
Chapter 7
On Fixed Points That Belong to the Zero
Set of a Certain Function

Let T : X → X be a given mapping. The set Fix(T ) is said to be ϕ-admissible
with respect to a certain mapping ϕ : X → [0,∞), if ∅ �= Fix(T ) ⊆ Zϕ , where Zϕ

denotes the zero set of ϕ, i.e., Zϕ = {x ∈ X : ϕ(x) = 0}. In this chapter, we present
the class of extended simulation functions recently introduced by Roldán and Samet
[13], which is more large than the class of simulation functions, introduced by
Khojasteh et al. [8]. We obtain a ϕ-admissibility result involving extended simu-
lation functions, for a new class of mappings T : X → X , with respect to a lower
semi-continuous function ϕ : X → [0,∞), where X is a set equipped with a cer-
tain metric d. From the obtained results, some fixed point theorems in partial metric
spaces are derived, includingMatthewsfixed point theorem [9].Moreover,we answer
to three open problems posed by Ioan A. Rus in [16]. The main references for this
chapter are the papers [7, 13, 17].

7.1 Partial Metric Spaces

In 1994, Matthews [9] introduced the concept of partial metric spaces as a part of
the study of denotational semantics of dataflow networks and showed that Banach
contraction principle can be generalized to the partial metric context for applications
in program verification. Later on, many authors studied fixed point theorems on
partial metric spaces (see, e.g., [1, 2, 5, 6, 10, 11, 14, 15, 18, 19] and references
therein).

We start this section by recalling some basic definitions and properties of partial
metric spaces (see [9] for more details).

Definition 7.1 A partial metric on a nonempty set X is a mapping p : X × X →
[0,∞) satisfying the following axioms: For all x, y, z ∈ X , we have

(i) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y;
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(ii) p(x, x) ≤ p(x, y);
(iii) p(x, y) = p(y, x);
(iv) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

In this case, the pair (X, p) is said to be a partial metric space.

Remark 7.1 It is clear that, if p(x, y) = 0, then x = y; but if x = y, p(x, y) may
not be 0.

Example 7.1 Abasic example of a partial metric space is the pair ([0,∞), p), where
p(x, y) = max{x, y} for all x, y ∈ [0,∞). Other examples of partial metric spaces
which are interesting from a computational point of view may be found in [9].

The next definitions generalize the metric space notions of convergent sequences
and Cauchy sequences to partial metric spaces.

Definition 7.2 A sequence {xn} of points in a partial metric space (X, p) converges
to x ∈ X if

lim
n→∞ p(xn, x) = lim

n→∞ p(xn, xn) = p(x, x).

Definition 7.3 A sequence {xn} of points in a partial metric space (X, p) is Cauchy
if lim

m,n→∞ p(xn, xm) exists and is finite.

Definition 7.4 A partial metric space (X, p) is complete if every Cauchy sequence
converges.

The following result can be shown easily.

Lemma 7.1 Let X be a nonempty set and p : X × X → [0,∞) be a partial metric
on X. Let dp : X × X → [0,∞) be the mapping defined by

dp(x, y) = 2p(x, y) − p(x, x) − p(y, y), (x, y) ∈ X × X.

Then dp is a metric on X.

Lemma 7.2 (see [10]) Let (X, p) be a partial metric space. Then

(i) {xn} is Cauchy in (X, p) if and only if {xn} is Cauchy in the metric space (X, dp).
(ii) The partialmetric space (X, p) is complete if and only if themetric space (X, dp)

is complete. Furthermore, lim
n→∞ dp(xn, x) = 0 if and only if

lim
n→∞ p(xn, x) = p(x, x) = lim

m,n→∞ p(xn, xm).

In [9], Matthews obtained a partial metric version of Banach contraction principle
as follows.
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Theorem 7.1 (Matthews fixed point theorem) Let (X, p) be a complete partial met-
ric space. Let T : X → X be a contraction; i.e., there exists some constant k ∈ (0, 1)
such that

p(T x, T y) ≤ k p(x, y), (x, y) ∈ X × X. (7.1)

Then T has a unique fixed point x∗ ∈ X. Moreover, we have p(x∗, x∗) = 0.

Under the assumptions of Theorem7.1, we observe easily that

∅ �= Fix(T ) ⊆ Zϕ,

where Zϕ denotes the zero set ofϕ(x) = p(x, x). A point x ∈ X satisfying p(x, x) =
0 is called a total element (see [16]).

7.2 Three Open Questions of I.A. Rus

In [16], Ioan A. Rus presented three interesting open problems. Let (X, p) be a com-
plete partial metric space.

Problem 1 If T : (X, p) → (X, p) is a contraction, which condition satisfies T with
respect to the metric dp?

Problem 2 It consists to give fixed point theorems for these new classes of operators
on the metric space (X, dp).

Problem 3 Use the results for the above problems to give fixed point theorems in a
partial metric space.

The purpose of this chapter is to study the ϕ-admissibility for a new class of
mappings T : X → X , with respect to a lower semi-continuous function ϕ : X →
[0,∞), where X is a set equipped with a certain metric d. Next, from the obtained
results, some fixed point theorems in partial metric spaces are derived, including
Matthews fixed point theorem [9]. This contribution presents answers to the above
problems of Ioan A. Rus.

7.3 The Class of Extended Simulation Functions

The class of simulation functions was introduced recently in [8] as follows.

Definition 7.5 Let ζ : [0,∞) × [0,∞) → R be a given map. We say that ζ is a
simulation function if it satisfies the following conditions:
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(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s − t , for every t, s > 0;
(ζ3) For any sequences {tn}, {sn} ⊂ (0,∞), we have

lim
n→∞ tn = lim

n→∞ sn > 0 =⇒ lim sup
n→∞

ζ(tn, sn) < 0.

Several examples of simulation functions were given in [8]. Let us denote by Z
the st of all simulation functions.

Definition 7.6 ([8]) Let T : X → X be a given map, where X is endowed with a
certainmetric d.We say that T is aZ -contractionwith respect to a certain simulation
function ζ ∈ Z if

ζ(d(T x, T y), d(x, y)) ≥ 0, (x, y) ∈ X × X.

The main result in [8] is the following fixed point theorem that generalizes and
unifies several previous fixed point results from the literature including Banach con-
traction principle.

Theorem 7.2 ([8]) Let T : X → X be a given map, where X is a set endowed with
a certain metric d such that (X, d) is complete. If T is aZ -contraction with respect
to a certain simulation function ζ ∈ Z , then T has a unique fixed point. Moreover,
for any x ∈ X, the Picard sequence {T nx} converges to this fixed point.

The following concept was introduced in [13].

Definition 7.7 Anextended simulation function (for short, an e-simulation function)
is a function θ : [0,∞) × [0,∞) → R satisfying the following axioms:

(θ1) θ(t, s) < s − t , for every t, s > 0;
(θ2) For any sequences {tn}, {sn} ⊂ (0,∞), we have

lim
n→∞ tn = lim

n→∞ sn = � ∈ (0,∞), sn > �, n ∈ N =⇒ lim sup
n→∞

θ(tn, sn) < 0;

(θ3) For any sequence {tn} ⊂ (0,∞), we have

lim
n→∞ tn = � ∈ [0,∞), θ(tn, �) ≥ 0, n ∈ N =⇒ � = 0.

Let us denote by EZ the set of all e-simulation functions. In the following, we
compare the set EZ with the set Z .

Proposition 7.1 Every simulation function is an e-simulation function.

Proof Let ζ : [0,∞) × [0,∞) → R be a simulation function. We have just to prove
that the function ζ satisfies axiom (θ3). Let {tn} ⊂ (0,∞) be a sequence converging
to � ≥ 0, and such that
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ζ(tn, �) ≥ 0, n ∈ N. (7.2)

Suppose that � > 0. Let us consider the sequence {sn} ⊂ (0,∞) given by

sn = �, n ∈ N.

Using axiom (ζ3), we obtain

lim sup
n→∞

ζ(tn, �) = lim sup
n→∞

ζ(tn, sn) < 0,

which is a contradiction with (7.2). Therefore, � = 0, and (θ3) holds.

The converse of Proposition7.1 is not true as it is shown by the following example.

Example 7.2 Let us consider the function θ : [0,∞) × [0,∞) → R defined by

θ(t, s) =

⎧
⎪⎨

⎪⎩

1 − t if s = 0,

s

2
− t if s > 0.

At first, observe that θ /∈ Z . In fact, θ(0, 0) = 1 �= 0, so axiom (ζ1) is not satisfied.
Let us prove now that θ ∈ EZ . For all t, s > 0, we have

θ(t, s) = s

2
− t < s − t,

which yields (θ1). Let {tn} and {sn} be two sequences in (0,∞) such that

lim
n→∞ tn = lim

n→∞ sn = � ∈ (0,∞).

We have
θ(tn, sn) = sn

2
− tn, n ∈ N.

Therefore,

lim sup
n→∞

θ(tn, sn) = −�

2
< 0,

which proves (θ2). Finally, let {tn} be a sequence in (0,∞) that converges to some
� ≥ 0, and such that

θ(tn, �) ≥ 0, n ∈ N.

Suppose that � > 0. Then

θ(tn, �) = �

2
− tn ≥ 0, n ∈ N,
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i.e.,

tn ≤ �

2
, n ∈ N.

Passing to the limit as n → ∞, we obtain

� ≤ �

2
,

which is a contradiction with � > 0. Therefore, � = 0, and (θ3) follows. As a conse-
quence, θ ∈ EZ .

For technical reasons, it is convenient to point that if we had considered the closed
interval [0,∞) in Definition7.7, then we would have obtained the same notion. The
following result shows this fact.

Proposition 7.2 Givena function θ : [0,∞) × [0,∞) → R, condition (θ2) is equiv-
alent to:

(θ ′
2) For any sequences {tn}, {sn} ⊂ [0,∞), we have

lim
n→∞ tn = lim

n→∞ sn = � ∈ (0,∞), sn > �, n ∈ N =⇒ lim sup
n→∞

θ(tn, sn) < 0.

Furthermore, property (θ3) is equivalent to:

(θ ′
3) For any sequence {tn} ⊂ [0,∞), we have

lim
n→∞ tn = � ∈ [0,∞), θ(tn, �) ≥ 0, n ∈ N =⇒ � = 0.

Proof Clearly, we have (θ ′
2) =⇒ (θ2). Let us prove the converse. Suppose that (θ2)

holds. Let {tn} and {sn} be two sequences in [0,∞) such that

lim
n→∞ tn = lim

n→∞ sn = � ∈ (0,∞), sn > �, n ∈ N.

Since � > 0, there exists some N ∈ N such that

tn > 0, sn > 0, n ≥ N + 1.

Let us define the sequences {Tn} and {Sn} by

T0 = T1 = · · · = TN = 1, Tn = tn, n ≥ N + 1

and
S0 = S1 = · · · = SN = � + 1, Sn = sn, n ≥ N + 1.

Then {Tn} and {Sn} are two sequences in (0,∞) converging to � ∈ (0,∞) with
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Sn > �, n ∈ N.

By (θ2), we obtain

lim sup
n→∞

θ(tn, sn) = lim sup
n→∞

θ(Tn, Sn) < 0,

from which (θ ′
2) follows. On the other hand, the implication (θ ′

3) =⇒ (θ3) is obvious.
Let us prove the converse. Suppose that (θ3) holds true. Let {tn} be a sequence in
[0,∞) converging to some � ≥ 0, and such that

θ(tn, �) ≥ 0, n ∈ N.

We have to prove that � = 0. Suppose that � > 0. Then there exists some N ∈ N

such that
tn > 0, n ≥ N + 1.

Define the sequence {Tn} by

T0 = T1 = · · · = TN = tN+1, Tn = tn, n ≥ N + 2.

Then {Tn} is a sequence in (0,∞) converging to �, and such that

θ(Tn, �) ≥ 0, n ∈ N.

By (θ3), we obtain � = 0, which is a contradiction. Therefore, � = 0, and (θ ′
3) follows.

Remark 7.2 Properties (θ2) and (θ3) are easier to prove when we want to check that
a given function is an e-simulation function. However, conditions (θ ′

2) and (θ ′
3) are

useful when we assume that a given function is an e-simulation function.

Let Ψ be the set of functions ψ : [0,∞) → [0,∞) satisfying the following con-
ditions:

(ψ1) ψ is upper semi-continuous from the right;
(ψ2) ψ(t) < t , t > 0.

Lemma 7.3 Given ψ ∈ Ψ , let θψ : [0,∞) × [0,∞) → R be the function given by

θψ(t, s) = ψ(s) − t, t, s ≥ 0. (7.3)

Then θψ is an e-simulation function.

Proof Let us check axiom (θ1). For all t, s > 0, from property (ψ2), we have

θψ(t, s) = ψ(s) − t < s − t,

which proves (θ1). Let us consider two sequences {tn} and {sn} in (0,∞) such that



108 7 On Fixed Points That Belong to the Zero Set of a Certain Function

lim
n→∞ tn = lim

n→∞ sn = � ∈ (0,∞), sn > �, n ∈ N.

We have
θψ(tn, sn) = ψ(sn) − tn, n ∈ N.

Since from (ψ1), the function ψ is upper semi-continuous form the right, we have

ψ(�) ≥ lim sup
n→∞

ψ(sn),

which implies from (ψ2) that

lim sup
n→∞

θψ(tn, sn) ≤ ψ(�) − � < 0.

Therefore, (θ2) holds. Finally, we have to check axiom (θ3). Let {tn} be a sequence
in (0,∞) such that

lim
n→∞ tn = � ∈ [0,∞), θψ(tn, �) ≥ 0, n ∈ N.

Suppose that � > 0. We have

ψ(�) − tn ≥ 0, n ∈ N.

Passing to the limit as n → ∞, we obtain

ψ(�) ≥ �.

On the other hand, from (ψ2), we have

ψ(�) < �,

which is a contradiction. Then � = 0, and (θ3) holds. As a consequence, θψ is an
e-simulation function.

Remark 7.3 In general, if ψ ∈ Ψ , θψ is not a simulation function. This fact can be
shown by Example7.2 with

ψ(s) =

⎧
⎪⎨

⎪⎩

1 if s = 0,

s

2
if s > 0.

However, if ψ is upper semi-continuous (rather than upper semi-continuous from
the right), then we can modify θψ to transform it in a simulation function. The next
result shows this fact.
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Proposition 7.3 If ψ ∈ Ψ , then the function θ̃ψ : [0,∞) × [0,∞) → R given by

θ̃ψ (t, s) =
⎧
⎨

⎩

0 if t = s = 0,

ψ(s) − t otherwise

is an e-simulation function. Furthermore, if ψ ∈ Ψ is upper semi-continuous, then
θ̃ψ is a simulation function.

Proof Let us prove first that θ̃ψ is an e-simulation function. For all t, s > 0, we have

θ̃ψ (t, s) = ψ(s) − t < s − t,

which yields (θ1). Let us consider two sequences {tn} and {sn} in (0,∞) such that

lim
n→∞ tn = lim

n→∞ sn = � ∈ (0,∞), sn > �, n ∈ N.

Then
lim sup
n→∞

θ̃ψ (tn, sn) = lim sup
n→∞

ψ(sn) − � ≤ ψ(�) − � < 0.

Therefore, (θ2) holds. Finally, let {tn} be a sequence in (0,∞) such that

lim
n→∞ tn = � ∈ [0,∞), θ̃ψ(tn, �) ≥ 0, n ∈ N.

Suppose that � > 0. Then

θ̃ψ (tn, �) = ψ(�) − tn ≥ 0, n ∈ N.

Passing to the limit as n → ∞, and using axiom (ψ2), we obtain

� ≤ ψ(�) < �,

which is a contradiction. Then � = 0, and (θ3) follows. As a consequence, θ̃ψ is an
e-simulation function.

Suppose now that ψ ∈ ψ is upper semi-continuous. Let us prove that θ̃ψ is a
simulation function. Observe that

θ̃ψ (0, 0) = 0,

which yields (ζ1).Axiom (ζ2) follows from the fact that θ̃ψ is an e-simulation function.
Axiom (ζ3) follows by using point by point the proof of (θ2), and using the upper
semi-continuity of ψ . Therefore, under the upper semi-continuity of ψ ∈ Ψ , θ̃ψ is a
simulation function.
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Remark 7.4 By (θ1), if θ is an e-simulation function, then

θ(r, r) < 0, r > 0.

7.4 ϕ-Admissibility Results

The concept of ϕ-admissibility was introduced recently by Karapinar, Samet, and
O’Regan in [7].

Definition 7.8 Let T : X → X be a given mapping. The set Fix(T ) is said to be
ϕ-admissible with respect to a certain mapping ϕ : X → [0,∞), if

∅ �= Fix(T ) ⊆ Zϕ,

where Zϕ denotes the zero set of ϕ, i.e.,

Zϕ = {x ∈ X : ϕ(x) = 0}.

Let F be the set of functions F : [0,∞)3 → [0,∞) satisfying the following
axioms:

(F1) max{a, b} ≤ F(a, b, c), for every a, b, c ≥ 0;
(F2) F(a, 0, 0) = a, for every a ≥ 0;
(F3) F is continuous.

The setF is nonempty. For instance, the following functions belong to F :

• F(a, b, c) = a + b + c,
• F(a, b, c) = max{a, b} + ln(c + 1),
• F(a, b, c) = a + b + c(c + 1),
• F(a, b, c) = (a + b)ec,
• F(a, b, c) = (a + b)(c + 1)n, n ∈ N.

Let (X, d) be a metric space, ϕ : X → [0,∞), F ∈ F , and θ ∈ EZ . We denote
by T (ϕ, F, θ) the set of mappings T : X → X satisfying

θ
(
F(d(T x, T y), ϕ(T x), ϕ(T y)), Mϕ

F (x, y)
) ≥ 0, (x, y) ∈ X × X, (7.4)

where

Mϕ

F (x, y) = max {F(d(x, y), ϕ(x), ϕ(y)), F(d(x, T x), ϕ(x), ϕ(T x)),

F(d(y, T y), ϕ(y), ϕ(T y))} . (7.5)

The main result of this chapter is the following one.



7.4 ϕ-Admissibility Results 111

Theorem 7.3 Let (X, d) be a complete metric space. Let T : X → X be a mapping
that belongs to T (ϕ, F, θ), for some ϕ : X → [0,∞), F ∈ F , and θ ∈ EZ . If ϕ is
lower semi-continuous, then

(i) For every x ∈ X, the sequence {T nx} converges to a fixed point of T .
(ii) T has a unique fixed point.
(iii) Fix(T ) is ϕ-admissible.

Proof First of all, we show that Fix(T ) ⊆ Zϕ . Indeed, let ω ∈ Fix(T ). Since

Mϕ

F (ω, ω) = max {F(d(ω, ω), ϕ(ω), ϕ(ω)), F(d(ω, Tω), ϕ(ω), ϕ(Tω)),

F(d(ω, Tω), ϕ(ω), ϕ(Tω))}
= max {F(0, ϕ(ω), ϕ(ω)), F(0, ϕ(ω), ϕ(ω)), F(0, ϕ(ω), ϕ(ω))}
= F(0, ϕ(ω), ϕ(ω)),

then (7.4) guarantees that

0 ≤ θ
(
F(d(Tω, Tω), ϕ(Tω), ϕ(Tω)), Mϕ

F (ω, ω)
)

= θ
(
F(0, ϕ(ω), ϕ(ω)), F(0, ϕ(ω), ϕ(ω))

)
.

By Remark7.4, we deduce that

F(0, ϕ(ω), ϕ(ω)) = 0.

It follows from condition (F1) that

0 ≤ ϕ(ω) = max {0, ϕ(ω)} ≤ F(0, ϕ(ω), ϕ(ω)) = 0,

which means that ϕ(ω) = 0, and ω ∈ Zϕ . Therefore, Fix(T ) ⊆ Zϕ .
Next, let us prove (i). Let x0 ∈ X be an arbitrary point and let {xn} be the Picard

sequence defined by
xn = T nx0, n ∈ N.

If there exists some n0 ∈ N such that xn0 = xn0+1, then xn0 is a fixed point of T (and
{xn} converges to xn0 ). On the contrary case, suppose that

d(xn, xn+1) > 0, n ∈ N.

If there exists somem0 ∈ N such that F(d(xm0 , xm0+1), ϕ(xm0), ϕ(xm0+1)) = 0, then
we could deduce from condition (F1) that

0 < d(xm0 , xm0+1) ≤ max
{
d(xm0 , xm0+1), ϕ(xm0)

}

≤ F(d(xm0 , xm0+1), ϕ(xm0), ϕ(xm0+1)) = 0,
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which is impossible. Hence,

F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)) > 0, n ∈ N.

For simplicity, let us denote

an = F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)) > 0, n ∈ N.

Notice that, for all n ∈ N,

Mϕ
F (xn, xn+1) = max

{
F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)), F(d(xn, T xn), ϕ(xn), ϕ(T xn)),

F(d(xn+1, T xn+1), ϕ(xn+1), ϕ(T xn+1))
}

= max
{
F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)), F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)),

F(d(xn+1, xn+2), ϕ(xn+1), ϕ(xn+2))
}

= max
{
an, an, an+1

}

= max
{
an, an+1

}
> 0.

Using (7.4) and property (θ2), we deduce that, for all n ∈ N,

0 ≤ θ
(
F(d(T xn, T xn+1), ϕ(T xn), ϕ(T xn+1)), M

ϕ

F (xn, xn+1)
)

= θ
(
F(d(xn+1, xn+2), ϕ(xn+1), ϕ(xn+2)),max {an, an+1}

)

= θ
(
an+1,max {an, an+1}

)

< max {an, an+1} − an+1,

which means that an+1 < an , for all n ∈ N. As {an} is a decreasing sequence of
nonnegative real numbers, it has a limit. Let

L = lim
n→∞ an ≥ 0.

As {an} is strictly decreasing, then L < an , for all n ∈ N. In order to prove that L = 0,
suppose that L > 0. In such a case, we have

lim
n→∞ a′

n = lim
n→∞ b′

n = L ,

where a′
n = an+1 and b′

n = max {an, an+1} = an . Moreover, we have

L < b′
n, n ∈ N.

Thus, condition (θ3) implies that

lim sup
n→∞

θ(a′
n, b

′
n) < 0,
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which contradicts the fact that

θ(a′
n, b

′
n) = θ

(
an+1,max {an, an+1}

) ≥ 0, n ∈ N.

This contradiction guarantees that

L = lim
n→∞ an = lim

n→∞ F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)) = 0. (7.6)

Furthermore, by condition (F1),

0 ≤ ϕ(xn) ≤ max
{
d(xn, xn+1), ϕ(xn)

} ≤ F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)) = an, and

0 ≤ d(xn, xn+1) ≤ max
{
d(xn, xn+1), ϕ(xn)

} ≤ F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)) = an,

for all n ∈ N. So,
lim
n→∞ ϕ(xn) = lim

n→∞ d(xn, xn+1) = 0. (7.7)

Next, we show that {xn} is a Cauchy sequence reasoning by contradiction. Sup-
pose that {xn} is not a Cauchy sequence in (X, d). In this case, it is well known
(see, for instance, [12, Lemma16], [3, Lemma13]) that there exist ε0 > 0 and two
subsequences {xn(k)} and {xm(k)} of {xn} such that, for all k ∈ N,

k ≤ n(k) < m(k) < n(k + 1) and d(xn(k), xm(k)−1) ≤ ε0 < d(xn(k), xm(k)),

(7.8)
and also

lim
k→∞ d(xn(k), xm(k)) = lim

k→∞ d(xn(k)+1, xm(k)+1) = ε0. (7.9)

Let � = ε0 > 0 and let us define

a′′
k = F(d(xn(k)+1, xm(k)+1), ϕ(xn(k)+1), ϕ(xm(k)+1)), and

b′′
k = Mϕ

F (xn(k), xm(k)),

for all k ∈ N. As F is continuous, it follows from (7.7), (7.9), and (F2) that

lim
k→∞ a′′

k = lim
k→∞ F(d(xn(k)+1, xm(k)+1), ϕ(xn(k)+1), ϕ(xm(k)+1))= F (ε0, 0, 0) = ε0 = �.

On the other hand, for all k ∈ N,

b′′
k = Mϕ

F (xn(k), xm(k))

= max
{
F(d(xn(k), xm(k)), ϕ(xn(k)), ϕ(xm(k))), F(d(xn(k), T xn(k)), ϕ(xn(k)), ϕ(T xn(k))),

F(d(xm(k), T xm(k)), ϕ(xm(k)), ϕ(T xm(k)))
}

= max
{
F(d(xn(k), xm(k)), ϕ(xn(k)), ϕ(xm(k))), F(d(xn(k), xn(k)+1), ϕ(xn(k)), ϕ(xn(k)+1)),

F(d(xm(k), xm(k)+1), ϕ(xm(k)), ϕ(xm(k)+1))
}
. (7.10)
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In particular, by (F1) and (7.8), for all n ∈ N,

b′′
k ≥ F(d(xn(k), xm(k)), ϕ(xn(k)), ϕ(xm(k))) ≥ max

{
d(xn(k), xm(k)), ϕ(xn(k))

}

≥ d(xn(k), xm(k)) > ε = �. (7.11)

Letting k → ∞ in (7.10), we obtain

lim
k→∞ b′′

k = max {F(ε0, 0, 0), F(0, 0, 0), F(0, 0, 0)}
= F(ε0, 0, 0) = ε0 = �.

As a consequence, {a′′
k } and {b′′

k } are sequences of positive real numbers converging
to the same positive limit � satisfying

� < b′′
k , k ∈ N.

It follows from (θ3) that
lim sup
k→∞

θ(a′′
k , b

′′
k ) < 0. (7.12)

However, (7.4) ensures us that, for all k ∈ N,

0 ≤ θ
(
F(d(T xn(k), T xm(k)), ϕ(T xn(k)), ϕ(T xm(k))), M

ϕ

F (xn(k), xm(k))
)

≤ θ
(
F(d(xn(k)+1, xm(k)+1), ϕ(xn(k)+1), ϕ(xm(k)+1)), Mϕ

F (xn(k), xm(k))
)

= θ(a′′
k , b

′′
k ),

which contradicts (7.12). This contradiction guarantees that {xn} is a Cauchy
sequence in (X, d). As it is complete, there exists ω ∈ X such that {xn} → ω. As ϕ

is lower semi-continuous, we have

0 ≤ ϕ(ω) ≤ lim sup
n→∞

ϕ(xn) = 0,

so ϕ(ω) = 0, that is, ω ∈ Zϕ . ω is a fixed point of T reasoning by contradiction.
Suppose that d(ω, Tω) > 0. Let us define

r = F(d(ω, Tω), 0, ϕ(Tω)),

a′′′
n = F(d(xn+1, Tω), ϕ(xn+1), ϕ(Tω)) and b′′′

n = Mϕ

F (xn, ω),

for all n ∈ N. By (F1),

r = F(d(ω, Tω), 0, ϕ(Tω)) ≥ max {d(ω, Tω), 0} = d(ω, Tω) > 0. (7.13)

As F is continuous,



7.4 ϕ-Admissibility Results 115

lim
n→∞ a′′′

n = lim
n→∞ F(d(xn+1, Tω), ϕ(xn+1), ϕ(Tω)) = F(d(ω, Tω), 0, ϕ(Tω)) = r.

On the other hand,

b′′′
n = Mϕ

F (xn, ω)= max {F(d(xn, ω), ϕ(xn), ϕ(ω)), F(d(xn, T xn), ϕ(xn), ϕ(T xn)),

F(d(ω, Tω), ϕ(ω), ϕ(Tω))}
= max {F(d(xn, ω), ϕ(xn), 0), F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)),

F(d(ω, Tω), ϕ(ω), ϕ(Tω))} .

Since F is continuous,

lim
n→∞ F(d(xn, ω), ϕ(xn), 0) = F(0, 0, 0) = 0,

lim
n→∞ F(d(xn, xn+1), ϕ(xn), ϕ(xn+1)) = F(0, 0, 0) = 0.

As a consequence, there exists n0 ∈ N such that

b′′′
n = F(d(ω, Tω), 0, ϕ(Tω)) = r, n ≥ n0.

In particular, {a′′′
n }n≥n0 ⊂ [0,∞) is a sequence converging to r > 0 and such that,

for all n ≥ n0,

θ
(
a′′′
n , r

) = θ
(
a′′′
n , b′′′

n

) = θ
(
F(d(xn+1, Tω), ϕ(xn+1), ϕ(Tω)), Mϕ

F (xn, ω)
)

= θ
(
F(d(T xn, Tω), ϕ(T xn), ϕ(Tω)), Mϕ

F (xn, ω)
) ≥ 0,

by virtue of (7.4). Thus, condition (θ3) guarantees that r = 0, which contradicts
(7.13). This contradiction shows that d(ω, Tω) = 0; that is, ω is a fixed point of
T . In particular, Fix(T ) is nonempty, so ∅ �= Fix(T ) ⊆ Zϕ , and the set Fix(T ) is
ϕ-admissible. Furthermore, we have just proved that every Picard sequence of T
converges to a fixed point of T . Therefore, (i) and (iii) hold.

Finally, let us show that T has a unique fixed point. By contradiction, assume that
(x, y) ∈ Fix(T ) × Fix(T ), with d(x, y) > 0. In such a case, taking into account that
Fix(T ) ⊆ Zϕ , we derive that ϕ(x) = ϕ(y) = 0. Furthermore, as

Mϕ

F (x, y) = max {F(d(x, y), ϕ(x), ϕ(y)), F(d(x, T x), ϕ(x), ϕ(T x)),

F(d(y, T y), ϕ(y), ϕ(T y))}
= max {F(d(x, y), 0, 0), F(0, 0, 0), F(0, 0, 0)}
= F(d(x, y), 0, 0)

= d(x, y),

condition (7.4) yields
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0 ≤ θ
(
F(d(T x, T y), ϕ(T x), ϕ(T y)), Mϕ

F (x, y)
)

= θ
(
F(d(x, y), ϕ(x), ϕ(y)), d(x, y)

)

= θ
(
F(d(x, y), 0, 0), d(x, y)

)

= θ
(
d(x, y), d(x, y)

)
,

which contradicts, by Remark7.4, the fact that θ(d(x, y), d(x, y)) < 0 (because
d(x, y) > 0). Thus, x = y and (ii) follows. The proof is complete.

The following result is similar to Theorem7.3 and its proof follows, point by point,
and in an easier way, repeating the arguments we have just shown in the proof of
Theorem7.3. However, there is not a direct relationship between both results because
an e-simulation function does not have to be monotone in its second argument.

Theorem 7.4 Let (X, d) be a metric space, and let T : X → X be a mapping.
Assume that for some θ ∈ EZ , F ∈ F , and ϕ : X → [0,∞), we have

θ
(
F(d(T x, T y), ϕ(T x), ϕ(T y)), F(d(x, y), ϕ(x), ϕ(y))

) ≥ 0, (x, y) ∈ X × X.

(7.14)
If ϕ is lower semi-continuous, then

(i) For every x ∈ X, the sequence {T nx} converges to a fixed point of T .
(ii) T has a unique fixed point.
(iii) Fix(T ) is ϕ-admissible.

Let (X, d) be a metric space. For given functions ϕ : X → [0,∞), F ∈ F , and
ψ ∈ Ψ , we denote by T (ϕ, F, ψ) the class of operators T : X → X satisfying

F(d(T x, T y), ϕ(T x), ϕ(T y)) ≤ ψ(F(d(x, y), ϕ(x), ϕ(y))), (x, y) ∈ X × X.

(7.15)
The following result due to Karapinar, O’Regan, and Samet [7] follows from

Theorem7.4.

Corollary 7.1 Let (X, d) be a complete metric space and T : X → X be a given
operator. Suppose that the following conditions hold:

(i) There exist ϕ : X → [0,∞), F ∈ F , and ψ ∈ Ψ such that T ∈ T (ϕ, F, ψ);
(ii) ϕ is lower semi-continuous.

Then the set Fix(T ) is ϕ-admissible. Moreover, the operator T has a unique fixed
point.

Proof Under the considered assumptions, let θψ be the function defined by (7.3).
Lemma7.3 guarantees that θψ is an e-simulation function.Moreover, condition (7.15)
is equivalent to

θψ

(
F(d(T x, T y), ϕ(T x), ϕ(T y)), F(d(x, y), ϕ(x), ϕ(y))

)

= ψ (F(d(x, y), ϕ(x), ϕ(y))) − F(d(T x, T y), ϕ(T x), ϕ(T y)) ≥ 0, (x, y) ∈ X × X,
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which means that T satisfies (7.14) with θ = θψ . Thus, Theorem7.4 is applicable.

In the following example, we show that Theorem7.3 improves Corollary7.1.

Example 7.3 Let X = [−3, 3]. We endow X with the Euclidean metric

d(x, y) = |x − y|, (x, y) ∈ X × X.

Obviously, (X, d) is a complete metric space. Let T : X → X be defined by

T x =

⎧
⎪⎨

⎪⎩

−2 if x = 1,

− x

12
if x ∈ X\{1}.

We will show that using the functions

ϕ : X → [0,∞), ϕ(x) = 0, for all x ∈ X, and (7.16)

F : [0,∞)3 → [0,∞), F(t, s, r) = t + s + r, for all t, s, r ∈ [0,∞), (7.17)

Theorem7.3 is applicable but Corollary7.1 is not. Indeed, assume that there isψ ∈ Ψ

such that (7.15) holds. Therefore, for all x, y ∈ X ,

d(T x, T y) = d(T x, T y) + 0 + 0 = d(T x, T y) + ϕ(T x) + ϕ(T y)

= F(d(T x, T y), ϕ(T x), ϕ(T y)) ≤ ψ (F(d(x, y), ϕ(x), ϕ(y)))

= ψ (d(x, y) + 0 + 0) = ψ (d(x, y)) .

However, if x0 = 0 and y0 = 1, then

d(T (0), T (1)) = d(0,−2) = 2, but

ψ (d(0, 1)) = ψ(1) < 1,

which contradicts the previous inequality. As a consequence, it is impossible to find
ψ ∈ Ψ such that (7.15) holds, so Corollary7.1 is not applicable. Nevertheless, let us
consider the function θ : [0,∞) × [0,∞) → R defined by

θ(t, s) = 3

4
s − t, t, s ≥ 0.

Then θ is a simulation function (see [8], Example2.2, (i)). By Proposition7.1, it is
also an e-simulation function. As ϕ and F are given by (7.16) and (7.17), we have
to prove that

θ
(
d(T x, T y), Mϕ

F (x, y)
) ≥ 0, (x, y) ∈ X × X, (7.18)

where
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Mϕ

F (x, y) = max {F(d(x, y), ϕ(x), ϕ(y)), F(d(x, T x), ϕ(x), ϕ(T x)),

F(d(y, T y), ϕ(y), ϕ(T y))}
= max {d(x, y), d(x, T x), d(y, T y)} .

Indeed, we consider two cases.

• If x, y ∈ X\{1}, then

θ
(
d(T x, T y), Mϕ

F (x, y)
) = 3

4
Mϕ

F (x, y) − d
(
− x

12
, − y

12

)
≥ 3

4
d(x, y) − d

( x

12
,
y

12

)

= 3

4
|x − y| − 1

12
|x − y| = 2

3
|x − y| ≥ 0.

• If x ∈ X\{1} and y = 1, taking into account that x/12 ∈ [−1/4, 1/4], we deduce
that

d(T x, T y) = d
(
− x

12
,−2

)
= d

( x

12
, 2

)
=

∣
∣
∣ 2 − x

12

∣
∣
∣ = 2 − x

12
,

d(y, T y) = d(1,−2) = 3, and

Mϕ

F (x, y) = max { d(x, y), d(x, T x), d(y, T y) } ≥ 3.

Therefore,

θ
(
d(T x, T y), Mϕ

F (x, y)
) = 3

4
Mϕ

F (x, y) −
(
2 − x

12

)
≥ 3

4
3 −

(
2 − x

12

)

= x + 3

12
≥ 0.

Thus, in all cases, (7.18) is satisfied. Therefore, Theorem7.3 is applicable, and we
conclude that T has a unique fixed point.

7.5 Some Consequences

In this section, some fixed point theorems in metric and partial metric spaces are
deduced from the above results.

7.5.1 Fixed Point Results in Partial Metric Spaces via
Extended Simulation Functions

In this part, some fixed point theorems in partial metric spaces are deduced from
the above results. Therefore, we answer to all the questions of I.A. Rus presented in
Sect. 7.2.

The following result will be useful later.
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Lemma 7.4 Let (X, p) be a partial metric space. Let ϕ : X → [0,∞) be the func-
tion defined by

ϕ(x) = p(x, x), x ∈ X.

Then ϕ is continuous with respect to the topology induced by the metric dp.

Proof Let {xn} be a sequence in X such that

lim
n→∞ dp(xn, x) = 0,

for some x ∈ X . From (ii), Lemma7.2, we have

lim
n→∞ p(xn, xn) = p(x, x),

i.e.,
lim
n→∞ ϕ(xn) = ϕ(x),

which proves the continuity of ϕ with respect to dp.

We have the following fixed point result in a complete partial metric space.

Corollary 7.2 Let (X, p) be a complete metric space, and let T : X → X be a given
mapping. Suppose that there exists some θ ∈ EZ such that

θ
(
p(T x, T y),max{p(x, y), p(x, T x), p(y, T y)}) ≥ 0, (x, y) ∈ X × X. (7.19)

Then T has a unique fixed point x∗ ∈ X. For all x ∈ X, the Picard sequence {T nx}
converges to x∗. Moreover, p(x∗, x∗) = 0.

Proof Observe that (7.19) is equivalent to (7.4) with

F(a, b, c) = a + b + c, a, b, c ≥ 0,

ϕ(x) = p(x, x)

2
, x ∈ X,

d(x, y) = dp(x, y)

2
, (x, y) ∈ X × X.

On the other hand, from (ii), Lemma7.2, since the partial metric space (X, p) is
complete, then the metric space (X, d) is complete. Moreover, from Lemma7.4, the
function ϕ : X → [0,∞) is continuous with respect to the metric d. Therefore, the
desired result follows from Theorem7.3.

Corollary 7.3 Let (X, p) be a complete metric space, and let T : X → X be a given
mapping. Suppose that there exists some ψ ∈ Ψ such that

p(T x, T y) ≤ ψ (max{p(x, y), p(x, T x), p(y, T y)}) , (x, y) ∈ X × X. (7.20)
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Then T has a unique fixed point x∗ ∈ X. For all x ∈ X, the Picard sequence {T nx}
converges to x∗. Moreover, p(x∗, x∗) = 0.

Proof Taking θ = θψ in (7.19), we obtain (7.20). Using Lemma7.3 and Corol-
lary7.2, the desired result follows.

Corollary 7.4 Let (X, p) be a complete metric space, and let T : X → X be a given
mapping. Suppose that there exists a lower semi-continuous function μ : [0,∞) →
[0,∞) with μ−1({0}) = {0}, such that

p(T x, T y) ≤ max{p(x, y), p(x, T x), p(y, T y)} − μ (max{p(x, y), p(x, T x), p(y, T y)}) ,

(7.21)
for all (x, y) ∈ X × X. Then T has a unique fixed point x∗ ∈ X. For all x ∈ X, the
Picard sequence {T nx} converges to x∗. Moreover, p(x∗, x∗) = 0.

Proof Taking in (7.19), θ(t, s) = s − μ(s) − t , for all t, s ≥ 0, we obtain (7.21). On
the other hand, it was proved in [8] that the function θ defined above is a simulation
function. Therefore, by Corollary7.2 and Proposition7.1, the result follows.

Remark 7.5 Observe that if a mapping T : X → X satisfies (7.1), then it satis-
fies (7.20) with ψ(t) = k t , t ≥ 0. Therefore, Corollary7.3 is a generalization of
Matthews result given by Theorem7.1.

7.5.2 Fixed Point Results in Metric Spaces via Extended
Simulation Functions

As anymetric space is a partialmetric space, the following results follow immediately
from the above corollaries.

From Corollary7.2, we deduce the following result.

Corollary 7.5 Let (X, d) be a complete metric space, and let T : X → X be a given
mapping. Suppose that there exists some θ ∈ EZ such that

θ
(
d(T x, T y),max{d(x, y), d(x, T x), d(y, T y)}) ≥ 0, (x, y) ∈ X × X.

Then T has a unique fixed point x∗ ∈ X. For all x ∈ X, the Picard sequence {T nx}
converges to x∗.

From Corollary7.3, we deduce the following result.

Corollary 7.6 Let (X, d) be a complete metric space, and let T : X → X be a given
mapping. Suppose that there exists some ψ ∈ Ψ such that

d(T x, T y) ≤ ψ (max{d(x, y), d(x, T x), d(y, T y)}) , (x, y) ∈ X × X.
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Then T has a unique fixed point x∗ ∈ X. For all x ∈ X, the Picard sequence {T nx}
converges to x∗.

Finally, from Corollary7.4, we deduce the following result.

Corollary 7.7 Let (X, d) be a complete metric space, and let T : X → X be a given
mapping. Suppose that there exists a lower semi-continuous function μ : [0,∞) →
[0,∞) with μ−1({0}) = {0}, such that

d(T x, T y) ≤ max{d(x, y), d(x, T x), d(y, T y)} − μ (max{d(x, y), d(x, T x), d(y, T y)}) ,

for all (x, y) ∈ X × X. Then T has a unique fixed point x∗ ∈ X. For all x ∈ X, the
Picard sequence {T nx} converges to x∗.

Remark 7.6 Corollary7.6 is an extension of Boyd–Wong fixed point theorem [4].
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