerated regions (HARs)). Comparisons may enable identifica-
tion of syntenic gradients in a species-specific manner and thus may further aid 
recognition of as-yet-unidentified regulatory regions in metabolic pathways. Drug 
targets in many infectious and metabolic diseases could be identified on the basis of 
comparative genomics. As a part of molecular medicine, comparison of the genomes 
of healthy individuals with the genetic makeup of a diseased individual may reveal 
clues to eliminating that disease. The ENCODE Project could methodically classify 
80% of the human genome using experimental markers such as transcription and 
histone modification. The Model Organism Encyclopedia of DNA Elements 
(modENCODE) has successfully used comparative genomic techniques to under-
stand the functionality of various human and animal genomes. As a part of modEN-
CODE, similar patterns of gene expression and regulation could be contemplated 
among fly, worm, and human genomes.

Chromosome painting is one of the techniques that can be used to visually assess 
the similarity of two closely related species such as humans and apes. A variant of 
fluorescence in situ technique is based on utilization of a probe designed from a 
whole chromosome or from a region of a chromosome. Chromosomes to be 
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analyzed are separated by a sorter or by microdissection, followed by amplification 
of the chromosome. Single type of paint is applied to individual species followed by 
suppression hybridization; annealing of chromosomes from two different sources 
may be easily identified based on their characteristic color of the chromosome paint. 
The fluoroscent paint acts as a tag and hence are easily distinguished. Instead of 
painting the whole chromosome, regions of chromosomes may also be highlighted 
(single G-bands) by microdissection.

A model organism possesses an idealized and simple system, which is easily 
accessible and may be manipulated. Comparative genomics has enabled recognition 
of model organisms. Some model organisms identified are the rhesus macaque 
(Macaca mulatta) (for models of human immunodeficiency virus), the chicken (for 
embryonic development and the role of viruses in cancer), the sea urchin (for 
switching of developmental genes), and the chimpanzee (for disease models), to 
name a few.

Genome comparison has enabled us to generate an evolutionary pattern for living 
organisms. Variation in the genome could facilitate quantification of divergence and 
convergence in different species at the molecular level. A centralized database com-
piling data on the complexity of genome organization, gene function, and regulatory 
pathways of plants has been established. Aptly named PLAZA, this platform for 
plant comparative genomics (http://bioinformatics.psb.ugent.be/plaza/) covers 
information pertaining to homologous gene families, sequence alignments, evolu-
tionary trees, dot plots, and genomic collinearity between species. Another site, 
Phytozome (http://www.phytozome.net)—in addition to providing evolutionary 
history at the sequence, gene, and family levels—also provides annotated sequence 
information. Another computational platform, Compagen (http://www.compagen.
org) could classify early members and the branch point of poriferans and 
cnidarians.

Technological advancements have enabled generation of ample data for perform-
ing comparative analysis. One of the basic approaches to obtain data for compara-
tive genomics is performing sequence alignment. Long indels and genomic 
rearrangements are some major drawbacks for obtaining efficient results. Modified 
and advanced algorithm usage on platforms such as BLASTn and MegaBLAST 
(www.ncbi.nlm. nih.gov/BLAST/), GLASS (crossspecies.lcs.mit.edu/), MUMmer 
(www.tigr.org/software/mummer/), PatternHunter (www.bioinformaticssolutions.
com/products/ph.php), PipMaker (http://bio.cse.psu.edu/pipmaker/), and WABA 
(www.cse.ucsc.edu/kent/xenoAli/) has enabled comparative visualization of 
genomes.

The genome structure (Fig. 2.3) may be an essential criterion to perform genome 
comparison. Comparison of nucleotide composition has also enabled us to monitor 
the transfer of genes from one organism to another. There are several islands con-
taining different (G + C) percentages that are strain specific. The study of genome 
signatures enables us to identify candidates for horizontal gene transfer. Exchange 
of fragments in conjunction with chromosomal breakage information tends to cause 
disruption of gene order. Hence, difference in gene order is a direct indicator of 
evolutionary distance between genomes (Haubold and Wiehe 2004; Wei et al. 2002).
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2.9  �The Epigenome and Epigenetics

The multitude of chemical entities regulating the expression of the genome without 
affecting the sequence of DNA are known as the constituents of the epigenome, and 
the phenomenon associated with it is defined as epigenetics. These chemical com-
ponents have the ability to turn expression of genes on and off for formation of 
functionally specialized cells and are invariably heritable. All cells essentially con-
tain the same genome, but the cross talk of the epigenetic modifications tends to 
assign specific roles to cells. Lifestyle, in addition to environmental factors, tends to 
alter the chemical responses and thus may aggravate anomalies in expression.

Such a phenomenon has been observed in lambda phages, where alteration in the 
expression of regulators results in two epiphenotypes. These distinct epiphenotypes 
are responsible for the lysogenic and lytic phases of replication in phages. cro and 
cl proteins are the regulators that enable the shifting between lytic and lysogenic 
cycles. cI protein hinders the expression of the other, by binding to two of the three 
operator sequences and thus promoting its own production and hence lysogeny. 
Environmental fluctuations, and thus DNA damage, augment the level of Cro pro-
tein, inducing the lytic cycle of the phage. Thus, knowledge of epigenomics and 
epigenetics is essential to understand the healthy functioning of living organisms.

In eukaryotes, epigenetic modulations may occur via “marking” or by “regula-
tion.” There are three basic types of epigenetic modifications—DNA methylation, 
histone modification, and NcRNA—enabling marking and regulation of gene 
expression. Various technologies are available to scrutinize the prevalence of epi-
genetic modifications in genomes (Table 2.2).

2.9.1  �Epigenetic Mechanisms of Regulation

Epigenetic changes are reversible, and understanding of the mechanistic basis for 
their efficacy may enable the creation of as-yet-unexplored therapeutics for malig-
nancies. In the next section, we explore the mechanisms and their effects on the 
functioning of the gengenome (Yan et al. 2015).

Fig. 2.3  The genome structure may be compared at different levels
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2.9.1.1  �DNA Methylation

DNA methylation was discovered in 1964 by Hotchkiss and correlated with gene 
expression by Riggs, Holliday, and Pugh. It involves transfer of methyl from 
S-adenosyl methionine (SAM) to cytosine residues at position 5 especially concen-
trated on the cytosine guanine di-repeats known as CpG islands. Approximately 
29,000 CpG sequences have been identified to date, and these have been associated 
with promoters that are unmethylated in normal cells, thus enabling access to tran-
scription factors and chromatin-associated proteins for the expression of most 
housekeeping genes. Transfer is mediated by the family of DNA methyltransferase 
(DNMT). DNMT1, which was found to be associated with the S phase of the cell 
cycle, enables maintenance of the DNA in its heterochromatic form. Two tissue-
specific methyltransferases—DNMT3a and DNMT3b—play a crucial role in 
embryonic differentiation and development. Methylated cytosine tends to be con-
centrated (70–80%) in CpGs, mainly in transposons, centromeres, and telomeres. In 
mammals, six methyl-CpG binding proteins (MBPs)—methylcytosine binding pro-
tein 2 (MECP2), MBD1, MBD2, MBD3, MBD4, and Kaiso—interact with nucleo-
some remodeling complex (NuRD) to methylate DNA, thus being a vital component 
of epigenetic gene regulation.

Methylation-mediated transcriptional repression involves three basic mecha-
nisms: prevention of transcription factor binding to regulatory sequences, employ-
ment of MBPs to prevent the binding of the transcription machinery at the promoter 
sequence, and condensing of DNA in chromatin.

Active demethylation depends on demethylase protein complexes such as the 
ten–eleven translocation (TET) family of proteins (TET1, TET2, and TET3), 

Table 2.2  Assays used for epigenetic studies

Epigenome 
assay Features

MNase-seq Maps both histone and nonhistone proteins
DNase-seq Maps cis-regulatory regions and resolution footprints for transcription factors
FAIRE-seq Maps cis-regulatory regions
ChIP-seq Maps DNA-binding proteins
ATAC-seq Maps nucleosome positioning, chromatin accessibility, and transcription factor 

binding sites simultaneously
WGBS Covers approximately 95% of CpGs
RRBS Covers approximately 10–20% of CpGs, largely in CpG islands
MeDIP-seq Covers approximately 60–90% of CpGs
MBD-seq Covers 60% of CpGs
27K array Covers 27,578 CpGs
450K array Covers 482,421 CpGs

ATAC  assay for transposase-accessible chromatin, ChIP  chromatin immunoprecipitation, 
FAIRE formaldehyde-assisted isolation of regulatory elements, MBD methyl-CpG binding domain, 
MeDIP methylated DNA immunoprecipitation, MNase micrococcal nuclease, RRBS reduced rep-
resentation bisulfite sequencing, seq sequencing, WGBS whole-genome bisulfite sequencing
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thymine DNA glycosylase (TDG), and base excision repair (BER). DNA demethyl-
ation can be either passive (a process arising because of DNA replication without 
coupled de  novo methylation) or active (a process involving the intermediates 
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine 
(5caC)).

2.9.1.2  �Histone Modifications

Histone is a basic constituent of the nucleosome, consisting of eight subunits of 
protein (two copies of H2 histones (A and B), H3, and H4) around which 147 bp of 
superhelical DNA is wrapped. There are distinct forms of histone modifications, 
each having different implications: H3K56 acetylation, H3R42 methylation, and 
H3K122 and H3K64 acetylation destabilize nucleosomes, whereas phosphorylation 
alters chromatin architecture and H1 citrullination decreases DNA interaction. 
Some key enzymes regulating the histone modifications are histone acetyltransfer-
ases (HATs) and deacetylases (HDACs), along with kinases, phosphatases, ubiqui-
tin ligases and deubiquitinases, methyltransferases (HMTs), demethylases (HDMs), 
SUMO ligases, and proteases.

Lysine 56  in histone H3 is the entry point of DNA in a nucleosome. 
Hyperacetylation and hypoacetylation have been observed for the residue in the 
case of hypertranscribed and silent DNA stretches. This modification affects water-
mediated contact between DNA and histone, resulting in compaction of the chroma-
tin structure. Another similar observation has been made in the case of methylation 
of arginine 42 in H3. At the axis of the nucleosome, the binding between histone and 
DNA is strongest. Upon acetylation, a lysine at this juncture, K122, disrupts the 
stable interaction of DNA and protein. This results in unwinding of DNA from its 
tight binding, making it more accessible for the transcriptional apparatus. K64 of 
histones strategically placed near promoters of DNA releases the nucleosomes on 
acetylation, thus leading to increased expression. Conversely, methylation of K64 
and K122 leads to tighter binding of the DNA–histone interactions, and acetylation 
at K56 enables the docking of chaperones to wind the DNA around the nucleosome. 
K56 acetylation at H4 has been found to increase the nucleosome association. 
Methylation on H2A (Q105) is concentrated at the recombinant DNA (rDNA) 
repeats and represses binding of the FACT chaperone, which in turn inhibits nucleo-
some reassembly.

Histone phosphorylation is limited to serine, threonine, and tyrosine residues. 
Phosphohistone interacting proteins belong to the 14–3–3 family. These members 
have been implicated in interacting with different transcriptional regulators and 
chromatin-modifying proteins, such as TATA-binding protein (TBP) and histone 
deacetylases (HDACs).

Interestingly, it has been noticed that two post-translational modifications 
(PTMs) tend to direct the same region of the histone protein. Two distinct models 
have been suggested for this occurrence. The spatially linked theory proposed by 
Mahadevan et al. explains that both PTMs are exclusive of each other and do not 
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require the presence of each other for functioning. Conversely, the second hypoth-
esis suggests that simultaneous recruitment of histone acetyltransferases and kinases 
is a necessity and has been experimentally proved in yeast. Another binary switch 
model involves phosphorylation and methylation, and is known as the phospho/
methyl switch. One such switch has been observed in the Lys 9/Ser 10 region of H3. 
Methylation of K9 by SET DNMTs is associated with the maintenance of hetero-
chromatin and hence gene silencing. Evidence of four such methyl/phos switches 
has been confirmed in the H3 histone (Tessarz and Kouzarides 2014).

2.9.1.3  �Noncoding RNAs

NcRNAs have been observed to be dynamically involved in maintenance and 
expression of the epigenome and have aptly been designated as “signals” as they are 
expression-free activity-driven moieties. There are variants that are structurally and 
functionally distinctive and tend to follow “semiconservative” transmission. RNA-
directed DNA methylation (RdDM) seems to be the focal epigenetic pathway in 
plants. It recruits a dedicated transcriptional machinery composed of two RNA 
polymerases—Pol IV and Pol V—targeting specific DNA sequences. Transcriptional 
repression mediated by RdDM is functionally evident in pathogen defense, stress 
responses, allelic communications, and reproduction.

In eukaryotes, an apparent role of NcRNA has also been observed during fertil-
ization and embryo implantation, with a close association of DNMTs and polycomb 
proteins. Interestingly, loci expressing NcRNA are themselves prone to epigenetic 
modifications and thus expression. Polycomb proteins tend to mediate histone mod-
ifications and gene repression, resulting in transition from euchromatin to hetero-
chromatin. One such loci mediating heterochromatin formation via NcRNA–polycomb 
protein association is located in the p14/p15/INK4 locus expressing signal ANRIL 
in humans. Another NcRNA, Fendrr, plays a pivotal role in cardiac differentiation 
and development. Fendrr binds to DNMT TrxG/MLL and regulates the expression 
of genes related to heart cells via PRC2 and G9a promoter regulation. This tran-
script recruits the DNMT Dnmt1, which has been found to localize to CpG islands 
in imprinted genes. Similarly, miR-214 reduces Ezh2, a histone methyltransferase, 
thus promoting skeletal muscle expression and differentiation.

Short NcRNAs are the key players in cell-specific gene silencing, interacting 
with the site via a stem loop structure at the site of transcription and thus the repress-
ing gene in cis. NcRNA-mediated histone demethylation has also been observed in 
some specific loci; HOTAIR is involved in removing the activating mark H3K4me3 
by recruiting demethylase Fbxl10.

The role of NcRNA in the tumorigenic epigenome has been researched quite 
extensively. Decreased expression of miR-449a enhances production of HDACs 
1–3 and thus leads to decreased proliferation and tumor formation of hepatocellular 
carcinoma (HCC) cells. Oncogene-mediated downregulated microRNAs (miRNAs) 
involved in tumorigenesis utilize EZH2 as a mediator, resulting in EZH2 overex-
pression. In Caenorhabditis elegans, lymphoblastic leukemia model gene expression 
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was controlled through endogenous short interfering RNAs (endo-siRNAs). 
Epigenetic hypermeythylation of hsa-mir-9-1 was found to be a prognostic bio-
marker for breast carcinoma, whereas repression of miR-148a and miR-34b/c 
induced metastatic events in cells.

2.9.1.4  �Cross Play of NcRNA, Histone Modifications, and DNA 
Methylation in Cancer

The most classic example of a cumulative effect has been observed in cancer epi-
genetics. Hypomethylation of repeats and pericentromeric regions results in 
genomic instability, whereas promoter hypermethylation leads to transcriptional 
inactivation. miRNA-145, a well-characterized miRNA, has been downregulated 
mainly because of aberrant DNA methylation of its promoter. DNA methylation and 
histone modification–associated promoter silencing of miRNAs (hsa-miR-9, hsa-
miR-129, and hsa-miR-137) was found to be a cause of reduced expression in 
colorectal cancerous tissues, with only rare occurrence in normal tissue.

Simultaneously, hypoacetylation of histones tends to up- or downregulate gene 
expression in tumors. The transcriptional inactivation due to promoter hypermeth-
ylation tends to affect major cellular pathways such as DNA repair, cell cycle con-
trol, Ras signaling, apoptosis, metastasis, detoxification, hormone response, and 
vitamin response, to name a few (Kanwal and Gupta 2012).

2.9.1.5  �Epigenetic Silencing

Human chromosomes contain two copies of every gene—one inherited from either 
parent. Usually only one copy of the gene is switched on and the other remains 
switched off by a process called imprinting. The epigenome tends to distinguish 
between the imprinted gene and the switched-on copy of the chromosome.

Females tend to have two X  chromosomes, and dosage compensation is an 
essential phenomenon mediated by X chromosome inactivation (XCI). The inter-
play of XIST (a conserved 17 kb long noncoding rNA (lncRNA)) and its antisense 
partner, TSIX (also noncoding), at the regulatory element X  inactivation center 
(Xic) is important for the inactivation of the X chromosome. A short repeat RNA 
(RepA) inherent to XIST recruits PRC2, resulting in H3K27 marker trimethylation 
and progressive silencing of the X chromosome. Methylated H3K27 tends to accu-
mulate PRC1 and subsequently leads to the X inactivation center.

Abnormal imprinting has been found to be associated with Beckwith–Wiedemann 
syndrome (characterized by body overgrowth and an increased risk of cancer), 
Prader–Willi syndrome (characterized by poor muscle mass with constant hunger) 
and Angelman syndrome (characterized by intellectual disability and motion diffi-
culties). The imprinted human chromosome 11p15.5 (involved in Beckwith–
Wiedemann syndrome) is controlled with paternally expressed antisense NcRNA; 
this 91-kb-long transcript facilitates bidirectional silencing by recruiting HMTs of 
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PRC2 complex and enzyme G9a. The interaction mediates an increase in repressive 
histone modification in the Kcnq1 domain KvDMR1/LIT1/KCNQ1OT1.

Analysis of the epigenetic modifications is equally necessary, as they convey 
significant information. SGS platforms are not competent in decrypting sequences 
with modified nucleotide bases. For example, 5-methylcytosine and 
5-hydroxymethylcytosine are read as cytosine, leading to loss of epigenetic infor-
mation during sequencing. Some specialized sequencing methods such as bisulfate 
sequencing and oxidative bisulfite sequencing have been developed, which enable 
us to distinguish regions in the genome that are prone to epigenetic changes.

Bisulfite reacts differentially with cytosine and 5-methylcytosine; cytosine 
becomes deaminated in the presence of bisulfite to uracil and 5-methylC is unreac-
tive (i.e., read as C). Sequencing performed on methylated strands and unmethyl-
ated strands present distinct results. This technique holds true for dsDNA, as after 
treatment with bisulfite, the strands become noncomplementary and hence are 
treated as single-stranded DNA (ssDNA). The drawback of this technique is that it 
cannot distinguish between 5-OH methylcytosine, another important epigenetic 
modification, and unmethylated cytosine. Hence, oxidative bisulfate has come up as 
a solution. This technique involves chemical oxidation converting 
5-hydroxymethylcytosine to 5-formylcytosine using potassium perruthenate before 
bisulfite addition. Subsequently, bisulfate treatment subjects the formylated deriva-
tive to deformylation and deamination to form uracil. Hence, with these methods, 
scientists can distinguish between cytosine, 5-methylcytosine, and 
5-hydroxymethylcytosine (Villota-Salazar et al. 2016; Peschansky and Wahlestedt 
2014; Baylin and Ohm 2006).

2.10  �Genomic Methods for Studying Complex Diseases

Genome-wide association studies (GWASs) are an experimental design facilitating 
the study of population genetics and their complex attributes. The data generated 
have been used to study genetic variants in samples from populations. A genetic 
linkage map is constructed by observing the probability of two markers being inher-
ited together. Markers must be polymorphic; alternative forms (copy number vari-
ants) should be present among individuals so they may be distinguished among 
different individuals with a frequency of once every 300–500 bp. GWASs rely on 
linkage disequilibrium (LD), defined as the correlation of DNA variants with respect 
to a finite population size, mutation, recombination rate, and natural selection. LD 
among variants is quantified as a squared correlation (r2), as it is proportional to the 
sample size considered for an association study between an observed genotyped and 
an unobserved causal variant.

One of the first techniques enabling GWASs is a SNP array. Two platforms have 
been frequently used for GWASs: Illumina (San Diego, CA, USA) and Affymetrix 
(Santa Clara, CA, USA). Affymetrix is a chip-based platform with printed DNA 
probes as spots enabled to detect a distinct SNP allele. Illumina, on the other hand, 
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is bead based and immobilized with longer DNA probes with higher specificity, but 
it is expensive. At the same time, detection of millions of SNPs becomes a hurdle 
with these techniques. This was made feasible with the use of chip-based microar-
ray technology. In the next section we discuss the details of these techniques 
(Visscher et al. 2017).

2.10.1  �ChIP and ChIP-on-Chip

Our understanding of the biological basis of interactions of DNA with nuclear pro-
teins in the background of gene expression, cell differentiation, or disease has been 
hugely improved by the arrival of chromatin immunoprecipitation (ChIP). ChIP 
selectively analyzes a protein on the basis of its immunodomains from a chromatin 
preparation and thus determines the DNA sequences linked to the protein. Briefly, 
ChIP is an amalgamation of cross-linking and cell lysis followed by nucleic acid 
shearing and antibody-based immunoprecipitation (IP), DNA sample clean-up, and 
amplification by PCR in tandem. Cells fixed with formaldehyde are subjected to cell 
lysis. Sonication tends to result in variable batches of fragments, whereas use of 
micrococcal nuclease (MNase) has tended to give consistent results. Chromatin 
fragments may vary from 200 to 1000 bp, depending on the type of technique used 
for shearing. Quantification is generally done by qPCR, which is an accurate, gel-
free system for the measurement of DNA enrichment. ChIP-on-chip is a variant 
whereby the IP technique is followed by a DNA microarray. DNA sequences linked 
with the precipitated protein can be recognized by end-point PCR, qPCR, labeling, 
and hybridization to genome-wide or tiling DNA microarrays (ChIP on-chip), 
molecular cloning, and sequencing (Yan et al. 2016; Ho et al. 2011).

2.11  �Clinical Genomics

The techniques discussed earlier generate huge data which, if not evaluated prop-
erly, may lead to false negatives. One of the biggest challenges in these studies is 
accurate and reproducible analysis of the resulting terabytes of data. Computational 
analysis becomes mandatory and requires aligning of reads to reference genomic 
sequences. Commonly used programs include BWA for DNA reads, STAR for 
RNA-seq data, and Bismark, BSMAP, or BSmapper for bisulfite sequencing data. 
Many aspects of patient care integrate genomics and informatics, especially with 
the transition to electronic health records (EHRs). Large-scale studies using machine 
learning and data-mining methods permit unprecedented access to large sample 
sizes and diverse patient cohorts, facilitating studies related to adverse drug effects 
and developing a classifier for disease phenotype severity.
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Genomic approaches have been instrumental in management of chronic ill-
nesses, such as diabetes and inflammatory bowel disease. The Human Microbiome 
Project and other metagenomic studies have disclosed the composition of microbi-
ota and their adverse effects. Fecal microbiota transplantation for treating 
Clostridium difficile is one example representing the translation of this finding into 
clinical practice.

Methylated DNA sequences are one of the significant biomarkers for prognosis 
and diagnosis of various anomalies. Epigenetic markers have been evaluated in 
tumors and body fluids. For example, hypermethylated CDH13, MYOD1, MGMT, 
p16 INK4a, and RASSF1A gene frequency fluctuates prominently within cancer types. 
Additionally, these changes are detectable in plasma DNA and urine. In the near 
future, diagnostic hypermethylation assays for RASSF1A, RARβ2, APC, and GSTP1 
may be successfully utilized for differentiation between benign and metastatic 
changes of the prostate.

Epigenetic drugs include DNMT inhibitors and HDAC inhibitors. Epigenetic 
therapies could be made possible on the basis of the “methylogenomics” now avail-
able for various malignancies. Correlation studies of the clinical outcomes when 
they are subjected to epigenetic drugs have already been studied in detail. A classic 
success story regarding the use of genomics in cancer therapy relates to use of the 
BRAF inhibitor vemurafenib in metastatic melanoma. Genomic screening con-
firmed BRAF V600 mutations in 50% of patients, which increased the sensitivity of 
cancer cells to BRAF inhibitors. These models will be essential for early interven-
tion in individuals at high risk of different malignancies. Currently, the legal and 
ethical issues surrounding clinical genomics, including genetic testing in children 
and adolescents, are been evaluated.

Federal policy changes this evolution in our understanding and treatment of can-
cer, most notably through US President Obama’s Precision Medicine Initiative, 
announced in his 2015 State of the Union Address. This initiative includes increased 
funding for the National Cancer Institute to research genomic drivers in cancer and 
to streamline the design and testing of targeted therapies based on genetics. 
Relatedly, the prototypical clinical trial is transforming to reflect a personalized 
medicine approach, as seen by the success of the IMPACT and IMPACT2 studies. 
Importantly, these changes in clinical genomics are occurring on a global scale, 
inspiring international cooperation to advance medicine (Vijay et al. 2016).

2.12  �Genomic Databases

Biological databases offer researchers access to extensively mined biologically rel-
evant data, encompassing the genomic sequences of an increasing variety of organ-
isms. The data from these repositories may be reviewed further for a plethora of 
clinical applications. The Table 2.3 provides a comprehensive compilation of data-
bases available for genomic studies.
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Table 2.3  Genomic databases

Database URL Importance

Genome Database (GDP) http://www.gdb.org Compilation of human genes, clones, 
STSs, polymorphisms, and maps

Database of Genomic 
Variants (DGV)

http://dgv.tcag.ca/dgv/app/
home

Curated data on genomic structural 
variations

Cooperative Human 
Linkage Center (CHLC)

http://www.chlc.org Comprehensive human linkage map 
with centimorgan density

Unigene https://www.ncbi.nlm.nih.
gov/unigene/

Differential expression data based on 
tissue, age, and health status

Database of Sequence 
Tagged Sites (dbSTS)

https://www.ncbi.nlm.nih.
gov/dbSTS/index.html

Contains information about sequence 
tagged sites

Mouse Genome Database 
(MGD)

http://www.informatics.
jax.org

Mouse genomic repository with an 
interface

Online Mendelian 
Inheritance in Man 
(OMIM)

http://www3.ncbi.nlm.nih.
gov/Omim/

Compendium of human genes and 
genetic phenotypes

Ensembl: Human Genome 
Central

http://www.ensembl.org/
genome/central/

Genome information at the sequence 
level

Tomato Functional 
Genomics Database 
(TFGD)

ted.bti.cornell.edu/ RNA-seq data sets with expression 
information

ArrayExpress https://www.ebi.ac.uk/
arrayexpress/

Functional genomics data from 
microarray and sequencing platforms

Gene Expression Omnibus 
(GEO)

https://www.ncbi.nlm.nih.
gov/geo/

Storage and distribution of microarray 
and next-generation sequencing

ARCHS4 https://amp.pharm.mssm.
edu/archs4/

Sequencing database for human and 
mouse experiments from GEO and 
SRA

Sequence Read Archive 
(SRA)

https://www.ncbi.nlm.nih.
gov/sra

Sequencing database from high-end 
sequencing platforms

Nucleic Acid–Protein 
Interaction Database 
(NPIDB)

http://npidb.belozersky.
msu.ru/

Database for nucleoprotein complexes

DNAproDB http://dnaprodb.usc.edu/ Database of DNA–protein complexes
EDGEdb http://edgedb.umassmed.

edu
Caenorhabditis elegans transcription 
factor–DNA interaction data based on 
differential gene expression

Protein–DNA Interface 
Database (PDIdb)

http://melolab.org/pdidb/
web/content/links

Structural information on protein–
DNA interface based on x-ray 
crystallography

NASCArrays http://ssbdjc2.nottingham.
ac.uk/narrays/
experimentbrowse.pl

Single- and double-channel 
microarray experiments for 
Arabidopsis

ONCOMINE https://www.oncomine.
org/

Cancer microarray repository 
data-mining platform

GENEVESTIGATOR https://www.
genevestigator.ethz.ch.

Gene expression profiles of more than 
22,000 Arabidopsis genes

(continued)
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Database URL Importance

Soybean Genomics and 
Microarray Database 
(SGMD)

http://psi081.ba.ars.usda.
gov/SGMD/default.htm

Genomic, EST, and microarray data 
on soybean–nematode interaction and 
embedded analytical tools

Yale Microarray Database 
(YMD)

https://medicine.yale.edu/
keck/ymd/

Database for archiving and retrieving 
microarray data generated by 
Affymetrix, Illumina, Nimblegen, and 
Sequenom

PLAZA https://bioinformatics.psb.
ugent.be/plaza/

Integrative database for plant 
functional, evolutionary, and 
comparative genomics

HOBACGEN http://pbil.univ-lyon1.fr/
databases/hobacgen.html

Database for comparative genomics in 
bacteria

MethylomeDB www.neuroepigenomics.
org/methylomedb/

Brain methylome database 
supplementing DNA methylation 
profiles from humans and mice

DiseaseMeth bio-bigdata.hrbmu.edu.cn/
diseasemeth/

Methylomes of human disease

HIstome www.actrec.gov.in/
histome/

Histones with their modification sites, 
variants, and enzymes that mediate 
alteration

TarBase 6.0 diana.imis.athena-
innovation.gr/DianaTools/

Data on miRNA targets

NONCODE v3.0 www.noncode.org Microarray-based expressional and 
functional lncRNA data

miRNEST mirnest.amu.edu.pl/ Repository of animal, plant, and virus 
miRNA data

Clinical Genomic Database 
(CGD)

https://research.nhgri.nih.
gov/CGD/

Database of disorders with known 
genetic predispositions and available 
interventions

ClinGen https://www.
clinicalgenome.org/

Database of clinically relevant 
variants of genes important for 
precision medicine and research

Canadian Open Genetics 
Repository (COGR)

http://opengenetics.ca/ Classification of human genetic 
variants of all kinds and resources

DBTBS http://dbtbs.hgc.jp Transcriptional regulation events in 
Bacillus subtilis

WormBase http://www.wormbase.org/ Data repository for information about 
Caenorhabditis elegans and related 
nematodes

GreenPhylDB http://greenphyl.cirad.fr Comparative functional genomics in 
rice and Arabidopsis genomes

MolliGen http://cbi.labri.fr/outils/
molligen/

Comparative genomics platform for 
Mollicutes

The Adaptive Evolution 
Database (TAED)

http://www.bioinfo.no/
tools/TAED

Phylogeny-based tool for comparative 
genomics

EST expressed sequence tag, lncRNA long noncoding RNA, miRNA microRNA, seq sequencing, 
STS sequence-tagged site

Table 2.3  (continued)
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Chapter 3
Transcriptomics

Jyotika Rajawat

Abstract  Transcriptomics can be considered as Integromics, whereby combining 
data from various omic branches results in crisp information. Transcriptomics pro-
vides the most informative base to start a research work, and with advent of new 
high-throughput techniques, it has become very easy and fast to generate a pool of 
data and information. Transcriptome constitutes all transcripts present in a cell 
including mRNA, miRNA, noncoding RNAs, and small RNAs. Transcriptomics 
identifies the quantity of RNA and transcriptional structure and quantifies the dif-
ferential expression levels of transcripts spatially and temporally during various 
developmental stages and under varying physiological conditions. It gives the infor-
mation on diversity, noncoding RNAs, and the arrangement of transcriptional units 
in coding regions. Transcriptomic analysis began with a primitive technique called 
EST, i.e., expressed sequence tags, followed by another technique called SAGE, 
i.e., serial analysis of gene expression, based on Sanger sequencing. EST and SAGE 
were laborious and determined a small set of transcripts in a random fashion, yield-
ing half information on transcriptome. The 1990s marks the revolutionary decade in 
transcriptomics with the introduction of technological innovation of contemporary 
technique called microarray. Microarray analyzes large mammalian transcriptome 
rapidly and has been useful in drug development and clinical research by analyzing 
thousands of genes from multiple samples. The major drawback of the technique is 
the analysis of only known sequences and hence cannot detect novel transcripts. 
The latest in transcriptome analysis is RNA-Seq based on deep sequencing technol-
ogy which can record up to 109 transcripts. It identifies the gene and the temporal 
activity of genes in a genome. In situ RNA-Seq is an advanced form which gives an 
overview of an individual cell in a fixed tissue. RNA-Seq is thus an advanced tech-
nique providing detailed information of complex transcriptome. Further, the chapter 
discusses the advantages and limitations of transcriptome analysis tools.
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Similarly, the information of the expressed genes from a microbial community is 
termed as metatranscriptomics. Metatranscriptomics provides functional profile of 
microbiome under varying physiological conditions. The data generated is useful in 
enrichment analysis and phylogenetic analysis of microbes. Several bioinformatic 
pipelines are now designed or are in process for analysis of metatranscriptome data-
set. Metatranscriptomics will provide information on microbial flora in human 
beings which can be exploited for designing targeted therapy for microbial dysbio-
sis. The last section of the chapter discusses the application of transcriptomics par-
ticularly in diagnosis and profiling a disease. Another application includes 
identifying environment-responsive genes or pathways, host-pathogen interactions, 
and annotating gene functions.

Keywords  EST · SAGE · Microarray · RNA-Seq · Gene annotation · Cancer

3.1  �RNA to Transcriptome

3.1.1  �Transcriptome and Transcriptomics

A classic simple transcriptome is composed of spliced mRNAs each consisting of 
5′ capped end, a 5′ UTR, and a coding sequence (CDS) followed by 3′UTR ending 
in polyA tail. The above definition offers a simple form of transcriptome, but there 
has been a fundamental complexity linked to gene to protein transformation. 
Complexity can be observed at multiple levels, starting from alternative splice vari-
ants coded from a single gene leading to isoforms of protein with functional diver-
sity and redundancy. Another complexity often observed is noncoding of transcripts 
to protein as they lack CDS. Diversity is also seen in 5′ and 3′ ends; thereby, differ-
ent regulatory mechanisms are followed by differential mRNA turnover. mRNA 
levels vary depending upon the degree of transcription and their stability. 
Transcriptome connects genome to gene function. Analyzing the transcriptome of 
an organism would yield an overview of an expressed gene and will be highly infor-
mative for understanding development and disease using other approaches like pro-
teomics and metabolomics.

Analysis of a complete set of transcripts in a cell or transcriptome structure at a 
given time is known as transcriptomics. The study of the RNA, RNA variants, tran-
scriptome complexity, and gene expression analysis is termed as transcriptomics. 
Transcriptomics guides us to analyze all RNA transcripts including noncoding 
RNAs (ncRNAs) and small RNAs, splicing variants and pattern, transcriptional 
units, transcriptional start sites, and posttranscriptional modifications. We can ana-
lyze the differential expression of gene population under different conditions and 
developmental stages. With the advancement of techniques, differential gene 
expression in a spatial and temporal manner can also be now analyzed with tran-
scriptomics. Transcriptomics is now the first and foremost assay to understand an 
organism’s biology where it reveals the information on expression of a gene, its 
regulation, and downstream signaling.
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3.1.2  �Principle of Transcriptomics

Structure and dynamics of the transcriptome is analyzed by transcriptomics 
approach. Transcriptomics is based on the analysis of mRNA, where mRNA is con-
verted to cDNA followed by fragmentation, labeling, hybridization, and probing. 
Sequencing is then carried out based on NGS followed by bioinformatic approach 
for data analysis.

3.1.3  �Technological Approach to Study Transcriptomes

The word transcriptome was first coined in the early 1990s. The earliest technique 
developed to study transcriptome was Sanger sequencing-based method known as 
EST and SAGE. The conventional techniques were later replaced by contemporary 
techniques microarray and RNA-Seq. In this section we describe all techniques 
used to study transcriptomes. The initial material for all these methods is RNA 
enriched with mRNA. RNA is extracted from cells and tissues using TRIzol Reagent 
and finally eluted using polyA affinity columns for mRNA enrichment. Care should 
be taken to avoid the contamination of RNase enzyme during RNA isolation.

3.1.3.1  �Expression Sequence Tag (EST)

EST is a technique which generates short oligonucleotide sequence based on the 
principle of Sanger sequencing method. RNA is transcribed to cDNA using reverse 
transcriptase enzyme, and then cDNA generated is sequenced. ESTs can be gener-
ated from any mixture of samples of any organism as it does not require prior 
knowledge of the origin of sample. Just as sequence-tagged sites (STS) mark the 
genomic DNA, similarly ESTs are unique sequences pointing to expressed genes in 
the mapped cDNA clone. EST was useful for unknown gene identification but could 
not quantify expressed genes. Another major drawback of EST was sequencing a 
single cDNA copy at a time, making it low throughput and costly method. With the 
advent of new technique, EST is no longer used, but EST libraries have been the 
basis for designing of early microarray gene chips.

3.1.3.2  �Serial/Cap Analysis of Gene Expression (SAGE/CAGE)

An advancement of EST was serial analysis of gene expression (SAGE) where frag-
ments were tagged which allowed quantitation of transcripts. SAGE was invented in 
1995 by Dr. Victor Velculescu from John Hopkins. SAGE is a powerful technique 
designed for direct quantitation (digital analysis) of gene expression and also identi-
fies novel gene expression in a cell population. Basic principle underlying SAGE is:
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	(a)	 Simultaneous analysis of thousands of genes by tagging short oligo sequences 
of 9–10 bp at 3′end for each transcript.

	(b)	 Sequence tags are linked together, then cloned, and sequenced. Serial and paral-
lel analysis can be performed together thereby increasing the data output.

	(c)	 Quantitation is finally done, wherein each tag count represents the abundance of 
a particular transcript.

Method

	1.	 cDNA synthesis-mRNA is converted to cDNA using biotinylated oligo dT 
primer which is then digested with restriction enzymes known as anchoring 
enzyme (AE) which cleaves at every 256 bp generating sticky ends. Commonly 
used anchoring enzyme is NlaIII which is 4 bp recognizing enzyme. Biotinylated 
3′cDNA binds to streptavidin-coated beads and is affinity purified from the pool 
of RNA. These captured cDNA mixture is then divided into two halves, and each 
half is ligated with specific independent linkers (A or B) through NlaIII cohesive 
ends. Linkers are docking molecules made up of oligonucleotide duplex. Linkers 
contain NlaIII overhangs, recognition sequence for tagging enzyme (TE), and 
primer sequence A/B. The mixture is now digested with type IIS tagging enzyme 
which is normally BsmFI or FokI, releasing linker-adapted SAGE tags with stag-
gered ends. Staggered ends are converted to blunt ends with the help of Klenow 
DNA polymerase. The resultant products are short tags from each transcript. The 
two divided pools are now mixed followed by ligation in tail-tail orientation with 
T4 DNA ligase forming ditags sandwiched between linkers. These are PCR 
amplified followed by digestion with anchoring enzyme NlaIII resulting in sepa-
ration of linkers and leaving sticky end ditags which are finally separated on gel 
(PAGE). All such ditags separated are isolated from the gel and ligated to form 
long molecules termed as concatemers. Concatemers are cloned into vector, 
amplified in bacteria, and a large number of copies are isolated and then 
sequenced (Velculescu et al. 1995; Moreno et al. 2001; Yamamato et al. 2001). 
Sequencing results into a vast data in a form of long nucleotide chain which is 
analyzed with the SAGE software.

The presence of AE site between two tags allows the software to identify the end 
of one tag and beginning of the other tag. The software further analyzes the number 
of tags, determines the abundance of the same tag from the single transcript, and 
identifies whether the tag belongs to a known gene or is novel. SAGE software 
aligns the data with the GenBank sequence and identifies it (Fig. 3.1).

Limitations

	(a)	 Actual gene expression cannot be measured.
	(b)	 Quantitative bias is observed due to linker dimer molecular contamination, low-

efficient ligation of blunt ends, or amplification artifact.
	(c)	 Sequencing errors could lead to difficulty in assigning tag to a specific 

transcript.
	(d)	 There could be same tag for two different genes or different tags for splice vari-

ants of the same gene.
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Applications

	1.	 Yeast: The whole transcriptome profile of yeast has been done with SAGE pro-
file where 60,633 tags correspond to 4665 genes and out of which 93% matches 
with the yeast genome and the expression level varies from 0.3 to 200/cell.

	2.	 Cancer: SAGE analysis has been highly exploited for cancer studies where dif-
ferential gene expression profiles of normal and cancer cells are determined.

	3.	 Tissue analysis: Transcriptome of various tissues including renal, cervical, etc. 
has been analyzed with SAGE.

	4.	 Immunological studies: Differentially expressed genes in response to immunoglob-
ulin E high-affinity receptors have been identified. Several genes have been identi-
fied as stimulation-responsive genes with the help of SAGE analysis. Differential 
gene expression in response to different colony-stimulating factors was also ana-
lyzed with SAGE profile. Differential gene expression response in monocytes and 
dendritic cells was characterized by SAGE technique (Yamamato et al. 2001).

Fig. 3.1  Steps for serial analysis of gene expression (SAGE)
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3.1.3.3  �Microarray

Microarray technique has brought revolution in the field of molecular biology which 
opened up the avenue to study biological functions of related genes to global gene 
expression and pathway analysis. It yields a massive amount of data which can be 
deciphered to a sea of information about biological activity of a cell. Microarray 
was developed to monitor multiple gene expressions in a given time simultaneously. 
Scientific ingenuity has led to transition from two-dimensional to three-dimensional 
microarray followed by suspension bead arrays, which are now useful in clinical 
implications. The technique originated basically from large-scale mapping of 
genomic DNA and sequencing, later adapted for global transcript analysis crediting 
the huge success of microarray. Several other types of microarray are in progressive 
state or are under development that would change the future of research and medical 
treatment (Hoheisel 2006).

The basic principle of microarray is hybridization between complementary 
strands of DNA where one DNA strand (short oligos) or probes are arrayed on 
microchip and the fluorescent labeled target transcript is added. Fluorescent inten-
sity of each probe determines the transcript abundance of a particular gene or RNA, 
and the position on the chip identifies the target. Thus, microarray can produce 
quantitative data yielding information about gene expression or qualitative data use-
ful for diagnostic purpose. Microarray chip consists of immobilized phase, i.e., 
probes which could be cDNA prepared from EST library or genome sequence or 
oligonucleotides. DNA is then snap dried and UV cross-linked to the glass surface 
of an array. The mobile phase in RNA microarray is usually labeled cDNA. Microarray 
of transcriptome is basically cDNA/oligo array which is classified into two types:

	(a)	 Low-density spotted arrays or printing microarrays – picoliter volume of cDNA 
is required, and control and treated samples are labeled with different fluoro-
phores and hence can be incorporated in same array. The oligonucleotide probes 
(50–70 nucleotide in length) or PCR products are spotted onto the glass slides 
with spot size ranging from 80 to 150 μm. The information obtained from these 
arrays is the relative gene expression between two conditions as absolute quan-
tification cannot be done.

	(b)	 In situ (on-chip) synthesized or high-density arrays or gene chips consist of 
synthetically designed oligonucleotides on glass slides or wafers with the help 
of modified photolithographic technology (by Affymetrix) or inkjet technology 
(Agilent). The probes are usually 20–25 bp long, and multiple probe sets are 
used that enhance the sensitivity and specificity of the array compared to 
low-density array. Hence, a single gene is assayed by several short oligo probes. 
The major advantage of these gene chips is absolute measurement of the RNA 
expression in each sample, and the main drawback is inability to simultane-
ously compare two biological samples in a same array (Lowe et al. 2017).
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Method

Total RNA is isolated from biological samples, and purity is checked and quantified. 
Required amount of RNA is then processed for tailing using ATP mix, and polyA 
RNA is generated. Tailed RNA is then ligated with the FlashTag Biotin HSR label 
using T4 ligase. Hybridization cocktail is prepared using tagged ligation mix and 
hybridization mix reagents and then injected in the microarray chip followed by 
hybridization in the oven overnight. Hybridization is carried out at 48 °C and 60 rpm 
for 16 h. During hybridization the target transcripts bind to the respective probes. 
After completion of hybridization, arrays are removed from the oven and filled 
completely with array holding buffer for equilibration. Further, arrays are washed 
and stained with respective buffers and staining solutions for 2–3 cycles as per the 
fluidic station protocol and array format being used. Finally, array is filled with 
Array Holding Buffer and ensures no air bubbles are trapped in the array. Seal the 
array with septa, wipe it properly, and place it in the scanner for further analysis. 
Data is then summarized using a software, data quality determined from spike-in 
controls and normalized with internal control (Fig. 3.2).

Fig. 3.2  Flow chart depicting the method for microarray
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Limitations

Microarray identifies already reported genes and cannot predict novel genes. 
Analysis of the result also remains a challenge as normalization process is affected 
by technological variation more than biological differences.

Applications

	(a)	 Gene expression profile of a cancer cell (Govindarajan et al. 2012).
	(b)	 Microarray has identified molecular signatures specific for cancer types and 

subtypes. Based on the microarray gene signature analysis, acute myeloid  
leukemia was distinguishable from acute lymphocytic leukemia (Golub et al. 
1999). Lately, another group has characterized molecular signature in nonneo-
plastic and neoplastic prostate tissues to differentiate healthy prostate, neoplas-
tic prostate, localized cancer, and metastatic prostate cancer (Dhanasekaran 
et  al. 2001). Now, signature profiles of many cancers have been reported by 
various groups. Tumor-specific molecular markers have also been reported with 
the use of microarray technique.

	(c)	 Differentiate normal, precancerous, and cancerous cells.
	(d)	 Inflammatory signature.
	(e)	 Drug response profile: Drug resistance is a common problem being faced with 

multiple cancer drugs, and hence using microarray technology to identify the 
cellular pathways implicated in resistance could help in overcoming the drug 
resistance phenomenon (MacGregor and Squire 2002).

	(f)	 Comparative analysis to identify gene sets responsible for high antibody  
production in mammalian cells (Yee et al. 2008).

3.1.3.4  �RNA-Seq

RNA sequencing is a novel method applied for mapping and quantifying the tran-
scriptome. RNA sequencing is an advanced technique which utilizes deep sequenc-
ing approach to analyze the transcriptome. The major advantage of RNA-Seq over 
microarray is the discovery of novel RNA species. RNA quantification is done at 
single-base resolution and is a cost-effective high-throughput analysis of transcrip-
tome. RNA-Seq offers higher sensitivity and dynamic range where a broad range of 
expression is captured; microarray exhibits saturation, while RNA-Seq at extreme 
values is in linear scale. RNA splice events can be detected by RNA-Seq while not 
with microarray (Wang et al. 2009; Wolf 2013).

Method

RNA sequencing is possible, but most of the instruments are based on DNA 
sequencing, and hence cDNA library preparation is a required and critical step. As 
mentioned above that before reverse transcription, polyA transcript is selected, 
unwanted RNA (ribosomal RNAs) is depleted, and further selected RNA samples 
are fragmented to smaller size due to size limitations in sequencing platforms. 
Alternatively, cDNA can also be fragmented by acoustic shearing (sonication) or 
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using DNase I. Recently, another approach known as tagmentation has also been 
developed based on transposon where Tn5 transposase fragments the cDNA and 
simultaneously ligates the adapter oligos at both ends. Fragmented full-length 
cDNA or cDNA generated from fragmented RNA is ligated with adapters. 
Ligation of adapter results in lack of strand specificity, hence making the direc-
tionality of RNA strands difficult to predict. Several approaches have been devel-
oped to provide directionality; using different adapters at both ends is one such 
approach. Another method utilizes incorporation of dUTP in second-strand cDNA 
which can be degraded using uracil-DNA glycosylase (UDG) before the amplifi-
cation step. Hence, only the first strand with defined adaptor is amplified. Before 
sequencing, the cDNA libraries have to be amplified by PCR using 8–12 cycles. 
Uneven amplification results due to difference in size and composition of cDNA, 
and the issue is addressed by using unique molecular identifiers (UMIs) which 
distinguish PCR products from the artifacts. These molecular labels can be intro-
duced in RNA during RT or in adapter sequences or by Tn5 transposase during 
cDNA fragmentation. Molecular labeling with UMIs is of great significance in 
single-cell RNA-Seq where input RNA is in very low quantity (Hrdlickova et al. 
2017; Lowe et al. 2017).

Information about transcript is not retrieved as a whole but is generated as short 
reads of several hundred base pairs. If the transcript information is available, then 
the read sequence is aligned to the reference; but if the transcriptome information is 
not available, then de novo assembly is carried out for the reads or read pairs. 
Advancement in bioinformatic data analysis has made it possible to obtain novel 
sequence information from the sequencing data of several individuals (Fig. 3.3).

Fig. 3.3  RNA-Seq. 
mRNA is isolated from a 
cell/tissue, fragmented, 
converted to cDNA, library 
constructed, sequenced, 
and mapped with reference 
or de novo assembled
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Challenges for RNA-Seq

Sequencing biases or library construction:

The manipulations done during cDNA library preparation can limit its usage in 
whole transcript profiling. Different fragmentation method creates a bias product 
which is a problem in identifying strand specificity and transcript orientation. 
Strand-specific library construction is another issue of concern as it is a laborious 
process to carry out.

Bioinformatics:

The short reads are assembled into contigs and then aligned to reference genome, 
and transcriptional structure is revealed. There are several programs that map the 
reads to the genome sequence like ELAND, RMAP, MAQ32, and SOAP31. PolyA 
tail reads can be identified with multiple A’s at the end, and exon-exon junction can 
be identified by specific sequence flanking the splice site. Difficulty to identify 
arises for reads that span splice junction due to alternative or trans-splicing. Thus, 
there is a need to develop computational program to identify novel splicing methods 
(Wang et al. 2009).

Larger genome offers more complexity and hence more sequencing depth for 
sufficient coverage.

Different origin for comparing the sample RNA and the reference genome.
Presence of transcriptional background noise due to incompletely processed 

RNAs.

Applications

	1.	 With RNA-Seq many novel transcribed regions and splicing isoforms of genes 
have been revealed.

	2.	 5′-3′ exon boundaries have been defined, and introns can be mapped by looking 
for the tags containing GT-AG splicing sites.

	3.	 RNA-Seq is useful in examining the splicing diversity by scanning the reads for 
reported or novel splice junctions.

	4.	 Several novel transcripts have been reported in Saccharomyces cerevisiae and 
Schizosaccharomyces pombe with the help of RNA-Seq that were undetected by 
microarray.

	5.	 RNA-Seq captures transcriptome dynamics and gives digital measurement of 
gene expression across different tissues and varying conditions (Wolf 2013).

3.1.3.5  �Alternative New Approach to RNA-Seq

There are several variants to RNA-Seq depending on the goal of analysis:

RNA sequential probing of target (RNA-SPOT) is an alternate, accurate, and low-
cost approach to sequence transcriptome in a cell. The transcripts are captured on 
coverslip containing locked nucleic acids (LNA) poly-dT and hybridized with a 
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pool of thousand transcripts, and 12 pseudocolor schemes have been used for bar-
coding approximately 10,000 genes for hybridization (Linus Eng et al. 2017).

Single-cell transcriptomics is used for measuring gene expression in a single cell 
and where single mRNA molecule is detected by using mRNA FISH probe. This 
will allow the count or abundance of single transcript in an individual cell (Kanter 
and Kalisky 2015).

Single-cell RNA-Seq (scRNA-Seq) characterizes a cell population within a tis-
sue, and spatial transcriptomics (ST) analyzes spatial gene expression within a tis-
sue. Moncada and colleagues have recently integrated scRNA-Seq with ST to 
generate a tumor atlas for pancreatic ductal adenocarcinoma where single-cell pop-
ulation has been mapped with spatial regions in the tissue. They identified three 
types of cell population in the tumor occupying specific regions (Moncada et al. 
2018, BioRxiv). This approach would be beneficial in embryonic stage identifica-
tion and for studying dynamic processes like bacterial infection.

3.2  �Metatranscriptome

Microbiomes are ubiquitous and regulate the environmental health. Changes in 
microbial community could affect the environmental niche and the surrounding 
organisms as well as human beings. Thus, detail analysis of this community would 
help in identifying the changes and impact of environmental challenges. 
Metatranscriptomics (MT) describes the transcriptomic profiling of active microbes 
by RNA-Seq in the given environment or human niche. MT studies can capture the 
transcript-level changes or differential gene expression in microbial community 
induced by inter-/intraspecies interaction or environmental changes. MT studies 
would give a detailed picture of functional profile of microbiomes. There have been 
two major ongoing microbiome studies that involve MT studies along with metage-
nomic approach, human microbiome studies and environment microbiome studies. 
Human microbiome studies objective was to identify the correlation between 
changes in microbiome profiles and human diseases. This project has observed the 
different structure of microbes in the human mouth, airways, gut, skin, and urino-
genital areas. The other part of the project is focused on gut microbiome, emphasiz-
ing on taking healthy microbiota in food and regulating health and diseases like 
obesity and inflammatory bowel symptoms. Environmental microbiome studies is 
another major project initiated in 2010 and focuses on diverse ecosystems including 
the ones in human, animals, plants, fresh water, marine, terrestrial, air, and all inter-
sections of ecosystems. This project aims to characterize the structure, diversity, and 
distribution of microbiomes in various ecosystems on the earth (Aguiar-Pulido et al. 
2016). Metatranscriptomics thus enable to monitor the change in abundance, com-
position, and function of gene in response to change in environment of an active 
fraction of microbe or microbiome.
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3.2.1  �Gene Expression Analysis

Metatranscriptomics has not been much exploited for microbiome studies as com-
pared to metagenomics, but the study on functional analysis of microbiome is now 
picked up by metatranscriptomics. Shotgun RNA sequencing (RNA-Seq) allows the 
whole genome profiling of the active microbiome under varying conditions and 
hence identifies RNA-based gene regulation and biological signatures. The data 
obtained after RNA-Seq is analyzed by two strategies to identify the differential 
gene expression pattern, (a) mapping of obtained sequence reads to reference 
genome and (b) de novo assembly of novel transcripts.

The first strategy deals with mapping of the sequence read to the reference 
genome or pathway which identifies the functionality of the expressed genes and 
further the taxonomical classification of the microorganism. Sequence reads are 
aligned using NCBI database and special alignment tools like BLAST, Bowtie2, 
and BWA, followed by annotation using available software or resources including 
KEGG, GO, COG, and Swiss-Prot. The differentially up- or downregulated genes 
in microbiome could be identified during a disease condition. After focusing on the 
gene expression, finally different downstream analysis is carried out like enrich-
ment analysis or PCA-based phylogenetic studies. Stable isotope probing (SIP) is 
the latest advancement in metatranscriptomics which retrieves specific targeted 
transcriptome of a particular microbe in an environment, like targeting aerobic 
microbes in lake sediment. With this strategy the relative expression of individual 
genes is inferred from the available database and hence is limited to the available 
information of reference genome in the database.

The second strategy infers the information about a gene expression from the 
assembled sequences collected from the short read data. The short reads of meta-
transcriptomic data are assembled to form longer fragments named as contigs with 
the help of software packages or de novo sequence assemblers. Trinity, AbySS, 
Trans-AbySS, MetaVelvet, SOAPdenovo, and Oases are some of the available soft-
ware for de novo assembly analysis. Trinity was found to be the most efficient and 
sensitive, outnumbering other software programs in recovering full-length tran-
scripts and their isoforms too (Bikel et al. 2015; Aguiar-Pulido et al. 2016). Trinity 
was able to reconstruct the transcripts within the highest expression quintiles. RNA-
Seq by expectation maximization (RSEM) another quantitative pipeline can also be 
used for metatranscriptomic analysis along with Trinity for de novo assembly (Li 
and Dewey 2011). MEGAN is a software used for enrichment analysis by annotat-
ing the genes with GO.  Simple Annotation of Metatranscriptomes by Sequence 
Analysis (SAMSA) is recently designed as a simple and efficient pipeline for ana-
lyzing large paired RNA-Seq datasets using supercomputing cluster (Westreich 
et al. 2016; 2018).
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3.2.2  �Gene Activity Diversity

Metatranscriptomics can be used to analyze microbiomes found in diverse environ-
ment as seawater, deserts, and soil. An activity of a particular gene in diverse envi-
ronment can be studied simultaneously by collecting samples from diverse regions 
and analyzing the functional profile. Compared to 16S rRNA gene analysis which 
yielded lower diversity metrics, mRNA-based analyses were with higher diversity 
metrics. The mRNA-derived short read data can propose significant taxonomic dif-
ference that is a reflection for difference in habitat of microbiome (Jiang et al. 2016).

Expression level polymorphism (ELP) or the differences in gene expression are 
responsible for phenotypic variations in numerous species. Comparing nucleotide 
polymorphism with ELP would help in assessing the type of genetic diversity.

3.3  �Applications

3.3.1  �Disease Profiling

Transcriptomic strategies in diagnosis and profiling of several diseases have been 
applied in diverse field of biomedical research. Microarray and RNA-Seq approach 
have allowed to compare the differential gene expression in normal and disease tis-
sue samples from patients. The strategy has been widely used in identifying cancer 
and in immune-related diseases.

Cancer: Cancer is caused due to genetic changes leading to altered expression of 
oncogenes or tumor suppressor genes. Microarray has widely been used for identi-
fying cancer progression, classification of tumors, and drug sensitivity or resistance. 
Various techniques of transcriptomics are highly applicable in expression profiling 
of tumors and to differentiate cancerous cells from normal cells based on differen-
tial gene expression pattern. Tumor genotyping and classification are important 
aspects adapted from transcriptomic profile. Microarray-based expression profiling 
identifies cellular changes occurring during transformation of noninvasive to inva-
sive cell undergoing metastasis. It also aids in identifying biomarkers for different 
cancers and have revealed certain genes responsible for chemoresistance. 
Transcriptome profiling is also useful in drug discovery whereby drug effects in a 
cell could also be monitored. Drug sensitivity and toxicity effects will be analyzed 
by microarrays by clinicians in the future for clinical trials. Microarray has recently 
been used in identification of precancerous oral lesions to be malignant or not. With 
the advancement of transcriptomic technology, we are entering into post-genomic 
era where holistic approach will be applied for personalized therapy to cancer 
patients. Microarray technology will be used for diagnosis, prognosis, and bio-
marker analysis and drug response in patients (MacGregor and Squire 2002).
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Immunity and inflammation: Analysis of molecular signatures at inflammatory 
sites reveals the type of inflammation and help in diagnosis of infection. SAGE 
technique has identified differential gene expression in response to IgE or stimulat-
ing factors and has determined several novel genes to be stimulation responsive. 
RNA-Seq has been potentially useful in immune disorders or diseases where it can 
dissect two cell populations and identify T-cell and B-cell receptor repertoire in 
patients (Byron et al. 2016).

3.3.2  �Ecology

Molecular ecology has progressed ahead of the use of the limited number of mark-
ers, and now whole genome or transcriptome analyses of gene expression are used 
to study the molecular adaptations to environmental challenges. Although transcrip-
tomic technology has been challenging and requires technical expertise and high 
price, still in the last 10 years, many ecological studies have used microarrays and 
RNA-Seq. Transcriptomics has been applied to analyze gene expression and identi-
fication of pathways in response to abiotic and biotic environmental stresses. A set 
of genes responsible for biofilm formation in Candida albicans (fungal pathogen) 
were identified by RNA-Seq (Garcia-Sanchez et al. 2004). Differential gene profile 
in different developmental stages of chickpea in response to drought and saline 
stress was analyzed by transcriptomic analysis (Garg et al. 2016).

Aquatic life has been disturbed due to heavy metal contamination, oil spillage, 
and other pollutants in freshwater and seawater system leading to severe risk for 
marine life. It has become a serious global issue and needs to be handled empathi-
cally. Cadmium toxicity is one such global problem whereby it gets accumulated 
in aquatic animals and poses life threat to them. One such study has reported the 
use of transcriptome sequencing of the hepatopancreas of freshwater crab 
(Sinopotamon henanese) in response to cadmium as biomarker guide for monitor-
ing heavy metal pollutions in water (Sun et al. 2015, Sci reports). Firstly, transcrip-
tome dataset was generated, followed by gene annotation, and identification of 
genes responsive to metal toxicity, and finally cadmium altered biological pathway 
was characterized. The study further revealed dose-dependent cadmium effect on 
changes in gene expression. This is a first-in-kind study in freshwater crab and 
hence suggested that transcriptome datasets can be used for ecotoxicological anal-
ysis. Transcriptome profiling can be used for determining global and specific gene 
response to toxicity or environmental stresses and will identify markers for various 
species.

Transcriptome analyses have been affordable and adapted as alternative 
approach to lethal sampling for ecological studies. Czypionka’s group has studied 
the thermal response on different parts of Salamandra salamandra by analyzing 
the differentially expressed genes from the tail clip and whole body. It was observed 
that the common thermal response was observed for approx 50% of genes and 
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those which were not identical also belonged to similar functional types (Czypionka 
et al. 2015, Methods in Ecology & Evolution). Cai and group have also utilized 
transcriptomic technology to study the phenotypic and genotypic adaptations in 
Tibetan Plateau Zokors (Myospalax) against stressful environment. Transcriptomes 
from animals at three different altitudes and ecologies were sequenced and ana-
lyzed. Adaptive changes in transcriptome were observed with variation in alti-
tudes, as under hypoxia, expression of genes like COX1 and EPAS1 were 
overexpressed. Genes involved in hypoxia tolerance, temperature changes, and 
hypercapnia tolerance were most variant (Cai et al. 2018, Sci reports). Transcriptome 
analysis is now being used to identify the effect of physiological stress on symbi-
otic relationships also. A study has observed an adaptation of a particular coral 
species Galaxea fascicularis than others in physiological stress due to chronic 
coastal eutrophication. The coral-algal symbiosis induces certain gene expression 
essential for survival and tolerance in such chronic environment (Lin et al. 2017, 
Sci reports). Thus, ecological transcriptomics is now an affordable and adaptable 
approach to study the molecular changes associated with habitat adaptation and 
diversification.

3.3.3  �Evolution

Transcriptomics in the last decade for evolutionary studies was limited only to 
model species whose transcript library was available for oligo array hybridization, 
but with development of next-generation sequencing avenues to study non-model 
system, evolution studies has been facilitated. De novo transcriptomics is the latest 
technique to study evolutionary process in non-model species whose genome infor-
mation is lacking. The adaptive phenotypic variation or changes in gene expression 
studies would highlight how these variations occur during evolution. Gene expres-
sion variations are prominently heritable and are affected by natural selection. It 
also varies temporally and spatially within individual and among species. 
Transcriptomic technology is now being used to study the cause of phenotypic vari-
ation correlating with the divergence in the population.

Derome and colleagues used microarray technique to identify transcriptional dif-
ferences in normal and dwarf fish C. clupeaformis. The authors reported differential 
expression of 51 genes mostly linked to energy metabolism, hence affecting the 
swimming activity of both fish types. Further analysis is carried out using classical 
methods like expression quantitative trail loci (eQTL) mapping or Qst-Fst tests 
which generate linkage map. Based on this linkage map, 34 transcripts were identi-
fied which may be under selection due to their role in divergence between two spe-
cies (Derome et al. 2006, Mol Ecology).

Earlier transcriptomic analysis was focused on either the study of host or patho-
gen, but with RNA-Seq simultaneous transcript analysis of both host and pathogen 
immune interactions during infection process has been studied. Thus, dynamic 
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response can be studied right from infection/invasion to pathogen clearance by the 
host immune system (Westermann et al. 2012; Durmus et al. 2015).

3.3.4  �Gene Function Annotation

Transcriptomics has been useful in identifying the gene structure, function, and 
their specific phenotype. EST libraries have been used as reference for annotating 
genes of several closely related species. Transcriptome of Arabidopsis has identified 
metal uptake genes correlated with hyperaccumulated metals. De novo transcrip-
tomics and advancement in RNA-Seq have enabled annotation of genes and genome 
of several species and threatened species like koala (Hobbs et al. 2014). RNA-Seq 
read assembly has been ideal for non-model organisms whose genome is poorly 
understood or not reported. The best example for such annotation was of Douglas fir 
whose database of SNPs was generated by de novo transcriptome analysis (Howe 
et al. 2013). Another example of gene function annotation is of genes involved in 
development of the muscle, cardiac, and nervous tissue in lobsters (McGrath et al. 
2016; Lowe et al. 2017).

Nowadays, various online tools and databases are available for annotation pro-
cess. Trinity, Blast2GO, QuickGO, AmiGO, NaviGO, REVIGO, and Gorilla are 
some such databases, but they have their own limitations in analysis. Gene ontology 
database is commonly used for functional annotation of any gene, and further func-
tional enrichment is carried out using software or databases like UniProt, NCBI, 
KEGG, SEED, etc. (Lowe et  al. 2017). GO FEAT is a recently developed user-
friendly platform for gene annotation which is also useful for enrichment of tran-
scriptomic and genomic dataset (Araujo et al. 2018).

Steps for Annotation

	1.	 Sequencing reads were converted to FASTA format.
	2.	 Duplicate extraneous sequence has to be removed from the FASTA file.
	3.	 Remove sequences with poor quality N’s, and also remove short reads <75 bp in 

length as they contain limited information; annotating these reads is difficult.
	4.	 Remove sequences with long repeats or with 60% of single base.
	5.	 Program is then run to generate or assemble short reads into contigs followed by 

transcript reconstruction.
	6.	 These contigs with more than 500 nucleotides are then aligned or BLAST 

searched in NCBI database with nonredundant proteins.
	7.	 These representative transcripts aligned with the protein database and then 

undergo open reading frame (ORF) prediction using TransDecoder or ORF 
Finder. Only those transcripts were considered full length whose ORF began and 
ended within the contig.

	8.	 Finally, gene ontology was performed to identify the functional significance of 
the selected transcript using Blast2GO (Salem et al. 2015; Gilbert and Hughes 
2011).
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Chapter 4
Proteomics

Candida Vaz and Vivek Tanavde

Abstract  Study of the complete proteins from a source and the techniques implied 
to study these proteins and their interactions is the fundamental of proteomics. The 
three-dimensional map of the proteins and their interactions delineates their impor-
tance and functioning in an organism. These studies are initiated at the protein level 
sometimes tracing back to their genes. The alternative splicing phenomenon in the 
eukaryotes selectively enriches the proteome diversity. Structural proteomics takes 
into consideration the three-dimensional structure of proteins helping in the 
structure-based rational drug designing procedure. On the other hand, the functional 
proteomics is largely focused on understanding the protein expression at the cellular 
level, protein modifications, protein interactions, signalling and disease mecha-
nisms. The field has gained momentum with the advent of technology where differ-
ent techniques such as X-ray, NMR, mass spectroscopy, HPLC and two-dimensional 
PAGE have resulted in the generation of enormous experimental data.

It is difficult to keep up with the colossal amount of experimental data generated 
through various protein detection methods. The analysis done through bioinformat-
ics procedures involving algorithms, databases and pipelines for computational 
analysis enables faster and accurate analysis done over a couple of days. Through 
databases and resource portals, data management, storage and sharing have made it 
easier for researchers to obtain and collate data accelerating proteomics research.

This chapter is an effort to describe in detail the various dimensions of the pro-
teomics studies covering the structural and functional aspects. A brief overview of 
all the techniques involved in studying the proteome is given facilitating the reader 
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to incorporate the ideas in their research planning. The immense importance  
of the domain in biomarker discovery  and  elucidation of protein-protein/drug 
interactions.

Proteomics in combination with other complementary technologies like genom-
ics and transcriptomics (a systems-level approach) has an enormous potential to 
answer several unanswered questions in biology.

Keywords  Proteomics · Proteogenomics · Protein diversity · Drug discovery

4.1  �Understanding Proteomics

Proteins are vital molecules that have direct involvement in cellular function. 
According to the central dogma of molecular biology, the DNA synthesizes the 
RNA that in turn synthesizes the protein. The DNA contains the blueprint on how to 
assemble a cell, but it is the proteins that ultimately serve as the building blocks.

“Proteome”, a term coined by Marc Wilkins in 1994 (Wasinger et al. 1995), is the 
study of the entire range of proteins in a single cell. The term “proteomics” was 
coined in 1997 (James 1997) and refers to the large-scale study of proteomes that 
involves research and exploration of the proteomes pertaining to their structure, 
composition, function and activity patterns.

Following “genomics” and “transcriptomics” that comprise the study of the 
genome and transcriptome, respectively, “proteomics” is the next major step in the 
study of biomolecular systems. Molecular biology has provided substantial tech-
niques for high-throughput nucleotide sequence analysis that needs to be reflected 
in the protein world. It is essential to make sense of the huge amount of sequence 
data being generated.

There exist two modes of proteomics, one that involves the study of only proteins 
as analysis of gene products and the other that is more inclusive and comprises a 
combination of protein analysis and genomics/transcriptomics. Different areas of 
studying proteins such as protein function, modification, interaction and localiza-
tion are now grouped under the broad definition of proteomics.

However, proteomics is complex, and its complexity exists in the fact that an 
organism’s genome remains more or less constant or static, whereas its proteome is 
highly dynamic, differing in context of cell and time. In response to both external 
and internal factors, proteins can be synthesized or degraded or undergo post-
translational modifications. Therefore, studying a proteome is actually like taking a 
snapshot of the protein environment at a given time. A single genome can give rise 
to a large number of different proteomes depending on factors like cell cycle stage, 
growth, nutrition, pathological conditions and stress.

The following features need to be fulfilled by an ideal proteomics technology: 
high sensitivity, high throughput, the ability to differentiate modified proteins and 
the ability to quantitatively display and analyze all the proteins in a sample (Haynes 
and Yates 2000).
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It has wide applications in the field of clinical and biomedical sciences, wherein 
alterations in the proteome of tissues or body fluids can be measured and correlated 
with diseases, disorders, treatment or hormone action. The different dimensions of 
proteomics are outlined in Fig. 4.1.

4.2  �The Need for Proteomics

Genomics alone cannot provide answers to all the questions. The phenotype is 
largely governed by proteins and not by genes. It is difficult and almost impossible 
to unravel the mechanisms of diseases, disorders and ageing just by studying the 
genome.

As most of the drug targets are proteins, the interpretation of the genome at the 
protein level is invaluable, and that is what proteomics aims to achieve (Blackstock 
and Weir 1999).

RNA analysis was used earlier to determine the protein content, but it was found 
to be inaccurate, as it did not correlate well with protein expression (Abbott 1999; 
Anderson and Seilhamer 1997; Gygi et al. 1999a; Ideker et al. 2001a). The mRNA 
is not directly correlated to the proteins in a cell as following the transcription step 
(post-transcription) there are a series of events in the form of alternative splicing 
and mRNA editing (Newman 1998) that can create several different forms of a pro-
tein (isoforms). In addition to this, the proteins themselves undergo post-translational 
modifications, and there are almost up to 200 types of such protein modifications 
(Krishna and Wold 1993). Proteolysis (Kirschner 1999) and compartmentalization 
(Colledge and Scott 1999) also regulate proteins and contribute to protein diversity. 
The different steps followed for performing a proteomics study are outlined in 
Fig. 4.2.

Expression based 
proteomics

Structure based 
proteomics

Function based 
proteomics

Cell map 
proteomics

Proteogenomics

Fig. 4.1  Different 
dimensions of proteomics
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4.3  �Different Categories of Proteomics

4.3.1  �Protein Expression-Based Proteomics

This category involves the quantification of the expression of the proteome followed 
by comparison of the protein expression among samples that differ by a factor being 
studied. The factor could be a disease, a drug treatment or an environmental effect. 
The differentially expressed proteins identified are highly valuable as disease-/
condition-specific proteins or as potential drug targets or as diagnostic markers.

4.3.2  �Structure-Based Proteomics

This category involves large-scale analysis of protein structures. Deducing the pro-
tein structures helps in the identification and assignment of functions to newly dis-
covered genes through a process called annotation. Structural analysis of proteins is 
essential for determining the protein interactions and for drug-binding studies. 
Structure-based proteomics is done mainly through X-ray crystallography and 
NMR spectroscopy.

Protein 
Mixture • From cells/tissues

Extraction
• Sonication
• Homogenization
• Permeabilization

Separation

• Ultracentrifugation
• Gel electrophoresis
• Chromatography

Detection

• Bradford/Lowry assay
• ELISA/Western Blot
• Mass spectrometry
• ICAT/MudPIT
• Microarrays/Chips

Identification

• Peptide mass 
fingerprinting

• Bioinformatics 
based: 
UniProt/PROSITE

Fig. 4.2  Common workflow for a proteomic study
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4.3.3  �Function-Based Proteomics

This is a broader category and involves several proteomics approaches ranging from 
discovery and identification of novel proteins/protein complexes, study and charac-
terization of proteins for elucidating protein signalling, interaction and disease 
mechanisms.

4.3.4  �Cell Map Proteomics

This category involves studies aiming at identifying the structure of protein com-
plexes or the proteins present inside the cell or a particular organelle creating a 
“three-dimensional cell map” (Blackstock and Weir 1999). These studies determine 
where the proteins are located and their interactions with other proteins. The impor-
tance of such studies is their ability to determine the overall architecture of the cells 
and to determine how the expression of certain proteins gives the cell its unique 
characteristics. The identification of the nuclear pore complex is a good example of 
this category of proteomics (Rout et al. 2000).

4.3.5  �Proteogenomics

This category involves the use of proteomics for improving gene annotations and 
genomics. A parallel and combined analysis of the proteome and the genome accel-
erates the discovery of regulatory mechanisms such as post-transcriptional and 
post-translational modifications (Gupta et al. 2007). This approach helps in analyz-
ing and comparing multiple genomes (Gupta et al. 2008).

4.4  �Protein Detection Methods

4.4.1  �Non-specific Detection Methods that Rely 
on the Absorbance Property

4.4.1.1  �Bradford Protein Assay

It is a spectroscopic analytical procedure that was developed by Marion M. Bradford 
in 1976 (Bradford 1976). It is based on the absorbance shift of the Coomassie bril-
liant blue G-250 dye that exists in three forms: anionic (blue), neutral (green) and 
cationic (red). Under acidic conditions and when not bound to a protein, the dye is 
in a protonated red cationic form with maximum absorbance at 470  nm. When 
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binding to a protein occurs, it is converted to an unprotonated blue form with absor-
bance at 595 nm. The binding of the protein causes the stabilization of the blue form 
of the dye, and by measuring the amount of the complex present (through absor-
bance readings) in the solution, the protein concentration can be estimated. The 
increase of absorbance from 465 nm to 595 nm is equivalent to the amount of bound 
dye that is in proportion to the protein present in the sample. The advantage of this 
technique is that it is simple, fast and sensitive. The disadvantages of this technique 
are mainly related to the conditions and detergents that can interfere with the dye 
binding to the protein efficiently.

This method is highly dependent on protein sequence and if the protein does not 
contain a sufficient number of aromatic residues efficient binding of the dye won’t 
occur. Moreover this method relies on the comparison of the absorbance of the pro-
tein to that of a standard protein, so if a protein differs from the standard protein in 
the way it reacts to the dye, the estimation of its concentration will not be 
accurate.

4.4.1.2  �Lowry Protein Assay

This assay used for determining the total level of protein in a solution was devel-
oped by Oliver H. Lowry (1951). It is a variant of the Biuret test, which can assess 
the concentration of proteins in a sample by detection of the peptide bonds that 
leads to a change in colour (purple) that can be measured by a colorimetric test at 
550 nm.

The Lowry method involves the reaction of copper ions produced by the oxida-
tion of the peptide bonds with the Folin-Ciocalteu reagent. The reduction of the 
Folin-Ciocalteu reagent and oxidation of the aromatic residues are the crux of the 
reaction mechanism that results in an intense blue molecule called the heteropoly-
molybdenum blue. The concentration of the protein in the sample can be deter-
mined from the concentration of the aromatic residues that reduce the reagent. The 
concentration of the reduced reagent can be measured by colorimetric techniques 
(absorbance at 660 nm).

4.4.2  �Specific Detection Methods Using Antibodies

Antibodies are used for quantitative/semi-quantitative detection of specific proteins, 
a method commonly called as immunoassay. It is sensitive, specific and 
cost-effective.

Production of antibodies using monoclonal techniques made the large-scale uti-
lization of this method possible (Kohler and Milstein 2005).

The normal class of antibody used in an immunoassay is an IgG molecule, and 
the area of the protein target that is recognized is called an epitope made up of 
10–15 amino acids. An epitope may be continuous when it is made up of amino 
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acids that are sequential in primary sequence of a protein or it may be discontinuous 
when the amino acids are distant in the primary sequence but are brought together 
by the secondary and tertiary structure of the protein. Antibodies specific to a modi-
fication, like phospho-specific antibodies, can detect modified proteins that are tyro-
sine phosphorylated.

4.4.2.1  �Enzyme-Linked Immunosorbent Assay

This method makes use of specific antibodies that are linked to an enzyme (detec-
tion antibodies) (Lequin 2005). The sample comprising of unknown amount of pro-
teins/antigens is attached to a surface and exposed to these enzyme-linked antibodies. 
The sample with the antigens can be immobilized on the solid support like polysty-
rene microtiter plate. After the immobilization of the antigen, the detection antibod-
ies are added that bind to the antigens.

After the binding of the antibodies to the antigens, the substrate of the particular 
enzyme is added. The addition of the substrate creates a reaction that produces a 
detectable signal like a colour change, which is indicative of the quantity of antigen 
in the sample. The detection of the intensity of the transmitted light is done by a 
spectrophotometer.

4.4.2.2  �Western Blot

It is a widely used method to detect specific proteins in a sample. This procedure 
makes use of antibodies that can react with a specific protein target (Burnette 1981; 
Alwine et al. 1977). The sample is first subjected to protein denaturation followed 
by gel electrophoresis to separate the proteins. SDS is used as a buffer that main-
tains the polypeptides in a denatured state and also confers upon them a uniform 
negative charge. This type of electrophoresis is called SDS-PAGE (Laemmli 1970). 
After the electrophoretic separation of the proteins, they are transferred onto a nitro-
cellulose membrane where they are exposed to antibodies specific to the target pro-
teins. The next step is to use a secondary antibody that recognizes the first antibody. 
The secondary antibody can allow the visualization of the protein through staining, 
immunofluorescence and radioactivity.

4.4.3  �Specific Detection Methods Without the Use 
of Antibodies

4.4.3.1  �2D Electrophoresis (2DE)

2D electrophoresis using isoelectric focusing/sodium dodecyl sulphate gel electro-
phoresis (IEF/SDS-PAGE) is the most commonly used method in proteomics 
(O’Farrell 1975; Klose 1975). Proteins first separated by isoelectric focusing are 
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further resolved by SDS-PAGE. Staining or autoradiography of these separated pro-
teins produces a 2D array that helps visualize them. The identification of individual 
proteins from such gels has been carried out using techniques such as co-migration 
with known proteins, immunoblotting, N-terminal sequencing or internal peptide 
sequencing.

2D electrophoresis is time-consuming, nonquantitative, inaccurate, of limited 
range and non-suitable for hydrophobic proteins. SDS is incompatible with IEF, 
making analysis of hydrophobic proteins especially problematic in 2D gels. 
Significant progress has been made to overcome this limitation by the development 
of detergents that have better solubilizing power and by the selective use of organic 
solvents that promote the solubility of hydrophobic proteins. Another disadvantage 
is that 2DE is able to identify only the most abundant and long-lived proteins that 
have optimal codons. Proteins that are less abundant and/or with codon bias index 
of less than 0.1 are unlikely to be visualized without prior enrichment methods. 
Despite these disadvantages, 2DE is used for its ability to visualize a large number 
of proteins simultaneously for differential display experiments where the proteins 
could be subjected to gene knockouts, cell differentiation, potential drug treatments 
or changes in growth/nutrition conditions.

In identification of the pathways, the differentially expressed proteins are 
involved in helps in paving the path for future research.

4.4.3.2  �Mass Spectrometry

This is an analytical technique that measures the masses within a sample using the 
process of ionization of the sample and then sorting of ions based on their mass-to-
charge ratio (Price 1991).

A mass spectrum is generated that consists of a plot of the ion signal as a func-
tion of mass-to-charge ratio. These spectrums are used to elucidate the chemical 
structures and determine the masses of peptides. A typical MS procedure involves 
the following steps: (i) ionization of the sample by bombarding it with electrons, (ii) 
separation of the charged ions of the sample according to their mass-to-charge ratios 
by subjecting them to an electric/magnetic field, (iii) detection of ions by a mecha-
nism capable of detecting charged particles, (iv) display of results as spectra of the 
relative abundance of the detected ions as a function of the mass-to-charge ratio and 
(v) identification of the atoms/molecules in the sample by correlation of the known 
masses to the identified masses or through an already known characteristic frag-
mentation pattern.

The two main techniques for gas-phase ionization of large, polar and highly 
charged molecules are electrospray ionization (ESI) (Ho et al. 2003) and matrix-
assisted laser desorption ionization (MALDI) (Hillenkamp et al. 1991). In ESI, ions 
are formed from a liquid solution at atmospheric pressure. In MALDI, a laser pulse 
causes sublimation of the sample out of a dry crystalline matrix.

The devices that are used to bring the samples into gas phase and ionize them are 
called “sources”. Commonly used four types of mass analyzers for protein studies 
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differ in their design: the ion trap (IT), quadrupole (Q), time of flight (TOF) and 
Fourier-transform ion cyclotron (FT-ICR). Two analyzers can be placed in tandem 
to create a two-stage mass spectrometry called “tandem MS” or “MS/MS”.

Coupling of different analyzers with different sources creates a large number of 
instrumental configurations. Two most commonly used configurations that have 
produced most of the published proteomic data so far are the ion traps coupled to 
ESI sources (ESI-IT) and the TOFs coupled to MALDI source (MALDI-TOF).

MS experiments for protein identification are mostly peptide-based analysis and 
comprise the following steps:

	 (i)	 Obtaining the proteins of interest from cells/tissues through mainly biochemi-
cal fractionation based on chromatographic techniques.

	(ii)	 Fractionation of the protein sample through 1D gel or by 2D-PAGE followed 
by excision and in-gel digestion of the gel band (1D gel) or spot (2D gel) using 
proteases or chemicals or by “gel-free” fractionation of the samples that is 
done by using two-dimensional fractionation of the peptide mixtures that 
involves reduced and digested peptide mixture fractionated through a strong 
cationic exchange column (SCX) and further separated on a reverse phase (RP) 
column. This technique is known as multidimensional protein identification 
technology (MudPIT) (Schirmer et al. 2003). Peptide mixtures generated by 
digesting multiple proteins have to be first separated by high-pressure liquid 
chromatography (HPLC) before being introduced to MS. Elution of the pep-
tides from the RP columns is done using increasing concentrations of organic 
solvents. An LC-ESI-MS technique consists of a chromatographic column 
coupled online with a MS fitted to an ESI source.

	(iii)	 Analysis of the peptide mixture by MS.
	(iv)	 Identification of the proteins by matching a list of experimental peptide 

masses with the theoretically calculated masses using computer-generated list 
formed from the simulated digestion of a protein database using the same 
enzyme through an approach called “peptide mass fingerprinting” (PMF) 
(Pappin et al. 1993).

4.4.3.3  �Isotope-Coded Affinity Tag Peptide Labelling (ICAT)

This method consists of a twofold approach of sequence identification and accurate 
quantification of the proteins. It uses a chemical reagent called isotope-coded affin-
ity tag (ICATs) in combination with tandem mass spectroscopy (Gygi et al. 1999b). 
The ICAT reagent comprises a biotin affinity tag joined by a spacer domain to a 
thiol-specific reactive group, which exists in two forms: regular and isotopically 
heavy. The method involves four steps: (i) derivatization of the reduced protein 
mixtures representing two different states with the isotopically light and heavy ver-
sions of the ICAT reagent, (ii) proteolytic digestion of the labelled samples to pro-
duce peptide fragments, (iii) isolation of the tagged cysteine containing peptide 
fragments by avidin affinity chromatography and (iv) separation and analysis of the 
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isolated tagged peptides by microcapillary tandem mass spectrometry that provides 
the identification of the peptides by fragmentation and relative quantification of the 
labelled pairs through comparison of the signal intensities in MS mode

The advantages of this method are that it is non-time-consuming and scaleable 
and enables the analysis of low abundant proteins. Since this method is based on 
stable isotopic labelling, it does not require the use of radioactivity or metabolite 
labelling. The method provides accurate quantification each peptide identified. The 
disadvantages of this method are the proteins must contain cysteine that must be 
flanked by protease cleavage sites; in case of small peptide, the ICAT tag may inter-
fere with the peptide ionization and complicate the mass spectral results. However, 
these disadvantages can be overcome by designing different reagents for increased 
specificity, using a smaller tag and by using different types of proteases.

4.4.3.4  �Multidimensional Protein Identification Technique (MudPIT)

This method combines the usage of multidimensional liquid chromatography and 
tandem mass spectroscopy (Schirmer et al. 2003). It comprises the following steps: 
(i) digestion of the denatured and reduced protein mixture to produce peptide frag-
ments; (ii) loading of the mixture onto a microcapillary column containing SCX 
resin upstream of RPC resin that elutes directly into a tandem mass spectrometer; 
(iii) displacement of the absorbed peptides from the SCX column onto the RPC 
column using a salt gradient, which causes the peptide to be retained on the RPC 
column; (iv) elution of the peptides from the RPC column using an acetonitrile 
gradient; (v) analysis by MS/MS; (vi) repetition of the process using increased con-
centration of salt to displace additional fraction from the SCX column in an iterative 
manner involving 10–20 steps; and (vii) analysis of the MS/MS data from all of the 
fractions by database searching followed by combination to give the general picture 
of the proteins present in the sample.

There are several advantages of this technique, viz. non-time-consuming, ame-
nable to full automation, increases the number of peptides being identified from 
complex mixtures, has a very wide dynamic range and no solubility problems asso-
ciated with 2DE.  The drawbacks of this method are mainly related to the sheer 
volume of data generated by a MudPIT experiment consisting of 10–20 cycles of 
reversed phase chromatography that leads to problems associated with computing 
power. This approach is also only useful for organisms where complete genome 
sequence data is available.

4.4.3.5  �Protein Microarrays/Protein Chips

Protein microarrays are used extensively for protein expression profiling as well as 
for detecting protein-protein interactions (Melton 2004). This technology uses thou-
sands of protein detecting features for probing biological samples. Multiple protein 
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types can be arrayed for studying protein-DNA, protein-protein and protein-ligand 
interactions.

A functional proteomic array typically contains the entire complement of pro-
teins from an organism. However, protein chips are difficult to implement as pro-
teins are less stable and more dynamic, and it is difficult to maintain their structural 
integrity on the glass slide.

4.5  �Bioinformatics in Proteomics

It is difficult to keep up with the vast amount of data generated through the various 
protein detection methods, and it is tedious to analyze this data manually. To accel-
erate proteomics research, the need for collaborating with computational scientists 
in particular the bioinformaticians is imperative to create programmes/algorithms, 
databases and pipelines for computational analysis of the data. The analysis done 
through bioinformatics procedures enables faster and accurate analysis done over a 
couple of days as compared to several weeks and months if analyzed manually. 
Moreover, data storage, management and sharing are done through databases and 
resource portals that have made it easier for a researcher to collate information or 
obtain data. The contribution of bioinformatics in proteomics is highlighted in 
Fig. 4.3.

The example of such a resource portal for proteomics is the ExPASy (Expert 
Protein Analysis System) that is operated by the Swiss Institute of Bioinformatics 
(SIB). It is a single web portal that provides access to several databases, resources 
and tools developed by several SIB institutes and external organizations (Gasteiger 
et al. 2003). Another resource portal is UniProt that provides comprehensive, high-
quality and freely accessible resource for protein structure and functional informa-
tion (UniProt 2015).

The PDB (Protein Data Bank) is a resource that aims at providing a structural 
view of biology by furnishing information about the 3D shapes of proteins, nucleic 
acids and complex assemblies (Berman 2008).

4.5.1  �Bioinformatics for Protein Identification

The protein detection methods like microarray and mass spectrometry detect pep-
tide fragments only and are not capable of identifying the entire protein in the sam-
ple. There are now several programmes that help in identification of the proteins by 
matching the peptide fragments to the known proteins in databases. This peptide to 
protein matching is carried out by algorithms that perform alignments with known 
proteins in databases such as UniProt (UniProt 2015) and PROSITE (de Castro 
et al. 2006).

4  Proteomics
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4.5.2  �Bioinformatics for Protein Structural Studies

It is essential to understand the protein structure to be able to interpret its interac-
tions and functions. The 3D structure of proteins could be earlier, only be deter-
mined using X-ray crystallography (Ilari and Savino 2008) and NMR spectroscopy 
(Wuthrich 2001). Recently, cryo-electron microscopy (Costa et  al. 2017) has 
become the leading technique overcoming the limitations of crystallization and con-
formational ambiguity related to X-ray and NMR techniques, respectively.

An array of programmes/tools that can predict and model the structure of pro-
teins are now available. These programmes/tools use the chemical properties of 
amino acids and the properties of known proteins to predict and model the structure 
of unknown proteins (Table 4.1).

Protein 
Identification

Study of Protein 
Structure

Study of Post 
Transcriptional 
modifications

Study of Post 
Translational 
modifications

Bioinformatics 
for Proteomics

Fig. 4.3  Use of 
bioinformatics for 
proteomics

Table 4.1  Tools for structural analysis (Ghorbani et al. 2016)

Tools Function URL

Cn3D Facilitates viewing of 3D structures 
from NCBI’s Entrez Structure 
database. It can simultaneously 
display sequence, structure, and 
alignment

https://www.ncbi.nlm.nih.gov/
Structure/CN3D/cn3d.shtml

DeepView 
Swiss-PDB viewer

Facilitates the analysis of structure, 
alignments, homology modeling, 
and searching for functional sites

https://spdbv.vital-it.ch

RasMol and 
OpenRasMol

Facilitates molecular graphics 
visualization

http://www.openrasmol.org

Mage and 
Kinemage

Facilitates the presentation of 
scientific illustrations as an 
interactive computer display

http://kinemage.biochem.duke.edu/
kinemage/magepage.php#defined

(continued)
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4.5.3  �Bioinformatics for Studying Post-transcriptional 
Modifications

Though mRNA/gene expression does not correlate well with the protein expression, 
it is still possible to determine translationally regulated genes. This can be achieved 
by using integrated transcriptome and translational state profiling. Differentially 
translated genes can be obtained using total and fractionated RNA microarrays. 
Fractionation of the RNA is done through a sucrose gradient. Sucrose gradient frac-
tionation can be used to separate actively translated mRNAs that are associated with 
multiple ribosomes (polysomes) and the inactive mRNAs. As the number of ribo-
somes on a transcript correlates with the rate of synthesis of the protein encoded by it, 
this creates an operational distinction between the highly translated and poorly trans-
lated mRNA. This approach was used for identification of translationally regulated 
genes during embryonic stem cell differentiation (Sampath et al. 2011) (Table 4.2).

Tools Function URL

Vector Alignment 
Search Tool 
(VAST)

Facilitates identification of similar 
protein 3D structures by purely 
geometric criteria and identification 
of distant homologs that cannot be 
determined through sequence 
comparison

https://structure.ncbi.nlm.nih.gov/
Structure/VAST/vast.shtml

DALI Facilitates comparison of 3D 
protein structures by comparing the 
coordinates of a query protein 
structure against those in the PDB

http://ekhidna2.biocenter.helsinki.fi/
dali/

Conserved Domain 
Database (CDD)

This database is a collection of 
multiple sequence alignment 
models for domains of proteins.  
Facilitates fast identification of 
conserved domains in protein 
sequences

https://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml

Conserved Domain 
Architecture 
Retrieval Tool 
(CDART)

Shows the functional domains 
found in the query protein and lists 
proteins having the similar domain 
architecture

https://www.ncbi.nlm.nih.gov/
Structure/lexington/lexington.cgi

LIGPLOT Generates schematic 2D diagrams 
of ligand-protein interaction

https://www.ebi.ac.uk/thornton-srv/
software/LIGPLOT/

Structural 
Classification of 
Proteins (SCOP)

Provides comprehensive 
information of the structural and 
evolutionary relationships between 
proteins whose structures are 
known

http://scop.mrc-lmb.cam.ac.uk/scop/

CATH Provides classification of protein 
structures. Helps in predicting 
protein function through structure 
and sequence

http://www.cathdb.info

Table 4.1 (continued)

4  Proteomics

https://structure.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
https://structure.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
http://ekhidna2.biocenter.helsinki.fi/dali/
http://ekhidna2.biocenter.helsinki.fi/dali/
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi
https://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi
https://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
https://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.cathdb.info


70

4.5.4  �Bioinformatics for Studying Post-translational 
Modifications

Since post-translational modifications can affect the protein structure, the computa-
tional analysis of these modifications is necessary and needs to be included in any 
protein study. New pipelines and tools are now being created for analyzing post-
translational modifications (Margreitter et al. 2013).

4.6  �Challenges of Proteomics

One of the major problems associated with proteomics is the low abundance pro-
teins. Such low expressing proteins are difficult to detect in the analysis of crude 
cell lysates without sophisticated purification methods. Many important classes of 
proteins such as transcription factors, kinases and regulatory proteins are low 
expressing proteins. There is also no PCR for proteins as compared to DNA, and 
hence the analysis of low expressing proteins is difficult.

It is also difficult to study proteins on a scale comparable to genomic analysis. 
Most of the methods used for proteomics are not high-throughput. Although MS is 
widely used for protein identification and analysis, data procurement and analysis is 
still time-consuming. The quality of the data is also at a risk of being sacrificed. MS/
MS can provide higher-quality data, but the data interpretation is highly time-
consuming. This warrants the need for better computational algorithms for increas-
ing the accuracy of data interpretation without any manual intervention.

It is difficult to measure proteins accurately and quantitatively. RNA measure-
ments are more precise, and their sensitivity is down to a single transcript. Single 
molecule protein measurements are too difficult and cumbersome. Moreover, varia-
tions at the protein level are higher than the RNA level, which makes it difficult to 
classify samples based on protein expression alone.

Table 4.2  Tools for detection of post-translational modifications (PTM) (Audagnotto and Dal 
Peraro 2017)

Tools PTM type URL

NetPhos3.1 Phosphorylation http://www.cbs.dtu.dk/services/NetPhos/
PhosphoELM Phosphorylation http://phospho.elm.eu.org
GlycoMod Glycosylation https://web.expasy.org/glycomod/
NetOGlyc Glycosylation http://www.cbs.dtu.dk/services/NetOGlyc/
iSNO-PseAAC Methylation http://app.aporc.org/iSNO-PseAAC/
MethK Methylation http://csb.cse.yzu.edu.tw/MethK/
PAIL N-acetylation http://bdmpail.biocuckoo.org/prediction.php
N-Ace N-acetylation http://n-ace.mbc.nctu.edu.tw
UbPred Ubiquitylation http://www.ubpred.org
UbiNet Ubiquitylation http://140.138.144.145/%7Eubinet/index.php
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Combining genomics, transcriptomics and proteomics will give us a better over-
view of what is happening inside the cell (Ideker et al. 2001b; Ghaemmaghami et al. 
2003). While this concept is attractive, there are numerous challenges in data analy-
sis that need to be overcome before this becomes a reality.

This systems-level approach has been attempted for relatively simple organisms 
like yeast (Ideker et al. 2001a). Ideker and Hood tried a systems approach to under-
stand yeast. They defined all genes in the yeast genome. They also created subsets 
of genes involved in galactose pathway and built model of this pathway using the 
following steps: (i) perturb each pathway using genetic and environmental tools, (ii) 
use microarray to catalog all the changes in the transcriptome and ICAT to measure 
changes in the proteome in all these perturbations and (iii) refine the model by fit-
ting the experimental data to the existing model.

There are also some problems associated with this systems approach, namely: (i) 
different platforms behave differently making it impossible to compare datasets of 
transcriptome and proteome, (ii) normalization of data is a huge challenge as it is 
very difficult to normalize data across different platforms, (iii) dealing with differ-
ent file formats in each measurement and harmonizing these and (iv) annotation 
varies across DNA, RNA and proteins. For example, there exist certain genes for 
which protein products are unknown.

Despite these challenges, proteomics combined with other complementary tech-
nologies like genomics and transcriptomics has an enormous potential to answer 
several unanswered questions in biology.
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Chapter 5
Metabolomics

Abhishek Sengupta and Priyanka Narad

Abstract  Metabolomics is formally defined as the high-throughput study of metab-
olites which serve as an integral part of the metabolism. With the advent of Human 
Genome Project, a plethora of data repositories have evolved generating huge 
amounts of ‘omics’ data. These data can be classified as genomics, proteomics, 
transcriptomics and metabolomics. However, amongst these metabolomics directly 
emulates the biochemical activity of the organism and thus best describes the molec-
ular phenotype. The metabolome of an organism is complex and dynamic as the 
metabolites are getting continuously absorbed and degraded. Metabolomics studies 
attempt to provide a comprehensive snapshot of the physiological state of an organ-
ism at a given time state. Broadly, metabolomics study can be performed using two 
approaches: targeted and untargeted approach. In the case of untargeted approach, a 
number of different metabolites are measured without any sample bias, whereas, in 
the  case of targeted approach, defined sets of metabolites are measured with an 
objective of the problem to be addressed. However, the steps in both these approaches 
are common. The first step is to outline the study design where the number of factors 
is taken into consideration like the sample size, randomisation, etc. This step is done 
to ensure that all important factors are considered addressing the metabolites 
involved and their putative interactions. The second step is the preparation of the 
sample, where the collection, storage and preparation of the sample take place. In 
the third step, an analytical technique like mass spectroscopy or NMR is utilised to 
measure and quantify the metabolites. The fourth step is to preprocess the data for 
analysis in order to extract biological inferences. This step is crucial to avoid noise 
in the data and perform background correction. The final step would be data analy-
sis. This step includes applying statistical inferences to the data and clustering the 
data. The aim of this step is to perform the categorisation of the sample properties. 
Once a metabolomics study is completed, it can be subjected to various applications 
since it is an approach that is most proximal to capture the phenotype of an indi-
vidual. This makes it an invaluable tool for pharmaceutics and healthcare. Advanced 
areas like personalised medicine utilise the metabolomics study for medical diagno-

A. Sengupta (*) · P. Narad 
Amity University, Noida, Uttar Pradesh, India
e-mail: asengupta@amity.edu; pnarad@amity.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2925-8_5&domain=pdf
mailto:asengupta@amity.edu
mailto:pnarad@amity.edu


76

sis and prognosis useful for the identification of the disease. Metabolomics is useful 
as it has the capability of identification and characterisation of different metabolites, 
making us understand the disease mechanisms in a better way.

Keywords  Metabolomics · Flux analysis · Metabolic networks · Metabolic 
interaction

5.1  �Metabolites to Metabolome

Metabolism is regulated by biochemical regulators such as metabolites. The central 
dogma of biology information flow from the gene to the transcript, to the protein 
and to the metabolite. An example of how metabolites regulate metabolism is glu-
cose regulation in humans. Therefore, we need to study metabolism by applying the 
scientific technique called metabolomics. This field deals with the quantitative and 
qualitative study of the low molecular weight chemicals involved in metabolism 
called metabolites (e.g. carbohydrates, amino acids, fatty acids and hormones). 
These metabolites may be present within cells or in the environment surrounding 
cells and tissues, such as in blood or in urine or even whole organisms, and provide 
a better understanding of cellular biology. In a nutshell, we can define the field as 
the comprehension and understanding of the small molecules such as metabolites 
and other bio-fluids in a given tissue or organism known as metabolomics. 
Conjointly, metabolome is the interaction between these small molecules within a 
biological system. The metabolome is the complete collection of metabolites that 
helps to establish a link between the genotype and phenotype.

Metabolomics is an interdisciplinary field, and it requires the input and data 
information from all other fields of ‘omics’ such as through genomics, through tran-
scriptomics and partly through proteomics. Its focus is on the study of the metabolic 
components such as enzymes, substrates and products. As a biological system, these 
‘omics’-based approaches are generally influenced by intrinsic factors such as 
genetic and extrinsic factors such as the environment factors. The term metabolo-
mics is derived from two words: metabolites mean small biological molecules and 
omics means measures. It directly reflects the elementary biochemical activity and 
state of cells or tissues. It uses recent sophisticated analytical techniques to identify 
and quantify cellular metabolites with the application of statistical methods for data 
interpretation. Global analysis of substantial number of cellular metabolites can be 
done through metabolomics. It generates copious amounts of data using sophisti-
cated statistical, mathematical and bioinformatics tools. Metabolomics has many 
applications in the study of gene ontology, data analysis, raw analytical data pro-
cessing, information management and systems biology. Metabolomics is quite use-
ful for analysing the overall effects of transcriptional and genetic manipulations, 
comparing mutants, analysing growth curves and assessing responses to environ-
mental stress, toxicology, nutrition, study of cancers and diabetes, drug discovery 
and natural product discovery.

A. Sengupta and P. Narad



77

Previous literature has advocated the role of metabolomics in the field of in silico 
biology and drug discovery pipelines. The advent of the next-generation sequencing 
era has led to a better understanding of disease mechanisms and lays the foundation 
of personalised medicine. Metabolomics has made the metabolites an ideal bio-
marker by making them visible in a majority of biological and medical databases. It 
is also beneficial in getting a snapshot of the biological system as a whole. It is 
important to study metabolomics to combine and comprehend the data being gener-
ated from other ‘omics’ sciences (Riekeberg E et al. 2017).

Metabolomics provides a direct and sensitive measure of the phenotype at  
the molecular level. It provides an amplified and dynamic measure of changes 
resulting from processes involving the genome, transcriptome, proteome and the 
environment.

We need to measure the combined effect of the genome, lifestyle and our envi-
ronment, on how we function which provides us the analysis of the phenotype by 
both hypothesis generation and hypothesis testing. Hence metabolomics provides a 
direct and sensitive measure of the phenotype at the molecular level. It provides an 
amplified and dynamic measure of changes resulting from processes involving the 
genome, transcriptome, proteome and the environment.

Besides these, metabolomics is also useful in pharmacology, plant biotechnol-
ogy, crop breeding and toxicology. To understand the networks underlying complex 
biological processes, metabolomics can be perceived as a defined methodology for 
the study of functional genomics. It uses techniques of mass spectroscopy and 
nuclear magnetic resonance spectroscopy to identify transcriptome and proteome at 
systems level. Since metabolites are dynamic in nature in terms of time and space, 
they require special analytical procedures in their measurement. The state of metab-
olites within a biological system, gene expression and regulation, regulation of 
enzymes and their role in metabolic reactions can also be determined with the help 
of metabolomics. It reflects changes in functioning of a tissue or organism and their 
phenotypic expression as compared to genomics and proteomics. The techniques 
involved in metabolomics are relatively inexpensive, automated and rapid as com-
pared to genomics and proteomics techniques. It is also useful in pathological study 
of human diseases such as diabetes, cancer and coronary and autoimmune diseases. 
Metabolomics has been used in many fields of application as it can provide benefi-
cial tools such as food technology, microbial biotechnology, toxicology, enzyme 
discovery, plant biotechnology and systems biology. Various natural products gen-
erating from plant sources which include pharmaceutical sciences, food biotechnol-
ogy and others that can be used in plant breeding and nutrition assessment have 
been developed with the extensive use of metabolomics. Metabolite profiling, meta-
bolic fingerprinting and footprinting are some of the advanced applications of 
metabolomics.
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5.2  �Data Resources for Metabolomics

Metabolomics is redefining a new era of ‘omics’ sciences where the prime focus is 
shifting to the next-generation sequencing technologies for the recognition and 
characterisation of elements like small molecules/metabolites in the complete 
metabolomics content of an organism (Wishart DS. 2007). The term ‘metabolome’ 
refers to individual components of a metabolic system which are (<1500 Da) found 
in an organism. Metabolome can be treated as a counterpart to the terms ‘genome’, 
‘proteome’ and ‘transcriptome’. Metabolomics not just fills in as a foundation to 
frameworks science; it is starting to fill in as a foundation to different fields too. 
Metabolomics is beginning to hold importance in other areas of research such as 
systems biology and drug discovery.

Unlike its more developed ‘omics’ accomplices, metabolomics is as yet advanc-
ing a portion of its fundamental computational framework. The state of genomics, 
proteomics and transcriptomics is advanced, and the data is available online in the 
form of databases and repositories. However, metabolomics data resources are still 
in its infancy stage, and most of the data is still accessible through research papers 
and online journals only. Metabolomics additionally contrasts from other ‘omics’ 
sciences as a result of its solid accentuation on chemicals and systematic science 
procedures like NMR, mass spectrometry and chromatography. Thus, any online 
tool or database available for metabolomics is not very advanced, and there is a lot 
of scope of development of new software and platforms to analyse the metabolo-
mics data. The resources available should not only be dealing with the small mole-
cules and the metabolites but also should be able to represent the complete picture 
of the metabolome. Thus it implies that more resources should be developed which 
integrate information from other ‘omics’ based approaches and combine it with the 
metabolomics data.

However, within the past decade, we have seen a number of software pro-
grammes/resources that have been developed as a part of computational metabolo-
mics. These resources are based on the need to integrate the data being generated in 
different laboratories and make it publicly accessible to the scientists throughout the 
world. The developing consensus is the requirement of required laboratory informa-
tion management systems (LIMS), which will help the researchers manage their 
own data and access the data being generated through different laboratories for a 
better understanding of the process. The last decade has seen improvements in dif-
ferent areas of computational metabolomics such as (i) development of metabolo-
mics databases, (ii) development of data standards and LIMS, (iii) development of 
tools useful for spectral data analysis and (iv) platforms for the metabolic modelling 
and visualisation.

Since this field deals with identifying a few metabolites at any given time and 
further utilising these metabolites in the process of marker identification for dis-
eases, researchers working on metabolomics require online resources that can be 
accessed by metabolic pathways, names of the compound, X-ray, NMR spectra and 
mass spectrometry and also chemical structures and properties. Also, scientists 
need to look for metabolite properties, tissue or organ locations and metabolite 
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association with diseases. The databases consist of information on different cadres 
of metabolomics. The primary information that can be extracted is about the com-
pounds in the reaction and the diagrammatic representation of the reactions. Next, 
the online databases are freely available which consist of the concentration of the 
metabolites and the location of substrates in the organism. Further, information can 
be extracted on the subcellular locations and the physiochemical properties. Few of 
the databases also provide us information on the nomenclature of the enzyme 
through enzyme classification (EC) numbers. The chief characteristics of these data 
resources are that they are easily accessible and the information contained is vali-
dated through experimental procedures. These data resources are also completely 
referenced providing a link to the literature cited through them. Some of these also 
contain integrated platforms for the analysis of the data and enable easy interpreta-
tion of the metabolomics data.

5.2.1  �EMBL-EBI

The efficient investigations of micromolecules and metabolites in a tissue, cell, cell 
culture or bio-fluid that are substantial after-effects of cell procedures of an abiotic 
stress that are recorded in the databases. The unique bit of knowledge into metabolic 
procedures that are occurring in cell condition are accumulated by identification and 
characterisation of such metabolites. Further, metabolic profiles that are taken from 
organic liquids can possibly go about as biomarkers for various sicknesses, for 
instance, diabetes and heart disorders, and impacts of diet routine (Whitfield PD 
et al. 2004). Extension of knowledge in natural research zones, for example, meta-
bolic displaying and frameworks science, pharmaceutical research, toxicology and 
sustenance, is yielded from metabolomics advancements. In any case, analysts 
require access to learning and information to influence derivations and contrast 
from the outcomes the results they obtain in experiments to harness full potential of 
metabolomics (Haug K et al. 2012). The metabolome is the general supplement of 
metabolites under given dietary, hereditary or natural conditions which show in 
organic conditions. As of late, a few instruments or animal varieties particularly 
metabolic databases have been made to gather various trials together for an offered 
animal types to precisely mirror the basic decent variety and multifaceted nature. 
The major resources for these are Human Metabolome Database [HMDB] and 
Biological Magnetic Resonance Data Bank [BMRB]. At EMBL-EBI, the name of 
the resource which provides access to the data from all over the world in a single 
framework is called as MetaboLights. This database helps in facilitating the use of 
a common platform for sharing the different formats and also helps in the reproduc-
ibility of the data across the researchers all over the world (Salek RM et al. 2013). 
Currently, MetaboLights is composed of two layers of information: the first layer is 
the repository, and the second layer is the reference layer. This database is a part of 
the major standardised platforms such as the Metabolomics Society and the 
Metabolomics Standards Initiative (MSI) (Bino RJ et al. 2004). It is expected that in 
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the future this database will be collaborated with the Reactome database in order to 
provide a more comprehensive view of the reactions (Fig. 5.1).

5.2.2  �BRENDA

BRENDA (the Comprehensive Enzyme Information System) is one of the most 
widely used and comprehensively built resources for the enzymes. It consists of 
information on the enzymes based on the molecular and biochemical experiments 
conducted on the enzyme.

Enzymes are the most diverse category of proteins and they are the largest known 
proteins in the database. Enzymes catalyse most of the chemical reactions in the 
organism related to metabolism. The enzymes have a crucial role in the regulation 
of metabolic reactions within the organism. The enzyme data has increased many 
folds with the invention of new techniques for structural and functional genomics. 
The need of the hour is to understand the enzyme data and use it in an effective man-
ner to enhance our understanding of the metabolic networks. One such resource, 
which helps us with the information on enzymes and other metabolic data, is 

Fig. 5.1  Homepage of MetaboLights at EMBL-EBI web server
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BRENDA. The database consists of information which is extracted from the litera-
ture (Schomburg I et al. 2002).

BRENDA can be considered as a comprehensive resource which comprises the 
classification of the enzymes on the basis of the EC (enzyme classification) numbers. 
The classification recorded is based on the reaction type, i.e. whether it is an oxidation 
or reduction reaction or whether it is classified as hydrolysis or the group transfer. 
BRENDA database is based upon not just a single organism of specific set of enzymes; 
rather it covers the organism-specific information about the enzyme names, the type 
of reaction catalysed, the kinetics behind the reaction, the number of substrates and 
products involved and the molecular and functional properties of the enzymes.

In its current version, BRENDA consists of records of 4200 EC numbers that are 
related to 83,000 different enzymes. The records in the database are updated regu-
larly through the literature curation from the research papers from resources of 
repute such as PubMed and SciFinder.

One of the other most important aspects of BRENDA is that it also contains 
information on the ligands. These are those compounds that have a function in mod-
ulating the activity of the substrates or the products or the cofactors. Currently, 
BRENDA has a record of ~3,20,000 enzyme-ligand relationship. A total of 33,000 
different compounds are present in BRENDA which is listed as ligands.

BRENDA is also useful as it allows the user to perform simulation of the meta-
bolic networks. This can be done through BRENDA by incorporating the kinetic 
data and the enzyme information from other resources such as KEGG. The primary 
assumption that has to be made for performing simulation is that the metabolic net-
works must be treated as directed graphs. BRENDA has also included the informa-
tion on the human diseases as the literature is increasing many folds. Literature 
curation was done through PUBMED by looking for keywords related to that par-
ticular enzyme (Fig. 5.2).

5.2.3  �HMDB

The Human Metabolome Database (HMDB) is one of the most widely used 
resources for providing comprehensive information about the small molecule like 
the metabolites for the human system. It provides high-quality data which is freely 
accessible. It was created under the aegis of the Human Metabolome Project which 
was an initiative of the Genome Canada (Xia J et al. 2009). It can be considered as 
one of the first and dedicated resources for metabolomics data. HMDB is able to 
help the scientist in metabolomics research by providing data on the identification 
of metabolites using NMR, LC/MS and other mass spectroscopy-based approaches. 
The architecture of HMDB can be divided into three sections: (i) chemical data, (ii) 
molecular data and (iii) clinical data (Danaher J et al. 2016).

The latest release of HMDB is the HMDB 4.0 which has advanced in number of 
ways since the inception of HMDB 1.0, which was first released in 2007. The first 
version was released with data from 2180 human metabolite on the basis of the 
physiochemical and biological data. In 2009, the second version was released as 
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HMDB 2.0, which added more annotation most of which came from the NMR data. 
Literature annotation was further added and the second version consists of informa-
tion from 6408 human metabolites. In 2013, the third version was released as 
HMDB 3.0. This version was more advanced from the others as it also incorporated 
data from the lipid and food information. This version also expanded the informa-
tion content in the HMDB’s spectral library and incorporated data from the meta-
bolic pathways. In this version, the interface also was improved substantially, and 
now the content was expanded to 40,153 metabolites.

The latest release was introduced in 2018 by the name of HMDB 4.0. This is by 
far the most advanced and updated release of the consortium. This version has been 
produced by the using bioinformatics approaches and literature curation. The final 
version now has 1,14,100 human metabolite information which is divided into three 
categories: known metabolites, predicted metabolites and expected metabolites. 
Another salient advancement is the increase in the number of reference spectra from 
NMR and mass spectroscopy approaches. This data has also now reached to 3,51,754 

Fig. 5.2  (a) Homepage of BRENDA, (b) search page showing options for trypsin
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which includes information from both computational and experimental observations. 
This increase can be considered to be 100-fold than what was present in the previous 
versions of the database. The next advancement was seen in the pictorial representa-
tion of the metabolic pathways. The representation has undergone a 60-fold increase 
as the total number of representations has now increased to 25,770. The metabolite 
and disease associations have also witnessed increase of 77% to a total number of 
5498. The most significant improvement which is important for the researchers is the 
increase in the number of metabolites. As we discussed in our previous paragraph, in 
the first version in 2013, the metabolites were classified into three groups: (i) detected 
metabolites which have been quantified, (ii) detected metabolites which have not 
been quantified and (iii) predicted or expected metabolites. The first category con-
sists of the small molecules that have been identified and for whom the concentra-
tions have been quantified, and also through experimental records, they have been 
proved to be present in the human system (Allen F et al. 2014). Those small mole-
cules which fall under the ‘expected’ category are those for which the structure elu-
cidation has been done, but there is still no experimental evidence of the presence of 
such metabolites in the human system. As a result, the maximum number of metabo-
lites in the latest version is under the category of ‘expected’ as being 82,274  in 
HMDB 4.0. As a consequence, the number of metabolic pathway representations has 
increased many folds in HMDB 4.0. The latest version also consists of a new class 
of compounds known as the ‘predicted’ compounds. This category was introduced 
because of the scarcity of the metabolomics data pertaining to identification of the 
metabolites. These compounds can be easily filtered by the users as per their require-
ments. As a result of the number of entries increasing in the HMDB 4.0 version, the 
accession number has now accentuated to a five-digit accession number format. This 
version also consists of ontological definitions for the metabolites. These ontological 
definitions have been fully standardised and consist of more comprehensive hierar-
chical annotations. The ontology definitions are represented under four categories: 
(i) process in which they are involved, (ii) function of these metabolites, (iii) the 
physiological effect of these metabolites and (iv) the disposition data. Another strik-
ing feature of HMDB 4.0 is the inclusion of pharmaco-metabolomic data and single 
nucleotide polymorphism data.

HMDB 4.0 also accomplishes enhancements in terms of the user interface. The 
visualisation of the metabolic pathways has improved significantly with better 
viewing options, improved searching tools and a number of options for the exchange 
of data across different platforms (Law V et al. 2013). Another important feature is 
that all the outputs have hyperlinks to important repositories such as UniProt and 
DrugBank which makes it easier to link the information across different resources. 
The output consists of a summary of the results which helps the user to infer the 
observations in a more effective manner. The chemical structures can be easily 
retrieved in a number of known formats such as SMILES, SDF, PDB, etc. The other 
information such as the sequence information of DNA/proteins can easily be 
accessed through the standard FASTA format. All of these HMDB ‘component’ 
files can be freely downloaded from the HMDB 4.0 website.
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Fig. 5.3  (a) Homepage of HMDB, (b) search page, (c) search page of metabolites
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In a nutshell, since its inception from 2013, HMDB has increasingly become a 
comprehensive specialised database for metabolomics all over the world. In particular, 
the latest version HMDB 4.0 has undergone a number of improvements and is useful 
for ‘predicted’ metabolites data and the prediction retention time information (Fig. 5.3).

5.2.4  �SABIO-RK

The understanding of a biological system needs the systemic study of the individual 
components as well as the overall comprehension of the interactions between indi-
vidual components. Metabolic modelling is one such field which can help us in 
getting a complete picture of the biological process in the form a network diagram. 
For the successful analysis underlying metabolic networks, it is important that we 
have correct kinetic data for each reaction so that we can model the enzyme kinet-
ics. SABIO-RK is an important resource to accomplish this goal in metabolic 
modelling.

SABIO-RK was introduced to the scientific community as a database which 
stored information on kinetics of metabolic reactions. This information is useful for 
the scientists performing metabolic modelling, and also it helps the experimental 
researchers to comprehend complex metabolic pathways easily in a network repre-
sentation (Wittig U et al. 2011). In comparison with other data resources, SABIO-RK 
consists of reaction-based visualisation for the dynamics of the reaction. Also, the 
database consists of elaborate information of the pathways regarding the location in 
the cell, the constituents of the reaction and also the complete information about the 
enzymes involved in the reaction.

SABIO-RK consists of an integrative pipeline where the data can be consoli-
dated from the literature and also from the experimental observations (Dräger A 
et al. 2014). Thus, this database shows a better output and is highly flexible in its 
utility because of the advanced interface and better options for the user. The 
search engine has the option of querying the organism based on the information 
from NCBI, BRENDA and ChEBI, thus offering more flexibility and better 
usability.

SABIO-RK further also helps in integration of data from various sources which 
help in establishing a broad-based information resource (Funahashi A et al. 2007). 
The complete information is extracted from literature under the headings of reac-
tions, substrates, products, details of the catalysts, the conditions in which the reac-
tion takes place and the details of the paper from which this information is extracted. 
Further, the information is enriched through storing information about the enzymes 
that catalyse the reaction. Detailed information is also available for the isozymes or 
mutations that were used in the experiments, also about the subunit compositions 
and accession numbers from the UniProt database. The database also holds infor-
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mation on the kinetic data for every elementary step and a visual representation of 
the mechanism of the reaction.

In totality, SABIO-RK has kinetic information for more than 650 species consti-
tuting 7250 metabolic reactions and a repository of approximately 1000 enzymes. 
Another striking feature is the link of the reactions (~2400) to the KEGG Ligand 
database. There are also options to submit kinetic data to SABIO-RK.

Kinetic data can be inserted into SABIO-RK in two different ways. The data that 
is generated through the literature can be incorporated by the researchers all over 
the world by using the online interface of SABIO-RK (Krebs O et al. 2007). The 
data that is generated from the experiments can be submitted through their submis-
sion platform and the format used is SabioXML. Hence, the process of submission 
is automated, and it helps in making the process enhanced.

The online resource of SABIO-RK is protected by a password and thus is useful 
for the researchers to store the data into a local database. The web interface consists 
of a variety of options ranging from form fields and structured input data. The con-
sistency is maintained by the automated process of generation of metabolic reac-
tions and their equations, which cannot be manually changed.

In order to avoid discrepancies in terms of the reactions, substrates, locations, 
lists of parameters, organisms and types of kinetic laws, the existing information 
present in the SABIO-RK database is provided to the users (Wittig U et al. 2014). 
The controlled vocabulary comes from trusted sources such as the NCBI database, 
BRENDA and the ontology databases. The utility of controlled vocabulary is that 
along with the annotations, these help to identify the biological context of the meta-
bolic reactions. Ontologies used for adding the biological context are retrieved from 
NCBI taxonomy, ChEBI and Systems Biology Ontology.

The SABIO-RK data can be accessed using the online servers and services that 
are freely available. These online resources support the XML/SBML standard for-
mat. SBML is a standard format for data exchange and can be easily used for the 
exchange of data amongst the different web servers.

The online interface is useful for the researchers to look for the metabolic reac-
tions and apply kinetic laws to the equations. The interface is also useful for creating 
complex queries by using different identifiers such as the UniProt IDs, tissue names, 
cellular spaces enzymes, substrates or the pathways that are involved; a number of 
searches are based on the ontologies about the biological context, which are helpful 
in defining the relationship between the controlled vocabularies and the objects.

SABIO-RK has two different web interfaces currently. The previous SQL-based 
search was now changed to inverted indexing. The kinetic data records that are gen-
erated can now be seen on the screen to the users and simultaneously the queries can 
be formulated. This feature is useful for the users and enhances the capability of the 
web interface. An additional feature that has been added is the visualisation of the 
reaction-based information.

In summary, SABIO-RK is a data resource which consists of the metabolic reac-
tions and their kinetic information. It is beneficial for the users as it helps them to 
model the metabolic reactions by adding the kinetic data and other details like the 
cellular locations, etc. The information on the kinetics of the reaction can be 
retrieved either from the literature by manual curation or the information can be 
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added from the experimental approaches. The addition of annotation to controlled 
vocabularies and the information on biological ontologies enables the user to per-
form complex querying to the database. The datasets can be retrieved and exported 
to the SBML format from the SABIO-RK resource (Fig. 5.4).

The other resources are beyond the scope of this chapter and hence collated in 
the form of a tabular representation below (Table 5.1):

Fig. 5.4  Homepage of SABIO-RK
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5.3  �Computational Approaches for Metabolomics Analysis

It is extremely challenging to understand different mechanisms of a living organ-
ism. The simplest way of understanding the functionality of the organism is to deci-
pher the metabolism, which is an essential process to produce energy for the working 
of the cell. For a better understanding of the process, it is important to first compre-
hend how the energy is consumed and produced by the metabolites and how this 
process is regulated in an efficient manner. The entire process encompasses the use 
of enzymes that catalyse the reaction at each step.

The understanding of the processes involves the answering of the following 
questions:

	 (i)	 How and what are the inputs that the organism needs for the process?
	(ii)	 What is the classification of different types of outputs?
	(iii)	 What is the efficiency of this process?

The easiest way to deal with these questions is by the identification of the meta-
bolic reactions involved in the processes. After we decipher the reactions involved 

Table 5.1  Various metabolomics data resources

S.NO Database Name URL Description/comment

1. BIGG http://bigg.ucsd.edu/home.pl Database of human, yeast and 
bacterial metabolites
Database for pathways and 
reactions as well metabolic 
modelling

2. Biological Magnetic 
Resonance Bank  
(BMRB Metabolomics)

http://www.bmrb.wisc.edu/
metabolomics/

Emphasis on NMR data, no 
biological or biochemical data
Specific to plants 
(Arabidopsis)

3. METLIN Metabolite 
Database

http://metlin.scripps.edu/ Human specific
Mixes drugs, drug metabolites 
together

4. Golm Metabolome 
Database

http://csbdb.mpimpgolm.
mpg.de/csbdb/gmd/gmd.html

Emphasis on MS or GC-MS 
data only
No biological data
Few data fields

5. Fiehn Metabolome 
Database

http://fiehnlab.ucdavis.edu/
compounds/

Tabular list of ID’d 
metabolites with images

6. NIST Spectral Database http://webbook.nist.gov/
chemistry/

Spectral database only (NMR, 
MS, IR)
No biological data
Little chemical data
Not limited to metabolites
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in the organism, we can easily establish the operation of the metabolites. With the 
advent of the Human Genome Project, large number of data resources is available. 
In order to make sense of these data, it is endeavoured that in silico systems biology 
plays a major role. One such approach is modelling and reconstruction of the meta-
bolic pathways in the form of a network-based representation. One of the most 
common of such approaches is the modelling of metabolic pathways using the 
graph theory and path finding using ‘metabolic path finding’. The task at hand is to 
decide which path is to be followed in order to discard the false positives from the 
dataset and make the validation of the data possible. However, it is important to 
decide the best modelling approach when representing a metabolic network in the 
form of a biological system. The data under consideration should be understood in 
a comprehensive manner in order to provide a meaningful picture of the process. 
The second important criterion should be that the kinetics and other parameters that 
are added in the network should be correct and complete. This will enable us to 
make a proper representation of the metabolic system.

A general definition of a metabolic model is the one which is composed of 
metabolites and the reactions between the metabolites. A metabolic reaction can be 
unidirectional (i.e. going in one direction only) or bidirectional (i.e. going in both 
directions). When the reaction is defined as being bidirectional, the reactions occur 
at the same time, and thus equilibrium is defined as the point where the rate of con-
version from the substrate to product and vice versa is the same. The ratio of the 
concentration can be quantified by using the equilibrium constant K; this can be 
known to be constant at a given temperature. The analysis of the metabolism as a 
complete process of networks, the reaction equilibrium has to be taken into consid-
eration. However, some reactions never reach to an equilibrium state, and thus they 
are unidirectional in nature. These kinds of reactions are called as irreversible reac-
tions. The metabolic compounds can be defined as nodes, and the reactions can be 
defined as the links/edges or the reverse known as the reaction graph. A bipartite 
graph is the one which uses the compounds and the reactions as nodes. The network 
can be classified further as weighted or unweighted and also as directed or undi-
rected graphs (Fig. 5.5).

5.3.1  �Network Analysis and Metabolic Pathway Integration

In the last decade, the field of biochemistry has enhanced with the amount of data 
increasing on chemical kinetics. With this increase in the amount of kinetic data, it 
has now become easier to understand the biochemical processes in the form of a 
network-based approach.

One such approach which has received attention in the last few years is the com-
putational modelling of the metabolic pathways. In the following text, the stepwise 
protocol of the construction of the metabolic pathways is discussed. If we have a set 
of reactants which are parts of the metabolic pathway under consideration, atomic 
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components could be generated, and then these can be preserved for model compo-
sition. These compounds then can be used to compose the models, which can be 
evaluated through experimental observations of the reactants. Performing simula-
tions can help in analysing the relationship between the substrates and the products 
for a given set of reactions (Table 5.2).

Table 5.2  A summary of other metabolomics-based approaches is provided in tabular form

Approach Advantage Disadvantage

Targeted analysis Quantitative Does not detect compounds that were not 
targeted

High throughput Limited number of compounds can be 
targeted

Low limit of detection Targeted compounds must be available 
purified for calibration

Metabolite profiling Global (not targeted) Semi-quantitative
Majority of peaks are not identifiable
Medium throughput
Difficult informatics

Metabolite 
fingerprinting

Global (not targeted) No compound identification
Directly applicable to pattern 
recognition
Highest throughput

Fig. 5.5  Representation of metabolic network as nodes and edges. The metabolic compounds can 
be defined as nodes, and the reactions can be defined as the links/edges or the reverse known as the 
reaction graph. A bipartite graph is the one which uses the compounds and the reactions as nodes
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5.3.1.1  �Metabolic Control Analysis

Metabolic control analysis is one of the most important approaches which is useful 
to determine the effect of the individual reactions of different biochemical path-
ways. This process makes the analysis in a quantitative manner. The metabolic con-
trol analysis is defined by two coefficients: first are the control coefficients, which 
help to characterise the system flow response and values of perturbations; second 
are the elasticity coefficients, which are useful in quantifying the rate of change of 
reaction after the simulations of kinetic values under specific conditions. This 
approach has been used for studying a number of genetic pathways. The differential 
expression of the enzymes can be studied using the metabolic control analysis. 
Metabolic control analysis has been applied to a number of researches in the past to 
perform kinetic modelling (De Matos P et al. 2009).

5.3.1.2  �Stoichiometric Analysis

Stoichiometry is done on the law of mass conservation, which states that mass total 
of the reactants and the products should be equal. This leads to knowledge that the 
quantity of reactants and the product results in a ratio of positive number. Thus, it 
infers that if individual quantities of reactants are known, then we can calculate the 
quantity of the products.

5.3.2  �Flux Analysis

Metabolomics refers to an analysis platform that involves distinguishing and evalu-
ating all the small molecules and the metabolites in a given sample at a given time. 
These metabolites can be characterised using a non-targeted and unbiased approach 
which uses different kinds of systems such as the mass spectroscopy and NMR. These 
techniques can be combined with other separation techniques such as chromatogra-
phy. Further statistical techniques are used for the analysis of the spectra and then 
compared with the known samples. The need of an additional approach came 
because some of the metabolites occur at low concentrations and hence are difficult 
to characterise.

Flux balance analysis (FBA) is one such method that has been presented as a 
displaying and examination apparatus for metabolomics (Orth JD et al. 2010). It is 
a limitation-based approach for demonstrating metabolic systems. FBA uses straight 
enhancement to depict the enduring condition of the response motion conveyance in 
a metabolic framework by characterising a goal work, for example, the development 
rate or the generation of ATP. The relentless state examination is done by FBA by 
making utilisation of the stoichiometric lattice for the framework (Bordbar A et al. 
2014).
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5.3.2.1  �Incorporation of Additional Constraints

Different methodologies adjusting extra limitations have been prescribed to repre-
sent quality direction and free vitality. The statement of every quality is directed by 
the quality articulation. The effect of transcriptional direction on cell digestion was 
dictated by the Boolean coherent administrators. The administrative tenets for a 
given quality are related with an arrangement of Boolean articulations. In the event 
that the principles are satisfied, the quality is ‘on’, and the relating protein and its 
related response partake in the system. The Boolean principles are gotten from trial 
work describing administrative procedures, e.g. microarray information. Joining of 
response thermodynamics in FBA done by the burden of extra non-straight require-
ments delineating vitality adjusts with the concoction potential (Covert MW et al. 
2001). The vitality adjust plan was extended further to maintain a strategic distance 
from thermodynamically infeasible cycles from a given response arrange. In this 
approach, the duplication amongst transitions and related compound potential 
prompts computational flightiness for significant scale frameworks.

5.3.2.2  �Interfacing Metabolomics with FBA

FBA has contributed a noteworthy part in the investigation of natural systems and to 
make expectations utilising testable analyses with cell practices. One of the signifi-
cant difficulties of metabolomics is that it needs thoroughness and exactness in esti-
mations. Regardless of these difficulties, there has been a considerable measure of 
progressing advancements of various detachment and scientific strategies, affect-
ability and selectivity of estimations turn into key worries for substantial system 
frameworks where concurrent examination of several metabolites is required (Beard 
DA et al. 2004). The metabolomics information in relationship with FBA tries to 
fathom a portion of these difficulties.

The impediments of metabolomics can sufficiently be supplemented by a FBA-
based formalism. The joining of fractional metabolic data has been permitted by the 
use of genome-scale reproductions. Estimated transitions or motion proportions can 
be forced as equity imperatives. Moreover, the dynamic profile of focuses can be 
used helpfully for estimation of motion data, i.e. v = dC/dt. The vulnerabilities that 
are connected with fixations can be assessed by mirroring their conviction limits 
(Fischer E and Sauer 2003) in imbalance imperatives. FBA alongside a few numeri-
cal examinations, for example, affectability investigation [68] and target work 
induction instrument (Burgard AP et al. 2003), can coordinate tests facilitated by 
perceiving critical metabolites. A particular diagnostic technique required by the 
undetected or vital metabolites would thus be able to be distinguished and bottle-
necks in the consistent systems can be alleviated effectively.
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5.4  �Applications

The applications of metabolomics are highly diverse, and thus it is touted to be as 
one of the most important tools for the comprehension of the living organisms and 
the study of diseases and disease mechanisms. The applications are becoming more 
diverse in the times to come, and hence the field is providing important insights to 
the researchers as well as clinicians all over the world. This field of metabolomics 
is now widely used in the research related to disease identification, drug discovery 
and development, nutrigenomics and agricultural research (Fig. 5.6).

5.4.1  �Toxicology

Metabolomics applications can be well studied for the field of assessment of toxic-
ity. The metabolic profiling of the urine samples or the blood samples can be used 
for the determination of the toxicity levels. A number of different techniques are 
available for the study of metabolic profiling as discussed above. This approach can 
also be used for analysing the disease conditions associated with the liver and the 
kidney. Recently, pharmaceutics have also advocated the metabolomics technolo-
gies since they find it the most useful approach to detect the toxicity levels 

Fig. 5.6  Applications of metabolomics. It is now widely used in the research related to disease 
identification, drug discovery and development, nutrigenomics and agricultural research
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associated with the drug candidates. Thus, it would be beneficial in saving tremen-
dous amount of resources and funds.

5.4.2  �Functional Genomics

Metabolomics can also be of great utility in the research of the phenotypes which 
are resulting from the genetic changes through the field of functional genomics. 
To elaborate, it can be suggested that the knowledge about the metabolome would 
be useful to predict whether a gene was affected by insertion/deletion in the 
genome of an organism. The identification of the phenotypic effects can also be 
utilised to a number of other applications. For instance, genetically modified 
organisms such as GM crops can be detected for phenotypic changes after human 
consumptions. These changes have the potential in principle to change the metab-
olome information of the organism, and hence a prior prediction of the phenotypic 
changes associated with their consumption would be useful to avoid any harm 
from such crops.

Metabolomics can also aid in the prediction of the function of the unknown 
genes. This is possible through the comparison of known metabolic profiles with 
that of unknown genes and transferring the orthologous information. Model organ-
isms of Saccharomyces cerevisiae and Arabidopsis thaliana are currently being 
undertaken and could lead to such advances in the future.

5.4.3  �Nutrigenomics

With all the ‘omics’ knowledge in place such as the transcriptomics, genomics, 
proteomics and metabolomics, these knowledge can be transferred to the nutritional 
principles in human, and this field is known as nutrigenomics. There are two types 
of factors that affect the metabolites: the first category is of the endogenous factors 
such as the gender, body composition, genetic conditions and age; the second cate-
gory is of the exogenous factors which include the food composition, the medica-
tions taken and the nutrients required. The field of metabolomics can be applied to 
nutrigenomics in determining the metabolic fingerprint of the organism, which will 
provide the complete snapshot of both the factors and their effect on the individual 
system.

The combination of knowledge of various field of biology such as transcrip-
tomics, genomics, metabolomics and proteomics using analytical techniques with 
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nutritional principles for humans is called nutrigenomics. Factors affecting the 
metabolite are divided into two types.

5.4.4  �Health and Medicine

Metabolomics also has an important role in the understanding of the disease mecha-
nisms and the treatment of a number of different health conditions affected by the 
metabolic changes in the genome such as cancer. This field can be used to identify 
the pathophysiological states of the disease and help in understanding targeted dis-
ease mechanism. For instance, the identification of metabolomics biomarkers can 
help us categorise the progression of several types of cancers.

5.4.5  �Environment

Metabolomics can also be applied to characterise the ways in which an organism 
interacts with its environment. Studying these environmental interactions and 
assessing the function and health of an organism at a molecule level can reveal use-
ful information about the effect of environment on an organism’s health. This can 
also be applied to a wider population to provide data for other fields of research, 
such as ecology.

5.4.6  �Agriculture

Metabolomics helps us to improve the genetically modified crops and also helps us 
to identify the dangers of the consumption of GM crops by making us get a snapshot 
of the plant development at different time frames. Plant metabolite identification is 
particularly important as it would help us in identification of the functions of the 
primary and secondary metabolites.

5.4.7  �Biomarker Discovery

Another field where metabolomics plays an important role is the biomarker identi-
fication through decision making. Biomarker identification is an important area of 
research for disease diagnosis and understanding. Using metabolomics, the bio-
markers can be considered as the metabolites, which can be used for the 

5  Metabolomics



96

classification of two groups of samples: the disease group and the healthy group. 
Biological samples from the bile, urine or seminal fluids are important source of 
metabolic information, and this information can be processed though metabolomics 
by metabolic profiling or fingerprinting for the identification of biomarkers.

5.4.8  �Personalised Medicine

The new era of medicine is going to be personalised medicine, which holds great 
promise in the field of healthcare. This field would aid in early diagnosis and treat-
ment of diseases. Classical biochemical tests are used for disease identification; this 
would to go another level with incorporation of metabolomics approaches. 
Individual samples from the metabolites and their concentrations could be used for 
disease diagnosis and treatment. The response of the individual to certain medica-
tions can be detected by checking the metabolite concentrations.
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Chapter 6
Microbiome

Debarati Paul, Sangeeta Choudhury, and Sudeep Bose

Abstract  The advancement in current experimental science and its technology 
have made it possible to understand the interactions of microbes with host, biotic 
and abiotic factors, and host responses. It has been realized that a single microor-
ganism on its own is insufficient to cause disease in human/plant/animals, unless it 
is supported by the surrounding environmental factors and the existing mini-
ecosystem consisting of various other microbes that may play antagonistic or syner-
gistic roles. Although, in present scenario, one cannot predict or specify the genera, 
classes, or species of microbes that regulate a disease phenotype, the conclusions 
drawn from several experimental and human studies strongly suggest the presence 
and/or the levels of specific microbes comprising a population that govern the host 
phenotype. The metabolic networking elucidates interplay of metabolomics and 
metagenomics revealing the correlations between host and gut bacteria in health and 
disease conditions. This chapter summarizes the dynamics of microbial associations 
and a mechanism of divergent actions connecting the microbiome prevalent in envi-
ronmental conditions (soil/marine-to-plant) leading to diverse health concerns.

The shaping of host-immune responses as well as modulating effects caused by 
interaction with drugs is linked with alterations in composition and diversity of 
microbial community in several studies. However, many questions will remain 
unanswered before we can bring out the full prognostic and predictive potential 
utilization of microbiomes.
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6.1  �Introduction

Over the last decade, there has been a huge shift in the popular perception of micro-
organisms—instead of considering them as potentially pathogenic organisms that 
should be destroyed, we now realize that the microorganisms living in and on us are 
an essential part of us and necessary for good health. Medical literature has com-
pared humans to ecosystems (rather, equated as live ecosystems) where eukaryotic 
cells of our human body and bacterial/viral prokaryotic cells living inside and out-
side our bodies are intricately interwoven, and, consequently, the importance of the 
microbiome and interactions with the host has been realized and accepted to play 
significant roles in human health (Blaser 2016). The metabolites produced by these 
microorganisms interact with the immune system, the neuroendocrine system, and 
the digestive system, thereby directly affecting our physical and mental 
well-being.

In the case of agriculture too, a lot of importance is now laid upon the study of 
the whole microbiome instead of individual microbes that favor (nitrogen fixers) or 
disrupt (pathogenic strains) plant growth and productivity, as it is realized that the 
dissemination and spread of these cultures are based on interactions with other 
members of the microbiota and on the biotic and abiotic environment. Like the 
human microbiota, plant, marine, and soil microbiota are very complex and varied 
in different layers/parts (Fig. 6.1) and continuously influence each other and get 
impacted by the abiotic factors or biotic and human interventions.

6.2  �Microbe to Microbiome

Recent years have witnessed the shift of research interest on individual microbes to 
“the entire range of microorganisms dwelling in a particular niche/environment” be 
it soil, plant, human, or aquatic, especially the marine environment. It has been real-
ized that the abundance and/or scarcity of each individual strain depends upon the 
influence of the other accompanying strains apart from biotic/abiotic/human inter-
ventions. Some of them are commensals (freely live together), some are symbiotic 
(depends on each other for metabolism), and others are antagonistic (repel or kill); 
together, they form a “mini-ecosystem” in every niche that they inhabit.

As infants or even before, the mother’s microbiome trains the child microbiota, 
and it develops and changes until old age depending upon the lifestyle, food, drugs, 
and physical state. The ever-changing nature of the microbiome is not only appli-
cable to humans but also true for soil, plants, and aquatic microbiomes. Here we 
will focus on a few types of microbiome that are important for humankind and have 
been exhaustively studied and reported.
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6.2.1  �Soil Microbiome

The soil microbiome describes the microbes existing in soil, e.g., prokaryotes (bac-
teria, archaebacteria, and viruses) and micro-sized eukaryotes. The carbon and 
nitrogen content plays a huge role in defining soil microbiota of a particular niche. 
The microbial load or biomass carbon in soil may be >1000 kg per hectare of land 
(Serna-Chavez et al. 2013). Bacterial and fungal colonies dominate soil population 
contributing to 102–104 times more biomass than other occupants of the soil micro-
bial species (protists, archaea, and viruses). The soil environment comprises vivid 
environments that exhibit differences in abiotic factors and microbial density and 

Fig. 6.1  The biogeochemical cycles influenced by the soil microbiota. Soil, marine, and plant 
environments exhibit different layers or horizons that are impacted by various biotic and abiotic 
parameters contributing toward variations in microbiota
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activity along with species richness and variability of microbial community. The 
physicochemical properties of surface soils—e.g., pH, organic carbon, salinity, tex-
ture, and bioavailable nitrogen—show huge variations just being separated by a few 
microns or millimeters. Primarily the elements that affect soil formation, e.g., cli-
mate or organisms (macro- and microorganisms), significantly contribute to the 
above variations.

Depending on the gradient of oxygen across different layers in the soil, the vari-
ability of microorganisms can be detected establishing the fact that the soil micro-
biota is substantially variable and ever changing. The parameters that govern this 
variability may be attributed to competition between the different taxa, frequent 
changes in soil composition (e.g., adding fertilizers), soil disturbances due to natu-
ral (storm, flood, blizzard) or human activities (ploughing/livestock industry), type 
of plants growing in the area or animal habitats, etc. (Tedersoo et al. 2016) and have 
been tabulated in Table 6.1.

The soil microbes may be abundant, but still not every part of the soil is uni-
formly enveloped by microbes, illustrating that biotic and abiotic factors restrain 
them from dwelling on every available soil surface. Even when artificial inoculation 
is done, the externally introduced strains may or may not survive with equal viabil-
ity, showing that an underlying interplay of various parameters eventually decides 
the fate of microbes and that edaphic factors do not contribute alone in this case. 
Mostly, a single or few dominant species (covering about 90–95% of the popula-
tion) are found in every niche, and the rest are in dormant form under existing con-
ditions at a particular time point (Ochoa-Hueso 2017; Fierer 2017). A range of 
stipulations influences the microbiome in terms of species richness and community 
composition and is continuously subject to changes.

Macro-environments and microenvironments of soil include (i) the rhizosphere 
(soil adjoining plant roots), (ii) soil surface layers receiving sunlight (photic layer), 
(iii) soil in worm casts (drilosphere), and (iv) soil proximal to water channels, (v) 

Table 6.1  Factors that interact and help in the structuring of the soil, marine, and plant microbiota 
and the important roles played by them that in turn influence them and human health and 
well-being

Microbiome
Factors affecting

Important functions Ref.Biotic Abiotic

Soil Flora and fauna; 
human activity, 
e.g., farming/
urbanization

Moisture, pH, 
temperature, gases, 
minerals, C/N ratio

Nitrogen cycle, carbon 
cycle, etc., symbiosis in 
the rhizosphere, diseases

Fierer. 
(2017)

Marine Carbon chemistry, 
micro- and 
macro-nutrients, O2 
content

Temperature, 
ocean currents, 
ocean stratification

Emission of dimethyl 
sulfide; regulation of the 
biological pump and 
carbon, nitrogen, and 
mineral cycling

Glockner 
et al. (2012)

Plant Herbivory and 
pathogens

Temperature, pH, 
moisture, edaphic 
factors

Modulation of 
greenhouse gases

Turner and 
James 
(2013)
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microenvironments internal to soil aggregates, and (vi) water-soil aggregates. 
Microbial communities change due to alterations in the abiotic parameters because 
of soil depth. The microorganisms found in surface soil horizons (layers) have been 
studied thoroughly over the years, but communities living in the litter (or O horizon) 
have also been studied now and were observed as unique and distinguishable from 
those prevailing in subsurface mineral soil horizons (A and B horizons) and deeper 
saprolite (C horizons).

Composition wise, there is no typical defined soil microbiota. There are several 
reports on some of the common biological processes occurring in the soil, e.g., 
methanogenesis, nitrogen fixation and nitrification, etc., and the microbial commu-
nities affecting them are well described. In spite of this knowledge, the “black box” 
of soil microbiota is still unknown or poorly defined for various ecosystems, e.g., 
tropical forests, subterraneans, and rhizospheres. Microbes also control the bio-geo 
cycling of various minerals and elements, e.g., S, P, and metal ions. The microbiome 
contributes to the amelioration of soil pollution by degrading or mineralizing vari-
ous pesticides, explosives, and other xenobiotics added intentionally or accidentally 
by human activities (Fig. 6.2). These parameters also govern and manipulate the 
richness and diversity of the microbiota of a said environment.

6.2.2  �Plant Microbiome

The plant microbiota has been an important area of research because it primarily 
determines and governs plant productivity and health (Berendsen et al. 2012), and 
modifications to the plant microbiome hold the promise to impact and reduce the 

Fig. 6.2  The biogeochemical cycles influenced by the soil microbiota
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chances of diseases and to improvise crop productivity (Bakker et  al. 2012) by 
reducing the usage of pesticides or fertilizers, paving the way for sustainable agri-
culture and reducing the emission of greenhouse gases (Singh et al. 2010). Especially 
it is observed that, in agricultural fields, microbial denitrification and methanogen-
esis are stimulated by crops that play leading roles to control the emission of N2O 
and methane, respectively. Emission of nitrous oxide and methane depicts loss of 
carbon and nitrogen from the environment and leads to production of greenhouse 
gases. The rhizosphere is the soil mainly impacted by roots of plants due to deposi-
tion of plant exudates, mucus, and dead cells. A plant secretes a range of compounds 
through roots, namely, organic acids, sugars, amino acids, fatty acids, vitamins, 
growth factors, hormones, and antimicrobial compounds, and these vary with the 
type of plant and bacterial species associated with the root system. In soils where 
the presence of humus and organic matter is elevated, cellulose-producing microbes 
are commonly found dominating the microbiome. Pectin decomposition leads to 
release of methanol, which may be utilized as a carbon and energy source by a dif-
ferent group of microbes, thus affecting the structure of the microbial community. 
Plant cultivars influence the microbial species and strains (Inceoglu et  al. 2011; 
Teixeira et al. 2010) dwelling any particular microbiota. The α- and β-Proteobacteria, 
Actinobacteria, Firmicutes, Bacteroidetes, Planctomycetes, Verrucomicrobia, and 
Acidobacteria are the most prevalent examples of rhizosphere microbiota.

Plant growth-promoting rhizobacteria are prevalent in the rhizosphere and are 
known to function via various mechanisms. Nitrogen-fixing bacteria are the most 
important examples of this category that fix nitrogen in a form that is readily avail-
able for the plant and may be included as free-living (e.g., Azotobacter spp.) or as 
symbiotic (dwelling in root nodules, e.g., Rhizobium spp.). Certain bacteria have the 
capability to solubilize minerals to release phosphorus, thereby increasing its bio-
availability for plants. However, few rhizobacteria act antagonistically toward 
pathogens via production of antimicrobial peptides or chemicals or blocking the 
action of virulence factors via the action of certain effectors mediated by type 3 
secretion systems (T3SSs). Actinomycetes especially provide many different types 
of products exhibiting antibacterial, antifungal, antiviral, nematicidal, and insecti-
cidal properties.

Phyllosphere is the aerial surface of the plant body and is known to be compara-
tively poor in nutrients as compared to the rhizosphere. Leaf surfaces are colonized 
by up to 107 microbes per cm2. In such an environment, few genes show increased 
expression, e.g., porins, stress-related proteins, ABC (ATP-binding component) 
transporters, and TonB-dependent receptors, especially those belonging to 
Sphingomonas spp. Studies also showed that methylotrophs, e.g., Methylobacterium 
spp., and others dominated the community of phyllosphere microbiome (Knief et al. 
2012) and could actively assimilate and metabolize methanol that is produced dur-
ing degradation of pectin derived from plants. The phyllosphere, being much more 
subjected to fluxes in pH, temperature, moisture, and radiation throughout the diur-
nal cycle, experiences a greater dynamic environment compared to the rhizosphere 
and so do the resident microbes. Precipitation and wind especially largely contribute 
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to the variations among inhabitant microbes and are dependent on temporal and 
abiotic factors. Herbivory is another prime parameter that governs phyllosphere 
microbiota. It is observed that the microbial species richness is higher in tropical 
areas that are warm and humid as compared to colder climate in temperate zones. 
Proteobacteria (α- and γ-) dominate the microbiota persistently; however, 
Actinobacteria and Bacteroidetes also prevail (Vorholt 2012).

Within the endosphere, dominance of endophytic bacteria prevails, and some of 
them may be pathogenic or nonpathogenic. They might be a subpopulation of the 
rhizosphere bacteria. It has been observed that age of plants and not biomass affects 
the diversity and population of inhabiting microbes. Younger plants show higher 
density or microbial load than older/mature ones. Specifically in case of 
Herbaspirillum, the density of epiphytic bacteria was found to be ten times higher 
than those of endophytes (Cavalcante et al. 2007). Root nodules of legumes popu-
lated by symbiotic bacteria may be occupied with rhizobial bacteroids up to 1011 cfu 
per gram of plant tissues (fresh weight). It is hypothesized that a high density of 
endophytic bacteria (above 108 cfu per gram) may lead to elicitation of any host 
defense response, although, in few cases, e.g., rice and sugarcane, a wider variety 
and population of endophytic bacteria have been observed using culture-independent 
molecular methods, such as analyses of 16S rRNA and nifH transcripts (Fischer 
et al. 2012) and metagenome analyses (Sessitsch et al. 2012). Rhizobia (and other 
α-Proteobacteria) as well as β-Proteobacteria, γ-Proteobacteria and Firmicutes are 
important examples of endophytic bacteria, e.g., Azospirillum, Burkholderia, 
Gluconacetobacter, and Herbaspirillum spp.

6.2.3  �Marine Microbiome

Microbes are abundantly and ubiquitously present in the marine environment, 
modulating key biogeochemical processes, namely, carbon and nutrient cycling. It 
is estimated that about 104 to 106 microbial cells prevail per milliliter and interest-
ingly their biomass, along with high turnover rates in combination with consider-
able environmental dynamism, contributes to great diversity and species richness. 
It has been observed that the number of microbes in aquatic habitats is about 
1.2 × 1029 but, in the oceanic subsurface, it increases up to 3.5 × 1030. The higher 
concentration of organisms in coastal waters may be due to the increased loads of 
organic carbon and nutrients/xenobiotics and shows higher productivities thereof. 
However, the deep ocean may exhibit 1–2 times less microbes comparatively 
(Glöckner et  al. 2012). Virus population of the ocean may exceed the order of 
1030. Marine environment including the seas/oceans plus coastal waters, namely, 
estuaries, serves as a home for various species and strains of bacteria, archaea, 
viruses, fungi, protists, and microalgae that transform C-, N-, P-, and S-containing 
molecules to simpler forms so that they are easily procured by marine plants, ani-
mals, microbes, etc. The biological pathways for metabolism of various nutrients 
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in marine microbes thereby modulate the global biogeochemical cycles predomi-
nating upon Earth and contribute to oxygen production (indispensable for aerobic 
life) and carbon reduction. The interaction followed by the fine interplay of all 
these compounds and metabolic and biogeochemical cycles controls the dynamics 
of all marine microbiomes. Viruses contribute to biogeochemical cycles by lysing 
up to 30–50% of the microbial biomass every day. Viruses indirectly influence the 
abundance and diversity of host cell populations by contributing to genetic 
exchanges, which form the basis of evolution in host-pathogen/virus dual systems. 
Cyanobacteria also form one of the most enriched species and are significant due 
to its capability to fix CO2 into organic matter, i.e., transformation of light to 
chemical energy. The carbon in fixed form may be utilized as food by higher tro-
phic levels or remains trapped as deep sediments where it fossilizes over time to 
produce natural energy resources (Salazar and Sunagawa 2017). Under anaerobic 
conditions, methane is generated from CO2 (by methanogenic bacteria) and 
reverted back to CO2 on reversal of conditions by methanotrophic bacteria. 
Similarly, in biogeochemical cycles of iron, the oxidized ferric form of iron (Fe3+) 
converts to reduced ferrous iron (Fe2+) and the bacteria back-catalyze them via 
(abiotic) chemical processes. Due to the precipitation of iron in seawater, it is no 
more bioavailable to the flora and fauna, and this factor limits the growth and pro-
liferation of microbes (Glockner et al. 2012). Sulfur is abundantly present in sea-
water and may be easily assimilated by microbes unlike iron. Some algae produce 
DMSP (dimethylsulfoniopropionate) which, when liberated, can be transformed 
by some bacteria and other algae to DMS (dimethyl sulfide). The DMS released is 
responsible for the “smell of the sea.”

Very few bacteria can actually fix N2 in seawater and use it for the synthesis of 
structural cell material and increase of biomass. The dead decaying matter stabi-
lizes in the ocean floor where it may fossilize and get removed from the biosphere 
for a long period on the geological time scale (process referred to as “the biological 
pump”).

In recent years, a new dynamics of microbiome has gained interest, implicated to 
stress and pathophysiology of the disease (Vayssier-Taussat et al. 2014). Therefore, 
a more complete understanding of the diversity of microbes that make up the human 
microbiome is warranted which could lead to novel therapies. The human microbi-
ota is an assemblage of more than 100 trillion microorganisms that include bacteria, 
archaea, viruses, fungi, and other microeukaryotes living in symbiotic relationship 
within the human host and play an important role in human health and disease 
(Wang et al. 2017). These microorganisms of the host interact with the soil, plant, 
and marine microbiome and modulate their ecosystem and in turn are influenced by 
them that manipulate various metabolic functions through various pathways as rep-
resented in Fig. 6.1 (Jones et al. 2014).
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6.2.4  �Human Microbiome

The Human Microbiome Project (HMP) conducted by the NIH in 2007 confirmed 
that healthy humans colonize diverse variety of microbes in its body parts. Composite 
microbiome that differs in each organ like oral cavity, gut, vagina, respiratory tract, 
skin, etc. (Argenio and Salvatore 2015) has been very elegantly summarized in vari-
ous studies (Fig. 6.3), highlighting the microbial landscape across the human body 
which emphasizes the role of gut microbiome in healthy human adult.

6.3  �Human Microbiome Interactions

According to genome-wide association studies (GWASs), microbiome diversity 
contributes in the pathogenesis of various noncommunicable diseases such as 
inflammatory bowel syndrome, cardiovascular diseases, diabetes, and colorectal 
cancer due to dysregulation in host-microbiome interactions. In general, host 
genetic variation plays an important role in the regulation of host-microbiome inter-
actions. Microorganisms in the host body secrete a variety of metabolites, which 
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Fig. 6.3  Human microbiota composition across five most extensive studied body sites of healthy 
adults. The numbers in the parenthesis represent the number of species present in each phylum
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alter host genetic makeup and help in modulating various functions such as immune 
system, enzymatic reactions, metabolic functions like bile acid, small-chain fatty 
acids, antimicrobial peptides synthesis, and gene expression, which in turn helps in 
shaping host-microbiome, anti-inflammatory response, etc. (Fig.  6.4). However, 
very little is known about microbiome-regulated alterations of host gene expression 
and vice versa (Tojo et al. 2014).

6.3.1  �Gut Microbiome Composition and Interactions

Our knowledge regarding human intestinal microbiome is emerging, but the compo-
sition of gut microbiome and their functions in the host body is still not well defined. 
A variety of environmental factors like diet, antibiotic usage, mode of delivery of an 
infant, and their feeding and lifestyle behavior in addition to host physical status, 
genotype, and immune pattern can modulate the dynamics of healthy microbiome as 
depicted in Fig. 6.4 (Sirisinha 2016). In general, the majority of the gut microbes are 
harmless and beneficial to the host for maintaining normal homeostasis. However, 
these environmental factors may cause dysbiosis, various types of infections, and 
obesity-linked metabolic syndromes (e.g., diabetes and cardiovascular diseases), 
allergies, etc. It is also a well-established fact that excessive usage of antimicrobial 
peptides affects the human intestinal microbiota and decreases colonization of the 
beneficial habitats, which can lead to antibiotics resistance (Paul et  al. 2018). In 
spite of the environment, host genotype plays a significant role on the composition 
of its microbiome and shaping an individual microbiota phenotype (Verdu et  al. 
2015). For example, people carrying known mutations (e.g., NOD2 gene) associated 
with increased risk of some inflammatory bowel diseases have microbiomes that 
differ from those who do not have the mutation (Verdu et al. 2015).

Studies have shown that antibiotic administration impacts the human intestinal 
microbiota. The antimicrobial agents contribute to the decreased colonization of 
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commensal microbiota, leading to the development of a range of diseases, including 
the emergence of antimicrobial resistance (Paul et al. 2018).

An elegant review by Wintermute and Silver (2010) described how host immune 
system responds to gut microbiota through interactions which are said to be initi-
ated at the time of birth and continue to modulate and shape the host microbiome 
through cross talk transmitted via a vast array of signaling pathways. For example, 
microbial metabolite, such as small-chain fatty acids (SCFAs), activates entero-
endocrine cells of the gut to secrete a variety of peptides that are required for diges-
tion, lipid storage, and energy homeostasis. This is enacted through G protein-coupled 
receptors, like GPR41 receptor (Samuel 2008) (Fig. 6.5).

6.3.2  �Oral Microbiome Interactions

The healthy human mouth contains hundreds of different bacterial, viral, and fungal 
species. Microbial flora of the oral cavity is mainly of two types: indigenous 
(Streptococcus, Actinomyces, and Neisseria) and supplemental type (Lactobacillus 
sp.). Colonization of microbes starts just after the birth (Streptococcus salivarius), 
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Fig. 6.5  Influence of core microbiota by the genotype of host along with environmental factors

6  Microbiome



110

and after 1  year it is invaded by Streptococcus, Actinomyces, Neisseria, and 
Lactobacillus. With due course of time, gingival crevices develop colonization 
along with plaque in the tooth and fissures followed by elderhood where microbiota 
becomes similar to childhood when all teeth are lost. Normal microbial growth 
depends upon multiple factors like oral anatomy, saliva, pH, diet, drugs, extraction 
of teeth, etc.

Host-microbiome interaction is not as well characterized in oral biofilms. 
However, Veillonella and Streptococcus are the most abundant genera reported 
which colonize in the oral cavity and live in symbiotic relationship. Veillonella uti-
lize the lactate produced by the streptococci as a food source (Kuramitsu et  al. 
2007). In similar fashion F. nucleatum expresses adhesins that recognize strepto-
cocci and a lectin that interacts with Porphyromonas gingivalis. Similarly, the den-
dritic cells of oral mucosa release pro-inflammatory cytokines that activate adaptive 
immunity (Novak et al. 2008) and antimicrobial peptides (AMPs), such as histatins 
and defensins, as the first line of defense against microbes in the oral cavity and in 
turn interact synergistically with the microbial habitats.

6.3.2.1  �Influence of Host Environment on the Oral Mycobiota

The oral cavity like other body parts exhibits a wide array of microbiota which may 
be due to alteration of many factors, including the human genetic makeup, diet, age, 
surroundings, and sexual behavior. Recent study advanced our knowledge that 
microbiota shared among partners while kissing are able to sustain in the oral cavity, 
transiently present in the saliva, while those on the tongue’s dorsal surface are colo-
nized for long duration (Kort et  al. 2014). On the other hand, oral mycobiota is 
generally stable over time but varies between healthy individuals. However, the role 
of host factors affecting the composition of the oral mycobiota in health is still not 
well known. Ghannoum and co-workers suggested that gender or ethnicity may 
cause variation in mycobiota among individuals, but this reason is applicable when 
sample size is limited and there is lack of consistency across all gender groups and 
ethnicities (Ghannoum et al. 2010). Fungal growth like Candida sp. overgrowth is 
associated with some genetic disorders and increased risk of infection, such as can-
didiasis, and the autoimmune polyendocrine syndrome type I are reported (Underhill 
and Iliev 2014). The synergestic interaction between host factors and fungus showed 
that certain streptococcal species display synegism with C. albicans on oral muco-
sal or tooth surfaces. It is shown that Toll-like receptors, NOD-like receptors, and/
or C-type lectin receptors are required for fungal recognition in the oral cavity to 
trigger appropriate innate immune responses controlling the growth of certain fun-
gal species while maintaining homeostasis with others. There is a growing body of 
evidences that bacteria and fungus are associated in the oral cavity in the same 
microenvironmental niches. It is evident that in immunocompromised conditions 
like HIV, oral fungal community shifts are accompanied by shifts in bacterial com-
munities (Mukherjee et al. 2014). The role of individual fungi of the core oral myco-
biota in the host that sustain health or promote disease remains to be elucidated.
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6.3.3  �Skin Microbiome Interactions

The skin ecosystem which is mainly predominated by bacteria, archaea, fungi, and 
viruses is very complex and dynamic like gut microbiome. Skin microbial commu-
nities are also much diversified and vary by site of the skin and from individual to 
individual. In general, skin microbiome is stable, but diverse signatures of skin 
microbe are found at species level when affected to some extent by environmental 
factors (Oh et al. 2016). The most prevalent bacterial genera of skin microbiome are 
Propionibacterium, Corynebacterium, Staphylococcus, and Streptococcus, present 
in ≥90% of the healthy subjects. These microbial habitats modulate the expression 
of host interleukins (IL-1a), cytokines, neuropeptides, and antimicrobial peptides 
(AMPs), produced by keratinocytes and sebocytes, and shape the host microbiota 
(Naik et al. 2012). Microbial compounds cause host immune cell activation through 
cross talk between immune cells and microbes (Fig.  6.6). Recent study on skin 
microbiota revealed that Corynebacterium accolens of the skin inhibit the growth of 
Streptococcus pneumoniae, a common respiratory tract pathogen. Similarly, 
Mycobacterium ulcerans releases a polyketide toxin, mycolactone, that causes 
Buruli ulcer in the host body (Marion et al. 2014).

Fig. 6.6  Distribution of various types of microbes of the skin and their interaction with secretory 
metabolites
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The skin is inhabited by a variety of microorganisms, interacting with the host 
cells and modulating various cellular functions and immunities. The host in turn can 
influence the skin microbiota composition through cross talk and maintains the 
healthy status of an individual, and its disruption has been associated with disease 
in humans; skin microbiota differs among skin sites and among individuals.

6.3.4  �Urine and Vaginal Microbiome Interactions

Urine Microbiome  The urinary microbiome of healthy individuals alters with age 
and has clinical outcomes but has not been well characterized. Recent study reveals 
that microbiota of females is more heterogeneous and alters with age groups than 
male urine samples and the most predominant representative phyla are Actinobacteria 
and Bacteroidetes. Studies reveal that bacterial composition in the urine samples of 
males differs from females, while Firmicutes are present in both male and female 
samples, as reported earlier (Siddiqui et al. 2011).

Vaginal Microbiome  A fine balance exists between the bacterial communities 
residing in a symbiotic relationship in human urine. Lactobacilli species produces 
lactic acid that lowers the vaginal pH to ~3.5–4.5. Vaginal environment is protected 
from nonindigenous and potentially harmful microorganisms through production of 
antimicrobial compounds like lactic acid and broad-spectrum hydrogen peroxide. 
Lactobacillus sp. are thought to play a major role in protecting the. There are vari-
ous factors that have been shown to affect the vaginal microbiome which includes 
racial factors, hormones, use of contraceptives, sexual behavior, smoking, diet, etc. 
(Ravel et al. 2011; Mirmonsef et al. 2014). Lactobacillus typically comprise 70% or 
more of resident bacteria in the human vagina. The relative abundance of 
Lactobacillus and other vaginal microbial compositions is regulated by a variety of 
endogenous and exogenous factors. For instance, glycogen availability in the vagina 
is increased through estrogen-stimulated proliferation of the vaginal epithelium. 
Increased level of estrogen during ovulation enhances relative abundance of 
Lactobacillus spp. and causes low microbial diversity; low vaginal pH, to stabilize 
bacterial community (Mirmonsef et al. 2014), and, additionally, sexual contact and 
exposure to maternal bacteria during birth may also influence the vaginal microbi-
ome. The seminal fluid during sexual contact transmits novel bacteria and neutral-
izes vaginal acidity which may impact the vaginal environment (Nunn et al. 2015). 
Vaginal ecosystem is also disturbed during pregnancy and has significant and long-
term consequences for the offspring.
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6.4  �Microbiome in Health

6.4.1  �Configuration of the Microbiome

The microbiome of a newly born infant starts developing even before he or she is 
exposed to mother’s microbiota through colonization of various types of inhabitants 
in various parts of the body such as the skin, gut, and respiratory and urogenital 
tracts. These microbes mainly produce short-chain fatty acids (SCFAs) as an impor-
tant source of energy (Byrne et al. 2015.), required for lipid and protein metabolism 
as well as in the synthesis of essential vitamins such as folates; vitamins K, B2, and 
B12; etc. In return, beneficial bacteria such as Lactobacillus and Bifidobacterium 
utilize fructo-oligosaccharides and oligosaccharides from host as energy sources for 
their growth.

Child Microbiome  The first colonizers of newly born infant are facultative anaer-
obes. After 1 year, infants develop distinct microbial profile and, by 25 years of age, 
develop the characteristic of adult microbiota. Delivery mode plays an important 
role in developing microbiome of an individual which is distinctly different in 
Cesarean section and vaginally delivered child. C-section-delivered child gut is 
colonized with Haemophilus spp., Enterobacter cancerogenus/E. hormaechei, 
Veillonella dispar/V. parvula, and Staphylococcus (Bäckhed et  al. 2015). These 
microbes retain for at least 1 year to develop immunity against infant infections. The 
mother’s milk is known to contain more than 700 species of bacteria which play a 
vital role in shaping the composition of microbiome of the newly born infants.

Microbiome at Puberty Stage  When a child enters puberty stage, she undergoes 
through several types of physical and physiological changes that are regulated by 
hormonal fluctuations. These hormonal changes depend upon the bacterial compo-
sition of vaginal microbiota, but limited studies have been done so far. Vaginal 
microbiota in early childhood includes aerobic, anaerobic, and enteric bacterial 
populations. Among them the lactic acid-producing bacteria (mainly Lactobacillus 
sp.) are the key players in maintaining homeostasis of the microbiota, as a protective 
response in acidic environment (Ravel et al. 2011.). However, monthly menstrual 
and hormonal cycles and sexual activities may cause alteration in the stability of the 
microbial composition (Fig. 6.7).

Adult Microbiome  The microbial community of the gut has a great impact on the 
health of adult humans. For example, Firmicutes and Bacteroidetes (70–75% of 
total) followed by Actinobacteria, Proteobacteria, and Verrucomicrobia regulate 
vital functions of the gut metabolism (Sinha et  al. 2016). Dysbiosis of the gut 
microbiome of the adult population leads to increased prevalence and severity of 
various metabolic diseases like cardiovascular disease, celiac disease, and diabetes 
along with increase incidences of cancer. These changes in microbiome pattern at 
various stages of development from pregnancy to adulthood are summarized in 
Fig. 6.6 and Table 6.2.
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Table 6.2  Changes in microbiome pattern at various stages of development from pregnancy to 
adulthood

Stages Predominant bacteria Functions References

Placental 
microbiome

Nonpathogenic commensal 
bacteria like Firmicutes, 
Proteobacteria, 
Bacteroidetes, and 
Fusobacteria phyla

Production of SCFAs, etc. Aagaard et al. 
(2014) and 
Byrne et al. 
(2015)

Neonatal 
microbiome

Bacteroides, Clostridium, 
and Bifidobacterium spp.

Production of SCFAs, regulation 
of gut motility

Child 
microbiome

Symbiotic bacteria Lipid and protein metabolism, 
synthesis of vitamins and SCFAs, 
regulation of glucose homeostasis

Puberty Lactobacillus crispatus, L. 
iners, L. gasseri, L. jensenii, 
and, in some cases, 
Streptococcus spp.

Regulates various physiological 
changes in response to hormonal 
variation, produces various 
bacteriostatic and bacteriocidal 
compounds to protect from 
colonization of pathogens

Adult 
microbiome

Firmicutes and 
Bacteroidetes (70–75% of 
total) followed by 
Actinobacteria, 
Proteobacteria and 
Verrucomicrobia

Gut metabolism, moods, and 
behavior

Sinha et al. 
(2016)

Fig. 6.7  A representative schematic diagram shows epigenetic factors that modulate the microbi-
ome of an individual starting pre-birth (pregnancy) to geriatric state of life, which ultimately 
affects the health
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6.5  �Factors Affected/Regulated by Gut Microbiome

Diet  The composition of host microbiome is regulated by a variety of factors as 
discussed previously. Among them, our routine diet has been found to play a vital 
role in shaping the host microbiota. For example, people consuming protein and 
animal fat-rich diet are predominantly inhabited by Bacteroides, whereas those con-
suming carbohydrate and simple sugars possess Prevotella in their gut (Sirisinha 
2016). Thus hyperglycemic and obese people undergo dysbiosis in their gut micro-
biota and are susceptible to obesity, diabetes, and other metabolic disorders as 
shown in Fig. 6.8 (Devaraj et al. 2013).

The molecular mechanism on how the diet regulates and maintains microbial 
ecosystem in the host is not known yet.

Gut Microbiome Diversity and Host Immunity  A large number of evidences 
reveal that microbiota have extensive and long-lasting effects on the development 
and functions of both innate and adaptive immune cell populations in the gut 
(Sirisinha 2016). The commensal bacterium Bacteroides thetaiotaomicron produces 
AMP, C-type lectin to increase the expression of active defensins, downregulates 
inflammatory response by interfering with the activation of NFκB by a PPARγ-
dependent pathway (Kabat et al. 2014), and can activate and regulate production of 
enzyme fucosyltransferases needed to maintain homeostasis. Similarly, a healthy 
microbiota is required for proper development of mucosal T cell subpopulations and 
several species of bacteria present in the gut.

Hyperglycemic and high fat diet

Increased LPS and Bacterial Lipopeptides
HG, FFA,TLRs , Macrophage Infiltration

Central Adiposity
Inflammation Immune Cell, Activation TLRs

Histidine, 
Glutamate, 
SCFA fiber

Gut Microbiota Alteration 
Cause gut barrier 
dysfunctioning

Obesity, Diabetes and Metabolic Syndrome

Fig. 6.8  The diet plays a versatile role to maintain healthy microbiota. Diet rich in carbohydrates 
and fat leads to obesity, diabetes, and various other metabolic disorders
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Role of Aging in Host Microbiome  The knowledge of age-related changes in the 
microbiota in adult is still limited. It is hypothesized that microbiota and its associ-
ated host genes that are beneficial in early life may be harmful in later stages of 
adulthood. For example, H. pylori in the early stage of life produces inflammatory 
responses to the organism to protect against infection, whereas in late adulthood it 
causes chronic ulcer, IBD, and cancer (Arnold et al. 2011). The microbiota in elder 
stages that shows less diversities mainly undergoes reductions in Bifidobacterium 
and Firmicutes and increases in Bacteroidetes and Enterobacteriaceae (Odamaki 
et al. 2016). Recent studies have begun to emerge that microbiome changes with 
aging and age-related diseases.

Gut Microbiota: Brain Circuitry Network  The gut microbiota communicate and 
influence brain functions including our mood, behavioral pattern, and anxiety that 
depend on signals from neural, hormonal, and immune systems and from the micro-
biota itself. Gut microbiota can either suppress or enhance the activity of HPA 
(hypothalamus-pituitary axis) (Yarandi et al. 2016). There are ample evidences that 
bacterial species which possess receptors in the gut can respond to neurotransmit-
ters and neuromodulators, e.g., noradrenalin, that regulate mood and stress-related 
behaviors (Sherwin et al. 2016). Likewise, these microbes have the ability to pro-
duce biologically active neurochemicals, e.g., serotonin (5-HT), acetylcholine, 
melatonin, and histamine that can modulate the activity and function of enteric ner-
vous system (ENS) and vagus nerve (Sirisinha 2016).

6.5.1  �Role of Gut Microbiome in Pathogenesis

Gut microbiota does play an important role in host homeostasis involving the 
immune system, but altered microbiota or dysbiosis can shape the disease status. 
Understanding these critical interactions can contribute toward designing strategies 
for both prevention and therapy (Wu and Lewis 2013).

	(a)	 Bowel diseases: Increasing evidences show imbalances in the host-microbiota 
due to a bidirectional relationship between altered immune function (mucosal 
barrier, innate bacterial killing, or immune regulation) and altered bacterial 
community that leads to the onset of inflammatory bowel diseases (Knights 
et  al. 2014). Excessive abundance of Desulfovibrio species is also found in 
ulcerative colitis.

	(b)	 Obesity and diabetes: A growing body of evidences indicates that obese people 
are insulin resistant due to altered composition of their gut microbiota as com-
pared to healthy individuals. For example, Tilg and Kaser have found elevated 
Firmicutes/Bacteroidetes ratio in insulin-resistant obese people compared to 
healthy people. More evidences have revealed that T2DM patients show an 
increased level of several opportunistic pathogens and some endotoxin-
producing Gram-negative bacteria (Qin et al. 2012). Figure 6.9 represents the 
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abundance and diversity of microbiota in T2DM and obesity (Mandal et  al. 
2015). The potential mechanisms between the microbiota and T2DM have not 
been fully elucidated, and further research is needed.

	(c)	 Allergy: Factors such as environment and nutrition changes can influence the 
inflammation-dependent diseases like allergy and asthma. Allergy mediated 
alteration in gut microbiota in early stages of life does lead to childhood asthma. 
Further the mucosal immunity, pathogen exposure, and antigen-presenting cells 
decode the responses of susceptibility to allergies. It has been demonstrated that 
Th1 cell stimulation predisposes toward allergic diseases (McLoughlin and 
Mills 2011). Further, use of antibiotics and dietary modifications disturbs the 
gut microbiome balance causing dysfunction of the immune system. These 
types of dysbiosis can also lead to emergence of allergic reactions. Although the 
association between allergy, asthma, and microbiome has only recently been 
under the review of research, the role of microbiota modulating the adaptive 
immunity could be a promising research prospect.

	(d)	 Colorectal cancer: Evidence in literature suggests critical role of microbiota in 
progression of colon cancer. B. fragilis toxin (BFT)-producing strains promote 
colon tumorigenesis by the increased expression of STAT3 that recruits pro-
inflammatory T helper lymphocytes and produce toxins for induction of TNF-α, 

Diversity of microbiome
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Fig. 6.9  Diversity of microbiome in type 2 diabetes and obesity
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IL-6, and COX-2 levels. They are metalloproteases and further stimulate cleav-
age of E-cadherin and augment β-catenin/Wnt pathway that activates CRC.

Zeller et al. (2014) explored the abundances of four most discriminative micro-
biota (Fusobacterium nucleatum subsp. vincentii and animalis, Peptostreptococcus 
stomatis, and Porphyromonas asaccharolytica) to correlate with CRC progression 
from early neoplastic growth (adenomas, stage 0/I/II) to late-stage metastasizing 
tumors (stage III/IV CRC patients). Several studies have clearly demonstrated the 
link between diet, intestinal microbiota, and the development of CRC (Table 6.3).

	(e)�Oral diseases: The microbiome found on or in the human oral cavity other than 
the tonsils, pharynx, and esophagus is comprised of over 600 prevalent microor-
ganisms as represented in Fig. 6.8. These microorganisms cause a number of oral 
infectious diseases, including caries (tooth decay), periodontitis (gum disease), 
infections, etc. Moreover, there is a link between oral bacteria and a number of 
systemic diseases, including cardiovascular disease; and stroke, diabetes, and 
pneumonia are reported. In recent years, studies have shown that the risk of 
developing oral premalignant lesions is associated with chronic periodontitis, 
ultimately leading to oral squamous cell carcinoma (OSCC) (Laprise et al. 2016). 
Patients with chronic periodontitis often have poorly differentiated tumors within 
the oral cavity due to chronic inflammation and oral HPV infection (Fig. 6.10).

Table 6.3  Differential microbiota community prevalent in colorectal cancer and healthy individual
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	(f)		 Skin diseases: Human skin undergoes changes in daily life; however, healthy 
adults maintain their skin microbiota stable for up to 2 years (Faith et al. 2013). 
About ≥90% of the healthy subject’s skin microbiome consists of 
Propionibacterium, Corynebacterium, Staphylococcus, and Streptococcus (Shi 
et al. 2016). Similarly, Findley et al. have found greatest diversity of fungi on 
the feet and bacterial species including Staphylococcus aureus, 
Propionibacterium acnes, and Malassezia spp., all of which are known to be 
beneficial for the skin but also exhibit atopic dermatitis, soft tissue infection, 
dandruff, etc. under certain conditions. Other well-characterized skin patho-
gens are papillomaviruses (causing warts), Candida fungal species (causing 
cutaneous candidiasis and diaper rash), and Pseudomonas aeruginosa (impli-
cated in green nail syndrome and toe web infections). Further studies are war-
ranted to focus on functional relevance of shifts in microbial populations that 
are associated with certain conditions, such as those described here.

	(g)	 Vaginal diseases: Vaginal diversity in the first trimester has been found to be 
associated with preterm delivery risk and neonatal mortality (Haque et  al. 
2017). A dysbiosis in the vaginal microbiota causes yeast infections, sexually 
transmitted infections, urinary tract infections, and HIV infection in addition to 
vaginosis. A number of studies are emerging implicating the causes and conse-
quences of shift in vaginal microbiome pattern in human system.

Fig. 6.10  Diversity in microbiome distribution in various parts of the oral cavity
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6.6  �Shaping the Microbiome

6.6.1  �Gut Microbiome

There is a growing evidence that environmental factors and high-fat diet (HFD) 
alter genetic composition and metabolic activity in the mammalian gut microbiome 
(Shen et  al. 2012). This may be because of predominant changes in the relative 
abundance of two dominant bacterial phyla, i.e., Firmicutes and Bacteroidetes. 
Carmody et al. (2015) observed a significant overgrowth of Staphylococcus aureus 
and Enterobacteriaceae (including E. coli) in obese subjects. It was noticed that the 
animal-based diet increases the abundance of Alistipes, Bilophila, and Bacteroides, 
whereas the levels of Roseburia, Eubacterium rectale, and Ruminococcus bromii 
were found decreased. These bacteria metabolize dietary plant polysaccharides 
(David et  al. 2014). Recent studies show the effects of diet in reshaping the gut 
microbiota composition. However, there is a lack of understanding about the design 
and implementation of dietary-based treatments that are effective in the mammalian 
gastrointestinal tract ecosystem.

The gut microbiota composition is partially modulated by the extracellular 
metabolites as bile acids (BAs). BAs are major constituents of bile, produced in the 
liver, and are further secreted into the duodenum which facilitate fat digestion and 
absorption (David et al. 2014). They are antibacterial and create strong selective 
forces for the intestinal microbiota. Bile acid secretion is induced by high-fat diet. 
Fat content regulates the time and amount of bile secretion, and it thus shapes the 
microbiota.

Islam et  al. (2011) observed that rats fed with cholic acid (CA) have shown 
increased number in Firmicutes accompanied by decreased number of Bacteroidetes. 
This alteration of microbiota was similar to that of obesity-associated gut microbi-
ome. This infers that bile acid contributes in shaping the obesity-associated gut 
microbial composition.

Genetic makeup of human beings is conditioned due to their adaptation to the 
environment similar to their ancestors. In mammals, bacterial diversity varies from 
carnivore to omnivore to herbivore. This is due to the variation in the dietary habits. 
Also, a large population was limited to specific areas; this created selective pressure 
that favored pathogens specialized in colonizing human hosts and probably pro-
duced the first wave of emerging human diseases (Blaser 2006).

Most of the developed countries successfully controlled infectious diseases dur-
ing the second half of the last century, by improved sanitation and by the use of 
antibiotics and vaccines. At the same time, new diseases such as allergy, autoim-
mune disorders, and inflammatory bowel disease (IBD) emerged in both adults and 
in children. The microflora of the gastrointestinal tract plays a crucial role in the 
pathogenesis of IBD, and studies have revealed that obesity is the key factor to 
cause imbalance of the normal gut microbiota.
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6.6.2  �Oral Microbiome

Our oral cavity is divided into several parts, and each part is occupied with different 
types of habitats such as the nonkeratinized buccal mucosa, the keratinized mucosa 
of the tongue and gingiva, the subgingival sulcus colonized by biotic habitats, and 
the enamel and dental implants by abiotic microflora. Nearly, 20 billion organisms 
can be found in this environment representing nearly 700 different species. Recent 
studies indicate that variation in salivary microbiota requires a frequent bacterial 
exchange and is therefore most pronounced in couples with relatively high intimate 
kiss frequencies (Kort et  al. 2014). The most abundant are Streptococcus and 
Lactobacillus as less abundant genus. The 16S rRNA sequencing study revealed 
that the bacteria and fungi mainly represent oral microbiota, and most infections are 
triggered by the Candida sp. overgrowth in a favorable host environment. However, 
no studies have explored the role of global fungal population shifts during oral 
infection. Ghannoum and colleagues have found that, as compared to the skin and 
other mucosal sites, the oral cavity represents significantly greater microbial diver-
sity. These include Candida species (in 75% of the participants), Cladosporium, 
Aureobasidium, Saccharomycetales, Aspergillus, Fusarium, and Cryptococcus.

6.6.3  �Breast Milk

Breast milk possess essential nutrients for microbial growth in the form of human 
milk oligosaccharides (Musilova et al. 2014), providing nearly twice the abundance 
of intestinal gut microbiota to breast-fed infants than their formula-fed ones. The 
human milk oligosaccharides are actually converted to short-chain fatty acids, 
which are known to promote Bifidobacteria and Lactobacillus, and thereby these 
species are transferred to the neonatal gut. Apart from nutrient utilization, ecologi-
cal succession of the infant microbiome is believed to affect and train the naïve 
immune system and modulate the infant’s metabolic system. Dysbiosis of normal 
microbiome may have downstream consequences such as autoimmune and meta-
bolic disorders (Paul et al. 2018).

6.7  �Future Prospective

6.7.1  �Prebiotics

A prebiotic may be viewed as “an agent that confers some benefit to the health of 
the host by careful discretion” (Gibson et al. 2017). A prebiotic enriches beneficial 
gut microflora by altering its composition, and therefore it may be used as a thera-
peutic approach for treating diseases causing gut inflammation. However, gut 
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inflammation may also be treated by monitoring the food intake or diet of the host 
and in turn maintains healthy microbiota to restore homeostasis, apart from using 
probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium). Dietary 
fiber-rich food enhances the growth of good bacteria (e.g., Faecalibacterium praus-
nitzii, Bifidobacterium, Bacteroidetes, namely, Prevotella and Xylanibacter) and 
retards harmful ones (e.g., Firmicutes, Enterobacteriaceae). Enhancement in the 
amount of Bifidobacteria and Lactobacilli is now regarded as a marker of intestinal 
health, and prebiotics normally promote the proliferation of these bacteria so that 
they can overcome the deleterious effects of harmful bacteria that cause proteolysis 
and/or putrefaction (Martinez 2014).

6.7.1.1  �Beneficial Alterations in Gut Microbiota Through Prebiotics

Individuals facing the challenges of obesity reveal targeted alterations in the gut 
microflora phylum level as well as at genus or species level. It has been shown that 
lower levels of Bifidobacteria during the time of birth may be related to being over-
weight during their childhood in later years. Additionally, mothers who are over-
weight potentially have babies with lower levels of Bifidobacteria at birth, again 
suggesting that obesogenic microflora is “inheritable.” These bacteria are compara-
tively less in count in patients suffering from type 2 diabetes mellitus as compared 
to nondiabetic patients (Wu et al. 2010). These examples suggest that, in cases of 
obesity and related manifestations, Bifidobacteria play an active and important role, 
thereby being identified as a model organism for the hypothesis of using prebiotics 
used for targeted stimulation of growth or metabolism for specific health benefits to 
the host. Dietary fructans, present commonly in all fruits and vegetables and are 
included in food products, may be utilized as a source of energy by microbes, e.g., 
Bifidobacterium spp., as it produces β-fructofuranosidase, which in turn helps them 
to colonize in the gut. An experiment showed a stark increase in the population of 
Bifidobacterium spp. in diet-induced obese mice and also in genetically determined 
obese mice once they were given a diet that was reinforced by inulin-type fructans 
(Dewulf et al. 2011). Surprisingly, the growth and proliferation of Bifidobacteria 
showed an inverse relation with the formation of lipids and glucose intolerance and 
with the lipopolysaccharide level. Alongside, the administration of prebiotic pre-
vented overexpression of specific host genes involved in the regulation of adiposity 
and inflammation but regulated the gut colonization of germ-free mice.

In this aspect, it is imperative to analyze the consequence of prebiotic or probi-
otic advances for treatment of obesity and other metabolic disorders in human 
beings.
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6.7.2  �Probiotics

Probiotics are live microbial products that promote the growth of other microorgan-
isms, when they are administered in adequate amounts beneficial to the host. 
Probiotics have beneficial effects in the context of different disease states as they are 
capable of affecting the composition and function of the host microbiome.

The supplementation of probiotics to infant diets through breast milk has been 
found beneficial for protection against diarrhea and rotaviral infection and is resis-
tant to infectious gastroenteritis. Various compounds and their derivatives synthe-
size by gut bacteria has a tremendous impact on the physiology, immunity and 
disease resistance of human individuals. Examples include synthesis of B complex 
vitamins such as vitamin B12 (cobalamin) and vitamin B1 (thiamine) by de novo 
biosynthesis pathways in the gut microbiome (Saulnier et al. 2009). Probiotics con-
taining antimicrobial agents or metabolic compounds suppress the growth of other 
microorganisms in the intestinal mucosa.

Probiotics also produce some secretory factors and metabolites that help in mod-
ulating the intestinal immune system and suppress the growth and function of intes-
tinal epithelial and immune cells. For instance, the Gram-positive bacterium L. 
reuteri regulates cytokine production and signaling of immune cells. A more recent 
study demonstrated that a probiotic mixture of L. acidophilus, L. plantarum, L. 
rhamnosus, Bifidobacterium breve, B. lactis, B. longum, and Streptococcus ther-
mophilus to the patients with diarrhea and irritable bowel syndrome (IBS) get symp-
tomatic relief (Thomas and Versalovic 2010). In the context of different diseases in 
pediatric gastroenterology like necrotizing enterocolitis (NEC), antibiotic-associated 
diarrhea and colitis, acute gastroenteritis, and irritable bowel syndrome, probiotics 
have yielded beneficial effects. In premature infants, human milk has been effective 
in reducing the incidence of NEC (Sullivan et al. 2010). Probiotics have been found 
successful in preventing preterm delivery, including very-low-birth-weight infants. 
An administration of histamine 2 receptor (H2R) antagonists as acid blockers to 
preterm infants being shown increased incidence of NEC. The dietary amino acid 
L-histidine is converted to histamine by probiotic uses, to suppress inflammation by 
promoting H2R signaling in the intestinal mucosa (AlFaleh and Anabrees 2014).

6.8  �Personalized Medicine

Variations in environment (epigenomic) and lifestyle for each person contribute for 
their specific medical condition. These factors are thus variable from one individual 
to another, and hence the concept of personalized therapeutic/medical options has 
been derived. Different diseases have different complex metabolic and microbiome 
pattern, which is unique for each patient. Individualized dietary composition or 
supplement could be designed to tackle a disease condition with minimum adverse 
events, thus reducing the cost of treatment burden in totality.
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6.9  �Conclusion

Microbiota plays a critical role in health of living organisms. By understanding the 
role of microbiome, many facets of various diseases have changed. Till date, thera-
peutic agents such as probiotic and prebiotic supplements, dietary interventions, 
and fecal microbiota transplantation have shown a potential hope in reshaping the 
gut microbiome. Improved understanding in the field of microbiome can develop 
many novel therapeutic strategies for different disease conditions.

Petrosino (2018) demonstrated the use of modified bacterium Escherichia coli as 
a transporter of an enzyme that destroys the cancer cells. Bacteria Clostridium per-
fringens that produce a protein Clostridium perfringens enterotoxin (CPE) target 
the claudin-3 and claudin-4 epithelial receptors present in breast, prostate, lung, 
endometrial, thyroid, and pancreatic cancer tumors (Yonogi et al. 2014). Current 
knowledge of such interactions is not satisfactory and represents only the tip of a 
very large iceberg warranting continued research in order to exploit its potential use.

Taken together the content of this chapter that illustrates the vastness of available 
data on diverse aspect of microbiome, its diversity, its genome variation, its secre-
tome products, its ability to target the host immunity, and its ability to alter epig-
enomic factors, demands extensive further research to be able to precisely use the 
knowledge in the future for diagnosis and prognosis and also in targeted therapy.
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Chapter 7
Bioinformatics Resources

Neetu Jabalia

Abstract  Bioinformatics is an interdisciplinary research area at the interface 
between computer sciences and biological sciences. One of the goals of this chapter 
is to give a predominant perception of living cell and its functions at the molecular 
level using bioinformatics approaches including databases, tools, visualization, and 
data analysis. These approaches are implied at various levels such as metabolites, 
transcripts, and proteins. Therefore, the major focus of the present chapter will 
include many applications of bioinformatics in the area of genomics, proteomics, 
transcriptome, and metabolomics. Automated data-gathering tools are used for clus-
tering and analysis of experimentally derived genomic data. Different in silico tools 
are used with implications both in structural and functional genomics. The chapter 
gives a detailed overview of the significant tools used for structural genomics such 
as TIGR assembler, VecScreen, EULER, Phred, and Phrap. Glimpses of compara-
tive genomics approaches, namely, MAVID, LAGAN, BLASTZ, PipMaker, 
CoreGenes, and GeneOrder, are elaborated with a focus on gene functions at the 
whole genome level. A snapshot of high-throughput approaches using ESTs 
includes UniGene, TIGR Gene Indices, and SAGE (SAGEmap, SAGE Geneie, 
SAGExProfiler) and microarray-based approaches (SOTA, TIGR Tm4, Array 
Designer 2, Array mining) facilitates in understanding the interaction of genes and 
their regulations. The central dogma of life is incomplete without an understanding 
of each level spanning from genomics to proteomics. Thus, an exhaustive proteome 
analysis will immensely help in the elucidation of cellular functions. The latter 
dimension is covered by protein expression analysis tools such as Melanie, SWISS-
2DPAGE, Comp 2D gel, protein identification through database searching (Mascot, 
ProFound, PepIdent), posttranslational modifications (AutoMotif, FindMod), pro-
tein sorting (TargetP, SignalO, PSORT), and protein–protein interactions (STRING, 
APID, InterPreTS). The last section describes the databases and mining software 
used for data integration, data interpretation, and metabolomics data in system biol-
ogy. A brief explanation about commercial software, namely, ChromaTOF, 
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GeneSpring MS, MarkerView, Mass Frontier, MarkerLynx, and complex LC/MS 
data analysis (BLSOM, Chrompare, MathDAMP), will help the readers to effec-
tively use the information for their research endeavors.

Keywords  Genomics · Proteomics · Transcriptomics · Metabolomics · 
Bioinformatics

7.1  �Introduction

Over the decades, the significant progressions in omics advances have empowered 
a high-throughput observation of an assortment of molecular and organismal pro-
cesses, widely applied to identify biological variants (e.g., biomarkers, proteins, or 
nucleotide sequences), to characterize complex biochemical systems, and to study 
pathophysiological processes. While many omics platforms target comprehensive 
analysis of genes (genomics), mRNA (transcriptomics), proteins (proteomics), and 
metabolites (metabolomics) (Gracie et  al. 2011), challenges still remain within 
information.

A genome can be described at the highest resolution by a complete genome 
sequence. Genomic studies are characterized by simultaneous identification of a 
huge number of genes using automated information gathering tools. A range of top-
ics from genome mapping, sequencing, and functional genomic analysis to com-
parative genomic analysis are grouped under genomics. Protein expression analysis 
at the proteome level promises more accurate elucidation of cellular functions. It 
encompasses a range of activities including large-scale identification, quantifica-
tion, determination of their localization, modifications, interactions, and functions 
of proteins. This chapter covers the major topics in proteomics such as analysis of 
protein expression, posttranslational modifications, protein sorting, and protein–
protein interactions with an emphasis on bioinformatics applications.

Transcriptome analysis is an expression identification of RNA molecules pro-
duced by cells, facilitates our understanding of how sets of genes work together to 
form metabolic, regulatory, and signaling pathways within the cell. It reveals pat-
terns of coexpressed and coregulated genes and allows determination of the func-
tions of genes that were previously uncharacterized. This chapter mainly discusses 
the bioinformatics aspect of the transcriptome analysis that can be conducted using 
either sequence- or microarray-based approaches.

Metabolomics is another omics approach majorly applied to analyze small mol-
ecules and biochemical intermediates (metabolites); moreover, it is applied to iden-
tify the biomarker and treatment efficacy monitoring in cancer or type I diabetes 
(Friedrich 2012; Fahrmann et al. 2015; Wikoff et al. 2015). This chapter focuses on 
various tools for the association of metabolomics with genomics, transcriptomics, 
and proteomics data (Fig. 7.1).
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7.2  �Bioinformatics Approaches in Genomics

For characterizing genome sequence information (structural, functional, organiza-
tional), the recent genomic advancements joined the genome sequencing technolo-
gies and various in silico approaches. A consortium, GENCODE, has been developed 
which is majorly applied to analyze gene feature expressed in human genome 
(Harrow et al. 2012; Venter et al. 2015). Genome assemblers were developed for 
sequencing entire genomes, which was the result of close interaction between biolo-
gist and computational scientists (Simpson and Pop 2015).

7.2.1  �Structural Genomics

Various computation approaches have been established for structural genomics for 
improved quality and better integrity of the associated genome information. TIGR 
assembler, a tool to assemble large shotgun sequencing projects, used for assem-
bling large shotgun DNA sequences. EULER is a program for de novo assembly of 
reads. Phred and Phrap are a base-calling program for nucleotide sequence traces 
and a leading program for DNA sequence assembly, respectively.

GENOMICS

TRANSCRIPTOMICS

PROTEOMICS

Translation

Transcription

Enzymatic reactions

METABLOMICS

PHENOTYPIC EXPRESSION

Fig. 7.1  Flowchart of omics technologies

7  Bioinformatics Resources



132

7.2.1.1  �Genome Assembly

Computational biologist experts provide grid system to biologist so that, before 
assembling the genome, quality sequencing information, overall GC content, and 
duplication reads should be identified; therefore, different bioinformatics resources 
are applied for genome assembly analysis such as the following.

FastQC  FastQC trim data (low quality) and reads resulting from PCR duplications 
can be performed with a variety of different software and scripts that simultane-
ously give statistics which is a beneficial beginning point available at http://www.
bioinformatics.babraham.ac.uk/projects/fastqc.

In Silico Whole Genome Sequencer (iWGS) and Analyzer  Developed for com-
putational biologist which aims to analyze de novo genome sequencing (Zhou et al. 
2016) available at https://github.com/zhouxiaofan1983/iWGS.

CLC Genomics Workbench  Is developed by scientists by incorporating algo-
rithms to analyze and visualize next-generation sequencing information available at 
http://www.clcbio.com/products/clc-genomics-workbench/.

RepeatMasker  Commonly used tool in genomics analysis (e.g., classify or iden-
tify repeats in sequence). It is freely available at http://www.repeatmasker.org/.

EGassember  Applied for genome sequence alignment and merges the fragments 
in order to generate the original segment or gene (https://www.genome.jp/tools/
egassembler/).

PBSIM  PacBio reads simulator – toward accurate genome assembly (Ono et al. 
2013) (http://code.google.com/p/pbsim/).

Tracembler  Is a database applied for sequence assembly and identification of 
genes of interest; program is available at http://www.plantgdb.org/tool/tracembler/.

UCSC Genome Bioinformatics  The University of California Santa Cruz Genome 
Bioinformatics (http://genome.ucsc.edu) provides various genome analysis tools 
(Kuhn et al. 2009).

SOAPaligner/Soap2  Is a member of Short Oligonucleotide Analysis Package 
(SOAP) (http://soap.genomics.org.cn/soapaligner.html). It is an updated version of 
SOAP software for short oligonucleotide alignment.
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7.2.1.2  �Genome Annotation

Before the assembled sequence is deposited into a database, it has to be analyzed for 
useful biological features. The genome annotation process provides comments for 
the features. This involves two steps: gene prediction and functional assignment. 
Gene ontology (GO) project has been developed which uses a limited vocabulary to 
describe molecular functions, biological processes, and cellular components. A GO 
description of a protein provides three sets of information: biological process, cel-
lular component, and molecular function, each of which uses a unique set of non-
overlapping vocabularies. The standardization of the names, activities, and 
associated pathways provides consistency in describing overall protein functions 
and facilitates grouping of proteins of related functions. Using GO, a genome anno-
tator can assign functional properties of a gene product at different hierarchical 
levels, depending on how much is known about the gene product. At present, the 
GO databases have been developed for a number of model organisms by an interna-
tional consortium, in which each gene is associated with a hierarchy of GO terms.

7.2.1.3  �Comparative Genomics

Comparison of whole genomes from different organisms is comparative genomics, 
which includes comparison of gene number, gene location, and gene content from 
these genomes. The comparison helps to reveal the extent of conservation among 
genomes, which will provide insights into the mechanism of genome evolution and 
gene transfer among genomes. It helps to understand the pattern of acquisition of 
foreign genes through lateral gene transfer. Various tools for comparative genomics 
are as follows.

MUMmer  Maximal unique match (MUMmer) is a free UNIX program from 
TIGR for alignment of two entire genome sequences and comparison of the loca-
tions of orthologs (http://mummer.sourceforge.net/). The program is essentially a 
modified BLAST, which, in the seeding step, finds the longest approximate matches 
that include mismatches instead of finding exact k-mer matches as in regular 
BLAST. The result of the alignment of whole genomes is shown as a dot plot with 
lines of connected dots to indicate collinearity of genes. It is optimized for pairwise 
comparison of closely related microbial genomes.

BLASTZ  BLASTZ is a UNIX program modified from BLAST to do pairwise 
alignment of very large genomic DNA sequences (http://biosrv.cab.unina.it/blastz-
web/). The modified BLAST program first masks repetitive sequences and searches 
for closely matched “words,” which are defined as 12 identical matches within a 
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stretch of 19 nucleotides. The words serve as seeds for extension of alignment in 
both directions until the scores drop below a certain threshold. Nearby aligned 
regions are joined by using a weighted scheme that employs a unique gap penalty 
scheme that tolerates minor variations such as transitions in the seeding step of the 
alignment construction to increase its sensitivity.

LAGAN  Limited Area Global Alignment of Nucleotides (LAGAN) is a web-based 
program designed for pairwise alignment of large genomes (http://lagan.stanford.
edu). It first finds anchors between two genomic sequences using an algorithm that 
identifies short, exactly matching words. Regions that have high density of words 
are selected as anchors. The alignments around the anchors are built using the 
Needleman–Wunsch global alignment algorithm. The unique feature of this pro-
gram is that it is able to take into account degeneracy of the genetic codes and is 
therefore able to handle more distantly related genomes. Multi-LAGAN, an exten-
sion of LAGAN, available from the same website, performs multiple alignments of 
genomes using a progressive approach similar to that used in Clustal.

PipMaker  PipMaker is a web server using the BLASTZ heuristic method to find 
similar regions in two DNA sequences. It produces a textual output of the alignment 
result and also a graphical output that presents the alignment as a percent identity 
plot as well as a dot plot (http://pipmaker.bx.psu.edu/pipmaker/). For comparing 
multiple genomes, MultiPipMaker is available from the same site.

MAVID  MAVID is a web-based program for aligning multiple large DNA 
sequences, based on a progressive alignment algorithm similar to Clustal (http://
baboon.math.berkeley.edu/mavid/). It produces a neighbor-joining tree as a guide 
tree. The sequences are aligned recursively using a heuristic pairwise alignment 
program called AVID.  AVID works by first selecting anchors using the Smith–
Waterman algorithm and then building alignments for the sequences between 
nearby anchors.

GenomeVISTA  Is a database searching program that searches against the human, 
mouse, rat, or Drosophila genomes using a large piece of DNA as query (http://
genome.lbl.gov/vista/index.shtml). It uses a program called BLAT to find anchors 
and extends the alignment from the anchors using AVID. It produces a graphical 
output that shows the sequence percent identity.

CoreGenes  CoreGenes is a web-based program that determines a core set of genes 
based on comparison of four small genomes (http://pumpkins.ib3.gmu.edu:8080/
CoreGenes). The user supplies NCBI accession numbers for the genomes of inter-
est, and the program performs an iterative BLAST comparison to find orthologous 
genes by using one genome as reference and another as query.
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ACT  Artemis Comparison Tool (ACT) is a pairwise genomic DNA sequence com-
parison program (written in Java and run on UNIX, Macintosh, and Windows) for 
detecting gene insertions and deletions among related genomes (https://www.
sanger.ac.uk/science/tools/artemis-comparison-tool-act).

SWAAP  SWAAP is a Windows program that is able to distinguish coding versus 
noncoding regions and measure GC skews and oligonucleotide frequencies in a 
genomic sequence (http://www.bacteriamuseum.org/SWAAP/SwaapPage.html).

GeneOrder  When the order of a number of linked genes is conserved between 
genomes, it is called synteny. Order conservation is in fact rarely observed among 
divergent species; therefore, comparison of syntenic relationships is normally car-
ried out between relatively close lineages. However, if syntenic relationships for 
certain genes are indeed observed among divergent prokaryotes, they often provide 
important clues to functional relationships of the genes of interest. GeneOrder 
(http://pumpkins.ib3.gmu.edu:8080/geneorder/) is a web-based program that allows 
direct comparison of a pair of genomic sequences of less than 2 Mb.

7.2.2  �Functional Genomics

The functional genomics attempts to describe the functions and interactions of 
genes and proteins by making use of genome-wide approaches, in contrast to the 
gene-by-gene approach of classical molecular biology techniques (Bunnik and 
Roch 2013). It includes information derived from the many biological processes, 
i.e., both coding and noncoding transcription, protein translation, interactions (pro-
tein–protein or protein–DNA), and gene expression. In short, functional genomics 
provides insight into the biological functions of the whole genome through auto-
mated high-throughput expression analysis.

7.3  �Bioinformatics Approaches in Proteomics

Proteomics majorly defines all the proteins present in cell, a tissue, or an organism. 
Computational biologist developed high-throughput approaches where large-scale 
analysis of proteins can be done such as functional and structural and interaction or 
localization. There are other programs developed for protein identification: ELISAs, 
2D gel electrophoresis, protein microarrays, and mass spectrometry (Table 7.1).
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Table 7.1  Tools/servers based on proteomics

S. No
Proteomics 
approach Tool name Description Link

1 ELISA ELISA-
BASE

ELISA-BASE is database for 
capturing, organizing, and 
analyzing enzyme-linked 
immunosorbent assay 
microarray data

http://www.pnl.gov/
statistics/ProMAT/
ELISA-BASE.stm

2 2D gel 
electrophoresis

Melanie Melanie is a comprehensive 
software for visualization, 
matching, detection, 
quantitation, and analysis of 2D 
gel electrophoresis images

http://2d-gel-analysis.
com/

SWISS-
2DPAGE

SWISS-2DPAGE contains 
information on proteins analysis 
on many 2D PAGE and 
SDS-PAGE reference maps

https://world-2dpage.
expasy.org/swiss-
2dpage/protein/
ac=P02570

CAROL The CAROL software has been 
integrated into the gel analysis 
software package PDQuest by 
Bio-Rad

http://gelmatching.inf.
fu-berlin.de/Carol.html

3 NMR Mascot Mascot server is developed for 
protein identification using 
mass spectrometry data

http://www.
matrixscience.com/

ProFound ProFound applied scoring 
system using additional 
information such as peptide 
mass fingerprinting algorithms, 
in the sample protein

https://omictools.com/
profound-tool

PepIdent PepIdent is a program used in 
characterizing isoelectric point, 
molecular weight, and peptide 
mass fingerprinting data

https://iop.vast.ac.vn/
theor/conferences/
smp/1st/kaminuma/
ExPASy/peptident.
html

4 LC-MS BLSOM Batch-learning self-organizing 
map (BLSOM) for phylogenetic 
classification of metagenomic 
sequences obtained from mixed 
genomes of microorganisms

http://bioinfo.ie.
niigata-u.
ac.jp/?BLSOM

Chrompare Chrompare is a software for 
analysis of chromatographic 
data. It allows automated 
univariate peak-by-peak 
comparison of complex 
chromatograms

http://www.chrompare.
com/

MathDAMP MathDAMP helps to visualize 
the variation between 
metabolite profiles acquired by 
hyphenated MS (mass 
spectrometry) approaches

http://mathdamp.iab.
keio.ac.jp/
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7.3.1  �Posttranslational Modifications

Another important aspect of the proteome analysis concerns posttranslational modi-
fications. To assume biological activity, many nascent polypeptides have to be cova-
lently modified before or after the folding process. This is especially true in 
eukaryotic cells where most modifications take place in the endoplasmic reticulum 
and the Golgi apparatus. The modifications include proteolytic cleavage; formation 
of disulfide bonds; addition of phosphoryl, methyl, acetyl, or other groups onto 
certain amino acid residues; or attachment of oligosaccharides or prosthetic groups 
to create mature proteins. Posttranslational modifications have a great impact on 
protein function by altering the size, hydrophobicity, and overall conformation of 
the proteins. The modifications can directly influence protein–protein interactions 
and distribution of proteins to different subcellular locations. It is therefore impor-
tant to use bioinformatics tools to predict sites for posttranslational modifications 
based on specific protein sequences such as the following.

AutoMotif  Is a web server predicting protein sequence motifs using the SVM 
approach. In this process, the query sequence is chopped up into a number of over-
lapping fragments, which are fed into different kernels (http://automotif.bioinfo.pl/).

ExPASy  Expert Protein Analysis System (ExPASy) contains a number of pro-
grams to determine posttranslational modifications based on MS molecular mass 
data (www.expasy.ch/tools). FindMod is a subprogram that uses experimentally 
determined peptide fingerprint information to compare the masses of the peptide 
fragments with those of theoretical peptides. If a difference is found, it predicts a 
particular type of modification based on a set of predefined rules. It can predict 28 
types of modifications, including methylation, phosphorylation, lipidation, and sul-
fation. GlyMod is a subprogram that specializes in glycosylation determination 
based on the difference in mass between experimentally determined peptides and 
theoretical ones.

RESID  Is an independent posttranslational modification database listing 283 types 
of known modifications (http://pir.georgetown.edu/pirwww/search/textresid.html).

7.3.2  �Prediction of Disulfide Bridges

A disulfide bridge is a unique type of posttranslational modification in which cova-
lent bonds are formed between cysteine residues. Disulfide bonds are important for 
maintaining the stability of certain types of proteins. The following program is one 
of the publicly available programs specialized in disulfide prediction.
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Cysteine  Is a web server that predicts the disulfide bonding states of cysteine resi-
dues in a protein sequence by building profiles based on multiple sequence align-
ment information (http://cassandra.dsi.unifi.it/cysteines/).

7.3.3  �Protein Sorting

Subcellular localization is an integral part of protein functionality. The study of the 
mechanism of protein trafficking and subcellular localization is the field of protein 
sorting that has become one of the central themes in modern cell biology. There are 
many proteins which exhibit functions only after being transported to certain com-
partments of the cell. For protein sorting, various computational servers are 
available.

TargetP  TargetP predicts the subcellular location of eukaryotic proteins (http://
www.cbs.dtu.dk/services/TargetP/).

SignalP  SignalP predicts the presence and location of signal peptide cleavage sites 
in amino acid sequences from different organisms (http://www.cbs.dtu.dk/services/
SignalP/).

Psort  Psort is a tool used for analysis of localization of protein sites in cells (https://
psort.hgc.jp/).

7.3.4  �Protein–Protein Interactions

In general, proteins have to interact with each other to carry out biochemical func-
tions. Thus, mapping out protein–protein interactions is another important aspect of 
proteomics. Inter-protein interactions include strong interactions that allow forma-
tion of stable complexes and weaker ones that exist transiently. Proteins involved in 
forming complexes are generally more tightly coregulated in expression than those 
involved in transient interactions (REF). Decades of research on protein biochemis-
try and molecular biology have accumulated tremendous amount of data related to 
protein–protein interactions, which allow the extraction of some general rules gov-
erning these interactions. These rules have facilitated the development of algorithms 
for automated analysis of protein–protein interactions which are as follows.

Search Tool for the Retrieval of Interacting Genes (STRING)  A web server 
used to identify gene and protein functional associations based on combined evi-
dence of gene linkage, gene fusion, and phylogenetic profiles (http://www.bork.
embl-heidelberg.de/STRING/).
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APID  Agile Protein Interactomes Data server (APID) is a web server that gives a 
collection of protein interactomes (>400 organisms) based on the integration of 
known experimentally validated protein–protein physical interactions (http://
cicblade.dep.usal.es:8080/APID/init.action).

InterPreTS  Interaction Prediction through Tertiary Structure (InterPreTS) is used 
for predicting protein–protein interactions and available at http://www.russelllab.
org/cgi-bin/tools/interprets.pl.

7.3.5  �Predicting Interactions Based on Sequence Homology

If a pair of proteins from one proteome is known to interact, their conserved homo-
logues in another proteome are likely to have similar interactions. This method 
relies on the correct identification of orthologs and the use of existing protein inter-
action databases. The interaction predicting web servers are as follows.

InterPreTS  Is a web server that has a built-in database for interacting domains 
based on known three-dimensional protein structures (www.russell.embl-heidel-
berg.de/people/patrick/interprets/interprets.html).

IPPRED  Is a similar web-based program that allows the user to submit multiple 
protein sequences (http://cbi.labri.fr/outils/ippred/IS part simple.php).

7.3.6  �Predicting Interactions Based on Phylogenetic 
Information

Protein interactions can be predicted using phylogenetic profiles, which are defined 
as patterns of gene pairs that are concurrently present or absent across genomes.

Matrix  Is a web server that predicts interaction between two protein families 
(http://orion.icmb.utexas.edu/cgi-bin/matrix/matrix-index.pl).

Automated Detection and Validation of Interaction Based on the Coevolutions 
(ADVICE)  Is a similar web server providing prediction of interacting proteins 
using the mirror-tree approach (http://advice.i2r.a-star.edu.sg/).

Commercial softwares used for proteomics analysis as follows.

ChromaTOF  Is a software used for mass spectrometer data system for acquiring, 
processing, and reporting data, available at https://www.leco.com/products/separa-
tion-science/software-accessories/chromatof-software.
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GeneSpring  Provides powerful, accessible statistical tools for intuitive data analy-
sis and visualization, designed specifically for the needs of biologists, available at 
https://www.agilent.com/en/products/software-informatics/life-sciences-informat-
ics/genespring-gx.

MarkerView  Is a data visualization program designed for scientists to gain valu-
able insight into any trends within mass spectral data, available at https://sciex.com/
products/software/markerview-software.

Mass Frontier  Is a spectral interpretation software, provides small-molecule 
structural elucidation for research into metabolism, metabolomics, forensics, natu-
ral products, impurities, and degradants, available at https://www.thermofisher.com/
order/catalog/product/IQLAAEGABOFAGUMZZZ.

7.4  �Bioinformatics Approaches in Transcriptome

Transcriptome is the study of genome analysis and quantification of RNA which 
includes mRNAs, noncoding RNAs, and small RNAs in health and disease. There 
are few public transcriptomic databases, i.e., Gene Expression Omnibus (Barrett 
et al. 2010), ArrayExpress, and MINISEQE (Brazma 2009). Meta-analysis approach 
should be applied to decrease data bias and elevate statistical power (Rung and 
Brazma 2013), which will facilitate transcriptomic information. Many tools are 
used for transcriptome analysis; a few are mentioned in Table 7.2.

Table 7.2  Tools commonly used for transcriptomic analysis

S. No Tool name Description Link

1 SPARTA Program for automated reference-
based bacterial RNA-sequence 
transcriptome analysis

http://sparta.readthedocs.io/en/latest/

2 PIVOT Interactive analysis and visualization 
of transcriptomics data

http://kim.bio.upenn.edu/software/
pivot.shtml

3 ReTrOS Reconstructing transcriptional 
activity from gene and protein 
expression data

http://www2.warwick.ac.uk/fac/sci/
systemsbiology/research/software/

4 WebGIVI Gene enrichment analysis and 
visualization tool

http://raven.anr.udel.edu/webgivi/

5 SAMSA Comprehensive metatranscriptome 
analysis pipeline

http://github.com/transcript/SAMSA

6 pcaReduce Hierarchical clustering of single-cell 
transcriptional profiles

https://github.com/JustinaZ/
pcaReduce

7 GigaTON New reference transcriptome in the 
pacific oyster Crassostrea gigas

http://www.ncbi.nlm.nih.gov/
genome/annotation_euk/
Crassostrea_gigas/100/
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Transcriptome analysis using ESTs, SAGE, and DNA microarrays forms the 
core of functional genomics and is a key to understanding the interactions of genes 
and their regulation at the whole genome level.

Expressed Sequence Tags (ESTs)  One of the high-throughput approaches to 
genome-wide profiling of gene expression is sequencing, expressed sequence tags 
(short sequences obtained from cDNA clones and serve as short identifiers of full-
length genes). ESTs are typically in the range of 200 to 400 nucleotides in length 
obtained from either the 5 end or 3 end of cDNA inserts. The EST data are able to 
provide a rough estimate of genes that are actively expressed in a genome under a 
particular physiological condition because the frequencies for particular ESTs 
reflect the abundance of the corresponding mRNA in a cell, which corresponds to 
the levels of gene expression at that condition. The rapid aggregation of EST 
sequences has prompted the establishment of public and private databases to archive 
the data. For example, GenBank has a special EST database, dbEST (www.ncbi.
nlm.nih.gov/dbEST/), that contains EST collections for a large number of organ-
isms (>250). EST Index Construction, one of the goals of the EST databases is to 
organize and consolidate the largely redundant EST data to improve the quality of 
the sequence information so the data can be used to extract full-length cDNAs. The 
process includes a preprocessing step that removes vector contaminants and masks 
repeats. VecScreen can be used to screen out bacterial vector sequences. This is fol-
lowed by a clustering step that associates EST sequences with unique genes. The 
next step is to derive consensus sequences by fusing redundant, overlapping ESTs 
and to correct errors, especially frameshift errors. This step results in longer EST 
contigs. The procedure is somewhat similar to the genome assembly of shotgun 
sequence reads. Once the coding sequence is identified, it can be annotated by trans-
lating it into protein sequences for database similarity searching. To go another step 
further, compiled ESTs can be used to align with the genomic sequence if available 
to identify the genome locus of the expressed gene as well as intron–exon boundar-
ies of the gene. This is usually performed using the program SIM4 (http://pbil.univ-
lyon1.fr/sim4.php). The clustering process that reduces the EST redundancy and 
produces a collection of nonredundant and annotated EST sequences is known as 
gene index construction. The following lists a couple of major databases that index 
EST sequences. UniGene (www.ncbi.nlm.nih.gov/UniGene/) is an NCBI EST clus-
ter database. Each cluster is a set of overlapping EST sequences that are computa-
tionally processed to represent a single expressed gene. The database is constructed 
based on combined information from dbEST, GenBank mRNA database, and “elec-
tronically spliced” genomic DNA. Only ESTs with 3 poly-A ends are clustered to 
minimize the problem of chimerism. The resulting 3 EST sequences provide a more 
unique representation of the transcripts, and errors in individual ESTs are corrected; 
the sequences are then partitioned into clusters and assembled into contigs. The 
final result is a set of nonredundant, gene-oriented clusters known as UniGene clus-
ters. Each UniGene cluster represents a unique gene and is further annotated for 
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putative function and its gene locus information, as well as information related to 
the tissue type where the gene has been expressed. TIGR Gene Indices (www.tigr.
org/tdb/tgi.shtml) is an EST database that uses a different clustering method from 
UniGene. It compiles data from dbEST, GenBank mRNA, and genomic DNA data 
and TIGR’s own sequence database.

Serial Analysis of Gene Expression (SAGE)  SAGE is a high-throughput, 
sequence-based approach for global gene expression profile analysis. Unlike EST 
sampling, SAGE is more quantitative in determining mRNA expression in a cell. In 
this method, short fragments of DNA (usually 15 base pairs) are excised from cDNA 
sequences and used as unique markers of the gene transcripts. The sequence frag-
ments are termed tags. They are subsequently concatenated (linked together), 
cloned, and sequenced. The transcript analysis is carried out computationally in a 
serial manner. Once gene tags are unambiguously identified, their frequency indi-
cates the level of gene expression. SAGEmap (www.ncbi.nlm.nih.gov/SAGE/) is a 
SAGE database created by NCBI. Given a cDNA sequence, one can search SAGE 
libraries for possible SAGE tags and perform “virtual” Northern blots that indicate 
the relative abundance of a tag in a SAGE library. Each output is hyperlinked to a 
particular UniGene entry with sequence annotation. SAGE xProfiler (www.ncbi.
nlm.nih.gov/SAGE/sagexpsetup.cgi) is a web-based program that allows a “virtual 
subtraction” of an expression profile of one library (e.g., normal tissue) from another 
(e.g., diseased tissue). SAGE Genie (http://cgap.nci.nih.gov/SAGE) is another 
NCBI web-based program that allows matching of experimentally obtained SAGE 
tags to known genes. It provides an interface for visualizing human gene 
expression.

Microarray-Based Approaches  The most commonly used global gene expression 
profiling method in current genomics research is the DNA microarray-based 
approach. A microarray (or gene chip) is a slide attached with a high-density array 
of immobilized DNA oligomers representing the entire genome of the species under 
study. Each oligomer is spotted on the slide and serves as a probe for binding to a 
unique, complementary cDNA. The entire cDNA population, labeled with fluores-
cent dyes or radioisotopes, is allowed to hybridize with the oligoprobes on the chip. 
The amount of fluorescent or radiolabels at each spot position reflects the amount of 
corresponding mRNA in the cell. Using this analysis, patterns of global gene expres-
sion in a cell can be examined. Sets of genes involved in the same regulatory or 
metabolic pathways can potentially be identified.

DNA microarrays are generated by fixing oligonucleotides onto a solid support 
such as a glass slide using a robotic device. The oligonucleotide array slide repre-
sents thousands of preselected genes from an organism. The length of oligonucleotides 
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is typically in the range of 25–70 bases long. The oligonucleotides are called probes 
that hybridize to labeled cDNA samples. Shorter oligoprobes tend to be more spe-
cific in hybridization because they are better at discriminating perfect complemen-
tary sequences from sequences containing mismatches. However, longer oligos can 
be more sensitive in binding cDNAs. Many programs have been developed that use 
these rules in designing probe sequences for microarray spotting. There are various 
programs for microarray analysis such as the following.

OligoWiz  OligoWiz is a Java program that runs locally but allows the user to con-
nect to the server to perform analysis via a graphic user interface. It designs oligo-
nucleotides by incorporating multiple criteria including homology, low complexity, 
and relative position within a transcript. This program is available at (www.cbs.dtu.
dk/services/OligoWiz/).

OligoArray  OligoArray is also a Java client-server program that computes oligo-
nucleotides for microarray construction. It uses the normal criteria with an empha-
sis on gene specificity and secondary structure for oligonucleotides. This program 
is available at http://berry.engin.umich.edu/oligoarray2/.

The expression of genes is measured via the signals from cDNAs hybridizing 
with the specific oligonucleotide probes on the microarray. The cDNAs are obtained 
by extracting total RNA or mRNA from tissues or cells and incorporating fluores-
cent dyes in the DNA strands during the cDNA biosynthesis. The colored image is 
stored as a computer file for further processing.

Image processing is to locate and quantitate hybridization spots and to separate 
true hybridization signals from background noise and artifacts, as they include non-
specific hybridization, unevenness of the slide surface, and the presence of contami-
nants such as dust on the surface of the slide. However, there are a small number of 
free image-processing software programs available on the Internet.

ArrayDB  Is a web interface program that allows the user to upload data for graphi-
cal viewing (http://genome.nhgri.nih.gov/arraydb/). The user can present histo-
grams, select actual microarray slide images, and display detailed information of 
each spot which is linked to functional annotation of the corresponding gene in the 
UniGene, Entrez, dbEST, and KEGG databases.

ScanAlyze  Is a Windows program for microarray fluorescent image analysis. It 
features semiautomatic spot definition and multichannel pixel and spot analyses 
(http://rana.lbl.gov/EisenSoftware.html).
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TIGR Spotfinder  Is another Windows program for microarray image processing 
using the TIFF image format (http://www.tigr.org/softlab/). It uses an adaptive 
threshold algorithm, which resolves the boundaries of spots according to their 
shapes.

Following image processing, the digitized gene expression data need to be fur-
ther processed before differentially expressed genes can be identified. This process-
ing is referred to as data normalization and is designed to correct bias owing to 
variations in microarray data collection rather than intrinsic biological differences. 
The following programs are specialized in image analysis and data normalization.

DNA-Arrays Analysis Tools  It is a web-based program for DNA array data analy-
sis including two sample correlation plots (hierarchical clustering, SOM (self-
organizing map), self-organizing hierarchical neural network (SOTA), and various 
tree viewers (http://bioinfo.cnio.es/).

TIGR Tm4  A software developed mainly for managing, evaluating, and quantify-
ing for better understanding of data derived from microarray experiment (http://
home.cc.umanitoba.ca/~psgendb/birchdoc/package/TIGR-TM4.html).

Array Designer  Array designer efficiently designs hundreds of specific oligos for 
single nucleotide polymorphism detection or expression studies or hundreds of 
polymerase chain reaction primer pairs for cDNA microarrays. The software is 
available at http://www.premierbiosoft.com/dnamicroarray/.

ArrayMining  ArrayMining, an online server for automatic microarray analysis, 
provides information based on feature selection, clustering, and prediction analysis 
(http://lcsb-repexplore.uni.lu/ASAP/microarrayinfobiotic.php).

ArrayPlot  ArrayPlot is a Windows program that allows visualization, filtering, 
and normalization of raw microarray data. It has an interface to view significantly 
up-regulated or downregulated genes (www.biologie.ens.fr/fr/genetiqu/puces/pub-
lications/arrayplot/index.html).

SNOMAD  Is a web server for microarray data normalization. It provides scatter 
plots based on raw signal intensities and performs log-transformation and linear 
regression as well as Lowess regression analysis of the data (http://pevsnerlab.ken-
nedykrieger.org/snomadinput.html).

For statistical analysis to identify differentially expressed genes, the following 
programs are available.
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MA-ANOVA  Is a statistical program for Windows and UNIX that uses ANOVA to 
analyze microarray data. It calculates log ratios, displays ratio-intensity plots, and 
performs permutation tests and bootstrapping of confidence values (www.jax.org/
staff/churchill/labsite/software/anova/).

Cyber-T  Is a web server that performs t-tests on observed changes of replicate 
gene expression measurements to identify significantly differentially expressed 
genes (http://visitor.ics.uci.edu/genex/cybert/).

7.5  �Bioinformatics Approaches in Metabolomics

Metabolomics aims for analysis of the all metabolites expressed in a biological 
system (e.g., endogenous or exogenous small molecules) (Psychogios et al. 2011) 
and is majorly used in various fields (e.g., agriculture, pharma, clinic, environment, 
and nutrition). Metabolomics has been divided into two distinct approaches, untar-
geted and targeted metabolomics (Table 7.3).

Metabolomics aims to measure a wide breadth of small molecules in the context 
of physiological stimuli or in disease states (Roberts et al. 2012). Metabolites help 
to understand insights of phenotypic expression as they are produced by enzymatic 
reactions mediating complex biological processes. The two leading analytical 
approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic 
resonance (NMR) spectroscopy (Markley et al. 2017). Untargeted metabolomics is 
a useful approach for the simultaneous analysis of many compounds in herbal prod-
ucts (Commisso et al. 2013). There are numerous tools and databases which are 
used for metabolomics analysis (Table 7.4).

Table 7.3  Major approaches in metabolomics

S. No
Metabolomics 
approaches Description Application

1 Untargeted 
metabolomics

Less specific and sensitive Diagnostics and drug molecule 
development

Intended comprehensive 
analysis of all the measurable 
analytes in a sample (chemical 
unknowns, targeted 
metabolomics)

Based on information (e.g., stable 
isotopes and models of metabolic), 
networks allow identification of the 
flux through
biochemical pathways (Lee et al. 
2010)

2 Targeted 
metabolomics

Specific and sensitive Used for identification (based on 
univariate and multivariate analyses) 
and then used to search databases 
(e.g., Kyoto Encyclopedia of Genes 
and Genomes) (Kanehisa and Goto 
2000)

The measurement of defined 
groups of chemically identified 
and biochemically annotated 
metabolites
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