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Abstract. Correlation filter has recently attracted much attention in
visual tracking due to their excellent performance on both accuracy and
efficiency. However, the adopted features, such as Colors, HOG and deep
features, usually include noises and/or corruptions which might disturb
the tracking performance. To handle this problem, we propose a novel
noise-aware correlation filter method for robust visual tracking. In par-
ticular, we decompose the input feature matrix into a “clean” feature
matrix and a sparse noise matrix, and then use the “clean” feature to
train the correlation filter. To optimize the proposed correlation filter, we
design an efficient ADMM (alternation direction of multipliers) solver.
Extensive experimental results on the OTB-2013 dataset show that the
proposed approach performs favorably against state-of-the-art trackers.
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1 Introduction

Visual tracking is one of the most challenging and active tasks in computer vision
and has drawn much attention due to its wide applications, such as video surveil-
lance, human-computer interactions, and self-driving cars. Given the ground
truth in the initial frame, the goal of visual tracking is to find all bounding
boxes of the target object in subsequent frames. Despite many recent break-
throughs in visual tracking, it still remains challenge due to diverse factors, such
as occlusion, object deformation, scale variation and background clutter.

Correlation Filter (CF) has recently attracted much attention in visual track-
ing [1,6,7,11,14,15,24,29–31] due to their excellent performance in both accu-
racy and efficiency. CF trackers employ the cyclic shifts to generate dense sam-
ples, and diagonalize them in the Fourier domain by using the Fast Fourier
Transform (FFT). It enables trackers robust and high speed. The seminal work
of CF tracking is proposed by Bolme et al. [1], which achieves hundreds of frames
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Fig. 1. Some examples of noises in bounding boxes.

per second and high tracking accuracy. However, MOSSE only employs the sim-
ple feature to represent objects, i.e., brightness feature, without enough to be
adopted in some complicated situations. To improve the tracking performance,
most successful CF trackers use a discriminative object representation with
either strong hand-crafted features such as HOG [7,15,24], color names [9,24], or
deep features [6,8,25]. Recent work has integrated deep features [25] trained on
large dataset, such as ImageNet, to represent objects. In addition, multiple type
of features are also employed together to robustly represent the tracked object,
such as HOG features and color name [7,24], and HOG features, color name
and deep features [6,8]. Although these trackers have achieved appealing results
in both accuracy and computational efficiency, they ignore that these features
might be polluted by noises or corruptions. As shown in Fig. 1, the bounding box
of objects usually has several background information, which caused by occlu-
sion or irregular shape of objects. Noises in features result in model drifting by
influencing the learned appearance model and filter. Figure 2 shows the tracking
results of Dual Correlation Filter (DCF) [15] on sequence Soccer. It illustrates
that DCF will lose the object with noises in bounding box, which suggests that
noises influence the tracking performance.

Motivated by the robust principal component analysis (RPCA) [3], Sui [28]
decompose the feature matrix into a low-rank matrix and noise matrix. But
the optimization of low-rank constraints refers to singular value decomposition
(SVD). And SVD has high computation complexity and extremely time consum-
ing. It influences the efficiency of trackers while real-time is a crucial factors in
visual tracking. Therefore, we propose a simple and efficient feature decompose
algorithms in this paper. According to [19–22,28], we decompose the feature into
the “clean” feature and noises. We do not impose the low-rank constraints on
the “clean” feature and only impose the sparse constraint on the noises due to
observations from Li et al. [17–19,21,22]. They think that the noise matrix is the
sparse sample-specific corruptions, i.e., a few patches are corrupted and others
are clean. Motivated by these works, we suppose that the noise in features is
also sparse. We aim to learn the “clean” feature through imposing the sparse
constraint on noises. The noise-aware filter is optimized by the learned “clean”
feature for mitigate noises effects on filter. The simple feature decomposition is
incorporated into CF tracking framework. It improves the tracking accuracy by
suppressing noises effects on features and filters.

This paper makes the following contributions to CF tracking and related
applications as follows. First, we propose a noise-aware correlation filter tracking
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Fig. 2. The example represents the effectiveness of our methods. Green, red, and blue
box represents the ground truth, the tracking results of DCF, DCFour, respectively.
(Color figure online)

algorithms based on feature decomposition. The noise-aware filter and “clean”
feature can be jointly optimized in an unified framework. Second, we also design
an efficient ADMM (Alternation Direction Method of Multipliers) algorithm [2]
that can optimize the filter and the “clean” features in a framework. Third,
extensive experiments are carried out on public benchmark datasets. The evalu-
ation results demonstrate the effectiveness of the proposed approach against the
baseline methods.

2 Related Work

Recently, CF has obtained great achievement in visual tracking due to its accu-
racy and computational efficiency. Bolme et al. [1] first introduce the CF into
visual tracking, which achieves hundreds of frames per second, and high tracking
accuracy. However, there is a problem about MOSSE that it only employs the
simple brightness feature of image that isn’t enough to adapt to some compli-
cated situations.

More and more discriminative features are utilized in tracking to repre-
sent objects for improving the performance, such as HOG [7,15,24], Color
Names [9,24] and deep features [6,8,25]. In addition, several trackers [6–8,24]
employ multiple type features to represent the object for more robust tracking.
To further enhance the ability to classify objects from the background, kernel
tricks, which make the inseparable samples in low-dimension are mapped to the
high-dimension space to achieve the purpose of classification, are used in CF
tracking. Henriques et al. [14,15] employ the kernel trick to improve perfor-
mance. To adaptively employ complementary features, Tang et al. [30] propose
a multi-kernel learning algorithm to improve performance. However, different
kernels of MKCF may restrict each other in training and updating, which lim-
its its improvement over KCF [15]. In addition, the increased computational
cost of MKCF in comparison to KCF limits the tracking speed. Therefore, Tang
et al. [31] employ a different way [30] to introduce the MKL into KCF. The way
not only adaptively exploits multiple complementary features and non-linear
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kernels more effectively than MKCF, but also keeps relative high speed. CF
framework usually faces a problem that boundary effect which is caused by
utilizing a periodic assumption of the training samples to efficiently learn a clas-
sifier. To address the boundary effect, SRDCF [7] is proposed by introducing the
spatially regularized into the learning of correlation filter to penalize the filter
coefficients near the boundary. In CSR-DCF [24], spatial reliability map is con-
structed to adjust the filter support to the part of object suitable for tracking.
To adapt the size variation, several adaptive scale processing tracker [5,23] are
investigated. Danelljan et al. [5] utilize the two correlation filters to capture the
location translation and scale estimation, respectively. Li et al. [23] employ an
effective scale adaptive scheme and integrate the HOG features and Color Name
features to boost the tracking performance.

In addition, Danelljan et al. [8] utilize continuous convolution to integrate
multi-resolution feature maps. The factorized convolution operator and the gen-
erative sample space model are introduced into tracking [6] for addressing the
over-fitting and computational complexity. CFnet [32] is the first to introduce
the correlation filter into a deep neural network as a differentiable layer. Sun et
al. [29] treat the filter as the element-wise product of a base filter and a reliabil-
ity term to learn the discriminative and reliable information for improving the
tracker’s accuracy and robustness.

3 Review of Correlation Filters Tracking

In this section, we simply introduce the classical correlation filter tracking frame-
work. Given the training set T = [(x1, y1), (x2, y2), . . . (xn, yn)], we find a linear
regression function h(x) = wTx that minimizes the squared error over samples
xi and their regression targets yi. The model can be written as follows:

min
w

∑

i

(h(xi) − yi)2 + λ‖w‖2 (1)

where λ is a regularization parameter that controls overfitting. Equation (1) has
a closed-form, which is given by [26]

w = (XTX + λI)−1XTy. (2)

where X is circulant matrix generated by the base sample x, I is identity matrix.
The per row of circulant matrix X is one virtual sample xi obtained through the
cyclic shift of the base sample x. Let y = [y1,y2, ...,yn]T is a regression target
of samples X. Each element yi is a regression target of xi.

To calculate in the Fourier domain, the solution (2) is transformed into the
complex version as follows:

w = (XHX + λI)−1XHy. (3)

where XH is the Hermitian transpose, that is the transpose of the complex-
conjugate of X, XH = (X∗)T . The circulant matrix X can be expressed as
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diagonal of x by the Discrete Fourier Transform (DFT) [12]:

X = F diag(x̂)FH (4)

where x̂ denotes the DFT of x, that is x̂ = F(x), diag(x) denotes the diagonal
matrix of a vector x. F is a constant matrix that does not depend on the
generating vector x, as F(z) =

√
nFz. The notation n is the size of the generating

vector x. From now on, we will alway use a hat â as shorthand for the DFT of
vector a.

The property (4) of circulant matrix can be applied to the solution (3), which
is expressed as follows:

ŵ =
x̂∗ � ŷ

x̂∗ � x̂ + λ
(5)

where � and the fraction denote element-wise product and division, respectively.
And x∗ represents the complex-conjugate of x.

The Eq. (1) can be transformed into dual domain. The dual objective function
can be written as follows:

min
α

1
4λ

αTXXT α +
1
4
αT α − αTy (6)

where α is the dual variable. The two solutions from the objective function (1)
and (6) are related by w = XT α

2λ . Here, for clarity and avoiding the calculation
of cyclic matrix, the dual form is rewritten as:

min
α

1
4λ

αTC (x)C (x)T α +
1
4
αT α − αTy (7)

where C (x) denotes the cyclic matrix generated by the base sample x. The
variable α can be optimized efficiently in the Fourier domain:

α̂ =
ŷ

1
2λ x̂

∗ � x̂ + 1
2

(8)

where the fraction denote element-wise division.
The final response map φ is calculated through the following equation:

φ = F−1(ŵ � x̂) = F−1(k̂x̂ẑ � α̂) (9)

where F−1 denotes the inverse operation of DFT, k̂
x̂ẑ

is the kernel of training
samples x and candidate patches z. Then we can localize the target in current
frame through the response map.

CF trackers usually employ several hand-craft features (e.g. HOG features,
Color Name features) or deep learning features to represent the object for robust
tracking. However, these features might be polluted by noises or corruptions.
According to Eqs. (8) and (9), noises in features will influence the learned appear-
ance model and filter and thus limit the tracking performance. As shown in Fig. 2,
DCF and DCFour can both work well when the tracked object has not noises.
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However, DCF loses the tracked object but the DCFour can successfully track
the object when the object includes the noises. It illustrates that noises influ-
ence the learned filters and then limit the trackers performance. Therefore, we
propose a noise-aware correlation filter tracking algorithm to mitigate the noises
effect on filters. In next section, we will mainly introduce how the algorithms
works in correlation filter tracking framework.

4 Methods

In this section, we give a detailed description about how to learn jointly noise-
aware filter and “clean” feature through feature decomposition for suppressing
the influence of noises.

4.1 Noise-Aware Correlation Filter

Objects can be represented using hand-craft features (e.g. HOG features [10],
Color Name features [33]). Besides the hand-craft features, the deep features
extracted from the VGG model [27] also are applied to represent the object.
However, whether hand-craft features or deep features, they may be polluted by
noises or corruptions. RPCA [3] has a powerful capability to suppress noises or
corruptions. But the optimization of RPCA refers to singular value decompo-
sition (SVD). And SVD has high computation complexity and extremely time
consuming. It influences the efficiency of trackers. Therefore, we propose a sim-
ple and efficient feature decompose algorithms, which decomposes the feature x
into the “clean” feature z and noises e. And we impose the sparse constraint on
noises and do not impose the low-rank constraint on the “clean” feature. The
learned “clean” feature is used to optimize the noise-aware filter for mitigate
noises effects.

x = z + e (10)

The Eq. (10) is incorporated into CF tracking framework to jointly opti-
mize variables. The “clean” feature z is used to optimize the noise-aware filter
and make the filter more robust. The dual form model (7) can be reformulated
as Eq. (11), which can learn the “clean” features and the noise-aware filter to
improve the accuracy and robustness.

min
α,z,e

1
4λ

αT C(z)C(z)T α +
1
4
αT α − αTy + β‖e‖0

s.t. x = z + e
(11)

where λ is a regularization parameters that controls overfitting, and β is balanced
parameter.

Because the l0 norm is non-convexity, it is difficult to directly optimize the
Eq. (11). To overcome the obstacles, we will use convex relaxation to relax the
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non-convex sparsity terms into the convex sparsity terms. We replace the l0 norm
with l1 norm using the convex relaxation. Thus, the Eq. (11) can be relaxed as:

min
α,z,e

1
4λ

αTC (z)C (z)T
α +

1
4
αT α − αTy + β‖e‖1

s.t. x = z + e
(12)

Although the Eq. (12) seems complex and is not joint convex, subproblem of
each variable is convex by fixing other variables and has a closed-form solution.
Therefore, the model can be optimized by the ADMM (alternating direction
method of multipliers) algorithm [2]. As demonstrated in the experiments, the
parameters of Eq. (12) are easy to adjust, and the tracking performance is insen-
sitive to parameter variations.

4.2 Optimization

In this section, we mainly introduce how to solve the objective function (12).
Although the variables of the (12) are not joint convex, the subproblem of each
variable with others fixed is convex and has a closed-form solution. The ADMM
is a effective solver of the problems like (12). By introducing augmented Lagrange
multipliers, the optimization function (12) can be written as the following aug-
mented Lagrange function:

L(α,z,e) =
1
4λ

αTC (z)C (z)T
α +

1
4
αT α − αTy + β‖e‖1

+
μ

2
‖x − z − e +

p
μ

‖22 − 1
2μ

‖p‖22
(13)

where μ > 0 is the penalty parameter and p is the Lagrangian multipliers.
The ADMM method updates one of the variables by minimizing L with other
variables fixed. By updating these variables iteratively, the convergence can be
guaranteed [2]. Besides the Lagrangian multipliers p, there are three variables
that need to be updated, including α, z, e. The closed form solution of each
subproblems are as follows.

Update α (with others fixed): The optimization (13) with respect to the variable
α can be formulated as follows:

α = argmin
α

1
4λ

αTC (z)C (z)T
α +

1
4
αT α − αTy (14)

For calculating the variable α, we take the derivative of the α-subproblem
(14) and set it to 0. The variable α has the closed-form solution. With some
algebra, the closed-form solution of the variable α can be formulated as follows:

α = (
1
2λ

C (z)C (z)T +
1
2
I)−1y (15)

where I is the identity matrix. The amount of computation cost of Eq. (15) is
large, mainly from matrix inverse and multiplication in spatial domain. For the
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fast operation in Fourier domain, the property (4) of cyclic matrix is introduced
into the solution (15). The variable α is updated with only the base sample as
follows:

α̂k+1 =
ŷ

1
2λ (ẑ∗)k � ẑk + 1

2

(16)

where the fraction denotes the element-wise division. Finally, the α can be
obtained via α = F−1(α̂).

Update z (with others fixed): The z is updated through solving the subprob-
lem (17) corresponding to z with the closed-form solution.

z = argmin
z

1
4λ

αTC (z)C (z)T
α +

μ

2
‖x − z − e +

p
μ

‖22 (17)

To solve and calculate efficiently in Fourier domain, the Eq. (17) is formulated
as follows by Parsevaal’s theorem:

ẑ = argmin
ẑ

1
4λ

α̂Hdiag(ẑ)diag(ẑ∗)α̂ +
μ

2
‖x̂ − ẑ − ê +

p̂
μ

‖22 (18)

where diag(z) denotes the diagonal matrix of a vector z. With some algebra, the
first term of Eq. (18) can be transformed as the following forms:

ẑ = argmin
ẑ

1
4λ

(α̂ � ẑ)H(α̂ � ẑ) +
μ

2
‖x̂ − ẑ − ê +

p̂
μ

‖2F (19)

where the derivative of (α̂ � ẑ)H(α̂ � ẑ) is 2(α̂∗ � α̂� ẑ) with some algebra. The
solution of ẑ is obtained by setting the derivative of (19) to 0.

ẑk+1 =
μ(x̂ − êk) + p̂k

1
2λ (α̂∗)k+1 � α̂k+1 + μk

(20)

where fraction denotes the element-wise division. Finally, the “clean” feature z
can be obtained using the formula: z = F−1(ẑ).

Update e (with others fixed): The optimization (13) with respect to the variable
e is formulated as follows:

e = argmin
e

β‖e‖1 +
μ

2
‖x − z − e +

p
μ

‖22 (21)

The noise e is obtained by the soft-thresholding (or shrinkage) method [4] with
closed-form solution:

ek+1 = S β

μk
(x − zk+1 +

pk

μk
) (22)

where S β
μ
(x) is the soft-thresholding operator for a vector x with parameter β

μ .
Here, the S β

μ
(x) can be calculated through the Eq. (23).

S β
μ
(x) = (sign(x)) � (max(0, |x| − β

μ
)) (23)
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Algorithm 1. Optimization Procedure to Equation(13)
Require:

The object feature matrix x, and the parameter β, λ, and μ;
Set z0 = x, p0 = e0 = 0, α0 = 1, μ0 = 5, μmax = 20, ρ = 3, τ = 10−10,
maxIter = 3, and k = 0.

Ensure: α, z, and e.
1: while not converged do
2: Update zk+1 by Equation(20);
3: Update ek+1 by Equation(22);
4: Update αk+1 by Equation(16);
5: Update Lagrange multipliers as followings:
6: pk+1 = pk + μ(xk+1 − zk+1 − ek+1);
7: Update μk+1 by μk+1 = min(μmax, ρμk);
8: Update k by k = k + 1;
9: Check the convergence condition: the maximum element changes of z, e, and α

between two consecutive iterations are less than τ or the maximum number of
iterations reaches maxIter.

10: end while

Besides the above variables, the Lagrange multiplier y is updated by following
the Eq. (24):

pk+1 = pk + μk(x − zk+1 − ek+1) (24)

Since each subproblem of (13) is convex, we can guarantee that the limit point
by our algorithm satisfies the Nash equilibrium conditions [35]. The details of
optimization procedure are shown in Algorithm1.

4.3 Tracking

In this section, we briefly introduce the process of the localization and update
steps of the proposed algorithm.

Localization. Features are extracted from the searching area in current frame.
We employ the learned variables z, α in previous frame to locate the object in
current frame. The response map can be obtained as follows:

φ = F−1(k̂x̂ˆ̄z � α̂) (25)

where k̂x̂ˆ̄z denotes the kernel between ˆ̄z and ẑ, and the ˆ̄z represents the learned
target appearance model using the “clean” feature, the x̂ denotes the feature in
current frame. We locate the tracked object using the response map.

Learning-Update. The searching area is extracted in current frame. The
extracted feature from searching area are feed into the Eq. (13) to optimize the
dual variable and the “clean” feature. For capturing the variation of tracked tar-
get’s appearance, the dual variable and the target appearance model are updated
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by an autoregressive model with learning rate. The updated strategy of dual
variable α and appearance model ˆ̄z follows the following formulation.

α̂t = (1 − η)α̂t−1 + ηα̂

ˆ̄z
t = (1 − η)ˆ̄zt−1 + ηẑ

(26)

where η is learning rate. According to the above solution procedure, it does not
refers to the large amount of computation operations like matrix inverse.

5 Experiments

In this section, we mainly introduce the implementation details of our model,
evaluation datasets and evaluation metrics, and the analysis of experimental
results compared with baseline and other state-of-the-art trackers in public
benchmark.

5.1 Experimental Setup

Implementation Details and Parameters: To demonstrate the effectiveness
of our model, we select the two different baseline trackers to implement the
model. They are dual correlation filter methods (DCF) [15] based on hand-craft
features and HCF [25] based on the deep features. The two baseline models both
employ the dual model to optimize the problem. Firstly, the implementation
details of embedding our model in DCF (DCFour) are introduced. Standard
HOG [10] descriptors are used to represent the object in DCF. We only embedded
the feature decomposition model in DCF to jointly learn noise-aware filters and
the “clean” feature for improving tracking performance. The β and λ in Eq. (13)
is set to 0.005 and 0.1, respectively.

Next, we mainly introduce the implementation details of embedding our
model in HCF. Ma et al. [25] extract three layers deep features from
VGGNet [27], that are conv4,conv3-4 and conv5-4. The three convolution fea-
tures independently learn the filter and the appearance model. The final response
map is fused by three different response maps obtained by the three convolu-
tion features. We only implement noise-aware correlation filter model based on
different convolution layers. The β and λ in Eq. (13) is set to 0.01 and 1e-4,
respectively. The experiments are carried out on a PC with an Intel i7 4.2 GHz
CPU and 32G RAM.

As seen from the above section, the parameter settings for DCFour and
HCFour have great discrepancy, but this discrepancy is considered reasonable
because DCFour and HCFour are different models. All parameters are optimal
by varying them on a certain scope. Moreover, when we slightly adjust the
parameters, tracking performance only change a little and Table 1 shows the
results of the proposed method DCFour and HCFour with different parameters.

Datasets and Evaluation Metrics: Our method is evaluated on benchmark
dataset: OTB-2013 [34] with 50 sequences. The images are annotated with
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Table 1. The precision rate (PR) of the proposed method DCFour and HCFour with
different parameters.

Param Setting PR Param Setting PR Param Setting PR Param Setting PR

HCFour λ 1e-2 0.888 β 0.005 0.893 DCFour λ 0.05 0.724 β 0.001 0.728

1e-3 0.890 0.01 0.895 0.1 0.739 0.005 0.739

1e-4 0.895 0.02 0.892 0.2 0.735 0.01 0.728

ground truth bounding boxes and various visual attributes. For the OTB-2013
dataset, we employ the one-pass evaluation (OPE) and use two metrics: pre-
cision rate (PR) and success rate (SR). PR is the percentage of frames whose
output location is within the given threshold distance of ground truth. That is
to say, it computes the average Euclidean distance between the center locations
of the tracked target and the manually labeled ground-truth positions of all the
frames. SR is the ratio of the number of successful frames whose overlap between
predicted and ground truth bounding box is larger than a threshold. In the leg-
end, we report the area under curve (AUC) of success plot and precision score
at 20 pixels threshold corresponding to the one-pass evaluation for each tracking
method.

Compared Trackers: To identify the effectiveness of our model, we evaluate
the proposed model with comparisons to several state-of-the-art methods for
evaluations. Several trackers based on correlation filter are selected to evaluate
the performance, including DSST [5], KCF [15], CSR-DCF [24], SRDCF [7] and
SAMF [23]. In addition, we also select several representative trackers to compare
with our methods, Struck [13], TLD [16], SCM [36].

Table 2. The Mean FPS compared with DCF, KCF, DSST, SAMF, CSR-DCF
trackers.

DCFour DCF KCF DSST SAMF SRDCF CSR-DCF

Mean FPS 77.52 564.64 374.16 60.30 11.49 7.81 18.18

5.2 Tracking Speed

The tracking speed is crucial in many realistic tracking applications. We therefore
generalize the tracking speed about DCF and DCFour in Table 2. In addition,
Table 2 enumerates other trackers based on correlation filter, including DCF,
KCF, DSST, SAMF, SRDCF, CSR-DCF. It is verified that DCFour performs at
about 77.52 FPS (frames per second) to achieve real-time tracking (equivalent
to approximately 20 FPS) although it achieves the lower tracking speed than
DCF.
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RPCA [3] has a powerful capability to suppress noises or corruptions. RPCA
is a NP-hard problem because it simultaneously involves rank and �0. To over-
come these obstacles, a convex relaxation of the problem is proposed, we use ‖·‖∗
and �1 to replace rank and �0, respectively. It also should be note that although
the convex relaxations are leveraged, the obtained problem is still non-convex.
Fortunately, this problem is convex with respect to each of them when others
are fixed. ADMM algorithm [2] has proven to be an efficient and effective solver
of RPCA. However, it involves SVD in the process of iterative solution using
ADMM. SVD has high computational complexity and extremely time consum-
ing. Although the proposed method is also optimized by ADMM, SVD is not
involved in the optimization.

Table 3. The precision rate (PR%) and success rate (SR%) on OTB-2013 over DCF,
DCFour, HCF, and HCFour, DSST, SAMF, SRDCF, CSR-DCF, Struck, TLD, and
SCM

DCF DCFour HCF HCFour DSST KCF SAMF SRDCF CSR-DCF Struct TLD SCM

PR 72.8 73.9 89.1 89.5 73.7 74.0 82.3 82.8 82.3 65.6 60.8 64.9

SR 50.8 51.4 63.5 65.4 55.4 51.4 60.5 60.8 59.6 55.9 52.1 61.6

5.3 Comparison with Baseline Methods

We compare our methods with the baseline trackers to demonstrate the strength
of our proposed methods in this part.

Overall Evaluation: To illustrate the effectiveness of our proposed model, we
implement the model in DCF and HCF, named DCFour and HCFour, respec-
tively. Table 3 shows the overall evaluation results between DCF, HCF and
DCFour, HCFour in OTB-2013. Benefiting from our proposed model, the DCFour

outperforms DCF in PR/SR by 1.1%/0.6% and 0.4%/1.9%, respectively. HCFour

achieves slight improvement over HCF in PR. But HCFour exceeds 1.9% in SR
over HCF. This evaluative performance illustrates that the feature decomposi-
tion scheme can improve the CF tracking performance. Table 4 represents track-
ing performance on several challenging factors between our trackers and the
baseline trackers.

Attribute-Based Evaluation: We further analyze the tracking performance
under different challenging attributes (e.g., background clutter (BC), occlusion
(OCC), fast motion (FM)) annotated in the benchmark OTB-2013. Table 4
shows PR and SR of one-pass evaluation (OPE) for ten main challenging fac-
tors. We mainly take DCFour and DCF as an example to analysis the evaluative
results. According to Table 4, we have the following observations.

First, our model is effective in handling motion blur (MB). In general, MB
results in appearance degradation. And how to learn a good feature is critical to
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Table 4. Attributed-based PR/SR on OTB-2013 compared with DCF, HCF, SRDCF,
CSR-DCF, SAMF, KCF, DSST trackers.

Trackers FM BC SV MB IV OCC LR OPR DEF IPR

DCF 55.9/44.171.9/52.265.4/41.658.8/47.069.9/48.1 72.6/50.2 71.2/48.863.2/54.474.0/53.170.4/48.7

DCFour 59.9/45.475.8/53.867.5/42.465.0/49.272.5/49.1 74.4 /51.237.8/31.072.7/49.574.1/53.572.8/50.1

HCF 78.4/58.388.3/63.488.3/60.084.6/62.484.3/59.9 87.8/64.1 89.7/60.286.8/61.588.0/65.986.7/60.1

HCFour 79.0/61.485.6/62.888.3/62.980.5/61.985.7/ 61.888.1/66.4 87.5/62.387.5/63.487.3/65.185.6/61.2

SRDCF 77.2/58.481.4/58.877.7/57.578.2/59.279.0/58.6 83.7/60.9 40.4/33.883.3/60.084.9/62.874.8/54.0

CSR-DCF68.8/53.077.4/55.471.2/51.774.6/57.475.5/56.1 78.7/58.4 40.2/32.381.3/57.787.5/64.178.2/55.7

SAMF 68.2/53.572.7/55.478.7/55.767.2/53.969.6/52.0 85.3/62.1 55.4/43.379.7/57.575.2/58.475.4/54.8

KCF 60.2/46.075.3/53.567.9/42.765.0/49.772.8/49.4 74.9/51.4 38.1/31.272.9/49.674.0/53.472.5/49.7

DSST 51.7/43.569.4/51.773.0/54.154.7/46.473.5/56.3 71.6/53.4 49.7/40.973.3/53.566.0/51.076.5/56.0

address the MB challenge. The DCFour achieves superior performance in PR/SR
by 6.2%/2.2% over DCF. In comparison with the baseline, the excellent perfor-
mance in MB illustrates DCFour can learn the “clean” feature to better represent
objects. Second, our method also achieve excellent performance in handling BC
and OCC. BC and OCC lead to features to be disturbed by the background.
As shown in Table 4, DCFour outperforms DCF in PR/SR in 3.9%/1.6% and
1.8%/1.0% over BC and OCC, respectively. It demonstrates that the learned
“clean” feature and noise-aware filter help to suppress the interference of noises.
Finally, our method also represents the powerful strength on scale variation (SV)
and illumination variation (IV). The critical important point is how to capture
the variation of objects caused by the two challenging factors. For SV and IV,
DCFour trackers both achieve the superior performance in PR/SR over baseline.
Compared the baseline, the DCFour promotes 2.1%/0.8% and 2.6%/1.0% in SV
and IV. It demonstrates our model can capture the variation of objects to learn
the appearance model and the robust filter.

In addition, our method also achieves excellent performance in other challeng-
ing factors (fast motion (FM), low Resolution (LR)) and several factors (in-plane
rotation (LPR), out-of-plane rotation (OPR)). In summary, the learned feature
can better represent the object and optimize the filter.

5.4 Comparison with State-of-the-Art Trackers

Overall Evaluation: For comprehensive evaluation, we select several state-of-
the-start trackers, including DSST [5], KCF [15], CSR-DCF [24], SRDCF [7],
SAMF [23], Struck [13], TLD [16] and SCM [36] to compare with our proposed
methods. The Table 3 represents the evaluation results between our proposed
model and comparison trackers. As shown in Table 3, DCFour outperforms DSST
in PR/SR while DCF achieves lower performance than the DSST in PR/SR.
DCFour achieves comparable performance in PR/SR against KCF. This obser-
vation strongly illustrates that the proposed feature decomposition can help to
improve the performance of CF trackers.
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Attribute-Based Evaluation: We also select several trackers, including
DSST [5], KCF [15], CSR-DCF [24], SRDCF [7] and SAMF [23] to evaluate
the performance on different challenging attributes. Table 4 shows PR and SR of
one-pass evaluation (OPE) for ten main challenging factors in OTB-2013 bench-
mark, including fast motion (FM), background clutter (BC), motion blur (MB),
deformation (DEF), illumination variation (IV), low resolution (LR), occlusion
(OCC) and scale variation (SV), respectively.

In this experimental analysis, we mainly focus on DCF and DCFour to ana-
lyze the performance of this proposed algorithm. According to Table 4, we have
the following observations. The first conclusion is that the proposed feature
decomposition can benefit the CF trackers to learn a “clean” feature to deal
with the MB. In OTB-2013, DCF is lower than DSST in PR but the DCFour is
greater than DSST and even outperforms KCF in PR. Although the performance
of DCFour is still lower than SAMF, CSR-DCF, SRDCF, HCF, it is explained
that DCFour is only based on the DCF to incorporate feature decomposition
without any improvement while these extension trackers employ several tricks
such as rich features and updating strategy besides their own improvement. The
second conclusion is that our method also help to improvement the tracker’s per-
formance in BC and OCC. According to Table 4, DCFour even outperforms the
SAMF, KCF and DSST in PR for BC. Finally, it is observed that our method
also improves the strength in handling SV and IV. In OTB-2013 benchmark, the
performance of DCFour outperforms the DSST in PR/SR while the performance
of DCFour is still lower than these trackers that have scale processing, including
DSST, SAMF, SRDCF, CSR-DCF, HCF. Because the DCFour have no the scale
process model and only mixes the feature decomposition scheme to learn “clean”
feature and noise-aware filter. In summary, the proposed feature decomposition
learns more robust filter and “clean” feature to improve the performance.

6 Conclusion

In this paper, feature decomposition is introduced into correlation filter tracking
to learn “clean” feature and noise-aware filter for improve the tracking accuracy
and robustness. The “clean” feature and noise-aware filter are jointly optimized
in an unified framework to mitigate noises effect in filters and features. The
proposed tracking framework utilizes the learned “clean” feature to represent
objects and the noise-aware filter to classify the object from background. As a
result, it has the advantages of several existing correlation filter trackers such as
suppressing the influence of noises. Both qualitative and quantitative evaluations
on challenging datasets demonstrate that the effectiveness of proposed tracking
algorithm against baseline methods.
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