Chapter 6 Implicit Contractions on a Set Equipped with Two Metrics

Several classical fixed point theorems have been unified by considering general contractions expressed via an implicit inequality, see, for examples, Turinici [\[15](#page-11-0)], Popa [\[8,](#page-11-1) [9](#page-11-2)], Berinde [\[2\]](#page-10-0), and references therein. In this chapter, we consider a class of mappings defined on a set equipped with two metrics and satisfying an implicit contraction involving two functions $F : [0, \infty)^6 \to \mathbb{R}$ and $\alpha : X \times X \to \mathbb{R}$. The existence of fixed points for this class of mappings is investigated. The main reference for this chapter is the paper [\[14](#page-11-3)].

6.1 Preliminaries

Let $\mathcal F$ be the set of functions $F : [0, +\infty)^6 \to \mathbb R$ satisfying the following conditions:

- (I) *F* is continuous;
- (II) F is nondecreasing in the first variable;
- (III) F is decreasing in the fifth variable;
- (IV) ∃ *h* ∈ (0, 1) : *F*(*u*, *v*, *v*, *u*, *u* + *v*, 0) ≤ 0 =⇒ *u* ≤ *hv*.

Let us give some examples of functions that belong to the set \mathscr{F} .

Example 6.1 The function $F : [0, \infty)^6 \rightarrow \mathbb{R}$ defined by

 $F(u_1, u_2, \ldots, u_6) = u_1 - \lambda u_2, \quad u_i > 0, \ i = 1, 2, \ldots, 6,$

where $\lambda \in (0, 1)$ is a constant, belongs to the set \mathscr{F} . In this case, (IV) is satisfied with $h = \lambda$.

Example 6.2 The function $F : [0, \infty)^6 \rightarrow \mathbb{R}$ defined by

$$
F(u_1, u_2, \ldots, u_6) = u_1 - \lambda u_2 - \gamma u_3, \quad u_i \ge 0, \quad i = 1, 2, \ldots, 6,
$$

[©] Springer Nature Singapore Pte Ltd. 2018

P. Agarwal et al., *Fixed Point Theory in Metric Spaces*, https://doi.org/10.1007/978-981-13-2913-5_6

where $\lambda, \gamma \geq 0$ are constants with $\lambda + \gamma \in (0, 1)$, belongs to the set \mathscr{F} . In this case, (IV) is satisfied with $h = \lambda + \gamma$.

Example 6.3 The function $F : [0, \infty)^6 \rightarrow \mathbb{R}$ defined by

$$
F(u_1, u_2, \ldots, u_6) = u_1 - \lambda \max \left\{ u_2, u_3, u_4, \frac{u_5 + u_6}{2} \right\}, \quad u_i \ge 0, \ i = 1, 2, \ldots, 6,
$$

where $\lambda \in (0, 1)$ is a constant, belongs to the set \mathcal{F} . In fact, (I)–(III) are obvious. Further, let $u, v \ge 0$ be such that $F(u, v, v, u, u + v, 0) \le 0$. By the definition of *F*, we obtain

$$
u - \lambda \max \left\{ v, u, \frac{u + v}{2} \right\} = u - \lambda \max \{ v, u \} \le 0,
$$

which yields

$$
u\leq \lambda \max\{v,u\}.
$$

Since $\lambda \in (0, 1)$, we obtain

$$
u\leq \lambda v.
$$

Therefore, (IV) is satisfied with $h = \lambda$.

Let *X* be a nonempty set endowed with two metrics *d* and d' . For $x_0 \in X$ and $r > 0$, let

$$
B(x_0, r) = \{x \in X : d(x_0, x) < r\}.
$$

We denote by $\overline{B(x_0, r)}^{d'}$ the *d*'-closure of $B(x_0, r)$ (the closure of $B(x_0, r)$ with respect to the topology of *d*[']).

Before stating and proving the main results of this chapter, we need to introduce the following concepts (some of them are introduced in the previous chapters).

Definition 6.1 Let $T: \overline{B(x_0, r)}^{d'} \to X$ and $\alpha: X \times X \to \mathbb{R}$. We say that *T* is α -admissible (see [\[13\]](#page-11-4)) if the following condition holds: For all $x, y \in B(x_0, r)$, we have

$$
\alpha(x, y) \ge 1 \Longrightarrow \alpha(Tx, Ty) \ge 1.
$$

Definition 6.2 We say that the set *X* satisfies the property (H) with respect to the metric *d* if the following condition holds: For every sequence $\{x_n\} \subset X$ satisfying

$$
\lim_{n \to \infty} d(x_n, x) = 0, \quad x \in X
$$

and

$$
\alpha(x_n, x_{n+1}) \geq 1, \quad n \in \mathbb{N},
$$

there exist a positive integer κ and a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that

$$
\alpha(x_{n(k)}, x) \ge 1, \quad k \ge \kappa.
$$

6.2 Fixed Point Results

The first main result is giving by the following theorem.

Theorem 6.1 *Let X be a nonempty set equipped with two metrics d and d' such that* (X, d') *is a complete metric space. Let* $T : \overline{B(x_0, r)}^{d'} \to X$ *be a given mapping, where* $x_0 \in X$ and $r > 0$. Suppose that there exist two functions $\overline{F} \in \mathcal{F}$ and α : $X \times X \to \mathbb{R}$ *such that for all* $(x, y) \in \overline{B(x_0, r)}^{d'} \times \overline{B(x_0, r)}^{d'}$, we have

$$
F(\alpha(x, y)d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$
\n(6.1)

In addition, assume that the following properties hold:

- (*i*) $d(x_0, Tx_0) < (1 h)r$ and $\alpha(x_0, Tx_0) > 1$;
- *(ii) T is* α*-admissible;*
- *(iii)* If $d \ngeq d'$, then T is uniformly continuous from $(B(x_0, r), d)$ into (X, d') ;
- *(iv)* If $d = d'$, then the set X satisfies the property (H) with respect to the metric d;
- *(v)* If $d \neq d'$, then T is continuous from $(\overline{B(x_0, r)}^{d'}, d')$ into (X, d') .

Then T has a fixed point.

Proof Let $x_1 = Tx_0$. From (i), we have

$$
d(x_0, x_1) = d(x_0, Tx_0) \le (1 - h)r < r,
$$

i.e., *x*₁ ∈ *B*(*x*₀, *r*). Let *x*₂ = *T x*₁. From [\(6.1\)](#page-2-0), we have

$$
F(\alpha(x_0,x_1)d(Tx_0,Tx_1), d(x_0,x_1), d(x_0,x_1), d(x_1,x_2), d(x_0,x_2), 0) \leq 0.
$$

On the other hand, by (i) we have

$$
d(Tx_0, Tx_1) \leq \alpha(x_0, x_1) d(Tx_0, Tx_1).
$$

Therefore, by the monotony property of *F*, we obtain that

$$
F(d(x_1,x_2), d(x_0,x_1), d(x_0,x_1), d(x_1,x_2), d(x_0,x_2), 0) \leq 0.
$$

Using the fact that $d(x_0, x_2) \leq d(x_0, x_1) + d(x_1, x_2)$ and property (III) of *F*, we obtain that

 $F(d(x_1, x_2), d(x_0, x_1), d(x_0, x_1), d(x_1, x_2), d(x_0, x_1) + d(x_1, x_2), 0) \leq 0$,

which implies from property (IV) that

$$
d(x_1, x_2) \le hd(x_0, x_1) \le h(1 - h)r < r.
$$

Now, we have

$$
d(x_0, x_2) \le d(x_0, x_1) + hd(x_0, x_1) = (1 + h)d(x_0, x_1) \le (1 + h)(1 - h)r < r,
$$

i.e., $x_2 \in B(x_0, r)$. Again, let $x_3 = Tx_2$. Since *T* is α -admissible and $\alpha(x_0, x_1) \geq 1$, we have

$$
d(x_2, x_3) \leq \alpha(x_1, x_2) d(Tx_1, Tx_2).
$$

Then, from (6.1) , we obtain that

$$
F(d(x_2, x_3), d(x_1, x_2), d(x_1, x_2), d(x_2, x_3), d(x_1, x_3), 0) \leq 0.
$$

Using property (III) of *F*, we get

$$
F(d(x_2, x_3), d(x_1, x_2), d(x_1, x_2), d(x_2, x_3), d(x_1, x_2) + d(x_2, x_3), 0) \leq 0,
$$

which implies from property (IV) that

$$
d(x_2, x_3) \le hd(x_1, x_2) \le h^2(1-h)r < r.
$$

Therefore, we have

$$
d(x_0, x_3) \le d(x_0, x_2) + d(x_2, x_3) \le (1 + h)(1 - h)r + h^2(1 - h)r = (1 - h^3)r < r,
$$

i.e., $x_3 \in B(x_0, r)$. Continuing this process, by induction, we can define the sequence $\{x_n\}$ by

$$
x_{n+1}=Tx_n,\quad n\in\mathbb{N}.
$$

Such sequence satisfies the following property:

$$
x_n \in B(x_0, r), \quad \alpha(x_n, x_{n+1}) \ge 1, \quad \text{and} \quad d(x_n, x_{n+1}) \le h^n (1-h)r, \quad n \in \mathbb{N}.
$$
 (6.2)

Since $h \in (0, 1)$, it follows from (6.2) that $\{x_n\}$ is a Cauchy sequence with respect to the metric *d*. Now, we shall prove that ${x_n}$ is also a Cauchy sequence with respect to the metric *d'*. If $d \not\geq d'$, from (iii), given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$
(x, y) \in B(x_0, r) \times B(x_0, r), \ d(x, y) < \delta \implies d'(Tx, Ty) < \varepsilon. \tag{6.3}
$$

On the other hand, since $\{x_n\}$ is Cauchy with respect to d, there exists a positive integer *N* such that

$$
d(x_n,x_m)<\delta,\quad n,m\geq N.
$$

Using (6.3) , we obtain

$$
d'(x_{n+1},x_{m+1}) < \varepsilon, \quad n,m \geq N,
$$

which proves that $\{x_n\}$ is Cauchy with respect to d' .

Since (X, d') is complete, there exists $z \in \overline{B(x_0, r)}^{d'}$ such that

$$
\lim_{n \to \infty} d'(x_n, z) = 0. \tag{6.4}
$$

We shall prove that *z* is a fixed point of *T* . We consider two cases.

Case 1. If $d = d'$.

From (iv), there exist a positive integer κ and a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that

$$
\alpha(x_{n(k)}, z) \ge 1, \quad k \ge \kappa. \tag{6.5}
$$

Using [\(6.1\)](#page-2-0), for all $k \ge \kappa$, we have

$$
F(\alpha(x_{n(k)}, z)d(Tx_{n(k)}, Tz), d(x_{n(k)}, z), d(x_{n(k)}, x_{n(k)+1}), d(z, Tz), d(x_{n(k)}, Tz), d(z, x_{n(k)+1}))
$$

\n
$$
\leq 0.
$$

Next, by [\(6.5\)](#page-4-0) and property (II) of *F*, for all $k \ge \kappa$, we have

$$
F(d(x_{n(k)+1},Tz), d(x_{n(k)}, z), d(x_{n(k)}, x_{n(k)+1}), d(z, Tz), d(x_{n(k)}, Tz), d(z, x_{n(k)+1})) \leq 0.
$$

Passing to the limit as $k \to \infty$, using [\(6.4\)](#page-4-1) and the continuity of *F*, we get

$$
F(d(z, Tz), 0, 0, d(z, Tz), d(z, Tz), 0) \le 0,
$$

which implies from property (IV) that $d(z, Tz) = 0$.

Case 2. If $d \neq d'$.

In this case, using (v) and (6.4) , we get

$$
\lim_{n\to\infty} d'(Tx_n, Tz) = \lim_{n\to\infty} d'(x_{n+1}, Tz) = 0.
$$

The uniqueness of the limit gives us that $z = Tz$.

Taking $d = d'$ in Theorem [6.1,](#page-2-1) we obtain the following result.

Theorem 6.2 *Let* (X, d) *be a complete metric space, and let* $T : \overline{B(x_0, r)}^d \to X$ *be a* given mapping, where $x_0 \in X$ and $r > 0$. Suppose that there exist two functions

 $F \in \mathscr{F}$ *and* $\alpha : X \times X \to \mathbb{R}$ *such that for all* $(x, y) \in \overline{B(x_0, r)}^d \times \overline{B(x_0, r)}^d$, we *have*

$$
F(\alpha(x, y)d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$

In addition, assume that the following properties hold:

- *(i)* $d(x_0, Tx_0) < (1 h)r$ and $\alpha(x_0, Tx_0) > 1$;
- *(ii) T is* α*-admissible;*
- *(iii) The set X satisfies the property (H) with respect to the metric d.*

Then T has a fixed point.

From Theorem [6.1,](#page-2-1) we can deduce the following global result.

Theorem 6.3 Let X be a nonempty set equipped with two metrics d and d' such that (X, d') *is a complete metric space. Let* $T : X \rightarrow X$ *be a given mapping. Suppose that there exist two functions* $F \in \mathcal{F}$ *and* $\alpha : X \times X \to \mathbb{R}$ *such that for all* $(x, y) \in$ $X \times X$ *, we have*

 $F(\alpha(x, y)d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \leq 0.$

In addition, assume that the following properties hold:

- *(i)* There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) > 1$;
- *(ii) T* is α -admissible $(x, y \in X, \alpha(x, y) \geq 1 \implies \alpha(Tx, Ty) \geq 1$;
- *(iii)* If $d \ngeq d'$, then T is uniformly continuous from (X, d) into (X, d') ;
- *(iv)* If $d = d'$, then the set X satisfies the property (H) with respect to the metric d;
- (*v*) If $d \neq d'$, then T is continuous from (X, d') into (X, d') .

Then T has a fixed point.

Proof We take $r > 0$ such that $d(x_0, Tx_0) < (1 - h)r$. Then, from Theorem 6.1, *T* has a fixed point in $\overline{B(x_0, r)}^{d'}$.

Taking $d = d'$ in Theorem [6.3,](#page-5-0) we obtain the following result.

Theorem 6.4 Let (X, d) be a complete metric space, and let $T : X \rightarrow X$ be a given *mapping. Suppose that there exist two functions* $F \in \mathcal{F}$ *and* $\alpha : X \times X \to \mathbb{R}$ *such that for all* $(x, y) \in X \times X$ *, we have*

 $F(\alpha(x, y)d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \leq 0.$

In addition, assume that the following properties hold:

- *(i)* There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$;
- *(ii) T* is α -admissible $(x, y \in X, \alpha(x, y) \geq 1 \implies \alpha(Tx, Ty) \geq 1$;
- *(iii) The set X satisfies the property (H) with respect to the metric d.*

Then T has a fixed point.

6.3 Some Consequences

We present in this section some interesting consequences that can be derived from the previous obtained results.

6.3.1 The Case $\alpha(x, y) = 1$

Taking $\alpha(x, y) = 1$ for all $x, y \in X$, from Theorems [6.1,](#page-2-1) [6.2,](#page-4-2) [6.3,](#page-5-0) and [6.4,](#page-5-1) we obtain the following results that are generalizations of the fixed point results in $[1-4, 6, 8,]$ $[1-4, 6, 8,]$ $[1-4, 6, 8,]$ $[1-4, 6, 8,]$ $[1-4, 6, 8,]$ $[1-4, 6, 8,]$ [11\]](#page-11-6).

Corollary 6.1 *Let* (X, d') *be a complete metric space, d another metric on* $X, x_0 \in$ *X*, $r > 0$, and $T : \overline{B(x_0, r)}^{d'} \to X$. Suppose that there exists $F \in \mathcal{F}$ such that for $all(x, y) \in \overline{B(x_0, r)}^{d'} \times \overline{B(x_0, r)}^{d'}$, we have

$$
F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$

In addition, assume that the following properties hold:

(i) $d(x_0, Tx_0) < (1 - h)r$;

- *(ii)* If $d \ngeq d'$, then T is uniformly continuous from $(B(x_0, r), d)$ into (X, d') ;
- *(iii)* If $d \neq d'$, then T is continuous from $(\overline{B(x_0, r)}^{d'}, d')$ into (X, d') .

Then T has a fixed point.

Corollary 6.2 *Let* (X, d) *be a complete metric space,* $x_0 \in X$ *,* $r > 0$ *, and* T : $\overline{B(x_0, r)}^d \rightarrow X$. Suppose that there exists $F \in \mathscr{F}$ such that for all $(x, y) \in \overline{B(x_0, r)}^d$ $\times \overline{B(x_0, r)}^d$, we have

$$
F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$

In addition, assume that $d(x_0, Tx_0) < (1 - h)r$ *. Then T has a fixed point.*

Corollary 6.3 *Let* (X, d') *be a complete metric space, d another metric on* X *, and* $T: X \to X$. Suppose that there exists $F \in \mathcal{F}$ such that for all $(x, y) \in X \times X$, we *have*

$$
F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$

In addition, assume that the following properties hold:

- *(i)* If $d \ngeq d'$, then T is uniformly continuous from (X, d) into (X, d') ;
- *(ii)* If $d \neq d'$, then T is continuous from (X, d') into (X, d') .

Then T has a fixed point.

Corollary 6.4 *Let* (X, d) *be a complete metric space, and let* $T : X \rightarrow X$ *. Suppose that there exists* $F \in \mathcal{F}$ *such that for all* $(x, y) \in X \times X$ *, we have*

 $F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \leq 0.$

Then T has a fixed point.

Remark 6.1 Corollary [6.4](#page-7-0) is an enriched version of Popa [\[8\]](#page-11-1) that unifies the most important metrical fixed point theorems for contraction-type mappings in Rhoades' classification [\[12](#page-11-7)].

6.3.2 The Case of Partially Ordered Sets

Let \leq be a partial order on *X*. Let \triangleleft be the binary relation on *X* defined by

$$
(x, y) \in X \times X, \quad x \triangleleft y \Longleftrightarrow x \preceq y \text{ or } y \preceq x.
$$

We say that (X, \triangleleft) satisfies the property (H) with respect to the metric *d* if the following condition holds: For every sequence $\{x_n\} \subset X$ satisfying

$$
\lim_{n \to \infty} d(x_n, x) = 0, \quad x \in X
$$

and

$$
x_n \lhd x_{n+1}, \quad n \in \mathbb{N},
$$

there exist a positive integer κ and a subsequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that

$$
x_{n(k)} \triangleleft x, \quad k \geq \kappa.
$$

From Theorems [6.1,](#page-2-1) [6.2,](#page-4-2) [6.3,](#page-5-0) and [6.4,](#page-5-1) we obtain the following results that are extensions and generalizations of the fixed point results in [\[7](#page-11-8), [10](#page-11-9)].

At first, we denote by $\widetilde{\mathscr{F}}$ the set of functions $F : [0, +\infty)^6 \to \mathbb{R}$ satisfying the following conditions:

(i) $F \in \mathscr{F}$; (ii) For every $u_i > 0$, $i = 2, \ldots, 6$, we have

$$
F(0, u_2, \ldots, u_6) \leq 0.
$$

We have the following fixed point result.

Corollary 6.5 *Let* (X, d') *be a complete metric space, d another metric on* $X, x_0 \in$ $X, r > 0$, and $T : \overline{B(x_0, r)}^{d'} \to X$. Suppose that there exists $F \in \widetilde{\mathscr{F}}$ such that for $all(x, y) \in \overline{B(x_0, r)}^{d'} \times \overline{B(x_0, r)}^{d'}$, we have

$$
x \triangleleft y \implies F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$

In addition, assume that the following properties hold:

(*i*) $d(x_0, Tx_0) < (1 - h)r$ and $x_0 \triangleleft Tx_0$; *(ii)* $x, y \in \overline{B(x_0, r)}^{d'}, x \leq y \implies Tx \leq Ty;$ *(iii)* If $d \ngeq d'$, then T is uniformly continuous from $(B(x_0, r), d)$ into (X, d') ; *(iv)* If $d = d'$, then (X, \triangleleft) satisfies the property (H) with respect to the metric d; *(v)* If $d \neq d'$, then T is continuous from $(\overline{B(x_0, r)}^{d'}, d')$ into (X, d') .

Then T has a fixed point.

Proof It follows from Theorem [6.1](#page-2-1) by taking

$$
\alpha(x, y) = \begin{cases} 1 \text{ if } x \triangleleft y; \\ 0 \text{ if } x \ntriangleleft y. \end{cases}
$$

Similarly, from Theorem [6.2,](#page-4-2) we obtain the following result.

Corollary 6.6 *Let* (X, d) *be a complete metric space, and let* $T : \overline{B(x_0, r)}^d \to X$ *be a given mapping, where* $x_0 \in X$ *and* $r > 0$ *. Suppose that there exists* $F \in \tilde{\mathcal{F}}$ *such that for all* $(x, y) \in \overline{B(x_0, r)}^d \times \overline{B(x_0, r)}^d$, we have

$$
x \triangleleft y \implies F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$

In addition, assume that the following properties hold:

- (*i*) $d(x_0, Tx_0) < (1 h)r$ and $x_0 \triangleleft Tx_0$;
- *(ii)* $x, y \in \overline{B(x_0, r)}^{d'}, x \leq y \implies Tx \leq Ty;$
- *(iii)* (X, \triangleleft) *satisfies the property (H) with respect to the metric d.*

Then T has a fixed point.

From Theorem [6.3,](#page-5-0) we obtain the following global result.

Corollary 6.7 *Let* (X, d') *be a complete metric space, d another metric on* X, and $T: X \to X$. Suppose that there exists $F \in \widetilde{\mathscr{F}}$ such that for all $(x, y) \in X \times X$, we *have*

$$
x \triangleleft y \implies F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \le 0.
$$

In addition, assume that the following properties hold:

- *(i)* There exists $x_0 \in X$ such that $x_0 \triangleleft Tx_0$;
- (iii) $x, y \in X, x \triangleleft y \implies Tx \triangleleft Ty;$
- *(iii)* If $d \ngeq d'$, then T is uniformly continuous from (X, d) into (X, d') ;
- *(iv)* If $d = d'$, then (X, \triangleleft) satisfies the property (H) with respect to the metric d;
- *(v)* If $d \neq d'$, then T is continuous from (X, d') into (X, d') .

Then T has a fixed point.

Finally, from Theorem [6.4,](#page-5-1) we obtain the following fixed point result.

Corollary 6.8 *Let* (X, d) *be a complete metric space, and let* $T : X \rightarrow X$ *. Suppose that there exists* $F \in \tilde{\mathcal{F}}$ *such that for all* $(x, y) \in X \times X$ *, we have*

 $x \triangleleft y \implies F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \leq 0.$

In addition, assume that the following properties hold:

- *(i)* There exists $x_0 \in X$ such that $x_0 \triangleleft Tx_0$;
- *(ii)* $x, y \in X, x \triangleleft y \implies Tx \triangleleft Ty;$

(iii) (X, \triangleleft) *satisfies the property (H) with respect to the metric d.*

Then T has a fixed point.

6.3.3 The Case of Cyclic Mappings

From Theorem[6.4,](#page-5-1) we obtain the following fixed point result that is a generalization of Theorem 1.1 in $[5]$ $[5]$.

Corollary 6.9 *Let* (*Y*, *d*) *be a complete metric space,* {*A*, *B*} *a pair of nonempty closed subsets of Y, and T* : $A \cup B \rightarrow A \cup B$. Suppose that there exists $F \in \widetilde{\mathscr{F}}$ *such that for all* $(x, y) \in A \times B$ *, we have*

 $F(d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \leq 0.$

In addition, assume that $T(A) \subseteq B$ *and* $T(B) \subseteq A$ *. Then T has a fixed point in A* ∩ *B.*

Proof Let $X = A \cup B$. Clearly (since A and B are closed), (X, d) is a complete metric space. Define α : $X \times X \rightarrow [0, \infty)$ by

$$
\alpha(x, y) = \begin{cases} 1 \text{ if } (x, y) \in (A \times B) \cup (B \times A); \\ 0 \text{ if } (x, y) \notin (A \times B) \cup (B \times A). \end{cases}
$$

Clearly (since $F \in \widetilde{\mathscr{F}}$), for all $x, y \in X$, we have

 $F(\alpha(x, y)d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) \leq 0.$

Taking any point $x_0 \in A$, since $T(A) \subseteq B$, we have $Tx_0 \in B$, which implies that $\alpha(x_0, Tx_0) \geq 1$. Now, let $(x, y) \in X \times X$ be such that $\alpha(x, y) \geq 1$. We have two cases.

Case 1. If $(x, y) \in A \times B$. Since $T(A) \subseteq B$ and $T(B) \subseteq A$, we have $(Tx, Ty) \in B \times A$, which implies that $\alpha(Tx, Ty) \geq 1.$

Case 2. If $(x, y) \in B \times A$.

In this case, we have $(Tx, Ty) \in A \times B$, which implies that $\alpha(Tx, Ty) \geq 1$. Therefore, we proved that the mapping T is α -admissible.

Next, we shall prove that *X* satisfies the property (H) with respect to the metric *d*. Let $\{x_n\}$ be a sequence in *X* such that

$$
\lim_{n \to \infty} d(x_n, x) = 0, \quad x \in X
$$

and

$$
\alpha(x_n, x_{n+1}) \geq 1, \quad n \in \mathbb{N}.
$$

From the definition of α , we get

$$
(x_n, x_{n+1}) \in (A \times B) \cup (B \times A), \quad n \in \mathbb{N}.
$$

Since *A* and *B* are closed, we have $x \in A \cap B$. Therefore,

$$
\alpha(x_n,x)=1, \quad n\in\mathbb{N},
$$

which proves that the set *X* satisfies the property (H) with respect to the metric *d*.

Now, from Theorem[6.4,](#page-5-1) the mapping *T* has a fixed point in *X*, i.e., there exists *z* ∈ *A* ∪ *B* such that $Tz = z$. Since $T(A) \subseteq B$ and $T(B) \subseteq A$, obviously, we have *z* ∈ *A* ∩ *B*.

References

- 1. Agarwal, R.P., O'Regan, D.: Fixed point theory for generalized contractions on spaces with two metrics. J. Math. Anal. Appl. **248**, 402–414 (2000)
- 2. Berinde, V.: Stability of Picard iteration for contractive mappings satisfying an implicit relation. Carpathian J. Math. **27**(1), 13–23 (2011)
- 3. Hardy, G.E., Rogers, T.G.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. **16**, 201–206 (1973)
- 4. Kannan, R.: Some remarks on fixed points. Bull. Calcutta Math. Soc. **60**, 71–76 (1960)
- 5. Kirk, W.A., Srinivasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory **4**(1), 79–89 (2003)
- 6. Maia, M.G.: Un'osservazione sulle contrazioni metrich. Rend. Semi. Mat. Univ. Padova. **40**, 139–143 (1968)
- 7. Nieto, J.J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. (Engl. Ser.) **23**, 2205– 2212 (2007)
- 8. Popa, V.: Fixed point theorems for implicit contractive mappings. Stud. Cerc. St. Ser. Mat. Univ. Bacau. **7**, 127–133 (1997)
- 9. Popa, V.: Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstr. Math. **32**, 157–163 (1999)
- 10. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. **132**, 1435–1443 (2004)
- 11. Reich, S.: Kannan's fixed point theorem. Bull. Univ. Math. Ital. **4**, 1–11 (1971)
- 12. Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. **226**, 257–290 (1997)
- 13. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α - ψ -contractive type mappings. Nonlinear Anal. **75**, 2154–2165 (2012)
- 14. Samet, B.: Fixed point results for implicit contractions on spaces with two metrics. J. Inequalities Appl. **2014**, 84 (2014)
- 15. Turinici, M.: Fixed points of implicit contraction mappings. An. St. Univ. A. I. Cuza Iasi (S I-a, Mat) **22**, 177–180 (1976)