Chapter 8 ®)
A Coupled Fixed Point Problem Under e
a Finite Number of Equality Constraints

Let (E, | -|) be a Banach space with a cone P. Let F,¢p, : EXE — E (i =
1,2,...,r) be a finite number of mappings. In this chapter, we provide suffi-
cient conditions for the existence and uniqueness of solutions to the problem: Find
(x,y) € E x E such that

F(.X, )’) =X,
F(y,x) =y, 8.1
@i(x,y)=0g, i=1,2,...,r,

where O is the zero vector of E. The main reference for this chapter is the paper [4].

8.1 Preliminaries

At first, let us recall some basic definitions and some preliminary results that will be
used later. In this chapter, the considered Banach space (E, || - ||) is supposed to be
partially ordered by a cone P. Recall that a nonempty closed convex set P C E is
said to be a cone (see [2]) if it satisfies the following conditions:

Pl) A>0,xe€ P=— Ax € P;
P2) —x,xe P=— x=0g.

We define the partial order <p in E induced by the cone P by

x,y))eEXE, x<py&=y—xecP.

Definition 8.1 ([1]) Lety : E x E — E be a given mapping. We say that ¢ is level
closed from the right if for every e € E, the set
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levp_,(e) :=={(x,y) e EX E: ¢(x,y) <p e}
is closed.

Definition 8.2 Lety : E x E — E beagiven mapping. We say that ¢ is level closed
from the left if for every e € E, the set

levp. ,(e) :={(x,y) € E X E: e <p ¢(x, y)}

is closed.

We denote by ¥ the set of functions i : [0, o0) — [0, co) satisfying the condi-
tions:

(¥1) v is nondecreasing;
(¥,) Forallt > 0, we have

> vh) < oo
k=0

Here, ¥* is the kth iterate of .
The following properties are not difficult to prove.

Lemma 8.1 Lety € ¥. Then

(i) v(@) <t t>0;
(ii) ¥(0) =0;

(iii) ¥ is continuous at t = 0.

Example 8.1 As examples, the following functions belong to the set ¥':
Y(t) =kt ke (,1).

2 it 0<t <1,
1”(t)—{l/z if £ > 1.

_|t/2 if 0<r<l,
‘/’(’)_{t—l/:s if £> 1.

Now, we are ready to state and prove the main results of this chapter. This is the
aim of the next section.

8.2 Main Results

Through this chapter, (E, || - ||) is a Banach space partially ordered by a cone P and
O denotes the zero vector of E.
Let us start with the case of one equality constraint.
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8.2.1 A Coupled Fixed Point Problem Under One Equality
Constraint

We are interested with the existence and uniqueness of solutions to the problem: Find
(x,y) € E x E such that

F(x,y) =x,
F(y,x) =y, (8.2)
‘P(x, }’) =OE7

where F, ¢ : E x E — E are two given mappings.
The following theorem provides sufficient conditions for the existence and unique-
ness of solutions to (8.2).

Theorem 8.1 Let F, ¢ : E x E — E be two given mappings. Suppose that the fol-
lowing conditions are satisfied:

(i) @ is level closed from the right.
(ii) There exists (xg, yo) € E x E such that ¢(xg, yo) <p Of.
(iii) For every (x,y) € E x E, we have
@(x,y) <p 0 = @(F(x,y), F(y,x)) =p Of.
(iv) Forevery (x,y) € E x E, we have
(p(-x9 y) >p OE = (p(F(-xv )’), F(yyx)) =p OE
(v) There exists some W € W such that

£, v) = Fx, I+ 1FQy.x) = Fov,wll < ¢ (lu = x|+ lv=yID.

forall (x,y), (u,v) € E x Ewitho(x,y) <p Og, p(u,v) >p Og.

Then (8.2) has a unique solution.

Proof Let (xo, yo) € E x E be such that
@(x0, y0) <p Og.
Such a point exists from (ii). From (iii), we have
@(x0, y0) <p O = @(F (x0, y0), F(y0,%0)) =p Of.
Define the sequences {x,} and {y,} in E by

Xn+1 = F(x,, ))n)s Ynt+1 = F()’n, Xp), n= 0,1,2,...
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Then we have
@(x1,y1) =p Og.

From (iv), we have
o(x1,y1) =p 0 = @(F(x1, y1), F(y1,x1)) <p O,

that is,
@(x2, y2) <p Og.

Again, using (iii), we get from the above inequality that
@(x3, y3) =p Of.
Then, by induction, we obtain
@20, Y2u) <p O, @(x2u41, Your1) 2p Op, n=0,1,2,... (3.3)
Using (v) and (8.3), by symmetry, we obtain

||xn+1 _xn” + ”ynJrl - yn” = 1/f (”-xn —xn—1|| + ”yn - )’n—1||) , n= 17 29 37 cee

(8.4)
From (8.4), since ¥ is a nondecreasing function, for every n = 1, 2, 3, .. ., we have
xns1 = Xull + 1 Y01 = Yull =¥ Ulxn — X1l + 10 = Va1l
< lﬂz (”xn—l - xn—2|| + ”yn—l - yn—2||)
< ¥" (llxr = xoll + lly1 — yolD) - (8.5)

Suppose that
X1 — xoll + lyr — yoll = 0.

In this case, we have
xo =x1 = F(x0,y0) and yo = y1 = F(yo, Xo)-

Moreover, from (iii), since ¢(xg, yo) <p O, we obtain ¢(x1, y;) = ¢(xo, yo) > Og.
Since P is a cone, the two inequalities ¢(xg, yo) <p Or and ¢(xo, yo) >p Of yield

@(x0, y0) = Of.

Thus, we proved that in this case, (xg, yo) € E x E is a solution to (8.2).
Now, we may suppose that ||x; — xo|| + [|[y1 — yoll 7# 0. Set
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§ = llx1 —xoll + Iyt — yoll > 0.
From (8.5), we have
xne1 —xull < ¥"(), n=0,1,2,... (8.6)

Using the triangular inequality and (8.6), forallm =1, 2, 3, ..., we have

||X,, - xn+m” < ”xn — Xn+1 ” + ”anrl - xn+2” + -+ ||'xl’l+M71 — Xn+m ”
<Y"@) + Y TE) 4+ + Y T)
n+m—1

= Y O
D oYE).

On the other hand, since Y ;- ¥*(§) < oo, we have

IA

ZW((S)—)Oasn—) 00,

i=n

which implies that {x, } is a Cauchy sequence in (E, || - ||). The same argument gives
us that {y,} is a Cauchy sequence in (E, || - ||). As consequence, there exists a pair
of points (x*, y*) € E x E such that

lim [x, —x*|| = lim [y, — y*| = 0. 8.7)

n—oo n—oo
From (8.3), we have

©(x27,y22) <pO0g, n=0,1,2,...,

that is,
(X210, y2u) € levo_,(0g), n=0,1,2,...,

Since g is level closed from the right, passing to the limit as n — oo and using (8.7),
we obtain
(X*a y*) S levgofp(OE)5

that is,
p(x*, y*) <p 0. (8.8)

Now, using (8.3), (8.8), and (v), we obtain
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| F(xant1s Yous1) — F* yO) + IF O™, x*) — F(Yant1, X2n4+1) |l
<V (X201 — X5+ Iy2ns1 = ¥*I1)

foralln =0, 1, 2, ..., which implies that
%2042 = F Gy + IFO* x%) = yons2 I<¥ (12041 — X1 + l1y201 — ¥¥I)

foralln =0, 1, 2, ... Passing to the limit as n — oo, using (8.7), the continuity of
Y at 0, and the fact that ¢ (0) = O (see Lemma 8.1), we get

lx* = F&™, yO1 + 1F G5 x5 = y*l =0,

that is,
x*=F(x*, y*) and y* = F(Qu", x%).

This proves that (x*, y*) € E x E is a coupled fixed point of F'. Finally, using (8.8)
and the fact that (x*, y*) is a coupled fixed point of F, it follows from (iii) that

e(x*,y*) =p Of. (8.9)

Then (8.8) and (8.9) yield
(", y*) = 0.

Thus, we proved that (x*, y*) € E x E is a solution to (8.2). Suppose now that
(u*,v*) € E x E isasolution to (8.2) with (x*, y*) # (u*, v*). Using (v), we obtain

™ —x* 1+ 1" = VoI < g dlu® —xFI -+ y" = v
Since |lu* — x*|| + ||y* — v*|| > 0, from (i) of Lemma 8.1, we have
Yl = x [+ 1" =D < llu® = x* 1+ [ly* = vl

Then
™ — ™| 4 1Iy* = V¥ < llu® = x*[| + [ly* = v,

which is a contradiction. As consequence, (x*, y*) is the unique solution to (8.2).

Remark 8.1 Observe that the conclusion of Theorem 8.1 is still valid if we replace
condition (i) by the following condition:

(1”) ¢ is level closed from the left.

In fact, from (8.3), we have

@(Xont1, Yony1) =p 0g, n=0,1,2,...,

that is,
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(X2141, Y2ut1) € leve.,, n=0,1,2,...
Passing to the limit as n — oo and using (8.7), we obtain
9", ") =p Og. (8.10)
Using (8.3), (8.10) and (v), we obtain
1 F (X2, yon) — F&* y) 4+ 1 FG*, x*) = F(yon. x2)ll < ¥ (Ixon — x* 1 + ly2n — ¥*1I)
foralln =0, 1,2, ..., which implies that
2041 = F O,y + IFO* x) = yausa |l < ¥ (20 = X1 4 lly2n = ¥¥1)
foralln =0, 1, 2, ... Passing to the limit as n — oo, we get
[x* = F&™, yO1 + I1F G5 x™) — y*[ =0,

which proves that (x*, y*) € E x E is a coupled fixed point of F. Using (8.10) and
the fact that (x*, y*) is a coupled fixed point of F, it follows from (iv) that

p(x*, ") =p Og. (8.11)

Then (8.10) and (8.11) yield
e(x*, y*) = 0.

Thus, (x*, y*) € E x E is a solution to (8.2).
8.2.2 A Coupled Fixed Point Problem Under Two Equality
Constraints

Here, we are interested with the existence and uniqueness of solutions to the following
problem: Find (x, y) € E x E such that

F(x,y) =x,
F(y,x) =y,

8.12
¢1(x, y) = O, (8.12)
@2(x,y) = 0g,

where F, @1, ¢, : E x E — E are three given mappings.
We have the following result.
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Theorem 8.2 Let F, ¢, ¢, : E X E — E be three given mappings. Suppose that
the following conditions are satisfied:

(i) @; (i =1,2)is level closed from the right.
(ii) There exists (xo, yo) € E x E such that ¢; (xo, y0) <p O (i = 1,2).
(iii) For every (x,y) € E x E, we have
0i(x,y) <pOp, i =1,2= @i(F(x,y), F(y,x)) 2p O, i = 1,2.
(iv) Forevery (x,y) € E x E, we have
@i(x,y) 2p0p, i =1,2 = @i(F(x,y), F(y,x)) <p O, i =1,2.
(v) There exists some € ¥ such that

IF@,v) = Fx, I+ I1F(y,x) = Fv,wll < ¥ (lu—x[[ +[lv—=yl,

f()rall (X, }’), (u7 V) € E x E with (pi('x’ y) =p OEv @i(’/" V) >p OE; i = 192

Then (8.12) has a unique solution.

Proof Let (xo, y9) € E x E be such that
@i(x0, y0) <p 0p, =12
Then from (iii), we have
@i (F(x0, y0), F(yo, X0)) =p Op, i=1,2.
Define the sequences {x,} and {y,} in E by
Xnt1 = FXns )y Yur1 = FOnyxn), n=0,1,2,...

We have
ei(xi,y1) =2p0g, 1=1,2.

Then from (iv), we obtain
@i(x2, y2) <p 0g, i=1,2.
Again, using (iii), we get from the above inequality that
i(x3,y3) >p 0, i=1,2.

Then, by induction, we obtain
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©i (X205 Y2u) <P O, @i(X2n11, Y2ur1) =p 0, i=1,2,n=0,1,2,...

Then, using (v), we obtain
X041 = Xnll + ynr1 = Yull = Uxn = X1l + lyn = yur ), n=1,2,3,...
Now, we argue exactly as in the proof of Theorem 8.1 to show that {x,} and {y,}
are Cauchy sequences in (E, || - ||). As consequence, there exists a pair of points
(x*, ¥*) € E x E such that

lim |x, —x*|| = lim ||y, — y*[| = 0.

n—oo n—oo
On the other hand, we have

(x2nvy2n)€leV§0iSP(OE)v i= 1’27 n=091727""

Since ¢; (i = 1, 2)is level closed from the right, passing to the limit as n — oo, we
obtain

(-X*9 y*) € leV(piSP(OE)9 l = 17 29

that is,
0;(x*, y) <pOp, i=1,2.

Then we have

I F(X2ng15 Yons1) — F v+ 1F ", x°) = F(yansts X204l
<V (X201 — X* I + Iy2ns1 = ¥*I1)

foralln =0, 1, 2, ..., which implies that
%2042 — F X5y + IF G, x%) = yangal < ¥ (201 — X5+ lly2er — ¥*11)
foralln =0, 1,2, ... Passing to the limit as n — oo, we get

Ix* = FO5 y9)I + IIF O™, x™) =y =0,

that is,
x*=F(x*, y") and y* = F(y*, x%).

This proves that (x*, y*) € E x E is acoupled fixed point of F. Since ¢; (x*, y*) <p
Of fori =1, 2, from (iii) we have

0 (F(x*, y"), F(y*, x*) =p 0, i=1,2,
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that is,
0 (x*, y) >p 0p, i=1,2.

Finally, the two inequalities ¢; (x*, y*) <p Og and ¢; (x*, y*) >p Og, i = 1, 2 yield
@i (x*, y*) = 0g, i = 1,2. Then we proved that (x*, y*) € E x E is a solution to
(8.12). The uniqueness can be obtained using a similar argument as in the proof of
Theorem 8.1.

Replace ¢, in Theorem 8.2 by —¢,, we obtain the following result.

Theorem 8.3 Let F, ¢, ¢, : E X E — E be three given mappings. Suppose that
the following conditions are satisfied:

(i) ¢ is level closed from the right and ¢ is level closed from the left.
(ii) There exists (xo, yo) € E x E such that ¢;(xo, yo) <p O and ¢,(xo, Yo) >,
Of.
(iii) For every (x,y) € E x E with ¢1(x,y) <p Og and ¢,(x, y) >p Og, we have

@1(F(x,y), F(y,x)) zp O, ¢2(F(x, ), F(y,x)) <p O.
(iv) Forevery (x,y) € E X E withg(x,y) >p O and ¢p2(x,y) <p Og, we have
o1 (F(x,y), F(y,x)) =p Og, ¢2(F(x, ), F(y,x)) Zp Of.
(v) There exists some € ¥ such that
[F,v) = Fx, DI+ 1FQ,x) = Fov,wll < ¢ (lu—xll+lv—=yl,

SJor all (x,y),(u,v) € ExE with ¢1(x,y) <pOg, ¢2(x,y) >p Og, ¢1
(u,v) 2p Op, ¢2(u,v) <p Of.
Then (8.12) has a unique solution.

Replace ¢; in Theorem 8.3 by —¢;, we obtain the following result.

Theorem 8.4 Let F, @1, ¢, : E x E — E be three given mappings. Suppose that
the following conditions are satisfied:

(i) @i (i =1,2)is level closed from the lefft.
(ii) There exists (xg, yo) € E x E such that ¢; (xo, yo) =p O (i =1, 2).
(iii) For every (x,y) € E x E, we have
<p,»(x, y) <pOg,i=12— (pi(F()C, y), F(y,x)) >p0p, i =1,2.
(iv) Forevery (x,y) € E x E, we have

ei(x,y)2p0g, i =1,2= ¢;(F(x,y), F(y,x)) <pO0g, i =1,2.
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(v) There exists some € W such that
I1F@u,v) = Fx, DIl + 1F(y,x) = Fv,w)l =¥ (lu— x|+ llv—yl,

forall (-x3 )’)7 (M,V) € E x E with ¢i(xa y) =p OEv (pi(uvv) >p OE: i = 11 2.

Then (8.12) has a unique solution.

8.2.3 A Coupled Fixed Point Problem Under r Equality
Constraints

Now, we argue exactly as in the proof of Theorem 8.2 to obtain the following existence
result for (8.1).

Theorem 8.5 Let F,¢; : E X E — E (i =1,2,...,r) ber + 1 given mappings.
Suppose that the following conditions are satisfied:

(i) @i (i=1,2,...,1)is level closed from the right.
(ii) There exists (xg, yo) € E x E such that ¢;(xo, yo) <p Og (i =1,2,...,7).
(iii) For every (x,y) € E x E, we have

pi(x,y)<pOg,i=1,2,..., r= @i (F(x,y),F(y,x))>p0g,i=1,2,...,r.

(iv) Forevery (x,y) € E x E, we have

eix,y)=pO0g,i=1,2,....r = ¢i(F(x,y), F(y,x)) <pOg,i=1,2,...r.

(v) There exists some Y € ¥ such that
1F@,v) = Fx, DI+ 1F Q. x) = Fo,wll < ¢ (lu—xIl+1v—yI,

for all (x,y),u,v) e ExE with ¢;(x,y)<pOg, ¢;(u,v) >p O,
i=1,2,...,r.

Then (8.1) has a unique solution.

8.3 Some Consequences

In this section, we present some consequences following from Theorem 8.5.
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8.3.1 A Fixed Point Problem Under Symmetric Equality
Constraints

Let X be a nonempty set and let F' : X x X — X be a given mapping. Recall that
that x € X is said to be a fixed point of F if F(x, x) = x.

Let F, ¢ : E x E — E be given mappings. We consider the problem: Findx € E
such that

F(x,x)=x,
{w(x,x) = 0. (8.13)

We have the following result.

Corollary 8.1 Let F,¢p : E x E — E be two given mappings. Suppose that the
following conditions are satisfied:

(i) o is level closed from the right.
(ii) @ is symmetric, that is,

ex,y)=¢(,x), (x,y)eExE.

(iii) There exists (xo, yo) € E x E such that ¢(xg, yo) <p Of.
(iv) Forevery (x,y) € E x E, we have

@(x,y) =p Op = @(F(x, ), F(y,x)) =p Of.
(v) Forevery (x,y) € E x E, we have
p(x,y) zp 0 = @(F(x,y), F(y,x)) <p Of.
(vi) There exists some W € ¥ such that
£, v) = Fx, DI+ 1F(,x) = Fv,wll < ¢ (lu = x|+ llv=yID,

forall (x,y), (u,v) € E x Ewitho(x,y) <p Og and ¢(u,v) >p Op.
Then (8.13) has a unique solution.

Proof From Theorem 8.1, we know that (8.2) has a unique solution (x*, y*) € E x
E. Since ¢ is symmetric, (y*, x*) is also a solution to (8.2). By uniqueness, we get
x* = y*. Then x* € E is the unique solution to (8.13).

LetF,9o; :EXE— E@{=1,2,...,r)ber + 1 given mappings. We consider
the problem: Find x € X such that

F(x,x) = x,
{ga,-(x,x):OE, i=1,2,...,r (8.14)
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Similarly, from Theorem 8.5, we have the following result.

Corollary 8.2 Let F,¢; : E X E — E (i =1,2,...,r) ber + 1 given mappings.
Suppose that the following conditions are satisfied:

(i) @i (i=1,2,...,r)is level closed from the right.

(ii) ¢; (i =1,2,...,r)is symmetric.
(iii) There exists (xo, yo) € E x E such that ¢;(xo, o) <p Og (i =1,2,...,r).
(iv) Forevery (x,y) € E X E, we have

i(x,y) <pOp, i=012,....r = ¢i(F(x,y), F(y,x)) 2p O, i =1,2,...,r.

(v) Forevery (x,y) € E X E, we have
0ix,y)>p0g,i=12,....r = ¢i(F(x,y), F(y,x)) <pOg,i=1,2,...r.

(vi) There exists some r € W such that
[F@,v) = Fx, I+ I1F(y,x) = Fv,wll < (lu—xl[+I[lv—-yl,

for all (-x’ y)s (Ms V) S ExFE Wlth (01'()(:, )’) SP OE? (pi(uvv) 21’ OE)
i=1,2,...,r.

Then (8.14) has a unique solution.

8.3.2 A Common Coupled Fixed Point Result

We need the following definition.

Definition 8.3 Let X be a nonempty set, /' : X x X — X and g : X — X be two
given mappings. We say that the pair of elements (x, y) € X x X is a common
coupled fixed point of F and g if

x=gx=F(x,y) and y=gy=F(y,x).

We have the following common coupled fixed point result.

Corollary 8.3 Let F : E x E — E and g : E — E be two given mappings. Sup-
pose that the following conditions hold:

(i) g is a continuous mapping.
(ii) There exists (xg, yo) € E x E such that

gxo <p xo and gyo <, Yo.
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(iii) For every (x,y) € E x E, we have

gx <px, gy <,y=gF(x,y) =p F(x,y), gF(y,x) =p F(y, x).
(iv) Forevery (x,y) € E x E, we have

gx zpx, 8y zpy = gF(x,y) <p F(x,y), gF(y,x) =p F(y,x).
(v) There exists some y € ¥ such that

I1F@,v) = Fx, DI+ I1F(,x) = FOo,wll < ¢ (lu—x[[+llv—yl),

forall (x,y),(u,v) € Ex Ewithgx <p x, gy <p yand gu >p u, gv >p V.
Then F and g have a unique common coupled fixed point.

Proof Let us consider the mappings ¢y, ¢, : E x E — E defined by
pi(x,y)=gx—x, (x,y)€eEXE

and
px,y)=gy—y, (x,y)€EXE.

Observe that (x, y) € E x E is a common coupled fixed point of F and g if and
only if (x, y) € E x E is a solution to (8.12). Note that since g is continuous, then
@; is level closed from the right (also from the left) for all i = 1, 2. Now, applying
Theorem 8.2, we obtain the desired result.

8.3.3 A Fixed Point Result

We denote by ¥ the set of functions Y @ [0, 00) — [0, 0o) satisfying the following
conditions:

) ¥ ev.
(¥,) Foralla, b € [0, 00), we have

V(@) +y(b) <yla+Db).
Example 8.2 As example, let us consider the function

[t fo<r<l,
‘“’)_{t—m ifr> 1

Itis not difficult to observe that i € ¥. Now, let us consider an arbitrary pair (a, b) €
[0, 00) x [0, 00). We discuss three possible cases.
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Case 1. If (a, b) € [0, 1) x [0, 1).

In this case, we have ¥ (a) + ¥ (b) = (a + b)/2. On the other hand, we havea + b €
[0,2).S0,if0 <a+b < 1,theny(a) + ¥ (b) = (a + b)/2 = ¥ (a + b). However,
ifl <a+b<2,theny(a+b)— v —yb)=(@+>b)/2—-1/3>0.

Case 2. If (a, b) € [0, 1) x [1, 00).
In this case, we have ¥ (a) + v (b) =a/2+b—-1/3<a+b—1/3=1(a+D).

Case 3. If (a, b) € [1, 00) x [1, 00).
In this case, we have (@) + y(b) =a+b—-2/3<a+b—1/3=1vy(a+Db).
Therefore, we have ¢ € W.

Note that the set ¥ is more large than the set ¥ The following example illustrates
this fact.

Example 8.3 Let us consider the function

_jr2 it 0<t <1,
‘/’(’)—{1/2 if £ > 1.

Clearly, we have ¥ € ¥. However,
YA+ =1/2<1=v¢y1)+ ),

which proves that i ¢ v,
We have the following fixed point result.

Corogary 84 Let T : E — E be a given mapping. Suppose that there exists some
Y € ¥ such that

N1Tu—Tx|| <¢¥(lu—x|), (@, x)eEXE. (8.15)

Then T has a unique fixed point.

Proof Let us define the mapping F : E x E — E by
Fx,y)=Tx, (x,y)e EXE.
Let g : E — E be the identity mapping, that is,
gx=x, xekLk.
From (8.15), for all (x, y), (u,v) € E x E, we have

ITu —Tx|| < ¥(lu—xI)
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and
1Ty =Tyl <¥v—yID.

Then
1Tu —Tx|| + 1Ty —Tvll < ¥ (lu—xID+vv—yD.

Using the property (E’z), we obtain
ITu —Tx|| + 1Ty = Tvl < ¥(lu — x|+ llv—=ylD, &, ), @ v)eExE.
From the definitions of F and g, we obtain
IF@u,v) = Fx, I+ I1F(y,x) = Fv,wll < (lu—xl[+[lv—ylD,

for all (x,y), (u,v) € E x E with gx <p x, gy <p y and gu >p u, gv >p v. By
Corollary 3.5, there exists a unique (x*, y*) € E x E such that

x*=Fx*, y)=Tx* and y* = F(*, x*) =Ty".
Suppose that x* # y*. By (8.15), we have
o =yl = 1Tx" = Ty*|l < ¥ (llx™ = y*) < llx™ = y*Il,

which is a contradiction. As consequence, x* € E is the unique fixed point of 7'.

Remark 8.2 Taking
y(t)=kt, t=0,

where k € (0, 1) is a constant, we obtain from Corollary 8.4 the Banach contraction
principle.

Finally, for other related results, we refer the reader to Jleli and Samet [3].
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