
Applying Lean Learning to Software
Engineering Education

Robert Chatley

Abstract In this chapter, we describe the ways that we have applied lean and agile
techniques to teaching software engineering at Imperial College London. We give
details of the structure and evolution of our programme, which is centred on the
tools, techniques and issues that feature in the everyday life of a professional soft-
ware developer working in a modern team. We also show how aligning our teaching
methods with the principles of lean software delivery has enabled us to provide sus-
tained high-quality learning experiences.We examine two different types of course in
detail: first, a ‘traditional’ lecture course, where we transformed the way that course
is taught and assessed, aiming to create tighter feedback loops, and second a project-
based course where we ask students to put agile methods into practice themselves,
working in teams to build a substantial software system over a number of months.
We describe concretely how we run and structure these courses to set up effective
learning experiences.

Keywords Software engineering · University · Automation · Feedback
Project-based learning · Peer-instruction

1 Introduction

Lean and agile methods are prevalent in industrial software engineering today (Pap-
atheocharous & Andreou, 2014). Scrum, Kanban and eXtreme Programming (XP)
are all common in software development organisations, helping teams to develop
software iteratively, in reliable and predictable ways, whilst responding to changing
requirements in a fast moving world. In university Computer Science departments,
we are training the next generation of software engineers, and it is therefore important
that we teach these methods to prepare students for their future working lives.

R. Chatley (B)
Department of Computing, Imperial College London, London, UK
e-mail: rbc@imperial.ac.uk

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_14

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_14&domain=pdf
mailto:rbc@imperial.ac.uk
https://doi.org/10.1007/978-981-13-2751-3_14


286 R. Chatley

Many universities and other higher education institutions are striving to bring
modern industrial software development techniques into the classroom, and like
any such institution, Imperial College London has been faced with the challenge of
updating and evolving its software engineering education to prepare its students for
modern industrial careers. Keeping pace with rapid changes in industrial practice has
required changes in the way software engineering is taught. This includes teaching
modern development methods and giving students hands-on experience of putting
those methods into action through practical work (Anslow & Maurer, 2015; Kropp
& Meier, 2014). This evolution has not been easy but, through continuous experi-
mentation and iterative improvement, we believe that we have evolved a software
engineering programme that strikes a good balance between teaching, learning, and
assessment.

Given that we are teaching lean and agile methods, and believe that they have
positive effects on software engineering practice, it seems natural that we use them
to inform our teaching practice too. If we are looking to reduce waste, and to improve
quality and feedback in our educational systems, can we apply the principles and
practices that we teach to the teaching itself?

Although our own courses are focussed on software engineering, we believe that
many of the lessons we have learned are transferable to other disciplines.

1.1 Perspectives on Teaching

In order to discuss the approaches that we have tried, we will borrow some vocabu-
lary from Mark Guzdial’s 2015 book ‘Learner-Centered Design of Computing Edu-
cation’ (Guzdial, 2015). Guzdial gives us three useful terms to describe different
types of learning experience. The first is transmission, which describes the classic
lecture situation. An expert holds a body of knowledge and tries to transmit it to
a—hopefully—attentive audience. This is typically a one-way interaction between
one teacher and many learners.

The second perspective is apprenticeship, which we use to describe a learning
experience focussed on the development of skills rather than theoretical knowledge,
most likely through kinaesthetic learning and practical exercises. You can imag-
ine this in a setting like a cookery class, where each student can practice a recipe
repeatedly until they have mastered a dish.

The third perspective is developmental, which describes a personalised learning
experience without a set curriculum. It focuses on taking the learner from where
they are to somewhere more advanced, in a particular direction depending on their
strengths and weaknesses. This sort of individual tuition works well in a situation
like a piano lesson, but it is hard to replicate it with a lecture class of 150 students.

Unfortunately, we do not have the resources in our university to offer individual
tuition and personally tailored programmes for every student taking Computer Sci-
ence, perhaps as a student at a music conservatoire might experience. However, we



Applying Lean Learning to Software Engineering … 287

will discuss howwe have tried to blend these three approaches in order to improve on
a style of teaching purely based on weeks of transmission followed by final exams.

1.2 The Rest of This Chapter

In the remainder of this chapter, we will illustrate how we have transformed two
different types of courses to increase the value of the learning experience, and to
incorporate more frequent, high-quality feedback. We move from courses primarily
based on transmission to courses that focus on the development of skills through an
apprenticeship model, and also incorporate individual and small group tuition from
instructors and peers, moving towards more developmental education. In Sect. 2, we
look at the evolution of a traditional lecture course, and in Sect. 3 we describe how
we support different types of project-based learning. Section 4 discusses possible
challenges for future adoption of similar techniques in more courses and at larger
scales. We also give some qualitative feedback taken from our student survey, which
is conducted across all students, anonymously, at the end of each term of study.

2 Lecture Courses

Within Imperial’s Computing curriculum, we have a second-year undergraduate
module called Software Engineering Design. The content of this module concerns
methods, tools, and techniques for the development and deployment of large-scale
software systems that are robust, well-engineered and easy to maintain by design.
In an earlier incarnation of the course, the material concentrated on notation, formal
specification languages and catalogues of design patterns (Gamma, Helm, Johnson,
& Vlissides, 1995). This meant that students would learn a range of ways to doc-
ument and communicate software designs, but these were not tied to a particular
implementation language. Much of the material was thus taught ‘in the abstract’ and
the students did not get much opportunity to put their theoretical knowledge into
practice. The following comment in our student survey typified concerns that this
was not the best approach:

Would have preferred design patterns to be practiced more in lab exercises, … the patterns
I understood best were the ones for which I wrote and tested actual code…

We wanted to find a way to move the focus from learning theoretical knowledge
to applying and demonstrating practical skills. We hoped that this would not only
improve the students’ experience of the class, but also provide them with a more
valuable learning experience.

Historically, teaching in this class was based largely on transmission. Students
attended lectures twice per week throughout the autumn, took other modules during



288 R. Chatley

Fig. 1 The structure of a traditional lecture course at Imperial, with lectures over the autumn
term, and examinations in the summer. Figure © 2017 IEEE. Reprinted, with permission, from
proceedings of 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)

the spring, and then had their examinations after Easter (see Fig. 1). There were tuto-
rial classes alongside the lectures, usually with paper-based exercises, but typically
only the most diligent students kept up with the exercises week by week and most
left them to use as revision aids come exam time.

This approach is completely at odds with the typical delivery cycle of a modern
industrial software project. The feedback cycle is very long, and a large amount of
work is in process beforewe get to the ‘quality assurance’ stage.Onlywhenweget the
exam results do we really know whether we have taught the students effectively. We
can think of the course as starting out with a long list of requirements for things that
students should learn—a syllabus—and that we then go into a phase of transmission,
after which we check the results. There is no iteration or incremental delivery—it is
one big batch.

Inmodern software development projects, we typically strive to reduce batch size,
with the aim of decreasing cycle time, decreasing risk, and increasing quality. One
mechanism by which we might do this would be to employ Kanban, a lean method
that focusses on flow through a system, and by using it we can aim to maximise
throughput and minimise cycle time (Anderson, 2010). In software development,
we want to minimise the time between someone having an idea for a feature and
prioritising it, and that feature being working software in the hands of the users.
In learning and teaching, we instead want to minimise the time from introducing an
idea, to having a student internalise it, to verifying that their understanding is correct.

One of the tools of a Kanban practitioner is to visualise theworkflow. In a software
project, this is typically done with a physical or virtual ‘card wall’, divided into
columns for the different phases that each piece of work needs to go through. The
different columnsmap the value stream (Rother & Shook, 2003). Typically the board
is divided into columns representing the ‘backlog’ of upcoming tasks, those that are
in analysis, those in development, those being tested, and those ready for release,
or released. Cards representing separate tasks are moved from column to column as
work on them progresses. Similar boards are also often used in other agile methods
such as Scrum and XP, but where in those methods the board is an information
radiator to help to display the current state of the team’s work, within a regular



Applying Lean Learning to Software Engineering … 289

Fig. 2 The value stream of
learning, which maps the
different phases of learning.
Figure © 2017 IEEE.
Reprinted, with permission,
from proceedings of 2017
IEEE/ACM 39th
International Conference on
Software Engineering
(ICSE)

delivery cadence (e.g. a 2-week iteration), in Kanban the board is used as a tool to
define and optimise the flow of work through the system. The key idea is to use the
current state of the work to decide what to do next, and always to ‘pull from the
right’, so that we concentrate on getting individual pieces of work finished before
starting new ones (Ottinger, 2015). This way we focus on completion and keep the
work in process low. A limit can be placed on the number of pieces of work that may
appear in any column at once in order to enforce this focus on finishing.

We take this idea and redraw the columns on the board to form a value stream of
learning. Here we list the items on the syllabus as our backlog—‘to do’—and then
have columns for ‘explain’ (transmission), ‘practice’ (apprenticeship), ‘check’ and
‘learnt’ (see Fig. 2). If we follow the ‘pull from the right’ mantra, then we want to
get each item over to the right-hand side as quickly as possible. That means that
we aim to do a minimal amount of transmission on each topic before the students
get to practice in a hands-on exercise, and then verify the quality of their learning,
obtaining feedback before we move further on in the syllabus.

Putting this into practice, we first tried the common approach of adding a small
project as coursework part way through the term. However, as it took a couple of
weeks to complete the project, and about the same again to get all the assignments
marked up and graded, it was pretty much the end of the course before the students
got their feedback. There was a wide variation in how students chose to approach the
design project we gave them. Those who were more dedicated and had understood
well tried out a lot of different ideas and added many features. Those who had not
understoodwell didmuch less or did the wrong thing. If anything, rather thanmaking
sure that everyone had learnt the material, it seemed that we had widened the gap
between the stronger students and the weaker ones. We needed something better.

2.1 Reducing Cycle Time

In order to give more guidance, and earlier feedback, we changed from asking stu-
dents to design awhole system to asking them to consider individual design choices in
different situations, and examining how implementing something one way or another



290 R. Chatley

Fig. 3 Revised course structure, with a weekly cycle of assessment and feedback. Figure © 2017
IEEE. Reprinted, with permission, from proceedings of 2017 IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE)

would affect the future maintenance of the system. In terms of the assignments that
were set, we moved from ‘design a system with the following requirements, discuss
the design choices you made’, to a set of weekly smaller coding exercises of the form
‘Add feature X to this system by using design pattern Y. Now try design pattern Z.
What are the trade-offs?’. By carefully constructing a number of small scenarios to
work through one-by-one, we ensured that each student had the same design issues
to think about, and by making them into coding examples students got a much more
hands-on, kinaesthetic learning experience.

Fittingwith theweekly nature of the university timetable, this led to aweekly cycle
of assessment (see Fig. 3). A new topic is addressed each week with an associated
assignment, and students submit their solution later the same week. Grades and
feedback are then returned within three or four working days, i.e. before they submit
their next assignment.

The obvious problemwith weekly assignments is the volume of grading and feed-
back required. Because of the limited teaching resources that institutions generally
have to work with, the temptation is to reduce the frequency of assignments, e.g. to
once every 2 weeks, in order to be able to deliver feedback ‘at scale’. However, this is
at odds with what we are trying to achieve. Relating this again to the conditions that
apply in a software development project, often we strive to release software more
frequently, but integrating and testing new code requires a lot of time and effort. XP
promotes adopting a process of continuous integration (Duvall, Matyas & Glover,
2011), through which we tend to find that doing these things more often causes us to
streamline processes, remove waste, and often apply automation. As Martin Fowler
often says ‘if it hurts, do it more often’ (Fowler, 2011).

2.2 Peer Coaching

One change that made a big difference to both student learning andmarking load was
to encourage students to pair-program,which has been shown to be highly effective in



Applying Lean Learning to Software Engineering … 291

a classroom environment (Williams&Upchurch, 2001).We have found that students
enjoy the experience of working with a colleague—a class survey showed that from
148 students, 119 declared that they found learning to through pair-programming to
be a good experience, 18 were neutral, and just 9 stated that they preferred to work
individually. Students get to practice pair-programming,which is an industry-relevant
skill, but not something that necessarily comes naturally to everyone; becoming good
at it is difficult and requires work. The students get to coach each other and help
each other to learn and understand. By engaging them in pair-programming, we
had effectively set up a network of peer coaches—a developmental learning style
personalised to each individual. Although we are aware of studies that show that
constructing pairs by matching weak and strong students perhaps produces more
learning, in this case, we allowed them to work with whomever they liked as we
wanted to smooth the path to adoption. We may experiment with pre-selected pairs
in future. Last, a major benefit in terms of giving weekly feedback on assignments
was that pair-programming reduced the number of submissions from 150 to 75!

2.3 Automation

A key to reducing the burden of assessment and feedback has been to add automation
where possible. This ties back to the engineering practices of XP where automation
is used to allow testing of software to be done quickly, repeatably and reliably. Our
approach here has been to provide tools that enable students to test their exercise
solutions as they work, to detect basic problems early and allow students to fix them
before they submit their work. From the first week of their first year, students learn
to use version control through Git and GitLab.1 When they start a coding exercise
they clone a repository to obtain skeleton files that form a starting point and are
encouraged to work in small steps, committing each change as they go. When they
submit their work for assessment, what they actually submit is a Git commit hash
corresponding to the version to be marked. We have also implemented a software
testing tool the ‘Lab Test System’ (LabTS), which allows students to view and test
each version of their code themselves (see Fig. 4).

For first-year courses, we provide a (partial) test suite that students can run against
their code, to check the correctness of their solutions. However, later, when learning
about software design, we do not want students to follow the same approach. Pro-
viding a set test suite has a consequence of defining an API that the students need
to implement. In our design exercises, we want them to design their own API as
part of the exercise, and to write their own automated tests against that API. Writing
automated tests and utilising test-driven development is a key skill that we want to
instil at this stage of the students’ education.

As a mechanism to encourage students to write their own tests, we use LabTS to
check a test-coverage metric, with a coverage threshold that we deem appropriate

1https://about.gitlab.com/.

https://about.gitlab.com/


292 R. Chatley

Fig. 4 Screenshot of our LabTS system—a web-based tool that allows students to run automated
tests on each iteration of their exercise solutions

for that week’s exercise. LabTS gives each submission a score out of 3: 1 point if the
code compiles, 1 point if all the tests the students have written pass, and 1 point if
these tests meet the code coverage threshold and the code passes some basic layout
and formatting checks. The exercises for our second-year design course are in Java,
so we use a Gradle2 build to choreograph the compilation, testing and other checks.
We configure Gradle plugins to check code formatting against a given style guide,
and to measure test-coverage. LabTS is then set up to run this Gradle build against
each submission and report the results. Usually, if a LabTS test run does not score
3/3, it is relatively easy for the student to see what they need to do to make up the
remainder of the marks. We put a policy in place for the class that if a solution does
not score 3/3 on LabTS then a human marker does not need to look at it.

With this system in place, we cannot yet dispense with the human markers, but
they can give more nuanced feedback on issues of design, and should not have to
pick up on basic points about compilation, style, or test-coverage. Even the simple
application of checks on code layout and style mean that by the time a person looks
at the code, it is laid out in a way that is easy to read. This makes the most of the
marker’s time by allowing them to focus on more subtle design issues, and not to
waste time commenting on things that can be detected automatically. For our cohort
of 150 students, working in pairs, with a team of 5 or 6 markers, we can mark and
give feedback with about 2 hours of effort per marker per week, which allows us to
sustain weekly feedback throughout the course.

2https://gradle.org.

https://gradle.org


Applying Lean Learning to Software Engineering … 293

2.4 Summary

Changing the delivery format of this course from knowledge acquisition through
transmission in lectures, to a focus on skills development through apprenticeship and
practical exercises, togetherwith the developmental support of peer coaching through
pair-programming seems to have been a great success. To enable consistent progress
and feedback through weekly exercises we had to solve the problem of scaling our
feedback mechanisms, and have used automation techniques, as well as paring back
the exercises to really focus on the core message, to make this manageable. The
concrete nature of the exercises results in students feeling that their coding skills as
well as their design skills are improved by completing them. They also appreciate
getting weekly feedback on their work. The following comments from recent student
surveys are quite typical:

A well-structured and engaging course, which I could immediately benefit from as it helped
improve the quality of my code and Java knowledge.

I liked that I had to submit the tutorials every week, otherwise I would not have done them.

The weekly cycle of assessment and feedback now works really well. The small
batch size and short turnaround time means that students are motivated to do the
weekly assignments and this gets them to practice and to improve. Although we
have not been able to automate marking completely—this seems like a grand chal-
lenge—we have found that a team of five people can now complete the feedback for
the entire class in around 2 hours each week.

3 Project-Based Courses

Another key feature of Imperial’s Computing curriculum is team-based practical
projects. Team working is an essential component of any software engineering pro-
gramme and is a key skill that many employers look for when hiring graduates.
Modern software development methods focus on teamwork and collaboration for
the development of software, and we feel that the best way for students to learn
these is to experience them practically in project-based courses. Again, we aim to
focus on apprenticeship and developmental learning, allowing students to learn for
themselves and from each other through solving practical problems.

In our programme, students get experience of working in small groups from as
early as the first year, but we increase the structure and process around the manage-
ment of project work, alongwith the scale of the projects they tackle, as they progress
through their education. First-year projects are left fairly freeform, with small groups
and fairly short timelines, for the students to manage, however, they see fit. After
that, we begin to introduce more structure as their projects grow, to allow them to
experience something closer to an industrial development environment. Rather than
concentrating on transmitting them the relevant theory, we focus on creating a learn-



294 R. Chatley

ing experience where the structure in which projects are assessed naturally promotes
an agile way of working.

3.1 Second Year—Web Application Development Projects

By the end of their second year of study, computing students should have learned
the skills and knowledge needed to build a complete application. At the end of
the summer term (the end of the academic year), we give them the opportunity to
exercise these skills in a group project, and through this introduce some elements of
agile development methods (such as Scrum or XP). The aims of these second-year
group projects are to…

• explore user focussed design and development
• experience and practice an agile method in a small project
• apply software development tools and techniques
• develop team work

These projects are done in groups of four students, and run full-time over a period
of 4 weeks, which we structure as four 1-week iterations. Each project team develops
a web or mobile application of their own design to solve a problem that they have
identified. They make the product decisions; they do not have an external customer.
To emphasise an iterative approach we run the projects with the following structure:

• 1-week iterations, with groups required to demo their software every Friday.
• Demos are assessed in a lightweight way focussing on: product increment (have
they delivered anything thisweek?) and user research (have they gathered feedback
from their target users?).

Rather than marking the project entirely at the end, a proportion of the marks is
available each week, so that sustained, iterative progress is rewarded—a big bang
release at the end is not. We also want to steer the students towards quantitative
evaluation of their ownwork throughmeaningful experiments with users. The Friday
demos allow groups to demonstrate both their newly developed features and the
results of thatweek’s user trials in a short informalmeeting. Each group gets 5–10min
to meet with tutors in the computer lab and showcase their latest work. We do not
require a big final project report, just a few lightweight deliverables to document
the purpose of the application, the overall technical architecture, and the use of
appropriate development techniques.

The emphasis is on creativity, user experience, rapid iteration and vertical slicing
of development. We do not go into the details of any particular project management
practices or enforce that students must follow them. The weekly demos mean that
the teams must integrate their features to have a working system each week, so they
naturally follow a process of continuous integration and frequent release, without us
requiring those practices explicitly. Our experience shows that if we require a team to
demonstrate, for example, specific Scrum practices, then they tend to show them lip



Applying Lean Learning to Software Engineering … 295

service, and write a report telling us what they think we want to hear, without really
feeling the benefit of the practices in their projects (especially when projects are
relatively small scale, as university projects tend to be). Hence, we focus on regular
delivery of working software above all else.

These projects are a fun way to finish the year, allowing students to apply their
knowledge and build a product. They also serve as a warm-up for the larger projects
that they will undertake when they return in the third year.

3.2 Third Year—Software Engineering Group Projects

By their third year of study, computing students should be in the position where
they can use their skills to engineer a substantial software system. We want to give
them the opportunity to exercise and develop these skills in a relatively large group
project over the course of a fewmonths.Where the second-year projects have a small
team, a short timescale, and creative freedom to develop whatever they want, third-
year projects have bigger teams, a longer timescale, and a customer relationship to
manage. All of this naturally requires more conscious management, and so we can
support this by encouraging teams to follow agile methods more explicitly. The aims
of these projects are to…

• apply software engineering tools and techniques
• apply management techniques for software projects
• develop a complex system for and with a customer, with a particular user in mind
• improve team work

Projects are done in groups of 5–6, between October and January (see Fig. 5), to
a brief suggested by an academic supervisor (or in some cases an external company)
acting as a customer to set requirements and guide the product direction. Students
do not work on the project full-time, but alongside their lecture courses, including a
Software Engineering course designed to support the project work. Each group has a
different brief, but all are aiming to build a piece of software that solves a particular
problem or provides a certain service for their users. Recent examples include an
open-source implementation of Microsoft’s RoomAlive (Jones et al., 2014), systems
for estimating heart rate based on video or speech recordings, and verifying product
provenance using BlockChain technology.

The aims from an educational point of view are to build the students’ skills in
teamwork and collaboration and to put into practice software engineering techniques
that support this kind of development work.



296 R. Chatley

Fig. 5 Schedule for third-year Group Projects—project duration is 3 months. Figure © 2017 IEEE.
Reprinted, with permission, from proceedings of 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE)

Fig. 6 Perceived effort curve for students during Group Projects (in blue). Figure © 2017 IEEE.
Reprinted, with permission, from proceedings of 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE)

3.3 Sustainable Pace

We run these projects during the first term of the academic year when the students
have just returned from their summer vacation. Something we observed in previous
years was that students tended to leave the bulk of the work on their project to
later in the term, with a big effort spike as the deadline neared—not working at the
sustainable pace that we would hope to see in an agile project (see Fig. 6).

To encourage a more sustained pace of work, we introduced structured, time-
boxed iterations. In the second-year projects described previously, students com-
pleted four 1-week iterations, and now for third-year projects we expect them to run
their project as four 2-week iterations, through the autumn term, with a checkpoint
at the end of each iteration where they demo their progress to their supervisors.
More advanced teams could complete eight 1-week iterations if they prefer. In the
9th week, they should take a break for exams, and this then gives them the Christ-
mas vacation to polish any final features, write up their reports and prepare their



Applying Lean Learning to Software Engineering … 297

presentations which are given in January. The aims of the following structure and
deliverables are…

• to encourage students to do more work on the projects earlier in the term
• to encourage sustained, iterative progress on projects
• to encourage projects to ‘build a system that lets person X achieve Y’, rather than
research projects

• to remove any deliverables (such as reports, etc.) that do not directly add to the
project

We wanted to find ways to get the students to start earlier. To this end, we have
now phased out the lectures, and instead give them introductory talks introducing
the structure and goals of the project on the first Monday of the new term, have them
form groups on Tuesday, select projects on Wednesday and complete allocations of
projects to groups by the end of Thursday. Given the way that our timetable works,
this then gives them a couple of clear days to make plans and get started on the
project before their lecture courses start the following week. We then run the four
2-week iterations from weeks 2 to 9 of the term (Fig. 7).

In forming project groups, so far we have let students select their own teammates.
Although, as with pair-programming, there are suggestions that learning can be
improved by carefully selecting students of varying academic strength and mixing
them together in each group, we felt that overall, the experience of restructuring and
improving our projects would be smoother if we did not have students complaining
that they were not able to work with their friends. This is something that we might
revisit in future, but for themoment we plan to leave the groups as self-selecting—we
only constrain the team size. Before our focus on agile methods, we specified that
each team should appoint a team leader, but mandating this did not seem to fit well
with the collaborative nature of agile methods, so we have left it to teams to do as
they think best. If they choose to do Scrum, they should appoint a ScrumMaster, but
that is someone who is responsible for the execution of the Scrum process and as
such very different from a team leader who makes the decisions and allocates work.

Fig. 7 Lightweight end-of-iteration checkpoints every 2 weeks. Figure © 2017 IEEE. Reprinted,
with permission, from proceedings of 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE)



298 R. Chatley

3.4 Customer Relationships

The aim of these projects is to deliver a particular piece of software, rather than to
conduct an investigation in a research area. Particularly in the case of some academic
supervisors, we have had to steer them quite strongly to propose suitable projects.We
found that projects that were very investigative, or required a lot of up-front reading
of research papers, were generally not very compatible with our aims of delivery
working software early and often.

To help to gather appropriate project briefs, we provide a template for the potential
supervisors and customers to complete. The aim of using the template is to provide
some consistency across project proposals, to make sure that the students have all
the information they need in making their selection, and to make sure that project
proposals fit well with the learning objectives in agile software development. Our
project proposal template is as follows:

Please make sure that you have a particular piece of software in mind for the
students to build. Your proposal should specify the following:

The project title is…
General background… a brief description of the context and purpose—a couple

of paragraphs
The target user is… identify a particular user (or class of users)—be specific
The system should allow the user to achieve… be specific about the capability

that the application should provide—what can you do when it exists that I can’t do
now.

Any technical (or other) constraints… e.g. this must be an iPhone app; this
must run on a video wall; you must integrate this C++ library; you must collaborate
with this external company, etc.

3.5 Lecturing Versus Coaching

Having completed their second-year projects, students should already have experi-
ence of working in an iterative way for a small project. Now, having reduced the
transmission of Software Engineering materials through lectures, we just provide a
recap lecture during the first week of term, reminding them of the agile techniques
they used in their previous projects. Additional material givingmore detail about spe-
cific methods (Scrum, XP and Kanban) is provided online. We also provide online
material on continuous integration and delivery techniques, as well as case studies
of commercial implementations of agile methods at companies like Spotify who are
quite open (Kniberg, 2014) about the methods that they use.

Rather than giving further lectures, we now provide individual consulting time to
all groups by holding office hours. Groups can book slots to get specific advice on
any problems they are having, particularly around the areas of project management,
evaluation, or other software engineering matters relevant to their project. Making



Applying Lean Learning to Software Engineering … 299

these office hours optional meant that only the keen groups (often those not requiring
much help) took up the opportunity. In light of that, we nowmandate that each group
must arrange at least two consultations over the course of the project, one during
the first four weeks, and one during the second four weeks. The consultations are
30 min each, and we have around 30 groups, so this is 30 hours worth of work for
the tutor over an 8 week period. We ensure that the tutor running these consultations
is an experienced industry professional with experience of applying various agile
methods in many different software engineering contexts. This way we can give
high value, context-specific advice to each group, rather than advising them only
on the textbook principles of agile. This approach, following a more developmental
learning style, increases the relevance of the lessons taken away by each group
and—hopefully—allows them to apply the specific advice directly to their project.
Students can pull relevant theory as they encounter problems in their project work.

We do not mandate a set development process for the students to follow, but we
encourage teams to adopt practices that might be used by an industrial team of a
similar size carrying out a similar type of project. We suggest that they follow either
Extreme Programming, Scrum, or Kanban (not a mixture)—and back this up with
engineering practices such as continuous integration, automated testing and staged
deployments. While these practices may not manifest themselves in exactly the same
way between different teams, depending on the exact nature of their project, each
team should be able to adopt and benefit from most of these in some guise. Again,
individual coaching can help teams to adopt appropriate tools and techniques for
their specific context.

3.6 Checkpoints

As previously explained, we structure these projects as four 2-week iterations. At the
end of each iteration project, teams must meet with their supervisor/customer and
give them a demonstration of the current state of their software. They should be able
to show that they have made progress, and that their software has more (or better)
features than it did at the last demo.

To structure these meetings, and to provide some consistency across groups and
supervisors, we provide a simple checklist. We want to keep the assessment process
lightweight for all parties, so we want to avoid writing and reading detailed reports.
The checkpoint forms are quick to complete and quick to check. We provide each
team with a 1-page PDF form, which they take with them when they demonstrate
their product, and they ask the customer to complete and sign it. The team then
scans the signed sheet and submits it as a piece of coursework. We also ask them to
submit a set of three screenshots showing the current state of the digital tools they
are using to manage three aspects of their project—their version control repository,
their continuous integration build, and their project plan. Again, the idea is to have
a deliverable that is quick to produce, and quick to check. The checkpoint form has
the following questions for the customer to answer:



300 R. Chatley

I certify that in this iteration I feel the group has… (check one):

• not been able to demonstrate any new working software
• shown me something working, but a bit less than I had hoped for, or not what we
agreed

• adequately delivered the features that we agreed on
• made better progress than I expected
• made amazing progress with wonderful results

Has the list of risks to project success changed since you last met the group? What
are the two main features agreed to be delivered for the next checkpoint?

Customer Signature/Date

Previously we just had binary checkpoints—either the customer was satisfied or
they were not—but we have found that giving a way for customers to express their
satisfaction on a scale has led to a more meaningful interaction, as well as more
motivation on behalf of the teams to try to please their customers. This system of
end-of-iteration checkpoints seems to be working well as a way to produce a more
sustained pace of development across the term, rather than a big bang before the
deadline, and also provides the benefits of agile development to the customer as
they have more opportunities to see the product running, and steer future feature
development so that they end up with something that meets their needs.

3.7 Summary

Ourmain learning in restructuring our project-based courses in Software Engineering
was to focus on the regular delivery of working software.Whatever types of technical
practice or project management technique we might encourage the students to adopt,
they need to feel the benefits of those in helping them to deliver reliable software
that meets their customer’s needs, without working to a crazy schedule. As we want
to foster creativity, and believe that students are more motivated when they get to
choose from a wide range of projects, we need to provide support and tutoring that
is specific to each team. Following a coaching model allows us to provide relevant,
specific, help and advice to each team, at the point that they need it. This seems to be
much more effective than more generalised transmission through lectures, especially
given the varying needs of the different teams.

By coming up with an overall iteration structure, and a lightweight way of assess-
ment through end-of-iteration checklists, it is possible for us to have a degree of
consistency across the class, while still allowing different teams to work in quite dif-
ferent ways.We also found that this outline structure helps students to plan their work
across the term, rather than leaving everything until just before the final deadline.



Applying Lean Learning to Software Engineering … 301

4 Future Directions

The methods described in this chapter are working well for us in these Software
Engineering modules. But our Computing curriculum comprises many more mod-
ules besides these—modules on basic programming, compilers, operating systems,
databases, logic, mathematics, etc. It is tempting to try to spread our agile and lean
approaches to more modules, but we suspect there will be friction. Just as when
introducing agile methods to software development organisations, change is hard.
Lecturers running traditional lecture courses may be reluctant to increase the fre-
quency of practical exercises, especially if that means more frequent assessment.
The path of least resistance may be to stay with the status quo, but we believe that in
transforming the modules described here we have increased their educational value,
and hope that we can gradually spread this across our curriculum. Perhaps it is nat-
ural that instructors with experience of agile methods are the most keen to introduce
them to their teaching, but we hope some enthusiastic colleagues will try to apply
similar techniques in their classes too.

Another question is whether we can scale to larger class sizes. Lean methods
allow us to improve efficiency and aim to make contact time between students and
teachers more valuable. However, the close collaboration and frequent feedback we
have implemented in our new structures do not relieve staff time. If we increased
class sizes then we would still need more markers, more tutors, more coaches and
more customers. Automation helps to remove some trivial tasks and to streamline
some of the others, but so far we cannot see a way to remove the human element,
and neither are we sure that we would want to.

In fact, the role of the instructor becomes critical. As agile implies high-contact
collaboration, working closely together exposes problems and uncovers any lack
of experience on behalf of the teacher. When coaching a project team, textbook
knowledge is not enough, we need specialists with real experience of running agile
projects in the wild. Removing waste from the learning experience has made the
need for expert tuition the bottleneck in our system, which rather than a problem, is
perhaps to be seen as a sign of success.

Acknowledgements We would like to acknowledge colleagues and students at Imperial College
London for their contributions to the evolution of our curriculum.

References

Anderson, D. (2010). Kanban: Successful evolutionary change for your technology business. Blue
Hole Press.

Anslow, C., & Maurer, F. (2015). An experience report at teaching a group based agile software
development project course. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (pp. 500–505).

Duvall, P., Matyas, S. M., & Glover, A. (2007). Continuous integration: Improving software quality
and reducing risk. Addison Wesley.



302 R. Chatley

Fowler, M. (2011, July). Frequency reduces difficulty [online]. Retrieved from http://martinfowler.
com/bliki/FrequencyReducesDifficulty.html.

Gamma, E., Helm, R., Johnson, R., & Glissades, J. (1995). Design patterns: Elements of reusable
object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for
everyone. Morgan & Claypool Publishers.

Jones, B., Sodhi, R., Murdock,M., Mehra, R., Benko, H.,Wilson, A., & Shapira, L. (2014). Rooma-
live: Magical experiences enabled by scalable, adaptive projector-camera units. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and Technology (pp. 637–644).
New York, NY, USA: ACM. https://doi.org/10.1145/2642918.2647383.

Kniberg, H. (2014, March). Spotify engineering culture [online]. Retrieved from https://labs.spotif
y.com/2014/03/27/spotify-engineering-culture-part-1/.

Kropp, M., &Meier, A. (2014). New sustainable teaching approaches in software engineering edu-
cation. In 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 1019–1022).

Ottinger, T. (2015). Over-starting and under-finishing [online]. Retrieved October 4, 2016, from
https://www.industriallogic.com/blog/over-starting-and-under-finishing/.

Papatheocharous, E., & Andreou, A. S. (2014). Empirical evidence and state of practice of software
agile teams. Journal of Software: Evolution and Process, 26(9), 855–866. https://doi.org/10.100
2/smr.1664.

Rother, M., Shook, J., & Institute, L. E. (2003). Learning to see: Value streammapping to add value
and eliminate muda. Productivity Press.

Williams, L., & Upchurch, R. L. (2001). In support of student pair-programming. In Proceedings of
the Thirty-Second SIGCSE Technical Symposium on Computer Science Education (pp. 327–331).
New York, NY, USA: ACM. https://doi.org/10.1145/364447.364614.

http://martinfowler.com/bliki/FrequencyReducesDifficulty.html
https://doi.org/10.1145/2642918.2647383
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://www.industriallogic.com/blog/over-starting-and-under-finishing/
https://doi.org/10.1002/smr.1664
https://doi.org/10.1145/364447.364614

	Applying Lean Learning to Software Engineering Education
	1 Introduction
	1.1 Perspectives on Teaching
	1.2 The Rest of This Chapter

	2 Lecture Courses
	2.1 Reducing Cycle Time
	2.2 Peer Coaching
	2.3 Automation
	2.4 Summary

	3 Project-Based Courses
	3.1 Second Year—Web Application Development Projects
	3.2 Third Year—Software Engineering Group Projects
	3.3 Sustainable Pace
	3.4 Customer Relationships
	3.5 Lecturing Versus Coaching
	3.6 Checkpoints
	3.7 Summary

	4 Future Directions
	References




