Chapter 8 A Coupled Fixed Point Problem Under a Finite Number of Equality Constraints

Let $(E, \|\cdot\|)$ be a Banach space with a cone *P*. Let $F, \varphi_i : E \times E \to E$ (*i* = $1, 2, \ldots, r$ be a finite number of mappings. In this chapter, we provide sufficient conditions for the existence and uniqueness of solutions to the problem: Find $(x, y) \in E \times E$ such that

$$
\begin{cases}\nF(x, y) = x, \\
F(y, x) = y, \\
\varphi_i(x, y) = 0_E, \ i = 1, 2, \dots, r,\n\end{cases}
$$
\n(8.1)

where 0_E is the zero vector of *E*. The main reference for this chapter is the paper [\[4](#page-15-0)].

8.1 Preliminaries

At first, let us recall some basic definitions and some preliminary results that will be used later. In this chapter, the considered Banach space $(E, \|\cdot\|)$ is supposed to be partially ordered by a cone *P*. Recall that a nonempty closed convex set $P \subset E$ is said to be a cone (see $[2]$ $[2]$) if it satisfies the following conditions:

(P1) $\lambda \geq 0, x \in P \Longrightarrow \lambda x \in P;$ $(P2)$ $-x, x \in P \Longrightarrow x = 0_F.$

We define the partial order \leq_P in *E* induced by the cone *P* by

 $(x, y) \in E \times E$, $x \leq_P y \iff y - x \in P$.

Definition 8.1 ([\[1](#page-15-2)]) Let φ : $E \times E \rightarrow E$ be a given mapping. We say that φ is level closed from the right if for every $e \in E$, the set

[©] Springer Nature Singapore Pte Ltd. 2018

P. Agarwal et al., *Fixed Point Theory in Metric Spaces*, https://doi.org/10.1007/978-981-13-2913-5_8

$$
\operatorname{lev}\varphi_{\leq P}(e) := \{(x, y) \in E \times E : \varphi(x, y) \leq_P e\}
$$

is closed.

Definition 8.2 Let $\varphi : E \times E \to E$ be a given mapping. We say that φ is level closed from the left if for every $e \in E$, the set

$$
\operatorname{lev}\varphi_{\geq p}(e) := \{(x, y) \in E \times E : e \leq_P \varphi(x, y)\}
$$

is closed.

We denote by Ψ the set of functions $\psi : [0, \infty) \to [0, \infty)$ satisfying the conditions:

 (Ψ_1) ψ is nondecreasing;

(Ψ_2) For all $t > 0$, we have

$$
\sum_{k=0}^{\infty} \psi^k(t) < \infty.
$$

Here, ψ^k is the *k*th iterate of ψ .

The following properties are not difficult to prove.

Lemma 8.1 *Let* $\psi \in \Psi$ *. Then*

- (i) $\psi(t) < t, t > 0;$
- (ii) $\psi(0) = 0;$
- *(iii)* ψ *is continuous at t* = 0*.*

Example 8.1 As examples, the following functions belong to the set Ψ :

$$
\psi(t) = k \, t, \, k \in (0, 1).
$$
\n
$$
\psi(t) = \begin{cases} t/2 & \text{if } 0 \le t \le 1, \\ 1/2 & \text{if } t > 1. \end{cases}
$$
\n
$$
\psi(t) = \begin{cases} t/2 & \text{if } 0 \le t < 1, \\ t - 1/3 & \text{if } t \ge 1. \end{cases}
$$

Now, we are ready to state and prove the main results of this chapter. This is the aim of the next section.

8.2 Main Results

Through this chapter, $(E, \|\cdot\|)$ is a Banach space partially ordered by a cone *P* and 0_E denotes the zero vector of E .

Let us start with the case of one equality constraint.

8.2.1 A Coupled Fixed Point Problem Under One Equality Constraint

We are interested with the existence and uniqueness of solutions to the problem: Find $(x, y) \in E \times E$ such that

$$
\begin{cases}\nF(x, y) = x, \\
F(y, x) = y, \\
\varphi(x, y) = 0_E,\n\end{cases}
$$
\n(8.2)

where $F, \varphi : E \times E \to E$ are two given mappings.

The following theorem provides sufficient conditions for the existence and uniqueness of solutions to [\(8.2\)](#page-2-0).

Theorem 8.1 *Let* F , φ : $E \times E \rightarrow E$ *be two given mappings. Suppose that the following conditions are satisfied:*

- (i) φ *is level closed from the right.*
- *(ii)* There exists $(x_0, y_0) \in E \times E$ such that $\varphi(x_0, y_0) \leq P \cdot 0$.
- *(iii)* For every $(x, y) \in E \times E$, we have

$$
\varphi(x, y) \leq_P 0_E \Longrightarrow \varphi(F(x, y), F(y, x)) \geq_P 0_E.
$$

(iv) For every (x, y) ∈ E \times *E, we have*

$$
\varphi(x, y) \geq_P 0_E \Longrightarrow \varphi(F(x, y), F(y, x)) \leq_P 0_E.
$$

(v) There exists some $\psi \in \Psi$ such that

$$
||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ *with* $\varphi(x, y) \leq_P 0_E$, $\varphi(u, v) \geq_P 0_E$.

Then [\(8.2\)](#page-2-0) *has a unique solution.*

Proof Let $(x_0, y_0) \in E \times E$ be such that

$$
\varphi(x_0, y_0) \leq_p 0_E.
$$

Such a point exists from (ii). From (iii), we have

$$
\varphi(x_0, y_0) \leq_P 0_E \Longrightarrow \varphi(F(x_0, y_0), F(y_0, x_0)) \geq_P 0_E.
$$

Define the sequences $\{x_n\}$ and $\{y_n\}$ in *E* by

$$
x_{n+1} = F(x_n, y_n), y_{n+1} = F(y_n, x_n), n = 0, 1, 2, ...
$$

126 8 A Coupled Fixed Point Problem ...

Then we have

 φ (*x*₁, *y*₁) ≥ *P* 0*E*.

From (iv), we have

$$
\varphi(x_1, y_1) \geq_P 0_E \Longrightarrow \varphi(F(x_1, y_1), F(y_1, x_1)) \leq_P 0_E,
$$

that is,

$$
\varphi(x_2, y_2) \leq_P 0_E.
$$

Again, using (iii), we get from the above inequality that

$$
\varphi(x_3, y_3) \geq_P 0_E.
$$

Then, by induction, we obtain

$$
\varphi(x_{2n}, y_{2n}) \leq_P 0_E, \ \varphi(x_{2n+1}, y_{2n+1}) \geq_P 0_E, \quad n = 0, 1, 2, \dots \tag{8.3}
$$

Using (v) and (8.3) , by symmetry, we obtain

$$
||x_{n+1} - x_n|| + ||y_{n+1} - y_n|| \leq \psi \left(||x_n - x_{n-1}|| + ||y_n - y_{n-1}|| \right), \quad n = 1, 2, 3, \dots
$$
\n(8.4)

From [\(8.4\)](#page-3-1), since ψ is a nondecreasing function, for every $n = 1, 2, 3, \ldots$, we have

$$
||x_{n+1} - x_n|| + ||y_{n+1} - y_n|| \leq \psi(||x_n - x_{n-1}|| + ||y_n - y_{n-1}||)
$$

\n
$$
\leq \psi^2 (||x_{n-1} - x_{n-2}|| + ||y_{n-1} - y_{n-2}||)
$$

\n
$$
\leq \cdots
$$

\n
$$
\leq \psi^n (||x_1 - x_0|| + ||y_1 - y_0||).
$$
 (8.5)

Suppose that

$$
||x_1 - x_0|| + ||y_1 - y_0|| = 0.
$$

In this case, we have

$$
x_0 = x_1 = F(x_0, y_0)
$$
 and $y_0 = y_1 = F(y_0, x_0)$.

Moreover, from (iii), since $\varphi(x_0, y_0) \leq P_0 \theta_E$, we obtain $\varphi(x_1, y_1) = \varphi(x_0, y_0) \geq \theta_E$. Since *P* is a cone, the two inequalities $\varphi(x_0, y_0) \leq P_0 E$ and $\varphi(x_0, y_0) \geq P_0 E$ yield

$$
\varphi(x_0, y_0) = 0_E.
$$

Thus, we proved that in this case, $(x_0, y_0) \in E \times E$ is a solution to [\(8.2\)](#page-2-0).

Now, we may suppose that $||x_1 - x_0|| + ||y_1 - y_0|| \neq 0$. Set

$$
\delta = \|x_1 - x_0\| + \|y_1 - y_0\| > 0.
$$

From (8.5) , we have

$$
||x_{n+1} - x_n|| \le \psi^n(\delta), \quad n = 0, 1, 2, \dots
$$
 (8.6)

Using the triangular inequality and (8.6) , for all $m = 1, 2, 3, \ldots$, we have

$$
||x_n - x_{n+m}|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - x_{n+2}|| + \cdots + ||x_{n+m-1} - x_{n+m}||
$$

\n
$$
\le \psi^n(\delta) + \psi^{n+1}(\delta) + \cdots + \psi^{n+m-1}(\delta)
$$

\n
$$
= \sum_{i=n}^{n+m-1} \psi^i(\delta)
$$

\n
$$
\le \sum_{i=n}^{\infty} \psi^i(\delta).
$$

On the other hand, since $\sum_{k=0}^{\infty} \psi^k(\delta) < \infty$, we have

$$
\sum_{i=n}^{\infty} \psi^i(\delta) \to 0 \text{ as } n \to \infty,
$$

which implies that $\{x_n\}$ is a Cauchy sequence in $(E, \|\cdot\|)$. The same argument gives us that $\{y_n\}$ is a Cauchy sequence in $(E, \|\cdot\|)$. As consequence, there exists a pair of points $(x^*, y^*) \in E \times E$ such that

$$
\lim_{n \to \infty} ||x_n - x^*|| = \lim_{n \to \infty} ||y_n - y^*|| = 0.
$$
\n(8.7)

From (8.3) , we have

$$
\varphi(x_{2n}, y_{2n}) \leq_P 0_E, \quad n = 0, 1, 2, \ldots,
$$

that is,

$$
(x_{2n}, y_{2n}) \in \text{lev}\varphi_{\leq p}(0_E), \quad n = 0, 1, 2, \ldots,
$$

Since φ is level closed from the right, passing to the limit as $n \to \infty$ and using [\(8.7\)](#page-4-1), we obtain

$$
(x^*, y^*) \in \text{lev}\varphi_{\leq P}(0_E),
$$

that is,

$$
\varphi(x^*, y^*) \leq_P 0_E. \tag{8.8}
$$

Now, using (8.3) , (8.8) , and (v) , we obtain

$$
|| F(x_{2n+1}, y_{2n+1}) - F(x^*, y^*) || + || F(y^*, x^*) - F(y_{2n+1}, x_{2n+1}) ||
$$

\n
$$
\leq \psi \left(||x_{2n+1} - x^*|| + ||y_{2n+1} - y^*|| \right),
$$

for all $n = 0, 1, 2, \ldots$, which implies that

$$
||x_{2n+2}-F(x^*,y^*)||+||F(y^*,x^*)-y_{2n+2}||\leq \psi \left(||x_{2n+1}-x^*||+||y_{2n+1}-y^*||\right),
$$

for all $n = 0, 1, 2, \ldots$ Passing to the limit as $n \to \infty$, using [\(8.7\)](#page-4-1), the continuity of ψ at 0, and the fact that $\psi(0) = 0$ (see Lemma [8.1\)](#page-1-0), we get

$$
||x^* - F(x^*, y^*)|| + ||F(y^*, x^*) - y^*|| = 0,
$$

that is,

$$
x^* = F(x^*, y^*)
$$
 and $y^* = F(y^*, x^*).$

This proves that $(x^*, y^*) \in E \times E$ is a coupled fixed point of *F*. Finally, using [\(8.8\)](#page-4-2) and the fact that (x^*, y^*) is a coupled fixed point of *F*, it follows from (iii) that

$$
\varphi(x^*, y^*) \geq_P 0_E. \tag{8.9}
$$

Then (8.8) and (8.9) yield

$$
\varphi(x^*, y^*) = 0_E.
$$

Thus, we proved that $(x^*, y^*) \in E \times E$ is a solution to [\(8.2\)](#page-2-0). Suppose now that $(u^*, v^*) \in E \times E$ is a solution to (8.2) with $(x^*, v^*) \neq (u^*, v^*)$. Using (v), we obtain

$$
||u^* - x^*|| + ||y^* - v^*|| \leq \psi(||u^* - x^*|| + ||y^* - v^*||).
$$

Since $||u^* - x^*|| + ||y^* - v^*|| > 0$, from (i) of Lemma [8.1,](#page-1-0) we have

$$
\psi(\|u^* - x^*\| + \|y^* - v^*\|) < \|u^* - x^*\| + \|y^* - v^*\|.
$$

Then

$$
||u^* - x^*|| + ||y^* - v^*|| < ||u^* - x^*|| + ||y^* - v^*||,
$$

which is a contradiction. As consequence, (x^*, y^*) is the unique solution to (8.2) .

Remark 8.1 Observe that the conclusion of Theorem [8.1](#page-2-1) is still valid if we replace condition (i) by the following condition:

(i') φ is level closed from the left.

In fact, from (8.3) , we have

$$
\varphi(x_{2n+1}, y_{2n+1}) \geq_P 0_E, \quad n = 0, 1, 2, \ldots,
$$

that is,

$$
(x_{2n+1}, y_{2n+1}) \in \text{lev}\varphi_{\geq p}, \quad n = 0, 1, 2, ...
$$

Passing to the limit as $n \to \infty$ and using [\(8.7\)](#page-4-1), we obtain

$$
\varphi(x^*, y^*) \geq_P 0_E. \tag{8.10}
$$

Using (8.3) , (8.10) and (v) , we obtain

$$
|| F(x_{2n}, y_{2n}) - F(x^*, y^*) || + || F(y^*, x^*) - F(y_{2n}, x_{2n}) || \leq \psi \left(||x_{2n} - x^*|| + ||y_{2n} - y^*|| \right),
$$

for all $n = 0, 1, 2, \ldots$, which implies that

$$
||x_{2n+1}-F(x^*,y^*)||+||F(y^*,x^*)-y_{2n+1}|| \leq \psi \left(||x_{2n}-x^*||+||y_{2n}-y^*||\right),
$$

for all $n = 0, 1, 2, \ldots$ Passing to the limit as $n \to \infty$, we get

$$
||x^* - F(x^*, y^*)|| + ||F(y^*, x^*) - y^*|| = 0,
$$

which proves that $(x^*, y^*) \in E \times E$ is a coupled fixed point of *F*. Using [\(8.10\)](#page-6-0) and the fact that (x^*, y^*) is a coupled fixed point of *F*, it follows from (iv) that

$$
\varphi(x^*, y^*) \leq_P 0_E. \tag{8.11}
$$

Then (8.10) and (8.11) yield

$$
\varphi(x^*, y^*) = 0_E.
$$

Thus, $(x^*, y^*) \in E \times E$ is a solution to [\(8.2\)](#page-2-0).

8.2.2 A Coupled Fixed Point Problem Under Two Equality Constraints

Here, we are interested with the existence and uniqueness of solutions to the following problem: Find $(x, y) \in E \times E$ such that

$$
\begin{cases}\nF(x, y) = x, \\
F(y, x) = y, \\
\varphi_1(x, y) = 0_E, \\
\varphi_2(x, y) = 0_E,\n\end{cases}
$$
\n(8.12)

where $F, \varphi_1, \varphi_2 : E \times E \to E$ are three given mappings.

We have the following result.

Theorem 8.2 *Let* $F, \varphi_1, \varphi_2 : E \times E \to E$ *be three given mappings. Suppose that the following conditions are satisfied:*

- *(i)* φ_i *(i = 1, 2) is level closed from the right.*
- *(ii) There exists* $(x_0, y_0) \in E \times E$ *such that* $\varphi_i(x_0, y_0) \leq_P 0_E$ $(i = 1, 2)$.
- *(iii)* For every $(x, y) \in E \times E$, we have

$$
\varphi_i(x, y) \leq_P 0_E, i = 1, 2 \Longrightarrow \varphi_i(F(x, y), F(y, x)) \geq_P 0_E, i = 1, 2.
$$

(iv) For every (x, y) ∈ *E* \times *E*, *we have*

$$
\varphi_i(x, y) \geq_P 0_E, i = 1, 2 \Longrightarrow \varphi_i(F(x, y), F(y, x)) \leq_P 0_E, i = 1, 2.
$$

(v) There exists some $\psi \in \Psi$ such that

$$
||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ *with* $\varphi_i(x, y) \leq_P 0_E$, $\varphi_i(u, v) \geq_P 0_E$, $i = 1, 2$.

Then [\(8.12\)](#page-6-2) *has a unique solution.*

Proof Let $(x_0, y_0) \in E \times E$ be such that

$$
\varphi_i(x_0, y_0) \leq_p 0_E, \quad i = 1, 2.
$$

Then from (iii), we have

$$
\varphi_i(F(x_0, y_0), F(y_0, x_0)) \geq_P 0_E, \quad i = 1, 2.
$$

Define the sequences $\{x_n\}$ and $\{y_n\}$ in *E* by

$$
x_{n+1} = F(x_n, y_n), y_{n+1} = F(y_n, x_n), n = 0, 1, 2, ...
$$

We have

$$
\varphi_i(x_1, y_1) \geq_P 0_E, \quad i = 1, 2.
$$

Then from (iv), we obtain

$$
\varphi_i(x_2, y_2) \leq_P 0_E, \quad i = 1, 2.
$$

Again, using (iii), we get from the above inequality that

$$
\varphi_i(x_3, y_3) \geq_P 0_E, \quad i = 1, 2.
$$

Then, by induction, we obtain

$$
\varphi_i(x_{2n}, y_{2n}) \leq_P 0_E
$$
, $\varphi_i(x_{2n+1}, y_{2n+1}) \geq_P 0_E$, $i = 1, 2, n = 0, 1, 2, ...$

Then, using (v), we obtain

$$
||x_{n+1}-x_n||+||y_{n+1}-y_n|| \leq \psi \left(||x_n-x_{n-1}||+||y_n-y_{n-1}|| \right), \quad n=1,2,3,\ldots
$$

Now, we argue exactly as in the proof of Theorem [8.1](#page-2-1) to show that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in $(E, || \cdot ||)$. As consequence, there exists a pair of points $(x[*], y[*]) ∈ E × E$ such that

$$
\lim_{n \to \infty} ||x_n - x^*|| = \lim_{n \to \infty} ||y_n - y^*|| = 0.
$$

On the other hand, we have

$$
(x_{2n}, y_{2n}) \in \text{lev}\varphi_{i\leq p}(0_E), \quad i=1, 2, n=0, 1, 2, \ldots,
$$

Since φ_i (*i* = 1, 2) is level closed from the right, passing to the limit as $n \to \infty$, we obtain

$$
(x^*, y^*) \in \text{lev}\varphi_{i \leq p}(0_E), \quad i = 1, 2,
$$

that is,

$$
\varphi_i(x^*, y^*) \leq_P 0_E, \quad i = 1, 2.
$$

Then we have

$$
|| F(x_{2n+1}, y_{2n+1}) - F(x^*, y^*) || + || F(y^*, x^*) - F(y_{2n+1}, x_{2n+1}) ||
$$

\n
$$
\leq \psi \left(||x_{2n+1} - x^*|| + ||y_{2n+1} - y^*|| \right),
$$

for all $n = 0, 1, 2, \ldots$, which implies that

$$
||x_{2n+2}-F(x^*,y^*)||+||F(y^*,x^*)-y_{2n+2}|| \leq \psi \left(||x_{2n+1}-x^*||+||y_{2n+1}-y^*||\right),
$$

for all $n = 0, 1, 2, \ldots$ Passing to the limit as $n \to \infty$, we get

$$
||x^* - F(x^*, y^*)|| + ||F(y^*, x^*) - y^*|| = 0,
$$

that is,

$$
x^* = F(x^*, y^*)
$$
 and $y^* = F(y^*, x^*).$

This proves that $(x^*, y^*) \in E \times E$ is a coupled fixed point of *F*. Since $\varphi_i(x^*, y^*) \leq_P$ 0_E for $i = 1, 2$, from (iii) we have

$$
\varphi_i(F(x^*, y^*), F(y^*, x^*)) \geq_P 0_E, \quad i = 1, 2,
$$

that is,

$$
\varphi_i(x^*, y^*) \geq_P 0_E, \quad i = 1, 2.
$$

Finally, the two inequalities $\varphi_i(x^*, y^*) \leq_P 0_E$ and $\varphi_i(x^*, y^*) \geq_P 0_E$, $i = 1, 2$ yield $\varphi_i(x^*, y^*) = 0_E$, $i = 1, 2$. Then we proved that $(x^*, y^*) \in E \times E$ is a solution to [\(8.12\)](#page-6-2). The uniqueness can be obtained using a similar argument as in the proof of Theorem [8.1.](#page-2-1)

Replace φ_2 in Theorem [8.2](#page-6-3) by $-\varphi_2$, we obtain the following result.

Theorem 8.3 *Let* $F, \varphi_1, \varphi_2 : E \times E \to E$ *be three given mappings. Suppose that the following conditions are satisfied:*

- *(i)* φ_1 *is level closed from the right and* φ_2 *is level closed from the left.*
- *(ii) There exists* $(x_0, y_0) \in E \times E$ *such that* $\varphi_1(x_0, y_0) \leq_P 0_E$ *and* $\varphi_2(x_0, y_0) \geq_p 0$ 0_F .
- *(iii)* For every $(x, y) \in E \times E$ with $\varphi_1(x, y) \leq_P 0_E$ and $\varphi_2(x, y) \geq_P 0_E$, we have

$$
\varphi_1(F(x, y), F(y, x)) \geq_P 0_E, \varphi_2(F(x, y), F(y, x)) \leq_P 0_E.
$$

(iv) For every $(x, y) \in E \times E$ with $\varphi_1(x, y) \geq_P 0_E$ and $\varphi_2(x, y) \leq_P 0_E$, we have

$$
\varphi_1(F(x, y), F(y, x)) \leq_P 0_E, \varphi_2(F(x, y), F(y, x)) \geq_P 0_E.
$$

(v) There exists some $\psi \in \Psi$ such that

$$
||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ *with* $\varphi_1(x, y) \leq_P 0_E$, $\varphi_2(x, y) \geq_P 0_E$, φ_1 $(u, v) \geq_{P} 0_{E}, \varphi_{2}(u, v) \leq_{P} 0_{E}.$

Then [\(8.12\)](#page-6-2) *has a unique solution.*

Replace φ_1 in Theorem [8.3](#page-9-0) by $-\varphi_1$, we obtain the following result.

Theorem 8.4 *Let* $F, \varphi_1, \varphi_2 : E \times E \to E$ *be three given mappings. Suppose that the following conditions are satisfied:*

- *(i)* φ_i *(i = 1, 2) is level closed from the left.*
- *(ii)* There exists $(x_0, y_0) \in E \times E$ such that $\varphi_i(x_0, y_0) \geq_P 0_E$ $(i = 1, 2)$.
- *(iii)* For every $(x, y) \in E \times E$, we have

$$
\varphi_i(x, y) \leq_P 0_E, i = 1, 2 \Longrightarrow \varphi_i(F(x, y), F(y, x)) \geq_P 0_E, i = 1, 2.
$$

(iv) For every (x, y) ∈ E \times *E, we have*

$$
\varphi_i(x, y) \geq_P 0_E, i = 1, 2 \Longrightarrow \varphi_i(F(x, y), F(y, x)) \leq_P 0_E, i = 1, 2.
$$

(v) There exists some $\psi \in \Psi$ such that

$$
||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ *with* $\varphi_i(x, y) \leq_P 0_E$, $\varphi_i(u, v) \geq_P 0_E$, $i = 1, 2$.

Then [\(8.12\)](#page-6-2) *has a unique solution.*

8.2.3 A Coupled Fixed Point Problem Under r Equality Constraints

Now, we argue exactly as in the proof of Theorem[8.2](#page-6-3) to obtain the following existence result for (8.1) .

Theorem 8.5 Let F, $\varphi_i : E \times E \to E$ (i = 1, 2, ..., r) be r + 1 given mappings. *Suppose that the following conditions are satisfied:*

- *(i)* φ_i *(i = 1, 2, ..., r) is level closed from the right.*
- *(ii) There exists* $(x_0, y_0) \in E \times E$ *such that* $\varphi_i(x_0, y_0) \leq_P 0_E$ $(i = 1, 2, \ldots, r)$.
- *(iii)* For every $(x, y) \in E \times E$, we have

 $\varphi_i(x, y) \leq P_0 F, i = 1, 2, \ldots, r \Longrightarrow \varphi_i(F(x, y), F(y, x)) \geq P_0 F, i = 1, 2, \ldots, r.$

(iv) For every (x, y) ∈ *E* \times *E*, *we have*

 $\varphi_i(x, y) \geq P_0E, i = 1, 2, ..., r \Longrightarrow \varphi_i(F(x, y), F(y, x)) \leq P_0E, i = 1, 2, ...r.$

(v) There exists some $\psi \in \Psi$ such that

 $||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),$

for all (x, y) , $(u, v) \in E \times E$ *with* $\varphi_i(x, y) \leq_P 0_E$, $\varphi_i(u, v) \geq_P 0_E$, $i = 1, 2, \ldots, r$.

Then [\(8.1\)](#page-0-0) *has a unique solution.*

8.3 Some Consequences

In this section, we present some consequences following from Theorem [8.5.](#page-10-0)

8.3.1 A Fixed Point Problem Under Symmetric Equality Constraints

Let *X* be a nonempty set and let $F: X \times X \rightarrow X$ be a given mapping. Recall that that $x \in X$ is said to be a fixed point of *F* if $F(x, x) = x$.

Let $F, \varphi : E \times E \to E$ be given mappings. We consider the problem: Find $x \in E$ such that

$$
\begin{cases}\nF(x, x) = x, \\
\varphi(x, x) = 0_E.\n\end{cases}
$$
\n(8.13)

We have the following result.

Corollary 8.1 *Let* $F, \varphi : E \times E \to E$ *be two given mappings. Suppose that the following conditions are satisfied:*

 (i) φ *is level closed from the right.*

 (ii) φ *is symmetric, that is,*

$$
\varphi(x, y) = \varphi(y, x), \quad (x, y) \in E \times E.
$$

- *(iii)* There exists $(x_0, y_0) \in E \times E$ such that $\varphi(x_0, y_0) \leq_P 0_F$.
- *(iv) For every* (x, y) ∈ *E* \times *E*, *we have*

$$
\varphi(x, y) \leq_P 0_E \Longrightarrow \varphi(F(x, y), F(y, x)) \geq_P 0_E.
$$

(v) For every (x, y) ∈ *E* \times *E*, *we have*

$$
\varphi(x, y) \geq_P 0_E \Longrightarrow \varphi(F(x, y), F(y, x)) \leq_P 0_E.
$$

(vi) There exists some $\psi \in \Psi$ such that

$$
||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ *with* $\varphi(x, y) \leq_P 0_E$ *and* $\varphi(u, v) \geq_P 0_E$.

Then [\(8.13\)](#page-11-0) *has a unique solution.*

Proof From Theorem [8.1,](#page-2-1) we know that [\(8.2\)](#page-2-0) has a unique solution $(x^*, y^*) \in E \times$ *E*. Since φ is symmetric, (y^*, x^*) is also a solution to [\(8.2\)](#page-2-0). By uniqueness, we get $x^* = y^*$. Then $x^* \in E$ is the unique solution to [\(8.13\)](#page-11-0).

Let *F*, $\varphi_i : E \times E \to E$ (*i* = 1, 2, ..., *r*) be *r* + 1 given mappings. We consider the problem: Find $x \in X$ such that

$$
\begin{cases}\nF(x, x) = x, \\
\varphi_i(x, x) = 0_E, \ i = 1, 2, \dots, r.\n\end{cases}
$$
\n(8.14)

Similarly, from Theorem [8.5,](#page-10-0) we have the following result.

Corollary 8.2 *Let* F , $\varphi_i : E \times E \to E$ ($i = 1, 2, ..., r$) be $r + 1$ given mappings. *Suppose that the following conditions are satisfied:*

- *(i)* φ_i *(i = 1, 2, ..., r) is level closed from the right.*
- *(ii)* φ_i *(i = 1, 2, ..., r) is symmetric.*
- *(iii)* There exists $(x_0, y_0) \in E \times E$ such that $\varphi_i(x_0, y_0) \leq_P 0_E$ $(i = 1, 2, \ldots, r)$.
- *(iv) For every* (x, y) ∈ E \times *E, we have*

 $\varphi_i(x, y) \leq P_0E, i = 1, 2, ..., r \implies \varphi_i(F(x, y), F(y, x)) \geq P_0E, i = 1, 2, ..., r.$

(v) For every (x, y) ∈ *E* \times *E*, *we have*

$$
\varphi_i(x, y) \geq_P 0_E, i = 1, 2, \dots, r \Longrightarrow \varphi_i(F(x, y), F(y, x)) \leq_P 0_E, i = 1, 2, \dots, r.
$$

(vi) There exists some $\psi \in \Psi$ such that

$$
||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ with $\varphi_i(x, y) \leq_P 0_E$, $\varphi_i(u, v) \geq_P 0_E$, $i = 1, 2, \ldots, r.$

Then [\(8.14\)](#page-11-1) *has a unique solution.*

8.3.2 A Common Coupled Fixed Point Result

We need the following definition.

Definition 8.3 Let *X* be a nonempty set, $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two given mappings. We say that the pair of elements $(x, y) \in X \times X$ is a common coupled fixed point of *F* and *g* if

$$
x = gx = F(x, y) \quad \text{and} \quad y = gy = F(y, x).
$$

We have the following common coupled fixed point result.

Corollary 8.3 *Let* $F: E \times E \to E$ *and* $g: E \to E$ *be two given mappings. Suppose that the following conditions hold:*

- *(i) g is a continuous mapping.*
- *(ii)* There exists $(x_0, y_0) \in E \times E$ such that

$$
gx_0 \leq_p x_0
$$
 and $gy_0 \leq_p y_0$.

136 8 A Coupled Fixed Point Problem ...

(iii) For every $(x, y) \in E \times E$, we have

$$
gx \leq_P x
$$
, $gy \leq_P y \Longrightarrow gF(x, y) \geq_P F(x, y)$, $gF(y, x) \geq_P F(y, x)$.

(iv) For every (x, y) ∈ E \times *E, we have*

$$
gx \geq_P x
$$
, $gy \geq_P y \Longrightarrow gF(x, y) \leq_P F(x, y)$, $gF(y, x) \leq_P F(y, x)$.

(v) There exists some $\psi \in \Psi$ such that

$$
||F(u, v) - F(x, y)|| + ||F(y, x) - F(v, u)|| \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ *with gx* $\leq_P x$, *gy* $\leq_P y$ *and gu* $\geq_P u$, *gv* $\geq_P v$. *Then F and g have a unique common coupled fixed point.*

Proof Let us consider the mappings $\varphi_1, \varphi_2 : E \times E \to E$ defined by

$$
\varphi_1(x, y) = gx - x, \quad (x, y) \in E \times E
$$

and

$$
\varphi_2(x, y) = gy - y, \quad (x, y) \in E \times E.
$$

Observe that $(x, y) \in E \times E$ is a common coupled fixed point of *F* and *g* if and only if (x, y) ∈ *E* × *E* is a solution to [\(8.12\)](#page-6-2). Note that since *g* is continuous, then φ_i is level closed from the right (also from the left) for all $i = 1, 2$. Now, applying Theorem [8.2,](#page-6-3) we obtain the desired result.

8.3.3 A Fixed Point Result

We denote by Ψ the set of functions $\psi : [0, \infty) \to [0, \infty)$ satisfying the following conditions:

 $(\Psi_1) \psi \in \Psi.$
 $(\widetilde{\mathcal{U}})$ For all (Ψ_2) For all *a*, *b* ∈ [0, ∞), we have

$$
\psi(a) + \psi(b) \le \psi(a+b).
$$

Example 8.2 As example, let us consider the function

$$
\psi(t) = \begin{cases} t/2 & \text{if } 0 \le t < 1, \\ t - 1/3 & \text{if } t \ge 1. \end{cases}
$$

It is not difficult to observe that $\psi \in \Psi$. Now, let us consider an arbitrary pair $(a, b) \in$ $[0, \infty) \times [0, \infty)$. We discuss three possible cases.

Case 1. If $(a, b) \in [0, 1) \times [0, 1)$. In this case, we have $\psi(a) + \psi(b) = (a + b)/2$. On the other hand, we have $a + b \in$ $[0, 2)$. So, if $0 \le a + b \le 1$, then $\psi(a) + \psi(b) = (a + b)/2 = \psi(a + b)$. However, if $1 \le a + b < 2$, then $\psi(a + b) - \psi(a) - \psi(b) = (a + b)/2 - 1/3 \ge 0$.

Case 2. If $(a, b) \in [0, 1) \times [1, \infty)$. In this case, we have $\psi(a) + \psi(b) = a/2 + b - 1/3 \le a + b - 1/3 = \psi(a + b)$.

Case 3. If $(a, b) \in [1, \infty) \times [1, \infty)$. In this case, we have $\psi(a) + \psi(b) = a + b - 2/3 \le a + b - 1/3 = \psi(a + b)$. Therefore, we have $\psi \in \Psi$.

Note that the set Ψ is more large than the set Ψ . The following example illustrates this fact.

Example 8.3 Let us consider the function

$$
\psi(t) = \begin{cases} t/2 & \text{if } 0 \le t \le 1, \\ 1/2 & \text{if } t > 1. \end{cases}
$$

Clearly, we have $\psi \in \Psi$. However,

$$
\psi(1+1) = 1/2 < 1 = \psi(1) + \psi(1),
$$

which proves that $\psi \notin \Psi$.

We have the following fixed point result.

Corollary 8.4 *Let* $T : E \to E$ *be a given mapping. Suppose that there exists some* ψ ∈ Ψ *such that*

$$
||Tu - Tx|| \le \psi(||u - x||), \quad (u, x) \in E \times E. \tag{8.15}
$$

Then T has a unique fixed point.

Proof Let us define the mapping $F : E \times E \rightarrow E$ by

$$
F(x, y) = Tx, \quad (x, y) \in E \times E.
$$

Let $g : E \to E$ be the identity mapping, that is,

$$
gx = x, \quad x \in E.
$$

From [\(8.15\)](#page-14-0), for all (x, y) , $(u, v) \in E \times E$, we have

$$
||Tu - Tx|| \leq \psi(||u - x||)
$$

and

$$
||Ty - Tv|| \leq \psi(||v - y||).
$$

Then

$$
||Tu - Tx|| + ||Ty - Tv|| \leq \psi(||u - x||) + \psi(||v - y||).
$$

Using the property (Ψ_2) , we obtain

$$
||Tu - Tx|| + ||Ty - Tv|| \leq \psi(||u - x|| + ||v - y||), \quad (x, y), (u, v) \in E \times E.
$$

From the definitions of *F* and *g*, we obtain

$$
|| F(u, v) - F(x, y) || + || F(y, x) - F(v, u) || \leq \psi (||u - x|| + ||v - y||),
$$

for all (x, y) , $(u, v) \in E \times E$ with $gx \leq_P x$, $gy \leq_P y$ and $gu \geq_P u$, $gv \geq_P v$. By Corollary 3.5, there exists a unique $(x^*, y^*) \in E \times E$ such that

$$
x^* = F(x^*, y^*) = Tx^*
$$
 and $y^* = F(y^*, x^*) = Ty^*$.

Suppose that $x^* \neq y^*$. By [\(8.15\)](#page-14-0), we have

$$
||x^* - y^*|| = ||Tx^* - Ty^*|| \le \psi(||x^* - y^*)| < ||x^* - y^*||,
$$

which is a contradiction. As consequence, $x^* \in E$ is the unique fixed point of *T*.

Remark 8.2 Taking

$$
\psi(t) = kt, \quad t \ge 0,
$$

where $k \in (0, 1)$ is a constant, we obtain from Corollary [8.4](#page-14-1) the Banach contraction principle.

Finally, for other related results, we refer the reader to Jleli and Samet [\[3](#page-15-3)].

References

- 1. Ait Mansour, A., Malivert, C., Thera, M.: Semicontinuity of vector-valued mappings. Optimization **56**(1–2), 241–252 (2007)
- 2. Guo, D., Je Cho, Y., Zhu, J.: Partial Ordering Methods in Nonlinear Problems. Nova Publishers, New York (2004)
- 3. Jleli, M., Samet, B.: A fixed point problem under two constraint inequalities. Fixed Point Theory Appl. **2016**, 18 (2016)
- 4. Jleli, M., Samet, B.: A Coupled fixed point problem under a finite number of equality constraints in a Banach space partially ordered by a cone. Fixed Point Theory (in Press)