
Chapter 8
A Coupled Fixed Point Problem Under
a Finite Number of Equality Constraints

Let (E, ‖ · ‖) be a Banach space with a cone P . Let F, ϕi : E × E → E (i =
1, 2, . . . , r ) be a finite number of mappings. In this chapter, we provide suffi-
cient conditions for the existence and uniqueness of solutions to the problem: Find
(x, y) ∈ E × E such that

⎧
⎨

⎩

F(x, y) = x,
F(y, x) = y,
ϕi (x, y) = 0E , i = 1, 2, . . . , r,

(8.1)

where 0E is the zero vector of E . The main reference for this chapter is the paper [4].

8.1 Preliminaries

At first, let us recall some basic definitions and some preliminary results that will be
used later. In this chapter, the considered Banach space (E, ‖ · ‖) is supposed to be
partially ordered by a cone P . Recall that a nonempty closed convex set P ⊂ E is
said to be a cone (see [2]) if it satisfies the following conditions:

(P1) λ ≥ 0, x ∈ P =⇒ λx ∈ P;
(P2) −x, x ∈ P =⇒ x = 0E .

We define the partial order ≤P in E induced by the cone P by

(x, y) ∈ E × E, x ≤P y ⇐⇒ y − x ∈ P.

Definition 8.1 ([1]) Let ϕ : E × E → E be a given mapping. We say that ϕ is level
closed from the right if for every e ∈ E , the set
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levϕ≤P
(e) := {(x, y) ∈ E × E : ϕ(x, y) ≤P e}

is closed.

Definition 8.2 Letϕ : E × E → E be a givenmapping.We say thatϕ is level closed
from the left if for every e ∈ E , the set

levϕ≥P
(e) := {(x, y) ∈ E × E : e ≤P ϕ(x, y)}

is closed.

We denote by Ψ the set of functions ψ : [0,∞) → [0,∞) satisfying the condi-
tions:

(Ψ1) ψ is nondecreasing;
(Ψ2) For all t > 0, we have

∞∑

k=0

ψk(t) < ∞.

Here, ψk is the kth iterate of ψ .
The following properties are not difficult to prove.

Lemma 8.1 Let ψ ∈ Ψ . Then

(i) ψ(t) < t , t > 0;
(ii) ψ(0) = 0;
(iii) ψ is continuous at t = 0.

Example 8.1 As examples, the following functions belong to the set Ψ :

ψ(t) = k t , k ∈ (0, 1).

ψ(t) =
{
t/2 if 0 ≤ t ≤ 1,
1/2 if t > 1.

ψ(t) =
{
t/2 if 0 ≤ t < 1,
t − 1/3 if t ≥ 1.

Now, we are ready to state and prove the main results of this chapter. This is the
aim of the next section.

8.2 Main Results

Through this chapter, (E, ‖ · ‖) is a Banach space partially ordered by a cone P and
0E denotes the zero vector of E .

Let us start with the case of one equality constraint.
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8.2.1 A Coupled Fixed Point Problem Under One Equality
Constraint

We are interested with the existence and uniqueness of solutions to the problem: Find
(x, y) ∈ E × E such that

⎧
⎨

⎩

F(x, y) = x,
F(y, x) = y,
ϕ(x, y) = 0E ,

(8.2)

where F, ϕ : E × E → E are two given mappings.
The following theoremprovides sufficient conditions for the existence and unique-

ness of solutions to (8.2).

Theorem 8.1 Let F, ϕ : E × E → E be two given mappings. Suppose that the fol-
lowing conditions are satisfied:

(i) ϕ is level closed from the right.
(ii) There exists (x0, y0) ∈ E × E such that ϕ(x0, y0) ≤P 0E .
(iii) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≤P 0E =⇒ ϕ(F(x, y), F(y, x)) ≥P 0E .

(iv) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≥P 0E =⇒ ϕ(F(x, y), F(y, x)) ≤P 0E .

(v) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕ(x, y) ≤P 0E , ϕ(u, v) ≥P 0E .

Then (8.2) has a unique solution.

Proof Let (x0, y0) ∈ E × E be such that

ϕ(x0, y0) ≤p 0E .

Such a point exists from (ii). From (iii), we have

ϕ(x0, y0) ≤P 0E =⇒ ϕ(F(x0, y0), F(y0, x0)) ≥P 0E .

Define the sequences {xn} and {yn} in E by

xn+1 = F(xn, yn), yn+1 = F(yn, xn), n = 0, 1, 2, . . .
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Then we have
ϕ(x1, y1) ≥P 0E .

From (iv), we have

ϕ(x1, y1) ≥P 0E =⇒ ϕ(F(x1, y1), F(y1, x1)) ≤P 0E ,

that is,
ϕ(x2, y2) ≤P 0E .

Again, using (iii), we get from the above inequality that

ϕ(x3, y3) ≥P 0E .

Then, by induction, we obtain

ϕ(x2n, y2n) ≤P 0E , ϕ(x2n+1, y2n+1) ≥P 0E , n = 0, 1, 2, . . . (8.3)

Using (v) and (8.3), by symmetry, we obtain

‖xn+1 − xn‖ + ‖yn+1 − yn‖ ≤ ψ (‖xn − xn−1‖ + ‖yn − yn−1‖) , n = 1, 2, 3, . . .
(8.4)

From (8.4), since ψ is a nondecreasing function, for every n = 1, 2, 3, . . ., we have

‖xn+1 − xn‖ + ‖yn+1 − yn‖ ≤ ψ (‖xn − xn−1‖ + ‖yn − yn−1‖)
≤ ψ2 (‖xn−1 − xn−2‖ + ‖yn−1 − yn−2‖)
≤ · · ·
≤ ψn (‖x1 − x0‖ + ‖y1 − y0‖) . (8.5)

Suppose that
‖x1 − x0‖ + ‖y1 − y0‖ = 0.

In this case, we have

x0 = x1 = F(x0, y0) and y0 = y1 = F(y0, x0).

Moreover, from (iii), since ϕ(x0, y0) ≤P 0E , we obtain ϕ(x1, y1) = ϕ(x0, y0) ≥ 0E .
Since P is a cone, the two inequalities ϕ(x0, y0) ≤P 0E and ϕ(x0, y0) ≥P 0E yield

ϕ(x0, y0) = 0E .

Thus, we proved that in this case, (x0, y0) ∈ E × E is a solution to (8.2).
Now, we may suppose that ‖x1 − x0‖ + ‖y1 − y0‖ �= 0. Set
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δ = ‖x1 − x0‖ + ‖y1 − y0‖ > 0.

From (8.5), we have

‖xn+1 − xn‖ ≤ ψn(δ), n = 0, 1, 2, . . . (8.6)

Using the triangular inequality and (8.6), for all m = 1, 2, 3, . . ., we have

‖xn − xn+m‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − xn+2‖ + · · · + ‖xn+m−1 − xn+m‖
≤ ψn(δ) + ψn+1(δ) + · · · + ψn+m−1(δ)

=
n+m−1∑

i=n

ψ i (δ)

≤
∞∑

i=n

ψ i (δ).

On the other hand, since
∑∞

k=0 ψk(δ) < ∞, we have

∞∑

i=n

ψ i (δ) → 0 as n → ∞,

which implies that {xn} is a Cauchy sequence in (E, ‖ · ‖). The same argument gives
us that {yn} is a Cauchy sequence in (E, ‖ · ‖). As consequence, there exists a pair
of points (x∗, y∗) ∈ E × E such that

lim
n→∞ ‖xn − x∗‖ = lim

n→∞ ‖yn − y∗‖ = 0. (8.7)

From (8.3), we have

ϕ(x2n, y2n) ≤P 0E , n = 0, 1, 2, . . . ,

that is,
(x2n, y2n) ∈ levϕ≤P

(0E ), n = 0, 1, 2, . . . ,

Since ϕ is level closed from the right, passing to the limit as n → ∞ and using (8.7),
we obtain

(x∗, y∗) ∈ levϕ≤P
(0E ),

that is,
ϕ(x∗, y∗) ≤P 0E . (8.8)

Now, using (8.3), (8.8), and (v), we obtain
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‖F(x2n+1, y2n+1) − F(x∗, y∗)‖ + ‖F(y∗, x∗) − F(y2n+1, x2n+1)‖
≤ ψ

(‖x2n+1 − x∗‖ + ‖y2n+1 − y∗‖) ,

for all n = 0, 1, 2, . . ., which implies that

‖x2n+2 − F(x∗, y∗)‖ + ‖F(y∗, x∗)− y2n+2‖≤ψ
(‖x2n+1 − x∗‖ + ‖y2n+1 − y∗‖) ,

for all n = 0, 1, 2, . . . Passing to the limit as n → ∞, using (8.7), the continuity of
ψ at 0, and the fact that ψ(0) = 0 (see Lemma 8.1), we get

‖x∗ − F(x∗, y∗)‖ + ‖F(y∗, x∗) − y∗‖ = 0,

that is,
x∗ = F(x∗, y∗) and y∗ = F(y∗, x∗).

This proves that (x∗, y∗) ∈ E × E is a coupled fixed point of F . Finally, using (8.8)
and the fact that (x∗, y∗) is a coupled fixed point of F , it follows from (iii) that

ϕ(x∗, y∗) ≥P 0E . (8.9)

Then (8.8) and (8.9) yield
ϕ(x∗, y∗) = 0E .

Thus, we proved that (x∗, y∗) ∈ E × E is a solution to (8.2). Suppose now that
(u∗, v∗) ∈ E × E is a solution to (8.2) with (x∗, y∗) �= (u∗, v∗). Using (v), we obtain

‖u∗ − x∗‖ + ‖y∗ − v∗‖ ≤ ψ(‖u∗ − x∗‖ + ‖y∗ − v∗‖).

Since ‖u∗ − x∗‖ + ‖y∗ − v∗‖ > 0, from (i) of Lemma 8.1, we have

ψ(‖u∗ − x∗‖ + ‖y∗ − v∗‖) < ‖u∗ − x∗‖ + ‖y∗ − v∗‖.

Then
‖u∗ − x∗‖ + ‖y∗ − v∗‖ < ‖u∗ − x∗‖ + ‖y∗ − v∗‖,

which is a contradiction. As consequence, (x∗, y∗) is the unique solution to (8.2).

Remark 8.1 Observe that the conclusion of Theorem 8.1 is still valid if we replace
condition (i) by the following condition:
(i’) ϕ is level closed from the left.
In fact, from (8.3), we have

ϕ(x2n+1, y2n+1) ≥P 0E , n = 0, 1, 2, . . . ,

that is,
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(x2n+1, y2n+1) ∈ levϕ≥P
, n = 0, 1, 2, . . .

Passing to the limit as n → ∞ and using (8.7), we obtain

ϕ(x∗, y∗) ≥P 0E . (8.10)

Using (8.3), (8.10) and (v), we obtain

‖F(x2n , y2n) − F(x∗, y∗)‖ + ‖F(y∗, x∗) − F(y2n , x2n)‖ ≤ ψ
(‖x2n − x∗‖ + ‖y2n − y∗‖) ,

for all n = 0, 1, 2, . . ., which implies that

‖x2n+1 − F(x∗, y∗)‖ + ‖F(y∗, x∗) − y2n+1‖ ≤ ψ
(‖x2n − x∗‖ + ‖y2n − y∗‖) ,

for all n = 0, 1, 2, . . . Passing to the limit as n → ∞, we get

‖x∗ − F(x∗, y∗)‖ + ‖F(y∗, x∗) − y∗‖ = 0,

which proves that (x∗, y∗) ∈ E × E is a coupled fixed point of F . Using (8.10) and
the fact that (x∗, y∗) is a coupled fixed point of F , it follows from (iv) that

ϕ(x∗, y∗) ≤P 0E . (8.11)

Then (8.10) and (8.11) yield
ϕ(x∗, y∗) = 0E .

Thus, (x∗, y∗) ∈ E × E is a solution to (8.2).

8.2.2 A Coupled Fixed Point Problem Under Two Equality
Constraints

Here,we are interestedwith the existence anduniqueness of solutions to the following
problem: Find (x, y) ∈ E × E such that

⎧
⎪⎪⎨

⎪⎪⎩

F(x, y) = x,
F(y, x) = y,
ϕ1(x, y) = 0E ,

ϕ2(x, y) = 0E ,

(8.12)

where F, ϕ1, ϕ2 : E × E → E are three given mappings.
We have the following result.
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Theorem 8.2 Let F, ϕ1, ϕ2 : E × E → E be three given mappings. Suppose that
the following conditions are satisfied:

(i) ϕi (i = 1, 2) is level closed from the right.
(ii) There exists (x0, y0) ∈ E × E such that ϕi (x0, y0) ≤P 0E (i = 1, 2).
(iii) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≤P 0E , i = 1, 2 =⇒ ϕi (F(x, y), F(y, x)) ≥P 0E , i = 1, 2.

(iv) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≥P 0E , i = 1, 2 =⇒ ϕi (F(x, y), F(y, x)) ≤P 0E , i = 1, 2.

(v) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕi (x, y) ≤P 0E , ϕi (u, v) ≥P 0E , i = 1, 2.

Then (8.12) has a unique solution.

Proof Let (x0, y0) ∈ E × E be such that

ϕi (x0, y0) ≤p 0E , i = 1, 2.

Then from (iii), we have

ϕi (F(x0, y0), F(y0, x0)) ≥P 0E , i = 1, 2.

Define the sequences {xn} and {yn} in E by

xn+1 = F(xn, yn), yn+1 = F(yn, xn), n = 0, 1, 2, . . .

We have
ϕi (x1, y1) ≥P 0E , i = 1, 2.

Then from (iv), we obtain

ϕi (x2, y2) ≤P 0E , i = 1, 2.

Again, using (iii), we get from the above inequality that

ϕi (x3, y3) ≥P 0E , i = 1, 2.

Then, by induction, we obtain
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ϕi (x2n, y2n) ≤P 0E , ϕi (x2n+1, y2n+1) ≥P 0E , i = 1, 2, n = 0, 1, 2, . . .

Then, using (v), we obtain

‖xn+1 − xn‖ + ‖yn+1 − yn‖ ≤ ψ (‖xn − xn−1‖ + ‖yn − yn−1‖) , n = 1, 2, 3, . . .

Now, we argue exactly as in the proof of Theorem 8.1 to show that {xn} and {yn}
are Cauchy sequences in (E, ‖ · ‖). As consequence, there exists a pair of points
(x∗, y∗) ∈ E × E such that

lim
n→∞ ‖xn − x∗‖ = lim

n→∞ ‖yn − y∗‖ = 0.

On the other hand, we have

(x2n, y2n) ∈ levϕi≤P
(0E ), i = 1, 2, n = 0, 1, 2, . . . ,

Since ϕi (i = 1, 2) is level closed from the right, passing to the limit as n → ∞, we
obtain

(x∗, y∗) ∈ levϕi≤P
(0E ), i = 1, 2,

that is,
ϕi (x

∗, y∗) ≤P 0E , i = 1, 2.

Then we have

‖F(x2n+1, y2n+1) − F(x∗, y∗)‖ + ‖F(y∗, x∗) − F(y2n+1, x2n+1)‖
≤ ψ

(‖x2n+1 − x∗‖ + ‖y2n+1 − y∗‖) ,

for all n = 0, 1, 2, . . ., which implies that

‖x2n+2 − F(x∗, y∗)‖ + ‖F(y∗, x∗) − y2n+2‖ ≤ ψ
(‖x2n+1 − x∗‖ + ‖y2n+1 − y∗‖) ,

for all n = 0, 1, 2, . . . Passing to the limit as n → ∞, we get

‖x∗ − F(x∗, y∗)‖ + ‖F(y∗, x∗) − y∗‖ = 0,

that is,
x∗ = F(x∗, y∗) and y∗ = F(y∗, x∗).

This proves that (x∗, y∗) ∈ E × E is a coupled fixed point of F . Since ϕi (x∗, y∗) ≤P

0E for i = 1, 2, from (iii) we have

ϕi (F(x∗, y∗), F(y∗, x∗)) ≥P 0E , i = 1, 2,
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that is,
ϕi (x

∗, y∗) ≥P 0E , i = 1, 2.

Finally, the two inequalities ϕi (x∗, y∗) ≤P 0E and ϕi (x∗, y∗) ≥P 0E , i = 1, 2 yield
ϕi (x∗, y∗) = 0E , i = 1, 2. Then we proved that (x∗, y∗) ∈ E × E is a solution to
(8.12). The uniqueness can be obtained using a similar argument as in the proof of
Theorem 8.1.

Replace ϕ2 in Theorem 8.2 by −ϕ2, we obtain the following result.

Theorem 8.3 Let F, ϕ1, ϕ2 : E × E → E be three given mappings. Suppose that
the following conditions are satisfied:

(i) ϕ1 is level closed from the right and ϕ2 is level closed from the left.
(ii) There exists (x0, y0) ∈ E × E such that ϕ1(x0, y0) ≤P 0E and ϕ2(x0, y0) ≥p

0E .
(iii) For every (x, y) ∈ E × E with ϕ1(x, y) ≤P 0E and ϕ2(x, y) ≥P 0E , we have

ϕ1(F(x, y), F(y, x)) ≥P 0E , ϕ2(F(x, y), F(y, x)) ≤P 0E .

(iv) For every (x, y) ∈ E × E with ϕ1(x, y) ≥P 0E and ϕ2(x, y) ≤P 0E , we have

ϕ1(F(x, y), F(y, x)) ≤P 0E , ϕ2(F(x, y), F(y, x)) ≥P 0E .

(v) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕ1(x, y) ≤P 0E , ϕ2(x, y) ≥P 0E , ϕ1

(u, v) ≥P 0E , ϕ2(u, v) ≤P 0E .

Then (8.12) has a unique solution.

Replace ϕ1 in Theorem 8.3 by −ϕ1, we obtain the following result.

Theorem 8.4 Let F, ϕ1, ϕ2 : E × E → E be three given mappings. Suppose that
the following conditions are satisfied:

(i) ϕi (i = 1, 2) is level closed from the left.
(ii) There exists (x0, y0) ∈ E × E such that ϕi (x0, y0) ≥P 0E (i = 1, 2).
(iii) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≤P 0E , i = 1, 2 =⇒ ϕi (F(x, y), F(y, x)) ≥P 0E , i = 1, 2.

(iv) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≥P 0E , i = 1, 2 =⇒ ϕi (F(x, y), F(y, x)) ≤P 0E , i = 1, 2.
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(v) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕi (x, y) ≤P 0E , ϕi (u, v) ≥P 0E , i = 1, 2.

Then (8.12) has a unique solution.

8.2.3 A Coupled Fixed Point Problem Under r Equality
Constraints

Now,we argue exactly as in the proof ofTheorem8.2 to obtain the following existence
result for (8.1).

Theorem 8.5 Let F, ϕi : E × E → E (i = 1, 2, . . . , r) be r + 1 given mappings.
Suppose that the following conditions are satisfied:

(i) ϕi (i = 1, 2, . . . , r) is level closed from the right.
(ii) There exists (x0, y0) ∈ E × E such that ϕi (x0, y0) ≤P 0E (i = 1, 2, . . . , r).
(iii) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≤P 0E , i = 1, 2, . . . , r =⇒ ϕi (F(x, y), F(y, x)) ≥P 0E , i = 1, 2, . . . , r.

(iv) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≥P 0E , i = 1, 2, . . . , r =⇒ ϕi (F(x, y), F(y, x)) ≤P 0E , i = 1, 2, . . . r.

(v) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕi (x, y) ≤P 0E , ϕi (u, v) ≥P 0E ,
i = 1, 2, . . . , r .

Then (8.1) has a unique solution.

8.3 Some Consequences

In this section, we present some consequences following from Theorem 8.5.
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8.3.1 A Fixed Point Problem Under Symmetric Equality
Constraints

Let X be a nonempty set and let F : X × X → X be a given mapping. Recall that
that x ∈ X is said to be a fixed point of F if F(x, x) = x .

Let F, ϕ : E × E → E be givenmappings.We consider the problem: Find x ∈ E
such that

{
F(x, x) = x,
ϕ(x, x) = 0E .

(8.13)

We have the following result.

Corollary 8.1 Let F, ϕ : E × E → E be two given mappings. Suppose that the
following conditions are satisfied:

(i) ϕ is level closed from the right.
(ii) ϕ is symmetric, that is,

ϕ(x, y) = ϕ(y, x), (x, y) ∈ E × E .

(iii) There exists (x0, y0) ∈ E × E such that ϕ(x0, y0) ≤P 0E .
(iv) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≤P 0E =⇒ ϕ(F(x, y), F(y, x)) ≥P 0E .

(v) For every (x, y) ∈ E × E, we have

ϕ(x, y) ≥P 0E =⇒ ϕ(F(x, y), F(y, x)) ≤P 0E .

(vi) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕ(x, y) ≤P 0E and ϕ(u, v) ≥P 0E .

Then (8.13) has a unique solution.

Proof From Theorem 8.1, we know that (8.2) has a unique solution (x∗, y∗) ∈ E ×
E . Since ϕ is symmetric, (y∗, x∗) is also a solution to (8.2). By uniqueness, we get
x∗ = y∗. Then x∗ ∈ E is the unique solution to (8.13).

Let F, ϕi : E × E → E (i = 1, 2, . . . , r ) be r + 1 given mappings. We consider
the problem: Find x ∈ X such that

{
F(x, x) = x,
ϕi (x, x) = 0E , i = 1, 2, . . . , r.

(8.14)



8.3 Some Consequences 135

Similarly, from Theorem 8.5, we have the following result.

Corollary 8.2 Let F, ϕi : E × E → E (i = 1, 2, . . . , r) be r + 1 given mappings.
Suppose that the following conditions are satisfied:

(i) ϕi (i = 1, 2, . . . , r) is level closed from the right.
(ii) ϕi (i = 1, 2, . . . , r) is symmetric.
(iii) There exists (x0, y0) ∈ E × E such that ϕi (x0, y0) ≤P 0E (i = 1, 2, . . . , r).
(iv) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≤P 0E , i = 1, 2, . . . , r =⇒ ϕi (F(x, y), F(y, x)) ≥P 0E , i = 1, 2, . . . , r.

(v) For every (x, y) ∈ E × E, we have

ϕi (x, y) ≥P 0E , i = 1, 2, . . . , r =⇒ ϕi (F(x, y), F(y, x)) ≤P 0E , i = 1, 2, . . . r.

(vi) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with ϕi (x, y) ≤P 0E , ϕi (u, v) ≥P 0E ,
i = 1, 2, . . . , r .

Then (8.14) has a unique solution.

8.3.2 A Common Coupled Fixed Point Result

We need the following definition.

Definition 8.3 Let X be a nonempty set, F : X × X → X and g : X → X be two
given mappings. We say that the pair of elements (x, y) ∈ X × X is a common
coupled fixed point of F and g if

x = gx = F(x, y) and y = gy = F(y, x).

We have the following common coupled fixed point result.

Corollary 8.3 Let F : E × E → E and g : E → E be two given mappings. Sup-
pose that the following conditions hold:

(i) g is a continuous mapping.
(ii) There exists (x0, y0) ∈ E × E such that

gx0 ≤p x0 and gy0 ≤p y0.
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(iii) For every (x, y) ∈ E × E, we have

gx ≤P x, gy ≤p y =⇒ gF(x, y) ≥P F(x, y), gF(y, x) ≥P F(y, x).

(iv) For every (x, y) ∈ E × E, we have

gx ≥P x, gy ≥P y =⇒ gF(x, y) ≤P F(x, y), gF(y, x) ≤P F(y, x).

(v) There exists some ψ ∈ Ψ such that

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with gx ≤P x, gy ≤P y and gu ≥P u, gv ≥P v.

Then F and g have a unique common coupled fixed point.

Proof Let us consider the mappings ϕ1, ϕ2 : E × E → E defined by

ϕ1(x, y) = gx − x, (x, y) ∈ E × E

and
ϕ2(x, y) = gy − y, (x, y) ∈ E × E .

Observe that (x, y) ∈ E × E is a common coupled fixed point of F and g if and
only if (x, y) ∈ E × E is a solution to (8.12). Note that since g is continuous, then
ϕi is level closed from the right (also from the left) for all i = 1, 2. Now, applying
Theorem 8.2, we obtain the desired result.

8.3.3 A Fixed Point Result

We denote by Ψ̃ the set of functions ψ : [0,∞) → [0,∞) satisfying the following
conditions:

(Ψ̃1) ψ ∈ Ψ .
(Ψ̃2) For all a, b ∈ [0,∞), we have

ψ(a) + ψ(b) ≤ ψ(a + b).

Example 8.2 As example, let us consider the function

ψ(t) =
{
t/2 if 0 ≤ t < 1,
t − 1/3 if t ≥ 1.

It is not difficult to observe thatψ ∈ Ψ . Now, let us consider an arbitrary pair (a, b) ∈
[0,∞) × [0,∞). We discuss three possible cases.
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Case 1. If (a, b) ∈ [0, 1) × [0, 1).
In this case, we haveψ(a) + ψ(b) = (a + b)/2. On the other hand, we have a + b ∈
[0, 2). So, if 0 ≤ a + b < 1, thenψ(a) + ψ(b) = (a + b)/2 = ψ(a + b). However,
if 1 ≤ a + b < 2, then ψ(a + b) − ψ(a) − ψ(b) = (a + b)/2 − 1/3 ≥ 0.

Case 2. If (a, b) ∈ [0, 1) × [1,∞).
In this case, we have ψ(a) + ψ(b) = a/2 + b − 1/3 ≤ a + b − 1/3 = ψ(a + b).

Case 3. If (a, b) ∈ [1,∞) × [1,∞).
In this case, we have ψ(a) + ψ(b) = a + b − 2/3 ≤ a + b − 1/3 = ψ(a + b).
Therefore, we have ψ ∈ Ψ̃ .

Note that the setΨ is more large than the set Ψ̃ . The following example illustrates
this fact.

Example 8.3 Let us consider the function

ψ(t) =
{
t/2 if 0 ≤ t ≤ 1,
1/2 if t > 1.

Clearly, we have ψ ∈ Ψ . However,

ψ(1 + 1) = 1/2 < 1 = ψ(1) + ψ(1),

which proves that ψ /∈ Ψ̃ .

We have the following fixed point result.

Corollary 8.4 Let T : E → E be a given mapping. Suppose that there exists some
ψ ∈ Ψ̃ such that

‖Tu − T x‖ ≤ ψ(‖u − x‖), (u, x) ∈ E × E . (8.15)

Then T has a unique fixed point.

Proof Let us define the mapping F : E × E → E by

F(x, y) = T x, (x, y) ∈ E × E .

Let g : E → E be the identity mapping, that is,

gx = x, x ∈ E .

From (8.15), for all (x, y), (u, v) ∈ E × E , we have

‖Tu − T x‖ ≤ ψ(‖u − x‖)
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and
‖T y − T v‖ ≤ ψ(‖v − y‖).

Then
‖Tu − T x‖ + ‖T y − T v‖ ≤ ψ(‖u − x‖) + ψ(‖v − y‖).

Using the property (Ψ̃2), we obtain

‖Tu − T x‖ + ‖T y − T v‖ ≤ ψ(‖u − x‖ + ‖v − y‖), (x, y), (u, v) ∈ E × E .

From the definitions of F and g, we obtain

‖F(u, v) − F(x, y)‖ + ‖F(y, x) − F(v, u)‖ ≤ ψ (‖u − x‖ + ‖v − y‖) ,

for all (x, y), (u, v) ∈ E × E with gx ≤P x , gy ≤P y and gu ≥P u, gv ≥P v. By
Corollary 3.5, there exists a unique (x∗, y∗) ∈ E × E such that

x∗ = F(x∗, y∗) = T x∗ and y∗ = F(y∗, x∗) = T y∗.

Suppose that x∗ �= y∗. By (8.15), we have

‖x∗ − y∗‖ = ‖T x∗ − T y∗‖ ≤ ψ(‖x∗ − y∗)) < ‖x∗ − y∗‖,

which is a contradiction. As consequence, x∗ ∈ E is the unique fixed point of T .

Remark 8.2 Taking
ψ(t) = kt, t ≥ 0,

where k ∈ (0, 1) is a constant, we obtain from Corollary 8.4 the Banach contraction
principle.

Finally, for other related results, we refer the reader to Jleli and Samet [3].
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