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Chapter 3
Nutrient Sensing, Signaling and Ageing: 
The Role of IGF-1 and mTOR in Ageing 
and Age-Related Disease

Simon C. Johnson

Abstract Nutrient signaling through insulin/IGF-1 was the first pathway demon-
strated to regulate ageing and age-related disease in model organisms. 
Pharmacological or dietary interventions targeting nutrient signaling pathways 
have been shown to robustly attenuate ageing in many organisms. Caloric restric-
tion, the most widely studied longevity promoting intervention, works through 
multiple nutrient signaling pathways, while inhibition of mTOR through treatment 
with rapamycin reproducibly delays ageing and disease through specific inhibition 
of the mTOR complexes. Although the benefits of reduced insulin/IGF-1 in lifes-
pan and health are well documented in model organisms, defining the precise role 
of the IGF-1 in human ageing and age-related disease has proven more difficult. 
Association studies provide some insight but also reveal paradoxes. Low serum 
IGF-1 predicts longevity, but IGF-1 decreases with age and IGF-1 therapy benefits 
some of age-related pathologies. Circulating IGF-1 has been associated both posi-
tively and negatively with risk of age-related diseases in humans, and in some 
cases both activation and inhibition of IGF-1 signaling have provided benefit in 
animal models of the same diseases. Interventions designed modulate the nutrient 
sensing signaling pathways positively or negatively are already available for clini-
cal use, highlighting the need for a clear understanding of the role of nutrient 
signaling in ageing and age-related disease. This chapter examines data from 
model organisms and human genetic association studies, with a special emphasis 
on IGF-1 and mTOR, and discusses potential models for resolving the paradoxes 
surrounding IGF-1 data.

Keywords mTOR · Nutrient signaling · Ageing · IGF-1 · PI3K

S. C. Johnson (*) 
Center for Integrative Brain Research, Seattle Children’s Research Institute,  
Seattle, WA, USA
e-mail: simon.johnson@seattlechildrens.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2835-0_3&domain=pdf
https://doi.org/10.1007/978-981-13-2835-0_3
mailto:simon.johnson@seattlechildrens.org


50

 Introduction

Modern molecular gerontology is in many senses a chaotic and eclectic field of 
research. Model system approaches to elucidating the mechanisms of ageing range 
from measuring replicative lifespan studies in budding yeast Saccharomyces cerevi-
siae, consisting of physically counting the number of ‘daughter’ cells individual 
‘mother’ yeast cells can produce, to large scale genetic studies in human centenar-
ians, which involve massive long-term clinical follow-up and large-scale next- 
generation sequencing endeavors. The spectrum of organisms used in modern 
ageing research includes nematode (Caenorhabditis elegans and others) and fly 
(Drosophila melanogaster) models, mice and rats, non-human primates, compara-
tive studies utilizing everything from North Atlantic Arctica islandica clams to 
naked mole rats (Heterocephalus glaber), and a whole catalog of exotic ‘emerging’ 
models aimed at providing fresh perspectives to the ageing field. While this com-
plex mixture of complementary approaches has powered many theories of ageing, 
the identification of nutrient sensing and signaling pathways as regulators of lon-
gevity is arguably the most important discovery in ageing research to date. Nutrient 
sensing and signaling has been shown to regulate ageing in eukaryotic organisms 
from yeast to humans through dietary, genetic, and pharmacological manipulation, 
mutagenesis and RNAi screening, comparative biology, genome-wide association 
studies (GWAS), and rare genetic variant analysis. Lifespan extending genetic 
manipulations in nutrient signaling pathways helped legitimize the study of ageing, 
and more recently have led to the extraordinary – small molecule interventions that 
modify the underlying process of ageing, improving lifespan and preventing or 
delaying age-related disease.

The benefits of reduced nutrient signaling on longevity are well-established and 
broadly conserved across model systems, but a variety of questions remain regarding 
the impact of these pathways on normal human ageing and age-related disease. What 
are the downstream effectors of greatest importance? What therapeutic strategies will 
provide the greatest benefit with the lowest off-target effects? How can we bridge the 
gap between pre-clinical studies and human treatments? What are the limitations of 
targeting nutrient sensing in human health? Here, we discuss the role of the major 
nutrient sensing and signaling pathways in ageing and provide an up to date discus-
sion of these questions, with an emphasis on how NSS impacts human ageing.

 Nutrient Sensing Signaling

 Insulin/IGF-1 Signaling – the First Pathway of Ageing

The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway was the first 
defined genetic pathway regulating ageing and age-related disease in model organ-
isms (Kenyon 2011), detailed in landmark studies that provided the first evidence 
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that genetic manipulation of nutrient sensing signaling (NSS) can modify lifespan 
(Kenyon et  al. 1993, Dorman et  al. 1995). Subsequent early studies suggested a 
linear membrane bound receptor to transcription factor pathway, comprised of the 
cell surface receptor DAF-2 (homolog of the mammalian IGF-1 Receptor), the PI3 
kinase AGE-1, the intracellular kinase AKT/PKB, and the fork head transcription 
factor DAF-16 (homolog of human Foxo3a) (Paradis and Ruvkun 1998). Numerous 
additional players have since been identified, with dozens of modifying factors sur-
rounding a central IGF-1/IGF1R/PI3K/AKT/mTOR pathway (see Figs.  3.1 and 
3.2). The core intracellular components of NSS (such as TOR, AMPK, and AKT) 
are widely conserved across the Eukarya domain; for example, the yeast homologs 
of mTOR, AMPK, and AKT are Tor, Snf1, and Sch9, respectively (see Fig. 3.1).

As the complexity of NSS has been revealed, the linear pathway model for the 
physical signaling events has become obsolete, making way a more nuanced under-
standing of NSS. The linear model still provides a reasonable representation of the 
overall role of NSS in ageing and the benefits of general NSS targeting interventions 
such as caloric restriction (CR) (see Fig.  3.2), but it is now clear that complex, 
multi-layered networks of sensors and effectors including feed-back loops, tissue 
and cell type specific factors, and species specific pathways, modify the core NSS 
paradigm. Tangled in these networks are multiple points of intracellular and sys-
temic surveillance of nutrient levels and growth favorable conditions, an array of 
downstream effector pathways and molecules, and a relatively small number of key, 
highly conserved, intracellular signal hubs which coordinate the many inputs and 
outputs. Early hopes that a single transcription factor could underlie the majority of 
the benefits of NSS pathway modulation have proven premature, but intracellular 
signaling hubs have taken their place as the lead candidates in pharmacological 
attenuation of ageing. The premier examples are the mechanistic Target of 
Rapamycin complexes (mTORC1 and mTORC2), central mediators of NSS and 
established pharmacological targets (see Fig.  3.1; discussed in detail below). 
Circulating systemic factors, in particular IGF-1 in mammals, are also viewed as 
potential therapeutic targets in ageing and age-related disease.

 Regulation of Nutrient Signaling

 Systemic Signaling, Circulating Factors

The canonical PI3K/AKT pathway of ageing can be activated by any of a broad 
range of hormones, growth factors, and cytokines, acting through either receptor 
tyrosine kinases (such as IGF-1R/Daf-2 or INSR) or G protein-coupled receptors. 
In theory, any or all of these may contribute to ageing, but causal evidence is mainly 
associated with growth hormone (GH) and IGF-1. Growth hormone (GH) is itself 
the primary driver of circulating IGF-1 levels, driving production through activation 
of hepatic IGF-1 synthesis. As for GH, it is secreted by the pituitary gland in 
response to hypothalamic GH-releasing hormone (GHRH), insulin-induced 
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hypoglycemia, and vigorous exercise; GH production is inhibited by hyperglyce-
mia, glucocorticoids, and negative feedback induced by IGF-1 (Buckler 1971; 
Barbetti et al. 1990) (see Fig. 3.1). IGF-1 feedback on GH is mediated by inhibition 
of the cyclic AMP response element binding protein (CREB) binding protein (CBP), 
a transcriptional co-factor necessary for GH production (Romero et al. 2012).

Fig. 3.2 A Linear Model for Nutrient Sensing Signaling in Ageing and Age-related Disease. 
A linear model provides a simplified representation of the role of nutrient sensing signaling in age-
ing and age-related disease. In this model, overall nutritional status in multicellular organisms is 
sensed through central mechanisms as well as through intracellular nutrient sensing cues. Central 
sensing regulates the production of circulating hormonal signals, including GH, IGF-1, and insu-
lin, which activate cell surface receptors and stimulate intracellular nutrient signaling pathways. 
Intracellular cues, such as ATP/ADP, NADH/NAD+, amino acid levels, and ribosome assembly, 
regulate intracellular pathways directly and modifying cellular response to circulating factors. 
Tissue and cell type specific responses in multicellular organisms are coordinated by differential 
expression of intracellular factors and cell surface receptors, specificity of systemic factors, and by 
bioactivity-modifying tissue bound and circulating factors. Together, these signaling cascades pro-
mote growth and fecundity at the expense of repair and maintenance. Chronic activation of nutrient 
sensing signaling drives ageing and many chronic diseases associated with ageing, while targeting 
nutrient signaling pathways attenuates ageing and age-related disease, as discussed
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Low circulating IGF-1 in under-nutrition or fasting results from both decreased 
GH production and enhanced turnover of serum proteins. IGF-1 bioavailability is 
modulated by a binding proteins including the IGF-1 binding proteins (IGFBP’s) 
and IGF-1 acid labile subunit (IGFALS) and the ratios of IGFBP’s to IGF-1 have 
been associated with some human diseases (Arafat et  al. 2009; Gokulakrishnan 
et al. 2012). IGF-1 is also produced locally in a tissue-specific manner in response 
to stimuli such as mechanical stress and injury (Pelosi et  al. 2007). IGFBP’s, 
IGFALS, locally produced IGF-1, and factors that modulate signal transduction at 
or downstream of the IGF-1 receptor (IGF1R) all complicate the interpretation of 
circulating IGF-1 levels.

IGF-1 has been a major focus of biogerontology, but evidence suggests it may 
not be the most important circulating factor in mammalian ageing. GH and GHR 
knockout mice are viable and exceptionally long lived, while knockout of either 
IGF-1R or IGF-1 are lethal and partial loss only modestly alters lifespan. Intriguingly, 
liver specific knockout of IGF-1 results in an ~75% reduction in circulating IGF-1, 
but these mice had normal body growth and produced IGF-1 in several non-hepatic 
tissues in response to GH (Yakar et al. 1999). This uncoupling of GH and IGF-1/
IGF-1R will be discussed further below.

 Cellular Interface and Intracellular Regulation

At the cell surface, circulating nutrient sensing signaling factors activate membrane 
bound receptors and stimulate intracellular signaling cascades. GH acts through the 
homodimeric receptor tyrosine kinase GHR. IGF-1 activates homodimeric IGF-1R 
as well as insulin-receptor (INSR) /IGF1R hybrid receptor heterodimers, and, with 
only weak affinity, homodimer INSR.  Insulin similarly activates both INSR and 
IGF1R. Receptor/ligand binding of IGF-1, Insulin, or GH results in activation of 
PI3K/AKT and MAPK/ERK signaling through intracellular insulin receptor sub-
strates (IRS1-4) and SHC, respectively (Fig. 3.1). AKT activation leads to inhibition 
of glycogen synthase kinase 3 (GSK-3) and forkhead box O transcription factors 
(FOXO’s), including FoxO3a, as well as activation of the mechanistic target of 
rapamycin (mTOR).

mTOR promotes mRNA translation through rpS6K/rpS6 and the eukaryotic ini-
tiation factor binding protein 4E-BP1 and decreases autophagy through inhibition 
of ULK1. The ERK/MAPK pathway activates mitogenic factors such as the proto- 
oncogene c-MYC, and promotes translation through activation of rpS6 via phos-
phorylation at rpS6K independent sites (Pende et al. 2004). Together, these processes 
enact intracellular growth signaling, mRNA translation, catabolic pathways, and 
metabolism, which together modulate eukaryotic healthspan and longevity 
(Fig. 3.1).
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 Intracellular Sensing

Nutrient sensing occurs intracellularly through a number of distinct nutrient, energy, 
and growth permissive condition monitoring systems. These include ATP level sur-
veillance by the AMP activated protein kinase AMPK; NADH/NAD+ monitoring 
by NAD+ dependent protein post-translational modification regulators Sirtuins (not 
discussed in this chapter); oxygen sensing by REDD1/REDD2, the Hif-1 pathway; 
small molecule sensing at the lysosome; and various ligand nutrient/hormone ligand 
dependent transcription factors such as Peroxisome proliferator-activated receptor 
gamma (PPAR-γ). While many of these individual sensors has been tied to ageing 
and disease in one or more model systems, one intracellular sensing hub has stood 
out as a major, and modifiable, target in ageing: mTOR.

mTOR is a key intracellular mediator of nutrient sensing signaling and, as a 
result, of ageing and disease (Johnson et al. 2013). The mTOR complexes, mTORC1 
and mTORC2, are uniquely important for two reasons: first, these complexes syn-
thesize input nutrient and growth information from a broad array of unique molecu-
lar signals and coordinate extensive cellular responses by tuning anabolic and 
catabolic pathways (Fig.  3.3). Second, key mTORC components show sufficient 
structural conservation from yeast to man that antifungal macrolides targeting Tor 
in yeast also robustly and specifically inhibit mTOR in mammals (discussed below).

In addition to activation downstream of cell surface receptors, mTOR is involved 
in cellular response to many of the nutrient sensing factors detailed above. Well- 
established points of regulation include activation by amino acid sensing at the lyso-
some mediated by the Ragulator complex (Kim and Kim 2016); inhibition resulting 
from a low cellular ATP/ADP ratio mediated by AMPK; inhibition by low oxygen 
levels mediated by the intracellular sensors REDD1 and REDD2 (Vadysirisack and 
Ellisen 2012); and ribosome capacity sensing by mTORC2, which directly couples 
nutrient sensing signaling at mTOR to cellular ability to enact mRNA translation 
(Zinzalla et al. 2011). A variety of additional signals have been shown to attenuate 
mTOR activity, such as glucose concentration and the NADH/NAD+ ratio (through 
the action of Sirtuins and other factors), but the precise mechanisms mediating these 
points of control remain to be fully defined. In sum, ATP status, oxygen level, ribo-
some capacity, amino acid concentration, systemic growth signaling, and other yet 
to be defined sensors all converge at mTORC1 and/or mTORC2, which together 
coordinate cellular proliferative and maintenance programs in response to these 
inputs.

 Downstream of mTOR

mTORC1 drives proliferation and growth through inhibition of autophagy, activa-
tion of mRNA translation/protein synthesis, and regulation of metabolism. mTORC1 
promotes protein synthesis by activating ribosomal protein subunit S6, downstream 
of S6 kinase, and by releasing the eukaryotic translation initiation binding factor 
eIF4E-BP1 (or 4E-BP1) and allowing for cap-dependent mRNA translation. 

3 Nutrient Sensing, Signaling and Ageing: The Role of IGF-1 and mTOR in Ageing…
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Autophagy, the intracellular catabolic process of recycling through lysosome- 
mediated degradation, is inhibited by active mTOR. Thus, active mTOR promotes 
synthesis over recycling, while mTOR inhibition permits increased catabolism 
while dampening the biosynthetic process of protein synthesis. This shift exempli-
fies the role of mTOR in cellular adaptations to conditions permissive of or unsuit-
able for proliferation.

Both mRNA translation and autophagy appear to be key players in ageing and 
age-related pathologies. Decreasing mRNA translation increases longevity in mul-
tiple models; knockdown or deletion of ribosomal proteins increases lifespan in 
yeast, flies and nematodes, and S6K deletion extends lifespan and decreases body 

Fig. 3.3 Intracellular Integration of Nutrient Sensing Signals through mTOR Signaling. A 
simplified representation of mTOR complexes 1 and 2 as intracellular hubs for nutrient sensing 
signaling. mTORC1 and 2 are activated or inhibited by a variety of intracellular cues, including 
amino acid sensing, energetic status, and oxygen levels, as well as downstream of cell-surface 
receptors for extracellular signals (directionality of individual pathways not shown). mTORC1 and 
2 integrate these inputs and enact various downstream cellular processes through their protein 
kinase activities. Key outputs of mTORC1 include regulation of mRNA translation through rpS6 
and 4EBP1, autophagy through ULK1, metabolism through SGK1 and GSK3, and feedback regu-
lation of receptor mediated signaling through modulation of IRS1 phosphorylation. mTORC2 
regulates cytoskeletal organization through PKC and Rho Kinase, metabolism through SGK1 and 
GSK3, and Foxo3a activity and positive and negative feedback loops through actions on AKT. 
mTOR inhibitors target both complexes with differential action on the two dependent on dose, 
duration, cell type, and precise pharmacological target. Rapamycins or rapalogs inhibit mTORC1 
and 2  in complex with the protein FKBP12. Kinase domain targeting inhibitors provide more 
complete inhibition, but with off-target effects on other kinases
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size in mice. Pharmacological inhibition of translation has also been shown to 
increase lifespan in yeast. Some studies suggest that differential translation of cer-
tain mRNA’s that rely on cap-dependent translation, rather than simply overall 
decreased translation, may play a role in the benefits of mTOR inhibition. Such a 
model has been established in budding yeast  – translation of the low-nutrient 
response transcription factor Gcn4 is preferentially increased when global transla-
tion is reduced, and Gcn4 is necessary for the benefits of caloric restriction in this 
model. How differential mRNA translation impacts nutrient responses in mammals 
remains to be clarified.

Induction of autophagy is necessary for the benefits of reduced nutrient sensing 
signaling, but unlike translation has not been shown to be sufficient for lifespan 
extension. Damaged macromolecules, including aggregated proteins, oxidized lip-
ids, and dysfunctional organelles, are known to accumulate during ageing and 
thought to contribute to cellular and tissue dysfunction.

Finally, mTORC2 contributes to nutrient responses by regulating the cytoskele-
ton, modifying metabolism, and providing a feed-forward activation of AKT 
through phosphorylation at serine 473. The feed-forward to AKT provides a clear 
role for mTORC2  in linking ribosome capacity to growth signaling through 
mTORC1.

 Pharmacological Targeting of mTOR

The importance of mTOR in ageing has been demonstrated through genetic studies, 
as described, as well as through the NIH intervention testing program (ITP) experi-
ments which utilized large-scale, multi-center, blinded mouse trials to test the effi-
cacy of mTOR inhibition in mouse ageing using the compound rapamycin (Warner 
2015). These trials demonstrated that mTOR inhibition reproducibly and signifi-
cantly increases mouse lifespan in mammals, even when treatment begins late in 
life, and that lifespan increases are both dose-dependent and occur in both males 
and females with similar efficacy when equivalent blood levels are achieved 
(Harrison et al. 2009; Wilkinson et al. 2012). These findings have proven highly 
reproducible, and recent work has shown that even transient treatment at higher 
doses can dramatically increase survival (Bitto et al. 2016).

Rapamycin, or sirolimus, was the first identified pharmacological inhibitor of 
mTOR, for which yeast target of rapamycin, aka Tor, was named. Various modified 
forms with improved solubility or stability are now available, including temsiroli-
mus, everolimus, and deforolimus (Nasr et  al. 2015). These agents, collectively 
‘rapamycins’, are special among small molecule inhibitors in that they do not bind 
directly to mTOR but, rather, bind the adapter protein FKBP12 (RBP1 in yeast) and 
only the FKBP12-rapamycin complex inhibits mTOR (Koltin et al. 1991). This two- 
tier mechanism provides incredible target specificity which has not yet been demon-
strated with any of the newer mTOR active-site inhibitors, and the maximum 
biological effect of rapamycins is limited by cellular levels of FKBP12. Active site 
inhibitors, including Torin 1 and 2, can provide greater levels of mTOR inhibition 
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by binding directly to mTOR, but these compounds also show substantial off-target 
inhibition of other, structurally related, protein kinases such as DNA-PK, GSK3, 
ATM, and ATR (see Fig. 3.3), particularly at high concentrations (Liu et al. 2013). 
Rapamycins, conversely, remain specific to mTOR even at high doses.

Specific targeting of mTORC1 versus mTORC2 has been a major focus of recent 
work in mTOR. The rationale for this goal is that mTORC1 directed processes have 
been robustly associated with disease and ageing, while mTORC2 is considered by 
many to be involved only in off-target effects of mTOR inhibition such as altered 
glucose handling. Rapamycins are often described as mTORC1 specific inhibitors, 
but this oft-repeated statement has been proven a historic fallacy. mTORC1 and 
mTORC2 are both inhibited by rapamycin when treatment is chronic or in ‘high 
dose’ paradigms (Sarbassov et al. 2006). Various factors influence the relative sen-
sitivity of mTORC1 and mTORC2 to rapamycin, as well the differential sensitivi-
ties of individual downstream targets (Mukhopadhyay et al. 2016). While very acute 
treatment with low concentration rapamycin may be mTORC1 specific, these con-
ditions represent the exception rather than the rule.

mTORC1 and mTORC2 specific inhibitors are beginning to become available, 
and the next few years should shed new insight into the relative importance of these 
two complexes. The focus in ageing have been mTORC1, but the rationale for this 
focus has largely been a result of the convenience of following up on a better char-
acterized complex coupled with regular misinterpretations of the primary literature. 
As discussed above, rapamycin is often called mTORC1 specific, but the statement 
in this form is not supported by evidence. In addition, the glucose-handling effects 
have been largely attributed to mTORC2, while a very modest and gender specific 
lifespan extension in mice appears to be possible with specific inhibition of 
mTORC1 (Lamming et al. 2012). Though intriguing, this partial genetic uncoupling 
neither precludes a benefit from mTORC2 inhibition, nor definitively demonstrates 
that mTORC1 inhibition alone can recapitulate the benefits of rapamycin. And, 
critically, the ‘off-target’ effects on glucose handling have not truly been demon-
strated to be off-target at all – rather, the full benefits of mTOR inhibition may rely 
on mechanisms that modify glucose tolerance in vivo. Common non- physiologically 
relevant methods for measuring glucose handling likely misrepresent biology 
in vivo, and differences in glucose handling following bolus delivery may be mis-
leading. This is exemplified by so-called ‘hunger diabetes’ in caloric restriction, and 
the fact that both caloric restriction and rapamycin treatment extend lifespan and 
prevent diabetes related diseases while also resulting in ‘abnormal’ glucose han-
dling and insulin sensitivity in common bolus response paradigms (Blagosklonny 
2011; Piguet et al. 2012).

There is also direct evidence suggesting mTORC2 specific pathways are impor-
tant to at least some age-related diseases. For example, the mTORC2 driven regu-
lation of lipid synthesis and cytoskeletal functions appear to be key factors in 
cancer (Benavides-Serrato et  al. 2017; Bian et  al. 2017; Guri et  al. 2017) and 
mTORC2 has been shown to mediate inflammation related dermal ageing (Choi 
et al. 2016), while a number of the cytoskeletal and metabolic pathways directly 
regulated by mTORC2 have been linked to ageing and age-related diseases. In 
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particular, cytoskeletal regulation by Rho kinase has now been shown to delay cel-
lular senescence and has been linked to disease progression in multile age-related 
neurodegenerative diseases (Feng et al. 2016; Henderson et al. 2016; Kumper et al. 
2016). Determining the relative importance of mTORC1 and 2 in ageing and age-
related disease is a major focus of current research in ageing.

 Nutrient Signaling in Ageing

Several components of NSS regulate lifespan and healthspan, the period of an 
organism’s life spent free from significant morbidities, in model organisms or have 
been associated with heathy ageing in humans (Fig. 3.1). Dwarf mice defective in 
GH are long-lived and, as in humans, disease resistant, as are GHRH deficient and 
Irs1 null mice (Selman et al. 2008; Sun et al. 2013). Interventions reducing IGF-1 
signaling are associated with improved outcome in some murine models of AD and 
proteotoxicity models in invertebrates (Cohen et  al. 2009; Cohen 2011; Parrella 
et al. 2013). Long-lived Gh, S6K, and Igf1r mutant mice have a markedly attenuated 
onset and severity of age-related pathologies including age-associated cardiac dys-
function, cancers, and age-related proteotoxicities (Cohen et al. 2009; Selman et al. 
2009). PTEN, an antagonist of PI3K/IGF-1 signaling through de-phosphorylation 
of PIP3, promotes longevity in worms, flies, and mice, and is necessary for lifespan 
extension in IGF1R mutants (Ortega-Molina et al. 2012). PDK mediates signaling 
to AKT, limiting lifespan in worms (Paradis et al. 1999). Depletion of rpS6 or S6K 
increases lifespan in yeast, worms, and mice (Selman et al. 2009). FoxO3a, a tran-
scription factor which is inhibited by IGF-1 signaling, is required for lifespan exten-
sion by reduced NSS in worms and flies and variants in the FOXO3A locus have 
been reproducibly associated with human longevity (Flachsbart et al. 2009). Both 
common and rare variants in AKT and IGF1R have also been associated with human 
lifespan (Pawlikowska et al. 2009).

Multiple evolutionarily conserved nutrient/growth signaling pathways involved in 
nutrient sensing influence healthspan and lifespan (Laplante and Sabatini 2012; 
Johnson et  al. 2013). AMP activated protein kinase (AMPK) is activated by low 
energy levels, inhibited by insulin/IGF-1 signaling, and is a positive regulator of 
lifespan in eukaryotes from yeast to mice (Martin-Montalvo et al. 2013). Metformin, 
an AMPK activator, has been shown to increase lifespan in C. elegans (Chen et al. 
2017) and extend healthspan in mouse studies (although lifespan was not increased) 
and is the first compound headed to human trials tracking multiple age-related dis-
eases (ARD’s) (Check Hayden 2015; Barzilai et al. 2016). As discussed, mTOR is a 
key mediator of NSS and a well-established regulator of lifespan in eukaryotes (dis-
cussed above) (Johnson et al. 2013). Inhibition of mTOR by rapamycin, genetic dis-
ruption of the mTOR complexes, and hypomorphic mTOR alleles all extend murine 
lifespan and slow mouse ageing (Lamming et  al. 2012; Wu et  al. 2013). Finally, 
caloric restriction (CR), the oldest and most widely reported longevity- enhancing 
and ARD delaying intervention, acts through attenuation of all these pathways. CR is 
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the only longevity intervention reported in primates; two recent studies reported 
healthspan benefits, one also reporting increase lifespan (Mattison et  al. 2012; 
Colman et al. 2014). Moreover, clinical trials examining the safety of CR in healthy 
individuals have very recently been published, with some early signs of benefits 
(Fontana et al. 2016; Martin et al. 2016; Romashkan et al. 2016). Interestingly, these 
studied report that in humans circulating inhibitory IGFBP-1 is significantly increased 
by CR but circulating IGF-1 is unaltered, a deviation from CR results in rodents.

In addition to these reported benefits of reduced NSS, elevated IGF-1 is associ-
ated with some age-related human diseases. High circulating IGF-1 is associated 
with the progression of prostate, breast, pancreatic, bladder, and small-cell lung 
cancer (Schernhammer et al. 2005; Fidler et al. 2012; Price et al. 2012; Belardi et al. 
2013; Kubasiak et al. 2015). These observations led to the development of IGF-1R 
neutralizing antibodies as a therapeutic for cancer, although they have not consis-
tently proven effective as monotherapies (You et al. 2013). High circulating IGF-1 
has also been associated with chronic heart failure and increased all-cause mortality 
and is positively associated with risk of metabolic syndrome in longitudinal studies 
(Andreassen et al. 2009; Chisalita et al. 2011; Friedrich et al. 2013). Taken together, 
this evidence establishes IGF-1 and the growth and nutrient/growth signaling net-
work surrounding it as central regulators of eukaryotic healthspan and lifespan and 
suggests that interventions designed to decrease IGF-1 signaling might promote 
health and longevity in humans.

 IGF-1 in Human Health

In humans, strong defects in IGF-1 signaling cause dwarfism but protect against 
some age-related diseases, while some evidence suggests that subtler deficiencies 
confer resistance to diseases of ageing without marked effects on growth. Although 
the benefits of reduced insulin/IGF-1 in lifespan and health are well documented, 
defining the precise role of the IGF-1  in age-related disease, particularly human 
age-related diseases, has remained a complex problem, with many apparent para-
doxes involving IGF-1. Low serum IGF-1 predicts longevity, but IGF-1 decreases 
with age and IGF-1 therapy benefits some of age-related pathologies. Circulating 
IGF-1 has been associated both positively and negatively with risk of age-related 
diseases in humans, and in some cases both activation and inhibition of IGF-1 sig-
naling have provided benefit in animal models of the same diseases. Interventions 
designed modulate the insulin/IGF-1 pathway positively or negatively are already 
available for clinical use, highlighting the need for a clear understanding of the role 
of IGF-1 in ageing and age-related disease.

Insulin-like growth factor 1, IGF-1, is a small hormone protein with endocrine, 
paracrine, and autocrine functions. IGF-1 was first described as the serum factor 
responsible for stimulating protein synthesis following growth hormone (GH) treat-
ment, having insulin-like properties not repressible by insulin neutralizing antibod-
ies (Froesch et al. 1963). IGF-1 stimulates growth in most mammalian cell types 
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and is critical for normal development. GH receptor (GHR) defects or production of 
GHR neutralizing antibodies leads to impaired IGF-1 production and Laron syn-
drome dwarfism. Both primary IGF-1 deficiency and Laron syndrome are treated 
using recombinant IGF-1.

While the clinical significance of IGF-1 in dwarfism is well established, the role 
of IGF-1 in chronic and age-related diseases remains controversial. Genetic manip-
ulation in model organisms and comparative genetics using human centenarians 
have demonstrated that insulin/IGF-1 signaling drives age-related pathologies but, 
conversely, IGF-1 therapy has been shown to benefit certain models of age-related 
disease and low serum IGF-1 is a predictor of disease risk in many human associa-
tion studies. These paradoxical results have led to both pro- and anti- NSS strategies 
for overlapping pathologies, most notably in neurodegenerative diseases. Given the 
availability of both activating and inhibitory interventions targeting the IGF-1 path-
way there is an urgency to clarify the seemingly paradoxical roles of IGF-1 in human 
disease (further discussed below in Resolving the Paradoxes – Competing Models).

 Nutrient Signaling in Age-related Disease – a Focus on IGF-1

 Neurodegenerative Disease

Clinical studies and rodent models give a mixed view of NSS in AD, Huntington’s 
disease (HD), and dementia. IGF-1 resistance has been reported in mouse models of 
neurodegenerative disease and in human AD and HD patients, and intranasal insulin 
and IGF-1 are under consideration as a therapeutic strategy in AD, HD, and stroke 
(Hanson and Frey 2008; Lopes et al. 2014; Lioutas et al. 2015). A number of animal 
studies have reported beneficial effects of intranasal insulin or IGF-1 in models of 
stroke, AD, and HD, and injury-induced neurological damage, and preliminary 
human data suggests intranasal administration of the long-acting insulin analogue 
Detemir improves cognition in adults with mild cognitive impairment or early stage 
AD dementia (Cai et al. 2011; Chen et al. 2014; Lopes et al. 2014; Claxton et al. 
2015; Lioutas et al. 2015; Mao et al. 2016).

On the other hand, decreased NSS is associated with reduced risk of age-related 
neurological decline in model organisms. In humans high serum IGF-1 has been 
associated with increased risk of AD, independent of ApoE status (van Exel et al. 
2014), and two recent longitudinal reports describe a human IGF-1 allele enriched 
in AD patients and associated with increased circulating IGF-1 (Vargas et al. 2011; 
Wang et al. 2012a, b). Additionally, serum IGF-1 is significantly increased in the 
offspring of Alzheimer’s patients compared to individuals with no family history of 
Alzheimer’s, independently of ApoE status, suggesting a heritable mechanistic link 
(van Exel et al. 2014), and IGF-1 receptor activating activity of serum, a bioactivity 
measure that is thought to reflect IGF-1 function better than serum levels alone, was 
also recently shown to associate with a higher prevalence and incidence of dementia 
and Alzheimer’s (de Bruijn et al. 2014).
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 Ischemic Stroke and Cardiovascular Disease

Single nucleotide polymorphisms, SNPs, in the IGF1 gene associate with ischemic 
stroke and cardiovascular disease (CVD) risk in candidate-based studies, suggesting 
some role for IGF-1  in these diseases (Aoi et  al. 2012). In mice, treatment with 
IGF-1 following ischemic injury is beneficial, but increasing IGF-1 prior to an isch-
emic event results in a greater infarct size and worsened pathology; in agreement, 
decreasing IGF-1 prior to the ischemic injury through preconditioning attenuates 
disease (see Fig. 3.4) (Endres et al. 2007; Zhu et al. 2008). In humans, a recent study 
identified an IGF1 SNP associated with increased serum IGF-1 levels and improved 
post-stroke outcome but found no IGF1 variant associated with the risk of having a 
stroke (Aberg et al. 2013). The uncoupling of stroke risk and post-stroke outcome 
suggests that IGF-1 may have unique roles in each setting.

The relationship between ischemic CVD risk and serum IGF-1 is similarly com-
plex. Some studies have suggest a u-shaped relationship between serum IGF-1 and 
CVD, both high and low IGF-1 predicting CVD mortality, but these reports are 
limited by their use of prospective design using already aged participants (van 
Bunderen et al. 2013). A recent study examining nearly 4,000 elderly men followed 
over a 4–6 year period found no association between serum IGF-1 and CVD-related 
mortality or overall mortality but did observe levels of both IGFBP1 and IGFBP3 to 
be predictive, IGFBP1 positively and IGFBP3 negatively, of survival (Yeap et al. 

Fig. 3.4 Temporal Specificity of IGF-1 in Ischemic Injury. Temporal complexities of IGF-1 in 
response to injury. Available evidence indicates that IGF-1 is necessary for repair responses to 
ischemic injury events, while high-IGF-1/IIS signaling prior to an ischemic event is associated 
with poor outcome. This setting highlights the complexities of modeling and analyzing age-related 
pathologies. To clarify the role of IGF-1 in acute disease events pre- and post- injury levels are 
needed, and event risk versus response must be carefully distinguished
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2011). Long-term longitudinal studies starting with healthy cohorts and measuring 
IGF-1, IGFBPs, and IGF-1 signaling in affected tissues will be necessary to uncover 
the true relationship between serum IGF-1 and ischemic stroke or CVD. Identifying 
gene variants that impact IGF-1 levels or signaling throughout life will also allow 
for better assessment of the role of IGF-1 in human ischemic disease in humans.

 Sarcopenia

Much of the data supporting IGF-1 treatment as an intervention in age-related mus-
cle disease are based on rodent models using acute injury. Among these are skeletal 
muscle injury models of sarcopenia using denervation, hind-limb unloading, and 
cardiotoxin injection. The beneficial effects of IGF-1  in these settings have been 
well reported, but their ability to accurately model age-related disease, versus acute 
injury, is not clear so they will not be discussed here.

A recent study examining the role of IGF-1 in normative human and rodent age-
ing found that although serum IGF-1 levels decrease during ageing, skeletal muscle 
NSS did not decrease in human or mouse; in fact, mTOR/S6 kinase activity actually 
increased with age (Sandri et al. 2013). Genetically increasing AKT activity in old 
mice resulted in exacerbated muscle decline and reduced lifespan, supporting a pro- 
ageing role for NSS in skeletal muscle. An independent study found that while 
chronic exercise prevents age-related sarcopenia in mouse quadriceps muscles, 
overexpression of IGF-1 in skeletal muscle had no benefit (McMahon et al. 2014).

 Age-related Bone Loss

The relationship between the GH/NSS axis and bone health is complex. Circulating 
IGF-1 positively associates with bone mineral density (BMD) in post-menopausal 
women, is reduced in osteoporosis patients, and GH therapy in adults with GH defi-
ciency improves BMD (Appelman-Dijkstra et al. 2014; Mo et al. 2015). In contrast, 
while GHR deficiency in Laron dwarfism is associated with dramatic reduction in 
circulating IGF-1 and overall body size, it does not appear to result in decreased 
BMD (Benbassat et al. 2003). GH drives circulating IGF-1, and consequently serum 
IGF-1 levels reflect GH status, so reported associations between IGF-1 and BMD 
may simply reflect the GH/BMD relationship. Further complicating the subject, it 
has been argued that GH impacts BMD predominately through changes in skeletal 
muscle mass, rather than direct effects on bone, and that there is a limited direct role 
for either serum GH or IGF-1 on bone (Klefter and Feldt- Rasmussen 2009).

Recent studies have begun to address some of these questions using tissue spe-
cific modulation of IGF-1. Osteocyte specific Igf1 deletion suggest that local, but 
not circulating, IGF-1 is important for bone mineral metabolism (Sheng et al. 2014). 
Hepatic IGF-1 null mice with increased GH and GH overexpressing mice both show 
impaired bone architecture, while loss of hepatic IGF-1 in the context of normal GH 
has no impact on bone (Nordstrom et al. 2011; Lim et al. 2015). In agreement, it was 
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recently demonstrated that deletion of IGF-1 during early post-natal development 
results in a 67% increase in bone volume and increased density and trabecular num-
ber (Ashpole et al. 2015); consequently, BMD appears to be acutely sensitive to GH 
levels, with circulating IGF-1 impacting bone primarily via its role in feedback 
inhibition of GH, while locally produced IGF-1 plays a direct role in bone mainte-
nance. The extent to which skeletal muscle mass plays a role in each of these set-
tings remains to be defined.

 Metabolic Syndrome and Obesity

Metabolic syndrome (MS) and obesity have repeatedly been associated with circu-
lating IGF-1 levels in humans but a clear role for the factor has been elusive. Recent 
data suggests that study design may account for some of the discrepancies. A recent 
report comparing cross-sectional and longitudinal data from the same cohort found 
that while a cross-sectional analysis suggests a relationship between low serum 
IGF-1 and the prevalence of MS, a longitudinal assessment of the same population 
revealed that high serum IGF-1 is a predictive risk factor for the development of MS 
and serum IGF-1 levels decrease as MS progresses (Friedrich et al. 2013). Similarly, 
while cross sectional data suggests that low serum IGF-1 is associated with obesity, 
early life IGF-1 levels positively associate with risk of later life obesity (Madsen 
et al. 2011).

 Evidence from Genome-wide Association Studies

A number of genes encoding factors involved in the insulin and IGF-1 signaling 
have been linked to human disease through genome-wide association studies 
(GWAS) (Table 3.1 and Fig. 3.1). These studies provide strong evidence that genetic 
variation in NSS influences a wide range of human diseases from cancer to autism 
and include many classic age-related pathologies such as Alzheimer’s disease, age- 
related hearing loss, and cardiovascular disease. Meta-analyses of the NHGRI 
GWAS catalog, which acts as a repository for all reported significant GWAS find-
ings, indicate that genes in NSS are enriched among age-related diseases, consistent 
with the notion that this pathway is a key regulator of ageing and age-related disease 
in humans (Cluett and Melzer 2009, Johnson et al. 2015). While GWAS provide 
robust evidence that identified genetic loci influence traits, they lack information 
regarding the directional impact of identified genetic variation or the mechanistic 
role of trait associated factors. Candidate gene studies in humans and model organ-
isms have been critical in providing functional evidence linking NSS to disease and 
ageing, though these studies, particularly human clinical association studies, have 
provided a mixed view of NSS in disease.
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Table 3.1 Genes in Insulin/IGF-1 signaling linked to human disease through genome wide 
association studies

Gene Disease References

AKT3 Schizophrenia, 
diabetic retinopathy

Grassi et al. (2011), Ripke et al. (2013) and Schizophrenia 
Working Group of the Psychiatric Genomics (2014)

EIF4E2 Non-small cell lung 
cancer (survival)

Sato et al. (2011)

EIF4ENIF1 Age-related hearing 
impairment

Fransen et al. (2015)

GHR Systemic lupus 
erythematosus

Hom et al. (2008)

MRAS Coronary heart and 
artery disease, 
amyotrophic lateral 
sclerosis (sporadic)

Erdmann et al. (2009), Schunkert et al. (2011), Dichgans 
et al. (2014) and Xie et al. (2014)

RRAS Schizophrenia Schizophrenia Working Group of the Psychiatric 
Genomics (2014)

RRAS2 Alzheimer’s disease Sherva et al. (2014)
NRAS Autism Xia et al. (2014)
IGFBP7 Age-related macular 

degeneration
Arakawa et al. (2011)

IGF1R Arthritis (juvenile 
idiopathic)

Thompson et al. (2012)

IGF2, INS Prostate cancer, type 
1 diabetes 
autoantibodies

Eeles et al. (2009) and Plagnol et al. (2011)

IGF2BP2 Type 2 diabetes, 
gestational diabetes

Diabetes Genetics Initiative of Broad Institute of Harvard 
and MIT, Lund University, and Novartis Institutes of 
BioMedical Research et al. (2007), Scott et al. (2007), 
Zeggini et al. (2007), Unoki et al. (2008), Zeggini et al. 
(2008), Takeuchi et al. (2009), Voight et al. (2010), Parra 
et al. (2011), Saxena et al. (2013), Hara et al. (2014), 
Replication et al. (2014) and Anderson et al. (2015)

IGF2R Brain lesion load, 
periodontitis

Baranzini et al. (2009) and Teumer et al. (2013)

IGFB2 Esophageal cancer Wu et al. (2012)
IGFBP1 Rheumatoid arthritis Padyukov et al. (2011)
IGFBP1, 
IGFBP3

Major depressive 
disorder

Investigators et al. (2013)

IGFBP5, 
IGFBP2

Mitral valve prolapse Dina et al. (2015)

IRS1 Type 2 diabetes Rung et al. (2009), Voight et al. (2010) and Replication 
et al. (2014)

STK11 Psychosis in 
Alzheimer’s disease

Hollingworth et al. (2012)

(continued)
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Table 3.1 (continued)

Gene Disease References

MAP2K5 Obesity Speliotes et al. (2010), Wen et al. (2012), Berndt et al. 
(2013), Wen et al. (2014) and Locke et al. (2015)

MAP3K1 Breast cancer, type 2 
diabetes

Easton et al. (2007), Thomas et al. (2009), Turnbull et al. 
(2010), Michailidou et al. (2013), Tabassum et al. (2013) 
and Ahsan et al. (2014)

MAP3K11 Gout Matsuo et al. (2016)
MAP3K13 Airflow obstruction Wilk et al. (2012)
MAP3K14 Multiple sclerosis International Multiple Sclerosis Genetics et al. (2011)
MAP3K4 Ageing Edwards et al. (2013)
MAP3K7 Amyotrophic lateral 

sclerosis, Graves’ 
disease, celiac 
disease

Dubois et al. (2010), Chu et al. (2011) and Xie et al. 
(2014)

MAP3K7IP1 Primary biliary 
cirrhosis, Crohn’s 
disease

Franke et al. (2010) and Mells et al. (2011)

MAP3K7IP2 Crohn’s disease, 
inflammatory bowel 
disease, diabetic 
retinopathy

Grassi et al. (2011) and Liu et al. (2015)

MAP3K8 Inflammatory bowel 
disease

Jostins et al. (2012)

MAP4K4 Psychiatric disorders 
(combined)

Cross-Disorder Group of the Psychiatric Genomics 
(2013)

MAP4K5 Lupus nephritis in 
systemic lupus 
erythematosus

Chung et al. (2014)

MAPK1 Multiple sclerosis International Multiple Sclerosis Genetics et al. (2011)
MAPK10 Peripheral artery 

disease
Kullo et al. (2014)

PDK1 Erectile dysfunction 
in type 1 diabetes

Hotaling et al. (2012)

PIK3C2A Schizophrenia or 
bipolar disorder

Ruderfer et al. (2014)

PIK3C3 Periodontitis Teumer et al. (2013)
PIK3R1 Alzheimer’s disease Ramanan et al. (2014)
PTEN Type 2 diabetes, 

periodontitis
Teumer et al. (2013) and Replication et al. (2014)

PRKAA1 Gastric cancer Shi et al. (2011) and Hu et al. (2016)
PRKAB1 Ulcerative colitis, 

inflammatory bowel 
disease

Liu et al. (2015)

PRKACB Breast cancer (male) Orr et al. (2012)

(continued)
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 Paradoxes of IGF-1

The longevity and healthspan promoting benefits of reduced NSS are generally 
undisputed, but the impact of individual factors tends to be much more controver-
sial, as in the case of IGF-1. IGF-1 has been a major focus of biogerontology, likely 
owing both to its historic context (the discovery of the nematode insulin/IGF-1 like 
receptor Daf-2) and the relative ease of measuring circulating IGF-1  in human 
cohorts for correlative studies. Although widely studied, the precise role of IGF-1 
has remained stubbornly obscure. Mixed reports of IGF-1 in age-related diseases 
have led to various non-mutually exclusive models describing IGF-1  in human 
health. Both pro- and anti- IGF-1 therapies are in various stages of clinical trials, 
giving urgency to the paradoxes of IGF-1. Given the potential impact of these 

Table 3.1 (continued)

Gene Disease References

PRKAG2 Chronic kidney 
disease, bipolar 
disorder

Kottgen et al. (2010) and Belmonte Mahon et al. (2011)

RAF1 Cardiac hypertrophy Parsa et al. (2011)
RPS6KA1 Amyotrophic lateral 

sclerosis (sporadic)
Xie et al. (2014)

RPS6KA2 Inflammatory bowel 
disease, dental caries

Jostins et al. (2012), Wang et al. (2012a, b) and Zeng 
et al. (2014)

RPS6KA4 Primary biliary 
cirrhosis, leprosy

Mells et al. (2011) and Zhang et al. (2011)

RPS6KB1 Multiple sclerosis, 
inflammatory bowel 
disease

International Multiple Sclerosis Genetics et al. (2011), 
Jostins et al. (2012)

SHC1 Prostate cancer Eeles et al. (2013)
NR Schizophrenia Goes et al. (2015)
SHC4 Major depressive 

disorder, eating 
disorders

Aragam et al. (2011)

TSC1 Psoriasis, migraine 
without aura

Nair et al. (2009), Anttila et al. (2013)

A summary of gene-disease associations identified through genome-wide association studies 
involving key human genes in NSS, as shown in Fig. 3.1. Associations here achieved a genome- 
wide significance association threshold of p<10-5. Endophenotype associations, including asso-
ciations with disease markers, not shown. GWAS data publicly available through the National 
Human Genome Research Institute GWAS Catalog
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therapeutic approaches to human health and the substantial attention given to this 
molecule in biogerontology, a detailed inspection of the data surrounding IGF-1 
itself in ageing and age-related disease is warranted.

 Evidence for Benefits of Reducing IGF-1 Signaling in Ageing

As discussed, the insulin/IGF-1-like signaling pathway was the first identified and 
is arguably the best characterized genetic pathway regulating lifespan in evolution-
arily diverse organisms including nematodes, flies, and mice, with intracellular 
components also regulating lifespan in single cell eukaryotes (Fig. 3.1). Low serum 
IGF-1 is a positive predictor of lifespan in genetically heterogeneous mice, and 
humans with low IGF-1 resulting from GHR defects have a reduced incidence of 
age-associated cancers and metabolic disease (Harper et al. 2004; Guevara-Aguirre 
et al. 2011). Mx-cre driven deletion of IGF-1 in the liver dramatically reduces cir-
culating IGF-1 and increases lifespan in mice (Svensson et  al. 2011). A recent 
human genome-wide association study found that variants associated with low 
serum IGF-1 are also associated with increased likelihood of survival beyond 
90 years (Teumer et al. 2016). Likewise, low IGF-1 is positively predictive of sur-
vival in already long-lived humans, and the offspring of centenarians tend to have 
low serum levels and bioactivity of IGF-1 (Guevara-Aguirre et al. 2011; Vitale et al. 
2012; Milman et al. 2014). Human centenarians are enriched for rare variants in the 
IGF1R that reduce receptor function and impair IGF-1 stimulation of signaling in 
cultured cells (Tazearslan et al. 2011). Notably, IGF1R reduction of function allele 
carriers have increased serum IGF-1, presumably due to altered feedback inhibition 
of IGF-1 production. Together, this data strongly suggests that IGF-1 driven signal-
ing promotes ageing and age-related disease.

 Evidence for a Beneficial Role of IGF-1 in Disease

The evidence that IGF-1 signaling promotes ageing and age-related pathologies is 
substantial, but  the precise role of IGF-1  in human age-related diseases in many 
instances remains controversial (excluding cancer, which will not be discussed here, 
as the disease-promoting role of NSS is well established). Serum IGF-1 was found 
in a 1985 study to decline during human ageing and it was suggested that this partly 
explains age-related bone and muscle loss. Supporting this view, low serum IGF-1 
has been associated with metabolic syndrome (MS), cardiovascular disease (CVD) 
mortality, and hepatic steatosis (Oh et al. 2012), and low IGF-1 has been positively 
associated with mortality risk in some clinical studies (Tang et al. 2014). At least 
one recent study suggests there is a healthspan tradeoff of reduced NSS in inverte-
brates (Bansal et al. 2015), but the majority of paradoxical NSS data has arisen from 
studies of disease in rodents and humans.
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 Resolving the Paradoxes of IGF-1 – Competing Models

 Central Versus Peripheral IGF-1

Given that IGF-1 has regulatory functions in the central nervous system, including 
regulation of GH at the pituitary gland, distinct from those of circulating IGF-1 it 
has been proposed that benefits and detriments of IGF-1 can be separated by uncou-
pling central (brain) and peripheral levels (Fig. 3.5) (Huffman et al. 2016; Milman 
et al. 2016). In this model systemic (hepatic) IGF-1 drives diseases such as cancer 
while central IGF-1 is necessary for proper regulatory function. Consistent with this 
model it has recently been demonstrated that intracerebroventricular infusion of 
IGF-1 in old rats rescues age-related declines in whole-body insulin sensitivity and 
glucose metabolism (Huffman et al. 2016). A related idea linked to the mixed neu-
rodegenerative disease data is that neuronal health itself depends on central IGF-1 
and neurodegenerative disease simply has a different relationship with IGF-1 than 
other age-related pathologies. While it remains to be seen if specific perturbations 
of brain versus peripheral IGF-1 will result in greater benefits than reducing NSS 
systemically in normal ageing or disease, and the mechanistic relationship further 
probed, it is an intriguing model which, given the existing intranasal delivery route, 
could lead to novel approaches to treating human age-related disease.

Fig. 3.5 Central Versus Peripheral IGF-1. The central versus peripheral model for the complex 
role of IGF-1 in ageing and age-related disease. In this model, circulating IGF-1, predominately 
produced in the liver, drives tissue ageing and age-related diseases, particularly cancer, in periph-
eral tissues, while brain-localized IGF-1 drives centrally regulated processes and neuron survival 
that combat age-related neurodegenerative diseases. While highly controversial, this model high-
lights the tissue-specificity of IGF-1 actions and may provide a partial explanation for complexity 
of IGF-1 in ageing
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 Temporal Specificity

One explanation for the discordant data in ischemic disease and injury models is 
that the role of IGF-1 in acute injury is highly dependent on timing. Lifespan studies 
generally show protective effects of reduced IGF-1 on chronic, including ischemic 
vascular, diseases, whereas injury models often show that IGF-1 treatment improves 
outcome. These observations support a model where chronic IGF-1 signaling drives 
risk of ischemic injury whereas NSS is necessary for a proper response to injury. In 
agreement, IGF-1 expression is induced during injury, and IGF-1 has been shown to 
play pleotropic roles in ischemic stroke, cardiovascular disease, and sarcopenia 
models (including acute injury models), as discussed (see Fig. 3.4) (Wagner et al. 
2003). A precedent for this model has been established by recent studies of the 
senescence associated secretory phenotype (SASP). SASP is a well-documented 
driver of chronic and ARD’s and reduced SASP signaling delays ARD’s, while acti-
vation of SASP is beneficial in promoting wound repair (Demaria et al. 2014; Baker 
et al. 2016).

 IGF-1 Resistance

The mixed role of IGF-1 in Alzheimer’s disease may also be partly explained by 
observations that Alzheimer’s brains show IGF-1 resistance and IGF-1 therapy pro-
vides a benefit in this setting, whereas genetic models suggest that chronic IGF-1 
stimulation promotes the pathogenesis of IGF-1 resistance itself (de la Monte 2012; 
Zemva and Schubert 2014). Neuronal insulin/IGF-1 resistance precipitates a variety 
of defects, including altered glucose metabolism and neuronal viability, which are 
attenuated by IGF-1 treatment (Chen and Zhong 2013; Zemva and Schubert 2014). 
This model suggests IGF-1 benefits in AD are mechanistic similar to insulin injec-
tion in type 2 diabetes (T2D) – insulin prevents morbidities by normalizing blood 
glucose but does not improve the underlying defect of insulin insensitivity. Early 
routine use of insulin is associated with a variety of side-effects; behavioral modifi-
cation and insulin-sensitizing agents, such as metformin, are preferred therapies 
(Lebovitz 2011). It seems prudent that caution be exercised in considering IGF-1 as 
a therapy in neurodegenerative disorders, but the lack of available treatment options 
and late-onset of the diseases should be weighed against potential side-effects.

While perhaps best-supported by experiments in AD models, age-related IGF-1 
resistance may explain other observed benefits of IGF-1 therapy in aged animals 
and warrants further direct study.

 Optimal Dose, Context Specificity

Perhaps the simplest model for IGF-1 in ARD and ageing is the notion that there is 
an ideal dosage which balances the beneficial and detrimental effects of IGF-1 and 
maximizes lifespan (Fig. 3.6). This model, supported by human clinical data (Burgers 
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et al. 2011), likely accounts for the overall pleiotropy of IGF-1 but alone provides 
limited framework to consider interventions targeting this factor. Some intermediate 
level of circulating IGF-1 may in fact limit the development of chronic diseases with-
out leading to detrimental effects, such as reduced wound healing, but tissue targeted 
and context specific interventions would undoubtedly provide greater benefit.

As stated, these models are non-mutually exclusive, and it is likely that each are 
at least partially true, or true in specific context. Which, if any, provide efficacious 
new approaches to age-related disease is the question at hand.

 Circulating Factors – More Than Just IGF-1

IGF-1, acting through the IGF-1 receptor, is largely treated as the only, or at least 
the primary, mediator of systemic NSS in mammals. This has largely been histori-
cally driven; IGF-1 and IGF-1R represented attractive targets after the 1997 report 
that the longevity regulating DAF-2 receptor in C. elegans is a homolog of the 
human insulin/IGF-1 receptor (Kimura et al. 1997). While available data does sup-
port the notion that IGF-1 and IGF-1R do act as regulators of longevity in mam-
mals, it is important to note the distinctions between nematode and mammalian 
insulin/IGF-1 signaling and, critically, the data suggesting that alternative systemic 
nutrient signals play equal or greater role in ageing. GH and GHRH are not only 
upstream of IGF-1 but activate intracellular NSS pathways themselves. GH, through 
GHR, stimulates PI3K/AKT/mTOR and MAPK/ERK pathways independent of 

Fig. 3.6 Optimal Dose and IGF-1 Resistance. A dose-dependent model for the overall role of 
IGF-1 follows a u-shaped curve. IGF-1 levels may include IGF-1 produced in the liver and tissue 
localized production, depending on the context. At sub-optimal IGF-1 concentrations responses to 
acute injury are negatively affected. At high concentrations diseases are promoted by chronic 
IGF-1 stimulation. Chronic stimulation is associated with insulin/IGF-1 resistance, explaining the 
apparent benefits of local IGF-1 treatment in some neurodegenerative disease models. Circulating 
and intracellular factors modify signaling at both ends of the u-curve. Sufficient local IGF-1 pro-
duction may be sufficient to negate the detrimental effects of reduced circulating IGF-1  in the 
context of acute injury
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IGF-1. In addition, insulin and IGF-2 both have overlapping roles with IGF-1. Even 
in C. elegans, where the IGF-1R homolog DAF-2 has strongly influences lifespan, 
there are over 30 insulin/IGF-1 like signaling molecules and the relative contribu-
tion of each is unclear (Gahoi and Gautam 2016). Thus, hindsight would suggest 
that IGF-1 may not be as important in isolate as initially assumed.

The relatively overemphasized role of IGF-1/IGF-1R per se is highlighted by 
genetic models of longevity in mice: pituitary loss of function Ames and Snell dwarf 
mice, and GH, GHR, or GHRH knockout animals all show substantially increased 
lifespan compared to normal animals, with median survival improved by 50–70% 
(Sun et  al. 2013). IGF-1R heterozygous mice are reportedly long-lived, but this 
phenotype is milder and appears to be gender and strain specific. Conditional knock-
out of IGF-1 in liver, which produces ~80% of circulating levels, has been found to 
extend median lifespan of mice but only by ~10% (Svensson et  al. 2011). This 
extends beyond the upstream regulators of IGF-1; overexpression of FGF21, a fast-
ing hormone secreted by the liver, was shown to increase median lifespan in mice 
by 36%, reportedly through modulation of mTOR, AKT, and the GH-IGF-1 axis in 
liver (Zhang et al. 2012). Direct relative effect comparisons between these studies 
are impossible given the complexity of the experiments and the complications asso-
ciated with deleting IGF-1 and IGF-1R which, when homozygous deleted, are neo-
natal lethal (Epaud et al. 2012; Pais et al. 2013). Nevertheless, the general trend 
would suggest that circulating factors other than IGF-1 may prove better candidates 
for intervention in ageing and warrant further attention.

 Experimental Considerations and Future Directions

While association studies are valuable for linking phenotypes to genetic variation or 
biomarkers, results should be interpreted with extreme caution. In particular, cross- 
sectional association data involving a dynamic parameter like IGF-1, which is 
strongly influenced by health status, should be approached with great caution. 
Chronic renal failure, hepatic dysfunction, and malnutrition all cause a reduction in 
levels or serum bioactivity of IGF-1, among broader changes to circulating factors 
(Moller and Becker 1990; Moller and Becker 1992; Tonshoff et al. 2005; Sirbu et al. 
2013). Since IGF-1 is itself altered by the presence of underlying pathology causal-
ity should not be inferred from cross sectional data alone even when robust associa-
tions are observed.

Similarly, genetic modeling provides an immense amount of information regarding 
the role of individual factors in ageing and disease, but results from genetic models 
must always be interpreted with care. The more complex the genetic modulation,  
the greater the room for unintended consequences. Complex heterozygotes or  
conditional mutants may provide useful complimentary data, but off-target effects, 
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temporal or spacial gene functions (including developmental functions), leaky pro-
moters, and gene dosing effects are all complicating factors that are too often ignored 
when model data is published. Pharmacological approaches have also been limited by 
over-interpretation or lack of proper controls. The ageing literature is littered with 
unrepeated studies identifying intervention strategies of unclear validity. Greater 
effort should be focused on multi-center collaborations, as typified by the intervention 
testing program, where published findings are least likely to be influenced by bias. 
The sum of available data on nutrient sensing signaling paints a clear landscape where 
reduced signaling delays pathologies of ageing, but individual studies must be taken 
in context.

Study design is critical for interpreting association data, but pleotropic effects 
can dramatically complicate interpretation even in the most rigorously designed 
study. As discussed, experimental evidence suggests that nutrient signaling plays 
different roles in altering the risk of an ischemic events versus promoting recovery 
following such events. For this reason, abstract or overly simplified models for age- 
related disease may not accurately reflect the intended pathology. The most notable 
examples are acute injury in muscle models using toxins or physical injury (as dis-
cussed), but examples of age-related disease models with no clear link to actual 
ageing are abundant. There are also important considerations that must be accounted 
for in clinical studies; retrospective studies will likely be enriched for patients har-
boring factors that promote survival and may be misleading if they are used to pre-
dict the effects of genetic variability on risk, while prospective studies that track 
only incidence but lack survival data may obscure important associations.

Remaining unanswered questions regarding the role of nutrient sensing signaling 
in disease will require tissue and context specific animal models and cautious inter-
pretation of experimental findings. In human studies, functional genetics defining 
the impact of disease or longevity associated genetic variation on the expression of 
IGF-1 or related factors will provide further insight into the relationship between 
IGF-1 and disease. Creative synthesis of modern high-throughput datasets to iden-
tify and describe genetic variants with IGF-1 eQTL’s, including those with tissue 
specific impact, will add new depth to our current understanding of the regulation 
and role of IGF-1 in human disease. Circulating NSS factors, including IGF-1 mod-
ifiers such as the IGFBP’s, deserve greater attention in studies focused on systemic 
signaling; they are both major confounding factors in NSS studies and promising 
targets for future therapies. Addressing these issues and identifying the downstream 
targets of importance will lead to novel therapeutic strategies and pharmacological 
targets.
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