
Search of Center-Core Community
in Large Graphs

Linlin Ding, Yu Xie, Xiaohuan Shan, and Baoyan Song(B)

School of Information, Liaoning University, Shenyang 110036, Liaoning, China
bysong@lnu.edu.cn

Abstract. Community search plays an important role in complex net-
work analysis. It aims to find a densely connected subgraph containing
the query node in a graph. However, the most existing community search
methods do not consider the influence of nodes and can not perfectly sup-
port the search in large graphs, making them have limitations in practi-
cal applications. In this paper, we introduce a community model called
center-core community based on k -core decomposition, which can both
capture the influence of nodes and guarantee the cohesiveness of commu-
nity. Then we devise a center-core community graph index (CCG-Index),
and online search algorithms (SingleQuery and MultiQuery) which sup-
port efficient search of center-core community in optimal time. Extensive
experiments on four real-world large networks demonstrate the efficiency
and effectiveness of our methods.

1 Introduction

Many real-world complex networks, such as the Internet, social networks, and
biological neural networks, contain community structures. Because community
structures can highly reflect the correlation of the complex networks, finding
community structures of real-life networks is an important problem. Community
search aims to find the most likely community structure that a node belongs to.
Usually, a good community structure is described by the closeness of the nodes
and defined as a densely connected subgraph in most previous studies. However,
in many application domains, they need stricter requirements which consider the
potential influence (or importance) of nodes and ask for the influence of nodes
within a community is not lower than query node. For example, in military
intelligence analysis domain, consider an ordinary soldier getting the confiden-
tial information in an army interaction network. He will try his best to pass
the information to the soldiers with higher influence who usually take important
positions as soon as possible in the detachment containing him. Finding a core
subgraph made up of these people helps to analyze military intelligence. More,
finding a subgraph containing the terrorists with important roles in communi-
cation network and finding a subgraph containing the researchers with higher
influence and in the same research filed in research collaborator network are
other examples of our applications.
c© Springer Nature Singapore Pte Ltd. 2018
Z. Xu et al. (Eds.): Big Data 2018, CCIS 945, pp. 94–107, 2018.
https://doi.org/10.1007/978-981-13-2922-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2922-7_6&domain=pdf

Search of Center-Core Community in Large Graphs 95

The most existing methods only find the well connected community contain-
ing query node based on various dense subgraph structures, such as degree [1–3],
distance [4,5], triangle [6,7], etc. Among them, a k -core is the largest subgraph
of graph G such that each node in it has at least a degree k. However, the exist-
ing community search methods based on k -core have limitations applying to the
above alike applications since they do not consider the influence of nodes, such
as global search (GS) proposed in [8], an algorithm based on CoreStruct named
GrCon [9], a local search (LS) proposed in [10], etc.

In order to solve the above problems, we use k -core as a qualifying dense
structure for modeling a densely connected community. To further consider the
node influence, we use coreness to evaluate the node influence by k -core decom-
position algorithm [11]. Coreness of a node is the highest order of a core that
contains it. The node influence increases as coreness increases. Thus we propose
a new community model called center-core community based on k -core decom-
position. It requires the community is a connected component of the maximal
k -core containing the query node q and the coreness of nodes in community is
no less than q. In addition, for the nodes whose corenesses are equal to q in the
graph, the community needn’t contain those nodes which are only reached from
q via nodes with larger corenesses. The intuition behind this definition can be
easily understood through the example in the army interaction network men-
tioned above. Assume Fig. 1 is the army interaction network, then the coreness
of v2, v9, v10 is 2 respectively, the coreness of v3 is 3 and the coreness of the rest
nodes is 4 respectively. So the influence of all nodes in Fig. 1 is no less than v2.
Certainly, A ∪ B can be seen as a community for v2. But in fact, its not good
to make too many soldiers know the information according to the intelligence
confidentiality requirements. For instance, though the influence of v9 is equal to
v2, v9 is insignificant to v2 because the information has already pass to v7 with
higher influence before reaching v9. Thus all the nodes in B are insignificant to
v2 without the link between v7 and v9 due to the connectivity requirement. So
A is the center-core community containing v2 by our definition.

Fig. 1. A ∪ B is a connected 2-core of v2; A is the center-core community of v2

In this paper, we study the problem of center-core community search in large
and dynamic graphs. First, we introduce a community model called center-core

96 L. Ding et al.

community based on the concept of k -core decomposition. This model can reflect
the cohesiveness of the community, and also as much as possible contain the
important nodes to query nodes by considering the potential influence of nodes
and be more meaningful in practical applications. Then, we devise a linear-
space index structure, center-core community graph index, called CCG-Index
according to the characteristics of center-core community. The index only takes
up a linear space and can be efficiently constructed. We also propose online
search algorithms based on the index to find the center-core community for given
query node(s) in large networks. Finally, we conduct extensive experiments on
four real-world large networks, and the results demonstrate the efficiency and
effectiveness of the proposed methods.

In summary, our contributions are as follows:

– We propose a community search model called center-core community based
on k -core decomposition and motivate the problem of finding center-core
community containing the given query nodes;

– We design a space-efficient index structure called CCG-Index which can well
preserve the information about center-core community;

– We propose a method to effectively search center-core community in large
graphs based on CCG-Index;

– Extensive experiments over four real-world graphs demonstrate the efficiency
and effectiveness of the proposed algorithms.

2 Related Work

2.1 Community Search

Sozio and Gionis study the community search problem (CSP) based on minimum
degree in social networks that aims to find the maximal connected k -core with
largest k containing the query nodes [8]. Cui et al. [10] propose a more efficient
local search algorithm for a query node. Barbieri et al. [9] propose a very efficient
community search method based on index, and further propose the minimum
community search problem (MINCCSP) to reduce the community size. They
show MIN-CSP problem is NP problem, and get the approximate solution of
the problem by a heuristic algorithm. All the mentioned methods are static
algorithm and do not consider the influence of nodes. Except being based on
minimum degree, Cui et al. [2] proposed a quasi-clique model to study the overlap
community search problem. Huang et al. [12,13] study the CSP based on a k -
truss community model. In addition, the computational complexity of those
methods is higher than the methods based on minimum degree.

2.2 K -core Decomposition

Seidman introduces the concept of k -core for measuring the group cohesion in
a network. The cohesion of the k -core increases as k increases [1]. Recently, the

Search of Center-Core Community in Large Graphs 97

k -core decomposition in graph has been successfully used in identifying the influ-
ential spreader in complex network [14,15]. Batagelj and Zaversnik [11] propose
a O(n+m) algorithm for k -core decomposition in general graphs. This algo-
rithm may be inefficient for the disk-resident graphs. Cheng et al. [16] propose
an efficient k -core decomposition algorithm for the disk-resident graphs. Their
algorithm works in a top-to-down manner that calculates the k -cores from higher
order to lower order. To make the k -core decomposition more scalable, Montresor
et al. propose a distributed algorithm for k -core decomposition by exploiting the
locality property of k -core. Li et al. [17] propose an efficient core maintenance
algorithm in dynamic graphs.

3 Problem Statement

Let G(V,E) denote an undirected graph with node set V and edge set E. For
any subset H ⊆ V , the subgraph induced by H, denoted as G[H], is the graph
whose node set is H and whose edge set is (H ×H)∩E. Table 1 summarizes the
notations used in this paper.

Table 1. Notations

Notation Description

G = (V,E), |V | = n, |E| = m An undirected graph G and n,m is the number of
nodes and edges respectively

G(H) The subgraph induced by H

Ck The node set of the k-core

d(v,G) The degree of v in G

µ(G) µ(G) = minv∈Gd(v,G)

Sk Sk = Ck/Ck+1

c(v) The coreness of v

c(Q) c(Q) = minq∈Qc(q)

Conk-core(v/Q) The k -core connected components containing node v
or node set Q

Conk-shell(v/Q) The k -shell connected components containing node v
or node set Q

indexV (v) The index vertex containing node v

Xv Xv = |u : u ∈ N(v), c(u) ≥ c(v)|
N(v) The set of neighbors of node v

Definition 1 (k-core). Given a graph G= (V,E), a k-core of G is a maxi-
mal subgraph of G such that the degree of its each node is at least k, that is,
d(v,G[Ck]) ≥ k, v ∈ Ck.

98 L. Ding et al.

Denote the node set of a core as Ck to represent and identify a k-core.
It is easy to see that the order of a core corresponds to the minimum degree
of a node in that core i.e., µ(Ck) ≥ k. As shown in Fig. 2, the entire
graph is 1-core i.e. C1 = {v1, v2, v3, ..., v20}, µ(G[C1]) = 1, C2 = {v2, ..., v15,
v17, v18, v19, v20}, µ(G[C2]) = 2, C3 = {v3, ..., v8, v11, ..., v15}, µ(G[C3]) = 3,
C4 = {v4, v5, v6, v7, v8}, µ(G[C4]) = 4.

Property 1. Each k-core with different k value is unique and may not be con-
nected.

Fig. 2. An example graph G

As shown in Fig. 2, the k-core where the k is from value 1 to 4 are unique.
Among them, 1-core, 2-core, 3-core have many connected components which are
not connected.

Property 2. The cores are nested. The k-core with smaller k contains the k-core
with larger k i.e., Cj ⊆ Ci, i < j.

As shown in Fig. 2, C4 ⊆ C3 ⊆ C2 ⊆ C1 = V .

Definition 2 (k-shell). A k-shell is the induced subgraph by the set of nodes that
only belongs to the k-core but not to the (k+ 1)-core i.e., the subgraph induced
by the set of all nodes whose coreness is k.

Denote the node set of a shell as Sk to represent and identify a k-shell, then
Sk = Ck/Ck+1. Specifically, Skmax

= Ckmax
, where the kmax is the highest order

in all cores. As shown in Fig. 2:

S1 = C1/C2 = {v1, v2, v3, ..., v20}/{v2, ..., v15, v17, ..., v20} = {v1, v16}.
S2 = C2/C3 = {v2, ..., v15, v17, ..., v20}/{v3, ..., v8, v11, ..., v15} = {v2, v9, v10,
v17, ..., v20}.
S3 = C3/C4 = {v3, ..., v8, v11, ..., v15}/{v4, ..., v8} = {v3, v11, ..., v15}.
S4 = Skmax = C4/C4 = {v4, v5, v6, v7, v8}.

Search of Center-Core Community in Large Graphs 99

Definition 3 (coreness). The coreness of a node v ∈ V is the highest order of a
core that contains v, that is, the nodes with coreness k belong to k-core, but not
belong to (k+ 1)-core.

Denote the coreness of a node v as then c(v), then c(v) = max{k|v ∈ Ck, k ∈
[0, 1, ..., kmax]}. In Fig. 2, take node v6 as an example. v6 belongs to C1, C2, C3

and C4 respectively, the highest order of the core containing v6 is 4, so C(v6) = 4.

Definition 4 (connected k-core). A connected k-core is one of the connected
components of the subgraph induced by k-core, denoting as Conk−core(v/Q).

As shown in Fig. 2, 2-core is the induced graph of C2, which has two connected
components. Each one is a connected 2-core, {v2, v3, ..., v15}, {v17, v18, v19, v20}.
Conk-core(v) stands for the connected k -core of v, i.e. Con2−core(v2) =
{v2, v3, ..., v15}. According to Property 2, node v may belong to many connected
k -core, i.e. v2 belongs to one connected 2-core, and also belongs to one connected
1-core.

Definition 5 (connected k-shell). A connected k-shell is one of the connected
components of the subgraph induced by k-shell, denoting as Conk−core(v/Q).

As shown in Fig. 2, the 2-shell that is the induce subgraph of S2 has three con-
nected components:{v2}, {v9, v10}, {v17, v18, v19, v20}. According to Definition 2,
the connected k -shell of v is unique, Conshell(v), i.e. Conshell(v2) = {v2}.

Definition 6 (center-core). Given a graph G = (V,E) and a query node set
Q = {q1, q2, ..., qr}, |Q| = r, r ≥ 1, Q ⊆ V . Set the k value of the maximum
connected k-core containing Q as c. H is a center-core, if H satisfies the following
conditions:

1. H is a connected c-core containing Q with the minimum degree c, that is,
H ⊆ Conc−core(Q), µ(H) = c;

2. ∀v ∈ H, c(v) ≥ c(q);
3. The connected k-shell of node w, which coreness is equal to c in H, contains

any query q or connects with any two query nodes, that is, ∃q ∈ Q, q ∈
Conc−shell(w) or ∃q1 ∈ Q, q2 ∈ Q, q1 reaches q2 with nodes in Conc−shell(w).

Condition 1 ensures that center-core community containing q is densely con-
nected since it has the largest minimum degree based on the concept of k -core.
Condition 2 makes sure the influence of each node in center-core community is
no less than q. And condition 3 ensures the nodes whose influence are equal to
q needn’t contact with q via nodes whose influence are larger than q. Because
those nodes are certainly in the same connected shell with q, so that they can
reach each other without the other nodes that have different coreness.

Problem Definition (center-core community search). Given a graph G =
(V,E) and a query node set Q = {q1, q2, ..., qr}, |Q| = r, r ≥ 1, Q ⊆ V , find
a node set R ⊆ V where the subgraph induced by R, G[R], is the center-core
community containing Q.

100 L. Ding et al.

Example 1. In Fig. 2, suppose the query node q = v2, then by the problem def-
inition, the subgraph induced by node set {v2, v3, v4, v5, v6, v7, v8} is the center-
core community containing v2.

4 Querying Center-core Community

4.1 The Novel CCG-Index

4.1.1 CCG-Index Structure
We propose the CCG-Index structure, which can reflect the hierarchical struc-
ture of the graph. It’s a hierarchical structure according to coreness. As shown
in Fig. 3, the top level is the first level (level = 1). The number of level increases
by the level increasing, where the level number corresponds to coreness. Each
index item vertex (we call the node element in index as index item vertex to dis-
tinguish from the nodes in graph) in index is a connected k -shell with different
k. The nodes in the same connected k -shell must be connected, so it can com-
press storage space since the edges between those nodes needn’t be preserved.
Besides, each vertex keeps the children and parents information for query and
update later. Let the vertices in Sk point to the connected vertices in Sk+1, and
each directed edge can both indicate the hierarchical and connected relationship
between vertices. The level k index item vertex is the parent index item vertex
of the connected k+1 level, that is, the level k+1 index item vertex is the child
index item vertex of the connected k level. We can directly output the center-
core community containing a query node according to the direction relationship
in index. It can avoid repetitively visiting nodes if we find the nodes higher than
query node from top to bottom level by level. Figure 4 is the CCG-Index of G
in Fig. 2. The index vertices are A, B, C, D, E, F, G, H.

We can see that the index is composed of connected components of all Sk.
If query node is v2, which coreness is 2. We first find the index item vertex
indexV (v2) = D = {v2}, then find the nodes that have the same coreness and
connected directly, and then find nodes with higher coreness level by level. As
shown in Fig. 4, first find the index item vertex B = {v3} in the next level, then
continue find the vertex C = {v4, v5, v6, v7, v8} then continue find the vertex

Fig. 3. The hierarchical division graph of G

Search of Center-Core Community in Large Graphs 101

Fig. 4. The CCG-index of G

in the next level. So the induced subgraph of all the nods in these vertexes
{D,B,A} is the center-core community containing v2 : {v2, v3, v4, v5, v6, v7, v8}
as shown in the subgraph A in Fig. 1.

4.1.2 CCG-Index Construction
The construct course of CCG-Index is shown in Algorithm 1. First, calculate
the coreness of each node by k -core decomposition algorithm in [11]. Second,
compute each connected component in each connected kmax-shell where k is
the largest coreness in graph and initialize it to a single index item vertex. The
coreness of nodes in the bottom level index vertex is the maximum without any
child vertex. Each vertex in Sk can be created by seeking the neighbors of each
node in Sk. Next, recursively find and let the vertices in Sk point to the connected
vertices in Sk+1 from k = kmax−1 to k = 1 according to the neighbors of nodes
in Sk. That is to say, the Sk vertex is the parent vertex of Sk+1 connected
with itself, and the Sk+1 vertex is the child vertex of Sk connected with itself,
k = kmax-1, ..., 1.

Algorithm 1. Construct CCG-Index
Input: G = (V,E)
Output: The CCG-Index
1: Compute the k -core decomposition for G and keep the core index;
2: kmax = max{c(v)|v ∈ V };
3: CCG-Index=∅;
4: Create a vertex for each connected kmax-shell in CCG-Index;
5: for k = kmax − 1 to 1
6: for all nodes v ∈ Sk

7: Create a vertex containing v if v is not visited in CCG-Index;
8: for w ∈ N(v)
9: if c(w) == c(v) then

10: Merge indexV (v) and indexV (w);
11: if c(w) > c(v) then
12: Let indexV (v) points to the vertex in Sk+1 which is connected to

indexV (w);
13: return The CCG-Index;

102 L. Ding et al.

Example 2. Take the CCG-Index in Fig. 4 as an example to illustrate the con-
struction course in Fig. 5. First, compute its k -core decomposition (line 1) and
save the coreness of each node as shown in Fig. 3. Second, compute kmax = 4
(line 2), and there is only one connected 4-shell {v4, v5, v6, v7, v8} since the nodes
in S4 are adjacent to each other, so initialize it to a single index item vertex
indexV (v4) = {v4, v5, v6, v7, v8} (line 4) as shown in Fig. 5(a). Then recursively
process each node in Sk for every k (k = 3, 2, 1 process each node in) (lines 5–12).
For S3 = {v3, v11, v12, v13, v14, v15}, We process v3: initialize indexV (v3) = {v3}
(line 7); let B = indexV (v3) point to indexV (v4) in S4 because v4 ∈ N(v3)
and the coreness of v4 is larger than v3 (lines 11–12). Process v11: initialize
indexV (v11) = C = {v11}; add neighbors of v11 in S3 into C = indexV (v11) so
indexV (v11) = {v11, v12, v13, v14}. Because no neighbors of v11, v12, v13, v14 have
larger coreness respectively, further process v15: indexV (v15) = {v15}. Now,
v15 is adjacent to v12, so merge indexV (v15) and indexV (v12) and the vertex
becomes C = {v11, v12, v13, v14, v15} (lines 9–10) as shown in Fig. 5(b). The oper-
ations for S3 are completed. We can finally get the CCG-Index of G as shown
in Fig. 5(c) and (d) by recursively processing S2 and S1.

In Algorithm 1, the calculation of k -core decomposition require O(n + m)
time [11]. The main cycle in lines 5–12 which process each nodes need O(n′+m′)
time, n′ and m′ is the number of vertexes and edges in index respectively, and
n′ 	 n,m′ 	 m. The other operation can be processed in constant time, so
the time complexity of Algorithm 1 is O(n+m). In addition, it only needs O(n)
space since each node is only storaged once in the index.

Fig. 5. The construction of CCG-index of G

4.2 Center-core Community Query Processing

4.2.1 Single Query Node Processing
For single query node, the center-core community query processing is straight-
foward based on the CCG-Index. Treat the index structure as a tree, then the
larger index level, the larger number of coreness of index vertex. The nodes in the
subtree taking indexV (q) as root is the result of center-core community search

Search of Center-Core Community in Large Graphs 103

for q. Because the indexV (q) includes all the nodes whose coreness equals q and
in the same connected k -shell with q. The coreness of the nodes in its children
vertices in larger levels is all larger than q. Thus such subtree is the center-core
community for q. The query algorithm is shown in Algorithm2.

Algorithm 2. SingleQuery
Input: The CCG-Index, a given node q
Output: The center-core containing q
1: R = indexV (q);
2: if children(indexV (q))==null then
3: return R;
4: Push all children of indexV (q) into the stack s;
5: while s is not empty do
6: Pop the vertex in top of s;

add the nodes in it into R;
push its children into s;

7: return R;

Example 3. Consider Fig. 2, given a query node q = {v2}, we query the center-
core community R containing q by Algorithm 2. By retrieving the CCG-Index
as shown in Fig. 4, first initialize R = indexV (v2) = D = {v2} (line 1). We
use a stack s to process this traversal of children of each vertex that be visited
(lines 3–6). Because D only has one child vertex B, push B to stack s, and then
pull, R = {v2, v3}. Continue the iterated operation, then push vertex A, which
is the child of vertex B, and then pull, R = {v2, v3, v4, v5, v6, v7, v8}, utill the
stack s is null. The query course is over, without any node to be visited. So the
search result is R = {v2, v3, v4, v5, v6, v7, v8}, the subgraph induced by R is the
subgraph A in Fig. 1.

Algorithm 2 just needs to traverse the vertices related to query node in CCG-
Index, so its time complexity is no more than O(n’). Due to this algorithm need
not to consider the branches connected to the connected k -shell without query
node, it narrows the search scope and accelerates the retrieval speed.

4.2.2 Multiple Query Nodes Processing
In CCG-Index, for the multiple query nodes processing, that is the query set
Q = {q1, q2, ..., qr}, we find a substree which root node is the least common
ancestors (LCA) of index vertex of all the query nodes. The subtree is the center-
core dense subgraph containing Q. Because the LCA of quey nodes is the nodes
with maximum coreness making the nodes connected of Q, where the minimum
coreness of subgraph can be maximized. Specially, if two query nodes with the
same coreness locating in different index item vertices and they are connected,
the union of these two index item vertices is the root node.

104 L. Ding et al.

Algorithm 3. MultiQuery
Input: The CCG-Index; a set of query nodes Q = {q1, q2, ..., qr}
Output: The center-core containing Q
1: R = ∅;
2: Root = indexV (q1);
3: for i=2 to r
4: for v ∈ Root;
5: Root = findLCA(v, indexV (q1));
6: R = R ∪ subtree(Root);
7: if (Root == ∅) then break;
8: return R;

Example 4. As shown in Fig. 2, suppose the query set is Q = {v3, v6, v11}.
According to Algorithm 3, search the CCG-Index in Fig. 4. First, initialize R = ∅
(line 1); Root = indexV (v3) = B (line 2); indexV (v6) = A, find the LCA of
B and A, C = min{c(B), c(A)} = min{3, 4} = 4. The LCA of forth level of
B and A is B, so R={substree(B)}. Then, indexV (v11 = C), also continue to
find the LCA of B and C, that is E, so the final R={subtree(B), subtree(e)} =
{B,A,C,E} = {v3, v4, ..., v15} (lines 3–8).

Algorithm 3 shows the multiple query nodes center-core dense subgraph algo-
rithm. We use a traversing algorithm to traverse the index vertices corresponding
to R from top to bottom with the time complex O(n′′). n′′ is the number of nodes
in R. So, the time complex of Algorithm 3 is O((|Q| − 1)n′′). Because n′′ 	 n,
the time complex is still small in actual applications.

5 Experiments

We conduct extensive experiments on four real-world large networks to evaluate
the efficiency and effectiveness of the proposed algorithms in this paper. We
implemented all of the algorithms in Java and ran the experiments on a PC with
Intel quad core at 3.2 GHz, 8G memory. The experimental datasets are from four
real-world networks named Twitter, DBLP, Amazon and Youtube. Twitter is a
social network, where each node represents a user and each edge represents the
friendships of users. DBLP is an author collaboration network, where each node
represents an author and each edge represents a coauthor relationship. Amazon
is a e-commerce network, where each node stands for a product and each edge
stands for purchasing this product. Youtube is a user-to-user link network. The
statistics of these graphs are reported in Table 2, containing the number of nodes
n, the number of edges m and the maximum coreness h gaining from k -core
decomposition.

For index construction, we compare the index construction time and index
size of CCG-Index (Algorithm 1) and CoreStruct [9] respectively. For query pro-
cessing, we implement three algorithms, CCG (center-core community search,
Algorithm 2 and Algorithm 3), GS [8], GrCon [9] and compare their execution
time with different query nodes on different datasets.

Search of Center-Core Community in Large Graphs 105

Table 2. Datasets

Dataset n m h Description

Twitter 81,306 1,768,149 38 Social network

DBLP 317,080 1,049,866 40 Collaboration network

Amazon 410,236 3,356,824 41 Product network

Youtube 1,134,890 2,987,624 51 Social network

5.1 Index Construction

Figure 6 shows the index construction time on different datasets of CCG-Index
and CoreStruct. The time of CCG-Index is slightly less than the CoreStruct.
They are almost the same because they all need to traverse the each node and
its incident edges in G. However, the construction time of CoreStruct depends
on the maximum coreness of different k -core which needs to traverse a part of
nodes repeatedly. So, the larger of value h, the more time of construction index.

Fig. 6. Index construct time Fig. 7. Index storage space

Figure 7 is the index size in different datasets. It can be seen that the storage
space of CCG-Index is obviously lower than CoreStruct because there is nested
feature of k -core. CoreStruct repeatedly stores many nodes. However, CCG-
Index only stores the node information once by fully using the structure feature
of center-core.

5.2 Query Processing

The query node set Q is designed by randomly choosing 1, 4, 8, 16 and 32 nodes
from four real datasets respectively. So, for single query processing, |Q| = 1,
CCG is the algorithm SingleQuery, Algorithm2. For the multiple nodes query
processing, |Q| > 1, CCQ is the algorithm MultiQuery, Algorithm3.

Figure 8 shows the performance of query processing of three algorithms in
four real datasets. In each dataset, with the increasing of |Q|, the query time of
CCG is much better than the other two algorithms. Because the more nodes of

106 L. Ding et al.

Fig. 8. Query processing time

query processing, the more nodes to be traversed, causing more time. The query
time of CCG algorithm is mainly about the index vertices, which is much less
than the whole nodes.

6 Conclusions

In this paper, we mainly study such meaningful community search for a query
node, called center-core community search. To effectively reduce query time to
apply to large and dynamic graphs, we further propose the index called CCG-
Index to preserve information about the level classification of node influence and
connected relationship of nodes. Thus we can quickly query center-core com-
munity by retrieving index. Extensive experiments over four real-world graphs
demonstrate the efficiency and effectiveness of the proposed algorithms.

Acknowledgement. This work is supported by National Natural Science Founda-
tion of China (No. 61472169, 61502215), Science Research Normal Fund of Liaoning
Province Education Department (No. L2015193), Doctoral Scientific Research Start
Foundation of Liaoning Province (No. 201501127), National Key Research and Devel-
opment Program of China (No. 2016YFC0801406).

References

1. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

2. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping com-
munities. In: ACM SIGMOD International Conference on Management of Data,
pp. 277–288 (2013)

Search of Center-Core Community in Large Graphs 107

3. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.: Denser than the dens-
est subgraph: extracting optimal quasi-cliques with quality guarantees. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
104–112 (2013)

4. Bta, A., Krsz, M.: A high resolution clique-based overlapping community detection
algorithm for small-world networks. Informatica 39(2), 177–187 (2015)

5. Koujaku, S., Takigawa, I., Kudo, M., Imai, H.: Dense core model for cohesive
subgraph discovery. Soc. Netw. 44, 143–152 (2016)

6. Wang, N., Zhang, J., Tan, K.L., Tung, A.K.H.: On triangulation-based dense neigh-
borhood graph discovery. Proc. VLDB Endow. 4(2), 58–68 (2010)

7. Li, R.H., Yu, J.X.: Triangle minimization in large networks. Knowl. Inf. Syst. 45,
617–643 (2015)

8. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Washington, D.C., USA, pp. 939–948, July 2010

9. Barbieri, N., Bonchi, F., Galimberti, E., Gullo, F.: Efficient and effective commu-
nity search. Data Min. Knowl. Discov. 29(5), 1406–1433 (2015)

10. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large
graphs. In: ACM SIGMOD International Conference on Management of Data, pp.
991–1002 (2014)

11. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (generalized) core
groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

12. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in
large and dynamic graphs. In: ACM SIGMOD International Conference on Man-
agement of Data, pp. 1311–1322 (2014)

13. Huang, X., Lakshmanan, L.V.S., Yu, J.X., Cheng, H.: Approximate closest com-
munity search in networks. Proc. VLDB Endow. 9(4), 276–287 (2015)

14. Miorandi, D., Pellegrini, F.D.: K-shell decomposition for dynamic complex net-
works. In: Proceedings of the International Symposium on Modeling and Opti-
mization in Mobile, Ad Hoc and Wireless Networks, pp. 488–496 (2010)

15. Zhao, Q., Lu, H., Gan, Z., Ma, X.: A K -shell decomposition based algorithm for
influence maximization. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D.
(eds.) ICWE 2015. LNCS, vol. 9114, pp. 269–283. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19890-3 18

16. Cheng, J., Ke, Y., Chu, S., Ozsu, M.T.: Efficient core decomposition in massive net-
works. In: IEEE International Conference on Data Engineering, pp. 51–62 (2011)

17. Li, R.H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs.
IEEE Trans. Knowl. Data Eng. 26(10), 2453–2465 (2014)

https://doi.org/10.1007/978-3-319-19890-3_18
https://doi.org/10.1007/978-3-319-19890-3_18

	Search of Center-Core Community in Large Graphs
	1 Introduction
	2 Related Work
	2.1 Community Search
	2.2 K-core Decomposition

	3 Problem Statement
	4 Querying Center-core Community
	4.1 The Novel CCG-Index
	4.2 Center-core Community Query Processing

	5 Experiments
	5.1 Index Construction
	5.2 Query Processing

	6 Conclusions
	References

