
Chapter 6
Implicit Contractions on a Set Equipped
with Two Metrics

Several classical fixed point theorems have been unified by considering general con-
tractions expressed via an implicit inequality, see, for examples, Turinici [15], Popa
[8, 9], Berinde [2], and references therein. In this chapter, we consider a class of
mappings defined on a set equipped with two metrics and satisfying an implicit con-
traction involving two functions F : [0,∞)6 → R and α : X × X → R. The exis-
tence of fixed points for this class of mappings is investigated. The main reference
for this chapter is the paper [14].

6.1 Preliminaries

LetF be the set of functions F : [0,+∞)6 → R satisfying the following conditions:

(I) F is continuous;
(II) F is nondecreasing in the first variable;
(III) F is decreasing in the fifth variable;
(IV) ∃ h ∈ (0, 1) : F(u, v, v, u, u + v, 0) ≤ 0 =⇒ u ≤ hv.

Let us give some examples of functions that belong to the setF .

Example 6.1 The function F : [0,∞)6 → R defined by

F(u1, u2, . . . , u6) = u1 − λu2, ui ≥ 0, i = 1, 2, . . . , 6,

where λ ∈ (0, 1) is a constant, belongs to the set F . In this case, (IV) is satisfied
with h = λ.

Example 6.2 The function F : [0,∞)6 → R defined by

F(u1, u2, . . . , u6) = u1 − λu2 − γ u3, ui ≥ 0, i = 1, 2, . . . , 6,
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where λ, γ ≥ 0 are constants with λ + γ ∈ (0, 1), belongs to the setF . In this case,
(IV) is satisfied with h = λ + γ .

Example 6.3 The function F : [0,∞)6 → R defined by

F(u1, u2, . . . , u6) = u1 − λmax

{
u2, u3, u4,

u5 + u6
2

}
, ui ≥ 0, i = 1, 2, . . . , 6,

where λ ∈ (0, 1) is a constant, belongs to the set F . In fact, (I)–(III) are obvious.
Further, let u, v ≥ 0 be such that F(u, v, v, u, u + v, 0) ≤ 0. By the definition of F ,
we obtain

u − λmax

{
v, u,

u + v

2

}
= u − λmax{v, u} ≤ 0,

which yields
u ≤ λmax{v, u}.

Since λ ∈ (0, 1), we obtain
u ≤ λv.

Therefore, (IV) is satisfied with h = λ.

Let X be a nonempty set endowed with two metrics d and d ′. For x0 ∈ X and
r > 0, let

B(x0, r) = {x ∈ X : d(x0, x) < r}.

We denote by B(x0, r)
d ′

the d ′-closure of B(x0, r) (the closure of B(x0, r) with
respect to the topology of d ′).

Before stating and proving the main results of this chapter, we need to introduce
the following concepts (some of them are introduced in the previous chapters).

Definition 6.1 Let T : B(x0, r)
d ′ → X and α : X × X → R. We say that T is α-

admissible (see [13]) if the following condition holds: For all x, y ∈ B(x0, r), we
have

α(x, y) ≥ 1 =⇒ α(T x, T y) ≥ 1.

Definition 6.2 We say that the set X satisfies the property (H) with respect to the
metric d if the following condition holds: For every sequence {xn} ⊂ X satisfying

lim
n→∞ d(xn, x) = 0, x ∈ X

and
α(xn, xn+1) ≥ 1, n ∈ N,
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there exist a positive integer κ and a subsequence {xn(k)} of {xn} such that

α(xn(k), x) ≥ 1, k ≥ κ.

6.2 Fixed Point Results

The first main result is giving by the following theorem.

Theorem 6.1 Let X be a nonempty set equipped with two metrics d and d ′ such
that (X, d ′) is a complete metric space. Let T : B(x0, r)

d ′ → X be a given mapping,
where x0 ∈ X and r > 0. Suppose that there exist two functions F ∈ F and α :
X × X → R such that for all (x, y) ∈ B(x0, r)

d ′ × B(x0, r)
d ′
, we have

F(α(x, y)d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.
(6.1)

In addition, assume that the following properties hold:

(i) d(x0, T x0) < (1 − h)r and α(x0, T x0) ≥ 1;
(ii) T is α-admissible;
(iii) If d � d ′, then T is uniformly continuous from (B(x0, r), d) into (X, d ′);
(iv) If d = d ′, then the set X satisfies the property (H) with respect to the metric d;

(v) If d �= d ′, then T is continuous from (B(x0, r)
d ′
, d ′) into (X, d ′).

Then T has a fixed point.

Proof Let x1 = T x0. From (i), we have

d(x0, x1) = d(x0, T x0) ≤ (1 − h)r < r,

i.e., x1 ∈ B(x0, r). Let x2 = T x1. From (6.1), we have

F(α(x0, x1)d(T x0, T x1), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x2), 0) ≤ 0.

On the other hand, by (i) we have

d(T x0, T x1) ≤ α(x0, x1)d(T x0, T x1).

Therefore, by the monotony property of F , we obtain that

F(d(x1, x2), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x2), 0) ≤ 0.

Using the fact that d(x0, x2) ≤ d(x0, x1) + d(x1, x2) and property (III) of F , we
obtain that
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F(d(x1, x2), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2), 0) ≤ 0,

which implies from property (IV) that

d(x1, x2) ≤ hd(x0, x1) ≤ h(1 − h)r < r.

Now, we have

d(x0, x2) ≤ d(x0, x1) + hd(x0, x1) = (1 + h)d(x0, x1) ≤ (1 + h)(1 − h)r < r,

i.e., x2 ∈ B(x0, r). Again, let x3 = T x2. Since T is α-admissible and α(x0, x1) ≥ 1,
we have

d(x2, x3) ≤ α(x1, x2)d(T x1, T x2).

Then, from (6.1), we obtain that

F(d(x2, x3), d(x1, x2), d(x1, x2), d(x2, x3), d(x1, x3), 0) ≤ 0.

Using property (III) of F , we get

F(d(x2, x3), d(x1, x2), d(x1, x2), d(x2, x3), d(x1, x2) + d(x2, x3), 0) ≤ 0,

which implies from property (IV) that

d(x2, x3) ≤ hd(x1, x2) ≤ h2(1 − h)r < r.

Therefore, we have

d(x0, x3) ≤ d(x0, x2) + d(x2, x3) ≤ (1 + h)(1 − h)r + h2(1 − h)r = (1 − h3)r < r,

i.e., x3 ∈ B(x0, r). Continuing this process, by induction, we can define the sequence
{xn} by

xn+1 = T xn, n ∈ N.

Such sequence satisfies the following property:

xn ∈ B(x0, r), α(xn, xn+1) ≥ 1, and d(xn, xn+1) ≤ hn(1 − h)r, n ∈ N.

(6.2)
Since h ∈ (0, 1), it follows from (6.2) that {xn} is a Cauchy sequence with respect to
the metric d. Now, we shall prove that {xn} is also a Cauchy sequence with respect
to the metric d ′. If d � d ′, from (iii), given ε > 0, there exists δ > 0 such that

(x, y) ∈ B(x0, r) × B(x0, r), d(x, y) < δ =⇒ d ′(T x, T y) < ε. (6.3)
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On the other hand, since {xn} is Cauchy with respect to d, there exists a positive
integer N such that

d(xn, xm) < δ, n,m ≥ N .

Using (6.3), we obtain

d ′(xn+1, xm+1) < ε, n,m ≥ N ,

which proves that {xn} is Cauchy with respect to d ′.
Since (X, d ′) is complete, there exists z ∈ B(x0, r)

d ′
such that

lim
n→∞ d ′(xn, z) = 0. (6.4)

We shall prove that z is a fixed point of T . We consider two cases.

Case 1. If d = d ′.
From (iv), there exist a positive integer κ and a subsequence {xn(k)} of {xn} such that

α(xn(k), z) ≥ 1, k ≥ κ. (6.5)

Using (6.1), for all k ≥ κ , we have

F(α(xn(k), z)d(T xn(k), T z), d(xn(k), z), d(xn(k), xn(k)+1), d(z, T z), d(xn(k), T z), d(z, xn(k)+1))

≤ 0.

Next, by (6.5) and property (II) of F , for all k ≥ κ , we have

F(d(xn(k)+1, T z), d(xn(k), z), d(xn(k), xn(k)+1), d(z, T z), d(xn(k), T z), d(z, xn(k)+1)) ≤ 0.

Passing to the limit as k → ∞, using (6.4) and the continuity of F , we get

F(d(z, T z), 0, 0, d(z, T z), d(z, T z), 0) ≤ 0,

which implies from property (IV) that d(z, T z) = 0.

Case 2. If d �= d ′.
In this case, using (v) and (6.4), we get

lim
n→∞ d ′(T xn, T z) = lim

n→∞ d ′(xn+1, T z) = 0.

The uniqueness of the limit gives us that z = T z.

Taking d = d ′ in Theorem6.1, we obtain the following result.

Theorem 6.2 Let (X, d) be a complete metric space, and let T : B(x0, r)
d → X be

a given mapping, where x0 ∈ X and r > 0. Suppose that there exist two functions
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F ∈ F and α : X × X → R such that for all (x, y) ∈ B(x0, r)
d × B(x0, r)

d
, we

have

F(α(x, y)d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) d(x0, T x0) < (1 − h)r and α(x0, T x0) ≥ 1;
(ii) T is α-admissible;
(iii) The set X satisfies the property (H) with respect to the metric d.

Then T has a fixed point.

From Theorem6.1, we can deduce the following global result.

Theorem 6.3 Let X be a nonempty set equipped with two metrics d and d ′ such that
(X, d ′) is a complete metric space. Let T : X → X be a given mapping. Suppose
that there exist two functions F ∈ F and α : X × X → R such that for all (x, y) ∈
X × X, we have

F(α(x, y)d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) There exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(ii) T is α-admissible (x, y ∈ X, α(x, y) ≥ 1 =⇒ α(T x, T y) ≥ 1);
(iii) If d � d ′, then T is uniformly continuous from (X, d) into (X, d ′);
(iv) If d = d ′, then the set X satisfies the property (H) with respect to the metric d;
(v) If d �= d ′, then T is continuous from (X, d ′) into (X, d ′).

Then T has a fixed point.

Proof We take r > 0 such that d(x0, T x0) < (1 − h)r . Then, from Theorem6.1, T

has a fixed point in B(x0, r)
d ′
.

Taking d = d ′ in Theorem6.3, we obtain the following result.

Theorem 6.4 Let (X, d) be a complete metric space, and let T : X → X be a given
mapping. Suppose that there exist two functions F ∈ F and α : X × X → R such
that for all (x, y) ∈ X × X, we have

F(α(x, y)d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) There exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(ii) T is α-admissible (x, y ∈ X, α(x, y) ≥ 1 =⇒ α(T x, T y) ≥ 1);
(iii) The set X satisfies the property (H) with respect to the metric d.

Then T has a fixed point.
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6.3 Some Consequences

We present in this section some interesting consequences that can be derived from
the previous obtained results.

6.3.1 The Case α(x, y) = 1

Taking α(x, y) = 1 for all x, y ∈ X , from Theorems6.1, 6.2, 6.3, and 6.4, we obtain
the following results that are generalizations of the fixed point results in [1–4, 6, 8,
11].

Corollary 6.1 Let (X, d ′) be a complete metric space, d another metric on X, x0 ∈
X, r > 0, and T : B(x0, r)

d ′ → X. Suppose that there exists F ∈ F such that for

all (x, y) ∈ B(x0, r)
d ′ × B(x0, r)

d ′
, we have

F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) d(x0, T x0) < (1 − h)r;
(ii) If d � d ′, then T is uniformly continuous from (B(x0, r), d) into (X, d ′);
(iii) If d �= d ′, then T is continuous from (B(x0, r)

d ′
, d ′) into (X, d ′).

Then T has a fixed point.

Corollary 6.2 Let (X, d) be a complete metric space, x0 ∈ X, r > 0, and T :
B(x0, r)

d → X. Suppose that there exists F ∈ F such that for all (x, y) ∈ B(x0, r)
d

× B(x0, r)
d
, we have

F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that d(x0, T x0) < (1 − h)r . Then T has a fixed point.

Corollary 6.3 Let (X, d ′) be a complete metric space, d another metric on X, and
T : X → X. Suppose that there exists F ∈ F such that for all (x, y) ∈ X × X, we
have

F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) If d � d ′, then T is uniformly continuous from (X, d) into (X, d ′);
(ii) If d �= d ′, then T is continuous from (X, d ′) into (X, d ′).
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Then T has a fixed point.

Corollary 6.4 Let (X, d) be a complete metric space, and let T : X → X. Suppose
that there exists F ∈ F such that for all (x, y) ∈ X × X, we have

F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

Then T has a fixed point.

Remark 6.1 Corollary6.4 is an enriched version of Popa [8] that unifies the most
important metrical fixed point theorems for contraction-type mappings in Rhoades’
classification [12].

6.3.2 The Case of Partially Ordered Sets

Let � be a partial order on X . Let  be the binary relation on X defined by

(x, y) ∈ X × X, x  y ⇐⇒ x � y or y � x .

We say that (X, ) satisfies the property (H) with respect to the metric d if the
following condition holds: For every sequence {xn} ⊂ X satisfying

lim
n→∞ d(xn, x) = 0, x ∈ X

and
xn  xn+1, n ∈ N,

there exist a positive integer κ and a subsequence {xn(k)} of {xn} such that

xn(k)  x, k ≥ κ.

From Theorems6.1, 6.2, 6.3, and 6.4, we obtain the following results that are
extensions and generalizations of the fixed point results in [7, 10].

At first, we denote by F̃ the set of functions F : [0,+∞)6 → R satisfying the
following conditions:

(j) F ∈ F ;
(jj) For every ui ≥ 0, i = 2, . . . , 6, we have

F(0, u2, . . . , u6) ≤ 0.

We have the following fixed point result.
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Corollary 6.5 Let (X, d ′) be a complete metric space, d another metric on X, x0 ∈
X, r > 0, and T : B(x0, r)

d ′ → X. Suppose that there exists F ∈ F̃ such that for

all (x, y) ∈ B(x0, r)
d ′ × B(x0, r)

d ′
, we have

x  y =⇒ F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) d(x0, T x0) < (1 − h)r and x0  T x0;

(ii) x, y ∈ B(x0, r)
d ′
, x  y =⇒ T x  T y;

(iii) If d � d ′, then T is uniformly continuous from (B(x0, r), d) into (X, d ′);
(iv) If d = d ′, then (X, ) satisfies the property (H) with respect to the metric d;

(v) If d �= d ′, then T is continuous from (B(x0, r)
d ′
, d ′) into (X, d ′).

Then T has a fixed point.

Proof It follows from Theorem6.1 by taking

α(x, y) =
{
1 if x  y;
0 if x � y.

Similarly, from Theorem6.2, we obtain the following result.

Corollary 6.6 Let (X, d) be a complete metric space, and let T : B(x0, r)
d → X

be a given mapping, where x0 ∈ X and r > 0. Suppose that there exists F ∈ F̃ such

that for all (x, y) ∈ B(x0, r)
d × B(x0, r)

d
, we have

x  y =⇒ F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) d(x0, T x0) < (1 − h)r and x0  T x0;

(ii) x, y ∈ B(x0, r)
d ′
, x  y =⇒ T x  T y;

(iii) (X, ) satisfies the property (H) with respect to the metric d.

Then T has a fixed point.

From Theorem6.3, we obtain the following global result.

Corollary 6.7 Let (X, d ′) be a complete metric space, d another metric on X, and
T : X → X. Suppose that there exists F ∈ F̃ such that for all (x, y) ∈ X × X, we
have

x  y =⇒ F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:
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(i) There exists x0 ∈ X such that x0  T x0;
(ii) x, y ∈ X, x  y =⇒ T x  T y;
(iii) If d � d ′, then T is uniformly continuous from (X, d) into (X, d ′);
(iv) If d = d ′, then (X, ) satisfies the property (H) with respect to the metric d;
(v) If d �= d ′, then T is continuous from (X, d ′) into (X, d ′).

Then T has a fixed point.

Finally, from Theorem6.4, we obtain the following fixed point result.

Corollary 6.8 Let (X, d) be a complete metric space, and let T : X → X. Suppose
that there exists F ∈ F̃ such that for all (x, y) ∈ X × X, we have

x  y =⇒ F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that the following properties hold:

(i) There exists x0 ∈ X such that x0  T x0;
(ii) x, y ∈ X, x  y =⇒ T x  T y;
(iii) (X, ) satisfies the property (H) with respect to the metric d.

Then T has a fixed point.

6.3.3 The Case of Cyclic Mappings

From Theorem6.4, we obtain the following fixed point result that is a generalization
of Theorem 1.1 in [5].

Corollary 6.9 Let (Y, d) be a complete metric space, {A, B} a pair of nonempty
closed subsets of Y , and T : A ∪ B → A ∪ B. Suppose that there exists F ∈ F̃
such that for all (x, y) ∈ A × B, we have

F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

In addition, assume that T (A) ⊆ B and T (B) ⊆ A. Then T has a fixed point in
A ∩ B.

Proof Let X = A ∪ B. Clearly (since A and B are closed), (X, d) is a complete
metric space. Define α : X × X → [0,∞) by

α(x, y) =
⎧⎨
⎩
1 if (x, y) ∈ (A × B) ∪ (B × A);

0 if (x, y) /∈ (A × B) ∪ (B × A).

Clearly (since F ∈ F̃ ), for all x, y ∈ X , we have



6.3 Some Consequences 99

F(α(x, y)d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)) ≤ 0.

Taking any point x0 ∈ A, since T (A) ⊆ B, we have T x0 ∈ B, which implies that
α(x0, T x0) ≥ 1. Now, let (x, y) ∈ X × X be such that α(x, y) ≥ 1. We have two
cases.

Case 1. If (x, y) ∈ A × B.
Since T (A) ⊆ B and T (B) ⊆ A, we have (T x, T y) ∈ B × A, which implies that
α(T x, T y) ≥ 1.

Case 2. If (x, y) ∈ B × A.
In this case, we have (T x, T y) ∈ A × B, which implies that α(T x, T y) ≥ 1.
Therefore, we proved that the mapping T is α-admissible.

Next, we shall prove that X satisfies the property (H) with respect to the metric
d. Let {xn} be a sequence in X such that

lim
n→∞ d(xn, x) = 0, x ∈ X

and
α(xn, xn+1) ≥ 1, n ∈ N.

From the definition of α, we get

(xn, xn+1) ∈ (A × B) ∪ (B × A), n ∈ N.

Since A and B are closed, we have x ∈ A ∩ B. Therefore,

α(xn, x) = 1, n ∈ N,

which proves that the set X satisfies the property (H) with respect to the metric d.
Now, from Theorem6.4, the mapping T has a fixed point in X , i.e., there exists

z ∈ A ∪ B such that T z = z. Since T (A) ⊆ B and T (B) ⊆ A, obviously, we have
z ∈ A ∩ B.
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I-a, Mat) 22, 177–180 (1976)


	6 Implicit Contractions on a Set Equipped with Two Metrics
	6.1 Preliminaries
	6.2 Fixed Point Results
	6.3 Some Consequences
	6.3.1 The Case α(x,y)=1
	6.3.2 The Case of Partially Ordered Sets
	6.3.3 The Case of Cyclic Mappings

	References




