
An Incremental Approach for Sparse Bayesian
Network Structure Learning

Shuanzhu Sun1, Zhong Han2, Xiaolong Qi2,3, Chunlei Zhou1,
Tiancheng Zhang2, Bei Song2, and Yang Gao2(&)

1 Jiangsu Frontier Electric Technology Co. Ltd., Nanjing 211102, China
15905166613@139.com, 13851845492@163.com

2 Department of Computer Science and Technology, Nanjing University,
Nanjing 210046, China

763719732@qq.com, qxl_0712@sina.com,

tiancheng_zhang@163.com, songbei07@gmail.com,

gaoy@nju.edu.com
3 Department of Electronics and Information Engineering,
Yili Normal University, Yining 835000, Xinjiang, China

Abstract. A Bayesian network is a graphical model which analyzes proba-
bilistic relationships among variables of interest. It has become a more and more
popular and effective model for representing and inferring some process with
uncertain information. Especially when it comes to the failure of uncertainty and
correlation of complex equipment, and when the data is big. In this paper, we
present an incremental approach for sparse Bayesian network structure learning.
In order to analysis the correlation of heating load multidimensional feature
factor, we use Bayesian network to establish the relationship between operating
parameters of the heating units. Our approach builds upon previous research in
sparse structure Gaussian Bayesian network, and because our project requires us
to deal with a large amount of data with continuous parameters, we apply an
incremental method on this model. Experimental results show that our approach
is the efficient, effective, and accurate. The approach we propose can both deal
with discrete parameters and continuous parameters, and has great application
prospect in the big data field.
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1 Introduction

Bayesian network is a complete model for the variables and their relationship, it can be
used to answer probabilistic queries about them. Furthermore, it has a strong ability to
deal with uncertain problems logically and understandably, and can make inferences
from uncertain large amount of information [1]. Especially with the increasing com-
puting power and the emergence of big data makes Bayesian network increasingly
powerful. It shows great promise in the big data field.

Accordingly, our team’s project is to design and develop a correlation model of
heating load multidimensional feature factors and an online diagnose model for the
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monitoring data of large heating units. For the former model, for each specific unit
parameter (such as heat supply), we need to describe the interaction between one and
the remaining parameters. For the latter model, it should be able to identify outliers in
data online. They are correlation analysis problem and detection problem of time
sequence outliers, which means we need a model that can answer probabilistic queries
about the variables and their relationships, and can make inference from uncertain
information to help us retrospect the outliers [2]. Thus, we choose to build a Bayesian
network model to solve the analysis problem and we use the autoregressive model and
the posterior inspection to carry out the outlier detection. In this paper, we concentrate
on the first problem and the solution to it.

A Bayesian network consists of two components: the structure, which is a Directed
Acyclic Graph (DAG), for representing the conditional dependencies among variables,
and a set of parameters for representing the quantitative information of the dependency
[3]. Accordingly, learning a BN from data includes structure learning and parameter
learning.

This paper focuses on the structure learning of Bayesian network. We will discuss
our method of structure learning of Bayesian network in the part 3, our method of
dealing with the data of our project (incremental learning) in part 4 in this paper, and
experiments and testing results in part 5 in this paper.

2 Background

In the big data time, the problem of data sparsity still exist. It will be quite difficult to
solve such problems with classical statistical methods. Under this circumstance, the
Bayesian network provides us a wonderful answer to these complex problems.

A Bayesian network (BN) is composed of a directed acyclic graph (DAG) and a set
of parameters. In a DAG G = (X, E), X is a collection of nodes or vertices, and E is a
collection of edges. Those nodes of the DAG represent variables in the Bayesian sense:
they might be discrete, continuous, known, or unknown [3]. In our project, we deal
with the continuous parameters. Edges represent conditional dependencies. Each node
is associated with a probability function that takes, as input, a particular set of values
for the node’s parent variables, and gives (as output) the probability (or probability
distribution, if applicable) of the variable represented by the node.

As shown in Fig. 1 this is a DAG diagram with P nodes X1;X2; . . .;Xp
� �

and a
directed edge to each other nodes. In DAG, each node represents a free variable, while

Fig. 1. Example of Bayesian network
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the opposite side represents the influence of variables. The parent node is “cause” and
the child node is effect. By establishing such a relationship, the independence
assumption between variables is constructed, that is, a set of parent nodes of a given
node, which is independent of all its non-descendant nodes. Therefore, the joint dis-
tribution probability of all nodes represented by Bayesian network can be expressed as
the product of the conditional probability of each node, namely:

P X1;X2; . . .;Xnð Þ ¼
Yn
i¼1

P XijX1;X2; . . .;Xi�1ð Þ ¼
Yn
i¼1

PðXijp Xið ÞÞ

In the graphical structure of Bayesian network, there are three possible types of
adjacent triplets allowed in a directed acyclic graph (DAG):

X! Y! Z
X Y! Z
X! Y Z

Structural learning is the key point of the whole Bayesian network, which directly
influences the subsequent parameter learning and inference. The scientific problem of
structure learning of Bayesian network is: how to find a directed acyclic graph structure
(DAG) that is corresponding to data distribution in a reasonable time. The challenge is
that the structural space is an exponential function of variables. In the face of such a
surpass-exponential structure space, it is not feasible to find the global optimal solution
in a reasonable time and limited storage space.

The current structure learning method can be divided into two categories: discrete
Bayesian network structure learning and continuous Bayesian network structure
learning; by the adopted technical methods, it can be divided into: based on the con-
straints of the Bayesian network structure learning [4–6], based on the scoring-search
of the Bayesian network structure learning [7–10], and the mixed method of structure
learning; according to the data processing method can be divided into: batch learning
and incremental learning [11–13]; by the accuracy of the solution can be divided into:
accurate learning and approximate learning.

The comparisons between these approaches can be found in the Tables 1, 2 and 3
below.

Table 1. Advantages and disadvantages of three types of Bayesian network structure learning
methods

Methods Strength Weakness

Constraint-based High efficiency Sensitive to individual detection
Scoring-search-based Insensitive to individual errors Large searching-space
Mixed High efficiency Inconsistency
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The application background is as follows:

(1) We deal with continuous, high-dimensional and large sample data;
(2) The degree of dependence between quantitative variables;
(3) The complexity of reasoning is the exponential of the largest group;

Considering the three reasons, we decided to learn by incremental Sparse Bayesian
networks (SBN) to deal with these problems at the same time.

Firstly we introduce SBN [14], it is a kind of continuity for high-dimensional
variable method for generating a Bayesian network, different from traditional discrete
Bayesian networks, it finally be able to generate a directed acyclic graph, and the
corresponding mixture Gaussian distribution. On the specific implementation, the core
idea of the algorithm is to maintain a coefficient matrix B. The matrix saves the relation
coefficients of each node (attribute characteristics) relative to the parent node, which is
continuously updated in the iteration, and finally a relational coefficient matrix is
generated, which is further transformed into a directed acyclic graph.

The advantage of using this method to study Bayesian network structure is:

(1) The current mainstream continuous Bayesian network structure learning method
mainly includes the conditional Gaussian-Bayesian network and the linear
Gaussian-Bayesian network. The conditional covariance matrix is invertible,
which limits its application. Linear Gaussian-Bayesian network not only is not
subject to this restriction but also combines the sparse technology represented by
the current, such as lasso, to reduce the complexity of the model.

(2) It can theoretically guarantee the ring detection in the structure.
(3) Due to the particularity of SBN algorithm, the prior knowledge of domain experts

can be easily added, and it is easy to extend to incremental learning.

Table 2. Advantages and disadvantages of batch learning and incremental learning

Methods Strength Weakness

Batch learning Be able to find global optimal
solution

High time cost

Incremental
learning

Low time cost Might end up in local
solution

Table 3. Advantages and disadvantages of accurate learning and approximation learning

Methods Strength Weakness

Accurate learning Be able to find global optimal
solution

High time cost, high store
demand

Approximate
learning

Low time cost Might end up in local solution
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3 Structure Learning

BN structure learning aims at a NP-hard problem that selecting a probabilistic model
that explains a given set of data. The main task of Bayesian network structure learning
is to construct a directed graph which conforms to the dependence of the characteristics
through the data of the original sample. It is an important basis for subsequent
parameter learning and Bayesian inference.

In our project, our team needs to learn large BN structures with high accuracy and
efficiency from limited samples. Therefore, a useful strategy is to impose a sparse-
constraint of some kind. Many real-world networks are indeed sparse, such as the gene
association networks, and our relationship network of heating load factors. When
learning the structure of these networks, a sparse constraint helps prevent overfitting
and improves computational efficiency.

Meanwhile, considering the common Bayesian Network structure learning is
dependent on the characteristics of discretization and continuous raw data, in order to
avoid the unreliability caused by human for data discretization as well as the com-
plexity of the reasoning, we adopt a Bayesian network for continuous data structure
learning algorithm (Sparse Bayesian Network, SBN) [14]. The method (SBN) itself is
aimed at constructing model which has small sample size of continuous data. However,
given our sample size is larger, the implementation of SBN based on the further
provision of batch training and incremental training, can effectively shorten the training
time.

In the SBN algorithm, the following structures are mainly defined. First, the number
of variables is p. We use a two dimensional array to represent the DAG we get (a p*p
matrix G). Gij ¼ 1 represents that there is a directed edge from node i to j. In addition, a
p-dimensional matrix is needed to indicate whether there is a path between nodes,
namely the relationship closure.Pij ¼ 1 represents that there is a path from node i to j,
and vice there is none. At last, we need a p� 1ð Þ � p matrix B to record all the coef-
ficients of every node and its parent, since any one node is unlikely to become their own
parent node (assuming that there is no the loop), matrix B has one less row compared to
the above matrixes. SBN is essentially a model which learn a group of relation coeffi-
cients iteratively on each dimension to build a connection between nodes and their
parents through data. There is no directed edge between two nodes when the relationship
coefficient is zero, the core of algorithm is to optimize a set of formula below:

B̂ ¼
p
min
i ¼ 1

xi � bTi x=i
� �

xi � bTi x=i
� �T

=2þ k1 bij jj j1
n o

s:t bji � Pij ¼ 0; i; j ¼ 1; . . .; p; i 6¼ j

Where bi is the ith column of matrix B, and x=i represents the sample matrix after
remove the variable i in matrix B. The optimization goal of the formula is to minimize
the fitting error between real value and the coefficient, then plus the regular penalty
term L1. Moreover, k1 is used to control the number of non-zero in matrix B, namely
controls the sparsity of network structure. The larger the k1, the smaller the number of
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non-zero in matrix B and the more sparse network structure. In the iterative process, it
is necessary to maintain the bji � Pij constant to zero, so as to guarantee the network
structure is not circular.

Unfortunately, the formula above is hard to solve. Therefore, in practical devel-
opment, we change the optimization to matrix B to aiming at each column. That is, the
cumulative process of each variable optimization. The transform formula is:

dBap ¼ min
B

Xp
i¼1

fi bið Þ

¼ min
B

Xp
i¼1

xi � bTi x=i
� �

xi � bTi x=i
� �T

=2þ k1 bij jj j1þ k2
X
j�Xi

bji � Pij

�� ��( )

In the formula, j � Xi represents the sample without variable i. We add two penalty
terms into this formula, Where k1 is still the L1 regularization penalty term, and it is
used to control the sparsity of network structure. Then, k2 make bji � Pij

�� �� close to
zero, so as to avoid having a loop in the graph, and by proving that, when k2 meets the
following condition:

k2 [
n� 1ð Þ2p

k1
� k1

It ensures that no ring is formed during training.
After given the value of k1,k2, we can calculate it by the BCD algorithm. BCD

algorithm is a method of block optimization. For matrix B, BCD algorithm holds all the
remaining columns, updating bi in turn, which is equivalent to optimizing fi bið Þ until
the preset convergence conditions are satisfied. Specifically, in our scheme, we adopted
the L2 paradigm change less than 0.001 as the convergence condition. For each opti-
mization of fi bið Þ, it’s feasible to use a form similar to LASSO optimization:

fi bið Þ ¼
xi � bTi x=i
� �

xi � bTi x=i
� �T
2

þ
X
j�Xi

k1þ k2 bji � Pij

�� ��� �
bji
�� ��

In the above formula, xi is the sample vector with the characteristic of i. bTi is the
column that corresponds to feature i in the relational matrix,Pij is the connectivity of
feature i and j at this stage. In particular, the judgment of connectivity can be resolved
using BFS (depth-first search). For the optimization of fi bið Þ, the shooting algorithm
can be used to iterate. Finally, we calculate the following formula through constant
calculation:

btþ 1
ji ¼

xi � bti=j
Tx= i;jð Þ

� �
xTj

xixTi

������
������� k1þ k2 Pij

�� ��
xixTi

0@ 1Aþ sign
xi � bti=j

TxTj
xixTi

 !
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Then the convergence conditions are going to be approximated. Finally, consid-
ering the implementation details of the algorithm, we need to normalize the original
samples (keep the mean value 0 and the variance 1).

4 Bayesian Incremental Learning

The aim of incremental learning is for the learning model to adapt to new data without
forgetting its existing knowledge, it does not retrain the model. Incremental algorithms
are less restrictive than online algorithms, and incremental algorithms process input
examples one by one (or batch by batch) and update the decision model after receiving
each example. Incremental algorithms may have random access to previous examples
or representative/selected examples. In such a case, these algorithms are called incre-
mental algorithms with partial memory.

Typically, in incremental algorithms, for any new presentation of data, the update
operation of the model is based on the previous one. Streaming algorithms are online
algorithms for processing high-speed continuous flows of data. In streaming, instances
are processed sequentially as well and can be examined in only a few passes (typically
just one). These algorithms use limited memory and limited processing time per item.

Considering the large sample size (training, using data a year sample size of 500000
or so), although the overall training is able to achieve a more accurate solution, the
training process is time-consuming. Based on two characteristics of overall training, we
made a few improvements and changes.

First of all, we have to deal with a large number of data samples. The cost of all
training to achieve a global solution is to sacrifice the training time, so we take the
sliding window as the core. Because is streaming data at the same time, in practical
applications, the sample data may not all have, many times the relationship between the
variables can cause some changes with time and, this is called online learning based on
streaming data. Considering that boiler data satisfies the definition of streaming data, an
incremental updating interface is provided based on SBN. Learning through some
offline data first, obtain a fairly network structure, and also using the ideas of sliding
window, with the passage of time constant sliding window, the data change, once every
sliding window, try to calculate the coefficient of a matrix. On the basis of the changes
to set a threshold value, and the relationship between the threshold, when the rela-
tionship matrix in the numerical change more than threshold, modified, this is to
prevent the noise to interfere with the accuracy of the model, and use of the threshold
value to determine the relationship between directed edge, when the relation matrix of
value across the threshold, the relationship between the network structure of the
directed graph updates, because every incoming sample occupies smaller share in the
window, it can ensure no dramatic changes, the relationship between matrix when a
concept drift, window after drift value will be more and more, makes the relationship
matrix gradually closer to the new concept, Thus, an incremental learning method is
realized.

In the actual implementation, we take the original sample and store it in a matrix,
each row representing a set of boiler data. The number of rows in this matrix is advance
given. First, we accept a certain amount of data in the matrix, and then we learn it, and we
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get the raw matrix B. When the data that we accept exceeds the number of rows in the
matrix, we delete the first row of the matrix and add a new set of data to the last row of the
matrix, which is the idea of a sliding window. In the process of checking, because our
Bayesian network structure is done with linear Gaussian fitting every time, the structure
and solution we get corresponding to the next new window are close to the convergence.
Furthermore, because the sample size of a single batch is much smaller than the total
sample, the relational matrix can converge to a local solution in a short time. With the
arrival of the subsequent batch, the relationship matrix is constantly updated. After
update, we check the new relationship matrix, and we update the edges according to the
value of threshold, to control the sparsity of the structure (Tables 4 and 5).

Table 4. Shows a more detailed description of proposed algorithm.

Table 5. Shows sliding window update algorithm.
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For the SBN algorithm, the time complexity is np2. n is the iteration number of
BCD and p is the number of variables. In most cases, the number of variables is small,
no more than 100, and the iteration number can be really big when the data size is huge.
For example, for our boiler data from our client, it is usually a hundred thousand orders
of magnitude. In this case, the n is too big and the time complexity is high. However,
our incremental approach can converge within 10 iterations. In our implementation of
the window slide in the project, we set a window in 3000 sets of data, and the time
complexity of this method is cp2. In this case, c3000*10 which is much less than a
hundred thousand.

In addition, the experiment found that if the overall distribution of a one-
dimensional data is basically unchanged, the first batch of samples can converge the
matrix which corresponds to the dimension to an approximate global solution, and
subsequent iterations will be greatly reduced.

Whether the data is large or small, the approach of incremental sparse Bayesian
network structure learning theoretically takes much less time than other Bayesian
network learning method.

5 Experiments and Testing Results

Based on the methods above, we conducted test based on the provided data, because an
important idea of BCD + shooting method is to use a specific column, fixed other data
to do block optimization. So the order of the original data characteristics will produce
certain effect to the learned structure. According to the proof of theory and experiment,
the higher the variable sequence, the more the tendency to become the ancestor node.
Therefore, it is an important part to find a more reasonable feature order for this
method. According to the prior knowledge, choosing a good order of characteristic
variables can effectively improve the validity of the network. We conducted experi-
ments based on two variables and different sample sizes.

5.1 Time Efficiency Experiments

We firstly conducted two time efficiency experiments on two data sets which belong to
two kinds of variable order. One data set is large and another data set is small. Since we
need to deal with data with continuous parameters, we choose batch learning approach
to compare with our incremental approach, they both can deal with continuous
parameters by using SBN algorithm.

oder1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]

The size of this group of data is 520,000, with 57dimensions (57 variables) (Figs. 2
and 3).

Time efficiency:
Incremental approach : 14h Batch approach: 29h
Analysis:
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This group of data has 57 sets of variables, of which 37 groups converge before the
5th iteration, and 14 groups converge in the sixth iteration, and the remaining six
groups converge in the eighth iteration. The time complexity is much lower than the
batch.

Fig. 2. Structure constructed by incremental learning for order 1 (sample size is 520,000).

Fig. 3. Structure constructed by batch approach for order 1 (sample size is 520,000)
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It can be seen from the above time that the incremental learning method adopted by
us is obviously better than the batch mode in time performance, and the convergence to
the final solution is much faster. At the same time, the structure generated by the two
methods is different, which is less accurate than the batch type, but it is still accurate.
From the comparison experiment on order1, we can know that the incremental learning
method we have improved is very effective and advanced for the situation size of
500,000+.

oder2 = [0, 1, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]

The size of this group of data is 3, 000, with 30 dimensions (30 variables).
Therefore, the running time is very fast. In the case of incremental situation, 25

dimensions converge in the first five rounds of iteration, and four dimensions converge
in the sixth round, and the last one will converge in the seventh round. Because the
sample size is small, there is no great advantage for incremental approach in time
complexity (Figs. 4 and 5).

Time efficiency:
Incremental approach : 0:4h Batch approach: 0:4h
Analysis:

Through the above time comparison, we can see that the incremental learning
method adopted by us is not significantly different from the batch type in terms of time
performance, and the obtained structure is basically the same. This shows that for
smaller sample sizes, incremental learning and batch can be equally accurate and fast.

Fig. 4. Structure constructed by incremental learning for order 2 (sample size is 3,000)
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5.2 Accuracy Experiment of Structure Learning Results

In the first experiment, we managed to prove that the incremental approach for sparse
Bayesian network structure learning is more efficient in time than batch learning. In this
experiment, we try to conduct a comparison experiment to find the most suitable
penalty value and the relation threshold value that can make our method most accurate.
At the same time, prove that our method can generate an accurate structure through
structure learning.

Before the test, we should explain the two parameters in our system: penalty and
threshold. The penalty controls the sparsity and avoid becoming a circle through
training (It is explained in detail in part IV. structure learning of this paper), and the
relation threshold removed some edge with weak correlation, namely after-pruning (It
is explained in detail in part V. Incremental learning of this paper).

It’s worth mentioning that the effect of redundant edges on structural correctness is
less than absent edges, which means we should pay more attention on decrease the
number on absent edges. Moreover, the bigger the threshold is, the more sparse the
structure is, and normally the bigger the penalty is, the more sparse the structure is.

Dataset: CHILD
Number of nodes: 20; Number of arcs: 25; Number of parameters: 230; Average

Markov blanket size: 3.00; Average degree: 1.25; Maximum in-degree: 2.
The influence of the value of these two parameters can be found in Table 6, we can

find a best setting for them when the redundant edges (RE) and absent edges (AE) are
least.

As we can observe in chart 4, when the penalty value is 0.8 and the relation
threshold is 0.10, the absent edges and redundant edges are the least. It is mathematical
that there must be a most suitable setting that the structure is closest to the ground truth,
since the two parameters can both regulate the sparsity of the structure.

Apparently, when the threshold or the penalty is too small, the structure can be so
tense, in that case, there will be too much redundant edges. On the other hand, when the
threshold or the penalty is too big, the structure can be so sparse, which leads to a result
that it is more likely that more edges will be missed. Therefore, the balance spot is
when the penalty value is 0.8 and the relation threshold is 0.10.

Fig. 5. Structure constructed by batch approach for order 2 (sample size is 3,000)
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Dataset: ALARM
Number of nodes: 37; Number of arcs: 46; Number of parameters: 509; Average

Markov blanket size: 3.51; Average degree: 2.49; Maximum in-degree: 4.

As we can observe in the Table 7, there are two situations which have the least
redundant edges and absent edges. First one is when the penalty value is 0.7 and the
relation threshold is 0.10, and the second one is when the penalty value is 0.8 and the
relation threshold is 0.09. For a dataset which has 44 edges, a structure with 8 absent
edges is considerably accurate in machine learning field.

Table 6. The redundant edges and absent edges with different parameters for CHILD

Threshold value Penalty value
0.6 0.7 0.8 0.9 1.0

0.02 19 (RE)
10 (AE)

19
9

18
9

17
9

17
8

0.04 18
9

17
9

17
8

16
8

15
8

0.07 16
9

15
7

14
6

14
8

13
8

0.09 13
7

13
6

12
5

11
7

11
8

0.10 10
5

8
5

8 (right
4setting)

7
6

6
7

0.11 10
6

8
6

8
5

9
7

8
8

Table 7. The redundant edges and absent edges with different parameters for ALARM

Threshold value Penalty value
0.6 0.7 0.8 0.9 1.0

0.02 23 (RE)
13 (AE)

23
13

22
13

22
13

20
13

0.04 23
11

22
11

22
12

21
12

19
13

0.07 22
10

22
11

21
11

20
12

18
13

0.09 20
10

19
10

17
11

16
13

16
12

0.10 19
8

17
8

15 (right
8setting)

14
9

13
11

0.11 17
8

15 (right
8setting)

14
10

14
9

13
10
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Compare this setting of the dataset ALARM and the last setting of the dataset
CHILD, we conclude that when the penalty value closes to 0.8 and the relation
threshold value closes to 0.10, the structure our system learned is the most suitable one.

On the other hand, we need to evaluate the performance between the offline
learning and online learning based on sliding windows which we set as 10,000. Due to
the size of our data is large, online learning is more efficient than offline method. In
order to prevent the influence of individual data on parameter updating, we slide the
windows once when every 100 new data coming. What’s more, we set penalty based
on the size of sliding windows. Due to the lack of correct network based on our data,
we assume the offline result as the groundtruth. In order to reduce the influence of data
size, we set the size of data as 50,0000. The result is showing in Tables 8, 9 and 10.

Tables 8, 9 and 10 show the comparison of offline learning and online learning
Bayesian Networks. First line is the offline groudtruth, second line is the network based
on first batch, The third line is the networks based on the half of data, The last line is
the networks based on the total data.

Table 8. The comparison of offline learning and online learning Bayesian networks for 30
nodes

Nodes Edges RE AE

Offline 30 56
Online_1 30 63 10 3
Online_2 30 60 6 2
Online_3 30 58 3 1

Table 9. The comparison of offline learning and online learning Bayesian networks for 50
nodes

Nodes Edges RE AE

Offline 50 74
Online_1 50 83 16 7
Online_2 50 78 8 4
Online_3 50 77 7 4

Table 10. The comparison of offline learning and online learning Bayesian networks for 62
nodes

Nodes Edges RE AE

Offline 62 89
Online_1 62 99 19 9
Online_2 62 93 10 6
Online_3 62 93 9 5
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From the result of table above, we can find the result of online learning is close to
offline learning, but the edges of online learning is more than offline learning, it may
because the penalty we set is not reasonable enough. The first batch result has a gap
with groundtruth, but with the online updating of the network, the result is slowly
approaching the groundtruth. Base on the experiment, we can find the online learning
method we proposed is more efficient than offline learning which could maintain
accuracy.

6 Conclusion of Experiments

In conclusion, the time efficiency experiments prove that our incremental approach for
sparse Bayesian network structure learning more efficient than the existing approach of
Bayesian structure learning. The accuracy experiments prove that our method is con-
siderably accurate among machine learning methods.

The results demonstrate the accuracy, efficiency of our approach, and our approach
can solve the current intractability that learns structure with continuous parameters. All
the advantages above reflect the advancement of our approach.

Last but not the least, those experiments we conduct prove that our incremental
approach of Bayesian network structure learning can be wildly applied in big data filed.
For example, many situations in big data like the analysis of the data of complex
equipment, the origin of galaxies, the pathogenic genes, the operation mechanism of
the large heating units, etc. To uncover the laws underlying these problems, we must
understand their genetic networks and tease out the intricacies of the events. Due to the
invalidation of classical statistics in those problems, our approach appears to be more
valuable.
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