
David Parsons · Kathryn MacCallum   
Editors

Agile and Lean 
Concepts for 
Teaching and 
Learning
Bringing Methodologies from Industry 
to the Classroom



Agile and Lean Concepts for Teaching and Learning



David Parsons • Kathryn MacCallum
Editors

Agile and Lean Concepts
for Teaching and Learning
Bringing Methodologies from Industry
to the Classroom

123



Editors
David Parsons
The Mind Lab by Unitec
Auckland, New Zealand

Kathryn MacCallum
Eastern Institute of Technology
Napier, New Zealand

ISBN 978-981-13-2750-6 ISBN 978-981-13-2751-3 (eBook)
https://doi.org/10.1007/978-981-13-2751-3

Library of Congress Control Number: 2018955924

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-2751-3


Foreword

The education sector has long had a learning problem. By that I mean it has often
been slow to learn from ideas and processes that are adding real value in other
sectors. Over the last few decades, lean and agile approaches have moved from the
margins to the mainstream. The values, practices and techniques (and their hybrids)
associated with these broad approaches have been adopted and adapted across
many settings beyond where they were originally developed. Other than in
education.

Parsons and MacCallum have done a great service to the education field by
bringing together the emerging global thinkers and practitioner pioneers, who are
translating and adapting agile and lean approaches to solve a broad range of
important challenges in the education sector. Each of the chapters outlines exper-
iments—both conceptual and practical—that offer rich learning for educators
interested in how to achieve greater impact through the adoption of new values,
beliefs, processes and techniques. This volume holds great promise in accelerating
learning and further experimentation in the field in order to have a greater impact on
outcomes for students.

As a former high school teacher and education academic, I was drawn to agile
through sheer frustration. Continuous improvement efforts in education have a long
history of being remarkably ineffective. I could see educational leaders and teachers
being buried in thick, unrealistic improvement plans, never-ending lists of objec-
tives and a myriad of milestones to be hit. Too often the improvement principles,
processes and tools provided to educators were utterly disconnected from the real,
messy and iterative teamwork needed to see lifts in teaching and learning outcomes.
It became clear to me that new gains could emerge by providing educator teams
with a better how rather than another what.

In 2012, I was fortunate in my work to be moving back and forth between
education and the technology sector. I was eager to study how leaders and teams
outside of education worked to solve complex problems in conditions of uncer-
tainty. I studied innovation and improvement approaches from the health sector,
leading technology companies in Silicon Valley, start-up entrepreneurs and design

v



organisations to understand the principles and methodologies they used to solve
problems, create new solutions and drive continuous improvement.

As I met with and interviewed practitioners beyond education, I realised their team
outcomes were often the result of shared values and repeatable processes. Agile and
lean approaches seemed particularly relevant to the education sector. Teachers and
students were often working collaboratively to solve problems, yet they struggled with:
complexity and overwhelm; sustaining motivation over time; and the need to find
approaches for effective collaboration and communication. I could see that ‘agile’ as an
approach thrived when the problems were ambiguous or the situation was complex, and
dealt with uncertainty by moving through rapid cycles of disciplined experimentation
and continuous iteration and learning, rather than seeking to perfectly plan and then
implement their way to success. A perfect match for educational contexts.

Brilliant educators around the world, many of whom I have been privileged to
work with, have already been doing things that looked like the ‘agile’ and ‘lean’
processes I saw outside of education. The only difference was that they were doing
them intuitively, without the consistency and discipline that comes from a clear,
explicit and shared mindset, values and methodology. These educators were doing
amazing things in their educational settings, but they often couldn’t put a name to
how they were doing it, or share it as a process that their teams or students could
easily repeat. I saw opportunities to make the work of teaching and educational
change easier and more effective by adapting these ‘agile’ and ‘lean’ approaches to
the specific challenge of improving student outcomes.

I launched www.agileschools.com in January 2014 as a platform to share our
methodologies and build the capabilities of educator teams to improve student
learning. In partnership with teachers, we developed a process called Learning
Sprints. Rather than seeking rapid large-scale system or massive organisational
shifts, we are learning a simple yet powerful approach to creating an engine for
educational improvement: fast-moving educator teams, working collaboratively on
tough challenges, designing and testing solutions in context, and organically
spreading and evolving practices to amplify impact.

As the chapters of this groundbreaking text show, innovative educators are
applying agile and lean to a broad range of ‘sticky’ challenges in education and
achieving promising results. I am increasingly convinced that educators and stu-
dents can have a huge impact, even within the constraints of the established
organisations and systems in which they do their work. It is time to empower
educators and their students to start small, move fast and fail well, as they co-create
brighter learning futures.

Towards better learning.

Sydney, Australia
July 2018

Dr. Simon Breakspear
Visiting Fellow, University of New South Wales

Founder, Agile Schools

vi Foreword

http://www.agileschools.com


Preface

Introduction: The Motivation for This Book

As researchers and practitioners in both technology and education, we were
motivated to put together this edited book by an interest in the potential links
between innovative ideas developed in the software and manufacturing industries
and opportunities for new thinking around the delivery of teaching and learning.
We were aware that there was an increasing interest worldwide in how agile
methods, developed in the software industry in the late 1990s, could be applied in
all areas of education. Similarly, we have seen that lean thinking, developed from
lean manufacturing in the Japanese car industry after the Second World War, has
also become a major area of interest to educators. Since both agile and lean con-
cepts have increasingly been integrated together in software development, it seemed
appropriate to us to seek to draw together work from those who have been applying
agile and/or lean techniques to educational practice.

It is evident that researchers and practitioners around the world have increasingly
been exploring how agile and lean techniques might be used in educational
contexts. For example, there is an established Lean Educator conference series,
initially run in the U.S. and, more recently, in Europe, along with conferences for
Lean in Higher Education, and there are many examples of lean thinking being
applied in schools, while organisations such as Agile Schools and scrum@school
have been promoting agile methods for teaching and learning. Other practitioners
who are sharing ideas in this field include Scrum in School, and the group
agileineducation.org. These are just some examples of the many ways that educators
have been embracing agile and lean ideas.

Despite this wealth of research and practice, we became aware that there was no
existing publication providing a single point of reference for these ideas, particu-
larly one that covered both agile and lean concepts which, although closely related
together in the software industry, are less commonly linked in the educational
context. Although a number of books and articles have been published in the area of
lean thinking for education, much of this work has been applied at the management

vii

http://www.agileineducation.org


level rather than focusing on teaching and learning. Further, some relevant con-
ference outputs have unfortunately been poorly curated and some interesting con-
tributions have therefore received less visibility than they deserved. For example,
the proceedings of the early Lean Educator conferences in the U.S. are no longer
available online. While much work has been published on the use of agile
approaches to teach various aspects of software development, there is a relative lack
of academic literature looking at how agile concepts can be applied more broadly in
the classroom, despite the extensive work being undertaken by practitioners. We
hope that publication of this book will increase recognition of the work that has
already been done in this area of research and practice and, more importantly,
inspire new and innovative applications of lean and agile concepts in education.
Our own experience is that these ideas resonate strongly with educators, and there
are many who would be interested in learning more about how to translate these
innovations into the classroom. We hope that this book will inspire greater
awareness of, and interest in, agile education and lean learning.

The Selection Process

When we originally put out the call for proposals for this publication in early 2017,
we were unsure what the level of response would be. In the event we were delighted
at the number and breadth of abstracts that were submitted. After an initial review
process, we invited selected authors to submit full chapters, which went through
double-blind peer review, followed by an editorial review. From this rigorous
selection process, 19 chapters have been chosen for publication. The international
nature of our authors confirms that the idea of applying agile and/or lean concepts
to education has a truly worldwide reach. Chapters have been contributed by
authors from Australia, Denmark, Finland, Germany, Israel, Italy, Mauritius,
Mexico, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the U.K.
and the U.S. These international contributors have helped us to provide a rich
collection of global expertise for how agile and lean ideas can be applied in
teaching and learning at all levels of education.

Book Structure

We have organised the chapters in this book into a number of sections, beginning
with chapters that provide various overviews of agile and lean approaches to
education. We then include chapters that look at agile methods in the school
classroom, followed by a section of chapters that address ways of reconceptualising
learning environments using agile and lean approaches. The next section covers

viii Preface



agile and lean learning processes, and is followed by a section on using agile and
lean methods to teach software development. We conclude with several chapters
that report on agile and lean activities and games for the classroom.

Part I: Agile and Lean Concepts in Education

The book opens with a section of overviews of agile and lean concepts in education,
beginning with the chapter “Agile Education, Lean Learning”, written by the edi-
tors, which is intended to provide an introduction to agile and lean education as it
has been explored so far in the literature. This chapter provides a broad and brief
introduction to many aspects of this area and includes a summary diagram that
draws together the major themes in the literature under the categories of values,
principles and processes.

The second chapter is “Agile Methodologies in Education: A Review” by
Filomena Ferrucci and Paolo Musmarra of the University of Salerno, Italy, and
Pasquale Salza of USI Università della Svizzera italiana, Lugano, Switzerland. Like
“Agile Education, Lean Learning”, this provides an overview of the literature, but
in this case the focus is specifically on agile methods. The chapter includes details
of the main characteristics of agile methods, focusing on two methods in particular
(XP and Scrum), and looks at how these have been used in education. This chapter
will be particularly informative for readers who are not already familiar with the
details of the main agile methods.

The next chapter in this opening part is “Practices of Agile Educational
Environments: Analysis from the Perspective of the Public, Private, and Third
Sectors”, by Orit Hazzan (Technion—Israel Institute of Technology, Haifa, Israel)
and Yael Dubinsky (Ness, Tel Aviv, Israel). The chapter provides an overview of
agile principles in three different educational settings: academia, industry and the
public sector. The authors build on their previous work in this area using two
frameworks to explore the various ways that agile can go beyond conventional
(formal or informal) educational systems to be applied to learning in other sectors
and organisations.

The first part closes with “Kaizen and Education” by Peet Wiid of Kaizen
Institute New Zealand. This chapter makes a distinction between the typical
interpretations of Lean used in the western world and the concept and origins of
kaizen. It provides an extensive overview of what kaizen means in practice and how
it can be applied to education. While the five lean principles focus only on process,
a kaizen culture in contrast is based on a broader set of seven principles: create
customer value, eliminate waste, engage people, go to gemba, manage visually,
process and results, and pull and flow. Such a kaizen culture can enable continuous
improvement efforts in education.

Preface ix



Part II: Agile Methods in the School Classroom

Part II of the book looks at agile methods in the school classroom, with three
chapters that describe how schools in various countries have been implementing an
agile approach. The first chapter in this part is “Transforming Education with
eduScrum” by Willy Wijnands (Ashram College and eduScrum, Netherlands) and
Alisa Stolze (eduScrum, Germany). In this chapter, the originator of eduScrum
explains the motivation for creating this approach to classroom learning, outlines its
core practices, processes and artefacts, and includes an external perspective on how
eduScrum works based on a series of conversations with students, as well as two
experience reports from students who have experienced eduScrum in practice.

In a similar vein, the chapter “Getting Agile at School” by Paul Magnuson,
William Tihen, Nicola Cosgrove and Daniel Patton of the Leysin American School
in Switzerland, explains how they began experimenting with Scrum as a way to
structure self-regulated learning. They go on to describe how they use lean and
agile techniques such as Kanban boards, sprints, burndown charts and retrospec-
tives in class. Teaching and learning is based on action research cycles of planning,
doing, reflecting and re-doing, built around ten practices of an agile mindset. The
overall approach is to make small adjustments to multiple practices. The key
message is that incremental change, shared by many, can be a powerful tool to
create effective learning.

The third and final chapter that reports on the agile school classroom is
“Bringing the Benefits of Agile Techniques Inside the Classroom: A Practical
Guide” by Ilenia Fronza, Nabil El Ioini and Claus Pahl of the Free University of
Bozen-Bolzano, Italy, and Luis Corral of Monterrey Institute of Technology and
Higher Education, Queretaro, Mexico. Later in the book, there are several chapters
that explore the use of agile and lean techniques to teach software development at
the higher levels of education. In contrast, this chapter looks at ways in which
software development can be taught to younger school students and examines how
various agile techniques such as user stories and pair programming can help school
students to become effective ‘end-user programmers’, learning both to write code
and to understand software engineering concepts and practices.

Part III: Reconceptualising Learning Environments Using Agile
and Lean Approaches

The next part looks at how we might use agile and lean approaches to reconcep-
tualise how we approach and manage learning environments. The chapters in this
part explore different ways in which agile and lean thinking can help us to redesign
significant aspects of the education process. In the chapter “Lean and Agile Higher
Education: Death to Grades, Courses, and Degree Programs?”, Guttorm Sindre
of the Norwegian University of Science and Technology discusses how lean and

x Preface



agile education might be radically different from plan-based education. This chapter
suggests that information technology could support a fine-grained matching of
student learning outcomes with competencies needed by employers, and could
enable agile study choices by the students themselves. One advantage of such an
agile and lean approach to higher education provision would be that it would be
better able to respond to the speed of technological progress.

The second chapter in this part is “Leveraging Agile Methodology to Transform
a University Learning and Teaching Unit” by Madelaine-Marie Judd and Heidi
Christina Blair of Griffith University, Australia. This chapter presents a case study
of an Australian Learning and Teaching Unit in which an agile approach was used
to improve quality across the institution. Recommendations and strategies for
heightening buy-in and active staff engagement are provided, along with ways of
giving clear and transparent communication to ensure widespread adoption. The
agile approach led to unexpected gains in confidence and self-efficacy in the
stakeholders. The authors also provide recommendations that may apply to a range
of other industries and sectors.

This part concludes with the chapter “Lean and Agile Assessment Workflows”
by Michael Striewe from the University of Duisburg-Essen, Germany. Assessment
is a core component of education and is frequently the one that is least likely to
embrace change. This chapter discusses a structured approach to assessment
planning and organisation that is inspired by Kanban-style notations. Based on
breaking down assessments into their essential elements and phases, it is a more
agile approach to planning than traditional workflow and process models. The
extensive analysis of all stages of the assessment process provides a model that
maps the value stream clearly and assists in adaptation.

Part IV: Agile and Lean Learning Processes

The next part includes chapters that look at agile and lean learning processes,
specifically, agile goal setting, reflective practice and themanagement of risk. Thefirst
of these chapters is “Criterion-Based Grading, Agile Goal Setting, and Course
(Un)Completion Strategies” by Essi Isohanni and Pietari Heino from Tampere
University of Technology, Finland, and Petri Ihantola, and Tommi Mikkonen from
the University of Helsinki, Finland. This chapter looks at agile ways of personalising
the learning experience for large groups of students with heterogeneous backgrounds
and different learning goals. The authors describe how each student sets a personal
target grade and decides how much effort they are willing to invest in the course
depending on their individual needs. To enable such a setup, course assignments are
divided into different levels and the grading directs the students in choosing which
assignments to work on to meet the goals they have set themselves. Furthermore, the
students can change their target grade during the course in an agile manner.

The next chapter in this part is “Teaching and Fostering Reflection in Software
Engineering Project Courses” by Håkan Burden (RISE Viktoria

Preface xi



and Chalmers/University of Gothenburg, Sweden) and Jan-Philipp Steghöfer
(Chalmers/University of Gothenburg, Sweden). Agile processes such as sprint
retrospectives in Scrum or learning feedback loops in XP make extensive use of
reflection. Engineering education also emphasises the importance of reflective
practice, e.g. in Kolb’s learning cycle and Schön’s reflection-in/on-action. This
chapter provides a toolkit for reflective practice for students to reflect on the
application of a software process and also to reflect on their learning process.
A cognitive apprenticeship approach is used, with both teachers and students going
through reflective processes with the aim of continuous improvement.

The last chapter in this part is “Lean Learning of Risks in Students’ Agile Teams”
by Chaitra Thota, Wentao Wang, Xiaoyu Jin, Nan Niu and Carla C. Purdy of the
University of Cincinnati, USA. The chapter addresses the idea that risk is an
essential part of software development and explores how students in agile software
teams perceive, prioritise and mitigate risk over multiple development cycles.
Reporting on a study of undergraduate students in agile teams, the authors show that
the students’ risk management strategies were both collaborative and lean. For
example, they used social media features like collaborative bookmarking and tutorial
co-creation to address technology-centric risks and reduced wasted effort on
non-actionable risks. The chapter describes how linking collaboration and waste
elimination provided additional insights into teaching a wider range of lean prin-
ciples in agile settings.

Part V: Using Agile and Lean Methods to Teach Software
Development

As indicated in the opening chapters of this book, the most common way in which
agile and lean concepts have been applied in education has been to teach these
concepts to students who are learning to develop software. Therefore, it is no
surprise that some chapters of this type have been included in this book, in this part
on using agile and lean methods to teach software development. The first of these is
the chapter “Applying Lean Learning to Software Engineering Education” by
Robert Chatley of Imperial College London, UK. This chapter describes the
teaching of lean and agile techniques in a software engineering programme that is
centred on the tools, techniques and issues that feature in the everyday life of a
professional software developer working in a modern team. The author notes that
aligning teaching methods with the principles of lean software delivery sustains
high-quality learning experiences. A modified lecture-based course with tight
feedback loops is compared with a project-based course where students put agile
methods into practice themselves, working in teams to build a substantial software
system over a number of months.

The second chapter in this part is “Developing a Spiral Curriculum for Teaching
Agile at the National Software Academy” by James Osborne, Carl Jones and

xii Preface



Wendy Ivins from Cardiff University, UK. This chapter provides an experience
report from the National Software Academy (NSA), a centre of excellence for
Applied Software Engineering that works in partnership with the Welsh
Government and industry leaders. The authors describe their innovative,
industry-focused qualifications which use agile methods to facilitate project-based
learning using projects provided by industry partners. The chapter outlines how a
spiral curriculum has been developed for teaching agile methods that progressively
introduces complexity whilst building on previous learning.

The third and final chapter in this part is “Agile Approaches for Teaching and
Learning Software Architecture Design Processes and Methods” by Muhammad
Aufeef Chauhan (Netcompany A/S, Copenhagen, Denmark) Christian W. Probst
from Unitec Institute of Technology, New Zealand and M. Ali Babar, University of
Adelaide, Australia. In this chapter, the authors provide agile teaching and learning
approaches for software architecture analysis, design and evaluation. The chapter
identifies key characteristics of agile software architecture processes and the roles of
agile teams in software architecture. Case studies are presented from agile teaching
and learning approaches over 2 years of software architecture courses, specifically
focusing on learning activities that can support lean education and collaboration
among the students and course instructors.

Part VI: Agile and Lean Activities and Games for the Classroom

The final part of the book comprises three chapters that look at agile and lean
activities and games for the classroom. The first of these is “A Practical Approach
to Teaching Agile Methodologies and Principles at Tertiary Level Using Student-
Centred Activities by Visham Hurbungs and Soulakshmee Devi Nagowah of the
University of Mauritius. The chapter describes how university students can be made
familiar with agile practices currently used by the software industry using game-like
active learning. In this chapter, the main focus is how team-based activities and
student-centred group work have helped university students learn, understand and
apply agile concepts such as Scrum, user stories, Extreme Programming (XP),
Lean, Kanban and Test-Driven Development (TDD) through a series of learning
games.

Another chapter that has a similar focus is “Using Agile Games to Invigorate
Agile and Lean Software Development Learning in Classrooms” by Rashina Hoda
of the University of Auckland, New Zealand. The chapter reports on the use of four
agile games for learning fundamental agile and lean concepts such as iterative and
incremental delivery, collaborative estimation, pair programming and
work-in-progress limits. The author explains how agile games can support effective
learning, learner engagement and team building, while warning that effective
facilitation and debriefing sessions are essential to the success of using these games
in the classroom.

Preface xiii



The final chapter in the book is “Red-Green-Go! A Self-Organising Game for
Teaching Test-Driven Development” by Suzanne M. Embury, Martin Borizanov
and Caroline Jay from the University of Manchester, UK. Unlike the two previous
chapters, this one does not explore the application of pre-written games. Rather, it
describes the development of a new game-like classroom activity called
Red-Green-Go!, a board game for learning Test-Driven Development (TDD) that
allows students to tailor the learning experience to suit their own level of experience
and skill. The game makes use of self-organising teams, big visible charts, frequent
feedback and reflection to create a self-paced teaching activity. It guides pairs of
students through the TDD cycle, as well as introducing students to different
pair-coding styles.

We hope that you will find this book a valuable source of ideas about how agile
and lean concepts can be applied to teaching and learning. Successfully bringing
methodologies from industry to the classroom is a challenge for educators, since it
requires a deep understanding of which aspects of these methods can provide value
to the learner largely unchanged, and which may need to be extensively reinter-
preted to ensure that they work within the classroom context. There is no doubt that
many educators have found agile and lean thinking a powerful new way to
approach their profession practice, and we are pleased to have been able to capture
some of their wisdom in this book. We very much hope that this publication will
inspire other researchers and practitioners to embrace change and further develop
this innovative and powerful new approach to teaching and learning.

Auckland, New Zealand David Parsons
Napier, New Zealand Kathryn MacCallum

xiv Preface



Acknowledgements

The editors would like to acknowledge the support and encouragement of
Nick Melchior, Executive Editor (Education) at Springer. Nick originally approa-
ched us in October 2016 at the 15th World Conference on Mobile and Contextual
Learning, Sydney, Australia, where we first pitched the idea of an edited book on
agile and lean concepts in education. We were very pleased that Nick readily took
our proposal on board and has helped us through all the stages of bringing this book
from concept to publication.

International Review Board

Ensuring the quality of a volume such as this relies heavily on having a credible and
committed international review board. The editors would like to acknowledge the
following members of the board who gave their time and expertise to the
double-blind peer-review process.

Vernon Bachor
Heidi Blair
Sofia Sousa Brito
Håkan Burden
Robert Chatley
Aufeef Chauhan
Dawit Demissie
Melinda Dixon
Andreas Drechsler
Suzanne M. Embury
Ilenia Fronza
Tim Gander
Orit Hazzan
Rashina Hoda

xv



Visham Hurbungs
Wendy Ivins
Mary Jacob
Carl Jones
Madelaine-Marie Judd
Tanya Linden
Lucie Lindsay
Deborah J. McCraw
Paul Magnuson
Vic Matta
Tommi Mikkonen
Soulakshmee D. Nagowah
Nan Niu
James Osborne
Samiaji Sarosa
Jason Sharp
Guttorm Sindre
Jan-Philipp Steghöfer
Michael Striewe
Allan Sylvester
Bill Tihen
John Woollard

xvi Acknowledgements



Contents

Part I Agile and Lean Concepts in Education

Agile Education, Lean Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
David Parsons and Kathryn MacCallum

Agile Methodologies in Education: A Review . . . . . . . . . . . . . . . . . . . . . 25
Pasquale Salza, Paolo Musmarra and Filomena Ferrucci

Practices of Agile Educational Environments: Analysis
from the Perspective of the Public, Private, and Third Sectors . . . . . . . 47
Orit Hazzan and Yael Dubinsky

Kaizen and Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Peet Wiid

Part II Agile Methods in the School Classroom

Transforming Education with eduScrum . . . . . . . . . . . . . . . . . . . . . . . . 95
Willy Wijnands and Alisa Stolze

Getting Agile at School . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Paul Magnuson, William Tihen, Nicola Cosgrove and Daniel Patton

Bringing the Benefits of Agile Techniques Inside the Classroom:
A Practical Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Ilenia Fronza, Nabil El Ioini, Claus Pahl and Luis Corral

Part III Reconceptualising Learning Environments Using Agile and
Lean Approaches

Lean and Agile Higher Education: Death to Grades, Courses,
and Degree Programs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Guttorm Sindre

xvii



Leveraging Agile Methodology to Transform a University Learning
and Teaching Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Madelaine-Marie Judd and Heidi Christina Blair

Lean and Agile Assessment Workflows . . . . . . . . . . . . . . . . . . . . . . . . . 187
Michael Striewe

Part IV Agile and Lean Learning Processes

Criterion-Based Grading, Agile Goal Setting, and Course
(Un)Completion Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Petri Ihantola, Essi Isohanni, Pietari Heino and Tommi Mikkonen

Teaching and Fostering Reflection in Software Engineering Project
Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Håkan Burden and Jan-Philipp Steghöfer

Lean Learning of Risks in Students’ Agile Teams . . . . . . . . . . . . . . . . . 263
Wentao Wang, Chaitra Thota, Xiaoyu Jin, Nan Niu and Carla C. Purdy

Part V Using Agile and Lean Methods to Teach Software
Development

Applying Lean Learning to Software Engineering Education . . . . . . . . 285
Robert Chatley

Developing a Spiral Curriculum for Teaching Agile at the National
Software Academy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
James Osborne, Wendy Ivins and Carl Jones

Agile Approaches for Teaching and Learning Software Architecture
Design Processes and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Muhammad Aufeef Chauhan, Christian W. Probst
and Muhammad Ali Babar

Part VI Agile and Lean Activities and Games for the Classroom

A Practical Approach to Teaching Agile Methodologies
and Principles at Tertiary Level Using Student-Centred Activities . . . . . 355
Visham Hurbungs and Soulakshmee Devi Nagowah

Using Agile Games to Invigorate Agile and Lean Software
Development Learning in Classrooms . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Rashina Hoda

Red-Green-Go! A Self-Organising Game for Teaching Test-Driven
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Suzanne M. Embury, Martin Borizanov and Caroline Jay

xviii Contents



Contributors

Heidi Christina Blair Griffith University, Brisbane, Australia

Martin Borizanov School of Computer Science, The University of Manchester,
Manchester, UK

Håkan Burden RISE Viktoria, Gothenburg, Sweden; Chalmers | University of
Gothenburg, Gothenburg, Sweden

Robert Chatley Department of Computing, Imperial College London, London,
UK

Muhammad Ali Babar The University of Adelaide, Adelaide, Australia

Muhammad Aufeef Chauhan Netcompany A/S, Copenhagen, Denmark

Luis Corral Monterrey Institute of Technology and Higher Education, Queretaro,
Mexico

Nicola Cosgrove Leysin American School, Leysin, Switzerland

Yael Dubinsky Ness Israel, Tel Aviv, Israel

Nabil El Ioini Free University of Bozen-Bolzano, Bolzano, Italy

Suzanne M. Embury School of Computer Science, The University of
Manchester, Manchester, UK

Filomena Ferrucci University of Salerno, Fisciano, Italy

Ilenia Fronza Free University of Bozen-Bolzano, Bolzano, Italy

Orit Hazzan Technion – Israel Institute of Technology, Haifa, Israel

Pietari Heino Tampere University of Technology, Tampere, Finland

Rashina Hoda SEPTA Research, Department of Electrical and Computer
Engineering, The University of Auckland, Auckland, New Zealand

xix



Visham Hurbungs Department of Software and Information Systems, Faculty of
Information, Communication & Digital Technologies, University of Mauritius,
Reduit, Mauritius

Petri Ihantola University of Helsinki, Helsinki, Finland

Essi Isohanni Tampere University of Technology, Tampere, Finland

Wendy Ivins Cardiff University, Cardiff, UK

Caroline Jay School of Computer Science, The University of Manchester,
Manchester, UK

Xiaoyu Jin Department of EECS, University of Cincinnati, Cincinnati, OH, USA

Carl Jones Cardiff University, Cardiff, UK

Madelaine-Marie Judd The University of Queensland, Brisbane, Australia

Kathryn MacCallum Eastern Institute of Technology, Napier, New Zealand

Paul Magnuson Leysin American School, Leysin, Switzerland

Tommi Mikkonen University of Helsinki, Helsinki, Finland

Paolo Musmarra University of Salerno, Fisciano, Italy

Soulakshmee Devi Nagowah Department of Software and Information Systems,
Faculty of Information, Communication & Digital Technologies, University of
Mauritius, Reduit, Mauritius

Nan Niu Department of EECS, University of Cincinnati, Cincinnati, OH, USA

James Osborne Cardiff University, Cardiff, UK

Claus Pahl Free University of Bozen-Bolzano, Bolzano, Italy

David Parsons The Mind Lab by Unitec, Auckland, New Zealand

Daniel Patton Leysin American School, Leysin, Switzerland

Christian W. Probst Unitec Institute of Technology, Auckland, New Zealand

Carla C. Purdy Department of EECS, University of Cincinnati, Cincinnati, OH,
USA

Pasquale Salza USI Università della Svizzera italiana, Lugano, Switzerland

Guttorm Sindre Department of Computer Science, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway

Jan-PhilippSteghöfer Chalmers | University of Gothenburg, Gothenburg, Sweden

Alisa Stolze eduScrum, Berlin, Germany

Michael Striewe University of Duisburg-Essen, Essen, Germany

xx Contributors



Chaitra Thota Department of EECS, University of Cincinnati, Cincinnati, OH,
USA

William Tihen Garaio, Bern, Switzerland

Wentao Wang Department of EECS, University of Cincinnati, Cincinnati, OH,
USA

Peet Wiid Kaizen Institute, Auckland, New Zealand; Manukau Institute of
Technology, Auckland, New Zealand

Willy Wijnands eduScrum, Alphen aan den Rijn, The Netherlands

Contributors xxi



Part I
Agile and Lean Concepts in Education



Agile Education, Lean Learning

David Parsons and Kathryn MacCallum

Abstract There is growing interest in applying both agile and lean concepts in the
classroom to improve educational experiences. In this chapter, we draw together
the disparate ideas of these two fields from industrial practice and the existing work
within this area to develop and frame themajor concepts of agile and lean thinking for
teaching and learning. The chapter summarises the key ideas relating to how values,
processes and techniques from agile software development, overlaid with related
concepts from lean thinking, can be translated to the broader needs of education
across disciplines for students of all ages. From a review of the available literature, we
draw out a simple conceptual framework that we use to present the key themes from
the literature around howboth agile and lean approaches can be used in education.We
conclude by providing some insights into how agile and lean teaching and learning
can be applied as an integrated set of educational concepts by identifying the essential
skills and practices that can be transferred to the classroom.

Keywords Agile · Lean · Schools · Education · Teaching · Learning

1 Introduction

In this chapter, we look at how agile and lean ideas have been taken from industry and
applied in the classroom. Then we take the key themes and concepts from both these
approaches and integrate them into a simple conceptual framework that identifies
the main ways in which these two industrial practices have been applied to teaching
and learning, regardless of subject discipline and level of education. In doing so, we
aim to draw out the important skills and practices that are required in making this
transition from one domain to another.

D. Parsons (B)
The Mind Lab by Unitec, Auckland, New Zealand
e-mail: daveparsonsnz@gmail.com

K. MacCallum
Eastern Institute of Technology, Napier, New Zealand

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_1&domain=pdf
mailto:daveparsonsnz@gmail.com
https://doi.org/10.1007/978-981-13-2751-3_1


4 D. Parsons and K. MacCallum

1.1 Using Agile to Teach Agile and Lean to Teach Lean

The bulk of the literature around applying agile methods to teaching and learn-
ing focuses on various aspects of the design and development of software systems.
These studies typically focus on the application of agile methods for teaching soft-
ware engineering (e.g. Melnik & Maurer, 2003), redesigning teaching approaches
(e.g. Layman, Cornwell, & Williams, 2006), supporting teamwork (e.g. Rico &
Sayani, 2009) and applying agile approaches (like Scrum) to support student devel-
opment (e.g. Mahnic, 2012). Much of this effort is justified on the grounds that it
prepares students studying software systems development with the required indus-
try skills for entering the profession (e.g. Bruegge, Reiss, & Schiller, 2009), rather
than providing any exploration of whether agile methods themselves offer new and
valuable approaches to pedagogy across a range of educational contexts. Although
some authors have attempted to broaden their focus on education, such as Hazzan
and Dubinsky’s (2014) references to the Finnish education system, many still mainly
address software engineering issues.

A similar limitation applies to much of the literature around lean approaches to
education. The focus of much work in this area is narrowly directed to higher edu-
cation institutions, either related to their administrative processes or the use of lean
principles to teach certain technical subjects. Most of the chapters in Alves, Flumer-
felt, and Kahlen (2016), for example, describe lean approaches to the teaching of
engineering or related subjects, typically in higher education, or lean processes at the
institutional level. The idea that lean is a mechanism for streamlining the administra-
tive processes of educational institutions is examined even more explicitly in Balzer
(2010), where teaching and learning is excluded from the analysis entirely. Francis
(2014) notes that much of the literature about applying lean to education reports on
institutions adopting the industrial model uncritically, and questions whether this is
appropriate. This question is further reinforced by Comm and Mathaisel (2005) who
observe that many educational institutions regard lean as a process of cost cutting
and outsourcing, rather than one that aims to meet the needs of the learner.

Overall, in the literature we see a lot of work describing the use of agile to
teach agile, and lean to teach lean, or work that applies industrial disciplines to the
processes of education, as if teaching and learning is the same kind of product as
cars or software. Less evident than these approaches, though perhaps more important
to education as a whole, is literature that addresses how agile and lean methods
can be used more broadly within the classroom, beyond the systems development,
engineering or management contexts. That is the focus of this chapter.

1.2 Agile and Lean Education

Although there is a significant body of work that addresses either agile or lean
concepts applied to education, they are rarely dealt with together in this context. In



Agile Education, Lean Learning 5

this chapter, however, we seek to identify complementary themes and ideas from both
strands of research. Themainmotivation for this is that both agile and lean approaches
have been successfully integrated into software development, a combination that has
been extensively discussed in the literature for that field of practice and related areas
such as supply chain (Naylor, Naim, & Berry, 1999). One popular example would be
the ‘Scrumban’ software development method, which is a combination of the agile
Scrum process and the leanKanban technique (Ladas, 2008). The two approaches are
seen as partly overlapping and complementary, for example Petersen (2011) notes
that both share the same goals and define similar principles, though agile has more
of a process focus.

In the following sections, we first examine agile and lean approaches in isolation,
then bring them together to explore their complementary philosophies. We begin by
providing a brief overview of agility and agile software development methods before
moving on to how agile methods can be applied more generally in the classroom.
We then explore in more detail how agile values, processes and techniques may be
reinterpreted in the context of teaching and learning. This is followed by coverage of
lean concepts, and how they relate to education, again focusing on values, processes
and techniques. The final section of the chapter draws together these various themes
and ideas and provides an analysis of how agile and lean can effectively transition
from their industrial roots to teaching and learning.

2 Agile Methods

Agile methods for software development evolved as a response to the changing
dynamics of the software industry in the 1990s. The focus on customer needs and
being responsive to changes in requirements at any phase of development were seen
as increasingly important (Dingsøyr, Nerur, Balijepally, & Moe, 2012). The broader
concept of agility emerges from the four values and 12 principles expressedwithin the
Manifesto for Agile Software Development (Agile Alliance, 2001). Although agility
itself is not formally defined within the Manifesto (its principles only refer occasion-
ally to ‘agile processes’), the concept of welcoming change is embodied within these
principles, along with collaboration, motivation and reflection. Agility within soft-
ware development is underpinned by these concepts to rapidly create, embrace and
learn from change while contributing to perceived customer value (Conboy, 2009).

2.1 Agile in Education

Embracing change is a fundamental principle of agile software development (Beck
& Andres, 2005). In a rapidly changing world, education also has a pressing need
to do the same. The aspects of change, flexibility and leanness (a concept borrowed
from lean management) introduced above are just as important in education as for



6 D. Parsons and K. MacCallum

software development. Educators are constantly subjected to change as new and
emerging techniques, tools and ways of teaching are assessed and implemented to
support the dynamic needs of today’s learners (Hew & Brush, 2007).

It is notable that much of the material available on the specifics of agile teaching
and learning comes not from academic sources but from other individuals and organ-
isations who have a practitioner focus. Briggs (2014) notes that agile approaches are
being tried out in schools around the world, citing India and Brazil as two examples.
Other high-profile practitioners are active in the United States (Agile Classrooms),
Peru (Laboratoria), Australia (Agile Schools), and The Netherlands (eduScrum and
Scrum@School) among others. Unfortunately, there is a lack of formal literature
about these initiatives, but a number of academics have also addressed the rela-
tionships between agile and education. For example, Stewart, DeCusatis, Kidder,
Massi, and Anne (2009) assert that software development and education have simi-
lar methodologies. Both require detailed planning and scheduling, rely on constant
assessment and feedback from all involved, and have stringent quality and schedul-
ing criteria. Exploring this link further, they summarise that agile methods can be
incorporated into the learning context to enhance project-based learning, collabora-
tive experiences and student-led learning, and can support learning that is goal driven
rather than plan-driven.

2.2 Mapping Agile Methods to Classroom Practice

Problems arise, however, when trying to identify more specific mappings between
agile methods and classroom practice. Many of the examples in the literature out-
line agile education in very broad terms. For example, Dewi and Muniandy (2014)
draw together some literature on agile approaches to teaching and learning, but their
summary of techniques is very general (e.g. small group discussion, problem-based
learning, blended learning, cooperative learning, etc.) and it is hard to link these
practices specifically to any agile sources. Obrist et al. (2011) examine how the
adoption of agile team roles (such as testers, informants and design partners) within
design-based activities can clarify and strengthen team participation. However, this
discussion only focuses on one aspect of agile, and again the mapping between the
specifics of agile industry practice and what might be termed agile teaching practice
is at a somewhat abstract level.

Some authors have tried to more closely tie agile methodologies to agile teaching.
In particular, Meerbaum-Salant and Hazzan (2010) distil agile practices into three
aspects; a pedagogical class management aspect, a social aspect and a project man-
agement aspect. In their Agile Constructionist Mentoring Methodology (ACMM)
they define a teaching process that supports teachers in guiding their students in
software projects. This methodology is based on the seven categories of Shulman’s
Teacher Knowledge Base Model and constructionism. Their approach is presented
within the context of teaching software development, but also has application to
other classroom environments. However, these aspects are still largely conceptual in



Agile Education, Lean Learning 7

nature, and although they try to connect agile methodology to teaching and learning
this is still very much a broad-brush approach.

These examples perhaps indicate that interpretations of what is ‘agile’ in the
classroom need to be more clearly defined. In addition, more concrete examples
are needed to illustrate the specific ways that educators can use agile approaches to
transform teaching and learning.

3 Reinterpreting Agile Practice for Teaching and Learning

If we are to be able to make specific recommendations about how educators can use
agile practices in the classroom, thenwe have to break themdown into implementable
strategies. To do this, we analyse agile teaching and learning at the level of values,
processes and techniques.

3.1 Agile Values

Four agile values are expressed in the Manifesto for Agile Software Development
(AgileAlliance, 2001). Peha (2011) re-envisions how the four values of themanifesto
apply to education in ‘The Agile Schools Manifesto’. His version states that:

We are uncovering better ways of educating children by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools;

Meaningful learning over the measurement of learning;

Stakeholder collaboration over constant negotiation;

Responding to change over following a plan.

It should be noted that some earlier authors have made similar attempts to rewrite
the manifesto for agile software development with educational contexts in mind.
For example, an alternative reworking of the manifesto’s four values was offered by
Stewart et al. (2009). However, this interpretation focused particularly on active and
collaborative learning. Another reworking by Tesar and Sieber (2010) suggested a
similarly narrow focus on ‘agile e-learning’. Such efforts tend to drift away somewhat
from the original motivations of the values of the manifesto. Kamat (2012) changed
every component of the values, while Krehbiel et al. (2017) used a longer and entirely
different list of values, which seems to negate the idea that the existing values can
be reinterpreted for education, rather than replaced. Given the limitations of these
proposals, we will focus here on Peha’s version of the manifesto.

There are two questions to be considered when looking at the reinterpretation of
the agile manifesto in the context of education. In particular, we need to look at what
remains the same, what has been changed, and why? In addressing these questions,



8 D. Parsons and K. MacCallum

we can explore how agilemethods can be seen as being directly applicable to teaching
and learning, and also to identify the key measures of progress in education, and the
main stakeholders.

What remains the same in Peha’s agile values are lines 1 and 4. The fact that
these are unchanged is perhaps at the heart of Peha’s approach, which is that agile
thinking can be applied to education with many of its fundamental ideas intact.
However, some changes are essential to align themanifesto to education, in particular
the replacement of ‘working software’ in line 2 as being the primary measure of
progresswith ‘meaningful learning’. Another fundamental change is the replacement
of ‘customer’ with ‘stakeholder’ in line 3. The concept of ‘stakeholder’ in education
is very important, since it would not be sufficient to simply replace ‘customer’ with
‘student’. Stakeholders in education are the students, but also their caregivers, the
learner’s wider family, teaching and administration staff, school boards, local and
national education authorities and a range of other interested parties. Effective change
within educational needs to engage with the beliefs, values, vision and needs of all
stakeholders (Zion, 2009). On the right-hand side of the values, the replacement of
‘contract negotiation’with ‘constant negotiation’ is interesting, sincemany educators
feel that they are constantly dealing with changing policies and procedures rather
than being able to focus on teaching and learning. The final change Peha makes is
to replace ‘comprehensive documentation’ in line 2 with ‘measurement of learning’.
Again, many educators feel that assessment takes precedence over learning in many
jurisdictions.

In addition to the four values, the Agile Manifesto also includes 12 principles.
These can be seen as a set of competencies of individuals and teams that together
enable agile development. In reference to education, Kropp, Meier, Mateescu, and
Zahn (2014) point out that these agile competencies are not limited to technical skills,
but also encompass social skills.While technical skills are important, the agile values
and principles aremuch broader than these alone. Kropp et al. (2014) stress both agile
values and attitudes, and outline an agile model based on learning through personal
experience, social learning and learning through realistic discourse, and construction
of values and value identity. Collaboration and communication are seen as key to
these ideals.

It should be noted that the agile values expressed in the literature are generally
taken to be those outlined in the Manifesto, but there are other definitions. For exam-
ple, Beck and Andres (2005) defined the five values of eXtreme Programming (XP,
an agile software development method) as communication, simplicity, feedback,
courage and respect, which Meerbaum-Salant and Hazzan (2010) use as the basis
for the ACMM.

Another approach to capturing the essence of agile in education is the Agile
Compass (Delhij et al., 2016). Like the agile manifesto, the compass encapsulates
a journey from one state of practice to another, in this case from prescriptive to
iterative, content to culture, evaluation to visible feedback and reflection, control
to trust and competition to collaboration. Although this interpretation is not based
directly on the concepts of the original agile manifesto, it does capture the key idea
of how agile transformation leads to change across a range of learning areas. Another



Agile Education, Lean Learning 9

set of agile ‘advantages’ are outlined by Scrum@School (n.d.) and no doubt there
are other examples. They key issue in interpreting these sets of values is to recognise
what practical changes they imply in the classroom. In this chapter we discuss a
range of examples from the literature where agile values have been put into practice.

3.2 Agile Processes

Educational institutions are full of processes, and some of these might benefit from
a more agile, adaptive, change-embracing approach. Agile processes are essentially
iterative cycles of creation and reflection, where budgets and timescales are fixed,
and quality is a given. Thus, agile planning is based on trading off coverage against
priority. Agile processes tend to either emphasise engineering (e.g. XP) or man-
agement (e.g. Crystal). Another essential feature of agile methods is that they are
iterative and adaptive. An example of this approach in an educational context is the
Successive Approximation Model (SAM) for developing learning products, with an
emphasis on iterative, short work cycles (Allen, 2012).

Agile processes are not just adaptive. Being adaptive is often emphasised when
discussing agile organisations, but adaptivity alone would lead to lack of direction
and strategy. Agile organisations and teams need to be adaptive within a controlled,
managed and interactive framework, so that in adapting to change, they are able to
realistically negotiate priorities and resources with all stakeholders. It is this frame-
work for adaptivity that agile processes provide.

Scrum is a very popular agile software development process with a management
focus, which Peha (2011) suggests would help to establish shared practices supported
by clear ownership and roles across the school. In a Scrum process, the product
backlog (of user stories, which capture user requirements) is broken down into a
series of sprints (timeboxed activities). In agile methods such as Scrum, the user
stories are often captured using index cards on storyboards, which let people seewhat
others are doing and help management track progress and plan (Cohen, Lindvall, &
Costa, 2004). In each sprint, a priority list of stories (the sprint backlog) is chosen for
completion, during which time the stories will move across the storyboard as they
are completed. The sprint lasts for a certain period of time (e.g. 2 weeks, 30 days
etc.). There are daily stand-up meetings during the sprint, and at the end of each
sprint a working increment of the software is delivered. In other words, it is only
a successful sprint if it delivers something useful. Peha (2011) re-applies the sprint
concept to schools, where they can incorporate learning backlogs, rapid turnaround
of learning and integrated assessment. He states that breaking down the traditional
teaching durations of months or the school year to short sprints would help make
learning more focused and reflective. This would mean that time is not wasted on
ill-conceived ideas over long periods of time but that students can be reflective and
able to adapt, with learning constantly reassessed and reshaped as learners progress
through each sprint. This, implemented alongside backlogs of learner stories, would
help to track learning progress and identify and focus learning goals.



10 D. Parsons and K. MacCallum

3.3 Agile Techniques

Although a reworking of the agile values and principles provides a set of relevant
competencies for agile teaching and learning, and processes provide overall frame-
works for activities, it is at the level of techniques that we can really identify specific
classroom practices that can be considered agile. Fortunately, there is a broad range
of agile techniques that can easily be adapted to the classroom.

A number of authors have started to identify specific techniques from agile soft-
ware development that can be applied to teaching and learning. For example, Peha
(2011) examines a number of agile techniques (which he calls patterns of practice)
that can be applied in schools, these include stand-up meetings, paired teaching,
user stories and test-first development. Stand-up meetings could be used for both
staff meetings and classroom meetings with students, though as Peha notes this
would require certain levels of autonomy for both teachers and students to be effec-
tive. Paired teaching can help the sharing of knowledge and expertise and improve
learning as teachers can each lead different parts of the learning experience based
on their particular expertise. Peha confines his discussion to only paired teaching,
but the same idea could also apply to paired learning, whereby learners are paired
up to support and facilitate learning. Switching roles within pairs between ‘driver’
and ‘navigator’, and regularly switching pair partners, are effective ways of sharing
knowledge between peers. Further suggestions by Peha to adopt user stories and test-
first development relate strongly to making learning more connected to the learners
and responsive to individual learning. For example, user stories enable a teacher to
re-state generic learning outcomes in terms of specific user stories where the students
are considered as the ‘users’, making the learning standards more relevant to indi-
viduals. Similarly, test-first development would help to clarify learning targets and
make learning achievements more visible and responsive to the needs of the learner.

In addition to those mentioned above, a range of agile techniques applied to edu-
cation have been suggested in several other sources. In their review of the literature
around the use of agile principles in active and cooperative learning, Stewart et al.
(2009) report on teachers using stand-up meetings, retrospectives, rapid feedback,
regular measures of progress and collaborative teams in their classes. Manamendra,
Manathunga, Perera, and Kodagoda (2013) discuss how they used stand-up meetings
to manage communication between research students and their supervisors. Kessler
and Dykman (2007) also recommend stand-up meetings, and pairing, along with
several other aspects of the Crystal Clear agile method including frequent delivery,
reflection, improvement, osmotic communication and burn charts (information radi-
ators). Allen (2012) stresses prototyping, which has specific roles in agile methods,
both as initial throwaway prototypes (‘spikes’) and also as architectural prototypes
that can be further evolved.

As indicated above, although Peha (2011) suggests paired teaching, the concepts
behind the agile technique of pair programming can also be an effective approach to
learning, as other authors have proposed. If we take away the task of programming,
the other components of pairing remain valid, in particular the continuous inspection



Agile Education, Lean Learning 11

and the ability of the navigator to think more broadly and strategically about the
problem being solved than the driver. Such pairing can be seen in other contexts,
for example Vanhoenacker (2015) points out that when a pilot and co-pilot are in
the cockpit of an aircraft, regardless of which one of them has their hands on the
controls at a particular time, they are both simultaneously flying the plane. It is a
paired activity. Therefore, this idea ofmutual support and peer learning can be applied
in multiple contexts and with many kinds of participants from various stakeholder
groups.

In addition to the techniques suggested in these studies, there are possibly other
agile techniques that could be considered as relevant to teaching and learning. Some
of those not mentioned explicitly above include refactoring, regression testing, colo-
cation, common coding guidelines, continuous integration and single sourcing infor-
mation (Parsons, Ryu, & Lal, 2007). Even techniques that seem very much rooted
in the development of code, such as refactoring and continuous integration, can per-
haps be reformulated for an educational setting. The important thing is to identify
the transferable concepts behind such techniques.

4 Making Learning Agile

Bringing these various ideas together, agile education might focus on the ideas of an
iterative, adaptive process of student directed learning, built around learning stories
created by the students themselves. Students would work mostly in pairs and self-
organising teams, providing each other with constant support, feedback and mutual
learning. Regular learning checks would take place through stand-ups and retro-
spectives, giving an opportunity for reflection on learning and embracing change
where necessary. Students would be encouraged to develop broad skill sets and base
their learning on real-world problems. Educators would act primarily as coaches,
guiding learners rather than directing them, and the constant emphasis would be on
meaningful learning above all other concerns.

5 Lean Manufacturing

So far in this chapter we have been focusing on agile concepts and ideas and how
they might be applied to education. We now turn our attention to the concepts and
ideas of lean manufacturing, and how these have been transferred into the world
of software development and, more importantly, on into the world of teaching and
learning. So, what is lean, and how can it act as a complement to the agile ideas that
we have been exploring so far in this chapter?



12 D. Parsons and K. MacCallum

5.1 From the Toyota Production System to Lean Software
Development

Lean is an approach within manufacturing, that has its roots in the Toyota Production
System from the second half of the twentieth century. Lean production was concep-
tualised as a way to reduce waste, upskill workers, improve quality and provide
more variety in products than was possible with mass production (Womack, Jones,
& Roos, 1990). More recently, it has been applied to the development of software
in what might be termed the post-agile period (Poppendieck & Poppendieck, 2003;
Anderson, 2010). Since then, many people have been looking for ways of applying
these lessons to their own work contexts by applying lean thinking, which addresses
how the lean production ideas from the car industry can be applied to a range of other
industries (Womack & Jones, 2003).

5.2 Lean Concepts in Education

An important question for educators is why they would concern themselves with
concepts about reducing inventory and shortening the supply chain, if their product
is something very different, like intellectual property and graduating students, rather
less tangible than many products of industry. The challenge here is to try and look at
educational systems through new eyes, to understand the value streams that underlie
them. Womack (2006) defined lean education as three processes; designing, making
and using. Breaking this down further, ‘designing’ means creating the knowledge
to be delivered, ‘making’ means providing learning experiences for students, and
‘using’ means students being able to experience continuous learning. The question
for educators is whether it is possible to make all these processes lean. Bringing
such concepts right down to the classroom level, it is possible to assist students to
appreciate lean thinking through practical learning activities. For example, Swan-
son (2008) describes a ‘lean lunch’ exercise, which helps students to understand the
‘Point-of-Use Staging’ technique, designed to reduce waste by shortening the sup-
ply chain. With a broader focus, Ncube (2010) outlines how the ‘Lean Lemonade
Tycoon’ game can be used with students to help them to understand lean principles.
From such small activities, lean thinking can be developed in students. According to
Barney and Kirby (2004), educators can learn from lean production the importance
of empowering teachers by training them to problem-solve and then expecting them
to be self-reflective and to continuously improve their practice (many of these factors
are also apparent in agile).



Agile Education, Lean Learning 13

6 Reinterpreting Lean Thinking for Teaching and Learning

In section three, we identified specific strategies from agile methods that could be
implemented in the classroom. From an agile perspective, we looked at values, pro-
cesses and techniques. In this section, we analyse lean thinking using related cate-
gories; value, the value stream and perfection, lean processes and lean techniques.

6.1 Value, the Value Stream, and Perfection

Three of the original five lean principles outlined by the Lean Enterprise Institute
are value, the value stream and perfection (Womack & Jones, 2003)—the others
being pull and flow (discussed later). Value is both the end product and the chain of
processes that deliver it. The value stream is each step in the value process, designed
to be as efficient as possible in meeting customer expectations, while perfection is
pursued through continuous improvement.

One of the key challenges of lean is the difficulty of knowing how to add value.
Womack and Jones (2003) question why is it hard to start at the right place, to
correctly define value. This is partly because most producers want to make what
they are already making and partly because many customers only know how to ask
for some variant of what they are already getting. Educators, too, tend to work with
traditional views of teaching, and learners are also likely to expect the established,
familiar model of learning. It is difficult for both types of stakeholder to see how they
might redefine the value of education. An interesting point, made by Dahlgaard and
Østergaard (2000), is that one difference between mass production and education is
that if there is a defect in mass production, then customers are likely to notice that
defect (e.g. a fault in a product) quite quickly, whereas in education they may never
notice the defect at all.

A lean approach to value and the value stream in education would aim to precisely
specify the value of each learning experience and identify how it fits into the wider
value stream, so that every step in the educational supply chain delivers value to the
learner. To follow this approach, questions have to be continually asked, such as:
Does this part of the curriculum deliver value? Does this form of assessment deliver
value? Does this step in the enrolment process deliver value? The constant focus
should be on how the educator delivers value to the learner.

The lean principle of perfection requires a constant focus on improvement.
Improvements may be operational, administrative or strategic, but they must be
clearly seen and demonstrated by satisfied customers (Womack & Jones, 2003).
There are two types of improvement; kaikaku (radical improvement) and kaizen
(continuous, incremental improvement). Bicheno (2001) discusses the differences
between incremental and ‘breakthrough’ improvement, and suggest that that these
need not always be driven by enforced processes but may also be passive, through



14 D. Parsons and K. MacCallum

ongoing incentives such as quality circles. The main principle is to pursue perfection
through continuous improvement of educational processes, methods and materials.

6.2 Lean Processes

One of the concepts of process that comes from mass production is the batch and
queue approach (Poppendieck, 2011), and we tend to adopt this mass production
view in many areas of education. Every semester/term we might deliver a set of
classes over a fixed period of weeks, but this may have no relationship to how long
it might take someone to actually learn something. Every year we produce a batch
of graduating students, but often we do not know whether they are in fact ready to
take advantage of the opportunities around them.

The two remaining principles of lean thinking are ‘flow’ and ‘pull’ (Womack &
Jones, 2003). Flow replaces batch and queue processes that transform raw material
into an end product. The goal is to provide continuous flow with minimal waste.
In education, we aim to make learning flow without interruptions by right-sizing
what is offered to the learner. Rather than broadcasting batches of content in mass
production lecture halls or traditional classrooms, the lean educatorwould be engaged
in the whole learning value stream, working closely with their colleagues across the
whole process, moving away from batch blocks of material to smaller, more flexible
learning components. A simple example of flow from a student perspective would be
the ability to continue directly to the next stage of a course when they are ready, rather
than waiting on institutional calendars (Isaksson, Kuttainen, & Garvare, 2013). In a
similar vein, Alp (2001) suggests students being able to study at their own pace.

The principle of ‘pull’ means that the customer pulls the content they require,
rather than having it pushed at them. The pull concept states that nothing should be
built until a customer ‘pulls’ the product or service down the value stream (Womack&
Jones, 2003). In education, content is often pushed towards the learner over timescales
dictated by institutions. In a lean approach, the learner would pull from the educator
the value they need, when they need it. One example where pull might be applied to
education is byflexibly integrating demand fromemployers into vocational education
programmes, giving students better prospects for employment on finishing their
courses (Isaksson et al., 2013). Another idea is that students could create their own
cross-disciplinary assignments to suit their needs (Alp, 2001). In a further example,
Allen (2012) describes how pull was successfully used in an introductory Psychology
class, allowing learners to take ownership of their own learning by choosing what
they wanted to learn through discussion and priority setting.

At the highest level of lean processes there is the concept of the ‘lean enterprise’,
which spans the whole value chain, and may involve many organisations (Womack
& Jones, 2003). For a given school, the lean enterprise may involve the other schools
that feed students into it, and the various schools, higher education institutions or
workplaces that these students might move onto afterwards. All of these institutions
are potentially part of the same lean enterprise. The difficult challenge is to convince



Agile Education, Lean Learning 15

all of the stakeholders in that value chain to cooperate in becoming a single lean
enterprise, by setting aside their own agendas. This would be a major task but is an
important part of lean transformation. Godbey and Richter (1999) define the ‘agile-
virtual organization’ as being cooperative, customising, fast and flexible, valuing
human capital and relationships. Their description resonates strongly with the lean
enterprise, with its vision of multiple institutions working together as a single enter-
prise. In education, they emphasise relationships over technology, while recognising
the power of technology for collaboration and reach. As Comm andMathaisel (2005)
suggest, “Imagine a collaborative, higher education environment where duplicate
functions do not exist but have shared resources with other institutions” (p. 236).

6.3 Lean Techniques

Pull and flow can be managed in a lean classroom by using Kanban (visual card)
boards, which are one of themost widely used lean techniques, perhaps because of all
the Japanese techniques it is the most exportable, relying little on its cultural context
(Briggs, 1988). Kanban boards are similar to the agile storyboards mentioned earlier
in this chapter, but the way that the user story cards are managed through the process
is different because of the focus on pull and flow, concepts that are not specifically
applied with agile storyboards. Within software development the Kanban board is
a tool to support workflow management as it is used to visualise workflow, track
work-in-progress (WIP) and embodies the pull system approach to manufacturing
(Heikkilä, Paasivaara,&Lassenius, 2016;Goldman, 2009).TheKanbanboard is used
to indicate progress in a transparent way and reinforces motivation and commitment
to tasks. The Kanban board in education works in a very similar manner, but with
more focus on learning flows or around tasks for assessment or learning activities. For
example, it can be used in an individual or group activity to visually track student
progress (Agile Classrooms, n.d.; ALC, n.d.). The Kanban board can be used to
capture learning stories and then track progress in a visual manner and limit the
WIP of an individual or student team. Examples of its use in education include an
Education Kanban system used with trainee doctors (Goldman, 2009). The Kanban
was used to record learning goals, identified in a collaborative manner, and record
progress clearly and efficiently. The trainees were able to pull goals and work on
them in a way that enabled them to take ownership of their own learning. In another
example, at the Agile Learning Center, students use stand-up meetings alongside the
use of Kanban boards to track their progress (ALC, n.d.).

Another key technique used in lean is the identification and methodical removal
of ‘muda’ (waste). There are two types of muda. Type one muda is the waste caused
by fixed components in the way that the system currently operates, for example an
unwieldy student enrolment system, or a learning management system with inad-
equate functionality. In contrast, type two muda is waste that can be eliminated
immediately. Of course, educators will encounter a high degree of type one muda.
They tend toworkwithin very bureaucratic organisations, sometimes very large ones,



16 D. Parsons and K. MacCallum

with systems that are very difficult to change. Nevertheless, type one muda can be
addressed by applying lean principles. A good example of how type one muda can
be removed in education is outlined in Doman’s (2011) study of a group of students
who were introduced to lean principles and then tasked with re-engineering their
institution’s grade change process. They took a manual process that had evolved in a
haphazard fashion over 50 years or so, and performed a lean analysis on how it could
be improved. Their new online system design was adopted by their institution and
proved to be both more efficient than the old system and to result in better outcomes
for all stakeholders.

While addressing type one muda requires considerable effort and time, educators
are also likely to encounter a large amount of type two muda that can be identified
and removed from the value chain much more quickly and easily. The Toyota Pro-
duction System includes seven categories of waste (Hines & Taylor, 2000). Since
it is probably more appropriate to look at evaluating education as a service than a
product, it may be helpful to examine these definitions as forms of service waste
(adapted here from Bicheno & Holweg, 2000):

1. Overproduction—Are toomany courses being offered, or is there toomuch infor-
mation in classes, and is the right education being produced at the right time?

2. Defects—Are learning materials of good enough quality? Are there frequent
errors in learning and administrative materials? Are classes well delivered (face
to face or online)

3. Unnecessary inventory—Is there too much material in a learning management
system or course? Does it take a long time to provide learning materials or give
feedback? Are certain services half finished?

4. Inappropriate processing—Do people have to put in excessive effort in order
to deliver a service? Do reports, exam results, etc. use over complex and slow
systems?

5. ExcessiveTransportation—Doeducators and/or students have to physicallymove
themselves, or materials around? Does information move around unnecessarily?

6. Waiting—Do stakeholders have to wait a long time for information? Are pro-
cesses unnecessarily delayed, waiting for something else to a happen? Is infor-
mation flowing correctly and efficiently?

7. Unnecessary motion—Are activities, paperwork and other efforts unnecessarily
juggled?

Since the creation of the initial list of seven wastes, there have been a number of
suggestions for adding further types of waste to the list as the ‘8th waste’. One of
those adopted by a number of organisations is the waste of human talent—are skills
being under-utilised? Are staff performing tasks that are not adding any value to the
organisation? (Oppenheim, Murman & Secor, 2011). Using these ideas around the
various forms of service waste, we may identify both type one and two muda. For
example, Doman’s (2011) study found type one muda with inappropriate processing
and waiting, but any educational set of processes is also likely to reveal many exam-
ples of type two muda. There are probably many courses being offered where there



Agile Education, Lean Learning 17

is too much material, for example, and where educators can easily begin to address
this type of muda.

Another important lean technique is selecting and designing where students
learn. Womack (2006) discusses the ‘gemba’ (the ‘real place’, sometimes written
as ‘genba’), where problems are visible, and from where the best improvement ideas
will come. In lean education, he suggests teaching process thinking and problem-
solving by doing. With a focus on learning in real-world environments, he proposes
developing a range of gemba for applied learning. This could be done bybuilding rela-
tionships with industry. However, in many cases it may be hard to find suitable other
organisational venues, so the learning institution can equally be used as a gemba. Per-
haps by providing environments such as Makerspaces, schools and higher education
providers can become more effective gemba. Böhmer, Beckmann, and Lindemann
(2015) suggest that Makerspaces can be part of an open innovation ecosystem that
embraces other agile and lean principles. In whichever physical context, it is impor-
tant to grade students on the degree to which problems are actually solved using
a rigorous method. This ties in closely with the concept of real-world learning and
problem-solving as being a core twenty-first century skill (ITL Research, 2012). One
example of using the learning context as a gemba and requiring students to solve
problems within it is Marley’s (2014) description of students making lean-related
videos as part of their assessment.

A related concept is the ‘gemba walk’, which means visiting the real place to
identify problems and muda. As lean educators, it is therefore important to enable
students to work in real places related to their learning, with a specific task to solve
problems and/or identify waste. A clear example of this, referred to earlier in this
chapter, was the students who used their own institution as the gemba and removed
waste from the grade change system (Doman, 2011).

7 Making Learning Lean

Bringing these various lean ideas together, we might make some proposals about
what lean learning might look like. There might be a curriculum delivered by multi-
ple organisations, tailored to suit the learner, across a Lean Enterprise. There would
be no restrictions on hours per week of learning, or the total time span of a learn-
ing process, or on how different learning components might be combined. Batch
and queue delivery of learning would be replaced by flow, with walk-in, lifelong
enrolment. There would be all possible combinations of blended learning modes, so
providers of learning would have a pull approach rather than push, and there would
be instant assessment feedback, for example, perhaps just oneway inwhichwemight
think about removing inventory from our system.



18 D. Parsons and K. MacCallum

8 Agile Education, Lean Learning

In this chapter, we have discussed various approaches to applying agile and lean
methods to teaching and learning. In this closing section, we put the various con-
cepts together to analyse how agile and lean methods can effectively transition from
the contexts of software development and manufacturing into a coherent model for
education. Figure 1 shows the major applications of agility and leanness in edu-
cation that we have examined, structured around the concepts of values, processes
and techniques. These concepts are expressed as a pyramid where techniques build
on processes, and processes on values. At each of these levels we have examined
how agile and lean practices may usefully transition to the context of teaching and
learning.

First, we examine agile and lean values, whichwe summarise as agency, outcomes
and improvement. One of the key concepts from the values and supporting princi-
ples of the Manifesto for Agile Software Development is that agile approaches give
agency to both developers and customers. Giving students a similar sense of empow-
erment and agency over their own learning is an important challenge for twenty-first-
century approaches to teaching and learning (Lindgren & McDaniel, 2012), while
developing the broad skill sets encouraged inmulti-skilled agile teams also reinforces
learner agency. In agile software development, the key measure of progress is work-
ing software, and creating this requires well-developed technical skills. In education,
the key measure of progress is meaningful learning, and in the twenty-first century
this is primarily skills-based, not just technical skills but broader capabilities such
as adaptability, collaboration, knowledge construction, real-world problem-solving

Fig. 1 Agile and lean values, processes and techniques, applied to learning



Agile Education, Lean Learning 19

and innovation (ITL Research, 2012; World Economic Forum, 2016). Further, there
is a broadening out of stakeholders in education to include learner’s families and
communities, so empowerment and agency can spread to these other stakeholders.
From a lean perspective, it is important to identify the value and the value stream in
the educational process, to identify the outcomes from each step in learning as well
as from the overall experience. Underpinning this people-centric approach to skills
development is the lean value of perfection; applying both kaizen and kaikaku to
continually improve.

When we look at processes, we emphasise learner pace, reflection and iteration.
Agile processes include regular evidence of progress and the ability to iterate over
and reflect on solutions until they are as good as they can be. Short learning cycles,
like sprints in agile software development, support a sustainable pace of learning,
with regular feedback and reflection on actual learning outcomes. The steps in an
agile process allow learners to address a specific learning backlog in manageable and
self-directed time boxes. From lean, the concepts of pull and flow suggest that these
processes need to be student-driven and adaptive to student needs by enabling learners
to right-size content and learn at their own pace. Learners need to have ownership
over their own learning so that they have control over how their learning value stream
is constructed. Ideally, learning needs to be able to flow across an integrated learning
path that spans multiple institutions in a lean educational enterprise. This might, for
example,mean individual students in school having different personalised timetables,
including learning sessions where they connect and collaborate with people beyond
their physical environment to generate and critique new ideas (Starkey, 2012).

In examining techniques, it is difficult to focus on a particular subset and regard
this as representative of agile and lean techniques as a whole, because there are so
many.However,we consider that themost important techniques are those that support
collaboration, communication and problem-solving. One of the agile techniques we
have discussed in this chapter is pairing, which provides inbuilt peer support and col-
laborative learning. Similarly, class stand-ups provide collaborative peer support on
a regular basis. Learner stories capture not just the ‘what’ of classroom activities but
also the ‘who’ and the ‘why’, emphasising the need for relevance in learning activi-
ties. Students creating their own stories increase agency and self-regulation. In agile
software development, prototyping means creating software prototypes. In the class-
room, it can mean a broader set of activities including, for example, design thinking,
with students being able to create prototypes not just with software but with 3D print-
ing, craft materials, electronics, etc. However, the outcomes are the same; a deeper
understanding of the customer and the product, not just from a business perspective
but for social innovations such as creating alternative learning environments (Brown
&Wyatt, 2010). In agile teams, information radiators such as burndown charts com-
municate visible records of progress. In the classroom, similar tools can be used to
bring the same level of visibility to learning progress for both individuals and teams,
echoing Hattie and Yates’ (2013) emphasis on the importance of seeing outcomes
from the learning process. The Kanban board is probably the most commonly used
lean technique integrated into agile processes, adding the concepts of pull and work-
in-progress to the management of story cards. Again, it is a practice that provides



20 D. Parsons and K. MacCallum

students with agency over the content and pace of their own learning. It is probably
also the most commonly used lean technique in the classroom, with many teachers
using Kanban boards with their students (e.g. Beidleman, 2012). Another impor-
tant lean technique that can work well in education is identifying wasteful practices
(various types of muda) to try to remove these from the learning value stream and
ensure that all activities that take place in the classroom and in the administration of
learning are worthwhile. The final lean technique included here is contextualising
learning in real-world problem spaces (gemba). As one of the six twenty-first-century
skills outlined by ITL Research (2012), real-world problem-solving and innovation
is a key activity in contemporary learning. The concept of the gemba walk, where
problems are identified and resolved in their real-world contexts, supports this skill
development and also relates closely to the learning theory of situated cognition,
whereby knowledge “indexes the situations in which it arises and is used, without
which it cannot be fully understood” (Brown, Collins, & Duguid, 1989, p. 16).

9 Conclusion

In this chapter we have provided a brief summary of the various themes and ideas
gathered from the literature on agile and lean approaches to education. In Fig. 1
and the associated commentary we have brought together what we see as the most
important ideas from the relevant literature, in order to provide a simple overview of
how agile and lean approaches to teaching and learning can be integrated into new
ways of thinking about what goes on in the classroom and in the wider world of
learning.

In conclusion, we believe that there are significant opportunities for educators to
adopt aspects of agile and lean practices. Although some interestingwork has already
been undertaken in this area, our investigation of the literature suggests that there is
much more that could be done to bring the benefits of agility and lean thinking into
the classroom. In this chapter, we have attempted to provide a clearer understanding
of the ways that agile and lean approaches can be applied to teaching and learning at
three specific levels; values, techniques and processes, and we have summarised the
core skills and practices that we believe are the essential components in reinterpreting
agile and lean concepts for teaching and learning. These are the values of agency,
outcomes and (continuous) improvement, processes for reflection and iteration at a
pace managed by the learner, and techniques for collaboration, communication and
(real world) problem-solving.



Agile Education, Lean Learning 21

References

ALC. (n.d.). Agile learning center tools & practices. Retrieved from http://nycagile.org/about/to
ols/.

Alp, N. (2001, November). The lean transformationmodel for the education system. In Proceedings
of the 29th International Conference on Computers and Industrial Engineering (pp. 82–87).

Agile Alliance. (2001).Manifesto for agile software development. Retrieved from http://agilemani
festo.org/.

Agile Classrooms. (n.d.). 21st century learning resources. Retrieved from https://www.agileclassr
ooms.com/resources.

Alves, A. C., Flumerfelt, S., & Kahlen, F. J. (Eds.). (2016). Lean education: An overview of current
issues. Springer.

Anderson, D. (2010). Kanban: Successful evolutionary change for your technology business.
Sequim, WA: Blue Hole Press.

Allen, M. (2012). Leaving ADDIE for SAM: An agile model for developing the best learning
experiences. ASTD Press.

Balzer, W. K. (2010). Lean higher education: Increasing the value and performance of university
processes. CRC Press.

Barney, H., & Kirby, S. N. (2004). Toyota production system/lean manufacturing. In B. Stecher &
S. N. Kirby (Eds.), Organizational improvement and accountability lessons for education from
other sectors (pp. 35–50). Santa Monica, CA: Rand Corporation.

Beck, K., & Andres. C. (2005). Extreme programming explained: Embrace change (2nd ed.).
Addison-Wesley.

Bicheno, J. (2001). Kaizen and kaikaku. In Manufacturing operations and supply chain manage-
ment: The LEAN approach (pp. 175–184).

Bicheno, J., & Holweg, M. (2000). The lean toolbox (Vol. 4). Buckingham: PICSIE Books.
Beidleman, P. (2012). Using Kanban in the Classroom. Planview LeanKit. Retrieved from https://l
eankit.com/blog/2012/01/guest-post-using-kanban-in-the-classroom/.

Böhmer, A. I., Beckmann, A., & Lindemann, U. (2015, December). Open innovation ecosystem-
makerspaces within an agile innovation process. In ISPIM Innovation Symposium. The Interna-
tional Society for Professional Innovation Management (ISPIM) (p. 1).

Briggs, P. (1988). The Japanese at work: Illusions of the ideal. Industrial Relations Journal, 19(1),
24–30.

Briggs, S. (2014). Agile based learning: What is it and how can it change education? InformED.
Retrieved from http://www.opencolleges.edu.au/informed/features/agile-based-learning-what-i
s-it-and-how-can-it-change-education/.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.
Educational researcher, 18(1), 32–42.

Brown, T., &Wyatt, J. (2010). Design thinking for social innovation.Development Outreach, 12(1),
29–43.

Bruegge, B., Reiss, M., & Schiller, J. (2009, April). Agile principles in academic education: A case
study. In Sixth International Conference on Information Technology: New Generations, 2009.
ITNG’09 (pp. 1684–1686). IEEE.

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods. Advances in Com-
puters, 62, 1–66.

Comm, C. L., & Mathaisel, D. F. (2005). An exploratory study of best lean sustainability practices
in higher education. Quality Assurance in Education, 13(3), 227–240.

Conboy,K. (2009). Agility fromfirst principles: Reconstructing the concept of agility in information
systems development. Information Systems Research, 20(3), 329–354. https://doi.org/10.1287/i
sre.1090.0236.

Dahlgaard, J. J., & Østergaard, P. (2000). TQM and lean thinking in higher education. The Best on
Quality: Targets, Improvements, Systems, 11, 203–226.

http://nycagile.org/about/tools/
http://agilemanifesto.org/
https://www.agileclassrooms.com/resources
https://leankit.com/blog/2012/01/guest-post-using-kanban-in-the-classroom/
http://www.opencolleges.edu.au/informed/features/agile-based-learning-what-is-it-and-how-can-it-change-education/
https://doi.org/10.1287/isre.1090.0236


22 D. Parsons and K. MacCallum

Delhij, A., et al. (2016). Agile in education compass. Retrieved from http://www.agileineducation.
org/.

Dewi, D. A., & Muniandy, M. (2014, September). The agility of agile methodology for teach-
ing and learning activities. In 2014 8th Malaysian Software Engineering Conference (MySEC)
(pp. 255–259). IEEE.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodolo-
gies: Towards explaining agile software development. Journal of Systems and Software, 85(6),
1213–1221. https://doi.org/10.1016/j.jss.2012.02.033.

Doman, M. S. (2011). A new lean paradigm in higher education: A case study. Quality Assurance
in Education, 19(3), 248–262.

Francis, D. E. (2014). Lean and the learning organization in higher education. Canadian Journal
of Educational Administration and Policy, 157, 1–23.

Godbey, G. C., & Richter, G. J. (1999). Technology, consortia, and the relationship revolution in
education. New Directions for Higher Education, 1999(106), 85–91.

Goldman, S. (2009). The educational Kanban: Promoting effective self-directed adult learning in
medical education. Academic Medicine, 84(7), 927–934.

Hattie, J., & Yates, G. C. (2013). Visible learning and the science of how we learn. Routledge.
Hazzan, O., & Dubinsky, Y. (2014). Agile anywhere: Essays on agile projects and beyond. Springer
International Publishing.

Hew, K. F., & Brush, T. (2007). Integrating technology into K-12 teaching and learning: Current
knowledge gaps and recommendations for future research.Educational Technology Research and
Development, 55(3), 223–252.

Heikkilä, V. T., Paasivaara, M., & Lassenius, C. (2016, May). Teaching university students Kanban
with a collaborative board game. InProceedings of the 38th International Conference on Software
Engineering Companion (pp. 471–480). ACM.

Hines, P., & Taylor, D. (2000). Going lean (pp. 3–43). Cardiff, UK: Lean Enterprise Research
Centre Cardiff Business School.

Isaksson, R., Kuttainen, C., & Garvare, R. (2013). Lean higher education and lean research. In 16th
Toulon–Verona Conference; Faculty of Administration, University of Ljubljana, Slovenia; 29–30
August 2013.

ITL Research. (2012). 21CLD learning activity rubrics. Retrieved from https://education.microsof
t.com/GetTrained/ITL-Research.

Kamat, V. (2012, July). Agile manifesto in higher education. In IEEE Fourth International Confer-
ence on Technology for Education (T4E) (pp. 231–232). IEEE.

Kessler, R., & Dykman, N. (2007). Integrating traditional and agile processes in the classroom.
ACM SIGCSE Bulletin, 39(1), 312–316.

Krehbiel, T. C., et al. (2017). Agile manifesto for teaching and learning. The Journal of Effective
Teaching, 17(2), 90–111.

Kropp, M., Meier, A., Mateescu, M., & Zahn, C. (2014). Teaching and learning agile collaboration.
In IEEE 27th Conference on Software Engineering Education and Training (CSEE&T).

Ladas, C. (2008). Scrumban: Essays on Kanban systems for lean software development. Seattle,
WA: Modus Cooperandi.

Layman, L., Cornwell, T., & Williams, L. (2006). Personality types, learning styles, and an agile
approach to software engineering education. ACM SIGCSE Bulletin, 38(1), 428–432.

Lindgren, R., & McDaniel, R. (2012). Transforming online learning through narrative and student
agency. Educational Technology & Society, 15(4), 344–355.

Marley, K. A. (2014). Eye on the gemba: Using student-created videos and the revised bloom’s
taxonomy to teach lean management. Journal of Education for Business, 89(6), 310–316.

Meerbaum-Salant, O., & Hazzan, O. (2010). An agile constructionist mentoring methodology for
software projects in the high school. ACM Transactions on Computing Education, 9(4), n4.

Mahnic, V. (2012). A capstone course on agile software development using Scrum. IEEE Transac-
tions on Education, 55(1), 99–106.

http://www.agileineducation.org/
https://doi.org/10.1016/j.jss.2012.02.033
https://education.microsoft.com/GetTrained/ITL-Research


Agile Education, Lean Learning 23

Manamendra, M. A. S. C., Manathunga, K. N., Perera, K. H. D., & Kodagoda, N. (2013, April).
Improvements for agile manifesto and make agile applicable for undergraduate research projects.
In 2013 8th International Conference on Computer Science & Education (ICCSE) (pp. 539–544).
IEEE.

Melnik, G., & Maurer, F. (2003, August). Introducing agile methods in learning environments:
Lessons learned. In Conference on Extreme Programming and Agile Methods (pp. 172–184).
Berlin, Heidelberg: Springer.

Naylor, J. B., Naim, M. M., & Berry, D. (1999). Leagility: Integrating the lean and agile manu-
facturing paradigms in the total supply chain. International Journal of Production Economics,
62(1–2), 107–118.

Ncube, L. B. (2010). A simulation of lean manufacturing: The lean lemonade tycoon 2. Simulation
& Gaming, 41(4), 568–586.

Obrist,M.,Moser, C., Fuchsberger, V., Tscheligi,M.,Markopoulos, P., &Hofstätter, J. (2011, June).
Opportunities and challenges when designing and developing with kids@ school. In Proceedings
10th International Conference on Interaction Design and Children (pp. 264–267). ACM.

Oppenheim, B. W., Murman, E. M., & Secor, D. A. (2011). Lean enablers for systems engineering.
Systems Engineering, 14(1), 29–55.

Parsons, D., Ryu, H., & Lal, R. (2007). The impact of methods and techniques on outcomes from
agile software development projects. InT.McMaster,D.Wastell, E. Ferneley,& J.DeGross (Eds.),
Organisational dynamics of technology-based innovation: Diversifying the research agenda,
Proceedings of IFIP 8.6 Conference, Manchester, UK, 14–16 June 2007 (pp. 235–249). Springer.

Peha, S. (2011, June). Agile schools: How technology saves education (Just not the way we thought
it would). InfoQ. Retrieved from https://www.infoq.com/articles/agile-schools-education.

Petersen, K. (2011). Is lean agile and agile lean?: A comparison between two software development
paradigms. In A. Dogru & V. Biçer (Eds.),Modern software engineering concepts and practices:
Advanced approaches (pp. 19–46). IGI Global.

Poppendieck, M. (2011). Principles of lean thinking. IT Management Select, 18, 1–7.
Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile toolkit. Boston
MASS: Addison-Wesley Professional.

Rico,D. F.,&Sayani, H.H. (2009,August). Use of agilemethods in software engineering education.
In Proceedings Agile Conference, 2009. AGILE’09. (pp. 174–179). IEEE.

Scrum@School. (n.d). Advantages. Retrieved from http://www.scrumatschool.co.uk/.
Starkey, L. (2012). Teaching and learning in the digital age. Abingdon, Oxon: Routledge.
Stewart, J. C., DeCusatis, C. S., Kidder, K., Massi, J. R., & Anne, K. M. (2009). Evaluating agile
principles in active and cooperative learning. In Proceedings of Student-Faculty Research Day,
CSIS, Pace University, B3.

Swanson, L. (2008). The lean lunch. Decision Sciences Journal of Innovative Education, 6(1),
153–157.

Tesar,M.,&Sieber, S. (2010).Managing blended learning scenarios by using agile e-learning devel-
opment. In Proceedings of the IADIS International Conference E-Learning (Vol. 2, pp. 125–129).

Vanhoenacker, M. (2015). Skyfaring: A journey with a pilot. London: Chatto & Windus.
Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world. New York,
NY: Free Press.

Womack, J. P., & Jones, D. T. (2003). Lean thinking: Banish waste and create wealth in your
corporation (2nd ed.). New York, NY: Free Press.

Womack, J. P. (2006). Lean thinking for education. Paper Presented at the 2006 Lean Educator
Conference, Worcester, MA.

World Economic Forum. (2016).New vision for education: Fostering social and emotional learning
through technology. Retrieved from http://www3.weforum.org/docs/WEF_New_Vision_for_Ed
ucation.pdf.

Zion, S.D. (2009). Systems, stakeholders, and students: Including students in school reform. Improv-
ing Schools, 12(2), 131–143.

https://www.infoq.com/articles/agile-schools-education
http://www.scrumatschool.co.uk/
http://www3.weforum.org/docs/WEF_New_Vision_for_Education.pdf


Agile Methodologies in Education:
A Review

Pasquale Salza, Paolo Musmarra and Filomena Ferrucci

Abstract One of the main challenges faced by teachers in education, both at K-12
and academy levels, is related to the need to attract and retain the attention and the
commitment by students, and ensure they achieve the required learning outcomes.
Thus, new and exciting methodologies were developed to support teachers. Many of
them have been inspired by approaches devised forAgile software development. This
chapter aims to review the main Agile methodologies that have inspired educational
approaches and to provide a description of the features retained in the educational
context. Several experiences reported in the literature are also described.

Keywords Agile · Education · Review · eXtreme Programming · Scrum

1 Introduction

Agile is one of the most used process frameworks for software development. It
is based on some essential values and principles, i.e., the Agile Manifesto, with
the aim at lightening the traditional and linear waterfall approach to face the real
world in which requirements and solutions evolve continuously (Beck et al., 2001).
Agile favors an iterative and team-based approach, attempting to reduce the waste
of resources, development time and effort. Several methodologies have been defined
within the Agile culture, extending and implementing its values and principles, such
as eXtreme Programming, and Scrum.

P. Salza (B)
USI Università della Svizzera italiana, Lugano, Switzerland
e-mail: pasquale.salza@usi.ch

P. Musmarra · F. Ferrucci
University of Salerno, Fisciano, Italy
e-mail: pmusmarra@unisa.it

F. Ferrucci
e-mail: fferrucci@unisa.it

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_2&domain=pdf
mailto:pasquale.salza@usi.ch
mailto:pmusmarra@unisa.it
mailto:fferrucci@unisa.it
https://doi.org/10.1007/978-981-13-2751-3_2


26 P. Salza et al.

One of the most relevant implications to managers working using Agile is that it
places more emphasis on people factors, focusing on the talents and skills of indi-
viduals. If people on a project are good enough, they can use almost any process and
accomplish their assignment. Agile makes people work together with excellent com-
munication and interaction, using their individual talents in teams to reach common
goals efficiently (Cockburn & Highsmith, 2001).

Agile places less focus on fixed and well detailed a priori plans and is based on the
empirical process control theory suggesting that significant knowledge comes from
what we learn through experience. An iterative development approach is exploited
aiming to deliver product increments that provide value to the customer.

Since Agile methodologies have proved very useful in managing software devel-
opment teams and projects, the intuitions of many researchers was to adapt them to
the educational context (Dewi & Muniandy, 2014). Agile methodologies were first
introduced as part of software engineering courses, where the teacher manages stu-
dent teams making them practice in real software projects (Alfonso & Botia, 2005).
Then, Agile methodologies proved to be also effective in teaching other subjects,
e.g., Mathematics (Duvall, Hutchings, & Kleckner, 2017).

This chapter aims to give an overview of those Agile methodologies for which
some research work, describing the adaptation to the classroom environment, is
present in the literature. The aim is to highlight Agile values, principles, and practices
applied to improve students’ learning. Our review does not aim to be complete and
systematic but a starting point for researchers and educators.

The rest of the chapter is organized as follows. Section 2 presents the literature
search phase with some statistics on the selected pool of publications. Section 3
introduces Agile, describing the motivations, values, and principles that led it to be
one of the most popular software development processes. eXtreme Programming is
described in Sect. 4 and Scrum in Sect. 5. Each of these sections are organized as
follows. The history and key points of the methodology are first provided within the
original software development context. Then, the focus is placed on the education
environment and the most employed adaptations in the literature are given. Each
section ends with an overview of some of the most relevant, or recent, experiences
in the literature. Section 6 concludes the chapter with some final remarks.

2 Search Strategy

In this section, we present an overview of our researchmethod, the goals of the review
and some general statistics about the findings. In terms of timeline, the searches were
conducted during late 2017.

Even though this chapter cannot be technically defined as a Systematic Literature
Mapping or Systematic Literature Review, we partially developed our search strategy
based on well-known guidelines (Kitchenham & Charters, 2007). These were used
to organize the research phase and structure the contents of the chapter.



Agile Methodologies in Education … 27

2.1 Search Goals

The purpose of this study is to introduce agile concepts and connect them to the
classroom environment, giving a first overview to the readers who are interested in
starting to investigate the field.

We identified the following main search goals:

• organize theAgilemethodologies with respect to their application in the classroom
environment;

• identify the main trends of Agile methodologies for teaching and learning;
• discover what are the main education levels, e.g., K-12, academy, investigated in
the literature;

• find out if these methodologies are employed for online, other than on-site educa-
tion;

• understand if theAgilemethodologies for educationhavegonebeyond the software
engineering education field to be used to teach and learn other subjects.

2.2 Source Engines and Search Keywords

We employed the main sources of relevance for scientific publications in the field of
Computer Science:

• IEEExplore;
• ACM Digital Library;
• ScienceDirect;
• Scopus;
• Google Scholar.

We did not use only the Google Scholar aggregator since several sources have
mentioned that “it should not be used alone” as it maymiss some sources (Haddaway,
Collins, Coughlin, & Kirk, 2015). Indeed, this was something that we easily verified
during our search.

We used a query composed by terms related to the Agile context and method-
ologies, mixed with terms related to the education field. Specifically, our query was
expressed by

(agile OR scrum OR kanban OR extreme programming OR pair programming) AND (edu-
cation OR teaching OR learning OR classroom OR K-12)

Even though it was not systematic, we tried to include all the relevant sources as
much as possible using the snowballing technique (Wohlin, 2014). Snowballing, in
this context, is based on the use of the reference list or citations to a paper to identify
additional papers.

We collected only the papers written in English and published from 2003 to 2017
in international journals and the proceedings of international conferences.



28 P. Salza et al.

2.3 Selected Papers

From our search, we found a total of about 200 papers. Nevertheless, we did not use
all of them to compose this chapter. We only selected those we considered as the
most relevant to represent the concepts and goals of our study. In this section, we
give some statistics about them.

Themajority of the papers, i.e., 80.5%, were published in the proceedings of inter-
national conferences. 18% was composed of publications in international journals.
The rest consisted of one book chapter and one technical report.

In terms of date of publication, 36 papers (18%) were published from 2003 to
2009. Starting from 2010, the number increased significantly year by year, from 14
to 27 in 2017 for a total of 164 papers in that range of years (82%).

As for the methodologies, we identified some main categories

• Agile: 83.5% of the papers refer generically to “Agile” as a methodology for
teaching and learning;

• Scrum: 41% of the papers refer specifically to Scrum;
• eXtreme Programming: 11% of the papers refer specifically to eXtreme Program-
ming;

• Pair Programming: 19.5% of the papers refer specifically to Pair Programming.
The number is higher than for eXtreme Programming since it includesmanyworks
considering “Pair Programming” as an independent methodology;

• Kanban: only 3% of the papers refer specifically to Kanban.

We also divided the papers by education level. Very few of them, i.e., 10%, are
papers targeting K-12 students, from a minimum of 4- to 19-year-old (the ranges can
change according to different countries). The rest is focused on academy students,
where 87.5% is for undergraduates and 18.5% specifically for master students.

The majority of the papers refer to on-site education. However, we found 7 papers
that address the adaptation of Agile methodologies within the e-learning context.

Finally, we distinguished between works that use Agile methodologies for teach-
ing and learning specific subjects. As expected, the majority of them, i.e., 91.5%, are
about Computer Science and Software Engineering, since it easy to adapt method-
ologies originally devised for software development by reproducing a subset of con-
cepts for the classroom environment. However, 8.5% refer also to different fields,
e.g., Mathematics.

3 Agile

In 2001, a team of 17 leading software practitioners devised and published what
they defined the “Manifesto for Agile Software Development”. It is a document that
defines the values and principles of the Agile software development movement as
a summary of how they found “better ways of developing software by doing it and
helping others to do it” (Beck et al., 2001).



Agile Methodologies in Education … 29

Fig. 1 The waterfall and Agile lifecycles

The key idea is to have an incremental and iterative approach instead of an in-
depth planning at the beginningof a software project.Agilemethodologies are open to
changes in requirements and encourage constant feedback from end users/customers.

In an Agile lifecycle, shown in Fig. 1, there is not a strict sequence of events to
follow as the classicwaterfallmodel has. The phases are flexible and always evolving,
and many of them can even happen in parallel:

1. requirements analysis: involves many meetings with the managers, stakeholders,
and users to identify the business requirements. The team collects quantifiable,
relevant, and detailed information, i.e., who will use the product, and how;

2. planning: once the idea becomes viable and feasible, the team splits it into smaller
pieces of work, prioritizing and assigning them to different iterations;

3. design: the team looks for a solution for the requirements, together with a test
strategy;

4. development: the features are implemented;
5. testing: the produced code is tested against the requirements to make sure the

software is solving the customer needs;
6. deployment: at this point, the product is delivered to the customers to be used,

but this is not the end of the project. It can be only a partial delivery, and new
requirements could come.

Agile has given birth to several methodologies, all following its philosophy (Abra-
hamsson, Salo, Ronkainen, & Warsta, 2002; Dingsøyr, Nerur, Balijepally, & Moe,
2012; Dybå & Dingsøyr, 2008). Table 1 shows the main employed ones.

The table shows only a few of the available Agile methodologies. Indeed, indus-
tries do not necessarily follow their rules in a strict way and this produced many
variants, or hybrids, e.g., Scrumban (Ladas, 2009). In the following sections, an
overview of Agile values and principles adaptated to the classroom environment is
first given. Then, the focus is shifted to eXtreme Programming and Scrum since they
represent the most relevant applications in the field of education.



30 P. Salza et al.

Table 1 Agile methodologies

Methodology Description

Adaptive Software
Development (ASD)

It focuses mainly on the problems in developing complex and large
systems. The method strongly encourages incremental, iterative
development, with constant prototyping. Its aim is to provide a
framework with enough guidance to prevent projects from falling
into chaos, but not too much, which could suppress emergence and
creativity (Abrahamsson et al., 2002)

Crystal methods A family of methods for co-located teams of different sizes and
criticality: Clear, Yellow, Orange, Red, and Blue. Crystal Clear, the
most used one, focuses on communication in small teams developing
software that is not life-critical. Clear development has seven
characteristics: frequent delivery, reflective improvement, osmotic
communication, personal safety, focus, easy access to expert users,
and requirements for technical environment (Cockburn, 2004; Dybå
& Dingsøyr, 2008)

Dynamic Software
Development Method
(DSDM)

It divides projects into three phases: pre-project, project lifecycle,
and post project. Nine principles are present: user involvement,
empowering the project team, frequent delivery, addressing current
business needs, iterative and incremental development, allowing
reversing changes, high-level scope being fixed before project starts,
testing throughout the lifecycle, and efficient and effective
communication (Dybå & Dingsøyr, 2008; Stapleton, 2003)

eXtreme Programming
(XP)

It focuses on best practices for development: the planning game,
small releases, metaphor, simple design, testing, refactoring, Pair
Programming, collective ownership, Continuous Integration, 40-hour
workweek, on-site customers, and coding standards (Beck, 1999;
Dybå & Dingsøyr, 2008)

Feature-Driven
Development (FDD)

It combines model-driven and Agile development with emphasis on
the initial object model, a division of work in features, and iterative
design for each feature. FDD claims to be suitable for the
development of critical systems. An iteration of a feature consists of
two phases: design and development (Dybå & Dingsøyr, 2008;
Palmer & Felsing, 2001)

Kanban It is a scheduling method developed by Toyota for Lean production.
It was designed as a system for scheduling to facilitate the production
and inventory control. Using Kanban, work teams can achieve a
Just-In-Time (JIT) manufacturing, reducing flow times within
production system and response times from suppliers and to
customers (Sugimori, Kusunoki, Cho, & Uchikawa, 1977)

Scrum It focuses on project management in situations where it is difficult to
plan, with mechanisms for “empirical process control”. The feedback
loops constitute the core element. The software is developed by a
self-organizing team in increments called “sprints”, starting with
planning and ending with a final review. Then, the product owner
decides which backlog items should be developed in the next sprint.
Team members coordinate their work in a daily stand-up meeting.
One team member, the Scrum master, is in charge of solving problems
that might stop the team from work efficiently (Dybå & Dingsøyr,
2008; Schwaber & Beedle, 2002; Schwaber & Sutherland, 2011)



Agile Methodologies in Education … 31

3.1 Agile in Education

Many researchers had the intuition of tailoring Agile methodologies to the education
environment (Dewi & Muniandy, 2014). Stewart et al. presented a first review of
the literature aimed at showing how agile methods were applied to education (Stew-
art, DeCusatis, Kidder, Massi, & Anne, 2009). Moreover, they provided a mapping
between values and principles of theAgileManifesto to specific educational methods
and activities.

Table 2 shows the values defined in the Agile Manifesto and the applied mapping,
which consists of the translation of software development figures and roles to the
education environment (Stewart et al., 2009).

As it is shown in the table, the first value favors student-centric environments as
the most effective method of learning. In the Agile school, the old-fashioned lecture-
driven environment is considered as surpassed. The students participate actively
in the learning process through activities and group-based components aiming at
reinforcing concepts and allowing for exploration.

As with software in Agile, the second value in education favors the production of
working projects from the beginning, without waiting for the end of a project-based
course. The students work in an iterative environment with a strong deliverable
component, leading to higher immersion in the project, more learning, and final
deliverables of better quality.

The third value allows having an environment focused on what the students are
doing and which pedagogical methods can facilitate the learning. In traditional
courses, the syllabus is outlined as a strict contract between the student and the
instructor. Within the Agile school, the students and instructor can establish a more
flexible and collaborative relationship, similar to the way that developers and cus-
tomers collaborate following the Agile approach.

Finally, with the fourth value, agility is applied so that different learning
approaches can be adopted and delivery methods changed if the current methods
are not producing the expected results.

Table 3 shows the original principles of the Agile Manifesto and the mapping
that Stewart et al. applied to the context of the educational environment. In line with

Table 2 Mapping Agile values to the classroom environment (Stewart et al., 2009)

Value Agile Manifesto Agile Manifesto in Education

1 Individuals and interactions, over process
and tools

Students over traditional processes and
tools

2 Working software, over comprehensive
documentation

Working projects over comprehensive
documentation

3 Customer collaboration, over contract
negotiation

Student and instructor collaboration over
rigid course syllabi

4 Responding to change, over following a
plan

Responding to feedback rather than
following a plan



32 P. Salza et al.

Table 3 Mapping Agile principles to the classroom environment (Stewart et al., 2009)

Principle Agile Manifesto Agile Manifesto in Education

1 High priority to the customer satisfaction,
early and continuously delivering
valuable software

High priority to prepare the student to be
self-organized, continuously delivering
course components that reflect
competence

2 Requirements can change at any time for
the customer’s competitive advantage

The instructor and students can adapt to
changes at any time to facilitate learning
and better develop marketable skills

3 Deliver working software frequently with
a preference to the shorter timescale

Working deliverables from the students
over short time periods allowing for
frequent feedback

4 Business people and developers must
work together daily

Iterative interaction between the
instructor and students (or student groups)

5 Build projects around motivated
individuals and support them in a proper
environment

Give students the environment and
support necessary to be successful

6 Prefer face-to-face conversation Allow for direct face-to-face interaction
with students or student groups

7 Working software is the primary measure
of progress

Working deliverables (e.g., models,
software, project deliverables,
presentations) are the primary measure of
student progress

8 The sponsors, developers, and users
should be able to maintain a constant pace
indefinitely

The cooperative learning environment is
the basis for teaching the skills needed for
life-long learning

9 Continuous attention to technical
excellence and good design enhances
agility

Continuous attention to technical
excellence and good design enhances
learning

10 Simplicity is essential Understanding the problem and solving it
simply and clearly is essential

11 The best architectures, requirements, and
designs emerge from self-organizing
teams

Student groups and teams should
self-organize, but all should participate
equally in the effort

12 At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly

At regular intervals, the students and
instructor reflect and offer feedback on
how to be more effective, then the
stakeholders adjust accordingly to be
more efficient

the values described above, the 12 principles highlight that the highest priority of
Agile instructors is to satisfy the needs of the students, together with their families
who become an active part in the learning process, through the early and continuous
delivery of meaningful learning. Every change in this direction, even late in the
learning cycle, is always welcome.



Agile Methodologies in Education … 33

The students are motivated individuals, working in an environment based on
the complete trust from the instructors about getting the job done. Indeed, the
old-fashioned face-to-face conversation is assumed superior over technology, even
though the latter is considered of undeniable importance and usefulness.

In this context, working deliverables constitute the most tangible measure of
student progress. For this reason, meaningful and project-based learning is primarily
encouraged with continuous attention to technical excellence and good design but
promoting the simplicity of solutions. The students are self-organized in teams, all
collaboratingwith the same effort and reflecting at regular intervals on how to become
more effective, tuning and adjusting their behavior accordingly.

Agile has been effectively used in the academy to teach software engineering,
mostly with a project-based learning approach where the final learning product is a
software produced simulating the Agile practices in small groups (Alfonso & Botia,
2005; Bruegge, Reiss, & Schiller, 2009; Hanks, 2007; Kessler & Dykman, 2007;
Lu & DeClue, 2011; Paez, 2017; Rico & Sayani, 2009). As an example, Alfonso
and Botia described the use of an iterative and Agile process model in a software
engineering course for undergraduate students (Alfonso & Botia, 2005). It served
both as an educational technique for teachers and a subject of learning for students.
The model allowed to the expected knowledge to be provided efficiently, acquired
gradually, evaluated, and the learning process to be effectively driven.

The use of Agile in K-12 environments is also documented (Fronza, Ioini, &
Corral, 2017; Kastl, Kiesmüller, & Romeike, 2016; Meerbaum-Salant & Hazzan,
2010; Romeike & Göttel, 2012). As a relevant example, Fronza et al. described
the design and implementation of an educational framework using animations and
Scratch to teach computational thinking skills based on Agile practices (Fronza
et al., 2017). The framework covers 60 h, 4 h per week. The students start from
brainstorming and produce storyboards and mindmaps. In each Agile iteration, they
draw and program, checking the conformance with the requirements. During the
retrospective phase, they analyze the whole project and plan future activities.

Some works report the effectiveness of applying Agile methodologies also in
online courses (Ashraf, Shamail,&Rana, 2012;Noguera,Guerrero-Roldán,&Masó,
2018; Vivian, Falkner, & Falkner, 2013). For instance, Noguera et al. proposed an
approach for implementing the Agile method into online academic education con-
text (Noguera et al., 2018). The results revealed that Agile strategies incorporated
in project-based learning facilitated both the team regulation and project manage-
ment. The teacher acted as a supervisor and facilitator, helping students improve
their learning process iteratively through the development of the projects.

Agile was also employed to teach other subjects. Seman et al. reported a study
about applying Agile to two project-based learning courses in electrical engineer-
ing (Seman, Hausmann, & Bezerra, 2018). The results showed the importance of
the humanization feature in learning, automatically given by applying Agile, as a
fundamental part of the education process in electrical engineering.

Finally, the literature reports many cases in which Agile was exploited for its
useful tools, not necessarily applying a full methodology. An example is the Kanban
board, especially in project-based learning (Ahmad, Liukkunen, & Markkula, 2014;



34 P. Salza et al.

Fig. 2 A typical Kanban board

Bacea, Ciupe, & Meza, 2017; Heikkilä, Paasivaara, & Lassenius, 2016). Widely
used in industry, Kanban boards are a physical or electronic visualization tool for
the management of work in teams, to improve their delivery of products and services
in terms of predictability, quality and just-in-time performance. Figure 2 depicts
a typical Kanban board, structured on multiple columns to visualize the workflow
process.

Every task in a project, represented by a card, will follow a path:

1. from the “to do” status, where the tasks are discussed within the team and then
assigned to specific members;

2. passing to the “in progress” status when the tasks are being executed;
3. ending in “done” when completed.

4 eXtreme Programming

The origin of eXtreme Programming (XP) started in 1996 from Kent Beck, one
of the 17 Agile practitioners that signed the Agile Manifesto. At that time, Beck
was handling the Chrysler Comprehensive Compensation System (C3) project in the
Chrysler Corporation aiming at replacing several payroll applications with a single
system. In 1999, he collected all the experience at Chrysler in a book called “eXtreme
Programming Explained: Embrace Change” (Beck, 1999).

XP is a development methodology that is intended to improve software quality
and responsiveness to change in customer requirements. Figure 3 shows the XP
lifecycle. XP allows frequent releases in short development cycles, improving the
productivity of the team, and at the end of which new customer requirements can be
adopted. XP employs user stories and associates acceptance tests to them that need
to be successfully passed before the stories can be considered as done. Moreover,



Agile Methodologies in Education … 35

Fig. 3 The eXtreme Programming lifecycle

the programmer is expected to write tests for the individual tasks that contribute to
a story. Indeed, XP puts tests before code, and each piece of code is expected to be
associated with a test, or it should not be integrated.

XP is based on five values:

• simplicity: simple solutions are considered as cheaper and faster to be implemented
than more complex solutions;

• communication: the documentation is always after the direct communication. All
the team members should intensively communicate with each other through per-
sonal dialogue, aiming at avoiding misunderstandings;

• feedback: the customer is interviewed using very short feedback loops. The devel-
opment progress is frequently shown, and mistakes can be thus avoided. The
feedback also comes from the tests;

• respect: every member of the team is valuable, even if it is just enthusiasm;
• courage: using the XP values requires a great deal of courage. It is important to tell
the truth about progress and estimates. Also, XP does not allow fear of refactoring
old code or throwing it away if needed for changes.

A typical XP team includes six roles:

• customer: the person responsible for writing the user stories, setting priorities and
specifying the functional tests;

• programmer: an ordinary developerwhoproduces the code andperforms thewhole
amount of expected project tasks;

• coach: watches and manages the teamwork, teaching its members how to imple-
ment the most effective practices;

• tracker: the person who monitors the progress of the software development and
detects possible issues;

• tester: responsible for product testing;
• doomsayer: tracks the project risks and warns the team about them.

Although there are a total of 28 rules and practices of XP, they can be com-
pacted into 12 simple rules, many of which originated some of the most used and



36 P. Salza et al.

modern Agile components and methodologies, e.g., Test-Driven Development, Pair
Programming and Continuous Integration:

1. user stories (planning): a smaller version of use cases. The customer defines as
briefly as possible the specification of the new application regarding features,
value, and priority. The stories serve as a base to cost and effort estimation of
the project;

2. small releases (building blocks): each newly added requirements will be
instantly incorporated, and the system is re-released;

3. metaphor (standardized naming schemes): the developers adhere to standards
on names, e.g., class and method names;

4. collective ownership: there is not any individual property of the code. All the
code can be reviewed and updated by everyone;

5. coding standard: developers also adhere to styles and formats of coding to favor
the compatibility between team members;

6. simple design: the most straightforward implementation of solutions is the most
welcome if it meets all the required functionalities;

7. refactoring: the application should be continually adjusted and improved by all
the team members;

8. Test-Driven Development: every small release must pass tests before becoming
a new release;

9. Pair Programming: the programmers work in pairs in front of a single machine.
Essentially, all the code is reviewed as it is written;

10. Continuous Integration: the code is continuously integrated and released avoid-
ing the work fragmentation, no more than a few hours;

11. 40-h workweek: no one works more than what the body can handle;
12. on-site customer: the customer is an integral part of the project. S/he has to be

available at all the times to ensure the right track for the project.

4.1 XP in Education

The characteristics of XP also aroused the interest of researchers in education. In
particular, Lembo and Vacca proposed an instructional design methodology that
exploits XP and project-based learning (Lembo & Vacca, 2012). They found the
XP paradigm as particularly well suited for teaching since everything continuously
changes in an educational environment. The students are human, and thus their
learning response to teaching is never completely predictable, changing with the
time and from student to student. The instructional design process is considered as
constituted by roles, e.g., the students, teachers, leadership teams, families, each of
them performing some activities, e.g., solving problems, personal study, lecturing.

In the same way as the Agile Manifesto in Education (see Table 3), Lembo and
Vacca adapted the values of Agile to the educational environment to apply the XP
methodology:



Agile Methodologies in Education … 37

1. the collaboration between students and teachers over processes and tools;
2. the collaboration between students, parents, and teachers over educational agree-

ments;
3. exciting activities over instructional design documentation;
4. the design, problem-solving and task performing over notions and knowledge;
5. responding to feedback over following plans.

The highest priority is to satisfy the students and their parents through the con-
tinuous production of real projects, and the achievement of results. A collaboration
between teachers, students, and parents takes places during each iteration of the
project, preferring face-to-face communication. The educational projects must be
designed to solve complex real-life problems and be of a short duration, generating
at least the level of expected knowledge, skills, and capabilities. Thus, a project must
require critical activities, analysis, synthesis, problem-solving to be applied individ-
ually or cooperatively and collaboratively. The project proposals are presented in the
form of stories and shared with students and parents, who represent the stakeholders.

The literature presents some works regarding the teaching of XP methodology
in software engineering courses (Melnik & Maurer, 2003, 2005; Stapel, Lübke, &
Knauss, 2008). Stapel et al. presented the experiences and best practices gained
in three different XP labs conducted during three years of a software engineering
course (Stapel et al., 2008). They organized the labs to practically experience most of
the XP practices. Besides being entertaining, XP resulted in a worthwhile experience
to improve the overall programming and social skills. Melnik and Maurer conducted
a study over five different academic levels of agile practices, in particular using the
XP method, showing that all the students accept and like them (Melnik & Maurer,
2005).

Many works involve the practical use of Pair Programming (PP), one of the most
influential practices derived from XP (Anderson & Gegg-Harrison, 2012; Lui, Litts,
Widman, Walker, & Kafai, 2016; Umapathy & Ritzhaupt, 2017). Other than numer-
ous experiences in computer science, PP was also used to teach other subjects. For
instance, Lui et al. reported the findings from an e-textile workshop in which high
school students worked in pairs, observing positive results regarding role distribu-
tion, and partner communication strategies (Lui et al., 2016). Furthermore, Anderson
and Gegg-Harrison explored pair teaching, where the pairing concept is applied to
the teachers instead of the students (Anderson & Gegg-Harrison, 2012). Pair teach-
ing increased the interaction between teachers and individual students, improved the
quality of course materials, and gave the students two potential role models.

Moreover, Test-DrivenDevelopment (TDD)was investigated in the literature.One
example is the one involving the use of the Coding Dojo as an environment to teach
TDD (Heinonen, Hirvikoski, Luukkainen, & Vihavainen, 2013; Lee, Marepalli, &
Yang, 2017; Luz, Neto, & Noronha, 2013). Coding Dojo is a dynamic and collab-
orative activity where people can practice programming, in particular by applying
techniques related to XP practices such as TDD and PP. Even if Coding Dojos are
usually themed by programming challenges, the environment is non-competitive,



38 P. Salza et al.

collaborative, and fun. The participants were able to learn and practice TDD with a
relaxed feeling.

5 Scrum

Scrum is one of the most employed process frameworks implementing Agile values
and principles. It was created in 1993 and presented to the scientific community
in 1995 by Schwaber and Sutherland, two of the authors of the Agile Manifesto.
Their work was then collected in a public document named “The Scrum Guide”,
trying to define the framework officially (Schwaber & Sutherland, 2011). The term
was borrowed from a 1986 article by Takeuchi and Nonaka in the context of product
development, published in theHarvardBusinessReview (Takeuchi&Nonaka, 1986).
They found an analogy between high-performing, cross-functional teams and the
scrum formation used by rugby teams.

In Scrum, the software is developed by following an iterative model used to
manage people and complex projects. Figure 4 shows the Scrum lifecycle. It follows a
set of roles, responsibilities, andmeeting that never change.With Scrum, the products
are built in a series of fixed-length iterations, short and on a regular cadence, defined
as “sprints”. During these intervals, teams have the time to develop the software and
at the end of each sprint, i.e., the “milestone”, the progress is tangible. By using short
iterations, the importance of a good estimation and a fast feedback from tests are
reinforced.

Everyone in Scrum plays a specific role

• product owner: serves as an interface between the development team and its cus-
tomers. S/he is responsible for checking that the expectations, in the form of a
prioritized wish list called “product backlog”, are respected;

• Scrummaster: a facilitator within the teammembers. S/he is responsible for ensur-
ing that the Scrum best practices are respected, and the project moves forward;

Fig. 4 The Scrum lifecycle



Agile Methodologies in Education … 39

• Scrum development team: comprehends the developers that work together to create
and test incremental releases of the product.

Scrum defines four events related to a sprint called “ceremonies”:

• sprint planning: the team meets and determines what to complete in the coming
sprint;

• daily stand-up (or “daily scrum”): a 15-min short meeting for the team to sync
on the project progress;

• sprint demo: the team shows what has been produced during sprint;
• sprint retrospective: a review of the work done and not done, defining the actions
to make the next sprint better.

The development team writes down a list of tasks in what is called the “scrum
backlog”. These are divided into value-driven “user stories”, a quick way of handling
customer requirements without having to create formalized documents.

5.1 Scrum in Education

Many researchers worked on ways to adapt Scrum to the educational context. One
relevant attempt is given from“eduScrum” (Delhij, vanSolingen,&Wijnands, 2015),
a guide that translates theScrumprocess, roles and responsibilities in pedagogic terms
and that can potentially be applied to teach any subject at any education level.

The teacher assumes the role of product owner, who decides what needs to be
learned, monitors, processes, and evaluates the students. His/her main goal is deliv-
ering the highest value, in terms of both discipline specific learning outcomes and
soft skills such as organization, planning, collaboration, and teamwork.

The student team is self-organized and aims at acquiring (delivering) learning
results iteratively and incrementally. An eduScrum master, who is chosen by the
product owner or the class, acts as a coaching leader and helps the team to perform
optimally.

Even the sprints are mapped into the education context. The tasks are consid-
ered as time-boxed events with a maximum duration and designed to allow critical
transparency and inspection. Thus, the sprints are collections of tasks, coherently
organized to achieve the learning goals, and usually have a duration of 2 months or
less. The expected ceremonies in eduScrum are

• a planningmeeting at the beginning of the sprint, to define team formation, learning
goals, and work planning;

• the stand-ups at the beginning of every class, with a duration of 5 min to synchro-
nize activities and make plans for the next meeting;

• a review of the past activities of the last sprint, to display what the members have
learned;

• a retrospective to create a plan for improvement and preparing for the future sprint.



40 P. Salza et al.

As for Scrum used to teach software engineering, the literature reports many
experiences where it was successfully employed (Bruegge, Krusche, & Wagner,
2012; Mahnic, 2012; Scharf & Koch, 2013; Smith, Cooper, & Longstreet, 2011;
Werner, Arcamone, & Ross, 2012; Zorzo, de Ponte, & Lucredio, 2013). Scrum is
adapted in the context of the development of academic projects, both in undergraduate
and graduate courses. The students are organized into small teams and execute the
projects following the rules of Scrum. The instructor usually takes the role of product
owner and, for each team, one of the members acts as the Scrum master.

Missiroli et al. presented a case study of software development teaching for K-
12 education using Scrum (Missiroli, Russo, & Ciancarini, 2017). They designed
an experiment in seven classes in different schools, assigning the same software
project but realized by two teams of the same class using different methodologies,
i.e., the classic waterfall and Scrum. For Scrum, the product owner is not a peer but
the teacher. Considering the young age and experience of participants, the authors
suggested striking a compromise between the two methodologies, planning, and
structure along with creativity and reactivity.

Scrum was also successfully introduced in universities by means of serious
games (Fernandes & Sousa, 2010; Lynch et al., 2011; Paasivaara, Heikkilä, Lasse-
nius, & Toivola, 2014; Steghöfer, Burden, Alahyari, & Haneberg, 2017; von Wan-
genheim, Savi, & Borgatto, 2013). One example is the one related to LEGO-based
games (Lynch et al., 2011; Paasivaara et al., 2014; Steghöfer et al., 2017). In the
games, student teams learn the Scrum roles, events, and concepts in practice by sim-
ulating several development sprints, incrementally planning and building a product
of LEGO blocks. Another example is SCRUMIA, which involves a different setup
where teams of students are asked to develop different artifacts with the use only of
pencil and paper over multiple sprints (von Wangenheim et al., 2013).

Moreover, Scrum was effectively employed as an educational and management
method for interdisciplinary education (Cubric, 2013; da Silva Coelho et al., 2014;
Gestwicki & McNely, 2016; Ramos et al., 2013). Gestwicky and McNely managed
together programmers, artists, and user interface designers to produce 6 different
educational game projects (Gestwicki & McNely, 2016). The students came from
a variety of degree programs, working in collaboration with one or more faculty
mentors and community partners from outside the university.

Finally, Scrum was used to teach other subjects (Duvall et al., 2017; Grimheden,
2013; Mäkiö, Mäkiö-Marusik, & Yablochnikov, 2016; Pinto et al., 2009; Ringert,
Rumpe, Schulze, & Wortmann, 2017; Scharff & Verma, 2010). Duvall et al. imple-
mented some Scrum-based classroom management techniques with the aim of get-
ting students to take more responsibility for their learning in a discrete mathemat-
ics course at the university (Duvall et al., 2017). The students, divided into teams,
enjoyed the self-management and crafting of their learning process. The teams vari-
ously chose lecture-based learning, online video-learning, traditional, or interactive
online textbook reading. Each of them kept a project management progress board so
that the professor could track team progress toward self-selected milestones. Besides
the independent work, a few traditional lecture times followed, feeling to the stu-
dents more like group discussions. Furthermore, Grimheden investigated the use of



Agile Methodologies in Education … 41

Scrum for the teaching of mechatronics, which is defined as a synergic integration of
electronics, mechanical engineering, control, and software engineering (Grimheden,
2013). They showed that Scrum enables the students to deliver results faster, more
reliably and with higher quality than other methodologies.

6 Conclusions

In this chapter, the world of Agile methodologies is explored focusing on their adap-
tation to the education environment. The philosophy behind Agile and its variations,
e.g., eXtreme Programming and Scrum, consisting of values, principles, and best
practices, is also maintained in the classroom, where the people factor is particularly
important.

The reported experiences suggest that Agile can be effective, especially where
active and project-based learning can be applied. Not only can Agile be simulated in
software engineering courses, but also it can be applied to teach other subjects. Also
Agile tools, e.g., Kanban boards, can be part of the learning process.

Applying Agile methodologies to learning and teaching transforms from knowl-
edge transfer to knowledge generated from rich collaboration and experience. Teach-
ers become facilitators, coaches, and inspirational servant leaders for students that
are self-directed learners. The focus is not on rigid plans, rather flexibility is required
to take into account students’ feedback and their different abilities, interests, diffi-
culties, and experiences, aiming at unlocking their hidden strengths and passions.
The emphasis is on delivering the highest value, in terms of both discipline specific
learning outcomes and soft skills such as organization, planning, collaboration, and
teamwork.

This review of the literature shows that there is a growing interest in studying,
but even more, applying Agile learning methodologies to allow students to work
together in an energetic, targeted, and effective way. There is also an active effort
from researchers in formalizing the agile methodologies in the education context,
e.g., eduScrum.

References

Abrahamsson, P., Salo, O., Ronkainen, J., &Warsta, J. (2002).Agile software development methods:
Review and analysis. VTT.

Ahmad,M. O., Liukkunen, K., &Markkula, J. (2014). Student perceptions and attitudes towards the
software factory as a learning environment. In IEEE Global Engineering Education Conference
(EDUCON) (pp. 422–428).

Alfonso, M. I., & Botia, A. (2005). An iterative and agile process model for teaching software
engineering. In IEEE International Conference on Software Engineering Education and Training
(CSEE&T) (pp. 9–16).



42 P. Salza et al.

Anderson, N., & Gegg-Harrison, T. (2012). Pairˆ2 learning�pair programming × pair teaching. In
Western Canadian Conference on Computing Education (pp. 2–6).

Ashraf, M. A., Shamail, S., & Rana, Z. A. (2012). Agile model adaptation for E-learning students’
final-year project. In IEEE International Conference on Teaching, Assessment and Learning for
Engineering (TALE) (pp. T1C–18).

Bacea, I. M., Ciupe, A., & Meza, S. N. (2017). Interactive Kanban—Blending digital and physical
resources for collaborative project based learning. In IEEE International Conference onAdvanced
Learning Technologies (ICALT) (pp. 210–211).

Beck,K. (1999).ExtremeProgramming explained: Embrace change. Addison-Wesley Professional.
Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., … Thomas,
D. (2001). Manifesto for agile software development. Retrieved from http://agilemanifesto.org.

Bruegge, B., Krusche, S., & Wagner, M. (2012). Teaching Tornado: From communication models
to releases. In Educators’ Symposium (EduSymp) (pp. 5–12).

Bruegge, B., Reiss, M., & Schiller, J. (2009). Agile principles in academic education: A case study.
In International Conference on Information Technology: New Generations (pp. 1684–1686).

Cockburn, A. (2004). Crystal clear: A human-powered methodology for small teams. Pearson
Education.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. Computer,
34(11), 131–133.

Cubric,M. (2013). An agilemethod for teaching agile in business schools.The International Journal
of Management Education, 11(3), 119–131.

da Silva Coelho, R. A., da Cunha, A. M., Gomes, A. A., Segeti, E. R., Marques, J. C., Vicente,
L. M., … Mirachi, S. (2014). Developing a CDS with Scrum in an interdisciplinary academic
project. In IEEE/AIAA Digital Avionics Systems Conference (DASC) (pp. 5D6–1).

Delhij, A., van Solingen, R., & Wijnands, W. (2015). The eduScrum Guide (No. 1.2) (p. 21).
Retrieved from http://eduscrum.nl/en/file/CKFiles/The_eduScrum_Guide_EN_1.2.pdf.

Dewi, D. A., & Muniandy, M. (2014). The agility of agile methodology for teaching and learning
activities. In Malaysian Software Engineering Conference (MySEC) (pp. 255–259).

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodolo-
gies: Towards explaining agile software development. Journal of Systems and Software, 85(6),
1213–1221.

Duvall, S., Hutchings, D., & Kleckner, M. (2017). Changing perceptions of discrete mathematics
through Scrum-based course management practices. Journal of Computing Sciences in Colleges,
33(2), 182–189.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9–10), 833–859.

Fernandes, J. M., & Sousa, S.M. (2010). PlayScrum—Acard game to learn the scrum agile method.
In International Conference on Games and Virtual Worlds for Serious Applications (pp. 52–59).

Fronza, I., Ioini, N. E., & Corral, L. (2017). Teaching computational thinking using agile soft-
ware engineering methods: A framework for middle schools. ACM Transactions on Computing
Education, 17(4), 1–28.

Gestwicki, P., & McNely, B. (2016). Interdisciplinary projects in the academic studio. ACM Trans-
actions on Computing Education, 16(2), 1–24.

Grimheden, M. E. (2013). Can agile methods enhance mechatronics design education?Mechatron-
ics, 23(8), 967–973.

Haddaway, N. R., Collins, A. M., Coughlin, D., & Kirk, S. (2015). The role of google scholar in
evidence reviews and its applicability to grey literature searching. PLoS ONE, 10(9), e0138237.

Hanks, B. (2007). Becoming agile using service learning in the software engineering course. In
Agile Conference (AGILE) (pp. 121–127).

Heikkilä, V. T., Paasivaara, M., & Lassenius, C. (2016). Teaching University Students Kanban with
a Collaborative Board Game. In IEEE/ACM International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET) (pp. 471–480).

http://agilemanifesto.org
http://eduscrum.nl/en/file/CKFiles/The_eduScrum_Guide_EN_1.2.pdf


Agile Methodologies in Education … 43

Heinonen, K., Hirvikoski, K., Luukkainen, M., & Vihavainen, A. (2013). Learning agile software
engineering practices using coding dojo. In ACM SIGITE Conference on Information Technology
Education (SIGITE) (pp. 97–102).

Kastl, P., Kiesmüller, U., & Romeike, R. (2016). Starting out with projects: Experiences with
agile software development in high schools. InWorkshop in Primary and Secondary Computing
Education (WiPSCE) (pp. 60–65).

Kessler, R., & Dykman, N. (2007). Integrating traditional and agile processes in the classroom. In
ACM Technical Symposium on Computer Science Education (SIGCSE) (pp. 312–316).

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic liter-
ature reviews in software engineering. EBSE Technical Report, Keele University.
Retrieved from https://www.cs.auckland.ac.nz/~norsaremah/2007%20Guidelines%20for%20pe
rforming%20SLR%20in%20SE%20v2.3.pdf.

Ladas, C. (2009). Scrumban: Essays on Kanban systems for lean software development. Modus
Cooperandi Press.

Lee, Y., Marepalli, D. B., & Yang, J. (2017). Teaching test-drive development using dojo. Journal
of Computing Sciences in Colleges, 32(4), 106–112.

Lembo, D., & Vacca, M. (2012). Project Based Learning+Agile Instructional Design�EXtreme
Programming based Instructional Design Methodology for Collaborative Teaching (No. 8).
Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Sapienza Università di Roma.

Lu, B.,&DeClue, T. (2011). Teaching agilemethodology in a software engineering capstone course.
Journal of Computing Sciences in Colleges, 26(5), 293–299.

Lui, D., Litts, B. K., Widman, S., Walker, J. T., & Kafai, Y. B. (2016). Collaborative maker activ-
ities in the classroom: Case studies of High School Student pairs’ interactions in designing
electronic textiles. In Annual Conference on Creativity and Fabrication in Education (FabLearn)
(pp. 74–77).

Luz, R. B. da, Neto, A. G. S. S., & Noronha, R. V. (2013). Teaching TDD, the coding dojo style. In
IEEE International Conference on Advanced Learning Technologies (ICALT) (pp. 371–375).

Lynch, T. D., Herold, M., Bolinger, J., Deshpande, S., Bihari, T., Ramanathan, J., & Ramnath, R.
(2011). An agile boot camp: Using a LEGO®-based active game to ground agile development
principles. In IEEE Frontiers in Education Conference (FIE) (pp. F1H–1).

Mahnic, V. (2012). A capstone course on agile software development using Scrum. IEEE Transac-
tions on Education, 55(1), 99–106.

Mäkiö, J., Mäkiö-Marusik, E., & Yablochnikov, E. (2016). Task-centric holistic agile approach
on teaching cyber physical systems engineering. In Annual Conference of the IEEE Industrial
Electronics Society (IECON) (pp. 6608–6614).

Meerbaum-Salant, O., & Hazzan, O. (2010). An agile constructionist mentoring methodology for
software projects in the high school. ACM Transactions on Computing Education (TOCE), 9(4),
21.

Melnik, G., & Maurer, F. (2003). Introducing agile methods in learning environments: Lessons
learned. In Conference on Extreme Programming and Agile Methods (pp. 172–184).

Melnik, G., & Maurer, F. (2005). A cross-program investigation of students’ perceptions of agile
methods. In IEEE/ACMInternationalConference on SoftwareEngineering (ICSE) (pp. 481–488).

Missiroli, M., Russo, D., & Ciancarini, P. (2017). Agile for millennials: A comparative study. In
IEEE/ACM International Workshop on Software Engineering Curricula for Millennials (SECM)
(pp. 47–53).

Noguera, I., Guerrero-Roldán, A.-E., & Masó, R. (2018). Collaborative agile learning in online
environments: Strategies for improving team regulation and project management. Computers &
Education, 116, 110–129.

Paasivaara, M., Heikkilä, V., Lassenius, C., & Toivola, T. (2014). Teaching students Scrum using
LEGO blocks. In IEEE/ACM International Conference on Software Engineering: Software Engi-
neering Education and Training Track (ICSE-SEET) (pp. 382–391).

Paez, N. M. (2017). A flipped classroom experience teaching software engineering. In IEEE/ACM
International Workshop on Software Engineering Curricula for Millenials (SECM) (pp. 16–20).

https://www.cs.auckland.ac.nz/%7enorsaremah/2007%20Guidelines%20for%20performing%20SLR%20in%20SE%20v2.3.pdf


44 P. Salza et al.

Palmer, S. R., & Felsing, M. (2001). A practical guide to feature-driven development. Pearson
Education.

Pinto, L., Rosa, R., Pacheco, C., Xavier, C., Barreto, R., Lucena, V., … Maurçcio, C. (2009). On
the use of Scrum for the management of practical projects in graduate courses. In IEEE Frontiers
in Education Conference (FIE) (pp. 1–6).

Ramos, M. P., Matuck, G. R., Matrigrani, C. F., Mirachi, S., Segeti, E., Leite, M., … Dias, L. A. V.
(2013).Applying interdisciplinarity and agilemethods in the development of a smart grids system.
In International Conference on Information Technology: New Generations (pp. 103–110).

Rico, D. F., & Sayani, H. H. (2009). Use of agile methods in software engineering education. In
Agile Conference (AGILE) (pp. 174–179).

Ringert, J. O., Rumpe, B., Schulze, C., & Wortmann, A. (2017). Teaching agile model-driven
engineering for cyber-physical systems. In IEEE/ACM International Conference on Software
Engineering: Software Engineering Education and Training Track (ICSE-SEET) (pp. 127–136).

Romeike, R., & Göttel, T. (2012). Agile projects in high school computing education: emphasizing
a learners’ perspective. InWorkshop in Primary and Secondary Computing Education (WiPSCE)
(pp. 48–57).

Scharf, A., & Koch, A. (2013). Scrum in a software engineering course: An in-depth praxis report.
In IEEE International Conference on Software Engineering Education and Training (CSEE&T)
(pp. 159–168).

Scharff, C., & Verma, R. (2010). Scrum to support mobile application development projects in a
just-in-time learning context. In ICSE Workshop on Cooperative and Human Aspects of Software
Engineering (pp. 25–31).

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper Saddle River:
Prentice Hall.

Schwaber, K., & Sutherland, J. (2011). The Scrum guide. Scrum Alliance.
Seman, L. O., Hausmann, R., & Bezerra, E. A. (2018). On the students’ perceptions of the knowl-
edge formation when submitted to a project-based learning environment using web applications.
Computers & Education, 117, 16–30.

Smith, T., Cooper, K. M., & Longstreet, C. S. (2011). Software engineering senior design course:
Experiences with agile game development in a capstone project. In International Workshop on
Games and Software Engineering (GAS) (pp. 9–12).

Stapel, K., Lübke, D., & Knauss, E. (2008). Best practices in Extreme Programming course design.
In IEEE/ACM International Conference on Software Engineering (ICSE) (pp. 769–776).

Stapleton, J. (2003). DSDM: Business focused development. Pearson Education.
Steghöfer, J.-P., Burden, H., Alahyari, H., & Haneberg, D. (2017). No silver brick: Opportunities
and limitations of teaching Scrum with lego workshops. Journal of Systems and Software, 131,
230–247.

Stewart, J. C., DeCusatis, C. S., Kidder, K., Massi, J. R., & Anne, K. M. (2009). Evaluating agile
principles in active and cooperative learning. In Student-Faculty Research Day, CSIS, Pace Uni-
versity (p. B3).

Sugimori, Y., Kusunoki, K., Cho, F., & Uchikawa, S. (1977). Toyota production system and Kanban
system materialization of just-in-time and respect-for-human system. The International Journal
of Production Research, 15(6), 553–564.

Takeuchi, H. & Nonaka, I. (1986, January). The new product development game.Harvard Business
Review. Retrieved from https://hbr.org/1986/01/the-new-new-product-development-game.

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in computer
programming courses: Implications for educational practice. ACM Transactions on Computing
Education, 17(4), 1–13.

Vivian, R., Falkner, K., & Falkner, N. (2013). Analysing computer science students’ teamwork role
adoption in an online self-organised teamwork activity. In Koli Calling International Conference
on Computing Education Research (Koli Calling) (pp. 105–114).

von Wangenheim, C. G., Savi, R., & Borgatto, A. F. (2013). SCRUMIA: An educational game for
teaching Scrum in computing courses. Journal of Systems and Software, 86(10), 2675–2687.

https://hbr.org/1986/01/the-new-new-product-development-game


Agile Methodologies in Education … 45

Werner, L., Arcamone, D., & Ross, B. (2012). Using Scrum in a quarter-length undergraduate
software engineering course. Journal of Computing Sciences in Colleges, 27(4), 140–150.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In International Conference on Evaluation and Assessment in Software
Engineering (EASE) (p. 38).

Zorzo, S. D., de Ponte, L., & Lucredio, D. (2013). Using Scrum to teach software engineering: A
case study. In IEEE Frontiers in Education Conference (FIE) (pp. 455–461).



Practices of Agile Educational
Environments: Analysis
from the Perspective of the Public,
Private, and Third Sectors

Orit Hazzan and Yael Dubinsky

Abstract This chapter examines the application of agile teaching practices from a
sectorial perspective, analyzing how education takes place in the public sector, the
for-profit sector, and the third sector. We show that most professionals occasionally
wear an educational hat, and as such can apply agile teaching and learning practices,
modified as needed for the specific environment (e.g., academia, industry, or the
public sector). We use two frameworks that we introduced in previous research to
analyze agile teaching practices as well as their expression in the three sectors. Our
findings promote efforts to expand the scope of agile learning beyond conventional
(formal or informal) educational systems to other sectors and organizations.

Keywords Agile educational environments · Public sector · Private sector · NGOs
Third sector · Teaching · Learning · HOT analysis framework
MERge analysis framework

1 Introduction

In this chapter, we examine the application of agile teaching practices from a
professional-development perspective using two frameworks we have previously
developed: the HOT (human-organizational-technological) framework for scenario
analysis (Hazzan & Dubinsky, 2010) and the MERge model for professional devel-
opment (Hazzan & Lis-Hacohen, 2016). Using these frameworks, we show that agile
teaching practices can be applied to a range of roles across the three main sectors of
society (the public, private, and third sectors). The two frameworks provide a new
layer of abstraction for the examination of agile teaching practices.

O. Hazzan (B)
Technion – Israel Institute of Technology, Haifa, Israel
e-mail: oritha@technion.ac.il

Y. Dubinsky
Ness Israel, Tel Aviv, Israel
e-mail: yaeldubinsky3@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_3&domain=pdf
mailto:oritha@technion.ac.il
mailto:yaeldubinsky3@gmail.com
https://doi.org/10.1007/978-981-13-2751-3_3


48 O. Hazzan and Y. Dubinsky

The chapter is organized as follows. Section 2 draws on our book Agile Anywhere
(Hazzan & Dubinsky, 2014) to show that agility is relevant in a broad range of
contexts and organizations, including all three sectors mentioned above. Sections 3
and 4 outline the HOT and MERge frameworks respectively. In Sect. 5, we illustrate
the application of agile teaching practices in the three sectors. Sections 6 and 7
conclude the chapter with further insights into agile teaching practices.

2 Agile Anywhere

As we show in our recent book Agile Anywhere (Hazzan & Dubinsky, 2014), agility
is a state of mind that enables one to cope with and navigate through uncertain situ-
ations and change processes. As such, agility can be applied in countless situations,
including education. Indeed, several research works discuss the agile approach in
teaching contexts (e.g., Berry, 2012; Royle & Nikolic, 2016; Chun, 2004; Lang,
2017; McAvoy & Sammon, 2005; Vuokko & Berg, 2007). To cite one example we
highlight in Agile Anywhere, the Finnish education system—widely considered one
of the best in the world—employs many agile practices, including reflective pro-
cesses, teamwork and diversity.

The agile approach to education can be summarized as comprising 11 agile teach-
ing practices (see Table 1). These practices are drawn from Hazzan and Dubinsky
(2006),1 where they related to the teaching of software development methods. Here,
they are simplified and broadened to apply to any domain.

Later in this chapter we show how these agile practices, appropriately modified
for different contexts, can enhance the performance of practitioners in educational
contexts in the first, second and third sectors. First, however, we outline the two
frameworks used for the current analysis, namely theHOT framework and theMERge
model, both of which we developed in previous work. The HOT framework deals
with the organization level and is useful for the analysis of organizational scenarios.
The MERge model focuses on the individual and can be used, for example, for the
analysis of practitioners’ professional development.

3 HOT—Three Perspectives of Agile Environments

In previous work (Hazzan & Dubinsky, 2008, 2014) we defined the Human-
Organizational-Technological (HOT) analysis framework, and used it for the analysis
of real-world scenarios in agile environments. In Hazzan and Dubinsky (2008) we

1Hazzan, O. and Dubinsky, Y. “Teaching Framework for Software Development Methods,” ICSE
Educator’s Track, Proceedings of ICSE (International Conference of Software Engineering), Shang-
hai, China, pp. 703–706. © 2006 Association for Computing Machinery, Inc. https://doi.org/10.11
45/1134285.1134396.

https://doi.org/10.1145/1134285.1134396


Practices of Agile Educational Environments … 49

Table 1 Agile teaching practices (based on Hazzan & Dubinsky, 2006)

Practice # Practice description

1 Inspire, don’t lecture
Agile teaching begins by shifting from a lecture-based model of teaching to an
interactive or blended style, with the aim of inspiring students to take an active
role in their learning. This is a meta-practice that integrates, and is supported by,
many of the practices described below

2 Employ active learning, or learning from experience
This practice is derived directly from the previous one. Active learning is based
on a recognition that experimentation is essential for effective learning of
complex concepts

3 Link explaining to doing
This practice, too, follows directly from the previous two. When a new activity or
process is introduced, learners should be invited to start applying it as soon as
practicable (i.e., once basic relevant knowledge has been introduced). Further
explanations can be added and refined while learners perform the activity

4 Elicit reflection
The importance of reflective processes has been recognized since Schön’s classic
The Reflective Practitioner (Schön, 1983, 1987). As in other realms, learning is
strengthened when learners are encouraged to reflect on their own learning
processes, whether in terms of cognitive processes, feelings, work habits, social
interactions, or technical issues related to the project at hand (Hazzan, 2002;
Hazzan and Tomayko, 2003). In addition, learners can be asked to recall and
reflect on situations taken from their past experience (e.g., in other professional
situations)

5 Promote communication
In many professional realms, success or failure can hinge on the effectiveness or
ineffectiveness of communication between the individuals involved. When
communication is one of the main ingredients of the learning environment, the
idea of knowledge sharing becomes natural. Accordingly, all learning situations
should aim at fostering learner–learner as well as learner–teacher communication

6 Establish diverse teams
Technical fields such as software development and engineering have long
recognized that project development takes place most effectively in teams, with
different members bringing different skills and perspectives to the table. Over
recent years, teamwork has been increasingly adopted in nontechnical fields as
well. In this context, diversity—whether in terms of nationality, gender, minority
membership, culture, lifestyle, or world view—is perceived as a source of added
value and a powerful management practice (see, for example, Toyota’s 21st
Century Diversity Strategya and Thomas, 2004). In the same spirit, diversity is
encouraged in agile learning contexts

(continued)



50 O. Hazzan and Y. Dubinsky

Table 1 (continued)

Practice # Practice description

7 Assign roles to team members
In conventional teams, each team member is responsible for particular
professional tasks. In agile teams, each member can choose in addition a
cross-project role that provides a global perspective on the project (in software
development, for example, this might be tester or integrator). This assignment of
roles helps ensure that all team members take responsibility for the project’s
progress. Also, because all team members must become familiar with all parts of
the project, such role-taking improves knowledge sharing and learning among
team members while supporting more effective project development. This is true
in learning contexts as well as professional settings

8 Manage time
In contexts such as software development, time management is crucial to project
success. A variety of methods are available for effective time management. For
example, iteration-based planning is an agile practice whereby the next cycle of a
software development project is discussed and planned through a meeting of the
entire team at the start of the cycle. Another agile practice that can contribute to
effective time management is frequent pauses for reflection. Such reflection can
help catch problems before they arise while promoting deeper learning of
complex concepts

9 Foster awareness of abstraction levels
Educators and instructors need to be conscious of the abstraction level employed
for each stage of each activity performed during the project development or other
learning process. They can then guide learners to think in terms of a different
level of abstraction as appropriate, based on learners’ needs. They can promote
even higher level learning by highlighting these shifts between abstraction levels
explicitly, and helping learners reflect on the advantages and disadvantages of
such moves

10 Use metaphors and analogies (i.e., other concept-worlds)
Metaphors and analogies help us apprehend complex concepts by drawing on
language normally applied to experiences in other realms of life. People use
metaphors naturally in all sorts of contexts, including education (Lakoff and
Johnson, 1980)
There are many ways to bring metaphors and analogies into the learning
environment. For example, the educator might say: “Can you suggest another
concept-world that could help us understand this unclear issue?” In most cases,
learners will be inspired to produce a varied collection of concept-worlds that
clarify different aspects of the topic being discussed

11 Emphasize the connections between the topic being taught and the larger context
in which it operates
This practice closes the circle opened with practice 1—“inspire, don’t lecture.” If
there is a recipe for inspiring learners, one essential ingredient is linking the
specific concept or activity being taught to the larger context in which it will be
applied. For example, in software or engineering settings, this can be done by
presenting learners with specific problems faced by practitioners in the
domain-world, and illustrating how the material being taught can help overcome
them. Learners can then see the material as something that has emerged in
answer to real-world needs or broader questions

aToyota’s 21st Century Diversity Strategy: http://www.toyota.com/about/diversity/21stcenturypla
n.pdf

http://www.toyota.com/about/diversity/21stcenturyplan.pdf


Practices of Agile Educational Environments … 51

Project 
Management

Organizational 
perspective 

Technological 
perspective Human 

perspective 

Fig. 1 The HOT analysis framework

focus on software engineering environments, and in Hazzan and Dubinsky (2014),
we extend this analysis for project management in general. In this chapter, the HOT
analysis framework is used for the analysis of agile teaching practices in each sector.

The HOT framework is based on three main perspectives:

• The Human perspective deals with cognitive and social factors, and relates to
interpersonal processes (teammates, customers, management).

• The Organizational perspective deals with managerial and cultural factors, and
relates to the workspace and to issues which are beyond the team’s scope.

• The Technological perspective deals with practical and technical factors, and
relates to how-to issues on a different level of abstraction.2

Figure 1 provides a schematic view of the HOT analysis framework.
A brief analysis of the agile teaching practices presented above (Table 1) shows

that they can be easily mapped onto the HOT framework (Table 2). For the scenario
analysis presented later in this chapter, we denote each practice by itsH-O-T hallmark
and its original number in Table 1.

4 MERge—Management, Education, Research

Hazzan and Lis-Hacohen (2016) present the MERge model for professional devel-
opment in industry, academia, and the first sector. The MERge model draws on the
concept of the meta-profession—namely, sets of skills that extend beyond a specific
discipline or area of professional expertise, and that can be expressed meaningfully
only after one has first gained disciplinary or professional knowledge (Hazzan &

2© Springer: Hazzan, O. and Dubinsky, Y. (2014). Agile Anywhere—Essays on Agile Projects and
Beyond, Series: SpringerBriefs in Computer Science. https://doi.org/10.1007/978-3-319-10157-6.

https://doi.org/10.1007/978-3-319-10157-6


52 O. Hazzan and Y. Dubinsky

Table 2 Mapping of the agile teaching practices according to the HOT framework

Human perspective Organizational perspective Technological perspective

Inspire, don’t lecture (H1) Promote communication (O5) Employ active learning (T2)

Link explaining to doing (H3) Establish diverse teams (O6) Emphasize the connections
between the topic being taught
and the larger context (T11)

Elicit reflection (H4) Assign roles to team members
(O7)

Foster awareness of
abstraction levels (H9)

Manage time (O8)

Use metaphors and analogies
(H10)

Fig. 2 MERge as a
three-layer model for
professional development Generation

MERge:
Management 

Education, Research

Disciplinary Knowledge

Lis-Hacohen, 2016, p. 3). For example, a software developer may be highly skilled
in her discipline, but in order to succeed in a professional environment and fulfill
her organizational role she may need to Manage a development team, to Educate
graduate students or new hires, or to Research new algorithms or software tools.

As just suggested, the three meta-professions are Management, Education, and
Research. The Management component includes skills such as time management
(on the individual and team level), teamwork, cooperation, communication with cus-
tomers, and organizational culture. The Education component includes skills related
to learning, teaching, presentation, team learning, diversity, and many more. The
Research element includes understanding and using research models, data collec-
tion and analysis methods, and drawing reliable conclusions.3

The fullMERgemodel has three layers. The base, or foundation, is the individual’s
disciplinary knowledge. The second layer includes the three meta-professions. The
third layer—Generation—involves integrating the first two layers so as to success-
fully perform one’s professional or organizational role. The full model is presented
in Fig. 2.

3©Springer:Hazzan,O. andLis-Hacohen, R. (2016).The MERge Model for Business Development:
The Amalgamation of Management, Education and Research, SpringerBriefs in Business. http://
www.springer.com/us/book/9783319302249.

http://www.springer.com/us/book/9783319302249


Practices of Agile Educational Environments … 53

Table 3 MERge in the context of the three sectors—focusing on education

1st Sector 2nd Sector 3rd Sector
Management
Education 
Research

Applying the full MERge model to the three sectors produces a 3× 3 matrix (see
Table 3). Since this chapter is about agile teaching and learning, we will focus on
the Education meta-profession (shaded in the table).

Below, we employ illustrative field scenarios to show how the MERge model
(specifically, its education component) is implemented in the three sectors. We ana-
lyze these scenarios using the HOT analysis framework, showing the use and impact
of the three groups of educational practices (human, organizational, and technolog-
ical; Table 2) in each sector.

5 Application of Agile Teaching Practices in the Three
Sectors

Organizations in the three sectors have different goals that affect their vision, activi-
ties, and culture. Nevertheless, all kinds of organizations—whether for-profit or non-
profit, governmental or NGOs—can benefit from using agile practices in general, and
agile teaching practices in particular. This is because the competitive environment
in which all kinds of organizations operate means they must be able to quickly and
efficiently adjust to changes, either to fulfill their commitment to taxpayers (in the
case of the first sector), or merely to survive.

This perspective, which expands the application of (agile) education to all sectors,
is one of the main contributions of this chapter.

In this section, we illustrate the application of agile practices in the three sectors
using illustrative field scenarios, based on three practitioners whose roles include
varying degrees of educational responsibilities. We chose these roles in order to
emphasize the suitability of agile teaching practices for any role in any sector, as
suggested by the MERge model, under which any professional may need to wear an
educational hat and therefore needs educational skills.

In the first sector, we examine the case of a school principal. In the second sec-
tor, the for-profit sector, we focus on the role of a team leader in a product-based
organization. In the third sector, we explore the case of a faculty member at a public
university (see Table 4). As we shall illustrate, these roles are multifaceted and their
fulfillment can be improved by the application of agile teaching practices.



54 O. Hazzan and Y. Dubinsky

Table 4 Roles examined in the present chapter

1st sector 2nd sector 3rd sector
Management
Education School principal Team leader Faculty member
Research

Note that the three role-holders described below are notmeant to represent specific
figures. Rather, the descriptions are hypothetical and based on our comprehensive
familiarity with many practitioners in each sector.

5.1 First Sector: School Principal

The first (public) sector comprises governmental organizations and local authorities,
as well as all organizations which are under their responsibility. This includes gov-
ernment offices, local services provided by local authorities and municipalities, and
public schools and hospitals.

Tom is a school principal. He knows that his school does very well, a fact that he
ascribes partly to teachers’ professionalism and commitment to their work, and partly
to structural features, like the amount of time allocated to teachers for enhancing
their professional development. Yet he is also aware that while children, parents and
teachers in his school are satisfied at this stage, schools must evolve on a constant
basis to adjust to changes taking place in the world and society.

Tom decides to formulate a vision for the school for the next 5 years, as well as
(a) a mechanism for updating this vision as needed, and (b) an ongoing monitoring
process to ensure that the school does work according to the defined vision during
these years. For this purpose, Tomdecides to put together a group of teachers, parents,
students, and representatives from the Ministry of Education. He calls a meeting to
explain the process, and asks for volunteers from each of these groups to attend.
Seventy-five people respond to Tom’s call.

In organizing this rather large group of volunteers into an effective body that can
develop the school’s new vision and associated monitoring and updating processes,
Tom follows five basic principles and actions, shown in Table 5. The table shows
how Tom applies agile teaching practices (either consciously or subconsciously) to
facilitate a learning process whose aim is to shape a new vision for his school. The
list of principles and actions that Tom applies are mapped according to the agile
teaching practices presented in Table 1. The practice labels (O5, H4, T11 and so on)
are based on the HOT mapping shown in Table 2.

As can be seen, Tom applies agile teaching practices and uses the education meta-
profession even though his role in the described scenario involves management, not
teaching. That is, from the perspective of the HOT framework, the principal employs
agile teaching practices relevant to human, technological, and organizational aspects



Practices of Agile Educational Environments … 55

Table 5 Agile teaching practices as used by a school principal

Principles and actions Agile teaching practices

The group will be divided into teams comprised of teachers,
pupils, parents and representatives from the Ministry of
Education. The number and size of the teams will be decided
by the group. Each team will choose a team leader and
decide on its task

Promote communication (O5)
Establish diverse teams (O6)
Assign roles to team members
(O7)

The group will meet every 2 weeks. At these meetings, the
teams will present their activity over the last 2 weeks, with a
focus on problems faced, what was learned, and their
planned focus for the next 2 weeks

Manage time (O8)
Elicit reflection (H4)

A collective retrospective session will take place each month
to examine what has been achieved so far (Kerth, 2001)

Elicit reflection (H4)

Emphasis will be placed on the fitness of the vision to
ongoing social and economic changes affecting society at
large

Emphasize the connections
between the topic being taught
and the larger context (T11)

Progress will be evaluated through quantitative and
qualitative measures at the individual, team and school levels.
A simple mechanism will be developed for data gathering

Foster awareness of abstraction
levels (H9)

of the process. From the perspective of the MERge model, the scenario shows how
educational skills can help managers lead organizational process.

5.2 Second Sector: Team Leader

Private, for-profit organizations comprise the second sector. This sector includes
banks, firms, shops, and private services, such as private health organizations, insur-
ance companies, and all other for-profit businesses.

Sharon is a team leader in a largefirm in the telecommunications industry. Sharon’s
team is responsible for the development of a new mobile application designed to let
people use their mobile devices to improve their participation experience during a
meeting. For example, features in the app will enable access to information needed
for the meeting, automatically record the protocol, track previous action items, and
document decisions. The application will also record the involvement of each user
in the development process on three levels: participation, action items, and decision-
making.

Sharon decides to use a developed version of the app for the development process
itself. Table 6 shows examples of the profiles calculated for Sharon’s team during a
specific iteration.

In a retrospective session at the end of the iteration, Sharon and her team analyze
the teammembers’ average with respect to eachmeasure. Through this retrospective,
the team come up with three new features to suggest for consideration (Schwaber,
1997; Oomen, DeWaal, Albertin, & Ravesteyn, 2017). Specifically, they suggest the



56 O. Hazzan and Y. Dubinsky

Table 6 Profiles for the development of the new mobile application

Team
members—average
(%)

Team leader (%) Project manager (%)

Participation level 32 45 63

Action items level 60 20 2

Decision-making level 8 35 35

Total 100 100 100

Table 7 Agile teaching practices as used by a team leader

Principles and actions Agile teaching practices

By asking her team to use the application being developed
(the ‘eat your own dog food’ approach), Sharon shows
awareness of different abstraction levels. She also inspires
her team with an incentive to improve the product, while
encouraging her team to learn through experience and
experimentation

Foster awareness of abstraction
levels (H9)
Inspire, don’t lecture (H1)
Employ active learning (T2)

Through retrospective sessions, Sharon promotes
communication among the team members and fosters
reflection on their experiences

Promote communication (O5)
Elicit reflection (H4)

Sharon works with the product owner to prioritize features
for development and shorten the time to market. The product
owner is a role performed by a project member, who serves
as a proxy customer (For more on the product owner’s role,
see Sect. 6.)

Assign roles to team members
(O7)

The product owner’s role includes representing end users and
following plans being developed by the firm’s main
competitors. Thus, the product owner’s involvement links the
project to the broader context

Emphasize the connections
between the topic being taught
and the larger context (T11)

app should allow users to plan their own level of involvement and then compare their
actual level to the planned level, to time-box planned action items and to connect
planned action items to a specific story in the iteration management tool used by the
team.

Sharon thenmeetswith product owner (thefirmemployee responsible for planning
what features will be in the released product; see Sect. 6). The product owner, David,
agrees that the first feature is important; indeed, he says he has heard that the firm’s
main competitor has announced a similar tool. He promises to start planning this for
the next iteration.

Table 7 outlines the agile teaching practices used in the learning process which
Sharon leads.



Practices of Agile Educational Environments … 57

5.3 Third Sector: Faculty Member

The third sector comprises not-for-profit NGOs that supply services not provided by
organizations belonging to the first two sectors. It includes charities, philanthropic
bodies, and non-governmental organizations (NGOs). In addition, public universities
belong to this sector, forswearing profit in order to secure their academic freedom.

University faculty members are evaluated by three main criteria: research, teach-
ing, and service. However, from their first day, faculty members are also required
to manage people, including graduate students, lab engineers, and administrative
staff. When faculty members are promoted to the role of a dean or other managerial
position, they also manage other faculty members.

Here, we focus on an aspect of the faculty member’s role that includes both
educational and managerial aspects: supervision of graduate students. Diane, an
assistant professor in her university’s bioengineering department, is researching a
breakthrough in medical device technology based on the idea of biological mimicry.
Within this framework, Diane supervises five graduate students—three master’s stu-
dents and two doctoral students. Diane assigns each student responsibility for an
aspect of the overall research program that is appropriate for their level of expe-
rience. As the research progresses, she helps these students develop the skills and
knowledge needed to understand both their own part in the research and how their
contribution fits into the overall research plan, as well as how that research program
itself contributes to the bioengineering discipline by addressing a real-world prob-
lem. She also stays alert to the fact that she needs to convey both technical skills and
the theoretical knowledge within which those skills must be deployed if her students
are eventually going to do their own independent research.

Diane implements agile practices to support the professional development of her
graduate students as well as her own professional development. Table 8 shows how
agile teaching practices are manifested in this relationship.

6 Sub-practices

The present chapter employs two existing frameworks, the HOT framework (used for
analyzing organizational scenarios) and the MERge model (used to analyze profes-
sional practices at the individual level), to examine the application of agile teaching
practices from a sectorial perspective. Specifically, based on the MERge model, we
argue that professionals in the public, for-profit, and third sectors require meta-
professional teaching skills. Then, using the HOT framework, we illustrate how
professionals holding a representative role in each sector can apply agile teaching
practices of all three types (human, organizational, and technology-related).

While the HOT framework, writ large, applies to professional roles in all sectors,
certain roles are also characterized by sub-practices—i.e., practices that fall under
the rubric of one of the main practices listed in Table 1. In what follows, we pro-



58 O. Hazzan and Y. Dubinsky

Table 8 Agile teaching practices as used by a faculty member

Principles and actions Agile teaching practices

Any research process is a long journey, which includes a
great deal of uncertainty and many dead ends. In many
stages of research work, it is not even clear if meaningful
results will eventually be obtained. This can be difficult for
graduate students to understand and accept, particularly
when the student is concerned about completing their thesis
on time. In guiding students through this process, Diane
naturally links explaining to doing, modeling the appropriate
response to this natural situation. Meanwhile, her students
learn through experience and hands-on activity as an active
contributor to a research project. Clearly, roles are also
assigned very naturally in this process

Employ active learning (T2)
Link explaining to doing (H3)
Assign roles to team members
(O7)

Another of Diane’s jobs is helping ensure her graduate
students learn time management skills. These are important
not only because students face deadlines as they proceed
through the graduate program, but also because of the
uncertainty involved in any research process (Katz, 2009).
Students may not know when to abandon or change a
particular line of research. And if time is not managed
properly, a student can find himself/herself without
meaningful results and eventually, without a degree

Manage time (O8)

Diane and her students meet frequently to analyze the
research data and results obtained thus far, and to think about
the next stages of the research. This process naturally
involves reflective processes and promotes communication

Elicit reflection (H4)
Promote communication (O5)

Another natural part of research work is moving between
abstraction levels. Sometimes, when research stalls,
examining the data from a higher level of abstraction can
help clarify what is going on at a basic level. Meanwhile,
writing up the results of research work—including in a thesis
or dissertation—requires going from a higher level of
abstraction to a lower level. This is not a simple process,
since it does not reflect the actual path along which the
research has progressed. The more aware the student is of
abstraction levels along the way, the easier the writing
process will be. Thus, fostering awareness of abstraction
levels is a crucial agile teaching practice in this context

Foster awareness of abstraction
levels (H9)

Researchers often rely on metaphors and analogies to explain
their results, especially when the latter are unexpected or
based on a new paradigm. This is true even when conveying
results to experts in the field, let alone novices like graduate
students. In employing metaphors, Diane not only imparts an
understanding of the topic at hand; she also models a skill
that is useful in any academic discipline

Use metaphors and analogies
(H10)

Finally, Diane needs to impart the norms of the relevant
research community. In this way, Diane can inspire students
with a sense of being part of a larger research endeavor

Inspire, don’t lecture (H1)
Emphasize the connections
between the topic being taught
and the larger context (T11)



Practices of Agile Educational Environments … 59

vide examples of these sub-practices, one for each of the components of the HOT
framework.

Example 1: Reflection-based processes (Hot)

Engaging in reflection-based processes is a sub-practice of “Elicit reflection” (H4).
The agile approach calls for an iterative reflective process that involves all project
stakeholders and that relates to each individual’s personal role as well as group
processes.

In academic institutions, reflection is part of teaching and research activities.
In Sect. 5.3, we described how research involves uncertainty, dead ends, and the
exploration of new directions. Such a nonlinear process requires reflection, which
also inspires thinking on different levels of abstraction. Educators should also reflect
on their teaching on a periodic basis, even—or perhaps especially—in academic
institutions, where faculty members’ main role is to research, and the teaching role
may be neglected unintentionally.

Aspects of the reflection-based processes sub-practice include

• Promotion of reflective processes on both the individual and the team level.
• Increasing awareness of transitions between levels of abstraction.
• Examining decision-making processes on a regular basis.

Example 2: Product owner role (hOt)

The product owner role is a sub-practice of “Assign roles to team members” (O7).
The agile approach distinguishes between a Project Manager (PM) and Product
Owner (PO), where the PO is responsible for representing the business perspective
on the product to be developed (e.g., what capabilities it should feature), and the
PM is charged with delivering the product on time and at a high level of quality. In
Sect. 5.2, wementioned Sharon’s practice of reporting results of her team’s retrospec-
tive sessions to the product owner. In industry, where competition is high, budgets
are limited, and organizations must sometimes thrive to survive, this practice can be
crucial.

Aspects of the product owner sub-practice include

• Ensuring that POs know their roles and tasks. These include ensuring that the
minimum viable product is expressed in the plan as early as possible; providing
feedback to the project team at the end of each iteration; keeping up to date with
clients’ needs; and ensuring that these needs are reflected correctly in the work
plan.

• Ensuring that the project team are on board and understand the importance of
committing to the PO’s plan.

Example 3: Strategies to anchor change (hoT)

Develop strategies to anchor change is a sub-practice derived from “Emphasize the
connections between the topic being taught and the larger context” (T11). In the
second sector, and particularly in technology firms, this might mean using a lean



60 O. Hazzan and Y. Dubinsky

iterative process and developing the product in a way that will make it easy to
incorporate changes in the future. In Sect. 5.1, we mentioned Tom’s goal of not
only developing a vision for his school, but also mechanisms for monitoring the
school’s performance and updating the vision as needed. Developing innovative
strategies to anchor change may be especially important in the public sector, where
budget constraints and bureaucracy often mean that organizations are slow to replace
outdated technology.

Aspects of the strategies-to-anchor-change sub-practice include

• Awareness that change may be both expected and unexpected;
• The use of lean implementations and mechanisms that enable coping with unex-
pected changes;

• Being prepared to advance in small steps and to use suitable test mechanisms; and
• Simplification (that is, refactoring) when complexity increases.

7 Conclusion

In this chapter, we expand the concept of education in general and agile education
in particular beyond the formal and informal educational systems to other sectors
and organizations. We convey two main messages. First, we are all surrounded by
educational situations in every aspect of our professional lives, no matter what sector
we are part of. Professionals should identify these important situations and exploit
their learning potential. Second, we provide a new level of abstraction to analyze
the usefulness and effectiveness of agile teaching practices as part of practitioners’
professional development.

References

Berry, M. (2012). The case for agile pedagogy. Retrieved April, 2016, from https://www.theguardi
an.com/teacher-network/teacher-blog/2012/may/16/agile-pedagogy-computer-programming-le
arning.

Chun, A. H. W. (2004, August). The agile teaching/learning methodology and its e-learning plat-
form. In International Conference on Web-Based Learning (pp. 11–18). Berlin, Heidelberg:
Springer.

Hazzan, O. (2002). The reflective practitioner perspective in software engineering education. The
Journal of Systems and Software, 63(3), 161–171.

Hazzan, O., & Dubinsky, Y. (2006). Teaching framework for software development methods. In
ICSE Educator’s Track, Proceedings of ICSE (International Conference of Software Engineer-
ing), Shanghai, China (pp. 703–706). https://doi.org/10.1145/1134285.1134396.

Hazzan, O., &Dubinsky, Y. (2008). Agile software engineering. Undergraduate Topics in Computer
Science’ (UTiCS) Series. Springer.

Hazzan, O., & Dubinsky, Y. (2010). A HOT—Human, Organizational and Technological—frame-
work for a Software Engineering course. In Proceedings of the ACM/IEEE 32nd International
Conference of Software Engineering (ICSE 2010), Cape Town, South Africa (pp. 559–566).

https://www.theguardian.com/teacher-network/teacher-blog/2012/may/16/agile-pedagogy-computer-programming-learning
https://doi.org/10.1145/1134285.1134396


Practices of Agile Educational Environments … 61

Hazzan,O.,&Dubinsky,Y. (2014).Agile anywhere—Essays on agile projects and beyond. Springer-
Briefs in Computer Science.

Hazzan, O., &Tomayko, J. (2003). The reflective practitioner perspective in eXtreme Programming.
In Proceedings of the XP Agile Universe 2003, New Orleans, Louisiana, USA (pp. 51–61).

Hazzan, O., & Lis-Hacohen, R. (2016). The MERge model for business development: The amal-
gamation of management, education and research. SpringerBriefs in Business. Retrieved from
http://www.springer.com/us/book/9783319302249.

Katz, R. (2009). Shorten the time to doctorate: A guide to managing your Ph.D. as a project.
AuthorHouse.

Kerth, N. (2001). Project retrospective. Dorest House Publishing.
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. The University of Chicago Press.
Lang, G. (2017). Agile learning: Sprinting through the semester. Information Systems Education

Journal, 15(3), 14.
McAvoy, J., & Sammon, D. (2005). Agile methodology adoption decisions: An innovative approach
to teaching and learning. Journal of Information Systems Education, 16(4), 409.

Oomen, S., De Waal, B., Albertin, A., & Ravesteyn, P. (2017). How can SCRUM be successful?
Competences of the SCRUM Product Owner. AIS Electronic Library (AISeL). Retrieved from
http://aisel.aisnet.org/ecis2017_rp/9/.

Royle, K., & Nikolic, J. (2016). A modern mixture, agency, capability, technology and ‘Scrum’:
Agile work practices for learning and teaching in schools. Journal of Education & Social Policy,
3(3), 37–47.

Schön, D. A. (1983). The reflective practitioner. Basic Books.
Schön, D. A. (1987). Educating the reflective practitioner: Towards a new design for teaching and

learning in the profession. San Francisco: Jossey-Bass.
Schwaber, K. (1997). Scrum development process. Business object design and implementation.
London: Springer.

Thomas, D. (September 2004). Diversity as strategy. Harvard Business Review, 98–108.
Vuokko, R., & Berg, P. (2007). Experimenting with eXtreme teaching method—assessing students’
and teachers’ experiences. Issues in Informing Science & Information Technology, 4.

http://www.springer.com/us/book/9783319302249
http://aisel.aisnet.org/ecis2017_rp/9/


Kaizen and Education

Peet Wiid

Abstract In this chapter the concept and origins of kaizen are discussed and the
difference between kaizen and Lean dissected. Although Lean has been popularised
in the Western world since 1989, it has unfortunately been a narrow interpretation of
the original Toyota Production System (TPS) with kaizen as a cornerstone concept.
The purpose of kaizen should be very clearly stated and aligned with the strategic
direction of the specific educational institution. Strategy must be a reflection of ‘cus-
tomer value’ as monitored through simplicity, quality, speed, cost, motivation, and
growth measurements. Although customer value should always be defined (and con-
tinuously refined) from all stakeholders’ perspectives, the primary customer remains
the student. The creation of a kaizen culture is based on seven principles, values,
behaviours, and beliefs embedded in the corporate and individual unconsciousness.
This culture of excellence will sustain the use of efficiency methods, tools, and tech-
niques. Continuous Improvement efforts in education have mainly failed during the
past century. However, with a kaizen approach this can be turned around as proven
in all sectors. It will require knowledge, skill, experimenting and learning, inspired
by committed kaizen leadership. Propagating kaizen lighthouses of excellence will
go a long way to break down the resistance to change.

Keywords Kaizen · Lean · Continuous improvement · Lean education
Kaizen education · Lean teaching · Process improvement

1 What Is Kaizen and Lean?

Kaizen as an organisational excellence approach originated in a manufacturing envi-
ronment but its principles and methods have been applied in various environments,
albeit that education and other service-orientated sectors have been lagging behind

P. Wiid (B)
Kaizen Institute, Auckland, New Zealand
e-mail: peetwiid1@gmail.com; pwiid@kaizen.com

P. Wiid
Manukau Institute of Technology, Auckland, New Zealand

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_4&domain=pdf
mailto:peetwiid1@gmail.com
mailto:pwiid@kaizen.com
https://doi.org/10.1007/978-981-13-2751-3_4


64 P. Wiid

in its adoption (Emiliani, 2015a). It is also important to note that kaizen and Lean
are not synonymous. Until circa 2007 Lean was propagated mainly as a process
improvement methodology with minimal reference to the broader concept of kaizen
underpinning the Toyota Production System (TPS) with kaizen reduced to continu-
ous improvement activities (Womack, Jones, & Roos, 1990; Krafcik, 1988). In many
circles Lean has been used interchangeably with kaizen or TPS but increasingly since
2007 scholars in the field of organisational improvement started to understand the
vast difference.1

1.1 Defining Kaizen and Lean

According to the legendary Japanese efficiency expert, Masaaki Imai, ‘Kaizenmeans
improvement. Moreover, it means continuing improvement2 in personal life, home
life, social life, and working life’ (1986, p. xx). This implies a holistic approach to
pursue excellence (organisational and personal) whereby all people are engaged in
improving the organisation every day, in all areas. Improvement is therefore not only
the responsibility of a few improvement specialists.

According to Jon Miller (who grew up in Japan) the root meaning of kaizen is to
change for the better by driving out what is bad or evil (inefficiencies in this context)
(Miller, Wroblewski, & Villafuerte, 2014). To become better at almost anything
requires the application of self-discipline and sacrifice to eliminate bad habits and
to replace them with good behaviours that support high performance. Examples
of this approach are long-running successful sports teams and athletes, renowned
musicians and singers, innovative and consistent business leaders, or outstanding
academics. Due to its strong focus on people and their behaviours, kaizen has a
moral or ethical underpinning which has not been fully recognised and researched
by the Lean fraternity. Kaizen thus pursues the eradication of what is ‘evil’ and
replaces it with what is regarded as ‘good’.

Lean proponents have seen kaizen as activities, usually by frontline staff and
middle management to make processes better (Ballé, 2010; Womack et al., 1990).
In contrast, Miller et al. argue that kaizen is a culture, encompassing all behaviours
in all areas of an organisation. They state it concisely: ‘…the common thread [is] –
that all types of kaizen serve to deliver results and develop people.’ (2014, p. 32).
These kaizen behavioural patterns can be observed in: (i) daily small, incremental
improvement activities by frontline staff and lower-level leaders; (ii) improvement
projects; (iii) kaizen leadership and strategy deployment; and (iv) formal support
and coordination of all kaizen activities by Continuous Improvement agents (Kaizen
Institute New Zealand, n.d.).

1In this chapter, the author does not view kaizen and Lean as synonymous. However, sometimes in
quotations, sources are using these words interchangeably.
2Kaizen is often translated into English as Continuous Improvement.



Kaizen and Education 65

Kaizen is driven by seven principles (to be discussed later) and these differ from
the five Lean principles (as described by James Womack and Daniel Jones in Lean
Thinking) in that the latter focus on the process only. The five Lean principles are:
(i) specify value; (ii) map the value stream; (iii) create flow; (iv) establish pull; (v)
pursue perfection (Womack & Jones, 1996). The kaizen approach is holistic and a
representation of the Toyota Production System as introduced to the world outside
of Japan by Masaaki Imai in 1986. It also includes the development of the human
element in every process. It also expands to the improvement of broader society.

Kaizen is a holistic approach to make everything and everyone better; the work-
place, processes, policies, people, the environment, the economy, and humanity. The
ideal is that everything and everyone must benefit from improvements; kaizen does
not cause harm (Emiliani, 2015c). It is a techno-social system whereby processes
and people are purposefully and continually improving through scientific problem
solving that enables the creation of value for the end customer and all other stake-
holders.

Lean, on the other hand, is a manufacturing-orientated Westernised interpretation
of the Toyota Production System initially studied by Krafcik (1988) and elaborated
on by Womack et al. (1990 and 1996). Although Lean has become popular since
it was coined by Krafcik, it has not been able to emulate the successes of kaizen
as developed by Toyota Motor Corporation as its ‘…focus has long been the near-
singular pursuit of productivity and efficiency improvements to lower costs and
increase profits, usually culminating in lay-offs’ (Emiliani, 2015c, p. 8). From a
kaizen perspective an organisation does not become lean by being mean.

To better understand Lean and kaizen, it is important to gain insight into the
historical development of organisational excellence.

1.2 A Brief Perspective on Recent History

The way organisations behave has improved progressively since the Industrial Rev-
olution. During the late 1700s Eli Whitney introduced exchangeable, standardised
parts for muskets to enable the continuous use of a firearm once a defective part has
been replaced. Previously the whole firearm had to be discarded (Mirsky, 1998).

Mass manufacturing emerged during the late nineteenth and early twentieth cen-
tury, replacing craft production. Henry Ford and Frederick W. Taylor revolutionised
mass manufacturing through the establishment of the automotive assembly line
before and after WWI (Womack et al., 1990). It is regarded in many circles that Tay-
lor’s ‘Scientific Management’ mirrors Western thinking where the focus is mainly
on the process, especially its financial benefits for a few stakeholders. In contrast,
the Toyota Production System (TPS) is more holistic, a systems approach, leaning
towards an Eastern worldview whereby the group (all stakeholders) must benefit
(Shingo, 2007).

Conversely, Emiliani (2015b) contends that Taylor did not propagate a focus
on process whereby the workers were disregarded. Taylor stated that Scientific



66 P. Wiid

Management ceases when the system delivers bad outcomes for people. It was unfor-
tunately the misuse of Scientific Management by others that led to the belief that
Taylor did not care about the workers. Frank and Lillian Gilbreth added to Tay-
lor’s scientific analysis (taking his time-and-motion studies to the next level) with a
stronger focus on the needs of the employee (Hellriegel, Jackson, & Slocum, 2002).

Albeit, an important reflection on the contributions of Ford and Taylor to organi-
sational improvement is that ‘the-winner-takes-it-all’ attitude in an organisation will
usually lead to disengagement by the negatively-affected stakeholders. Low morale
will often derail efforts to satisfy customer requirements and hasten entropy (deteri-
oration) of the system. Emiliani (2015a) speaks of ‘non-zero-sum outcomes’ as the
target condition; a ‘win-win’ situation for all stakeholders.

Walter A. Shewhart introduced Statistical Control Methods at Bell Telephone
Laboratories in New York during the 1930s. This helped to ‘recognise when to act
and when to leave a process alone’ (Walton, 1986, p. 7), bringing about efficiencies
by prioritising process problems through standardised response mechanisms. Dr.
W. Edwards Deming extended Shewhart’s work during the rebuild of the Japanese
economy after WWII. His approach to organisational improvement promoted sys-
tems thinking (not point improvements), measuring variation in performance, and
understanding human behaviour (Walton, 1986). Deming was recognised in 1960 by
Emperor Hirohito for his contribution to the rebuild of the Japanese economy.

Although Deming was not directly involved with Toyota Motor Corporation
(TMC), his methodology had a profound influence on the development of the Toy-
ota Production System (TPS) as stated by Dr. Toyoda, former president of Toyota
Motor Corporation in 2005: ‘As we continued to implement Dr. Deming’s teachings,
we were able to both raise the level of quality of our products as well as enhance
our operations on the corporate level.’ (Willis, 2012). Other contributors to the post
WWII economic revival in Japan include Joseph M. Juran and Kaoru Ishikawa.

Toyota Motor Corporation has been synonymous with organisational excellence.
The father of TMC was Sakichi Toyoda who developed power looms during the
late 1800s and early 1900s in an effort to make weaving easier for his mother and
the workers (Toyota Global Website, n.d.). This respect for people inspired the 45
patents he registered during his lifetime and has since been one of the two pillars of
the Toyota Production System (the other is continuous improvement). In 1907 the
very successful Toyoda Loom Company was established. TMCwas founded in 1937
after Sakichi’s eldest son, Kiichiro, visited Ford Motor Corporation in 1927 and had
the vision to manufacture vehicles for the Japanese people. Eiji Toyoda, Kiichiro’s
cousin, also visited Ford Motor Corporation in 1950, which inspired him to pull
TMC from the doldrums after WWII. Together with Taiichi Ohno, they realised
that Ford’s mass production (which relied on large inventory holding, huge and
expensive equipment, and high capital expenditure) would not be viable in Japan
and this led to the development of a manufacturing system consuming minimal
resources, the Toyota Production System (Womack et al., 1990). Taiichi Ohno and
Eiji Toyoda developed the Just-In-Time system over a period of 20 years which
resulted in extraordinary success and become the subject of ongoing research since



Kaizen and Education 67

the 1980s. Much of what is covered in this chapter is based on their initial work as
well as the contribution of their colleague, Dr. Shigeo Shingo.

Masaaki Imai was the first person to introduce the TPS philosophy of kaizen to the
world outside of Japan in 1986 in his award-winning and best-selling book, Kaizen:
The Key to Japan’s Competitive Success. Prior to this he worked closely with Taiichi
Ohno and the Toyoda family after he spent five years in the United States from 1957
to study American management practices through the Japan Productivity Centre.
On his return to Japan in 1961, he became a management consultant (Imai, 1986)
working closely with Taiichi Ohno and numerous businesses across the globe. He
published a highly acclaimed sequel, Gemba Kaizen. The Commonsense, Low-Cost
Approach to Management in 1997.

Imai’s book on kaizen (1986) inspired James Womack (2016) to study TPS and
he then popularised ‘Lean’ with Daniel Jones and Daniel Roos in 1990 with their
book The Machine That Changed the World (Womack et al., 1990). They introduced
Lean manufacturing methods in the 1990s, mainly focusing on cost-savings through
improving processes. Unfortunately, it can be argued that their ‘Western’ paradigm
focused their attention on the methods employed in TPS with the respect-for-people
aspect of Toyota sadly ignored. In many organisations this led to the notion that
‘Lean is mean’, often culminating in headcount reduction (Emiliani, 2015c). It was
only around 2007 that Lean advocates started to realise that TPS is more than a cost-
reduction methodology. Their corrective action was to introduce Lean Management
which gave more attention to Lean leadership and respectful behaviour. Nonetheless,
damage to the Lean methodology was already done in some Western economies,
especially in North America (Emiliani, 2017a).

Organisational improvement has been pursued for as long as organisations have
existed with numerous adaptations, failures, and gains. However, the Toyota Produc-
tion System is still regarded as the benchmark of excellence due to its holistic and
practical approach. But what is the purpose of the kaizen system?

1.3 The Purpose of Kaizen

1.3.1 Developing a Culture of Excellence

The purpose of kaizen is to create a sustainable organisational culture of excellence,
focused on creating value for the customer by everybody, everywhere in the organ-
isation through continuously solving problems and reducing waste (inefficiencies).
Customer value must be quantified in terms of quality, cost, and delivery (speed)
(Imai, 1986, 1997).

However, before problems can be fixed they must first be identified, based on
a new corporate and individual mind-set of pursuing a better situation. If people
do not see their workplace through the kaizen filter, they will not be focused on
eradicating inefficiencies and satisfying the needs of stakeholders. Once problems
have been identified, frontline people (e.g. teachers, lecturers, and coaches) must be



68 P. Wiid

empowered and supported by their leaders to formally solve these in an innovative
manner through the disciplined use of the kaizen tools. This is the Lean Thinking
Womack et al. referred to—new corporate and individual thinking patterns (1996).

Albeit, thinking is not enough to improve an organisation. Kaizen is truly about
changing all aspects of an organisation by supporting the creation of new habits of
excellence over time, and sustaining these good habits, but also developing it further.
A lengthydescription of a kaizen culture is given in the award-winningbook,Creating
a Kaizen Culture (Miller et al., 2014). An organisation cannot become extraordinary
in the way it creates and delivers its goods, services, and ideas, if it is not rooted in a
culture of continuous improvement. This culture implies an inward focus to enable
the fulfilment of the needs of the ultimate customer (outward focus).

One of the characteristics of this culture is stated eloquently by Wroblewski
(2006): ‘The principles of Lean are trying to put harmony into the workplace. This
means harmony between man and machine, management and associates, company
and customer, company and supplier, and even between company and society. The
kaizen principles are helping us develop and promote harmony by removing barriers,
rocks, and conflicts that disrupt flow in our business.’

Kaizen, then, is a holistic approach to improve an organisation but it extends
beyond the buildings, the physical classroom, and the virtual training space. It is
finally about making humankind better. The spirit of kaizen goes far beyond just
saving cost. It is a techno-social system, endeavouring to benefit all stakeholders of
which the Toyota Production System is a prime example. In an educational setting
this implies that the development of students entails more than transferring subject
matter knowledge. Creating value for learners includes practical learning; a purpose-
ful application of knowledge to enhance insight and to improve engagement. This
insight should eventually extend to the improvement of families, friendships, cultural
groups, the environment, sports teams and broader society.

1.4 Defining What ‘Change-for-the-Better’ Is in Education

Education will only improve if we know what to improve and why improvement is
required. Senior leaders, and subsequently all staff members, must be able to clearly
articulate our strategic objectives. The kaizen approach is intertwined with devel-
oping this vision, mission, values and strategy; it is not merely a few improvement
initiatives. We might change structures, curricula, our teaching methods, technology
and training aids, but wemight just do more harm than good. Not only could students
suffer (and have suffered) but also teachers, parents, academia and establishments,
with our future as a society at stake. Change for the better should always be syn-
onymous with the customer value we are trying to create. Education primarily exists
because there is a need by the student that should be met.

Establishing what ‘better’ is should be done at various educational levels. At the
macro level, politicians and bureaucrats should provide stability within the education
system. Unfortunately, education often becomes a playground for politicians with



Kaizen and Education 69

major philosophical changes causing confusion and poor outcomes. Bigham and
Ray (2012) reported declining reading performance under students when politically
influenced curriculum decisions were made instead of data-driven decisions. In New
Zealand, misguided political policy decisions over decades have resulted in poor
literacy achievement outcomes regardless of recommendations from experts (Tun-
mer, Chapman, Greaney, Prochnow, & Arrow, 2013). Harm is caused to numerous
stakeholders when their value propositions are not congruent. A self-centred lead-
ership paradigm (as opposed to the servant-leadership model of kaizen) is often the
root cause of these symptoms. An OECD report (Organisation For Economic Co-
operation and Development, 2010) highlighted the need for alignment of national
and local policies to overcome school failure.

Defining a value proposition at a local institution seems easier as it is closer to the
frontline of education. However, determining and measuring performance, (based
on an agreed-upon vision, values, principles and strategic objectives), often fails
because of the lack of a kaizen mind-set and practice. The improvement opportunity
for kindergartens, in-home education, schools, tertiary institutes and the trades, is to
define simple and clear objectives and tomonitor these in a disciplinedway on a daily,
weekly and monthly basis. Parents with expertise in this field and local schoolboards
can be an excellent resource to assist in this regard. But, which objectives should be
pursued?

Education should follow the advice from Shigeo Shingo (TPS expert) on how
to determine what ‘better’ looks like in this sector: make things (i) easier, (ii) bet-
ter, (iii) faster and (iv) cheaper, in that order (1988). This denotes we must first set
goals to make our processes easier for educators, students, administration, and other
stakeholders. Lecturing, preparing for classes, doing research, working on assign-
ments, and using technology should be simplified; not made more complex. It is
usually easier to complicate policies, procedures, processes and tasks, than it is to
simplify them. A simple key performance indicator (KPI) to show the complexity of
the technology employed is the number of technical calls logged per period. Other
KPIs can focus on the percentage of learners using technology; the number of critical
processes that have been improved and standardised.

Oncework has been simplified, it should bemade better by improving the quality.
Poor quality should never be accepted, created, or passed on. These errors and mis-
takes are difficult to detect becausemany educational processes are unseen (as inmost
service-orientated processes). Quality should be experienced in classroom activities,
completion of assignments, providing assignment briefs, setting goals, course doc-
umentation, the marking of assignments, and in interpersonal relationships, to name
a few examples. Setting particular objectives to improve the quality of the input,
transformation processes, outputs and feedback loops (Millar & Theunissen, 2008)
can greatly enhance the quality of teaching and learning. Examples of setting quality-
goals include; student pass rates; the number of teacher training events; the number
of standards reviewed or improved; how often performance against standards are
checked; or the number of incidents where reports or other information sharing is
erroneous.



70 P. Wiid

Faster is about speeding up the time it takes to do the work the (internal and
external) stakeholders require from us. Idle time, or waiting, is usually a huge part of
a process. Very little time is spent on the value-added activities whereby a product
or service (like information or documentation) is transformed into the value the
customer is expecting. By eliminating waiting a process can be sped up dramatically.
When educational processes are evaluated from a kaizen standpoint (value stream
mapping is a well-known technique) the value-density of the process can be a rude
awakening. Faster processes are not the same as rushed processes: the latter indicates
poor quality and often higher cost. Kaizen can achieve high quality and fast lead
times simultaneously. Targets related to speed can be turnaround times when dealing
with complaints or hearings; recording month-end deadline breaches; or how long it
should take to mark assignments for a specific course.

Lastly, applying kaizen also provides the service or product cheaper, or more
cost-effectively. This is usually the by-product of the previous three goals of making
improvements. Too often Western organisations make cost reduction their main rea-
son for applying Continuous Improvement: reduce cost at any cost. The easy (and
often lazy) way is headcount reduction or ‘restructuring’. Chasing short-term strate-
gic objectives, set by short-term senior leaders (who are often in the game for their
own gain) is frequently the root cause of this debilitating practice (Walton, 1986).
Financial targets must not negate the other goals we pursue—the balanced scorecard
(Balanced Scorecard Institute, n.d.) is often used to ensure strategic synergy. Typical
cost goals are: adherence to budgets, decreasing tuition cost, teacher–student ratio;
and student debt.

Process simplification impacts favourably on quality, and both these make the
process faster, and the culmination of simplification, higher quality and faster pro-
cesses is cost reduction. Cutting cost without this deeper understanding is futile and
most often results in hardship for the organisation, its people, students and families,
the economy, and even society. Kaizen aspires to bring no-harm to all stakeholders
when setting and monitoring the institution’s goals.

These simple four objectives can serve any educational institution well when
embarking on a kaizen transformation. However, Shingo’s purposes of making
improvements are more process orientated. Expanding the purpose of kaizen in edu-
cation, the following people-orientated target conditions must also be included in
any strategic plan:

Health and safety of our people includes more than providing a physically safe
environment. The emotional welfare of staff members is just as important, especially
in the service industry where many processes and their associated problems are more
hidden than inmanufacturing, often causing stress and burn-out due towork overload.
The academic environment can also provide a breeding ground for bullying, as well
as demoralising class and wealth discrimination (Emiliani, 2017b). If an institute is
serious about making the workplace better, it should also define and monitor health
and safety issues.

Improving morale and staff satisfaction must be at the heart of an educational
organisation. Delivering quality outcomes is to a large degree dependent on the skills,
attitudes, and emotional and social intelligence of staff. Kaizen develops all people



Kaizen and Education 71

in an organisation so they are able to spend more time on value-added activities but
also to improve theirwork. These improved capabilities also improve self-confidence,
self-discipline, pride, cooperation and trust (Imai, 1997). A simple tool to determine
staff satisfaction is the Net Promoter Score with employees answering the following
question: ‘How likely is it that you would recommend this university (or school) to
a friend or colleague?’ (Net Promotor Score, n.d.). However, very often staff sat-
isfaction surveys do not improve morale; they might have the opposite effect. This
can be ascribed to several factors: (i) the sincerity and credibility of senior manage-
ment—do they really care about and serve their staff?; (ii) infrequent surveys with
minimal feedback; (iii) no action after surveys; and (iv) the over-arching culture in the
education sector. A better technique to improve staff satisfaction is through gemba
(frontline) walks by supportive leadership on a very regular basis. These scheduled
visits to the classroom are not to micro-manage people but to support people to reach
the strategic objectives of the team. Process performance is monitored and corrective
action taken by both leaders and teachers to enable continuous improvement. This
‘immediate feedback’ is based on the explicit values of respect for people, care, and
trust.

Over and above Shingo’s purposes for Continuous Improvement, an educational
organisation must also have growth aspirations. This might include a roll increase
target or a revenue and funding increase to cater for capital projects and operational
expenses. Without realistic growth ambitions a school, college, or university will
gradually be overtaken by the effects of entropy. Kaizen does not only reduce but
also increases. This implies you might have the most efficient processes and the most
capable lecturers but minimal students and/or funds to justify the institution’s exis-
tence. Kaizen works best when inwardly focused process-and-people improvement
is balanced with outwardly-orientated growth aspirations. Conversely, pursuing a
growth strategy per se without improving processes and developing staff can easily
lead to failure as muda (Japanese for waste) will also increase if not deliberately
targeted.

The purpose of kaizen in an educational organisation can be condensed to the
following: making teaching and learning processes easier, safer and healthier while
improving the quality of everything, making processes faster without being rushed
or strained. A by-product of all these actions is usually cost savings although explicit
financial objectives should also be pursued. Growth aspirations for an institution
ensure the benefits of process improvement and people development are maximised.
Albeit, after we have defined all these lofty goals, the acid test is summed up in this
report: ‘Only when the data meets the student in the classroom will teachers begin
to embrace its relevance’ (Lambert, n.d.). The purpose of having a purpose is to
primarily improve the student and teacher.

Now that the purpose of kaizen in education has been discussed, the broader
principles underpinning kaizen will be explored.



72 P. Wiid

2 Foundational Principles of Kaizen

To practise kaizen a teammust understand the foundational beliefs, principles, values
and habits3 driving efficiency and effectiveness. The seven kaizen principles accord-
ing to Coimbra (2009) are: (i) create customer value; (ii) eliminate waste; (iii) engage
people; (iv) go to gemba; (v) manage visually; (vi) process and results; and (vii) pull
and flow.

Coimbra states that a paradigm shift is required to create new habits based on
these beliefs, principles, and values (ibid). It often requires unlearning the ‘tradi-
tional’ ways of both teaching and managing educational institutions based on critical
reflection. Understanding the connection between the principles and the improve-
ment tools can prevent inauthentic kaizen (and subsequent harm to stakeholders) and
therefore supports a sustainable kaizen journey (Graban, 2007).

Kaizen practitioners continuously research and improve their understanding of the
foundational principles, assumptions, values and habits. It must be ingrained in the
unconscious mind by the creation of new neural pathways through regular visitation
(Mind Warriors Limited, 2009). The more the principles, beliefs and values are
applied, the stronger the new kaizen habits will become. The kaizen principles are
subsequently explored.

2.1 Create Customer Value

An educational institute exists because it meets certain needs of a customer; in other
words, creating products or services that the customer perceives as being of value.
It is, however, important to pinpoint what the value is that the customer requires.
According to Emiliani, ‘Quality in higher education remains largely undefined’
(2015b, p. 33). He lists 45 common, unforced errors occurring in teaching processes
that devalue a teaching system.

It can be correctly argued that an educational organisation has multiple customers
with varying, even conflicting requirements. For example, government priorities and
policies might not be aligned with student expectations. Prioritising these wide-
ranging requirements can be a minefield. Nonetheless, it should be the aspiration to
determine a common and simplified understanding ofwhat value is and the alignment
of all stakeholder value propositions. This will take time and effort but it is achievable
in a kaizen environment. If dictated government policy does not address the needs of

3Principle: a fundamental truth or proposition that serves as the foundation for a system of belief
or behaviour or for a chain of reasoning (Oxford Dictionary).

Beliefs: Something one accepts as true or real; a firmly held opinion (Oxford Dictionary). Also
called assumptions.

Values: Values are deeply held views of what you find worthy. (Mind Warriors Limited, 2009).
Not to be confused with customer value (the customer’s requirements).

Habits: A settled or regular tendency or practice, especially one that is hard to give up (Oxford
Dictionary).



Kaizen and Education 73

the grassroots institution, the latter should work towards clarifying its own strategy
so it can feedback to bureaucracy using data to negotiate better alignment. This will
require mutual trust.

Value is not only related to the perception and experience of the student (an
external customer). Internal customers (staff members, senior management, admin-
istration, lecturers, professors and researchers) must also be taken into consideration.
Liker and Meier (2006) stipulates that the starting point in the kaizen approach is
‘generating value for the customer, society, and the economy.’ It is not first and fore-
most about cutting cost.Monetary saving is a natural outcome of creating, producing,
and delivering exactly what the customer requires when it is required. For instance,
the economic benefits of a well-organised, well-skilled society can be compound-
ing. Not only can it help reduce poverty levels, it can also increase social stability.
Determining ‘value’ is often described and quantified in terms of Quality, Cost and
Delivery (Imai, 1986).

The quality component can be measured as the number, percentages, or cost of,
failures, defects, mistakes, rework, incomplete work, complaints, non-compliances,
etc. The quality of teaching and learning should be quantified through the setting of
appropriate targets and monitoring of performance. However, qualitative observa-
tions of behaviour, emotions, and attitudes (of student, staff, and other stakeholders)
must also be noted and corrective action taken based on the explicit values of the
institution. Quality usually starts with simplifying teaching and learning—not com-
plicating it (Shingo, 1988); not by addingmoreworkload andmore steps to a process.

The cost aspect can refer to budget adherence, cost of providing a course or ser-
vice, labour cost, cost centre management, government funding, allocation of funds
to various departments, outstanding student fees, space utilisation, productivity and
so forth. According to Emiliani (2016) higher education in the United States has
been under financial pressure for a long period due to decreased student enrolments,
increased operating cost and reduction in government funding. Traditional manage-
ment style cost-cutting is contrary to the kaizen way whereby cash flow improve-
ment is achieved through the meticulous improvement of processes (Kaizen Institute
USA, 2018). The cost of providing education can be controlled in innovative ways
as reported by the Davis Educational Foundation (2012) inquiry into the rising cost
of higher education in New England, USA. Some of their suggestions include: (i)
year-round use of the campus; (ii) early identification of students not ‘college-ready’
as the remedial work can be costly; (iii) reduce time to graduation; (iv) and blended
learning or on-line courses.

Delivery has to do with the timeliness of providing services or information.
Monthly reporting deadlines come to mind, time wasted in meetings, inconvenient
class times and rosters, working overtime to mark complex assignments, waiting for
decisions, time allocated to administrative tasks, etc. A kaizen education system will
endeavour to minimise time spent on activities not adding value to the customers of
the system.

Although ‘not everything that can be counted counts, and not everything that
counts canbe counted’ (Cameron, 1963), it is important to know if a team is improving
or falling into entropy. Therefore, measuring the performance of processes (and



74 P. Wiid

people) is a vital kaizen activity. Targets should be aligned with what the customers
(all stakeholders) require, however, it is not always easy to determine measures in
the beginning of a kaizen journey due to the instability of the system. Using plain
KPIs to highlight key problems in a pilot area can be a sensible way to start.

A key learning is to reduce the number of targets as too many measures will
confuse and demoralise. It is therefore important to develop KPIs that will measure
critical success factors (CSF). Chasing the ‘wrong’ targets will create inefficient
habits, a waste itself. As the kaizen journey continues, the targets themselves must
also be enhanced through simplification and by combining various objectives to try
to reduce these into a single and simple KPI. This can only occur if education leaders
and senior managers deliberately and critically reflect on organisational KPIs and
associated goals and strategies.

Customer value is constantly being prevented due to waste in processes as will
be examined in the next section.

2.2 Remove Inefficiencies or Waste

What is waste? The Japanese refer to it as muda—not getting paid for an effort. It
is consuming resources without adding any value or benefits to the end customer of
the process (Imai, 1986).

Muda cannot be identified and removed effectively if a clear understanding of
what value is has not been predetermined. Otherwise activities might be removed
that are not wasteful, or, time can be wasted on fixing processes that should not exist
in the first place. Eradicating muda becomes more obvious and effective once value
has been clearly defined.

Various types of muda can be identified in the workplace. Eliminating these inef-
ficiencies is an easy way to start improvement activities, as Masaaki Imai states in
his best-selling book, Gemba Kaizen (1997). The classic 7-Wastes can easily be
remembered by the acronym, T -I-M-W -O-O-D:

Transportation entails the unnecessary movement of information or materials in
a manufacturing setting. In teaching, the ‘materials’ are the students moving through
educational processes while being transformed (like raw material is transformed
into a more valuable object during a manufacturing process). This can include their
inefficient physical movements between classrooms, campuses and travelling long
distances for just a one-hour class per day. A frustrating scenario is when students
travel long distances to a campus to find the lecturer is unavailable. The root cause
of this muda is often a disrespect for people. The waste of transportation can also
include unnecessary emotional swings (movements away from equilibrium) due to
insecurity, unsafe campuses, bullying, or frustration with the quality of teaching or
environment. The transformation of the individual takes longer or might even be
impeded.

Inventory is the storage of information or materials while it is waiting to be used
or to be transformed. It piles up in email inboxes, trays, printers, servers, meeting



Kaizen and Education 75

minutes, course brochures and even on visual boards. Stock items also refer to storing
an excessive quantity of consumables and teaching resources, or running out of stock
items required to teach. Thiswaste often leads to thewaste of ‘defects’ as unnecessary
or over-produced items are often discarded. The trap is to buy more because items
have been discounted by the supplier. It only takes a few items to be discarded to
nullify the cost benefits of buying in bulk. Bulk-buying also requires bulk storage
that could have been used for more productive activities. Too many stock items also
lead to more searching (waiting) by staff.

The storage of unnecessary information in a data systemalso leads tomultiple inef-
ficiencies, for example the difficulty to find the correct template, numerous versions
of documents, and complicated folder structures. Naming conventions can greatly
assist to standardise information record-keeping and standardised folder structures
can reduce searching as well.

Asking the following questions can assist with inventory reduction: do we need
to keep this? Why? How many? Where? When? Who is responsible?

Motion involves unnecessary human action by the operator in a factory (lecturer,
teacher, facilitator or a coach in education) like walking too much, and searching for
people, information or materials. Too many keystrokes to access information in a
complex folder structure indicates motion waste. Too much movement of people can
lead to unsafe practices and injuries. Excessive emotionalmotion can also devalue the
participation of the teacher. Low levels of respect for colleagues’ workload and their
frustrations often result in the overthinking of issues and the spending of emotional
energy on self-preservation and conflict resolution. The lack of care for students
will also create negativity and hinder performance. A kaizen culture enables an
environment where debilitating emotions are minimised.

Waiting occurs in most processes and huge gains can be made if waiting times
can be reduced. Unnecessary and prolonged meetings are a well-known example
of this in education. The root cause of this frustrating practice is usually poor or
rushed planning. This often results in rework (a quality issue) when another meeting
has to be convened or discussion points have to be revisited. Drawn-out decision-
making keeps staff and their teams busy while value-added work moves lower down
the priority list. Waiting for decisions by leaders or managers also prevents staff
from doing better work. Submitting and publishing assignment results late are also
not adding value to lecturer or student. These delays are more often the result of
cumbersome processes; not uncooperative staff members.

Over-production is producing too much information or material before it is
required and then it waits while it is stored somewhere, running the risk of turning
into a defect. Teachers must be tuned-into their students to identify when they are
overloaded with too much work and either reduce assignments or provide timely
support to help them cope. In kaizen less is often more. Too much (ineffective and
inefficient) teaching will result in defective knowledge assimilation which reduces
the quality of learning and living. The approach to overload students might also lead
to poor work habits in these future employees, managers, and leaders. Nonetheless,
teaching should also not pamper students as disciplined learning and good routines
will empower students to better manage the challenges of later life.



76 P. Wiid

The Princeton Review provides some useful tips on avoiding over-production at
school. It includes studying more often in shorter sessions instead of long, tedious
hours, less often. This requires good planning and a set routine. Developing open,
trusting communication with teachers and parents to obtain support when a student
is struggling is vital. Celebrating successes is also crucial to keep motivational lev-
els high (The Princeton Review, n.d.). These tips are all associated with a kaizen
approach.

Over-processing happenswhen a process (work) is too complex or difficult and in
need of simplification. Marking assignments and performing all the related admin-
istrative tasks is usually a real tester for teachers and lecturers. Complaints about
unnecessary administrative work in schools and universities have driven numerous
excellent teachers from this future-creating vocation (Lambert, n.d.; Allpress, 2018).
This waste of over-processing is often leading to the defect of teachers leaving the
sector or moving to other schools. The attrition cost in US education is annually
between $1 billion and $2.2 billion (Alliance for Excellent Education, n.d.).

Defects in education are numerous: incorrect data, endless reports, omissions
in administrative documents, and justified student and parent complaints. Emiliani
(2015a) refers to 45 common, unforced errors occurring in teaching processes that
devalue the product delivered to students. Some of these are teachers who cannot
teach, lecturers who cannot explain the course content with clarity, go too fast, read
from books and slides, do not use real-world examples, come to class unprepared, do
not keep to class times, ignore student feedback, cancel classes and speak to students
in a condescendingway. The obvious defect is a student failing to develop holistically
and to underperform. Schools not dealing decisively with bullying are also a defect
(Green, Harcourt, Mattioni, & Prior, 2013).

2.2.1 The 3Ms

Muda forms part of a triad that also includes mura (variability, irregularity, uneven-
ness) andmuri (strain on people, processes and equipment or other technology). This
triad is called the 3Ms and they are intertwined. Unevenness in processes leads to
strain which results in muda, for example; a student not studying regularly in short
sessions usually ‘crams’ information just before an exam or assignment in one long
session (large batch of information) which often leads to strain (stress, anxiety, lack
of sleep). This overburdening can result in various muda: (i) defects (poor memory
and low retrieval of information, even failing an assignment); (ii) other academic or
personal activities waiting; (iii) over-processing of the learning material (re-reading
to gain insight); or (iv) slow transportation of knowledge or skills (inventory) to the
long-term memory functions of the brain. Education can become better by ‘reducing
unnecessary, unreasonable and uneven activities’ (1973 Toyota Production System
Manual, p. 2).

Other forms of waste can also be found, for example, marking large batches
of assignments at end-of-term instead of getting closer to the ideal of single-piece
flow. This can imply shorter assessments more often through ‘machine evaluation’



Kaizen and Education 77

as Emiliani (2016) implemented for 45% of his course assessments at Central
Connecticut State University. ‘Multi-tasking’ can also be very ineffective and
inefficient which implies that students (and facilitators) involved in too many
courses simultaneously can impede the quality of learning and teaching. The use of
mobile devices for social communication during tuition and individual studies can
also reduce the quality of learning as attention is continuously diverted (Weimer,
2018). Other inefficiencies in a service environment include work-time losses like
absenteeism, and employee underperformance due to low morale.

The 3Ms should be eliminated through daily, small, incremental kaizen by all
staff members (Imai, 1986). Waste can also be minimised through project-based
improvements like Value Stream Design whereby the current state of a process is
analysed and then vastly improved to incorporate pull and flow principles. It is also
called: ‘Learning to See’ (Rother & Shook, 1998). Daily kaizen should once again
follow such a project to ensure the improvedways are followed and further enhanced.
These projects can deliver break-through results and can be applied at various process
levels.

To conclude this section on eliminating waste a word from the efficiency expert,
Deming. His rule of thumb is that about 94% of all problems in education will be due
to the system (the responsibility of senior leaders) and only approximately 6% can be
attributed to employees (Deming, 1986). Senior pedagogical leaders and managers
must develop the kaizen habits of actively supporting people at the coalface to solve
these systemic issues; not blaming them as they struggle against the system in the
organisation.

2.3 Engage and Develop People

Engaging people is underpinned by a deep-seated respect for people (and society
in general). The Toyota Production System has been an outstanding example of an
effective and efficient organisation due to their balanced, holistic approach: people
and process should equally and simultaneously become better. Imai (1997) states
that engaging people requires ‘everybody, every day, everywhere’ doing kaizen for
the betterment of all.

An educational organisation must be a ‘learning enterprise’ as Imai further stip-
ulates (ibid.). This does not imply the process of teaching students; it is about staff
development. Administrative people, management and frontline educators, are con-
tinuously thinking about the systemic problems and process challenges they are
facing daily. They reflect regularly on what happened (the good and the bad) and
collectively search for solutions to embody a better way of meeting student and other
stakeholders’ needs. Mark Graban says ‘Lean [kaizen in this context] is a thinking
process more than a simple to-do list of tools to implement.’ (2009). It is pointless
if we try and ‘fix’ processes without developing the ‘fixing’ skills of teaching staff
and administrative personnel.



78 P. Wiid

Engaging people is also about improving staff morale through genuine support to
all people. RichardBranson and other high-profile business leaders are convinced that
high staff satisfaction underlies customer satisfaction. As Zappos stated it cleverly in
an advertising campaign: ‘Happy People Making People Happy’ (Mullenlowe U.S.,
2010).

A few aspects related to developing staff should be considered:

• Understanding and practising respect for people, whether they are the (internal
or external) customers of the work that is done, or whether they are suppliers of
information and materials.

• Respect for people (and broader humankind) must be practised and promoted by
the senior leaders at the educational institution. Thismight require the development
of new behavioural patterns for some due to deeply embedded poor practices and
systems. However, kaizen enthusiasts should not be discouraged by the challenges
ahead. Their focus should be on the long-term vision of empowering our societies
with knowledge and skill in a relevant, effective and efficient way. We might not
even see some of the results in our lifetime but our kaizen efforts should create a
legacy that future generations can build on.

• Engage faculty and administrative people to remove inefficiencies and to improve
quality. In other words, empowerment them to identify waste and to remove it.

• Continuous skill development in the daily processes of teaching, research and
administration. Nonetheless, employees should also be trained in the use of the
continuous improvement approach and subsequent techniques.

• Deep reflection on practices with teammembers to find better ways, to standardise
the better ways, and to further enhance them.

• Improving staff morale by connecting genuinely and sincerely with people, espe-
cially as a leader (at any level in the organisation).

• Celebrate success and reward staff for improvements made and targets achieved.
This does not have to be financial. The pride and emotional connection with the
workplace can be more powerful than monetary rewards.

• Servant-leadership is required to engage people and to develop them. Coaching
staff cannot occur when egos and selfish motives get in the way.

• High staff turnover is one of the most inefficient and devastating results in an
organisation: ‘As a rule of thumb, the cost of employee turnover is estimated
to be one to three times the departing employee’s annual salary, depending on
factors such as the seniority of the position, and how quickly a replacement can
be found and trained.’ (Cole, 2001). Organisational efficiency is much more than
just measuring process performance. It has a lot to do with the quality of social
relationships, the emotions generated within the team, and the lived values of
each individual (Miller et al., 2014). Deming asserts that ‘A system that fosters an
atmosphere of receptivity and recognition is far preferable to one that measures
people by the numbers they turn out.’ (Walton, 1986).

Engaging and developing people happens at the coalface; the theme of the fourth
principle of kaizen.



Kaizen and Education 79

2.4 Focus on Gemba

The gemba is the frontline of the organisation; where value is created for the customer
but also where muda, mura and muri persist and where it must be eliminated with the
active support of senior leaders (Imai, 1997). Leaders at all levels need to be strongly
connected at the coalface of education. Leaders need to derive their decisions and
strategic objectives by what is happening where students and educators connect. The
opposite of kaizen management is managing through reports and endless meetings,
behind a comfortable desk, and managing on the internet or in the cloud.

With kaizen, problems are made visible at the gemba through visual management.
When leaders step into the classroom regularly they support and develop teachers to
resolve the apparent issues; not to spy, criticise or demean them. A leader’s standard
work must deliberately be designed to provide optimum support to frontline staff.
The lower a leader is in the organisational chart, the more frequent the coalface
interfaces will be.

Immediate feedback mechanisms must be designed to ensure rapid exposure of
problems, challenges, issues and improvement opportunities. These problems can be
fertile ground to enhance people’s problem solving abilities and to strengthen their
kaizen skills and confidence through the coaching of a senior leader. Immediate feed-
back can be given through the use of visual boards in smaller teams (or departments)
whereby daily and weekly performance can be observed and corrective action taken.
The early staff room gathering in the morning before school or after lunch is an ideal
time for this.

Walking through thegembamust bedeliberate,well-designed (standardised) visits
not only to the coalface but also to the administrative teams. The gemba walk is
much more than Management By Walking Around (MBWA). Standards must be
checked. These include checking if people are following: (i) work instructions, (ii)
processes, (iii) achieving student targets, and (iv) perform against teacher-set targets.
This checking is in the form of respectful support.

The focus by management (and all other support areas) on the frontline is to
ultimately support the teaching staff to solve the problems they and their customers,
the students, are facing. It is, however, important to prioritise the problems that are
having the biggest impact on creating performance gaps. Once a problem has been
identified, defined, and prioritised, root causes should be uncovered and addressed
through ideation and creative solutions. As part of the Scientific Method, the results
of the implemented solution(s) must always be verified to establish if improvement
has been made. If so, standardisation should follow. If the situation did not change,
further root cause analyses should be done, or alternative solutions investigated. It
is also recommended to solve one problem at a time but do it thoroughly (no multi-
tasking) and to achieve the targeted outcomes.

“The greatest sign of strength is when an individual can openly identify things
that did not go right, along with ‘countermeasures’ to prevent these things from
happening again.” (Liker & Meier, 2006, p. 14).



80 P. Wiid

2.5 Manage Visually

Visual management is the word used in kaizen to describe the management style.
It makes information and activities visual so problems (deviations from standards)
become obvious. Imai puts it as follows: ‘This is visual management: making abnor-
malities visible to all employees – managers, supervisors, and workers – so that
corrective action can be taken.’ (1997, p. 96). It can even be added that abnormalities
and problems can bemade visible to students and other stakeholders as well to enable
their participation in improvement activities.

Managing classrooms, student areas, and the back offices in a visual manner
creates interest and engagement from colleagues, senior management, and students.
More improvement ideas can be generated if more eyes are looking at the problems
a team is facing.

Visual management creates a disciplined approach to improving the teaching
environment as problems can be seen and it creates an urgency to solve it. With-
out this urgency (about solving the right problems at the right time) improvement
efforts will always have a low priority. The content of all team boards throughout
the organisation should be aligned, culminating in an overarching, high-level board
at senior management level depicting the organisational performance and its people
development; a line of sight throughout the organisation.

Visual management can also be seen in the use of videos, presentation slides
(minimal use), photographs, graphs, an idea system in the office (and even the class),
displaying visual class standards during lectures, or a need-to-know area with impor-
tant information to save time in class.

An indispensable formof visualmanagement is 5S (betterworkplace organisation)
(Imai, 1997). It is based on five words starting with ‘S’:

1S—Sort out an area (physical or digital) by eliminating all items not required to
carry out the work.

2S—Set-in-order to help locate materials, tools, software, files, folders, data and
other information, easily and always in the same place. This can be depicted through
photos of the layout, labels, demarcated areas, and naming conventions for files, and
standardised folder structures.

3S—Shine or sweep the area regularly to ensure compliance and a work environ-
ment conducive to high performance. It helps to detect unnecessary files or folders
within folders; these should either be deleted or archived. A regular sweep with the
eyes when entering a classroom, office, virtual space, or the lunchroom is a habit that
can prevent the reoccurrence of waste.

4S—Standardise the improvements made during the first 3Ss. Create visual stan-
dards to show the target condition in a specific area, preferably by engaging the people
using these standards. They usually know the processes better and can be more effi-
cient and effective in creating these standards. The key to effective standardisation
is simplification. A picture paints a thousand words is truly applicable here. These
visual standards are intuitive and easy to understand and make the deviation from



Kaizen and Education 81

the standard obvious. Nonetheless, these standards must be improved by the people
using them. This can only be achieved with a motivated and inspired workforce.

5S—Sustain the standards through regular checks or audits to ensure people are
adhering to the better ways that has been developed. Display the results of these
checks with clear actions on how to get the area or process back to the standard. This
can also display new ideas on improving the existing standard.

Applying 5S must be lead and supported by senior management to ensure the
discipline is upheld in all areas. A good area to start with 5S is the staff room of
the institution as it is a neutral area where staff can learn-by-doing kaizen. It can
also become a benchmark and training ground for people on giving the first steps in
organisational improvement.

2.5.1 Immediate Feedback and Visual Management

Visual control must be of such a nature that a problem can be seen immediately. At
Toyota Motor Corporation they have developed the andon, a visual and/or audible
signal to attract the attention of the supervisor the moment a problem occurs on the
assembly line. In similar fashion the next layer of management in education should
know as soon as possible when a problem occurred so that root cause analysis with
the appropriate people can be done. This urgency to solve problems has the potential
to eradicate reoccurring problems through standardisation once a solution has been
implemented.

Visual management is a key component of a kaizen organisation, but, what should
be managed visually? The next section explores the sixth principle of kaizen.

2.6 Process and Results

Excellent results in education are consistently achieved if the (i) teaching, (ii) learn-
ing, and (iii) administrative (supporting teaching) processes are stable and repeatable
through standardisation. The meticulous monitoring of results of these processes is
not sufficient to become excellent. Deming stated that ‘A goal without a method
for reaching it is useless… But setting goals without describing how they are going
to be accomplished is a common practice among American managers.’ (Walton,
1986, p. 77). According to Imai (1997) the predominantly results-driven thinking in
the West must be replaced by a process-oriented approach. Liker later mentions that
the ‘right process will produce the right results’ (2006).

In other words, standardisationwithin and around processes is a crucial element in
achieving consistently good results. This requires documented standards being fol-
lowed and improved by intrinsically motivated faculty members and administrators.
This should occur after they have been trained correctly in the application of these
standards, based on the Job Instruction method (Training Within Industry Service,



82 P. Wiid

1944). The important role of ensuring that standards are available, followed, and
improved, lies with the leadership team.

According to Imai (1997) stability must be achieved in five key areas in a process
to improve results (referred to as the 5Ms):

(i) Manual power (people) where low staff turnover is a competitive advantage
because highly skilled and experienced people are staying for lengthy peri-
ods because they find fulfilment in doing value-added work. Stability with
people means they know what is expected of them and they have the skills
to do their work based on clear standards. Moreover, when a stable workforce
finds encouragement in the respectful interactionwith students, colleagues, and
other stakeholders, they will care more about students, management and even
national pedagogical policies. Creativity enters the workplace where the cul-
ture is conducive to learning and personal development. This will be reflected
in the performance results of students and educators.

(ii) Machines/equipment/software/educational systems must be reliable and
well maintained so they are always immediately available to create value for
students (or other customers), whether in the hands of educators, or through
self-service by students. Educators must not be hoodwinked by thinking that
technology and artificial intelligence will make processes better (Emiliani,
2015a). It is better processes that will enable us to design fit-for-purpose tech-
nology solutions. Huge financial expenses and massive time waste can follow
the premature introduction of technology (or the next level of technological
advances).

(iii) Materials can include educational training resources used to add value for the
students (and other stakeholders). It should be easy for students and teaching
staff to access learning materials when they require it. Pursuing quality con-
tent is required. However, compared with manufacturing, the material flowing
through the educational process is primarily the student. And this is where
it becomes challenging for education because the students flowing through
our teaching processes vary dramatically in ‘quality’ and consistency, unlike
most factories. Factors like low income families, family violence, material-
istic affluence, cultural differences, language barriers, single-parent families
and the breakdown of the traditional family unit, makes the ‘handling of this
raw material’ unique. Nonetheless, this is also where many passionate edu-
cators find their fulfilment and this must be celebrated and supported. Recent
attempts to improve consistencywith the quality of students entering the educa-
tional system include better screening for college-readiness in the USA (Davis
Educational Foundation, 2012) and focusing on developing sufficient levels of
essential reading-related skills of new school entrants in New Zealand (Tunmer
et al., 2013).

(iv) Methods or processes include teaching processes to develop students’ skills
and knowledge. It also entails administrative processes like enrolment, library
access, etc. The vital processes must be identified and standardised to improve
consistency in the classroom. It must be noted that standardisation does not



Kaizen and Education 83

imply rigidity; just the opposite. Cooke stated in 1910 that a standard is simply
the best method at the time the standard is created. The purpose of a standard
is to make work easier, better, faster and cheaper; not to make the workplace
unbearable and frustrating. To avoid entropy, stable processes must constantly
be improved by staff and customer, encouraged by senior leaders.

(v) Measurement of our performance and our people will help to show the gaps so
improvements can be made. Without measurement, how will an organisation
know if it is improving or deteriorating? Surely, it is difficult, and sometimes
almost impossible, to measure certain aspects of the workplace, like feelings
of loyalty or pride in one’s work. Deming’s management method even states
that organisations should eliminate numerical quotas (Walton, 1986) when not
backed by a stable process. Emiliani also warns against the use of metrics
without a deep reflection on the behaviour it will create (2005). Measurements
should always help a team to see the gaps in performance so that corrective
action can be taken.

If any of these five areas are under strain, unreliable or inconsistent, then quality
educational outcomes will be very difficult to achieve. Consistently good results (and
a good reputation) demands consistent and robust processes. Senior management
must set the environment where there is a continuous focus by everybody, every
day, everywhere to follow and enhance standards in teaching and administrative
processes. There is no point in expecting certain outcomes (whether quality, cost, or
speed) if the underlying processes to achieve these targets have not been defined and
standardised.

On leadership in higher education Emiliani states: “It is common to hear senior
managers say ‘we looked at the numbers’ to justify the cuts… but almost never do
they say ‘we looked at the process’ to understand and eliminate costs that customers
do not value.” (2005, p. 4). Coimbra states it boldly: ‘It is this focus on improving
process detail that will bring extraordinary results.’ (2009, p. 8).

2.7 Pull and Flow

The ultimate objective of the kaizen methodology is to make services (e.g. informa-
tion and people), and materials flow when the customer needs it; when they ‘pull’
the information, knowledge, service, or material from the educator or education pro-
cess. It is also known as just-in-time processes. Delays in a process easily turn into
more muda as previously discussed; when ‘flow’ is hindered, value (for internal and
external customers) diminishes. Management reports should be prepared in such a
manner that it flows immediately when needed by the head of a faculty two days after
the semester concluded; no waiting. The process steps should also be synchronised
to ensure a continuous flow from one person to the next. Examination results, for
instance, should flow to students in a timely manner when it is time to pull them from
the student management system. The timely feedback on assignments is also impor-



84 P. Wiid

tant to foster learning. If there are delays in providing feedback to students, a learning
opportunity goes begging and the quality of their education can be compromised.

To introduce pull-flow processes requires a truly student-centric system. A pull-
flow system could incorporate the availability of material when students ask for it or
when they are ready for it. The opposite of ‘pull’ is a ‘push’ system ‘wherein faculty
design courseswith the information that they think students need to know.’ (Emiliani,
2016, p. 8). More research and experiments are needed in this area although blended
courses and on-line learning starts to fulfil that need.

When introducing the flow methodology we initially endeavour to make infor-
mation, people, and materials flow by reducing the non-value-added activities in
processes, and then we make the processes flow faster. Implementing flow is an
advanced kaizen methodology but flow can already be improved through the initial
elimination of muda. Every improvement should improve the flow of the process.

All previous six kaizen principles are supportive of achieving flow throughout
processes.

3 Kaizen and Education

The efficiency expert, Frederick Taylor, raised his concern about the low quality
and high cost of university qualifications early in the twentieth century. He was
especially concerned about the poor work ethic of graduates and their disrespectful
attitudes towards workers (Emiliani, 2015a). It sounds frighteningly familiar more
than a century later—it seems that education is still facing the same issues.

Morris Cooke added his voice soon after Taylor in a report entitled Academic and
Industrial Efficiency (Cooke, 1910). His research indicated that tertiary institutions
incorrectly regarded themselves as unique and very different from other organisa-
tions, creating a mind-set of superiority and exclusivity. This has prevailed in many
educational institutions with an unwillingness to learn from the practices of organi-
sations in other sectors. This non-scientific thinking goes against the essence of ped-
agogy and it prohibits learning and improvement. Cooke also indicated that teachers
were not spending enough time on activities adding value to students; their admin-
istrative work took their focus away from their main purpose. His work was largely
ignored at the time. Even until today, applying business excellence approaches has
been given little attention in education. Itmight just be that the same scientificmethod
applied to academic research has not been put to practice in the administrative or
teaching processes of many educational organisations.

Since then various voices have pushed for improvement in education especially
since the popularisation of kaizen and Lean in the 1980s and 1990s. However, this
chapter will not explore this pathway.

Emiliani (a seasoned Lean practitioner, turned academic) published a research
paper on the application of kaizen in business degree programmes (2005). He con-
cluded that if kaizen is applied correctly, it can rapidly improve courses and is an



Kaizen and Education 85

organisational excellence approach that can create value for all stakeholders, some-
thing the traditional management style cannot usually emulate.

3.1 Where and How to Start with Kaizen in Education?

Senior leaders, educators and employees in this industry should consider a range of
factors when transforming from a traditional managed institution to a kaizen culture
of excellence.

3.1.1 Kaizen Leadership

The kaizen journey will be doomed to failure if kaizen thinking and kaizen habits
are not developed first in senior leaders. This might take time but it will prevent
numerous inefficient and fake kaizen activities in the medium term and failure to
improve in the long-run.

Kaizen leadership is critical in initiating, planning, leading and sustaining better
ways ofworking. Imai (1997) refers to the two functions of organisational leadership:
(i) ensure standards are maintained, and (ii) promote the enhancement of the current
standards through structured problem solving by all employees. Although leaders
are usually well qualified, their decisions can do serious harm to processes, people,
the environment, and society. Emiliani says: ‘While we may think of leadership as
intelligent, thoughtful, and capable, it would be wise to recognise it as an error-prone
activity whose quality is normally very poor.’ (2015a, p. 56). Without strong, ethical
leadership, any organisation will suffer.

Kaizen leadership is vastly different from the mainly results-driven tradi-
tional Western management style. Kaizen leaders coach and model the productive
behaviours that will deliver sustainable and repeatable results. They do not tell, force,
bully or threaten people into compliance. They are leading by example at the gemba,
inspiring people but also applying discipline within teams through the use of the
kaizen tools. ‘When shaping a culture, the desired core beliefs and behaviours need
to be defined and spoken explicitly. This begins with humility, alignment, and a safe
environment’ (Miller et al., 2014, p. 87).

The role of kaizen leadership is to support frontline staff; the educators working at
the coalface of the education system. In a kaizen organisation the staff do not serve the
needs of leadership; leadership serves and enables employees to ensure value is being
delivered to the customer, especially the student. They encourage and coach the use
of structured problem solving techniques in a respectful manner. ‘The expectation of
leadership at Toyota is to effectively develop people so that performance results are
constantly improving.’ (Liker &Meier, 2006, p. 221). Hence their mantra, ‘We don’t
just build cars, we build people’ (ibid., p. 242). Kaizen leadership must be expressed
through leader standard work; formalising disciplined leadership activities. This



86 P. Wiid

standardisation of the leaders’ responsibilities supports the development of the new
kaizen habits of senior leaders, middle management and frontline leaders.

Kevin Meyer recorded his observation on kaizen leadership during a Lean study
tour to the Toyota plant in Kyushu, Japan: “Leadership at Toyota is humble. Fujio
Cho [former President of TMC] has said ‘lead as if you have no power.’ After seeing
this facility, you truly understand that concept. Toyota is a principle, a system that
just happens to have a leader.” (2008). The role of leadership in education systems
is to ensure that sector-specific problems are dealt with at the frontline, engaging
and developing the people dealing with these daily frustrations to help resolve them.
There must be a deliberate break with the self-serving leadership tradition that has
been prevalent in many organisations (Emiliani, 2015a). In education there is a huge
need to bury egos as this will not serve the people within the system, whether they
are colleagues or learners.

Quality interpersonal relationships are deeply rooted in the kaizen philosophy. An
excellent team is more than just following policies, processes, and procedures. Lead-
ers create an environment where people can flourish, build confidence and expand
their self-esteem. The pessimists will say it is unrealistic and unachievable. The
optimists in education will ask ‘Why can’t it be done?’

The education sector should learn from the failures of Lean in other settings.
One observation is that the leadership role in kaizen cannot be abdicated to a kaizen
champion or a business excellence team. The kaizen leadership capabilities must first
be developed to enable a committed journey.

Commitment to developing excellence through resilience must be developed in
leaders to ensure continuation of kaizen during the change management process. An
awareness of the five stages of dealing with change or loss can provide insight to
leaders on how to support their school or university more effectively and efficiently.
Kubler-Ross introduced the following stages: (i) denial; (ii) anger; (iii) bargaining;
(iv) depression; and (v) acceptance (Connelly, 2016). Teams and individuals might
get stuck in one of the stages and this can impede kaizen without the guidance of
leaders.

Senior leaders and middle management must include kaizen as a strategy (Imai,
1986) and communicate the vision, mission, values and principles, continuously
throughout the organisation and set up processes to give regular feedback on the
progress. Setting up effective teamboards, with simplifiedKPIs displayed can greatly
enhance the quality and frequency of this communication. A mutually-agreed trans-
formation roadmap can also help to clarify the journey. Policy deployment (Hoshin
Kanri) should be cascaded throughout the organisation with feedback provided from
all organisational levels to improve accountability, based on a deeper understanding
of the purpose and direction of the organisation’s journey. Senior decision-makers
should therefore move away from a ‘top-down’ approach and include more of a
‘bottom-up’ process to ensure their expectations, and those from gemba people, are
aligned. This will realistically happen progressively as the kaizen capabilities of
senior leaders are developing.



Kaizen and Education 87

3.1.2 Create a Lighthouse of Excellence

Carefully choose a team or department that is willing and committed to make
improvements when embarking on this delicate kaizen transformation journey. They
must be open for change. Senior leaders and kaizen champions cannot waste precious
energy and other resources at the beginning of the kaizen journey in trying to convince
the nay-sayers. In general, do not start with the toughest team. Tomake theworkplace
better can be arduous in the beginning, so, be easy on the people planning, organ-
ising, leading, and supporting kaizen. However, kaizen is often needed because of
critical issues in certain departments and these will have to be addressed first whether
these teams are ready for kaizen or not. Wisdom, respect for people and process, and
transparent communication, is pivotal to progress under these circumstances.

Solving real problems to reach clear goals must always be the motivation for
doing kaizen. Do not be tempted to embark on an all-encompassing kaizen training
programme from the outset if you have not defined what your major problems are.
First determine clearly what the actual problems are. Then prioritise your efforts and
demonstrate and promote a ‘can-do’ attitudewhereby problems are almost celebrated
because these can germinate into improvements. Start small but get real improve-
ments to showcase the benefits of kaizen rather than trying to improve everything
and everyone from the onset.

One of the usual problems when starting with kaizen is the lack of time to do
kaizen (Miller et al., 2014). Creating time for improvements can be one of the first
problems to be solved by teachers, administrators, and senior leaders. An easy way
to achieve this is to identify and remove muda immediately (Imai, 1997). Senior
leaders can lead staff on gemba visits to formally identify the 3Ms (muda, mura, and
muri) and to enable waste reduction.

When real obstacles are removed, making processes simpler, better, faster and
cheaper (Phillips, 2014), peoplewill regain hope and start to trust the kaizen approach.
This increased intrinsic motivation of teachers, professors, coaches and administra-
tors can become the foundation of further improvements.

3.1.3 Resistance to Change

When embarking on a changemanagement excursion, resistance to change is usually
high on the agenda. It is not uncommon to hear that ‘we have tried this before’, or
‘this will soon go away – it’s just another flavour of the month.’ People sometimes
actively resist the envisaged changes. These are real concerns and should be dealt
with transparently.

Reasons for this resistance might include the fear of loss of control, uncertainty,
past resentments and disillusionments with leaders and colleagues, the loss of face,
laziness, concerns about own competency, uncertainty, protecting comfort, lack of
trust, and the list goes on… (Kanter, 2014). However, it is vital to uncover the root
causes of these deeper seated problems as an organisation progresses with kaizen.
This might be one of the most challenging problems to deal with but as long as it



88 P. Wiid

is hidden, ignored or denied (often by senior leaders as they do want to be impli-
cated) kaizen will be smothered. Only when leaders are humble enough to also be
accountable for deep-seated problems, will the rapid progress be made. The servant-
leadership model will greatly enhance outcomes.

The objection to applying kaizen in sectors outside ofmanufacturing is sometimes
expressed. This is often indicative of a narrow-mindedness or being ill informed.
There is a vast richness in understanding the principles driving organisational excel-
lence. These can be applied in any industry, sector, cultural and religious group, sports
team, and in personal life. As Toussaint, former CEO of ThedaCare, highlights his
healthcare team’s learning from visiting a Lean factory: ‘Sick people were not snow
blowers. The snow blowers were in many ways treated better. Work on each snow
blower was designed to happen efficiently, without waiting between procedures, and
with every employee understanding his or her role. Quality had improved dramati-
cally. There was a lot to learn on that shop floor.’ (2010, p. 14).

Being aware of one’s paradigm can be very helpful in becomingmore open to new
ideas. A paradigm is the way a person or group sees the world based on their values,
beliefs, and strengthened by their standards, habits, and past experiences (Coimbra,
2009). Academics, educators, senior leadership teams or teachers must apply their
critical thinking skills and be open-minded about the application of kaizen in educa-
tion. An unwillingness to explore and learn from others, is not only unscientific and
arrogant, but also dangerous in an ever-changing environment.

Nonetheless, it must be said that the ‘copy-and-paste’ approach to implementing
the kaizen tools is damaging to this proven philosophy and will result in resistance
and resentment. A kaizen system cannot be copied; the spirit of an organisation
cannot be replicated. It must be developed; continuously.

To experience doubt about a new approach, even resistance, is a normal response
to a perceived threat. It is a built-in defence-mechanism that can be indicative of
people caring about their work and their customers. Instead of resisting the resis-
tors, leadership should embrace this. Educators cannot be pushed blind-folded into
the unknown. Leadership must lead them with respect onto a common-found better
pathway, whereby people continuously get a better understanding of what the pur-
pose of the journey is. Policy deployment and continuous communication about the
organisational goals is pivotal to minimise resistance to change.

Scholtes et al. succinctly summarises one of the laws of organisational transfor-
mation: ‘People don’t resist change, they resist being changed.’ (2003, p. 7). Kaizen
is never done to people. They must be led and guided to a point where they under-
stand the purpose of the improvements. They must be included in making changes
for the better that will be meaningful to them. This requires patience, endurance, and
humility from leaders and managers.

Once people have been genuinely included in determining what ‘better’ is, and
the ‘why’ of the transformation, persistent resistance to change has to be dealt with
decisively. Everyone must know there is a strong commitment from leadership that
kaizen is the way forward for the organisation; to become ‘better’ is non-negotiable.
It is often better for the organisation if the persistent resistors leave sooner rather
than later. These people often impede the development of others and halter process



Kaizen and Education 89

performance. But, always deal with these people in a respectful, kind way. Servant-
leadership does not imply weakness or tolerating disrespect.

4 Conclusion

Although there might be challenges and obstacles to implementing kaizen in edu-
cation, it can deliver results traditional management styles cannot achieve due to its
holistic and respectful approach. However, it will require strong servant-leadership,
humility and a willingness to explore, experiment, and learn about the proven field of
kaizen. Education should learn from the bountiful kaizen experiences (failures and
successes), knowledge, and skills available, especially from other sectors. Scientific
thinking should not only be applied to curriculum development and research, but,
also to the processes and people employed in creating value for students and other
stakeholders.

To enable the creation of a culture of excellence, everyone in an educational
institution must understand and apply the seven principles, beliefs, and values every
day, everywhere.Developing and cascading a clear strategy and policies to all levels is
a primary responsibility of senior leaders. It should focus onmaking processes easier,
better, faster and cheaper; in that sequence. Goals related to people development and
their motivational levels should also be monitored alongside the growth aspirations
of the institution.

Kaizen is a culture of excellence; not individual acts of brilliance or even the use
of kaizen methods to make education better. It is the continuous improvement of a
holistic system, based on the seven kaizen principles, beliefs, values and behaviours,
made explicit through the kaizen capabilities of leaders at all levels. Creating kaizen
lighthouses of excellence can overcome resistance to change when supported by
respectful, caring leaders. Educational excellence will occur when ‘the concept of
kaizen is so deeply ingrained in the minds of both managers and workers that they
often do not even realise that they are thinking kaizen.’ (Imai, 1986, p. xxix)

References

Toyota Production System Manual. (2017). English translation: Warren, M. Retrieved March 30,
2018, from https://www.linkedin.com/pulse/tps-manual-chapter-2-section-3-mark-warren/.

Alliance for Excellent Education. (n.d). Teacher attrition costs United States up to $2.2 billion
annually. Retrieved March 30, 2018, from https://all4ed.org/press/teacher-attrition-costs-united-
states-up-to-2-2-billion-annually-says-new-alliance-report/.

Allpress, K. (2018, 23 January). Fear teacher shortage may affect subjects. Stuff. Retrieved March
25, 2018, from https://www.stuff.co.nz/timaru-herald/news/100709425/fear-teacher-shortage-m
ay-affect-subjects.

https://www.linkedin.com/pulse/tps-manual-chapter-2-section-3-mark-warren/
https://all4ed.org/press/teacher-attrition-costs-united-states-up-to-2-2-billion-annually-says-new-alliance-report/
https://www.stuff.co.nz/timaru-herald/news/100709425/fear-teacher-shortage-may-affect-subjects


90 P. Wiid

Ballé, M. (2010, November 22). Lean�TPS (Kaizen+Respect). Gemba Coach. Lean Enter-
prise Institute. Retrieved March 25, 2018, from https://www.lean.org/balle/DisplayObject.cfm?
o=1698.

Bigham, G., & Ray, J. (2012). The influence of local politics on educational decisions. Current
Issues in Education, 15(2). Phoenix: Arizona State University.

Balanced Scorecard Institute. (n.d.). Balanced scorecard basics. Retrieved March 30, 2018, from
https://www.balancedscorecard.org/BSC-Basics/About-the-Balanced-Scorecard.

Cameron, W. B. (1963). Informal sociology: A casual introduction to sociological thinking. Volume
1 of Studies in sociology. Michigan: Random House.

Coimbra, E. A. (2009). Total flow management. Achieving excellence with kaizen and lean supply
chains. Zug, Switzerland: Kaizen Institute Consulting Group Ltd.

Cole, K. (2001). Supervision: The theory and practice of first-line management (2nd ed.). Frenchs
Forest, NSW, Australia: Pearson.

Connelly, M. (2016, 23 November). Kubler-Ross five-stage model. Change Management Coach.
Retrieved December 10, 2017, from http://www.change-management-coach.com/kubler-ross.
html.

Cooke, M. (1910). Academic and industrial efficiency; a report to the Carnegie foundation for
the advancement of teaching. Academic and Industrial Efficiency Bulletin, Number Five. The
Carnegie Foundation for the Advancement of Teaching. The Ontario Institute for Studies in
Education. Retrieved December 10, 2017, from http://www.archive.org/stream/academicindustr
i05cookuoft/academicindustri05cookuoft_djvu.txt.

Davis Educational Foundation. (2012).An inquiry into the rising cost of higher education. Summary
of responses from seventy college and university presidents. Retrieved from http://www.davisfo
undations.org/def. Yarmouth, USA.

Deming, W. E. (1986). Out of the crisis. Cambridge, MA: MIT Center for Advanced Engineering
Study.

Emiliani, M. L. (2005). Using kaizen to improve graduate business school degree programs.Quality
Assurance in Education., 13(1), 37–52. https://doi.org/10.1108/09684880510578641.

Emiliani, M. L. (2015a). Lean university. A guide to renewal and prosperity. Connecticut: The
CLBM.

Emiliani, M. L. (2015b). Lean teaching. A guide to becoming a better teacher. Connecticut: The
CLBM.

Emiliani, M. L. (2015c). Lean is not mean. 69 practical lessons in lean leadership. Wethersfield,
Connecticut: The CLBM, LLC.

Emiliani, M. L. (2016). Evolution in lean teaching. New Britain: Central Connecticut State Uni-
versity.

Emiliani, M. L. (2017a, January 2). Lean: Past, present, and future. Bob Emiliani blog. Retrieved
May 10, 2017, from http://www.bobemiliani.com/lean-past-present-and-future/.

Emiliani, M. L. (2017b, October). A study of executive resistance to lean (working paper). New
Britain: School of Engineering, Science, and Technology, Central Connecticut State University.

Graban, M. (2009). Lean hospitals. improving quality, patient safety, and employee satisfaction.
New York: Productivity Press.

Graban,M. (2007,March 21).Lean of “L.A.M.E.”?MarkGraban’s LeanBlog. RetrievedNovember
25, 2017, from https://www.leanblog.org/2007/03/lean-or-lame/.

Green, V. A., Harcourt, S., Mattioni, L., & Prior, T. (2013). Bullying in New Zealand Schools: A
final report. Wellington, New Zealand: University of Victoria.

Hellriegel, D., Jackson, S. E., & Slocum, J.W. (2002).Management: A competency-based approach
(9th ed.). Cincinnati, Ohio: South-Western/Thomson Learning.

Imai, M. (1986). Kaizen. The key to Japan’s competitive success. United States of America:
McGraw-Hill.

Imai, M. (1997). Gemba kaizen. A commonsense, low-cost approach to management. Singapore:
McGraw-Hill Book Co.

https://www.lean.org/balle/DisplayObject.cfm?o=1698
https://www.balancedscorecard.org/BSC-Basics/About-the-Balanced-Scorecard
http://www.change-management-coach.com/kubler-ross.html
http://www.archive.org/stream/academicindustri05cookuoft/academicindustri05cookuoft_djvu.txt
http://www.davisfoundations.org/def
https://doi.org/10.1108/09684880510578641
http://www.bobemiliani.com/lean-past-present-and-future/
https://www.leanblog.org/2007/03/lean-or-lame/


Kaizen and Education 91

Lambert, K. (n.d.). Why our teachers are leaving. Education World. Retrieved March 30, 2018,
from http://www.educationworld.com/why-our-teachers-are-leaving.

Mind Warriors Limited. (2009). Jolt challenge. The self intelligence experience. Auckland: Star
Books.

Kaizen Institute New Zealand. (n.d.). Retrieved November 19, 2017, from https://nz.kaizen.com/u
se-kaizen.html.

Kaizen Institute USA. (2018, 20 March). Cash flow vs. cost reduction. Retrieved March 29, 2018,
from https://us.kaizen.com/blog/post/2018/03/20/cash-flow-vs-cost-reduction.html.

Kanter, R. M. (2014, 25 November) Ten reasons people resist change. Harvard Business Review.
Retrieved November 9, 2017, from https://hbr.org/2012/09/ten-reasons-people-resist-chang.

Krafcik, J. F. (1988). Triumph of the lean production system.Massachusetts Institute of Technology.
Sloan Management Review: Fall, 30(1), 41–52.

Liker, J. K. & Meier, D. (2006). The Toyota Way Fieldbook. A practical guide for implementing
Toyota’s 4Ps. USA: The McGraw-Hill Companies, Inc..

Meyer, K. (2008, 28 October). JKE Day 1: Toyota Kyushu—The Manufacturing Ballet. Kevin
Meyer Blog. Retrieved June 16, 2017 from http://kevinmeyer.com/blog/2008/10/jke-day-1-toyo
ta-kyushu.html.

Millar, S., & Theunissen, C. A. (2008). Managing organisations in New Zealand (3rd ed.). North
Shore, Auckland: Pearson Education NZ.

Miller, J., Wroblewski, M., & Villafuerte, J. (2014). Creating a kaizen culture: Align the organiza-
tion, achieve breakthrough results, and sustain the gains. USA: McGraw-Hill Education.

Mirsky, J. (1998, 20 July). Eli Whitney. American Inventor and Manufacturer. Encyclopaedia Bri-
tannica. Retrieved October 22, 2017, from https://www.britannica.com/biography/Eli-Whitney.

Mullenlowe U.S. (2010, 1 April). Retrieved November 5, 2017, from https://us.mullenlowe.com/z
appos-happy-people-making-people-happy/.

Net Promoter Score (n.d.). Retrieved December 14, 2017, from https://www.netpromoter.com/k
now/.

Organisation for Economic Co-operation and Development. (2010). Overcoming school failure:
Policies that work. OECD Project Description. Retrieved March 30, 2018 from http://www.oec
d.org/education/school/45171670.pdf.

Phillips, P. (2014, 2 July) What makes your product valuable? Journey on the value stream—Part
3 on Organizational improvement in lean technology transformation. Retrieved December 10,
2017, from http://leantechnologytransformation.blogspot.co.nz/2013/02/what-makes-your-prod
uct-valuable.html.

Rother, M., & Shook, J. (1998). Learning to see. Cambridge, MA, USA: Lean Enterprise Institute.
Shingo, S. (1959) (2007—English Translation). Kaizen and the art of creative thinking. Tokyo:
Hakuto-Shobo Publishing Company.

Shingo, S. (1988). Non-stock production: The Shingo system of continuous improvement (1st ed.).
U.S.A: Productivity Press.

Scholtes, P., Joiner, B. L., & Streibel, B. J. (2003). The team handbook (3rd ed.). USA: Oriel Inc.
The Princeton Review. (n.d.). Homework wars: High school workloads, student stress, and how

parents can help. Retrieved March 30, 2018, from https://www.princetonreview.com/college-ad
vice/homework-wars.

Toussaint, J. & Gerard, R. A. (2010). On the mend: Revolutionizing healthcare to save lives and
transform the industry. Cambridge, MA, U.S.A: Lean Enterprise Institute.

Toyota Global Website. (n.d.). Retrieved December 3, 2017, from http://www.toyota-global.com/c
ompany/history_of_toyota/.

Training Within Industry Service. (1944). Job instruction: Session outline and reference material.
Washington, D.C.: Bureau of Training, War Manpower Commission.

Tunmer, W. E., Chapman, J. W., Greaney, K. T., Prochnow, J. E., & Arrow, A. W. (2013). Why
the New Zealand National Literacy strategy has failed and what can be done about it: Evidence
from the progress in International Reading Literacy Study (PIRLS) 2011 and reading recovery
monitoring reports. Auckland: Massey University of Education.

http://www.educationworld.com/why-our-teachers-are-leaving
https://nz.kaizen.com/use-kaizen.html
https://us.kaizen.com/blog/post/2018/03/20/cash-flow-vs-cost-reduction.html
https://hbr.org/2012/09/ten-reasons-people-resist-chang
http://kevinmeyer.com/blog/2008/10/jke-day-1-toyota-kyushu.html
https://www.britannica.com/biography/Eli-Whitney
https://us.mullenlowe.com/zappos-happy-people-making-people-happy/
https://www.netpromoter.com/know/
http://www.oecd.org/education/school/45171670.pdf
http://leantechnologytransformation.blogspot.co.nz/2013/02/what-makes-your-product-valuable.html
https://www.princetonreview.com/college-advice/homework-wars
http://www.toyota-global.com/company/history_of_toyota/


92 P. Wiid

Walton,Mary. (1986).The Deming management method. NewYork: TheBerkley PublishingGroup.
Weimer, M. (2018). Confronting the myth of multitasking: A collection of tools and resources.
Faculty Focus. Retrieved Accessed March 29, 2018 from https://www.facultyfocus.com/resour
ces/teaching-strategies-techniques/motivating-students/confronting-myths-multitasking-collecti
on-tools-resources/.

Willis, J. (2012, October 16). Deming to DevOps (Part 1). IT Revolution. Retrieved May 12, 2017,
from http://itrevolution.com/deming-to-devops-part-1/.

Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world. New York:
Free Press.

Womack, J. P., & Jones, D. T. (1996). Lean thinking: Banish waste and create wealth in your
corporation. New York: Simon & Schuster.

Womack, J. P. (2016, August 29).Womack—Sustaining gainsmust become a focus ofmanagement.
Planet Lean. Retrieved April 18, 2017, from http://planet-lean.com/womack-sustaining-gains-m
ust-become-a-focus-of-management.

Wroblewski, M. (2006, 28 September). Lean manufacturing epiphany. Got Boondoggle? Retrieved
June 18, 2017, from http://gotboondoggle.blogspot.co.nz/2006/09/lean-manufacturing-epiphan
y.html.

https://www.facultyfocus.com/resources/teaching-strategies-techniques/motivating-students/confronting-myths-multitasking-collection-tools-resources/
http://itrevolution.com/deming-to-devops-part-1/
http://planet-lean.com/womack-sustaining-gains-must-become-a-focus-of-management
http://gotboondoggle.blogspot.co.nz/2006/09/lean-manufacturing-epiphany.html


Part II
Agile Methods in the School Classroom



Transforming Education with eduScrum

Willy Wijnands and Alisa Stolze

Abstract In this practitioner chapter, the author (the originator of eduScrum)
explains the motivation for creating eduScrum, outlines its core practices, processes
and artefacts, and includes an external perspective on how eduScrum works based
on a series of conversations with students, as well as two experience reports from
students who have experienced eduScrum in practice. From the motivation that edu-
cation needs to change to meet the needs of twenty-first-century society, this chapter
addresses the various ways that adapting Scrum processes to the classroom enables
students to become more independent and self-directed in their learning. Student
experience reported in the chapter suggests that the positive aspects of eduScrum
reinforce each other over time, so that students become increasingly comfortable
with this style of learning as they progress through year levels.

Keywords Agile · Education · eduScrum · Personal development · Trust

1 Introduction: Change, Education, and Agile Methods

The world is changing very fast and we must adapt to this change. Unfortunately,
the current educational system is obsolete. We are still teaching as we did in the age
of industrialization, which used to make perfect sense but is no longer applicable
(Martin, 1995). This creates a gap between the educational offer and the market
requirements, as nowadays we need to not only educate workers, but leaders and
highly adaptive thinkers. There are three fundamentals underlying this change:

W. Wijnands (B)
eduScrum, Alphen aan den Rijn, The Netherlands
e-mail: willywijnands@gmail.com

A. Stolze
eduScrum, Berlin, Germany
e-mail: alisa.stolze@scrum-events.de

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_5

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_5&domain=pdf
mailto:willywijnands@gmail.com
mailto:alisa.stolze@scrum-events.de
https://doi.org/10.1007/978-981-13-2751-3_5


96 W. Wijnands and A. Stolze

1. Less need to examine knowledge retention, instead more focus on developing
the students’ twenty-first-century skills such as collaboration, communication,
critical thinking, creativity, ICT skills, etc.

2. Changing demands of society.Knowing yourweaknesses aswell as your qualities
becomes even more important as the time of the individual at the workplace is
over, with increasing emphasis on teamwork and collaboration.

3. Going beyond the teaching of the subject to help students to develop as human
beings and let them make progress in their personal qualities. The teacher is no
longer the source of knowledge.

The attitudes of students also need to change. We have to help students change
the attitudes from the way they have been taught before. Many students lie back as
if they were in a movie theatre. Students must leave this cinema attitude behind.

So, could eduScrum, as outlined in this chapter, become the connecting element?
We believe so. In eduScrum, the students are working together in teams in an active,
effective and efficient way and havemore fun. This is achieved by giving the students
ownership of their own learning process, but most important, trusting them. The
students take responsibility for what they do because they are given the freedom and
the space they need. The effect is that students are more engaged, more productive
and their results are better. They discover who they are and what their abilities are.

1.1 The Origins of eduScrum

In the book ‘The Art of Doing Twice the Work in Half the Time’, Jeff Sutherland,
the inventor of Scrum (Sutherland & Sutherland, 2013), suggests that Scrum, a well-
known agile method for software development, can be multi-faceted, assisting in
many areas of life, not just the business world. Sutherland also gives an account of
Scrum used in education, specifically citing a chemistry class in the Netherlands,
where eduScrum began.

The author was teaching science at Ashram College in Alphen aan den Rijn, and
was introduced toScrumbyMarkReijn, a software engineer at the companySchuberg
Philis in the Netherlands. Excited by the Scrum principles, he began implementing a
modified version of Scrum in 2011 with his students ranging from age twelve to age
eighteen, with impressive results. His students became excited to work as a team on
their projects as they developed life skills such as taking ownership of their work and
learning to be focused, hardworking and motivated. In order to assist other teachers
in implementing that special version of Scrum modified specifically for educators in
their classrooms, the author founded eduScrum and produced the eduScrum guide
(Delhij, van Solingen, & Wijnands, 2015).



Transforming Education with eduScrum 97

1.2 What Is eduScrum?

eduScrum is an edit of Scrum (Schwaber & Sutherland, 2017) a framework for
an active, collaborative, co-creative education process. It allows students to make
assignments according to a fixed rhythm. They plan their own activities and keep
track of their own progress. The teacher determines the assignments, coaches and
gives advice.

In eduScrum we go from teacher-driven education to student-driven and student-
organized education. The teacher determines the why and the what, the students
determine the how. With eduScrum, the students own their own learning process.
This results in intrinsic motivation, fun, personal growth and better results. Learning
is the key element: effective and efficient learning, learning to cooperate better,
learning to get to know oneself better, learning to be co-creative. Students work
together in an energetic, targeted way. This way of working generates pleasure,
power and accountability, the work goes faster and the results are better.

eduScrum students are stimulated to develop into valuable members of a team
and develop a mindset that aims for constant improvement. They pass through a
positive personal development. eduScrum is a ground-breaking way of education,
where personalized learning has a very important role, like the 4 C’s of learning and
innovation skills: Creativity and Innovation, Critical Thinking and Problem Solving,
Communication and Collaboration (P21, 2016). eduScrum gives students a free rein
to take agency over their learning.

One of the modifications made to Scrum was to add a ‘Definition of Fun’ to
the process, as well as a Definition of Doing instead of Definition of Done. This
is because fun is an important motivator for students, and is an essential part of
improving learning. This coincides with the happiness factor that Sutherland and
Sutherland (2013) explain:

Our day-to-day life is mostly made up of journeys. We don’t summit peaks every day…Most
of our days are taken up with striving toward our goals…if we get rewarded only for the
results, not the process, we’re going to be pretty miserable.

In the learning process it is the same for students. eduScrum captures the impor-
tance of enjoying and placing value in the journey. It provides the framework for
working effectively as a team, and increases productivity exponentially. In education,
teachers are using eduScrum to teach accountability, self-motivation, team collab-
oration and proper time management skills to their students, using the work on the
actual school curriculum as a vehicle.

The secret of eduScrum is ‘Ownership’. Students are given ownership of their
own learning process, but most important trust. As Covey (2006) states, the ability to
create, preserve and restore trust has become one of themost important skills of today.
The students take accountability for what they do because they are given the freedom
and the space they need. The effect is that students aremore engaged,more productive
and their results are better. Freedom is the acknowledgement of borders. The teacher
is no longer responsible for the learning process of their students, but delegates



98 W. Wijnands and A. Stolze

that responsibility to the students—their role changes into a coach, facilitator and
counsellor.

The collaborative nature of eduScrum leads to personal development, based on
four building blocks: trust, communication, involvement and accountability. Coop-
eration requires mutual trust between students. In addition, communication is very
important so that they learn to be themselves and dare to say what they think. These
two building blocks provide involvement within the team, which in turn leads to
accountability. The four building blocks refer not only to the team as a whole, but
also to individual students.

eduScrum has been developed to stimulate the personal development of students.
This is an active collaborative form in which students in teams make assignments
according to a fixed rhythm. They themselves determine their activities and keep
track of their own progress. The teacher determines the assignments and provides
support to a class, team or individual student, where necessary. Through this method,
students themselves think about how they want to learn.

2 An Outline of eduScrum

This sectionoutlines thekey components andpractices of eduScrum, involving teams,
process, planning and reflection.

2.1 Teams

In eduScrum, work is done in teams of four to five students. eduScrum teams are
self-organized, which means that they themselves determine how they want to work
together within the set boundaries of the assignment and framework. One of the first
meetings in an eduScrum project is team formation. The team formation meeting
takes place at the start of a sprint. First, a team captain is appointed by the teacher, or
chosen by the class. The Team Captain is not the boss, but someone who makes the
team work well. Regardless of whether the team captains are chosen or designated,
they choose the members of their team so that they can achieve an optimal team
composition. They choose their teammates based on the qualities needed for a good
project result. Lists of potential team members are anonymized, and only the gender
of the relevant student is known. We do not want teams with friends, or only friends,
nor teams that are single sex. Female team captains first choose a male teammember,
and vice versa. The order in which team captains may choose is varied as much as
possible. Team captains choose teams of four or five team members. The students
then choose a catchy name for their team, and make their own arrangements for
how the team will work. Teams usually last for two periods. This gives students the
opportunity to take action after the reflection and retrospective to improve their work.
After the team formation, the planning meeting will start immediately.



Transforming Education with eduScrum 99

eduScrum is about cooperation based onmutual trust. The team is jointly responsi-
ble for a good working atmosphere, with the team captain as the ‘oilman’ who helps
and coaches the team. Team captains will need to have confidence in their team-
mates as well as in themselves. Students will see that if they trust each other and
work together with pleasure, a good result is almost self-evident.

2.2 The Teacher as Product Owner and Servant Leader
to the Student Teams

The teacher determines what student teams have to learn within which period of
time. They design the projects for the student teams, set the learning goals and tell
the students how they want to measure how their work has been successful, but are
also there for the student teams as a servant leader to assist the teams and answer
questions when needed.

When teachers want to work with eduScrum in their classrooms, they must first
have trust in their students. Second, they need an open agile mindset, giving students
context-content-based assignments or, even better, projects where students them-
selves can determine what they want to learn and, most importantly, how they want
to learn. Then, the ‘why’ of learning will become normal, which fosters a life-long
learning process.

2.3 Start with the Why

The teacher decides the ‘why’ and the ‘what’ of the assignment, which is crucial for
a successful eduScrum project. For every teacher who wants to get the full potential
from his students, the Golden Circle can be the starting point. The golden circle is
a thinking model developed by Sinek (2009). Like eduScrum, it’s an important tool
you can use. The message is that people do not buy what you do, but why you do it.
In the same way, students are unconsciously and intrinsically not interested in what
you do and how you do it, they are interested in why you do it. So, start with ‘why’,
even if you do not do eduScrum. Start with the students’ ‘why’ to ask questions.Why
are they in your class and ‘must’ follow your subject. Explain to them its usefulness,
and how they can use and apply it. Then they know and understand why they also
need to do things they do not like to do. The ‘why’ is about passion, motivation, your
heart-feeling, your inner self. This is not about what people believe in, it’s what they
feel.



100 W. Wijnands and A. Stolze

2.4 Framework and Process

The eduScrum framework is built to support teams and teachers in collaborative
learning. The basic eduScrumconcept consists of one result, roles,meetings, artefacts
and some simple rules. Together they form a balanced structure. Each part within
the framework serves a specific purpose, and is essential for the use and success of
eduScrum. In the eduScrum framework all the educational approaches come together
in an organic way. Students are working in projects, where they gain knowledge
and skills by working for an extended period of time to investigate and respond to
an authentic, engaging and complex question or problem, actively exploring real-
world problems and challenges and acquiring a deeper knowledge. This gives their
work a greater purpose. Students must acquire content knowledge themselves, not
through the less engaging method of direct instruction. Thus, students guide their
own learning, add their own meaning and experiences, dig into the material, and
actively engage with the content.

2.5 eduScrum Sprint

At the heart of eduScrum is the Sprint. Doing Sprints in eduScrum means student
teams work together in short cycles (sprints) according to the Plan Do Check Act
(PDCA) learning and improvement cycle (Moen & Norman, 2009).

The sprint is the teacher-defined time frame within which a certain amount of
work has to be done for a context-concept-based project, in which one or more
learning objectives will be realized. In school education, sprints last no longer than
approximately 2 months. Every sprint begins with the planning of the work to be
done for the project, and ends with a review of the learning and working results, as
well as a retrospective on team performance and personal development.

In the sprint, teams work together to achieve the goal set. Usually a sprint is
divided into sprint reviews after approximately 3–4 h work. Students have the space,
within the framework and goals set by the teacher, to find their own way to deal
with their work and adapt according to their insights. However, this does not mean
that teams have total freedom and are not supported in their work. On the contrary,
the sprint gets structure through the rules, meetings and artefacts of the eduScrum
framework. This creates a process that is highly structured: planning and executing
the work, keeping track of progress towards the goals set, and looking back at team
performance and personal development.



Transforming Education with eduScrum 101

2.6 Planning Meeting

The planning meeting takes place in the first lessons of an assignment project. These
are very important lessons for the students and the teams. Here they get an overview
of what to expect in the coming period. It is the kick off of the project so everything
should be ‘Ready’ at this point. The definition of ‘Ready’ is all the actions and steps
that the teacher and the teams must have done before they can really start with the
assignment/project. From the teacher’s point of view, the project has to be ready and
actionable for the students to plan before the planning meeting. This takes a lot of
time, but this time will be paid back during the project. Dare to give time to your
teams.

During planning the team altogether plans the tasks to be dealt with during the
next sprint, they make their own plan transparent on an eduScrum board ‘flap’ and
think about how to do the assignment (the flap is an overview of the process and
is described in detail in the ‘artefacts’ section). In addition, they ask the following
questions:

• What exactly needs to be done?
• How much work will this be for us?
• How do we divide the work?
• What tools do we need?

2.7 Stories

Stories are a way to describe the products that this Sprint should deliver. A story
describes ‘what’ and ‘why’ it has to be done. The ‘how’ is not part of the story because
it is left to the team in the planning meeting to decide how they want to self-organize.

During the planning meeting, the teams create these stories and think about why
they are doing what they are, and what they want to learn. Stories are the things that
need to be done in a Sprint, such as making assignments, experimenting, writing a
report, or preparing a presentation which needs to be delivered. Stories provide a
rough overview of the tasks to be dealt with.

The teams will divide the assignment project into several stories or sub-items.
After looking at all of the celebration criteria for each story, each story leads to a
number of tasks that need to be done. Stories are broken down into actionable, small
tasks or ‘To Do’s. The tasks defined during the planning meeting of the team are
written on post-it’s. A ‘To Do’ Post-it always has a verb in it. It is helpful not to use
words that leave too much room for interpretation, but to directly specify the ‘To
Do’ so that it gives clarity about the Task later on in the project. Writing stories and
tasks (‘To Do’s) promotes the students’ involvement and accountability in their own
learning and work process.



102 W. Wijnands and A. Stolze

2.8 Celebration Criteria

The celebration criteria are defined by the teacher and explained at the beginning of
each sprint. This is done to ensure the quality of what is learned. The team is respon-
sible for adhering to the celebration criteria and defines its own tasks andmeasures to
ensure that the celebration criteria are met. These are learning objectives, assessment
lists, answer models, exam requirements, etc., and the teacher’s requirements for a
story. The teams put the celebration criteria on their ‘flap’ next to their stories.

2.9 Working Agreements/Definition of Doing and Fun

Students also make working agreements and write them in their Definition of Doing
and their Definition of Fun. These are agreements about the qualities of their products
andworking togetherwith pleasure tomeet the celebration criteria. Each teamgathers
their own working agreements and puts them on their flap.

In Dutch schools a 5.5 is a positive grade on a scale from zero to ten, but for
us this is unacceptable. With eduScrum the goal is to receive a grade above 6.7 to
get qualitatively good students. Above 6.7 we acknowledge that the student fully
understands what they have learned. Students make their own goals to achieve a
grade of 6.7 or higher.

2.10 Stand-up

The stand-up is an event which takes place regularly at the beginning of each learning
unit. Students run into the classroom, put their ‘flap’ on the wall and gather around
it to start the stand-up meeting by themselves. Restricting the ‘mini-meeting’ to no
more than 5 min duration ensures that the speed and energy of the team are high. It
is important that every team member attends this meeting.

During the stand-up the following three questions are addressed by each team
member to help the team synchronize:

• What have I done since the last Stand-Up?
• What will I do for my team during this lecture unit?
• Do I have any obstacles or impediments? Do I see any impediments for my team?

Particular attention should be paid to possible obstacles and problems. However,
there is no deeper discussion about solving problems during a stand-up. If one team
member knows the solution to a problem another team member has, he or she can
briefly state that, to solve the problem directly after the stand-up so that the other
teammates can start working immediately.



Transforming Education with eduScrum 103

The team captain ensures that a stand-up is held regularly and can moderate it.
However, the team itself is responsible for the performance. After a stand-up, the
flap and run-up chart are immediately updated.

2.11 Review

The review is a kind of feedback meeting. In the review the teams show what they
have done at the end of 3–4 working hours (classes). The team shows what it has
learned in this short cycle (sprint) and receives direct feedback from the teacher. The
type of the meeting is determined by the teacher and may vary from sprint to sprint.
These reviews should help the team members to check the self-developed content.
It is important to see if the tasks have been successfully done. Is each team member
satisfied with the result? Are they still meeting the celebration criteria? If not, what
does the team need to do to address that? What kind of support does the team need
from the teacher?

A bigger review meeting is held at the end of a whole project. In this meeting,
a team result should be delivered as well as a personal result. This could be done
with a test as well as with presentations, videos, posters or anything else the teacher
announces at the beginning of each project, or lets the students decide for themselves.

2.12 Personal and Team Retrospective and Reflection

At the end of a project, each team will do a retrospective on their achievement, and
discuss how to do things better in the next project. Students look at their personal con-
tribution to the team and how the team functioned as a whole. With this observation
and reflection they lay the foundation for the next project.

Students also reflect on their role within the team. Each student evaluates himself
or herself and his or her teammates according to their qualities and skills. This
trains them in self-reflection and giving feedback to their classmates to continuously
improve their own learning process and team working process.

The retrospective should never be neglected. Any postponement of the retrospec-
tive is amissed opportunity for the team and its members to improve in the next sprint
and to learnmore effectively and efficiently. The teacher can give a clarification about
the objectives of the retrospective.

Teammates can answer the following questions to give and get feedback:

• What went well?
• How can I improve myself? How can I help others improve?
• How can we become better as a team?
• What should we no longer do?
• What actions do we take in the next sprint to improve?



104 W. Wijnands and A. Stolze

• What are the facts about the quality of our work/our productivity?
• What did I teach to my team members? What did I learn from my team members?
• Why did something go well or go wrong?
• Was the time meaningfully invested?
• What should be maintained next time?

The retrospective is also a good opportunity to adapt and improve the Definition
of Doing and the Definition of Fun.

A good retrospective is characterized by the fact that there is a coach who guides
the team through the process. In addition, it is very important to actually develop
measures that can be implemented directly in the next sprint.

2.13 Team and Personal Development

As a teacher, you have an important role to play in monitoring the quality of work
reflection. The quality of this reflection process is an important factor in the personal
development of the team member and individual student. This personal reflection
retrospective about personality enables teams towork togethermore andmore. These
are extremely important steps in a process of becoming better as a person and as a
team. This will not only increase your eduScrum process, but grow yourself as a
team player and as a person.

3 The Flap

The flap is a large sheet (A0 or flipchart format) of paper. Each team creates its own
flap. The flap gives an overview over the process. It makes it clear to everyone what
the teams have to do during the sprint. It shows what has been agreed on, and whether
the work is on schedule. The flap is a chronological representation of the work during
a sprint. The top line of the flap determines the project, which team the flap belongs
to, and which members the team consists of. The tasks status varies from ‘still to do’
(To Do), ‘is being worked on’ (Busy) to ‘finished’ (Done). The flap must be updated
regularly, so it always shows the current process of the team. Updates takes place
during the stand-ups.

3.1 To Do, Busy and Done

The tasks defined during the planning meeting move according to their status from
‘still to do’ (To Do), ‘working’ (Busy) to ‘finished’ (Done).



Transforming Education with eduScrum 105

To Do: The ‘To Do’ column summarizes all tasks for a sprint, what needs to be
done together in the coming period. The small tasks make clear what needs to be
done so that results can quickly be achieved.

Busy: Each Team member chooses a task from the To Do column at their own
request, but always in consultation with the team. He or she moves it to the Busy
column and starts working. Of course, work can be done together with other team
members to achieve higher team performance. Teams need to be aware also of which
items do they ALL have to know and work on.

Done: A task will only be completed if it meets three conditions.

• All team members must agree that the task is done.
• The result must meet the celebration criteria.
• The teacher can ask any team member questions about the outcome of the task
and the team member should then be able to answer correctly.

Tomeet these conditions, each teammember must keep the others informed about
their results and help each other to really understand what has been done in the task.

In addition to the process fields (To Do, Busy, Done), the flap comprises the
following areas (some of which we have already described above):

• Stories
• Celebration Criteria
• Definition of Doing
• Definition of Fun
• Run-Up Chart
• Impediments.

3.2 Run-Up Chart

TheRun-UpChart visualizes the learning progress of each team. It makes transparent
to the team where it stands and whether it has to work faster or not. Each task has a
number of points. Certain numbers are assigned to these tasks using Planning Poker
(Grenning, 2002). Planning Poker is a game approach to assign a relative score to the
individual tasks. It is a measure to make a relative estimate of the tasks to be done,
as objectively as possible, according to the Fibonacci sequence. The estimation is
relative because this gives quick insight into the relationships between the pieces of
work in the total work backlog, to compare the effort that students will have to put
into a certain number of tasks.

The total number of points that need to be processed through the sprint is added
up. Now the ideal line can be drawn to the end of the sprint when all the work is
done. The team velocity is the amount of work that the team can complete in one
class. During each class, the amount of work is monitored. Based on this velocity,
the team can estimate how much work it can handle per class.



106 W. Wijnands and A. Stolze

If a card has been set to ‘Done’, its score can be added to the Run-Up Chart.
During the stand-up, tasks might be declared Done and the Run-Up Chart can be
updated. It becomes transparent to the team and the teacher whether the progress of
the work is still in line.

3.3 Impediments

Impediments mean obstacles. All the obstacles that the team is struggling with are
put into the ‘impediments’ field of the flap, where the team records everything that
is preventing them from working efficiently. Faults and obstacles of all kinds are
listed here. The main impediments are listed at the top. It is up to the team to remove
impediments as quickly as possible, but the teacher can also possibly intervene.

4 The Pillars of eduScrum

Like Scrum, eduScrum is based on the three pillars: Transparency, Investigation and
Adaptation.

4.1 Transparency

The eduScrum framework is aimed at the transparency of information supporting the
learning process. Transparency is needed to help the teams make the right decisions
and thereby maximize the value of the result. Transparency is created in the teams
and with the teacher. It also arises because it is clear who is responsible for which
part of the result, by using a flap where everyone can see what is going to happen,
what has been done, and whether the team still has the desired velocity. In addition,
it is clear to everyone what the requirements are for executing assignments.

Students are not afraid of transparency, they are just not used to it. When students
do not work within the team, the other team members do not accept it and tell the
student who does not want to work in their own peer way of telling. That works very
well. When a team member does not want to work in a team at all, then the teacher
can take them out of that team and let them work on their own, alone. The teacher
does not control the students or teams. They do this by themselves.

This is important and belongs to the values and principles of eduScrum: let the
students know and feel that the transparency of abilities and working status is not
used against them, but for their best learning instead.We need transparency to enable
the team and the teacher to support the students in the best possible way. For this,
again, you need to build trust within the teams and also, very importantly, between
the teacher and the students.



Transforming Education with eduScrum 107

4.2 Investigation

eduScrum teamsmust regularly review their progress towards the learning objectives.
These learning objectives are not only subject matter, but also related to the func-
tioning of the team and their personal growth. Investigations are clearly and strictly
defined. These meetings take place at different times and levels in the workflow or
process.

4.3 Adaptation

An adjustment occurs when a team (or teacher) determines that one or more aspects
may fall outside the acceptable limits or that the result will be unacceptable. Then
the planning or the work in progress will be adjusted to minimize further deviations.
However, adaptation also takes place in the team’s own functioning.

5 eduScrum Principles and Values

Like XP, and the manifesto for agile software development, eduScrum defines both
principles and values. The principles of eduScrum are Transparency, Investigation,
Adaptation, (as described above), Collaboration, Reflection, Visibility and Iteration.
The eduScrum Values supporting these principles are Trust, Freedom, Commitment,
Autonomy, Personal Growth, Focus, Ownership, Authenticity, Critical thinking and
Creativity. eduScrum combines the Principles and Values into ‘Value Principles’.
Principles are fixed, while Values are in development and evaluate. There can be no
real eduScrum without following these values and principles.

Values are social norms—they are personal, emotional, subjective and arguable.
All of us have values. Principles are natural laws, they’re impersonal, factual, objec-
tive and self-evident. Consequences are governed by principles and behaviour values;
therefore, value principles!

So, in conclusion, principles are truths based on natural laws and the process,
whereas values are about behaviour. Values may or may not have a positive impact
on our lives, and on our personal development, depending on whether or not they are
based on true principles.

Trust is one of the core values of eduScrum comprising self-confidence, trust
in teammates and trust received from the teacher. Patrick Lencioni, the author of
the book ‘The Five Dysfunctions of a Team’, explains why teams do not work well
(Lencioni, 2002). He describes a hierarchical structure: without trust there is no good
communication, discussion and confrontation, without communication no commit-
ment, without commitment no accountability and without accountability no result.
A lack of results thus often comes from lack of trust.



108 W. Wijnands and A. Stolze

If we build a team, we want to avoid these pitfalls, and we must start with trust.
Thus, the ‘pyramid of Lencioni’ arises, with the following five hierarchical phases.

5.1 Trust

This is the first phase of team development. A team that meets for the first time
mainly consists of individuals that are not yet aligned.

5.2 Communication

If confidence has arisen and team members experience safety, teams can go to the
next stage. It is communicated in a respectful way. In addition, each dares to give
their opinion, and discussions are being held and opinions discussed. A team of trust
can also create conflicts. It can be stormy, but it is done in a respectful way and
with a common goal. If the mutual communication goes smoothly and every team
member participates well, the team members get involved in the activities that the
team develops.

5.3 Commitment

Because all teammembers talk, ideas are exchanged and each teammember can give
their opinion and become involved. The group of individuals will behave as a team.
Synergy, cohesion and cooperation develop and they speak in their own language.
The team members feel increasingly involved with the common assignment(s). This
involvement creates an organic process in which they will take accountability.

5.4 Accountability

Through trust, communication and commitment team members experience a sense
of accountability.

5.5 Result

The team is accountable for the success (or otherwise) of the joint end result.



Transforming Education with eduScrum 109

6 Challenges of eduScrum

As with any method there can be problems with implementing eduScrum, but more
often than not these problems arise from the neglect of an element of the framework.
The use of the complete eduScrum framework ensures that students get the best out of
themselves and their team and helps teachers to create a safe atmosphere. For young
people today, self-confidence, team competencies and an agile mindset are more
important than ever. eduScrum encourages them to develop into complete people
who can be significant to themselves and for their team. Thus eduScrum allows them
to provide a positive contribution to a better world together with others.

In the beginning, this new way of teaching feels strange to students, because
they are not used to working this way. They get a lot of freedom to work together
in teams. The teacher does not give homework because they do the homework by
themselves. They are only given the assignment, explaining the what and the why of
that assignment. Some students do not like this transparent way of working, where
the peer students tell each other what to do. However, students listen better to their
peers than to the teacher.

They do also have the possibility of returning to their own familiar modes of
learning. Alone or in pairs. The teacher does not talk for the whole lesson, but
coaches and facilitates the students. So when they want to learn in their own way, it
is their choice. And this happens too, but most students want to work in teams. That
is a normal, organic way of working. To be a member of a team feels good to people.

Building a good relationship with the students is the first step, based on trust and
respect, it will be easy to implement eduScrum in the classroom. eduScrum is simple
and that is at the same time the difficulty. Really understanding the principles and
values is very important. eduScrum can give students wings! But if you don’t explain
the why, they can’t fly. The other very important issue is that the teacher must have
an agile mindset. Without this, they will fail.

7 Practitioner Report from Alisa Stolze

When I was visiting an eduScrum training in Alphen aan den Rijn in November
2016, the participating Dutch teachers and I had the opportunity to talk to eduScrum
students between 14 and 17 years to ask them about their experiences with eduScrum.
We were sitting together on the cozy carpet of a hotel hallway with three teams of
eduScrum classes and talked. Listening to the students, I thought it was very interest-
ing that their happiness about working with eduScrum gets significantly greater with
every year of eduScrum practice. This was evident from critical voices from those
new to eduScrum compared with those who had been using it for a longer period.

In those classes that had recently begun working with eduScrum we could hear
several critical voices. The work with eduScrum is not actually harder than regular
lessons, but it is different, because students have to plan their work by themselves.



110 W. Wijnands and A. Stolze

In particular, eduScrum starters dislike having to get used to a new way of working.
The planning is too much effort, they say, and it takes them too long until they can
begin with the real work of learning.

‘I prefer getting an assignment from a teacher, listening to the explanation and
afterwards just doing it and trying to understand. All those stickers are just too much
for me.’ one girl told us.

Another student added: ‘I even think that the stickers and the tasking is extra work.
I don’t need all those stickers to know what I have to do next.’

However, one grade higher, the situation is already different. Students like this
way of teaching. One girl tells us, that eduScrumdid notwork verywell for her during
her first year trying. Why? Because the teacher that had been working with the class
using eduScrum did not tell the pupils about why they do each step, why there is a
Run-up to watch progress, for example, and why they would have a Definition of
Doing and a Definition of Fun. ‘So what is the Definition of Doing exactly?’ one of
my fellow participants asks the team. ‘That something is really done. That there is
nothing left to do and that we are happy with the results.’ It can be so simple!

I was especially impressed by how the students explain the effort points that they
create using Planning Poker in order to determine how big one item of work is:

Points don’t just tell you how much of work an item is, but also how hard it is.

Planning? No problem. At the beginning it is a lot, ok, but then you estimate the
points and split the effort points of work to fit the number of working lessons.

The overview of work to do or still remaining also helps the students to help each
other.

Teams are based on complementing qualities: ‘If I really don’t get a thing I just
ask my teammates and they can explain it to me.’

The eduScrum ‘professionals’: happy about their possibilities and freedom.
The team of students that practice eduScrum for three years now even ask fol-

lowing teachers to be allowed to use eduScrum for their assignments and are happy
about their independence:

I don’t like if people tell you what you should do. Here you are self-responsible, you can
plan, you can make decisions to do more in one lesson and take it easier in another. That is
great! You can always see by yourself where you are and how much work is left.

With one look at the Run Up Chart I know where I stand. It helps me and it is very easy to
understand. If you are below the ideal line, you are faster than needed, if you are above, you
need to speed up. You can see at one glance how much work you have to do in this lesson.
It is very good to control yourself.

The Run Up helps you in a different way than the Flap (the board on which the students plan
their items of work). On the Flap you see the items or tasks, but they don’t have the same
effort points. If you put a sticker with a big item plus a sticker with a small item to done,
well, that first looks like it was the same effort. On the Run-Up I can see how much work
really is done.

Students like the teamwork; ‘Teamwork creates team feeling. If everybody in the
team has already finished something and you don’t, that doesn’t feel nice.’



Transforming Education with eduScrum 111

You feel responsible. That is because teams are built on different qualities. Everybody has a
purpose.

If you don’t do anything, you let your team down.

At first I thought I could do everything at the last minute, but now I prefer to work with the
team.

What is important to the students:
If you start with eduScrum please explain very well! If everyone gets it, students

can work on their own. And please show us, why it is important to do an assignment.
We want an assignment with context that shows us why it is important to learn.

8 Student Experiences

8.1 Lars’ Student Experience with eduScrum

eduScrum has influenced my way of working in chemistry lessons, but in a positive
way. I think I’m sure to have an advantage through eduScrum.Because of themethod,
there are better results and each individual makes a personal development. To me,
eduScrum’s essence is that the work to be performed is more effective and efficient,
with cooperation playing a major role, leading to better products and results.

With eduScrum we learn a lot from each other. You get to know other people, you
value their talents and you develop new qualities yourself or develop the qualities
you already have. There is a continuous exchange of qualities, ideas and opinions.
You must use your own abilities and face the qualities you do not have or which are
still underdeveloped.

The way of working was very pleasant. First of all, the composition of the teams
on the basis of talents and skills is a strong point of eduScrum. Because there is a great
diversity in properties one can motivate and learn from one another, this motivates
the working attitude and working atmosphere. There is appreciation between the
team members. If a team member does not understand anything, then there is the
team that can help. The team is thus actively able to help each other and answer each
other’s questions without a teacher. Students thus work independently, self-studying
and with responsibility.

There is a large team accountability, a team interest and mutual involvement. This
leads to better cooperation. Of course, there were people who have given more input
than other people, but this will be the case in every collaborations and teaming.

You learn to work with people who prefer to see things differently than you do
yourself and you learn to take into account other people. Due to the transparency
of the process, barriers become transparent, clear and can therefore can easily be
resolved.



112 W. Wijnands and A. Stolze

Result-oriented work and active work lead to a favorable and better result. By
planning and working in a structured way, a better result can be done in the same
period of time.

eduScrummakes a clear change in the completion of lessons and the way in which
work is done by our team. We are the boss and owner of our work. Each lesson is
different and the aim is different for each team. Because there is a common team
interest, the pursuit is often achieved. Every team member will ultimately make a
good result; Perform well on the test or a good grade for a report.

To achieve this goal, the team members are strongly dependent on each other.
After all, a result must be put down in which everyone has accomplished his activity.
Each team member has accountability for the team, which motivates the student.

Students are actively engaged in their work. The moving of the post-its and this
gives every time a kick: ‘Yes, some more!’ And ‘Yes, next task!’. The effort that is
being provided for the work form ensures good results.

What eduScrum brings to my team members is that they get to know themselves
and work better. Their way of learning and work will change. eduScrum gives you
more overview, planning and structuringwork, and achieving results-oriented. Every-
one makes personal development, conscious or unconscious. Everyone will learn
from the method. You get appreciation from classmates. You are getting to know
new people. You will get to know yourself. You are less dependent on a teacher. You
will be helpful. You become responsible. You get discipline. You get a sense of team
accountability. You get motivation. And at the end, you get better grades and results.

We become better prepared for the future.
You can learn from each other and be an example. If someone is well in charge,

this can inspire a team member to develop himself. There is an exchange of qualities
and eduScrum takes care of this. If each person had worked in class, everyone made
his own thing, each his own planning, each his own responsibility; then there had
been no exchange of qualities, people did not get in touch, people did not appreciate
each other and the students would always be dependent on the teacher.

What does eduScrum bring me?
I learn new things and can be an inspiration for other people. With eduScrum I

can share all my qualities in the team and in the class. eduScrum will teach students
what they can do well. These confirmations ensure that you know yourself better,
your qualities and the flaws. This allows you to know where to work on to improve
yourself. So you can learn new things to yourself. eduScrumplays amajor role in this.

8.2 Marente’s Student Experience with eduScrum

eduScrum is for me an effective and efficient way of working that is results-oriented.
Cooperation is of great importance. Working with this method is very good. I usu-
ally don’t like collaborating, I rely on my own ability. eduScrum has changed my
viewpoint.



Transforming Education with eduScrum 113

eduScrum lets you learn and contribute a lot, creating a personal development
that is positive for the future. You learn about yourself and get to know others well
because qualities are discussed. Through team accountability, everyone works better
and teaches you to take more account of others. Because you are actively engaged in
each lesson, you manage the dust faster and better. This also leads to a good result!

What is fun about eduScrum is that you can work in a team and that it is very cozy.
You will get to know your own qualities better, and you will develop them a lot over
a period of time. You learn more about yourself, but also from others. Because you
work in a team, you can help to explain difficult topics. And you get higher grades!

One disadvantage of eduScrum is that sometimes it’s a bit of fun in a team, you are
more distracted, and sometimes it is hard to work. You are dependent on your team
members with an assignment. So, sometimes you have to push your team members
to get them to work so you can achieve the goal per lesson.

eduScrum was of enormous help me for my personal development. It gives me a
lot of insight into myself, what I already can and what there is to learn. It shows me,
that I can do much more than I thought, which gives me confidence.

With eduScrum you learn a lot about yourself at this young age. Knowing yourself
now, you can change a lot, focusing more on improving properties. It’s not only a
method to deliver a better result. It creates a development that can offer you a good
future!

My teammembers will also get to know themselves better and bring their qualities
forward. Their way of working will be changed bymy influence and vice versa. They
also have developed personal growth thatwill benefit the future. Unnoticed, they have
made a change that they can be proud of.

eduScrum ensures that you always work in an orderly manner, and even if there
are obstacles you can eliminate them. By working in a team, I have learned to work
together better, my trust in other students has increased as they contribute the right
way. eduScrum rewards you for your work and I like that. It gives you the kick to
work even harder to achieve the optimal result.

I will also want to work more with eduScrum in the future, in a team that works
fine for me. I know that I can rely to my team mates and they to me. Everyone
makes their own contribution and I can trust everyone. It is a well-structured way of
working and I like it very much, so I know exactly what I need to do to deliver a
good result. I am very result oriented and want to get the best out of myself and my
team. eduScrum fully subscribes to this!

9 Summary

eduScrum is simple, but it is not easy. You cannot do eduScrum halfway. Each part is
there for a reason. If one single eduScrum componentmakes your situation better, it is
obviously smart to apply that. Fine. But that does not make your teaching eduScrum
yet. You should not seek to adjust eduScrum to your situation because eduScrum,
like Scrum, is a system that works like a Swiss clock. Whatever you do and how



114 W. Wijnands and A. Stolze

you apply it, use all the elements. It is a precarious game. If you want to use parts
of eduScrum because it seems useful, please feel free to do so. You just do not gain
all the benefits that can be achieved. eduScrum works as a whole and delivers more
than the sum of the parts.

Fail early, fail often. Be sure that your first eduScrum project will ‘fail’ in some
way. It would be weird if applying this new way of working would immediately
seem smooth to you. When you are starting with eduScrum classes, you go on a
journey that will probably be new for you. Errors are being made and lessons are
being learned thanks to these errors. Trust yourself and be assured that every new
project, every sprint, even every day you will feel more comfortable with that new
situation. Make your mistakes, forgive yourself and learn. The same applies to your
students. Therefore, tell your students that they should be able to trust themselves
and that they are allowed tomake asmanymistakes as possible, the sooner, the better.
They learn from it and certainly have the time to adjust. As long as you and your
students work together as a team in a trustful atmosphere, everything will work out
all right.

References

Covey, S. (2006). The speed of trust. New York, NY: Free Press.
Delhij, A., van Solingen, R., & Wijnands, W. (2015). The eduScrum guide. Retrieved from http://e
duscrum.nl/en/file/CKFiles/The_eduScrum_Guide_EN_1.2.pdf.

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release planning.
Hawthorn Woods: Renaissance Software Consulting, 3, 22–23.

Lencioni, P. (2002). The five disfunctions of a team: A leadership fable. San Francisco, CA: Jossey-
Bass.

Martin, J. R. (1995). A philosophy of education for the year 2000. The Phi Delta Kappan, 76(5),
355–359.

Moen, R., & Norman, C. (2009, September). Evolution of the PDCA cycle. Paper Presented at the
Asian Network for Quality Conference, Tokyo. Retrieved from https://www.westga.edu/~dturne
r/PDCA.pdf.

P 21. (2016). Framework for 21st century learning.Partnership for 21st Century Learning. Retrieved
from http://www.p21.org/storage/documents/docs/P21_framework_0816.pdf.

Schwaber, K., & Sutherland, J. (2017). The Scrum guide: The definitive guide to Scrum. Retrieved
from https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf.

Sinek, S. (2009). Start with why: How great leaders inspire everyone to take action. New York,
NY: Penguin.

Sutherland, J., & Sutherland, J. J. (2013). Scrum: The art of doing twice the work in half the time.
New York, NY: Crown Business.

http://eduscrum.nl/en/file/CKFiles/The_eduScrum_Guide_EN_1.2.pdf
https://www.westga.edu/%7edturner/PDCA.pdf
http://www.p21.org/storage/documents/docs/P21_framework_0816.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf


Getting Agile at School

Paul Magnuson, William Tihen, Nicola Cosgrove and Daniel Patton

Abstract Teachers at an international boarding school began experimenting with
Scrum as a way to structure self-regulated learning in the context of a class taught
in 2013–2014. In the 4 academic years since then, teachers have developed Kan-
ban boards as individual, group, and classroom-wide organizational structures and
trialed a number of concepts familiar to practitioners of Scrum, e.g., sprints, burn-
down charts, and retrospectives. Working with the support of the school’s profes-
sional development department, teachers engaged, in their particular classroom con-
texts, with action research cycles of planning, doing, reflecting, and redoing until
arriving, at least for the time being, at ten practices of an Agile mindset for teach-
ing and learning. Each of these will be familiar to educators. The thinking is that
small adjustments in multiple practices are not only manageable for teachers, but
also more likely to shift educational practice away from the tendency to rely heav-
ily on carrot-and-stick traditions. Informing our practice in school with insights
from the Agile revolution in industry is a way of suggesting that many of our cur-
rent educational practices are in need of an update. Further, incremental change,
shared by many, can be a powerful tool to create learning that organizations can be
proud of.

Keywords Agile learning · Agile in education · Agile mindset
Project-based learning · School improvement · Student self-regulation

P. Magnuson (B) · N. Cosgrove · D. Patton
Leysin American School, Leysin, Switzerland
e-mail: pmagnuson@las.ch

N. Cosgrove
e-mail: ncosgrove@las.ch

D. Patton
e-mail: dpatton@las.ch

W. Tihen
Garaio, Bern, Switzerland
e-mail: william.tihen@garaio.com

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_6&domain=pdf
mailto:pmagnuson@las.ch
mailto:ncosgrove@las.ch
mailto:dpatton@las.ch
mailto:william.tihen@garaio.com
https://doi.org/10.1007/978-981-13-2751-3_6


116 P. Magnuson et al.

1 Introduction

1.1 The Agile Mindset

Agroup of teachers at the Leysin American School have been leveraging the school’s
professional development program to experiment with different approaches to teach-
ing and learning.What began as a remedy to a struggling project-based curriculum in
a class taught in 2013–2014 has grown, often through an approach of ready, fire, aim
(e.g., Fullan, 2011), into a cultural shift at the school. By the 2017–2018 school year,
several of our teachers were pulling Agile into education, of course with different
levels of understanding and differing results. We felt the time had come to make a
clearer statement of what we meant when speaking about having an Agile mindset,
with the dual goal of creating a shared vision and a professional development pro-
cess that would help us continue to focus on the type of learning environment we are
trying to create.

While Agile in education is relatively new, Agile itself is no longer new at all.
Practitioners in fields where Agile grew up speak of “modern Agile” (TechBeacon)
and a “post-Agile environment” (Cockburn, 2017). As we travel our own implemen-
tation path now in education, those of us pulling Agile into our practice can benefit
greatly from their experience. A signatory of the original manifesto, Alistair Cock-
burn, reminds us with the Heart of Agile (Cockburn, 2014) that, at its core, Agile is
a way for teams to get things done. In education, we have plenty of teams (classes,
student groups within classes) that are required to get an awful lot done (learning).
Cockburn has boiled Agile down to this: collaborate, deliver, reflect, and improve.
Simple enough to remember, but deep enough to drive a lot of work and potentially
a lot of change. Take the notion of collaboration. Yes, as educators we often create
activities for students in pairs or groups. But there are also plenty of admonitions
to do one’s own work, use of grading curves that pit students against each other,
classes taught behind closed doors, and a lack of collaboration between the school
and students concerning what is even worth learning in the first place.

As newcomers to Agile, our practices may not be as honed as the Heart of Agile,
but we believe that our practices have Agile at their heart. We illustrate them here
through a number of experiences in and out of the classroom, real stories that deepen
our understanding and let us share our efforts for consideration in your context.
Taken together, the vignettes create a sense of the culture that our version of Agile
in education can create. Ultimately, our goal is a shift in culture, from an emphasis
on teaching, for example, to an emphasis on learning. From an emphasis on teacher
as knower to teacher as learner. From an emphasis on satisfying what the teacher,
the curriculum, and the school want to satisfying yourself, as the student, as a self-
regulated learner.

Agile for us is a mindset. We have no prescription, no method, and no program,
though we continue to benefit by learning about prescriptive methods like eduScrum
(Delhij, van Solingen, &Wijnands, 2015) and Scrum@Schools (“Manifesto for agile
education,” 2015). We learn from the ongoing conversations of why we as a group



Getting Agile at School 117

of learners (and here we include students and teachers) prefer this over that. (See the
Agile manifesto, Beck et al., 2001; the Agile in Education Compass, Robbins, 2016;
and the Manifesto for Agile Learning, Scrum@Schools, 2015 for examples of right-
shifting thinking.) For example, we prefer a culture that favors student self-regulation
over teacher control. We do not claim that student self-regulation is always required,
nor do we villainize teacher control. But we strive toward student self-regulation
when it is practicable. And maybe sometimes even when it is not.

1.2 The Core of Agile in Education

These are our values, the core of the mindset we are working toward

• EXPLORATION—Exploration and play over tests and perfection;
• GROWTH—Growth and rework over assessment reports without corresponding
mechanisms to improve identified weaknesses;

• SELF-REGULATION—Student-driven reflection and improvement over teacher
directives; and

• LIFE WORTHY LEARNING—Learning that supports additional learning over
detailed course content.

In a quick sentence, we might describe our efforts this way:
As we strive to understand learning and its outcomes better, we look for student

and teacher growth through self-regulated, collaborative exploration and play.

1.3 Our Context

We are pulling Agile into education at the Leysin American School in the Swiss
Alps. We are a boarding school with 320 students from approximately 50 countries,
in grades 7 through 12. The school is structured in three grade bands: grades 7 and
8, grades 9 and 10, and grades 11 and 12. We write here mostly about the middle
school, grades 7 and 8, where the curriculum is most flexible. This is practical for a
number of reasons:

• the recent creation of the new middle school signaled to everyone that changes
were coming, helping us to manage expectations;

• we opened the new school with only 18 students, or about 5% of the whole school
population; and

• in the American education system, grades up through grade 8 are not included on
high school transcripts.

These conditions point to a key enabler for us as we pull Agile into education.
We have an environment in which we can fail safely (Elia, Lockard, & Ackerbauer,
2017), simply because we do not draw too much scrutiny.



118 P. Magnuson et al.

More than a year before we started planning the middle school, and before we
started framing our understanding in terms of Agile, we were experimenting with
what we felt were common sense notions of working together as students and teach-
ers. When we implemented eduScrum (Delhij et al., 2015) in one class, the conver-
sation continued, but with the addition of terminology familiar to agilists. Along the
way we began internalizing an understanding of agility with the help of JohnMiller’s
Agile Classrooms (Agile Classrooms, 2018), among others. By the time we started
middle school planning, it was clear that the Agile Mindset would inform our teach-
ing methodology. Through a combination of planning, modeling, observing, talking,
and writing we have settled on—now in our second year of the middle school—ten
interrelated practices. They are:

• EXPLORATION—Exploration over fixed content
• GROWTH MINDSET—Growth over stasis
• TRUST—Self-regulation over teacher control
• TRANSPARENCY—Visibility over obscurity
• ADAPTABILITY—Flexibility over rigidity
• SMALLIFY—Quick, workable iterations and feedback over big plans
• VALUE—Valuable learning over convenient assessments
• COLLABORATION—Working together over competing against
• REDO—Reflection and progress over right and done
• UPLIFT—Problems as opportunity over problems as problems.

It is during the academic exploration classes of the middle school, classes that
are only 4–6 weeks long, where Agile practices tend to flourish. There are a few
other promising areas, notably the year-long course Physical Education and Health,
and some non-course examples, like our faculty process for reflecting on courses
during curriculum review and the professional development we engage in to support
ongoing implementation. In all cases, the interest and commitment of the individual
teacher or teachers is key.

Below we illustrate the ten actionable practices with vignettes from our own
experience. At the end of each vignette we have provided some cross-references
with other Agile practices that also apply. You be the judge if the overlap suggests
we should combine some of our practices. You might also like to wonder, as you
read, which practices we may be missing.

The short classes the vignettes refer to are

• DIY Language, in which students construct a new language as an introduction to
the study of linguistics;

• Ideal School, in which students design a school and present it in a poster session
during an annual school conference;

• Introduction to Engineering, in which students create and pitch designs they create
themselves;

• Project Innovate, in which students select a project of personal interest; and
• Robot Gardeners, in which students use Arduino to build gardens in terrariums
that can thrive without human attention.



Getting Agile at School 119

The full-year class in the vignettes is:

• Physical Education and Health.

We hope that sharing our stories helps bring alive the cultural shift we are trying to
grow.

2 Ten Actionable Practices

2.1 Exploration

I believe that every human being with a physically normal brain can learn a great deal and
can be surprisingly intellectual (Asimov, 1980, p. 19).

Do-It-Yourself Language is a backdoor into the study of linguistics. In groups of
eight, students write a dictionary and build a set of grammar rules until they have
enough language to put together a skit, which they perform for the class and others
as the final project. Our first language was called Blasa, from the root “bla,” which
you might guess the students took from the English bla-bla-bla. We have also created
Yeuropan and Chuankglish.

This type of project-based learning turns the traditional curriculum inside out.
Instead of following a list of topics that we have determined before the class begins,
we treat the linguistic topics that arise at the moment they arise. We know we will
have good conversations.We just do not knowwhat they are going to be about.When
you are exploring you expect to be discovering things.

For example, the students are generally inclined to follow their native language
when creating a new system, say, pronouns. English speakers may initially want
to replace I, you, he, she, it, we, you all, and they (let alone my, mine, myself …)
with a different word for each pronoun. Referring them to Mandarin provides a
logic that is much easier to learn—and therefore a better choice when building an
easy language from scratch. The Mandarin pronoun system is so elegant that the
conversation arises: are Mandarin speakers more logical in general because their
language is more logical? Voilà, we’re discussing Sapir-Whorf and one of the more
common questions in sociolinguistics: does language affect thought?

When the students build a number system, they find out that some systems are
quite logical (Japanese, Korean, Finnish) and others, well, you have probably heard
of how French say 95 (four-twenty-fifteen) and you can ask a Dane why they count
as they do. So are speakers of languages with regular number systems better at math?
Researchers have studied this. So, students, what did those researchers find … and
if you are interested, why not look into it further?

Students get to choose what parts of language they think they need to create, how
that part of language is going to work (grammar) and sound (vocabulary), how it
is represented (letters, characters, other?) and so on. Exploration breeds motivation.
Learning something just at the point where it has captivated one’s attention is key.



120 P. Magnuson et al.

It makes us wonder … are there other courses that we could be renaming—and
re-teaching—as DIY Something-or-Other?

See also TRUST and UPLIFT.

Students in Physical Education and Health choose topics, within teacher pre-
scribed parameters. Incorporating student choice allows them to explore topics in
which they are interested. The basic steps used in Physical Education and Health are

• Give the students parameters. Too much choice, i.e., broad or unclear parameters,
can lead to paralysis and little or no exploration. For example, allow students to
select from racket sports or sports that involve using a ball.

• Allow students to identify what they want to learn within the broad topic. What do
they want to know? What puzzles them? What can they go over again if they feel
less confident than others? Make these questions the goals for the unit and keep
them visible in the room to refer to later. Students can add to them as they like.

• Revisit the goals from time to time. Are students actually focused on them? Are
they finding answers? How do they rate their progress? And can they add or take
out goals as the unit progresses? Sure!

See also TRANSPARENCY and ADAPTABILITY.

2.2 Growth Mindset

When you get to the top of a mountain, keep climbing (Kerouac, 1958).

Each year, our research center selects a number of faculty members to be Resident
Scholars. These teachers commit themselves to a year-long investigation of their
choosing. We support them with a small stipend and possible assistance to present
their work at a conference or other professional development event.

A few years ago, amath teacher combined her resident scholarshipwith a graduate
course, setting up a grading system in her algebra class closely aligned to standards
based grading, as contrasted with what our entire school was doing at the time, a
traditional American 90%A, 80%B style of grading. Drawing onwork byO’Connor
(2011), she transformed grading in hermath class, published her work in our research
center’s publication, Spotlight (Gorasia, 2015), and then unfortunately accepted a
position elsewhere. Her work is still very alive at our school, however, as it was her
model we adopted when creating the middle school.

Key to our middle school grading system is the notion of “not yet.” On any
assignment, project, or test, a student receives a 4 (you know this so well you could
teach it), a 3 (you know this well enough to move on), or a 2 (you do not know this
yet). After demonstrating sufficient effort to learn the material, students may reassess
to bring a 2 up to a 3 or 4.

While not all teachers immediately adopted the system and we continue to discuss
exactly how it should be implemented, we are seeing certain effects. The summary
here is that we’re supporting a growth mindset over a fixed mindset (Dweck, 2016).



Getting Agile at School 121

The interesting supporting evidence is that students are never “let off the hook” by
simply receiving a bad grade and moving on. Instead, they must learn the material.
Further, teachers have an incentive to make good use of formative assessments to see
if students are ready for a summative assessment, since teachers know that assessing
for a grade before students understand the material leads to review and redo for some
students while others are ready to move on. This puts pressure on the curriculum to
adapt, expanding or contracting according to how much time students need to get to
a 3 or a 4.

Further still, we as teachers often bemoan the resistance students have to risk
taking, yet some of our most common grading systems reinforce their aversion. If
the result of taking a risk is a low grade, figured in an overall average, for evermore
on the transcript, why take the risk? Assessment can easily hinder a growth mindset.
We think we’re getting around that, as many schools have done before us, by re-
examining the method by which we assign grades to student learning.

See REDO and ADAPTABILITY.

2.3 Trust

My appeal is to observation — observation that each of you must make by [your-
self].—Charles Sanders Peirce (Turrisi, 2007, p. 140)

We want to place lots of trust in our middle school students to further their ability to
self-regulate. So, we experimented with a new way for the middle school director to
observe classes; namely, by asking the teacher not to be present. Certainly then the
students will have room to demonstrate the degree to which they are self-regulating!
The director takes notes on how well the students carry on without the teacher, then
talks through the notes with the teacher when the lesson is over.

After 5–6 weeks of experimenting with Agile practices, the Physical Education
and Health teacher invited the director to observe a teacherless lesson on badminton.
She was naturally a bit nervous about how it would go. Would students use the tools
they had and plan a lesson that demonstrated good learning? Might it be a complete
90-min fail?

The tools students had practiced with and that were available during the observa-
tion were

• A visual task board (e.g., a Kanban board);
• A reflection sheet for planning future lessons;
• Paper stars with questions that allowed each student to check for understanding
and earn points;

• A folder about badminton that included ideas, links, and drills to help if students
were stuck;

• Assigned roles for various parts of the lesson; and
• Previous teacherless moments—on several occasions, the teacher had practiced
handing over control to students to observe and debrief the dynamic of the class.



122 P. Magnuson et al.

Table 1 Notes from a teacherless observation

Time Student actions as described by the observer
Individual students are referred to by first initial

08.11 All set up. R asks J to tell everyone what they are going to be doing. R moves a
sticky into the DOING column. They start an exercise

08.15 First exercise ends. J leads stretching. R updates Kanban board, moving the first
exercise to DONE and the next activity to DOING

08.16 J writes on the board. Everyone else gathers around. They are figuring out a
tournament structure. Nobody tries to talk to me, to ask me what to do, to
wonder if I’m in charge

08.18 V fills in who will play whom. A is a little aloof. V coaxes everyone to come
start. The first players take the court

The students play the tournament …

08.41 Tournament over. J always wins, says V. J borrows my computer and starts
video. One of the students updates the Kanban board

08.46 J says “let’s practice” and everyone goes back on the courts. There’s a mix of
practicing what was on the video and maybe just playing for fun. The students
finish practicing and set up another tournament

08.52 All students take to the courts. I’m impressed by the quick transition times. The
equipment got set up quickly, the time to switch from practice to tournament
and the other transitions are all pretty quick

08.53 Tournament 2 is underway. 4 players, 2 scorekeepers, and A sitting on the
bouldering pad in the corner

The tournament finishes …

09.08 Students pull questions (on stars) and ask each other randomly. All participate
except A. He is holding a question, but not asking or answering

09.10 Now A asks J a question. Perhaps he is just more patient than everyone.
Students continue to ask each other questions and fill in points on the board for
each other

9.12 C says something in Chinese to J. B says “English please.” C switches and
explains with gestures, in English

09.13 Nice laughter, explanation, self-organizing pairs. W spells the words “drop
shot” for J

09.14 Students determine they have more time and W and V set up new tournament.
R and J clean up the star questions and the students start to play

End of observation

The results were much better than she had hoped. The students were able to set up,
lead, and organize themselves, practicing badminton skills that they had previously
highlighted for practice and improvement. In Table 1, snippets from the observation
notes tell the story of how this particular lesson unfolded.

It takes a good degree of trust to turn the class over to students, whether for ten
minutes of small group work time or a 90-min PE class. What if they waste the time?
What if they get off-task? We counter by asking when students are going to learn
to self-regulate if they do not practice doing self-regulation, which will necessarily



Getting Agile at School 123

include off-task time. In a very real sense, what we see in a teacherless observation
is student learning, not teacher teaching. Or to dig a bit deeper, we see in the student
self-organization the fruits of the teaching that lead up to the self-regulation observed
in this lesson.

See also GROWTH MINDSET and TRANSPARENCY.

2.4 Transparency

Honesty and transparency make you vulnerable. Be honest and transparent anyway (Keith,
2002).

A few years ago, John Miller trained us in the use of his Learning Canvas. Last
year, WillyWijnands of eduScrum trained us using his Flap. Internally we have been
calling it a Kanban board, though it might be a Scrum board. The names don’t matter
so much—but the visibility that a Kanban board supplies, whatever one chooses to
call it, does.

A simple three-column Do, Doing, Done display is an easy and practical first
step toward shifting the culture to a more visible workflow. We used it for planning
the middle school (in Trello) and during the first year in the daily homeroom (on
a poster). Most middle school teachers transferred the homeroom example to their
classrooms, gradually customizing to create their own versions. Some teachers used
labeled magnets on the whiteboard, some used laminated cards. Other classes began
using smallerKanbanboards for small groups or individuals, usually inside a standard
manila folder. Students working on individual or group projects (e.g., coding, touch
typing, Ideal School) set the Kanboard board next to them so that they—and the
teacher—could quickly monitor progress.

It is a small thing, but we have found that transparency tends to create good, and
often unexpected, developments. For example, the teacherless observation described
in TRUST above is a direct result of the Kanban board in an English class. The
director filled in for the English teacher one afternoon. Her directions stated that
the students would start the lesson with a stand up at the Kanban board. It felt so
promising that the director told the students to go ahead and run the whole class while
he watched. The teacherless observation was born. Other teachers, trying to keep
track of individual progress in loosely structured classes, took pictures of individual
or small group Kanban boards at the beginning of the class to make sure that students
made progress by the end of class. While perhaps diverging a bit from our TRUST
practice, it is a pragmatic option that wasn’t available before Kanban boards. Finally,
use of Kanban boards has begun extending beyond the classroom, to student planning
in the resident halls, to faculty professional development sessions, and to the dean
of students and admissions offices (which now use Trello).

It’s a simple tool, yet it seems to be a reliable driver of the cultural shift we believe
we have started.

See also COLLABORATION.



124 P. Magnuson et al.

2.5 Adaptability

The acquisition of knowledge (i.e. the process) is more important than soon outdated content
(Quinton, 2010, in Weichart, 2013, p. 43).

In our work with whole school curriculum, we recently solved one of those problems
that seems easy on the surface but somehow manages to get everyone stuck, repeat-
edly, until it does not seem there is a way to get unstuck. A few of us are calling
our adopted approach “lean curriculum.” Here’s why: More often than not, in what
Sutherland (2014) refers to, albeit in other contexts, as a “tall stack of futility” (p. 11),
curriculum is presented as a pre-established plan for the entire academic year, usually
in every subject, for every class, and in great quantity. And then instruction starts.
But as Apple and Jungck (1991, in Fullan & Hargreaves, 1996) point out, “dumping
curriculum packages on teachers … tends to make them deskilled and dependent”
(pp. 101–102).

Our lean curriculum places an emphasis on the ongoing, never-ending process of
comparing the curriculum plan with what is actually being taught. The two naturally
diverge; that is not a problem, it is an expectation. Teachers take the curriculum for
a guide and then do their thing, teaching to their strengths, expanding where there
is interest, cutting short where there is none, slowing or speeding the pace to make
content and available time come out even, and so on. They are, in short, “responding
to change over following a plan” (Beck et al., 2001).

Our process requires a lean curriculum, literally four pages for a class for the
academic year, which is made available for comments to all faculty members of the
school. Every teacher and staff member can leave suggestions for any course. Then,
at a minimum, once a semester all the members of the academic department resolve
the comments on the curriculum document, in an effort to resolve the divergence
between the curriculum plan and what is taught:

1. Is what the teacher taught more on target (in respect to student interest, prepa-
ration for future courses, parent expectations, etc.) than what the curriculum
suggested? Then change the curriculum to match what is taught.

2. Is what the curriculum suggested more on target than what the teacher taught?
Then reinforce with the teacher what needs to be taught, why this is so, and
provide assistance if something is blocking that teacher from teaching the agreed-
upon curriculum.

There may be a comparison here between project planning using a Gantt chart,
for example, and the cyclic iterations of agile acting and planning. We are aiming
for the latter.

The lean curriculum is nimble and allows ongoing review in the short periods
of time available to teachers. And there may be other benefits. Bankston (2017)
describes a vocational school in Rotterdam that encourages a 70–30 split of planned
and unplanned curriculum so that there is room in the backlog—the collection of
possible lessons—for professors to introduce material based on student interest, stu-
dent need in a particular year, and so on. In other words, while we may as curriculum



Getting Agile at School 125

writers and administrators feel we have done a good job if we have each day planned,
in detail, perhaps we should be intentionally making sure that three out of ten days
(in the Rotterdam example) are not planned, at least not until they need to be planned.
Slack time may in fact be a necessary enabling factor for many of our actionable
practices. Exploration and play may thrive better in unstructured time. Further, as a
general warning familiar to the Agile community: beware of the big plan!

See also TRUST, VALUE, and SMALLIFY.

2.6 Smallify

Agile methods derive much of their agility by relying on the tacit knowledge embodied in
the team, rather than writing the knowledge down in plans (Boehm, 2002, p. 66).

Staff turnover is a constant confounding variable when implementing change. Inter-
national schools can be particularly good at turning over staff, to a large degree
because international teachers are a self-selected group who love to travel. For this
reason no one was surprised when, already in our second year, two teachers new to
the middle school and to the Agile Mindset joined the team. During orientation week
they asked: “When is the training for Agile?” We fumbled around for an answer,
saying that we would get to it later or something equally unsatisfactory. But in real-
ity, that is exactly what we are doing. We train as the year unfolds, in our classes,
and through our conversations as topics arise. In education this could be referred to
as classroom-embedded and ongoing—two hallmarks of solid professional develop-
ment. And each interaction is short. We might ask: Did you see what just happened?
The students directed the next move because you made the process transparent. Or:
What do you think ifwe do this during the next activity—howmight it lead to students
asking deeper questions?

The same is true for our students, too. We will always be faced with continuous
implementation of the Agile Mindset in our middle school because we will always
be working with students new to our school. We will never be able to “train” them in
agility during the orientation week. We will do it along the way, modeling teaching
and learning that deliberately creates short feedback cycles, celebrates little bets,
and provides multiple opportunities to fail safely, because any individual fail is small
enough to climb over, or climb up on, to reach higher.

See also VALUE and UPLIFT.

2.7 Value

Very few schools teach students how to create knowledge… Instead, students are taught that
knowledge is static and complete, and they become experts at consuming knowledge rather
than producing knowledge.—Keith Sawyer (Sims, 2011, p. 160).



126 P. Magnuson et al.

For 4–6 weeks each year, we ask students to come to a class called Project Innovate,
in which they must create the curriculum. “What would you enjoy working on?” we
ask them. “What do you want to learn?” And then we have to trust that, confronted
with this golden opportunity, they can handle it. Often they cannot, particularly at
first.

It would be hard to assess in this class. Students are being given the chance to
choose something to learn, pursue it, go deep, share itwith others…and theymay fail.
We have seen students wander from project to project. We have seen many students
pick something far too complex, at least initially. We have seen others stick with a
project and create an excellent end product, while others do two or three reasonable
projects, and still others flounder. We believe the experience is important—a gut
check of sorts that allows the students to experience firsthand how self-regulated
they are, or aren’t, at this stage in their schooling. It also affords the opportunity for
those who can’t—at least those who can’t yet—to observe those who can, without a
penalty.

Now, what if we were to assess them? Could we allow casting about, floundering,
and, well, failure? We might be accused of wasting valuable school time during
Project Innovate, throwing away those 15 class meetings, or 15 h, for some students.
On the other hand, what if those 15 h demonstrate to the students who need to learn
it most, both intellectually and emotionally, that they are going to need much more
practice learning how to self-regulate? That it is not easy? That there is a gap to cross
between where they are now and where they will need to be in order to self-regulate
well?

See also TRUST and GROWTH.

At the end of our Introduction to Engineering course, we set up a role play,
complete with a small story, as context. Students must introduce the company they
have created in pairs or threesomes, along with their company website and their
company product, to students, teachers, and administrators at the end of the course.
Everyone in the audience is given play money and turned into angel investors, who
are looking for excellent products they can invest in. But that’s at the very end of the
class. What leads up to the demo day is also important.

As part of the curriculum, students must add to their project at least one feature
suggested by another group of students (see COLLABORATION below). This gives
the students practice sharing and getting ideas from each other throughout the class.
Then at the beginning of the last week of class there is a practice presentation, to
get ready for the final presentation to teachers and administrators playing the role
of angel investors. The lead times gives students time to adapt and redo their demos
based on peer feedback. Inspired by each other, most of the student groups improved
their presentations andmost were inspired to update their web pages as well. None of
this was required by the teacher, but students realized the value of their peers’ ideas
and were self-motivated to spend additional time in order to make their presentations
and web pages significantly better.

See also TRUST and COLLABORATION.



Getting Agile at School 127

2.8 Collaboration

Coming together is a beginning; keeping together is progress; working together is suc-
cess.—Henry Ford (Collins, 2007, p. 8)

Setting up work in a scrum-like fashion ensures a certain amount of collaboration
among our students, as well as some of the pain that comes as groups of people,
particularly groups of 13-year olds, figure out how to team up andworkwell together.
The Introduction to Engineering class required students, in pairs or threesomes, to
develop a product and share theirwork online atGitHub. The teacherwas consistently
firm with students that, when they were stuck, they needed to (1) consult a friend, (2)
search online, and only then (3) ask the teacher. The classKanban board had a column
for Stuck (between Doing and Done) with exactly those three levels. At first students
did what their prior schooling has trained them to do. They got stuck and shot their
hands into the air while simultaneously calling “teacher!” Their expressions were
fairly incredulous when the teacher declined to answer questions that students had
not first tried to answer themselves. It certainly did create collaboration, however,
and a sense that expertise in class wasn’t only embodied in the teacher.

As the class worked toward final presentations, one acceptance criterion for the
project was that every group had to credit at least one person from another group for
assistance along theway. Just the opposite of a classroomworried about cheating, this
classroomwas all about sharing to learn. The teacher strives to make the assignments
too hard for one individual student but doable by four-fifths of the students, given
that they are helping each other.

Over the course of our first year, student presentations gained an important role in
the cycle of a project or a course. At the end of the first semester, with no final tests to
fill the last days before the holiday, teachers chose instead to help students showcase
their learning for the semester. Teachers and students collaborated across classes
to develop student displays of work, complete with demos, recordings, and other
exhibits of their work. On exam daymorning the students prepared the room and their
presentations, so that on exam day afternoon they could present their learning to the
rest of us. It was successful enough that during Family Week, when parents visit the
boarding school classes during the winter term, the students chose to put on a similar
exhibition for the visiting parents. Together we had created a culture of collaboration.
In good positive feedback loop style, other classes, like DIY Language, came to rely
on collaborative final projects instead of exams. We didn’t know it would happen
from the start, but the Agile Mindset of classes like Introduction to Engineering has
turned some interesting possibilities into reality.

See also VALUE and COLLABORATION.



128 P. Magnuson et al.

2.9 Redo

Iff uremaekingmisteaks iht meenz ure owt thair dewing sumthing. - Kneal Gaemin (Sigmon,
2015)

We challenged students to create a climate controlled “robot gardener” that would
use microcontrollers (brains), sensors (light, temperature, and soil moisture), and
actuators (LED lights, fans, and water pumps) to keep plants healthy over the holiday
break, when the students are on vacation. Robotic design projects are a nice fit for
employing theAgileMindset since they can be broken down into small systems, there
are many chances for iterations along the way, and the ultimate answer is unknown.
There are lots of different ways to build a robot that can keep plants alive.

Building a robot gardener is a large enough project that smallifying (Sims, 2011)
is quite important. Early on we ask students to think about the completed project as
a series of features. Once they have identified and made a preliminary design of the
different features working together, we ask them to choose one feature, for example
light control, to start with, build, and test. Students need to figure out how to build the
feature and how to write a program that does what it needs to do. In order to scaffold
this process for beginners, we provide a circuit diagram and some sample code. Once
they have the feature working, we ask students to change the code to reflect a specific
set of plant needs. With each subsequent feature (temperature control and eventually
moisture control), we offer less scaffolding, but they follow the same engineering
and design cycle.

Once students feel confident about their small feature ability to work, we “break”
it. We do this in different ways, depending on the student’s level of understanding.
For beginners, we may simply move the sensor to a different pin or change the
code so that it looks for the sensor at a different pin. For more advanced students,
we experiment with different versions of sensors and actuators or different ways of
integrating the feature into the larger project. The idea is to highlight the “bugs” of
the design and get kids thinking.

We test for understanding by having students fix the break in a novel way. If we
change the pin position, we require students to change the code to allow for the new
pin position—not just move the connection back to where it was. If students choose
to use one sensor or component over another or decide to change the way the features
work together in the final project, they need to explain why. They do this by showing
and explaining their work to student colleagues and the teachers.

We learned that students learn best by making mistakes. For example, if a student
does not wire a pump to fail in the off position, a failure (say a loose wire) can cause
their robot gardener pumps to water continuously, flooding the plant (which is not
good for plant health!) and causing a watery mess. They do not learn this concept
as dramatically when working with the light and the temperature features, which
can also fail unsafely, but the same principle of learning from mistakes applies. In
addition, we learned that the process of purposely trying to break the project and
creating fixes to these bugs has not only generated “aha” moments, but it is also a
very fast way to know if students “get it.”



Getting Agile at School 129

In any case, the formative assessment in Robot Gardeners is real and generally
pretty obvious—things either work or they do not. Students learn quickly what they
need to redo and they learn that redoing needs to repeat itself until the problem is
solved. As Sims (2011) puts it, students are learning the art, like entrepreneurs, of
“failing forward” (p. 53). Merely redoing is not enough. A redone connection to
the water pump that still fills the classroom floor with water again the next day is
definitely not done. You have to fail into success.

See also SMALLIFY and EXPLORATION.

2.10 Uplift

Make people awesome (Industrial Logic, 2016).

Uplifting creates safety, in the context of an engineering mindset, when students feel
safe to choose their own direction, designs, and peers to work with andwhen students
are accepting of mistakes and missteps along the way. Here are two experiences that
describe what we mean.

A group of three boys was designing a self-powered car. Their goal was to make
it move two meters without a shove. They were using plastic soda bottles for the
chassis, a motor hooked to a fan, and plastic bottle lids for wheels. One day they
were arguing loudly. The teacher joined their group and together they looked at the
drawing of their design and their task distribution. The teacher asked what each
student was responsible to build. They each stated their role. Then the teacher asked
why they were arguing. They explained that their parts did not integrate and each
student wanted the other students to change their design. The teacher asked why
they were not building from the design sketch. It turns out they had rushed the design
(because they did not realize its importance), so their sketch was vague and they
did not agree on the specifics. So of course, the parts they designed were not fitting
together.

Before discussing what it would take to agree on a design, the teacher backed up
and facilitated a discussion about how they could work together. After a good 15 min
of discussion they were able to talk about making a new design.

By the end of the unit they had built a car that worked and was voted by their peers
as the most successful project. When the group cited one thing they had learned (the
reviewwas deliberately vague, but the teacher was expecting a technical answer), the
group said that the most important thing they learned was how to work together. The
teacher reported afterward that he was sure if he had punished them for arguing and
disrupting the class, they never would have learned this lifeworthy (Perkins, 2016)
lesson.

In another group, one of the more focused students was taking a very long break.
(Students were allowed to choose themselves when they took a break and for how
long.)When the teacher asked him if hewas ready to get back towork, the student said
hewas stuck and did not knowwhat to do. So the teacher engaged him in conversation.



130 P. Magnuson et al.

The student explained that he was building a rubber band car but that it would only
travel about 20 cm. He had demoed the car and found that the rubber band, which
he had glued to the car, was actually making it stop. After some experimentation
together, they decided he needed to cut off the rubber band. He reused the place
where it had been glued by converting it into a hook. He was unstuck and able to get
back to work. It took him awhile to feel it was safe to ask for help, and it took him
awhile to feel comfortable about making mistakes. But after that experience he was
much more exploratory and interested.

Like the arguing boys from the other group, turning this boy’s overly long break
into a discipline issue would not have accomplished much at all, while exploring the
problem in a friendly way—without giving him the answer—uplifted him and built
his confidence.

See also EXPLORATION, REDO, and TRUST.

3 Conclusion

Conclusion is a misnomer. Continuation is more accurate. The worth of the Agile
mindset as a thinking and working culture lies in its application. Similarly, its appli-
cation is what continues to create the mindset. Explore, adapt, redo, grow … we
recognize change as normal and healthy.

We hesitate to say that any particular actionable practice is more important than
another. They are all, in fact, important and they are all interdependent. And of course
there may be more actionable practices that we have missed here, practices that we
will discover as we continue creating a shift in culture. We wonder about SLACK,
for example. Should unplanned space in learning be emphasized more? What about
CHOICE? Are either of these implied in our existing practices, and is merely being
implied good enough? We expect to find out over time, depending of course on how
our Agile mindset and culture move forward.

Among our existing actionable practices,we do feel that EXPLORATION is really
only possible if time is made available to do it (there is the notion of SLACK again)
and if our learning environment is truly infused with TRUST and a commitment to
UPLIFT. Without these, any practice of Agile in education might give unintentional
rise to stress, since the necessary conditions to support exploration, with all its quirky
twists and turns, successes and failures, may be registered by students, teachers, and
administrators as mistakes or wasted time instead of positive learning experiences.
Working on just one or two of these practices should be beneficial, as each individual
practice contains some element of good educational practice. But the ideal is to work
on many of them, over time, exploring the manners in which they reinforce each
other and to witness how that transforms teaching and learning in the classroom and
beyond.

Recently we have begun training using the actionable practices we have outlined,
collecting stories in the form of these short vignettes as the teachers reflect on the
teaching and learning experiences they are creating in their own contexts. We ask



Getting Agile at School 131

teachers to focus on two actionable practices at a time, while being mindful of their
interconnectedness. A teacher, for example, might choose to focus on ADAPTABIL-
ITY and UPLIFT, because she has identified the former as difficult and the latter as
a practice she excels at. She can both address a weakness and strengthen an asset.
Over time strengths and weaknesses will shift and new actionable practices will be
identified for improvement, allowing teachers to choose how to adapt and grow as
they add self-regulation to their teaching style. In doing so, the teachers are practicing
what we are asking students to do, and the students have multiple good models to
learn from. The stories of Agile practices that we collect along the way, provided
by teachers right from their classroom experience, will inform teaching and learning
and the future iterations of our Agile culture.

We are not concluding, we are just beginning.

References

Agile Classrooms. (2018). Retrieved March 29, 2018, from https://www.agileclassrooms.com/.
Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., … Thomas, D.
(2001). Manifesto for agile software development. Retrieved October 25, 2017, from http://www.
agilemanifesto.org/.

Asimov, I. (1980, January 21). A cult of ignorance. Newsweek, 38, 19.
Bankston, A. (2017, July 24). Agile and lean outside of IT. Agile Uprising. Podcast retrieved from
https://agileuprising.libsyn.com/agile-and-lean-outside-of-it-featuring-arlen-bankston.

Boehm, B. (2002, August 7). Get ready for agile methods, with care. Computer, 35(1).
Cockburn, A. (2017, August 10). Becoming a meme and agile 2.0. Solutions IQ. Podcast retrieved
from https://www.solutionsiq.com/resource/agile-amped-podcast/becoming-a-meme-agile-2-0-
alistair-cockburn/.

Cockburn, A. (2014, March 24). The heart of agile. Retrieved October 25, 2017, from www.hearto
fagile.com.

Collins, T. (2007). The legendary model T Ford: The ultimate history of America’s first great
automobile. Iola, WI: Krause Publications.

Delhij, A., van Solingen, R., & Wijnands, W. (2015). The eduScrum guide.
Dweck, C. (2016). Mindset: The new psychology of success. New York: Ballantine Books.
Elia, P., Lockard, R., & Ackerbauer, M. (2017, September 16). Modern agile: Experiment and learn
rapidly. Agile Uprising. Podcast Retrieved from http://podcast.agileuprising.com/modern-agile-
experiment-and-learn-rapidly/.

Fullan, M. (2011). Change leader. Hoboken, NJ: Jossey-Bass.
Fullan, M., & Hargreaves, A. (1996). What’s worth fighting for in your school? New York, NY:
Teachers College Press.

Gorasia, V. (2015). Assessment using technology in mathematics. Spotlight: Technology in Educa-
tion, 1(1), 12–13.

Industrial Logic. (2016). Retrieved October 25, 2017, from https://www.industriallogic.com/.
Keith, K. (2002). The paradoxical commandments: Finding personal meaning in a crazy world.
New York: G. P. Putnam’s Sons.

Kerouac, J. (1958). Dharma bums. Google books. Retrieved October 25, 2017, from https://books.
google.ch/books?id=x-HkLDC96EkC&pg=PT106&dq=when+you+get+to+the+top+of+the+m
ountain+keep+climbing&hl=en&sa=X&ved=0ahUKEwjwuu_QnIvXAhVEbRQKHeCGCmw
Q6AEIJTAA#v=onepage&q=when%20you%20get%20to%20the%20top%20of%20the%20mo
untain%20keep%20climbing&f=false.

https://www.agileclassrooms.com/
http://www.agilemanifesto.org/
https://agileuprising.libsyn.com/agile-and-lean-outside-of-it-featuring-arlen-bankston
https://www.solutionsiq.com/resource/agile-amped-podcast/becoming-a-meme-agile-2-0-alistair-cockburn/
http://www.heartofagile.com
http://podcast.agileuprising.com/modern-agile-experiment-and-learn-rapidly/
https://www.industriallogic.com/
https://books.google.ch/books%3fid%3dx-HkLDC96EkC%26pg%3dPT106%26dq%3dwhen%2byou%2bget%2bto%2bthe%2btop%2bof%2bthe%2bmountain%2bkeep%2bclimbing%26hl%3den%26sa%3dX%26ved%3d0ahUKEwjwuu_QnIvXAhVEbRQKHeCGCmwQ6AEIJTAA#v%3donepage%26q%3dwhen%20you%20get%20to%20the%20top%20of%20the%20mountain%20keep%20climbing%26f%3dfalse


132 P. Magnuson et al.

Manifesto for Agile Education. (n.d.). Scrum at school. Retrieved October 25, 2017, from http://
www.scrumatschool.nl/component/content/article?id=124&Itemid=137.

O’Connor, K. (2011). A repair kit for grading: 15 fixes for broken grades. Boston, MA: Pearson
Education.

Perkins, D. (2016, March). Lifeworthy learning. Educational Leadership, 73(6), 12–17.
Robbins, L. (2016, Fall). New directions. AgileVox, 1(2), 48–56.
Sims, P. (2011). Little bets: How breakthrough ideas emerge from small discoveries. New York:
Simon & Schuster.

Scrum@School. (2015). Retrieved March 29, 2018, from https://www.scrumatschool.nl/.
Sigmon, D. (2015, August 31). 10 motivational quotes for your classroom. Edutopia. Retrieved
October 25, 2017, from https://www.edutopia.org/discussion/10-motivational-posters-your-clas
sroom.

Sutherland, J. (2014). Scrum: The art of doing twice the work in half the time. New York: Crown
Business.

TechBeacon. Modern agile and the heart of agile: A new focus for agile development. Retrieved
October 23, 2017, from https://techbeacon.com/modern-agile-heart-agile-new-focus-agile-deve
lopment.

Turrisi, P. A. (Ed.). (2007). Pragmatism as a principle of modern and right thinking: The 1903
Harvard lectures on pragmatism. Albany, NY: State University of New York Press.

Weichart, G. (2013). The learning environment as a chaotic and complex adaptive system: E-
learning support for thrivability. Systems: Connecting Matter, Life, Culture and Technology, 1(1).
Retrieved October 22, 2017, from www.systems-journal.eu.

http://www.scrumatschool.nl/component/content/article?id=124&amp;Itemid=137
https://www.scrumatschool.nl/
https://www.edutopia.org/discussion/10-motivational-posters-your-classroom
https://techbeacon.com/modern-agile-heart-agile-new-focus-agile-development
http://www.systems-journal.eu


Bringing the Benefits of Agile Techniques
Inside the Classroom: A Practical Guide

Ilenia Fronza, Nabil El Ioini, Claus Pahl and Luis Corral

Abstract Besides professional programmers, many “end-user programmers” write
code in their daily life. Given that so much of end-user-created software suffers from
quality problems, Software Engineering (SE) is no longer solely applicable to the
professional context: a clear computational processing can be useful in everyday
life. While the expansion of programming skills acquisition initiatives in K-12 (i.e.,
primary and secondary schools) has contributed to improving learners’ coding ability,
there have not been many studies devoted to the teaching/learning of SE concepts.
In this chapter, we focus on understanding how it is possible to bring the benefits
of Agile techniques inside the classroom. Moreover, our goal is to show how each
selected practice (such as user stories and pair programming) can be leveraged or
adapted to the educational context; to this end, tools already adopted in schools are
considered as possible substitutes of professional ones.

Keywords K-12 · Agile techniques · XP practices · Classroom · Toolbox

1 End-User Software Engineering in K-12: Introduction

Computer programming is becoming a pervasive practice, almost as much as com-
puter use; therefore, the gap between software users and developers is quickly nar-
rowing down (Ye & Fischer, 2007). End-user programming has empowered millions

I. Fronza (B) · N. El Ioini · C. Pahl
Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
e-mail: ilenia.fronza@unibz.it

N. El Ioini
e-mail: nabil.elioini@unibz.it

C. Pahl
e-mail: claus.pahl@unibz.it

L. Corral
Monterrey Institute of Technology and Higher Education, E. Gonzalez 500,
76130 Queretaro, Mexico
e-mail: lrcorralv@itesm.mx
© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_7

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_7&domain=pdf
mailto:ilenia.fronza@unibz.it
mailto:nabil.elioini@unibz.it
mailto:claus.pahl@unibz.it
mailto:lrcorralv@itesm.mx
https://doi.org/10.1007/978-981-13-2751-3_7


134 I. Fronza et al.

of end-users to create their own software: more and more people are not only using
software but also taking part to the software development process to widely varying
degrees to solve different types of problems. Unfortunately, there is a downside:
errors are pervasive in end-users-created software (Burnett, 2009). End-User Soft-
ware Engineering (EUSE) aims to increase the quality of end-user-created software
by looking beyond the “create” part of software development, which is already well
supported, to the rest of the software lifecycle (Burnett, 2009).

A key difference between EUSE and traditional software engineering (SE) is
that EUSE focuses on “end-users”. In today’s EUSE literature, the definition of
end-user developers differs from paper to paper (Burnett & Myers, 2014). Some
researchers consider people who have neither experience nor software-engineering-
oriented interests; others use it to mean anyone using a particular programming
environment that targets end-users; and others use it tomean peoplewho can program
in a specific application area only. Ye and Fischer (2007) proposed a spectrum of
software-related activities: at the right end of the spectrum are those that develop
software systems professionally, while at the left side are those users who just use
software systems to accomplish their daily tasks (the so-called “pure end-users”).

As a desiloing alternative, Burnett and Myers (2014) suggested defining end-
users based on intent, to focus directly on the end-user developers’ motivations and
values in that particular software development task, which in turn can affect their SE
processes (Burnett & Myers, 2014).

Chimalakonda and Nori (2013) identified the following two main categories of
challenges that need to be solved when teaching SE to end-users

• End-users concerns: (i) end-users do not see the value of learning the principles
of SE; (ii) end-users generally program because they want to simplify or automate
their own tasks and not to learn SE; (iii) learning SE requires extra time and effort.

• Instructional design concerns: (i) end-users focus on domain-specific goals and
not on SE; (ii) SE didactics must be adapted to diversified audiences with different
backgrounds and needs; (iii) there is a wide variety of processes in SE, but which
of them to use in teaching is not clear; (iv) while there are many resources and
tools on the web for learning SE, they are not directly usable for end-users.

Thanks also to the strong emphasis being led by the media, coding has been
included in many teaching curricula. Therefore, in recent years, the most compre-
hensive didactic initiatives for end-users have been associated with K-12 (Monteiro,
deCastro Salgado,Mota, Sampaio,&deSouza, 2017), also in non-vocational schools
(Fronza et al., 2014). In K-12, some students have the intent to learn to program,
which means that they are willing to move from the left- to the right end of the
spectrum of software-related activities (Ye & Fischer, 2007). Other students can be
positioned in the middle of the spectrum: they have certain software development
skills, but just develop software with the intent to solve specific problems (Costabile,
Mussio, Parasiliti Provenza, & Piccinno, 2008).

Because of the pervasiveness of software in the labor market, it is indeed of
paramount importance to equip K-12 students with the necessary means to improve
software quality: they will probably be end-users also in their future career, and at



Bringing the Benefits of Agile Techniques Inside … 135

that point producing dependable software could be crucial. Moreover, the benefits of
a SE approach can be extended well beyond the engineering field: for example, the
ability towork iteratively and incrementally can also be employed in other disciplines
and in daily life as well.

In this chapter, we focus on understanding how it is possible to bring the bene-
fits of Agile techniques to K-12 education. To this end, we first describe a toolbox
of practices, by showing how they can be leveraged or adapted to the educational
context; in particular, tools already adopted in schools are considered as possible
substitutes of the professional ones. Then, we detail a selection strategy, to support
teachers in selecting the right practice from this toolbox, based on different char-
acteristics of their teaching activities. There are limited examples of Agile training
in K-12, and most of these studies have focused on a limited number of practices
applied in isolation. The goal of the proposed toolkit is then to leverage a synergistic
use of practices.

2 End-User Software Engineering in K-12: State of the Art

There are currently only a few studies that explicitly address the need for teaching
SE to end-users. An overview of these studies can be found inMonteiro et al. (2017).

Umarji, Pohl, Seaman, Koru, and Liu (2008) conducted a survey in the con-
text of bioinformatics, which focused on the software engineering principles that
should be learned by end-users who develop software in the bioinformatics domain.
According to the authors, most of the bioinformatics students do not receive formal
software engineering training, and usually learn programming principles through
self-teaching. As a conclusion, the authors suggested to include software engineer-
ing principles in bioinformatics education.

Gross, Herstand, Hodges, and Kelleher (2010) described a code reuse tool for
the Looking Glass IDE, which aimed at showing the importance of reuse to middle
school students who are learning programming. Using this tool, students can reuse
parts of programs written by others, even without understanding completely how that
code works.

Some research on Agile in K-12 has recently been performed. Meerbaum-Salany
and Hazzan (2010) presented an Agile mentoring methodology for high schools.
In 2015, Fronza, El Ioini, and Corral (2015a) implemented a computational think-
ing training course in which they leveraged the software development phases (i.e.,
feasibility, analysis, design, development, testing, and integration) to foster specific
computational thinking skills. The same group of researchers, in 2017, focused on
the instructional design concerns in teaching software engineering to end-users (see
Sect. 1), by proposing a framework in which a set of Agile practices were adapted
to the middle school context in order to teach computational thinking (Fronza, Ioini,
& Corral, 2017).



136 I. Fronza et al.

In 2016, Kastl, Kiesmüller, and Romeike (2016) achieved greater flexibility in
software development projects in three secondary schools in Germany, by applying
Agile methods.

Monteiro et al. (2017) analyzed how the technology used in a Brazilian CTA
program prefigured elements of software engineering in the participants’ programs
created with AgentSheets.

To guarantee that SE will enter the K-12 environment, a set of how-to’s is needed
for teachers, so that they will be able to apply SE practices in their classrooms.

3 Bringing Agile to K-12 Education

In the first part of this section, we detail whyAgile practices fit theK-12 environment,
based on the end-user characteristics and work habits in this specific context. Then
we explain why, among the possible Agile methodologies, eXtreme Programming
(XP) represents a good candidate for K-12 students.

3.1 Why Agile?

One of the main challenges in EUSE is to understand which SE process to use in
teaching, among the wide variety of possibilities (Chimalakonda & Nori, 2013).
With respect to this goal, the EUSE approach is to respect end-users’ real intentions
and work habits, without advocating to transform end-users into software engineers
(Burnett, 2009).

Under a plan-driven development model, once the requirements have been fully
specified, the project continues through the design, coding, testing and integration
phases, finally leading to deployment of the finished product. In a professional envi-
ronment, this structure facilitates the creation of contracts, as the product definition
is stable. In K-12, a plan-driven approach could then encourage a continuing focus
on the product while, according to EUSE goals, students should also learn how to
better organize the development process (Steghöfer et al., 2016). Moreover, one of
the well-known disadvantages of plan-driven development models is that once an
application is in the testing stage, it is very difficult to go back and change something
that was not well-thought out in the concept stage. Also, no working software is pro-
duced until late during the life cycle. Therefore, using a plan-driven process in K-12
could easily lead to having students with non-working products, which might actu-
ally be used to intentionally teach students how to fail, persevere and respond with
resilience (Lottero-Perdue & Parry, 2017). However, this goal cannot be achieved
if the failure just appears at the end of the project when students do not have time
to learn from their failure and improve their product. This explains the importance
of getting students used to have a working product (even with a minimum set of
functionalities) at any point in time during the development (Fronza et al., 2017).



Bringing the Benefits of Agile Techniques Inside … 137

Indeed, the undesirable output of an iteration can encourage tenacity and urge to
improve. On the other hand, a tangible good result of the performed activities can
increase self-esteem in students. Moreover, evidences about the students’ progress
support formative assessment. Finally, a plan-driven development process is not an
option when the goal is to promote creativity, experimentation, and practical work
in students. An incremental approach, instead, can help achieve these goals in the
engineering field. The same goals are relevant to many disciplines in a teaching cur-
riculum; therefore, the benefits of learning an Agile approach can be applied outside
the context of SE.

Burnett and Myers (2014) proposed to frame the EUSE problem more along
the lines of the problem-solving activity rather than the SE lifecycle, by supporting
end-users as they work:

• end-users work opportunistically, incrementally, and rarely one lifecycle phase at
a time (Burnett & Myers, 2014);

• end-users exploratory mix programming, testing, and debugging, mostly by
trial-and-error (Burnett & Myers, 2014);

• end-users are capable of constructing software by direct manipulation (Costabile
et al., 2008);

• end-users very much prefer collaborative activities (Costabile et al., 2008).

The modern teaching approaches suggest to encourage and leverage the above-
mentioned work habits. Examples of these teaching approaches are: collaborative
learning (Barkley, Cross, & Major, 2014), learn-by-doing (Moye, Dugger Jr., &
Starkweather, 2014), use of tangibles (Price, Rogers, Scaife, Stanton,&Neale, 2003),
and project-based learning (Krajcik & Blumenfeld, 2006). Moreover, as shown in
Table 1, the values in the Agile Manifesto1 can be mapped to the K-12 learning
environment, considering the above-mentioned end-user’s habits and modern teach-
ing methods (Stewart, DeCusatis, Kidder, Massi, & Anne, 2009). In this context, the
instructor can play the role of a customer (Steghöfer et al., 2016). Indeed, considering
the instructor as a customer (and not as a source of continuous support) can help in
fostering students’ self-organization on their projects by reducing their dependence
on the instructor’s assistance (Kastl et al., 2016).

Nevertheless, the waterfall development model has been for a long time the devel-
opment strategy taught in schools and universities (Kropp&Meier, 2013). Switching
to Agile, in fact, would require switching to an environment in which the process
by which the students arrive at the product is emphasized (Steghöfer et al., 2016).
Teaching Agile principles has recently drawn researchers’ attention, but papers and
experience reports in which the authors discuss their experiences are mostly set
at university level (Alégroth et al., 2015; Astrachan, Duvall, & Wallingford, 2001;
Mahnic, 2012; Paasivaara, Heikkilä, Lassenius, & Toivola, 2014).

1https://www.agilealliance.org/agile101/the-agile-manifesto/.

https://www.agilealliance.org/agile101/the-agile-manifesto/


138 I. Fronza et al.

Table 1 Mapping the agile manifesto to the K-12 environment

Values in the agile
manifesto

K-12 environment

Individuals and
interactions over
processes and tools

End-users very much prefer collaborative activities. Student-centric
learning environments should be favored, where students actively
participate in activities and group-based components that reinforce
concepts and allow for exploration (Stewart et al., 2009)

Working software over
comprehensive
documentation

An iterative environment leads to higher immersion in the project,
more learning, and better-quality deliverables (Stewart et al., 2009)

Customer collaboration
over contract negotiation

Greater access to the instructor can lead to more collaborative
relationship (Stewart et al., 2009)

Responding to change
over following a plan

End-users work opportunistically, incrementally, and rarely one
lifecycle phase at a time (Burnett & Myers, 2014). They exploratory
mix programming, testing, and debugging, mostly by trial-and-error
(Burnett & Myers, 2014). Agility is the ability to adapt to different
learning styles and change the delivery methods (Stewart et al., 2009)

3.2 Why Extreme Programming?

Agility at its core refers to a dynamic approach that removes all the a priori burden-
some planning and design phases and substitutes themwith an iterative approach that
tackles smaller scale problems. Over the years, different agile methodologies have
put into practice the Agile manifesto (Dingsyr, Nerur, Balijepally, & Moe, 2012),
and each of them addresses specific needs and requirements. Extreme Programming
(XP) is one of the methodologies that has integrated practices concerning the project
management as well as the development process, by focusing on continuous commu-
nication and excellent programming habits (Beck, 2000). The main characteristics
of XP are

• short cycles;
• incremental development;
• flexible implementation;
• high automation;
• evolutionary design;
• extensive communication;
• collaborative development.

By exploring the link between end-users and Agile (see Sect. 3.1), we found
that XP can be an excellent candidate to teach software engineering to end-users in
K-12 for two main reasons: (i) it does not require end-users to change their devel-
opment habits radically, and (ii) it helps end-users to structure their development by
introducing a lightweight set of practices.

When it comes to the application of XP, it is hard to classify teams if they are XP
based only on whether they apply XP practices to the full or not. About this topic,



Bringing the Benefits of Agile Techniques Inside … 139

Kent Beck argues that “the full value of XP will not come until all the practices
are in place. Many of the practices can be adopted piecemeal, but their effects will
be multiplied when they are in place together” (Beck, 2000). The primary value of
XP is indeed to establish a set of principles and practices to guide the development
process; nevertheless, depending on the specific context, some teams (or individuals)
may find that certain practices do not apply to them. It is important, however, to
systematically recognize when each of the provided practices can be omitted and
if there are any dependencies between them. Section 4 details how a set of XP
practices can be leveraged or adapted to the K-12 educational context, and Sect. 5
explains when each practice (or group of practices) can be applied to achieve the
goals set by XP.

4 Mapping XP Practices to K-12 Practices: A Toolbox

In the following,wedescribe a toolbox,which contains themost relevantXPpractices
in our context, and we show how they can be mapped to end-users’ working habits.
Figure 1 shows how the working process is organized according to XP, and how each
practice of the toolbox is mapped to the different phases of this iterative process.

Fig. 1 Process description



140 I. Fronza et al.

4.1 User Stories

User stories represent the initial phase of the development process. The goal of
user stories is to capture the requirements in a language that is understood both
by developers and customers (Beck, 2000). They are written as a set of high-level
scenarios that allow developers to understand the required features and the estimated
effort. User stories also allow the classification of features, and the selection of those
features that need to be implemented first and have a higher value to the customers. To
this end, early, informal, paper prototypes are a very rapid way to generate ideas and
obtain immediate feedback (Buxton, 2010; Traynor, 2012) to understand precisely
how user stories will work and the client perspective. Moreover, paper prototypes are
among thepossible approaches (togetherwith, for example,minimumviable product)
to increase cost-effectiveness: it is indeed more cost-effective to make changes to a
prototype than to an implemented user story (Fronza, El Ioini, & Corral, 2016c). For
end-users, user stories can be mapped to the set of activities performed to understand
and structure the problem domain, and to find an agreement on the requirements
(Romeike & Göttel, 2012).

Images play an important role in human thinking, as they can capture visual and
spatial information in a much more usable form than lengthy verbal descriptions
(Thagard, 1996). In SE, rough, even hand-sketched, sequences of drawings (i.e.,
storyboards) are suggested to help understanding the customer’s needs (Cardinal,
2013). In K-12 visuals are a common practice to support learners in: (i) linking new
ideas to previous knowledge, (ii) connecting ideas, (iii) representing the structure
of a product, and (iv) promoting collaboration (Walny, Carpendale, Riche, Venolia,
& Fawcett, 2011). Therefore, user stories can be pretty easily applied in K-12, by
simply leveraging tools already adopted in schools. The possible implementation of
user stories in K-12 depends also on the type of system that is going to be created;
for example, we illustrate storyboards, mind maps, execution trees, and role-playing.

4.1.1 Storyboard

A storyboard can be considered as the display of blocks of a comic strip, in which
there is a visual representation of the sequence of an activity, which includes situ-
ations, actors, roles, and actions. In addition, a storyboard includes comments and
annotations to provide a better notion of the action represented (van der Lelie, 2006).
Regarding software development, storyboards can represent graphically a sequence
diagram that uses the vocabulary provided by class diagrams, and it adds the chrono-
logical interaction between the different objects.

For example, when developing a mobile application in K-12, each panel of the
storyboard can be considered as a screen of the app (Fig. 2a). Students are asked to
draw each screen in a given format to create a mock-up prototype of the application’s
GUI. This requires defining the elements (i.e., figures, icons, text, background) of
each screen and the actions that can be executed using those components (Fronza,



Bringing the Benefits of Agile Techniques Inside … 141

Fig. 2 Student-created storyboards in K-12

El Ioini, & Corral, 2015b, 2016a). Instead, when creating an animation, each panel
of the storyboard represents a different scene (Fig. 2b).

Positive results of the usage of storyboards in middle schools are reported in
Fronza et al. (2017); in this case, a simple template is suggested (Fig. 2b), which
includes: scene number, type of background, characters in the scene and their actions,
short description. In the context of elementary schools, simpler stories are suggested
(Fronza et al., 2016c), with clear scenes and fewer concepts. Storyboards can be used
at the end of each iteration to check if the goal of the iteration has been achieved, by
comparing the storyboard with the implemented scene.

4.1.2 Execution Tree

The execution tree structures the execution flow in terms of a sequence. During the
creation of amobile app, for example, students can identify the transitions (i.e., edges
of the tree) between the screens in the storyboard (i.e., nodes of the tree) (Fronza, El
Ioini, & Corral, 2016b). To this end, students need to define what are the elements
(e.g., buttons) and actions (e.g., tap) that trigger each transition. An example of the
structure of an execution tree is shown in Fig. 3.

4.1.3 Mind Map

Mind maps serve to organize ideas within a project, to identify their relevance, and
to describe the relationships between them. One of the advantages of mind maps is
that they are regularly used in K-12. Therefore, they can be used without specific
training and without changing the end-users’ working habits.



142 I. Fronza et al.

Fig. 3 A student-created execution tree

Mind maps can be thought of as class diagrams that define the set of classes and
the interactions among them. Starting from the requirements document, students can
build the necessary vocabulary that will be used by all the subsequent activities.
Moreover, drawing a mind map requires identifying the most important concepts
(i.e., classes) in the requirements document, and also to group congruent concepts,
find their properties (i.e., attributes) and draw connections among them. This fosters
the creation of an end-user’s mindset that would be open to Object-Oriented pro-
gramming. The benefits of this activity in supporting students in the identification
of the software elements and their interactions have been shown both in elementary
(Fronza et al., 2016c) and in middle schools (Fronza et al., 2017).

4.1.4 Role-Playing

Another possible implementation of user stories is role-playing, which supports
requirements formulation from a user’s perspective. In this activity, one student pre-
tends to be the software and reacts accordingly, while another student takes the role
of the user. The other students observe them in order to get details and constraints
of the desired product. The process is repeated (with changing actors) until no more
new requirements arise (Romeike & Göttel, 2012).



Bringing the Benefits of Agile Techniques Inside … 143

4.2 Small Releases

With the increasing demand on time to market products, software providers need to
rapidly adapt to changes in order to maintain their competitive advantages. Small
releases (a.k.a. short cycles) is the process of decomposing software development
activities into short iterations allowing early and continuous feedback. For end-users,
this is a fundamental requirement since itwill enable them towork iteratively andkeep
adding more functionality to their core products. Additionally, in most cases, end-
users use an exploratory approach inwhich they learn how to use the technologies and
how to implement the required features. Thus, having short development cycles helps
them evaluate their progress and adapt it accordingly. Moreover, this is particularly
relevant forK-12, as it allows teachers to apply a formative assessment (Mikre, 2010).

A successful decomposition of the development process in small releases depends
on the ability to estimate the required effort. This aspectmight not be in the end-users’
working habits. Therefore, they need to be supported in this process. One solution
could be to link estimations to user stories with the disaggregation techniques (Cohn,
2005): the story’s total estimate is calculated as the sum of the effort estimates of
each task that is needed to complete it. Another possible approach is planning poker:
Romeike and Göttel (2012) adopt professional card values with 15-min periods.
Each student estimates the time to implement the user story in focus. Discussion of
very divergent estimates is leveraged to clarify requirements and assumptions. After
the planning poker is finished, the total estimated time is compared with the time
available and user stories complexity is changed if needed.

What needs to be noted for these practices is that end-usersmight consider them as
extra work that moves their attention from their goal. For this reason, it is important
to let end-users perceive the usefulness of these practices, without forcing them too
much to use them.

4.3 Metaphors

Metaphors as defined by Beck (2000), “a story that everyone customers, program-
mers, andmanagers can tell about how the systemworks”, enable a shared vocabulary
and common understanding on how the system functions. In the context of K-12,
one of the early steps of the project can consist of establishing a shared vocabulary
between teachers and the teams, especially when teams are not familiar enough with
the application domain to be able to use native domain language.



144 I. Fronza et al.

4.4 Coding Standards

To increase productivity, developers are required to adhere to specific coding stan-
dards and conventions. This is particularly important for future modifications and
refactoring. End-users tend to develop their own practices such as naming conven-
tions and function compositions, however, in most cases they do not use any well-
established referencewhen doing so. Using coding standards contributes to increased
code quality (Fang, 2001), which is actually one of the EUSE goals. Therefore, end-
users can benefit from learning this practice. For instance, teams can decide on
naming conventions for variables and components. Another example concerns the
testing process of the developed application: they can define a number of steps to
follow and agree on adopting them.

4.5 Collective Ownership

In XP no one owns a specific part of the developed code, rather any developer can
change any line of code to add functionality, fix bugs, improve designs or refactor
(Beck, 2000). This allows for a constant code review and updates by all the members
of the team. In K-12 students often prefer “repeatedly playing safe and choosing the
role they feel most comfortable with, as opposed to stepping outside their comfort
zone” (Stewart, 2014). Therefore, the risk is to have them working only on the piece
of code they feel more comfortable with and then integrating the produced modules
together. This might create situations in which no one sees the full picture of the
project. Additionally, if team members are missing, it becomes difficult and time
consuming to substitute them. Collective ownership in K-12 can be achieved by
asking all team members to perform all the activities of the project; this means that
no member is dedicated only to one task, rather they all need to be able to understand
and modify the project tasks. Other XP practices (such as pair programming and
coding standards) can support collective ownership.

4.6 Simple Design

Thebest design is the simplest thatworks.XPaims at finding themost straightforward
solution that passes all the specified tests and meets the business values. One of the
practices of XP is to write the tests first, which would fail initially, then write the
minimum amount of code to make them pass (Beck, 2000).

K-12 teams tend to start by developing simple solutions for specific problems.
However, when the scale of the problem increases, it becomes hard for them to
manage. Two approaches are usually considered at this point: (i) overuse conditional
statements to accommodate all the possible scenarios; (ii) develop different modules
to tackle each scenario, then find a way to connect them to solve the bigger problem.



Bringing the Benefits of Agile Techniques Inside … 145

Good practices for simple design that K-12 can learn and apply are, for example,
related to constructs, such as: making sure that the proper constructs are used (e.g.,
use loops instead of repeating a statement n times, use signals in Scratch2 instead of
timers), and use the minimum necessary constructs (classes, blocks, figures, etc.).
To apply these practices, introductory exercises should be proposed with the goal
of making sure that students learn the most relevant constructs for their activity
(Fronza et al., 2017). Afterwards, code inspections at the end of each iteration can
help in providing feedback to the students by, for example, suggesting the usage of a
loop instead of repeated statements. Another good practice is to remove duplications
from programs (e.g., use a function instead of implementing the same functionality
in different parts of the code). In this case, high-level design (for example, usingmind
maps) can help students to identify those parts of the program that can be removed.

4.7 Refactoring

Refactoring is the process of improving code quality without changing its function-
ality (Beck, 2000). It consists of continuously reviewing the developed code and
updating it (e.g., eliminate duplication, fix coding standards, naming conventions)
manually or using dedicated tools. The main benefits of refactoring are to ease the
maintainability and extendibility of the developed code. Refactoring can be triggered
by the detection of code smells (Van Emden & Moonen, 2002) using automated
tools, or it can take place at specific time intervals during the development process
(e.g., end of each iteration). For K-12, refactoring is usually triggered by two fac-
tors: (i) adapting the existing code to support new features (e.g., changing functions
parameters); (ii) substituting an existing construct with a new one (e.g., learning
how to use messages instead of timers to move objects, setting the initial potion of
objects in a Scratch scene). Refactoring as considered in XP gives K-12 students a
more comprehensive perspective and pushes them to plan for future extensions and
higher maintainability. For instance, while building the different modules, functional
decomposition can help them to increase the maintainability of the produced code;
at the same time, in terms of extendibility, any future changes can focus on single
modules rather than having to touch different parts of the code.

4.8 Testing

Testing is the process of executing the system functionality with the intent of finding
bugs and errors (Myers, Sandler, & Badgett, 2011). In a software system, every part
of the produced code needs to be thoroughly tested before it is released. Depend-
ing on the development process, different types of testing can be performed (e.g.,

2https://scratch.mit.edu.

https://scratch.mit.edu


146 I. Fronza et al.

unit testing, integration testing, system testing). XP adds a new flavor to testing by
introducing the concept of test first, which advocates writing tests as early as possi-
ble in the development lifecycle (Beck, 2000). This helps to have a well-structured
testing framework and minimizes the testing effort in the long run. Acceptance tests
is another important concept that allows developers to constantly having feedback
from the customer. In K-12 context, teams tend to follow an opposite approach due to
their inexperience, by continuously implementing and testing new functionality. In
many cases, the nature of tools used by end-users forces them to follow this pattern.
For instance, when using visual programming end-users need to implement and test
each functionality to see if the added blocks work correctly (e.g., the right position,
the right movement). User stories can be used as acceptance tests to validate the
implemented functionality. For example, if each iteration’s goal is the development
of a panel in the storyboard, the comparison of the implemented software with the
corresponding panel can indeed provide immediate evidence of the achievement of
the iteration goal.

4.9 Pair Programming

In XP, code is developed in pairs: the driver writes the code, while the navigator
reviews the code, thinks of the overall architecture, finds better solutions, and brain-
storms (Beck, 2000). The central assumption is that having two developers work
together will produce higher quality code, which reduces testing and debugging
costs. Moreover, it has been shown that pair programming can improve software
development under other perspectives, such as improving design, enhancing team
communication, increasing job satisfaction, facilitating the integration of newcom-
ers, and reducing training costs (Di Bella et al., 2013; Fronza & Succi, 2009).

In schools, it is very common to have two students sharing one computer due to
limited hardware. This practice supports this need while adding a framework that
encourages attention from both students, mutual learning, and a notion of program-
ming as a social activity (Romeike & Göttel, 2012).

Pair programming can be used easily in K-12 as students prefer collaborative
activities (Costabile et al., 2008). Nevertheless, some issues typical of the profes-
sional environment also apply in K-12. Therefore, teachers should carefully pick
pairs by following some principles: for example, a very expert student in the pair
might result in excluding the “weaker” student from the coding activities (Williams
& Kessler, 2002).

4.10 Continuous Integration

The goal of continuous integration is to have at all times a working product. Once the
functionality is implemented and tested, it is integrated with the core system. As we
have seen in Sect. 3.1, in general, end-users work incrementally (Burnett & Myers,



Bringing the Benefits of Agile Techniques Inside … 147

2014). Asking K-12 teams to develop independent modules to integrate them at the
end would not leverage this work habit. Moreover, in K-12 sometimes the nature of
the used tools makes continuous integration the only possible solution; for instance,
when using visual programming, users are forced to integrate the new features on
top of the existing ones. When looking at XP practices, K-12 teams take advantage
of the process of continuous integration by making sure that the new functionalities
do not negatively affect or break the existing ones (Beck, 2000).

4.11 On-site Customer

For XP the customer is always present, in other words, the customer takes an active
role in the development process (Beck, 2000). This allows quick and face-to-face
feedbacks, which are at the heart of Agile methods. From user stories to acceptance
tests, the customer helps developers in clarifying any doubt and assigns priorities
to the different functionalities. In K-12, teachers can assume the customer role in
order to guide the project progress. This helps the students to have a reference point
in case of doubts or confusions. For instance, in line with the idea of the formative
assessment, the teacher can help them when deciding the order of functionalities to
implement or to validate an implemented feature.

5 Getting the Right Practice from the Toolbox: A Selection
Strategy

In the previous section, we have described a toolbox of XP practices that K-12
teachers can use in their classrooms. The goal of this section is to support teachers
in selecting the right practices from this toolbox, based on different criteria.

For example, a teacher can select “collective ownership of code” so that all the
members of the team will have a full picture of the project. However, taking such
practice in isolation could lead to chaos, because anybody can change the system
without constraints (Baird, 2002). To address this issue, XP suggests using practices
in a concerted way, so that the weakness of a particular practice is mitigated by the
other balancing practices. In our example, pair programming, coding standards, and
testing should all be selected by the teacher to balance collective ownership. These
practices are part of the so-called programming area, which describes how actual
coding is done. Another two areas are defined, with some overlapping practices
between the three areas. The area of process describes how the development activities
are organized, and includes on-site customer, testing, and small releases. The third
area deals with team management and includes collective ownership, continuous
integration, metaphor and coding standards, pair programming, and small releases.



148 I. Fronza et al.

However, XP is not just a mechanical assembling of practices. Instead, it is built
on values and principles. Indeed, XP practices can be grouped together, reflecting
how they relate back the principles of XP. Table 2 lists the XP practices and relates
them to the underlying core principles (Baird, 2002). For example, testing, on-site
customer, and pair programming all relate to fine scale feedback. TheseXP principles
can find an application in the K-12 environment to apply formative assessment; in
this case, teacher and learners need rapid feedback to modify teaching and learning
activities based on the performed assessment.

To provide a concrete guide to choose the right set of practices to apply in a given
project, we propose a selection strategy that uses the project goal and principles to
support the decision making.

During the selection process, teachers need first (Stage 1 in Table 2) to choose
the goal of the project, being one of the three above-mentioned areas: programming,
process, or team. The project goal expresseswhat aspect of the project we are going to
focus on. For instance, developing a project with programming as its target indicates
that the goal is to make students learn programming practices, while a project with
the team as its goal focuses on teaching students how towork as a team independently
from the task at hand. Choosing the project goal activates a set of practices that can
be used for each specific goal. The second selection criterion is the “principles to
foster” (Stage 2 in Table 2). Each of the XP principles is mapped to a set of practices,
and by choosing one or more principles, a new set of practices is activated. We note
that teachers can also combine more options from each category (e.g., project goal:
programming and process).

Once the selection is done, teachers need only to consider the set of activated
practices that reflect the team type; in other words, if some of the activated practices
can only be used by teams (i.e., those practices indicated in Table 2 with *), and the
project will be undertaken individually, those practices need to be omitted.

Example 1 The teacher defines the project requirements as follows: The project goal
is to learn the process of analyzing data coming from a set of sensors. During the
project development, students will be working individually. The teacher wants to
provide fine scale feedbacks and have a shared understanding between the students
and the teacher (i.e., the customer) of all the project components. Table 3 shows the
practices selected from the toolbox: in stage 1 and 2 all the practices corresponding to
the project goal and principles are activated, but since the projects will be developed
individually, the practices that can only be done in teams are omitted (i.e., those
represented in Table 2 with *).

6 Conclusion

End-user programming has empowered millions of end-users to create their own
software. End-User Software Engineering (EUSE) aims to increase the quality of
end-user-created software by extending the benefits of a SE approach beyond the



Bringing the Benefits of Agile Techniques Inside … 149

Ta
bl
e
2

A
se
le
ct
io
n
st
ra
te
gy

fo
r
pr
ac
tic

es

Pr
ac
tic

es
in

th
e
to
ol
bo

x

1
2

3
4

5
6

7
8

9
10

St
ag
e
1

G
oa
ls

Pr
og
ra
m
m
in
g

✓
✓

✓
✓

Pr
oc
es
s

✓
✓

✓
✓

Te
am

✓
✓

*
*

✓

St
ag
e
2

Pr
in
ci
pl
es

Fi
ne

sc
al
e
fe
ed
ba
ck

✓
✓

✓
*

✓
✓

C
on
tin

uo
us

pr
oc
es
s

ra
th
er

th
an

ba
tc
h

✓
✓

✓

Sh
ar
ed

un
de
rs
ta
nd
in
g

✓
*

✓

1.
U
se
r
st
or
ie
s

2.
Sm

al
lr
el
ea
se
s

3.
M
et
ap
ho
r
an
d
co
di
ng

st
an
da
rd

4.
C
ol
le
ct
iv
e
ow

ne
rs
hi
p

5.
Si
m
pl
e
de
si
gn

6.
R
ef
ac
to
ri
ng

7.
Te
st
in
g

8.
Pa
ir
Pr
og
ra
m
m
in
g

9.
C
on
tin

uo
us

in
te
gr
at
io
n

10
.O

n-
si
te
cu
st
om

e

L
eg
en
d

✓
:p

ra
ct
ic
es

fo
r
bo

th
te
am

s
an
d
so
lo
;*

:p
ra
ct
ic
es

on
ly

fo
r
te
am

s



150 I. Fronza et al.

Table 3 Selection strategy applied to Example 1

Stage 1 Goal Process: learn the process of analyzing data
coming from a set of sensors

Stage 2 Principles Fine scale feedback
Shared understanding

Team type Individual development

Selected practices User stories
Small releases
Metaphor and coding standard
Simple design
Testing
Continuous integration
On-site customer

professional field. This chapter motivates the choice of XP as a good candidate for
end-users in K-12 among the possible Agile methodologies. Moreover, the chapter
shows that limited examples of Agile training in K-12 exist; most of these studies
apply a limited number of XP practices in isolation, thus ignoring the dependencies
between them.

The contribution of this chapter is twofold. First, it provides a description of
each practice and reports examples and guidelines from existing studies. Second, the
chapter proposes a XP-toolkit to encourage a synergistic use of XP practices that
respects the dependencies between them. As an additional contribution, the chapter
contributes to the End-User Software Engineering research field by encouraging
further case studies with sets of practices, which could provide additional evidences
on the positive effects of the toolkit in particular, and of bringing Agile inside the
classroom in general.

References

Alégroth, E., Burden, H., Ericsson, M., Hammouda, I., Knauss, E., & Steghöfer, J.-P. (2015).
Teaching scrum—What we did, what we will do and what impedes us. Proceedings of XP, 212,
361.

Astrachan, O., Duvall, R. C., & Wallingford, E. (2001). Bringing extreme programming to the
classroom. In XP Universe (Vol. 2001).

Baird, S. (2002). Extreme programming practices in action. Pearson Education, Informit. Retrieved
from http://www.informit.com/articles/article.aspx?p=30187.

Barkley, E. F., Cross, K. P., & Major, C. H. (2014). Collaborative learning techniques: A handbook
for college faculty. Wiley.

Beck, K. (2000).Extreme programming explained: Embrace change. Addison-Wesley Professional.
Burnett, M. (2009). What is end-user software engineering and why does it matter? In International
Symposium on End User Development (pp. 15–28).

Burnett, M. M., & Myers, B. A. (2014). Future of end-user software engineering: Beyond the silos.
In Proceedings of the on Future of Software Engineering (pp. 201–211).

http://www.informit.com/articles/article.aspx?p=30187


Bringing the Benefits of Agile Techniques Inside … 151

Buxton,B. (2010).Sketching user experiences:Getting the design right and the right design.Morgan
Kaufmann.

Cardinal, M. (2013). Executable specifications with scrum: A practical guide to agile requirements
discovery. Addison-Wesley.

Chimalakonda, S., & Nori, K. V. (2013). What makes it hard to teach software engineering to end
users? Some directions from adaptive and personalized learning. In 2013 IEEE 26th Conference
on Software Engineering Education and Training (CSEE&T) (pp. 324–328).

Cohn, M. (2005). Agile estimating and planning. Pearson Education.
Costabile, M. F., Mussio, P., Parasiliti Provenza, L., & Piccinno, A. (2008). End users as unwitting
software developers. In Proceedings of the 4th International Workshop on End-User Software
Engineering (pp. 6–10). New York, NY, USA: ACM.

Di Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., & Vlasenko, J. (2013). Pair pro-
gramming and software defects—A large, industrial case study. IEEE Transactions on Software
Engineering, 39(7), 930–953.

Dingsyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodolo-
gies: Towards explaining agile software development. Journal of Systems and Software, 85(6),
1213–1221 (Special Issue: Agile Development).

Fang, X. (2001). Using a coding standard to improve program quality. In Proceedings of the Second
Asia-Pacific Conference on Quality Software, 2001 (pp. 73–78).

Fronza, I., El Ioini, N., Janes, A., Sillitti, A., Succi, G., & Corral, L. (2014). If I had to vote on
this laboratory, I would give nine: Introduction on computational thinking in the lower secondary
school: Results of the experience. Mondo Digitale, 13(51), 757–765.

Fronza, I., El Ioini, N.,&Corral, L. (2015a). Studentswant to create apps: Leveraging computational
thinking to teach mobile software development. In Proceedings of the 16th Annual Conference
on Information Technology Education (pp. 21–26).

Fronza, I., El Ioini,N.,&Corral, L. (2015b). Studentswant to create apps: Leveraging computational
thinking to teach mobile software development. In Proceedings of the 16th Annual Conference
on Information Technology Education (pp. 21–26). New York, NY, USA: ACM.

Fronza, I., El Ioini, N., & Corral, L. (2016a). Blending mobile programming and liberal education
in a social-economic high school. In International Conference on Mobile Software Engineering
and Systems, MOBILEsoft 2016 (pp. 123–126).

Fronza, I., El Ioini, N., &Corral, L. (2016b). Computational thinking throughmobile programming.
In International Conference on Mobile Web and Information Systems (pp. 67–80).

Fronza, I., El Ioini, N., & Corral, L. (2016c). Teaching software design engineering across the K-12
curriculum: Using visual thinking and computational thinking. In Proceedings of the 17th Annual
Conference on Information Technology Education (pp. 97–101).

Fronza, I., Ioini, N. E., & Corral, L. (2017). Teaching computational thinking using agile soft-
ware engineering methods: A framework for middle schools. ACM Transactions on Computing
Education (TOCE), 17(4), 19.

Fronza, I., & Succi, G. (2009). Modeling spontaneous pair programming when new developers join
a team. In Proceedings of the 10th International Conference on Agile Processes and Extreme
Programming in Software Engineering (XP2009), Pula, Italy, May 2009.

Gross, P. A., Herstand, M. S., Hodges, J. W., & Kelleher, C. L. (2010). A code reuse interface for
non-programmer middle school students. In Proceedings of the 15th International Conference
on Intelligent User Interfaces (pp. 219–228).

Kastl, P., Kiesmüller, U., & Romeike, R. (2016). Starting out with projects: Experiences with agile
software development in high schools. In Proceedings of the 11th Workshop in Primary and
Secondary Computing Education (pp. 60–65). New York, NY, USA: ACM.

Krajcik, J. S., & Blumenfeld, P. C. (2006). Project-based learning.
Kropp, M., & Meier, A. (2013). Teaching agile software development at university level: Values,
management, and craftsmanship. In 2013 IEEE 26th Conference on Software Engineering Edu-
cation and Training (CSEE&T) (pp. 179–188).



152 I. Fronza et al.

Lottero-Perdue, P. S., & Parry, E. A. (2017). Perspectives on failure in the classroom by elementary
teachers new to teaching engineering. Journal of Pre-College Engineering Education Research
(J-PEER), 7(1), 4.

Mahnic, V. (2012). A capstone course on agile software development using scrum. IEEE Transac-
tions on Education, 55(1), 99–106.

Meerbaum-Salant, O., & Hazzan, O. (2010). An agile constructionist mentoring methodology for
software projects in the high school. ACM Transactions on Computing Education, 9(4), n4.

Mikre, F. (2010). The roles of assessment in curriculum practice and enhancement of learning.
Ethiopian Journal of Education and Sciences, 5(2).

Monteiro, I. T., de Castro Salgado, L. C.,Mota,M. P., Sampaio, A. L., & de Souza, C. S. (2017). Sig-
nifying software engineering to computational thinking learners with AgentSheets and polifacets.
Journal of Visual Languages & Computing, 40, 91–112.

Moye, J. J., Dugger, W. E., Jr., & Starkweather, K. N. (2014). “Learn by doing” research: Introduc-
tion. Technology and Engineering Teacher, 74(1), 24–27.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. Wiley.
Paasivaara,M.,Heikkilä, V., Lassenius, C.,&Toivola, T. (2014). Teaching students scrumusing lego
blocks. InCompanion Proceedings of the 36th International Conference on Software Engineering
(pp. 382–391). New York, NY, USA: ACM.

Price, S., Rogers, Y., Scaife, M., Stanton, D., & Neale, H. (2003). Using tangibles to promote novel
forms of playful learning. Interacting with Computers, 15(2), 169–185.

Romeike, R., & Göttel, T. (2012). Agile projects in high school computing education: Emphasizing
a learners’ perspective. InProceedings of the 7thWorkshop in Primary and Secondary Computing
Education (pp. 48–57). New York, NY, USA: ACM.

Steghöfer, J.-P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., & Ericsson, M. (2016).
Teaching agile: Addressing the conflict between project delivery and application of agile meth-
ods. In Proceedings of the 38th International Conference on Software Engineering Companion
(pp. 303–312).

Stewart, G. (2014). Promoting and managing effective collaborative group work.Belfast Education
and Library Board. Retrieved from http://www.belb.org.uk/Downloads/iepdpromotingandmana
gingcollaborativegroupworkmay14.pdf.

Stewart, J. C., DeCusatis, C. S., Kidder, K., Massi, J. R., & Anne, K. M. (2009). Evaluating agile
principles in active and cooperative learning. In Proceedings of Student-Faculty Research Day,
CSIS, Pace University.

Thagard, P. (1996). Cognitive science.
Traynor, B. (2012). Rapid paper prototyping: 100 design sketches in 10 minutes, 18 designs pre-
sented, 6 prototypes tested, student engagement-priceless! In2012 IEEE InternationalConference
on Professional Communication Conference (IPCC) (pp. 1–5).

Umarji, M., Pohl, M., Seaman, C., Koru, A. G., & Liu, H. (2008). Teaching software engineering to
end-users. In Proceedings of the 4th International Workshop on End-User Software Engineering
(pp. 40–42).

van der Lelie, C. (2006, April 01). The value of storyboards in the product design process. Personal
and Ubiquitous Computing, 10(2), 159–162.

Van Emden, E., & Moonen, L. (2002). Java quality assurance by detecting code smells. In Ninth
Working Conference on Reverse Engineering, 2002. Proceedings (pp. 97–106).

Walny, J., Carpendale, S., Riche, N. H., Venolia, G., & Fawcett, P. (2011). Visual thinking in
action: Visualizations as used on whiteboards. IEEE Transactions on Visualization and Computer
Graphics, 17(12), 2508–2517.

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Addison-Wesley.
Ye, Y., & Fischer, G. (2007). Designing for participation in socio-technical software systems. Uni-
versal Access in Human Computer Interaction. Coping with Diversity (pp. 312–321). Longman
Publishing Co., Inc.

http://www.belb.org.uk/Downloads/iepdpromotingandmanagingcollaborativegroupworkmay14.pdf


Part III
Reconceptualising Learning Environments

Using Agile and Lean Approaches



Lean and Agile Higher Education: Death
to Grades, Courses, and Degree
Programs?

Guttorm Sindre

Abstract Most universities provide education in a traditional plan-based manner,
for instance with rigid degree programs that force students to make big decisions up
front. Lean and agile education would rather operate in small increments and allow
the students to make many iterative decisions along the way. This chapter discusses
how lean and agile education might be radically different from plan-based education,
what obstacles there are to lean and agile education, and how information technol-
ogy could reduce these obstacles. Ultimately, information technology supporting a
fine-granular matching of student learning outcomes with competencies needed by
employers could enable agile study choices by the students themselves that would
be superior even to the most thoroughly planned degree program, because the quick
pace of technology progress means that it will be almost impossible to predict future
work–life needs in detail.

Keywords Lean education · Agile education · Grading · Courses
Degree programs · Employability · Flexibility

1 Introduction

Consider a student a year or two into a degree program, who wants another path of
study. There could be a number of different reasons. Maybe the chosen discipline
seemed like a good idea at enrollment, but the job market turned? Maybe a worsened
family economy means that the student needs to start working sooner? Maybe the
student has realized that the discipline or pedagogical approach of the degree program
was a poor match with personal talents and preferences. Maybe health problems or
otherwise limited learning capacity means that the student needs longer time, a
different pace than the majority of the class? Unfortunately, most such changes are

G. Sindre (B)
Department of Computer Science, Norwegian University of Science
and Technology (NTNU), Trondheim, Norway
e-mail: guttorm.sindre@ntnu.no

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_8&domain=pdf
mailto:guttorm.sindre@ntnu.no
https://doi.org/10.1007/978-981-13-2751-3_8


156 G. Sindre

difficult to accommodate in the currently dominant system of rigid degree programs.
Changing to another degree programmay be possible, but often with substantial loss
of time. Leaving university early means leaving without a degree, which really hurts
employability (Nguyen, 2012). On the other hand, many young people have found
that a university degree was no guarantee for a job either (Coppola & O’Higgins,
2017), and for many of those who do get jobs there may be a substantial mismatch
between the education and work–life needs (Caroleo & Pastore, 2017). It has been
argued that educationneeds to becomemoreflexible to reducemismatch anddropouts
(Moreno Minguez, 2013). One way to become more flexible could be to take a lean
and agile approach to education.

Although educational discourse is currently dominated by an employability per-
spective (Nilsson & Nyström, 2013), education may also be pursued primarily for
personal development, according to theHumboldtian idea ofBildung rather thanAus-
bildung. According to Biesta (2009), education can serve three different purposes,
qualification (for jobs, or more generally as a citizen), socialization, and subjecti-
fication. Even for the latter two purposes, it can be argued that globalization and
high-tech society are causing an acceleration of social changes (Rosa, 2003), mak-
ing it more challenging than before to know what kind of education might best meet
these purposes some years ahead. Whenever it is difficult to know the requirements
up front, there is a possible case for lean and agile.

Lean and agile education are not new ideas, as there have been proposals in that
direction at least since the turn of the millennium (Alp, 2001; Sokolov, 2001), about
the same time as the well-known manifesto for agile software development (Beck
et al., 2001) was published. Whereas agile software development has enjoyed high
and increasing popularity (Dybå & Dingsøyr, 2009), as has lean software develop-
ment (Poppendieck & Cusumano, 2012), lean and agile has had much less impact in
education so far. True, there have been proposals for lean and agile both for course
delivery (Chun, 2004; D’Souza & Rodrigues, 2015; Emiliani, 2004; Whalen, Free-
man, & Jaeger, 2008) and degree program design (El-Abbassy, Muawad, & Gaber,
2010; Emiliani, 2005). However, the mainstream university practice remains a tra-
ditional plan-based one.

Many of the proposals for lean and agile higher education mentioned above have
focused on how the university can become more lean and agile. This paper suggests
that the students have the primary need to be lean and/or agile. It is they who will
be facing a rapidly changing society (Rosa, 2003) and job market due to exponential
technological progress (Brynjolfsson&McAfee, 2014; Frey&Osborne, 2017). They
may thus havemuch bigger trouble than previous generations in determining up front
what educationwill be best for them.Universitiesmay only need to change to offering
more lean and agile education if there is a sufficient demand from students requiring
such education, or if they start being outcompeted by new actors in the education
system.



Lean and Agile Higher Education … 157

This chapter asks, and tries to respond to, the following questions:

• What would be the key differences between lean and agile on the one hand, and
traditional plan-based university education on the other hand? This question can be
considered both on the level of courses, and on the level of whole degree programs.

• What are the key obstacles towards lean and agile in higher education, i.e., reasons
that universities may want to continue with their current plan-based approach?

• How can IT enable a transition to lean and agile studies?
• What may this transition eventually mean for some aspects of education that many
take for granted today: grades, courses, and degree programs?

The next four sections will discuss each of these questions, the last of them also
drawing some concluding remarks.

2 Lean and Agile as a Departure from Plan-Based
Education

2.1 Meaning of Lean and Agile

Lean and agile share a preference for lightweight, iterative, and incremental develop-
ment, as opposed to more plan-based approaches, which require more heavyweight
documentation (Poppendieck & Cusumano, 2012). At the same time, lean and agile
are not synonymous. Lean has a key focus on reducing waste, whereas agile empha-
sizes the ability to adapt quickly to changes (Hallgren & Olhager, 2009). Hence,
in industry, lean tends to be associated with a cost-leadership strategy, agile with a
differentiation strategy. Making the parallel to education, the common denominator
of lean and agile education would be the iterative and incremental aspects, letting
students pursue their education in an emergent manner, as opposed to the traditional
plan-based education dominant today. Lean education in particular would strive to
contain only what is necessary (i.e., focus on waste reduction and cost leadership),
while agile education in particular would cater especially to students for whom cost
might be less of an issue, but who might want to differentiate themselves from the
pack and get an education adapted to their personal preferences.

What might the lean principle of waste reduction mean in education? The first and
most obvious interpretation would be that the education is cheap in terms of small
or zero tuition fees, as is typically the case for MOOCs. On the other hand, it might
also mean that the education is quick. Even when tuition is free, education will have
a cost for the student in the sense that the capacity for paid work is reduced while
studying—a loss hopefully regained by higher earnings afterwards. The longer an
education takes, the bigger the up-front investment, and the bigger the risk that the
assumed return on investment somehow does not materialize. A strict adherence to
lean might thus inspire attempts to strip the education of any content not strictly
necessary for the purpose, thus making it quicker and cheaper.



158 G. Sindre

Table 1 Key differences between plan-based and agile/lean approaches

Plan-based education Lean and agile education

Big (and often fixed size) courses Smaller courses or creditable units

Rigid degree programs, forcing Big Decision
Up Front by students

More flexible degrees, allowing for iterative
decisions by students

Detailed specification of programs and courses
up front

Limited specification, delaying decisions until
the time of learning

Hard to find starting degrees of less than
3 years’ duration

Lean: Also offering shorter degrees, 1 year or
less

Primarily thinking full-time study, then
full-time work

Encouraging students to interleave studies and
work

“One size fits all” instruction Agile: Offering instruction more personalized
to the individual student

The agile approachmight instead be to choose an educational pathwhich holds the
door open for many different types of jobs, allowing for quick changes of direction,
either because the job market changes, or because the student’s preferences and
self-insight evolve. The crowning example of a differentiation strategy might be an
education that is adapted to the preference of one single person. For instance, a new
kind of job emerges due to some technological change, and a student perceives this
as the dream job, thus seeking a personally adapted education for this.

2.2 Key Differences from Plan-Based Education

Traditional, plan-based university studies tend to inhibit lean and agile behavior
by students, because most degree programs offer limited maneuverability. Table 1
provides an overview of some key differences between plan-based and lean/agile,
to be explained in the next paragraph. Most of the rows are equally relevant both
for lean and agile; those that are more specific have Lean or Agile in bold in the
rightmost column.

Course sizes vary between countries or universities, but a typical size may be
200–300 person-hours of nominal effort per student per course, and a typical duration
a whole trimester or semester, since most schools tend to run several courses in
parallel rather than all in sequence. Although students may learn iteratively and
incrementally within a course, the course will likely be the smallest unit for which it
is possible to earn credit. Leaving a course midway will not yield half credit but zero
credit. The increment size and cycle time is thus much bigger than in agile software
development, where a sprint tends to last for 2–4 weeks. Thus, the smallest delivery
unit in education tends to be quite bulky, reducing maneuverability for students,
making it hard to move through one’s studies in an agile manner.



Lean and Agile Higher Education … 159

Degrees have a similar problem on a larger scale: Leaving university with half a
degree is almost like leaving with nothing at all, often detrimental for employability
(Nguyen, 2012). Many young people fresh out of secondary education have limited
insight in academic disciplines, the job market, and even of themselves, and thus
struggle to make meaningful choices of higher education (Holmegaard, Ulriksen, &
Madsen, 2014). Yet, the main offering being degree programs lasting for three years
or more, we are forcing a “Big Decision Up Front” upon these young people. The
consequences of a wrong choice may be costly—for the student, and for society, for
instance in terms of high dropout rates (O’Keeffe, 2013) ormismatch in the transition
from one degree program to another, which delays the candidate’s graduation.

Similarly, there is a “Big Design Up Front” by faculty responsible for the degree
program. Most universities require that programs are specified in detail, in terms
of learning outcomes, compulsory and elective courses, etc. In most universities,
this must go through quite some bureaucracy before enrolling students. Hence, it
takes maybe 5–7 years from starting the design of a degree program until the first
candidates graduate. It is difficult even for experts in the field to predict what will be
the optimal package of learning outcomes and courses. This problem may become
worse as the pace of change in the job market increases (Brynjolfsson & McAfee,
2014; Frey & Osborne, 2017).

Especially students who prefer a lean approach—getting as quickly as possible to
a good job—will struggle to find the ideal program in the current university system.
In many universities, the first obtainable degree is the Bachelor, lasting 3–4 years.
Lean students might prefer much quicker programs, maybe just one year, maybe
even less. While many universities do offer some one-year packages, these tend to
consist of general introduction courses as preparation for further studies—meant for
students who have not decided what to study yet, rather than students whowant to get
quickly to a job. On the other hand, so-called nanodegrees (Lemoine & Richardson,
2015; Waters, 2015) have recently been introduced to quickly educate people to
fill jobs where industry feels an urgent lack of supply from the education sector.
Such educational offerings emerged as a collaboration between industry and MOOC
providers rather than from the university sector.

2.3 Pursuing the Minimum Viable Competence

Extrapolating a development in the direction of smaller courses and more flexible
degrees, one might ask: Why study full time for 3 years or more before using any
of the competence in a job? In agile software development, one feature is developed
and shown to the customer to get feedback, then another feature is developed, etc.
Similarly, the lean or agile learner could spend a month in university developing
some competence, then for the next month take a job where that competence is used
in practice, then come back to university to learn some more, then another job for a
little while. Such iterative cycles would give the student—and the university—useful
feedback on several levels: Was the acquired competence ideal for the job, or should



160 G. Sindre

it have been something else? Especially for the student:Was this a type of job I would
like to continue doing, or should I pursue other types of competence to qualify for
another set of jobs? Especially for young people who are somewhat tired of studying
after high school, but still need to study something because it is getting increasingly
hard to find a job just on the basis of a high school diploma, this might be a better
solution than the current full-time study, full-time work situation. Interleaving study
and work, the student would resemble a lean startup. Just like a lean startup seeks
to identify the minimum viable product to launch on the market (Moogk, 2012), the
student (with the help of the university) might seek to identify the minimum viable
competence that could lead to an interesting job. Such an offermight also be attractive
for more experienced people whose previous job has disappeared, and who need to
reeducate themselves.

A consideration of minimum viable competence might also be relevant in more
traditional degree programs where students do want to keep studying for three years
or more. Experiential learning, e.g., via internships and summer jobs, can be impor-
tant both for motivation and the student’s holistic learning beyond and between the
separate courses in a degree program (Cantor, 1997)—as long as the job is relevant.
The ability to get a relevant job early on (e.g., already at the first summer break,
rather than just the second or third) might depend on how the degree program is
structured. Hence a potentially valid question for degree program designers: What
is the minimum viable competence that our students would need to qualify for rele-
vant summer jobs already after the first or second year? If the degree program just
contains general theory and nothing hands-on at this stage, students might not be so
likely to get those jobs.

3 Obstacles to Lean and Agile

So far, we have argued for advantages of lean and agile education, but there are also
challenges, some important examples listed in Table 2.

One potential advantage of traditional plan-based education is economy of scale
(Laband & Lentz, 2003). It will be much cheaper for a university to have many
students take the same course and grade them by the same assessment, than to let
studentsmake individual choices about howmuch to take of the course andwhen to be
assessed. Furthermore, it will be much cheaper—and easier for resource allocation,
employment planning, etc.—to run large groups of students through rigid degree
programs, all taking the same package of courses, than to have the same number
of students select different configurations of courses, drifting in various directions
within and across disciplines. With smaller units of credit, there may also be a need
for more assessments and grades, thus increasing the workload. In many countries,
university funding (whether by tuition fees or covered by the state/country) will tend
to increase the more course credits the university produces. If so, it actually does
not pay off for universities to get candidates more quickly to work. There is better
income in keeping them at university for as long as possible before they move on.



Lean and Agile Higher Education … 161

Table 2 Challenges of lean and agile education

Lean/agile property Challenge

Agile: Allowing students more flexibility and
variability

For university: Poorer economy of scale,
increased teaching workload, difficult resource
planning
For students: Class erodes

Smaller creditable units More assessments, more grading

Students making their own choices Risk of incoherent choices, e.g. prioritizing fun
and easiness rather than relevance

Lightweight design of courses and degree
programs up front

Limited QA, selection of topics driven by
buzzwords?

Lean: Getting students quickly to jobs Reduced university income with current
funding models?

From a student perspective, a possible advantage of a rigid degree program is that
it places every student in a class. This can have a social function, making friends with
other students who take largely the same courses. While a fixed package of courses
may sometimes feel like a straitjacket, it can also function as a guarantee. Enrolled in
the degree program, you know that there is place for you on these courses. With free
choices comes the increased risk, perhaps, that some courses you want to take are
overbooked, if they have limited capacity for instance due to lab work with limited
places. Moreover, freedom to choose only benefits the students if they have sufficient
information and knowledge to make good choices. Otherwise it may be stressful to
have to select your next course all the time, and there is a risk that some might end
up with poor choices and thus a less useful competence profile than what they would
have had with a rigid, faculty designed degree program.

The idea of just having a lightweight or rudimentary design of a degree program
up front and then delay the rest of decisions until later, when more is known about
work–life needs, may sound like a good idea in theory. However, it demands that
stakeholders are capable of running this iterative process in a satisfactoryway.Hence,
faculty, students, and industry representatives would need an ongoing dialogue to
make decisions for each next semester. What if the industry representatives are too
busy, so it is hard to get good input—and faculty are also too busy, for instance with
research, funding applications, etc.? This could end up with hurried decisions and
exaggerated focus on the latest buzzwords in the discipline, while the knowledge
profile of the candidates ends up less suitable than it would have been with more
thorough planning up front.

Next, we will discuss how information technology might help address these
challenges.



162 G. Sindre

4 IT as an Enabler for Lean and Agile Education

At the outset of this section it is important to notice that we agree with those who
emphasize that increasing usage of IT in education is not a goal in itself (Salomon,
2016). Rather, there must be some educational rationale, and an idea about how
IT can support this rationale. In this chapter, the rationale is that education may
need to become more flexible, due to the increased pace of change in technology
and society—and this increased flexibility will be very costly unless supported by
technology. Table 3 shows some identified challenges with lean and agile education,
along with indications of how information technology can reduce the mentioned
problem.

4.1 E-learning and Crowdsourcing

“One-size fits all” (e.g., one lecture series, one set of compulsory coursework, final
exam with the same questions for everybody) is a well-known way to run a course,
and offers economy of scale if there are many students taking the course. Allowing
variation, such as students going at different paces, selecting different subsets of
the learning goals of the course, craving different learning methods and resources,
will be burdensome for the teacher—if it is still the same teacher burdened with
the whole offering. However, why should the teacher take on this challenge alone?
Except for some very specialized subjects (which tend to be taught in small classes,
thus offering limited economy of scale anyway), and subjects inherently local to one
particular country (such as, say, Norwegian law), most university courses have more
or less overlapping siblings in other universities, globally amounting to hundreds or
thousands. It should be unnecessary for thousands of teachers to spend lots of time

Table 3 Mitigation of challenges by IT

Challenge IT enabled solution

Agile: Increased workload for teachers if
offering diversity

E-learning and crowdsourcing

Increasing number of tests and grades with
smaller courses

E-exams, automated grading, peer review

Students struggling to make good choices Ontologies of learning outcomes and job
competence needs
Job marketplace
Learning analytics

Teachers struggling to make good choices,
poor QA

Same as above

Lean: Funding models not promoting quick
studies

New funding models?



Lean and Agile Higher Education … 163

developing the full set of learning resources for such a course. Instead, a big group
of teachers with overlapping topics could make a joint effort to develop a compre-
hensive set of learning resources: traditional reading materials, interactive reading
materials, brief screencast videos, longer lectures, self-test quizzes, problem-solving
exercises and project tasks with suggested solutions, exam questions of various gen-
res, etc. With a huge pool of shared resources, each teacher can recommend those
that fit best for the local students, or the students may find resources themselves, for
instance preferring a number of short screencasts combined with self-test quizzes
to the offered two hour monologue lectures. For teachers able to utilize the pool of
available resources, as well as contributing to it and thus shaping it, the future may
allow for more diverse learning opportunities for that teacher’s students, and yet the
teacher may not have to work harder than today developing and providing learning
resources and activities.

Formative feedback to students may also be more complicated if students pursue
diverse learning goals within a course. However, modern e-learning tools can provide
automated support for the feedback to students (Denton, Madden, Roberts, & Rowe,
2008) and guide them towards learning resources that work for them based on their
results so far (Baker & Inventado, 2014; Beetham & Sharpe, 2013; Ellis, 2017).

Similar arguments can apply to summative assessment (i.e., which is graded or
given credit). With shorter iteration cycles and more fine-granular tests, one might
need more test items—but the teacher does not have to write them all alone. Rather,
teachers of the same subject globally could collaborate to make thousands of test
items of various question type genres, covering various parts of the subject, at vari-
ous levels of difficulty. Then, the individual teacher need only pick questions for each
test, or in some cases not even pick but just specify the topical scope of the test and
the wanted level(s) of difficulty, and then have questions drawn randomly from the
question base for each student during the exam. To mitigate cheating, it is anyway
better to draw questions randomly from a huge question base than to offer the same
questions for everybody. This is especially true now that collaboration among candi-
dates or with outsiders is not only achieved by peeping at the neighbor’s answers or
exchanging information via the toilet, but also via modern electronic equipment, for
instance tiny wireless earpieces which are very hard to detect (Srikanth & Asmat-
ulu, 2014). To develop such a big question base is beyond the individual teacher,
so national or global collaboration about item development would certainly be the
way to go for the typical invigilated school exam. Even with global collaboration on
test items, grading remains a challenge. However, automated assessment technology
has moved well beyond multiple choice and short answer questions that have long
been automatable. Much more complex answers such as engineering designs (Nut-
ter, Pavlidis, & Pepper, 2014), software programs (Hakulinen & Malmi, 2014), and
various types of essays (Balfour, 2013) are now possible. With the rapid progress
of AI, an increasing subset of learning outcomes may be tested and graded auto-
matically—with the same or better reliability than humans could offer. Then, agile
variation and diversity might be offered to students without drowning the teacher in
assessment work.



164 G. Sindre

4.2 The Future of Grades and Grade Transcripts

Another question, however, is if we need to keep on grading—whether it be done
by humans or machines (Kohn, 1994). If learning and assessment cycles become
more fine-grained, per learning outcome rather than bigger courses, it might suffice
to do a pass/fail for each learning outcome. The difference between a stronger and
weaker student would then not be the grades, but the stronger student achieving
more—and higher level—learning outcomes, where the weaker student achieves
fewer or just lower level outcomes. Ultimately, this might mean that the traditional
grade transcript disappears, to be replaced by a much longer list of precise learning
outcomes achieved by a candidate. Here, the reader might naturally ask: Why would
this be an advantage? What employer would prefer to read a very long list of precise
learning outcomes, instead of a 1–2 page grade transcript with course titles and letters
A, B, C…? Less is more, is it not? For several reasons, maybe it is not:

First, the grade transcript is a dated artefact from the age when such documents
had to be printed on paper and read manually by people. What employer would want
to read transcripts manually nowadays? Few, especially if they have hundreds of
applicants to evaluate. They would like to analyze them automatically, comparing
candidates back to back via a software application to make a shortlist—and spend
manual evaluation time only with people on the shortlist. While “less is more” could
be true for the information shown to the human decision-maker on screen, “more is
more”would apply to the underlying data onwhich the analysis is based.A traditional
grade transcript often contains too little information for any sophisticated analysis.
Grading systems differ from country to country, and grade levels differ among uni-
versities or teachers, some being kind, others strict. Course titles are sometimes only
vague indicators of the content. Two different universities may have courses with the
same name, but huge differences in content or level of ambition—or courses with dif-
ferent names but essentially the same content. Often, the course title may obfuscate
some of the content. For instance, a Computer Science graduate from University X
may have only one course in the transcript with the word “programming” in the title.
However, there may also be substantial amounts of programming in the Algorithms
course, in the User Interfaces course (e.g., front-end programming), in the Database
course (e.g., back-end programmingwith embedded SQL), in the Software Engineer-
ing course, and in several other courses. At the same time, in University Y, courses
with the same titles may have no programming at all, being more theoretical. If the
graduate from Y has two courses named “programming”, this seems to be more than
X had, but is really less, a deceptive impression from the grade transcripts. Hence,
back-to-back comparison of candidates based on grade transcripts has the risk of
being highly misleading, unless they went to the same university during the same
period of time.

Furthermore, the grade transcript is a kind of static report where the analysis
has been locked to one particular dimension, namely the course module—long after
it has been established in industry that decision makers will prefer the freedom to
analyze data according to multiple dimensions (Chaudhuri & Dayal, 1997). Assume



Lean and Agile Higher Education … 165

that a company wants to hire a programmer, thus being particularly interested in the
applicants’ programming skills. As argued above, programming might be “hidden”
under several course titles. With a long and precise list of learning outcomes, on
the other hand, the back-to-back comparison of hundreds of candidates according to
knowledge and skills in programming would be feasible. The same would apply to
other knowledge and skills that typically cut across many courses, such as writing
skills and collaboration skills.

4.3 Ontologies of Learning Outcomes

Ofcourse, evenwith long lists of precise learningoutcomes, theremight be challenges
that various universities formulate these differently. To really facilitate knowledge
sharing and back-to-back comparison of learning outcomes across universities, it
would therefore be helpful to have an internationally agreed ontology (Gruber, 1995)
of possible learning outcomes in various subject areas. This leads on to ideas similar
to those expressed by LinkedIn CEO Jeff Weiner as quoted in (Clayton, 2014): “We
want to have a profile for every member of the global work force […]. We want to
have a profile for every company in the world […] and digital representation of every
job in the world […] of every skill required to obtain those jobs, a digital presence
for every university in the world and we want to make it easy for every individual
company and university to share their professionally relevant knowledge.”

Thus, an ontology might not only help employers evaluating and comparing can-
didates when hiring, but also help students. In what (Craig & Williams, 2015) call
the “competency marketplace”, students might be able to see what jobs fit their com-
petency profiles—and if they do not qualify for any jobs yet: What competencies are
they lacking? Thus, the lean student who needs to get work quickly, could look for
the shortest viable path to a job. The agile student may pursue competencies that are
needed in many different jobs, to have a wider selection and be less vulnerable to
change. Professors may also be informed by such a marketplace. If they find that the
competencies they are teaching are suffering from a steep decline in interest from the
job market, this may spur a willingness to change the content of courses and degree
programs.

If such an ambitious marketplace becomes a reality, enabling the possible match-
ing of jobs and students, it is unlikely that students would make incoherent choices of
subjects. After all, most students want their education to qualify them for attractive
jobs, so if free choice has been associated with bad choice in the past, it has likely
been due to lacking information about the consequences of choices. With the help of
modern IT, especially big data and artificial intelligence, this would become much
clearer: What kinds of jobs am I becoming more qualified for by learning X? Are
they jobs I might want? What kinds of jobs do I de-select by not taking subject Y? If
suddenly the set of possible jobs shrinks a lot just by that one decision, the student
may think again. It would likely also help motivation if you made an agile choice to
learn something because you see it is necessary to qualify for some range of jobs,



166 G. Sindre

rather than just because it is included in some compulsory course in a rigid, tradi-
tional degree program. However, such a global candidate and job marketplace might
entail severe privacy concerns, giving detailed accounts of what candidates have
accomplished during their studies, possibly also being a potent source for predicting
future capabilities (Mai, 2016).

5 Conclusion: Death to Grades, Courses, and Degree
Programs?

As the title carries a questionmark, this paper is notmaking a certain case that grades,
courses and degree programs as we currently know them, will disappear. Grades
may become an anachronism in the modern world of AI and big data analytics.
Systems analyzing large amounts of raw data on the fly might give decision makers
much more targeted information than static reports (i.e., grade transcripts) that have
distilled these raw data according to one particular dimension decided by somebody
else. Static reports are not agile because they follow a fixed format, thus are not
adaptable to the changing information needs of decision makers. With the increasing
ability to quickly analyze detailed records of candidate achievements, as well as test
candidates directly in the application process for jobs or admission to further studies,
grades may end up being less useful for the documentation of competencies.

For the potential death of courses, the point is that if students are allowed to
be agile and choose learning outcomes on a fine-grained level, with strong students
doingmore learning outcomes in a semester, weaker students doing fewer, the border
between one course and the subsequent one, or between one course and another
parallel one, will be blurred. This resembles the argument that ITmight help facilitate
a revival of PSI (Personalized System of Instruction), with its idea of student self-
pacing rather than one pace fits all (Eyre, 2007). With learning and assessment
supported by highly automated delivery and testing, it may no longer feel necessary
to decide exactly which learning outcomes are bundled into one particular course.
The university might still present recommendations (e.g., these 12 learning outcomes
are best pursued together in the same semester), but students might be allowed to go
for a different pace, or different decomposition.

On a higher level of aggregation, the same argument could apply for degree
programs. If a student selects a little of this and a little of that, and it leads to a
nice job, why would that be wrong? If the future sees the implementation of one
or more huge, ontology-supported study-job-matching platforms, where students
can see what jobs they may be moving towards, and what competencies they may
be lacking to get there, it is unlikely that they would make weird choices. Instead,
student choices along the way might be more precise than choices made by faculty
several years earlier according to what competencies faculty then believed necessary
for a successful career.



Lean and Agile Higher Education … 167

One possibility is that degree programs will have to become a lot more flexible
than they tend to be today—with less rigid requirements for howmuch students have
to learn on various subjects, and in what sequence—to allow for more student agility.
Another possibility is that degree programswill gradually disappear, instead allowing
each student to emerge with a personal degree, of whatever size and topic mix that
fits the job market or individual preferences. Again, universities could maintain
degree programs as recommendations: This is a package of learning outcomes that
we believe qualifies well for a certain set of current and future jobs, and this is what
we think is the best pace and order of achieving these learning outcomes.

Some students have predominantly economic motivations, preferring studies with
a high likelihood of yielding a well-paid job. If their finances up front are strained,
they might not be able to afford years of full-time study. For these students, the ultra-
lean approach of micro-degrees might be the best option—identifying a minimum
viable competence that can quickly improve their employability. In the future one
might envision such an approach worked in numerous iterations: Studying for a
short time to get a job, while working saving up some of the money to afford a new
brief study period, this leading to a new job with higher salary (or increased salary
in the current position), etc. Other students, in a less strained situation, can afford
to prioritize their studies more according to personal preferences, going for years
of full-time study and changing their minds along the way, aiming at an education
with some general competence that can fit many jobs. Neither the rapid pace of
micro-degrees, nor changing one’s mind along the way, tend to fit today’s dominant
Big Decision Up Front degree programs. In an ever more fast-paced future, it is
reasonable to assume that both students and universities need more incremental and
iterative decisions on what to study, and how best to teach it and learn it.

Acknowledgments The research for this paper took place in the context of the Excited Centre for
Excellent IT Education, funded by NOKUT for the period 2016–21.

References

Alp, N. (2001). The lean transformation model for the education system. Paper Presented at the
Proceedings of the 29th Computers and Industrial Engineering Conference, November.

Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In Learning
analytics (pp. 61–75). Springer.

Balfour, S. P. (2013). Assessing writing in MOOCs: Automated essay scoring and calibrated peer
review (tm). Research & Practice in Assessment, 8.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., …, Jeffries,
R. (2001). Manifesto for agile software development.

Beetham, H., & Sharpe, R. (2013). An introduction to rethinking pedagogy. In Rethinking pedagogy
for a digital age: Designing for 21st century learning (pp. 41–61).

Biesta, G. (2009). Good education in an age of measurement: On the need to reconnect with
the question of purpose in education. Educational Assessment, Evaluation and Accountability
(formerly: Journal of Personnel Evaluation in Education), 21(1), 33–46.



168 G. Sindre

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity
in a time of brilliant technologies. WW Norton & Company.

Cantor, J. A. (1997). Experiential learning in higher education: Linking classroom and community.
ERIC Digest.

Caroleo, F. E., & Pastore, F. (2017). Overeducation at a glance. Determinants and wage effects of
the educational mismatch based on AlmaLaurea data. Social Indicators Research, 1–34.

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM
SIGMOD Record, 26(1), 65–74.

Chun, A. (2004). The agile teaching/learning methodology and its e-learning platform. In Advances
in Web-Based Learning–ICWL 2004 (pp. 745–784).

Clayton, C. (2014, November 2014). Jeff Weiner would like to connect with you on LinkedIn. Sky.
Coppola, G., & O’Higgins, N. (2017). Youth and the crisis: Unemployment, education and health
in Europe. Routledge.

Craig, R., & Williams, A. (2015). Data, technology and the great unbundling of higher education.
Educause Review, 50(5).

D’Souza, M. J., & Rodrigues, P. (2015). Extreme pedagogy: An agile teaching-learning methodol-
ogy for engineering education. Indian Journal of Science and Technology, 8(9), 828.

Denton, P., Madden, J., Roberts, M., & Rowe, P. (2008). Students’ response to traditional and
computer-assisted formative feedback: A comparative case study. British Journal of Educational
Technology, 39(3), 486–500.

Dybå, T., & Dingsøyr, T. (2009). What do we know about agile software development? IEEE
Software, 26(5), 6–9.

El-Abbassy, A., Muawad, R., & Gaber, A. (2010). Evaluating agile principles in CS education.
International Journal of Computer Science and Network Security, 10(10), 19–28.

Ellis, C. (2017). The importance of E-portfolios for effective student-facing learning analytics. In
E-portfolios in higher education (pp. 35–49). Springer.

Emiliani, M. (2004). Improving business school courses by applying lean principles and practices.
Quality Assurance in Education, 12(4), 175–187.

Emiliani, M. (2005). Using kaizen to improve graduate business school degree programs. Quality
Assurance in Education, 13(1), 37–52.

Eyre, H. L. (2007). Keller’s personalized system of instruction: Was it a fleeting fancy or is there a
revival on the horizon? The Behavior Analyst Today, 8(3), 317.

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to
computerisation? Technological Forecasting and Social Change, 114, 254–280.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing?
International Journal of Human-Computer Studies, 43(5–6), 907–928.

Hakulinen, L., &Malmi, L. (2014).QR code programming tasks with automated assessment. Paper
presented at the Proceedings of the 2014 Conference on Innovation & Technology in Computer
Science Education.

Hallgren, M., & Olhager, J. (2009). Lean and agile manufacturing: External and internal drivers and
performance outcomes. International Journal of Operations & Production Management, 29(10),
976–999.

Holmegaard, H. T., Ulriksen, L. M., & Madsen, L. M. (2014). The process of choosing what to
study: A longitudinal study of upper secondary students’ identity work when choosing higher
education. Scandinavian Journal of Educational Research, 58(1), 21–40.

Kohn, A. (1994). Grading: The issue is not how but why. Educational Leadership, 52(2), 38–41.
Laband, D. N., & Lentz, B. F. (2003). New estimates of economies of scale and scope in higher
education. Southern Economic Journal, 172–183.

Lemoine, P. A., & Richardson, M. D. (2015). Micro-credentials, nano degrees, and digital badges:
Newcredentials for global higher education. International Journal of Technology andEducational
Marketing (IJTEM), 5(1), 36–49.

Mai, J.-E. (2016). Big data privacy: The datafication of personal information. The Information
Society, 32(3), 192–199.



Lean and Agile Higher Education … 169

Moogk,D.R. (2012).Minimumviable product and the importance of experimentation in technology
startups. Technology Innovation Management Review, 2(3), 23.

Moreno Minguez, A. (2013). The employability of young people in Spain: The mismatch between
education and employment. Online Submission, 3(5), 334–344.

Nguyen, M. (2012). Degreeless in debt: What happens to borrowers who drop out. Charts you can
trust. Education Sector.

Nilsson, S., & Nyström, S. (2013). Adult learning, education, and the labour market in the employ-
ability regime. European Journal for Research on the Education and Learning of Adults, 4(2),
171–187.

Nutter, P.W., Pavlidis, V. F., & Pepper, J. (2014). Efficient teaching of digital design with automated
assessment and feedback. Paper Presented at the 10th European Workshop on Microelectronics
Education (EWME).

O’Keeffe, P. (2013). A sense of belonging: Improving student retention. College Student Journal,
47(4), 605–613.

Poppendieck, M., & Cusumano, M. A. (2012). Lean software development: A tutorial. IEEE Soft-
ware, 29(5), 26–32.

Rosa, H. (2003). Social acceleration: Ethical and political consequences of a desynchronized high-
speed society. Constellations, 10(1), 3–33.

Salomon, G. (2016). It’s not just the tool but the educational rationale that counts. In E. Elstad (Ed.),
Educational technology and polycontextual bridging (pp. 149–161). Rotterdam: SensePublishers.

Sokolov, M. (2001). Technology’s impact on society: The issue of mass-customized education.
Technological Forecasting and Social Change, 68(2), 195–206.

Srikanth, M., & Asmatulu, R. (2014). Modern cheating techniques, their adverse effects on engi-
neering education and preventions. International Journal of Mechanical Engineering Education,
42(2), 129–140.

Waters, J. K. (2015). How nanodegrees are disrupting higher education. Campus Technology, 5.
Whalen, R., Freeman, S., & Jaeger, B. (2008). Agile education: What we thought we knew about
our classes, what we learned, and what we did about it. Proceedings of the American Society for
Engineering Education, Pittsburg, PA.



Leveraging Agile Methodology
to Transform a University Learning
and Teaching Unit

Madelaine-Marie Judd and Heidi Christina Blair

Abstract Student diversity and other contextual factors have placed increasing pres-
sure on university academics to work harder, faster and in more innovative ways.
Within Australian universities, the central Learning and Teaching Units (LTUs) are
charged with the responsibility of improving the quality of education and providing
academic development to educators to enhance curriculum, assessment, online edu-
cation, and any and all other pedagogicalmatters. Theheightened contextual demands
that face academics, schools and faculties funnel intowhole-of-university pressure on
LTUs to prioritise, juggle, leverage and deliver outcomes with, and for, the student-
facing academics and divisions. This chapter presents an annotated case study of an
Australian LTU in which Agile methodology was successfully applied to achieve
whole-of-institution quality improvement. The chapter authors, as members of the
LTU team, share the theoretical underpinnings of their practice. The key takeaways
are recommendations and strategies for heightening buy-in and active staff engage-
ment, as well as how to clearly and transparently communicate to assure widespread
adoption. The surprising outcome of the Agile approach was unexpected gains in
confidence and self-efficacy described by numerous participating stakeholders. This
chapter unpacks these unanticipated outcomes with retrospective recommendations
for readers applying Agile approaches. While this case study features application
of Agile methodology through a LTU within an Australian university, the authors
have explicitly addressed areas in which recommendations apply to a range of other
industries and sectors.

Keywords Agile methodology · Higher education · Learning and teaching
Project management · Organisational transformation · Academic development

M.-M. Judd (B)
The University of Queensland, Brisbane, Australia
e-mail: madelainemariej@gmail.com; m.judd@uq.edu.au

H. C. Blair
Griffith University, Brisbane, Australia
e-mail: h.blair@griffith.edu.au

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_9

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_9&domain=pdf
mailto:madelainemariej@gmail.com
mailto:m.judd@uq.edu.au
mailto:h.blair@griffith.edu.au
https://doi.org/10.1007/978-981-13-2751-3_9


172 M.-M. Judd and H. C. Blair

1 Introduction

Business analysts and researchers alike write that twenty-first-century industries
and organisations that fail to be fast-moving, productive, efficient and responsive to
change rarely survive (Brown, Holtham, Rich, & Dove, 2015; Craig, 2004; Ross,
Ressia, Sander, & Parry, 2017). In Australia, the higher education sector is no excep-
tion. There are 41 Australian universities across eight states and territories with
a population of over 24 million people (Australian Bureau of Statistics, 2017). In
2016, 1.3 million Australian and international students were enrolled, and 120,000
full-time equivalent staff were employed, across Australian universities (Universities
Australia, 2018). Currently, only 39% of 25–34 year-olds in Australia have a bache-
lor degree or higher (Universities Australia, 2018). However, the Australian govern-
ment wants to increase that number. In 2012, the Australian government introduced
demand-based funding, which meant that the Commonwealth Government would
subsidise as many qualified students who applied for whichever study programmes
they chose (Dow, 2013; Ross, 2018). The outcome was a sizeable increase in univer-
sity enrolments (Dow, 2013). The consequences were positive for Australians in that
between 2008 and 2016 therewas a 106% increase in the number of studentswith dis-
abling conditions, an 89% increase in Aboriginal and Torres Strait Islander students,
a 55% increase in students from families classifiedwithin low socio-economic brack-
ets and a 48% increase in the number of students from regional and remote Australia
(Universities Australia, 2018).

In this context of increased student enrolment, competition across the 41 univer-
sities has heightened as each has ramped-up marketing and articulation of distinctive
value-propositions to attract increased student numbers and particularly applicants of
higher calibre (Bradmore&Smyrnios, 2009). Accompanying the heightened compe-
tition to attract students, and the resultant workloads of staff to accommodate these
higher numbers, other forces exerted further pressures on Australian universities.
These factors included greater global competition, rising government standards and
expectations, rising public expectations, increased comparisons through published
university rankings, decreasing public funding, and recognition of the potential of
technological disruptions from the growth of computer hardware, software and net-
working (Currie & Vidovich, 2000; Twidale & Nichols, 2013). This has resulted in
an increasing workload on university staff in a context of mounting funding cuts.

In order to support and ensure that academics had access to specialised pro-
fessional pedagogical development, to manage quality assurance processes, and to
inspire and lead innovation, Learning andTeachingUnits (LTUs)were opened in each
of Australia’s universities (Asmar, 2002; Brew & Cahir, 2012). LTUs are described
byHolt, Palmer, and Challis (2011) as ‘contributing to the growth of staff capabilities
for teaching and learning development, innovation and advancement’ (p. 7). LTUs
have been lauded for being at the leading edge of pedagogical practices enabling uni-
versity teaching staff to develop learning experiences that leverage innovative design
and technology (Kolomitro & Anstey, 2017). These central units play significant
roles in enabling universities to enact missions of delivering high quality learning



Leveraging Agile Methodology to Transform … 173

experiences for students and adapting to the accelerating pace of change facing uni-
versities today (Holt et al., 2011; Kolomitro & Anstey, 2017). Consequently, the
adoption of new processes within LTU’s is critical in order to develop authentic and
meaningful learning experiences for students and staff.

This chapter presents a case study of good practice, exploring how one LTU at
an Australian university adapted and adopted an approach to managing these chal-
lenges to deliver stronger outcomes. This chapter argues that Agilemethodology is an
effective approach to enhance the self-efficacy of LTU staff, whilst at the same time
developing productive working relationships with stakeholders—in the context of
this case study, academic stakeholders. The case study was set at Griffith University,
an institution with five campuses in Southeast Queensland, with a student popula-
tion of 50,000, and ranking within the top 3% of universities worldwide (Universi-
ties Australia, 2017). The case study is further situated within the LTU, consisting of
approximately 50 staff in roles such asweb developers, educational designers, project
managers (referred to as project leaders), and programme/professional learning con-
sultants. At any given time, the LTU leads approximately 10 whole-of-institution
initiatives, that incorporate stakeholders from other central departments (e.g. Careers
and Employability, Student Services, etc.) and academic members from each Fac-
ulty. The key objectives of the featured LTU include, ‘facilitate positive professional
identity and capability… build leadership for learning to enable our University to be
the best it can be, and [to] stimulate innovation’ (Griffith University, n.d.).

Specifically, this case study presents the LTU’s application of an adapted Agile
methodology. Agile methodology has been defined as ‘a set of iterative and incre-
mental software engineering methods’ that are used to develop products or resources
(Dikert, Paasivaara, & Lassenius, 2016, p. 88). Almost all definitions (including the
one quoted here) situate Agile methodology within the context of engineering and
ICT. This chapter therefore adapts the definition to expand its applicability to a wider
context. Throughout the remainder of this chapter, Agile methodology is defined as,
regular, structured and systematic team-based processes to quickly achieve progres-
sive goals. Another key term, which is often used synonymously with agile but is
actually an embedded component of the methodology, is scrum. The term scrum
is a shortened form of the word scrummage, which is used in sports like rugby,
where the players huddle together in a tight pack with their heads down. Whereas in
sports-based scrums, the players are competing against each other in teams, trying
to grab hold of the ball, in Agile scrums, the players are working figuratively closely
together to ensure that work gets done. Teams often contribute to scrum meetings
where they briefly report, debrief and collaborate on progress, challenges and com-
munications. Drawing-upon another sports metaphor, sprints are a key component of
Agile approaches. In this context, it means that work is clustered, or in other words,
divided into short goals or sub-goals that can be quickly achieved (e.g., work that can
be completed in 3-week bursts). The use of Agile methodology affords development
teams the opportunity to co-construct resources or products with user groups, whilst
also allowing for flexibility in design (Dingsøyr, Nerur, Balijepally, & Moe, 2012;
Serrador & Pinto, 2015). Teams are self-organising, and cooperation between team
members and stakeholders are vital components of this methodology (Gren, Torkar,



174 M.-M. Judd and H. C. Blair

& Feldt, 2017). This has led to the perception that deploying Agile methodology
can enhance user satisfaction as resources have been designed, such that they are
informed by user requirements and experiences in an iterative manner (Dikert et al.,
2016; Dingsøyr et al., 2012).

The Principles of Agile methodology are one reason for its success. These were
adopted and adapted for use in the context of the case study described in this chapter.
Project Rounds were instances in which the leaders for discrete projects met to
share celebrations, updates and challenges and pose questions to the leaders of other
projects. Thesemeetings provided a valuable forum inwhich project leaders could see
where projects intersected and consider collaboration between projects. Production
Roundtables were sessions where all members of the LTU (whether or not they were
actively involved onAgile project teams)were invited to share updates on the projects
that they were working on and encouraged to identify constraints or issues that they
were having. Finally, Monday Morning Conversations were an informal coffee hour
open to all staff involved in any component of the Agile projects. At these sessions,
personal and professional celebrations were shared, questions for consideration were
posed, demonstrations were provided and informal reports from conferences were
given.

Studies have indicated a positive perception regarding the use of Agile method-
ology to enhance project (and sometimes overall unit) success (Serrador & Pinto,
2015). In a survey study of over 1,000 projects from a range of disciplines, Ser-
rador and Pinto (2015) analysed the extent to which the use of Agile methodology
led to each project’s perceived success. It was the overall finding from this study
that the use of Agile methodology led to enhanced perceptions of project success in
regards to stakeholder satisfaction, efficiency of effort and project outcomes. This
is similarly found in the work of Stettina and Hörz (2015) who undertook 30 semi-
structured interviews with project managers across 14 European organisations. In
these interviews, project managers were asked about their processes and challenges
encountered through their projects. A key finding of this study was that participants
perceived Agile projects to produce resources that greater aligned with the require-
ments of their user groups. A second element of success to Agile methodology is
that it draws upon the unique strengths and areas of expertise of each team member
(Serrador & Pinto, 2015). It thus becomes crucial to foster a culture in which these
strengths are identified and team members are empowered to effect change (Gren
et al., 2017).

There is currently a paucity in the literature pertaining to the use of Agile method-
ology within the university sector, and in particular, outlining its applicability for
LTUs. This chapter provides an annotated case study of how an Australian LTU
implemented an Agile methodology to lead the university in innovative projects.
It is asserted in this chapter that implementing a contextualised Agile development
methodology can be a powerful strategy for LTUs inmeeting the challenges resulting
from the rapid rate of change to the sector, and furthermore, that Agile methodology
is an efficacious project management approach for contexts beyond engineering and
ICT. This chapter explores how to implement a bespoke model and highlights some
of the key strategies to enabling cultural buy-in and development.



Leveraging Agile Methodology to Transform … 175

2 Case Study Context

In 2016, the Griffith University LTU developed and implemented a bespoke model
of Agile methodology. Prior to this, the LTU had adopted more ‘traditional’ method-
ologies, such as waterfall project management. With the increase in the scope and
number of projects, these projects including initiatives focusing on student employ-
ability, implementing an ePortfolio system, capabilities-based professional learning,
educational design and interactive video projects, the LTU was required to deliver
projects faster, with greater stakeholder involvement. Additional conditions inspir-
ing the need for a new approach, were that team members within the LTU needed
to manage their time and energy between multiple projects, and the involvement of
stakeholders fluctuated depending upon their workload. In addition, a compounding
time-squeeze resulting from the university moving from a semester (2 semesters per
academic year) to a trimester academic calendar (meaning more teaching weeks in
the year and less down-time between teaching periods to action these projects). A
distinct need was thus recognised by the LTU leadership team for a shared approach,
process and framework for projectmanagement thatwould nurture collaborative rela-
tionships, build the LTU’s internal and external reputation, and foster the creation of
innovative learning opportunities for students. Following a review of project method-
ologies, the LTU chose to develop and implement a bespoke Agile methodology. The
principles articulated within the Agile Manifesto (Agile Alliance, 2001) were a good
fit for the LTU’s staff desire to work more collaboratively to develop projects in
a manner that was flexible and enabled iterative releases of learning experiences
(Sweeney & Cifuentes, 2010). In addition, key principles such as accountability and
teamwork, self-managing, cross-functional teams, and team-based responsibility and
sharing all resonated with the distinct needs of the LTU (Scrum Alliance, 2017).

2.1 Working Group

One of the key early stages of the process was to establish a Working Group. The
Working Group was the equivalent of a committee executive, but without the role
division and stratification, in that all members were intentionally equal and the struc-
ture flat. This non-hierarchical structure was intentionally designed to reflect the
key principles of Agile methodology (Dingsøyr et al., 2012; Gren et al., 2017). The
Working Group was initially comprised of primarily LTU staff, but expanded as the
projects took-hold and brought in members from across the University (this included
academic staff from Faculties, and members of Central Units). The initial Working
Group developed the guiding principles, which were revisited and used as touch-
points throughout projects. The guiding principles are shared verbatim here because
they not only provide insight into the deliberations of the Working Group, but more
broadly, describe the overall characteristics and scaffolding of the entire application
of Agile methodology within a University LTU.



176 M.-M. Judd and H. C. Blair

• Any person in any role can lead a project.
• Project Leads are stewards of the project, not task managers.
• Collection of insights/needs (i.e. User Stories) regarding the use of a project’s
deliverables are gathered from a broad representation of potential user groups.

• All Development Team Members (i.e. staff who dedicate the most hours on each
project to create and refine the materials, resources and other outcomes) recognise
that flexibility is required during the lifecycle of a project.

• The project embraces iterative development in short development periods (i.e.,
Sprints) with deliverables at the end of each Sprint.

• Scheduled meetings will be held for viewing the completed work (i.e. Sprint
Reviews), through collaborative presentations made by multiple stakeholders and
including large-group feedback.

• Transparency across projects enables synergy between projects and project teams.
• Common language for roles, processes and tools is critical.
• Development Team Members will be empowered to determine the tasks to be
completed during a given Sprint (i.e. Sprint Planning Meetings).

• Development Teams are formed not only on skills and knowledge needed for a
specific project, but also personal interest in the project.

• Stakeholders should be included from each academic group and other central enti-
ties as appropriate. A variety of roles should be represented including academics,
learning and teaching professionals, support personnel and other key stakeholders.

Over time, shared processes and understandings began to coalescewhich included
values, principles, processes and vocabulary. Volunteers from the Working Group
created a draft framework. A dedicated workshop was then run to engage all mem-
bers in an exploration of the draft framework and included opportunities to provide
feedback—thus reflecting the iterative process design of Agile (Dikert et al., 2016;
Dingsøyr et al., 2012). Upon confirming that the Working Group’s efforts were in
alignment with the vision and goals of the LTU leadership team, the Working Group
continued to meet to integrate feedback and evolve the framework.

2.2 The Agile Methodology Framework

With the following foci in mind, the LTU developed a culture in which project lead-
ership was distributed across multi-disciplinary teams; members of project teams
self-nominated, as opposed to being assigned to projects; stakeholders were co-
constructors of resources, as opposed to clients; and project leaders were stewards,
as opposed to managers (Dikert et al., 2016; Dingsøyr et al., 2012). These funda-
mental principles guided the development of our collaborative framework—theAgile
Management of University Projects Framework—and our resultant interactions with
the university community.

The Agile Management of University Projects Framework (Fig. 1) outlines the
processes and interactions of the bespoke model. As outlined visually within Fig. 1,



Leveraging Agile Methodology to Transform … 177

Project Initiation constitutes the first phase of any project. In this phase, the Devel-
opment Team is formed. The Development Team consists of the project owner, the
project leader, and in our LTU context educational designers, graphic designers, web
developers and/or videographers. After the Development Team has been formed,
Stakeholders are recruited, the project brief is drafted and user stories are collected
from both the Stakeholders and the Development Team. A user story details the type
of user and some key requirements or considerations to inform the resource develop-
ment. Prompting cards are given to stakeholders which include ‘As a ___ I want ___
so that I can ____.’ In the context of our LTU, an illustrative example included ‘As
an educator, I want good practice examples of learning activities so that I can align
my curricula to accreditation requirements.’ Once the steps of Project Initiation have
been completed, the project will then proceed to the next phase, referred to as Sprint
Zero. In Sprint Zero, the user stories are prioritised by the Project Owner and Project
Leader. The Stakeholders, Development Team, Project Owner and Project Leader
all convene for the Project Kick-off meeting in which group norms and community
principles are established, roles/responsibilities are agreed upon and an overview of
the bespoke model are discussed at length. Following the Project Kick-off meeting,
the Development Team then meet for the first Sprint Planning Session in which,
based upon the prioritised user stories, members self-nominate tasks that they can
personally achieve within the first sprint. The prioritised user stories will be the
central focus of Sprint One.

The number of sprints within a project will depend upon the scope, size and
timeframe of the project. In the context of our LTU, project timelines, and thus the
resulting number of sprints, are influenced by contextual factors such as trimester
timelines and the academic calendar. As depicted within Fig. 1, each sprint follows a
similar, circular pattern, represented visually in the framework by the circular arrow.
Once the sprint has been completed, the next sprint (and thus the same steps) repeat.
Each sprint consists of a Sprint Planning Session and a Sprint Review Meeting. In
the planning session, the Development Team self-assigns tasks that support the focus
of the next sprint, pulling user stories in from the backlog. At the conclusion of the
sprint, the members of the Development Team present their work to project Stake-
holders at the Sprint Review Meeting. During this meeting, the project stakeholders
review the work completed in the previous sprint and provide feedback. Encouraging
Development Teammembers to present their ownwork, greater fostered a distributed
leadership model in which team members were empowered and recognised for their
achievements (Gren et al., 2017). At the conclusion of this meeting, the next sprint
commences, thus representing an iterative release cycle, in which small deliverables
are released and then amended in-line with stakeholder feedback. The third and final
phase is Project Close. A key activity during this phase is the meeting of all stake-
holders and development team members for a Project Retrospective. In the Project
Retrospective, Stakeholders and Development Team Members alike meet to review
the entire project, discuss what worked well, what could be improved upon and next
steps including dissemination strategies and hand-over to the operational stewards.

Whilst the framework is procedural in nature, the implementation of this frame-
work shaped and transformed the culture of our LTU. Agile methodology accounted



178 M.-M. Judd and H. C. Blair

Fig. 1 Agile Management of University Projects Framework

for the range of contextual factors influencing and impacting upon the delivery of
project resources and outcomes, and further fostered a distributed leadership model
throughout the LTU. Thus, not only did the framework transform the way in which



Leveraging Agile Methodology to Transform … 179

we worked as a team, but also the perception of our LTU throughout the broader
university community.

3 Process of Agile Methodology

A definitional element of Agile methodology that needs to be explicitly articulated,
reinforced and demonstrated over and over again, is that it is a generative and co-
constructed process that changes alongside the team membership and shifting goal-
posts, as milestones are reached. A Senior Curriculum Consultant explained,

Whilst I initially outlined the project vision, aims and goals, the Agile-like methodology and
encouraged an inclusive, open and collegial space for us to collaborate, it took a fewmeetings
for everyone involved in the project to realise that we were co-developing the product (story
model) and that their ideas were being incorporated into the product. We were all coming
to terms with the fact that the project was in a state of evolving and that we were all part of
that.

One of the key team members of an Agile project team within the case study
described in this chapter reflected on positive reception to the defined process and
intentional structures of Agile methodology, which she perceived as a pendulum-
swing away from typical university-processes entrenched in long-standing institu-
tional cultures of stability and traditions.

I think working at a university, the cogs often move very slowly, the Agile process provided
structure and milestones that got results quicker… the weekly targets made people more
accountable and people who were known not to deliver were gently reminded that they were
important and the work they were tasked to do was needed for the project to move forward.

As explained in the quote above, Agile methodology was confirmed as an effica-
cious approach to enabling university staff to change, because it placed the scaffolds
and supports in-place that staff members needed to sustain the process and achieve
the desired outcomes.

While the overall stance of Agile methodology can seem unnerving to staff used
tomore traditional processes, structured techniques and strategies provide stabilising
footholds to many staff. An Educational Designer described initial workshops as a
fundamental element of Agile methodology.

At the beginning of the projects, I held workshops with the wider stakeholder group to collect
the user stories. These workshops served to define roles as well as identify users and user
requirements. As the project moved onto design and development, the stakeholder group
would narrow, but as the project finalised, I was able to build on the relationships fostered
at the first workshops to collaboratively implement the solution.

As described above, the content of the initial workshops served as a touchpoint
that could be revisited as the process progressed. A Web Developer described the
benefit of the scrum approach, as a component of the overall Agile methodology.



180 M.-M. Judd and H. C. Blair

Our project team’s success was built on a solid foundation of Agile Scrum. The two to three-
week sprints allowed for focused development time paired with feedback from our project
owner and stakeholder group during reviews. This constant feedback cycle enabled us to
always be getting closer to user expectations of how the product should evolve.

It is unsurprising that this quote, about the value of the scrum approach, was
articulated by a Web Developer. This approach is a good match for the culture of
staff within information technology units as scrum processes enable staff groups
to break-work into manageable parts and achieve outcomes along the way. Within
the scrums, work is broken into sprints, which ensure that goals are reasonable and
achievable. An Educational Designer explained,

Booking sprint reviews every three weeks into the calendars of stakeholders and developers
also had an advantage, whereby, commitment to the project was not just communicated but
demonstrated, as we made a promise to spend the time together to get the work done.

As he explained, an essential process to ensure success of the projects was to
integrate with electronic calendars and other such established work processes to
ensure that the work could be incorporated into business-as-usual patterns. A Web
Developer emphasised the importance of ongoing communication throughout the
work.

From my perspective, this [communication] went really well in our team. For instance, the
daily stand-ups helped us to communicate to each team member on a daily basis the state of
the development, who is doing what or what element is required by others. This reduced a
lot of waiting periods in the developing process.

The benefit of ‘daily stand-ups’ is that they take very little staff time and effort,
but prevent significant problems that might otherwise occur, such as task duplication
and unplanned redundancy.

4 Agile Methodology Projects Within Organisational
Culture

One of the principles that needs to be continuously reinforced for the successful
coordination of Agile projects is the recognition that while for the central managing
unit the endeavor might seem like the highest organisational priority, stakeholders
on the fringes might see the work as one of many competing demands on their
time, energy and resources. For example, a Deputy Head of School commented,
‘My only disappointment with this project was my inability to participate on a more
regular basis due to other commitments.’ Given these time constraints, it is therefore
essential that Project Leaders, and other key staff, maintain process flexibility and
take an inclusive and transparent approach to communication, providing information,
resources and supports in a manner that works best for those who are participating
(Dingsøyr et al., 2012; Serrador & Pinto, 2015). A specific example came from
an Academic, whose responsibilities as Deputy Dean meant that he was unable to



Leveraging Agile Methodology to Transform … 181

attend the project meetings. A Project Leader therefore met with him one-on-one
to consult and collaborate on necessary decisions in the process. At the conclusion
of the process, he provided feedback that, ‘Flexibility to meet one-on-one when you
couldn’t make meetings was highly beneficial. There was clear evidence in following
Sprint Reviews that your voice had been heard and considered.’ His comments that
he felt listened-to was affirming in a process that sought to be collaborative and
inclusive.

5 Professional Learning Needs

Professional learning needs of LTU and other staff emerged as Agile projects pro-
gressed and tools were adopted. Members developed expertise in tools and processes
leading to the creation of support resources and the facilitation of hands-on work-
shops and coaching. These supports became organic and synergistic, in that members
of project teams who became experienced in particular components provided coach-
ing to other teams when they reached the point that they needed these just-in-time
skills, strategies and resources. A website was created to host these materials to
provide easy access and distribute resource management. For many staff serving as
Project Leaders, the website provided a new lens through which to view their work.
For example, Senior Curriculum Consultants who traditionally worked with one
another to design, create and implement professional learning workshops were now
leading Development Teams with a diversity of roles (e.g., Educational Designers,
Videographers and Web Developers).

6 Unexpected Gains in Staff Self-confidence

One of the key emergent themes across thewritten feedback fromDevelopment Team
Members and Stakeholders was gains in staff self-confidence. This was apparent for
both those administrating and leading the projects and the academics who were
touched-by and contributed to the projects, but not a part of the Development Team
or LTU. For example, a Lecturer said, ‘Participating in the projects highlighted what
I was capable of doing.’ This finding from the context of our LTU extends the work
of Serrador and Pinto (2015), in that not only was there an increase in stakeholder
satisfaction, but also stakeholder self-efficacy. Furthermore, she stated that shewould
be using the project outcomes as evidence in her annual performance review. One of
the Project Leaders described the benefits (unanticipated but welcomed) in regard to
staff self-initiative.

The process empowered the team to take ownership of their role. It wasn’t about me speaking
for them, it was about them owning their tasks and getting the clarification they needed to
continue their work. … They felt valued and more engaged with the process.



182 M.-M. Judd and H. C. Blair

The boost that participation in Agile methodology provided to numerous staff
members’ self-concepts and transformed the work from a series of time-limited
projects, to a sustainable exercise in professional development. Another Project
Leader explained that a learning experience, for both staff and those who super-
vised them, was self-trust.

Let project team staff take control of the work they are doing for a sprint, but ensure they
know that you are available for them to call upon if they hit any problems (waiting on others,
technology not playing well, unexpected governance).

She explained that within this flat-hierarchy approach, letting-go-of control (or in
other words, not micro-managing) was a key learning outcome for staff who were
normally in supervisory roles, and furthermore, that this change to overall work
culture sustained beyond the end of the Agile projects. Notably, as this application
of Agile methodology was conducted with a university context, stakeholders made
comments, not only about how they would continue to apply what they learned about
Agilemethodology to continuous improvement of the functioning of the university as
an organisation, butwould also use the lessons as curriculum and examples to teach to
students (i.e. future Project Leaders). For example, a Deputy Head of School wrote,
“In my role as convener of the course, I can (and will) use the project management
skills and processes I have witnessed and experienced as a project stakeholder in
this project, as an exemplar in my course.”

7 Implications for Practice

Four top recommendations to consider when implementing a bespoke Agile frame-
work, with a recommendation proposed for each project phase of the framework, are
provided in this section. These recommendations are informed by lessons learned
and are intended for consideration in a variety of organisations or teams, irrespective
of industry or discipline. The first recommendation relates to Project Initiation and is
to ensure that buy-in of the framework is obtained not only from your Development
Team but also your Stakeholders. A key component of this recommendation is to
clearly articulate the framework process, co-develop a common understanding of the
guiding principles and values, and model agility and flexibility in your approach. In
circumstances whereby Stakeholders or Development TeamMembers cannot attend
a meeting, recommend for a proxy to be sent on their behalf, or meet with them
individually to ensure their perspectives are heard.

The second recommendation, which relates to Sprint Zero, is to seek common
agreement on a workflow management tool in which all user stories, tasks and
team collaboration will be hosted. Ideally this workflow tool should be transparent,
enabling all development team members to incorporate individual tasks, highlight
task dependencies and collaborate through comment threads. In the context of our
LTU, teams adopted the use of Asana, a web-based workflow management system,
to host all project-related information and tasks. This enabled team members to self-



Leveraging Agile Methodology to Transform … 183

assign tasks during Sprint Planning Sessions, and update the team space throughout
the sprints.

The third recommendation,which relates to Sprint One, is to celebrate the achieve-
ments of your team, and encourage and empower Development Team Members to
individually present their work in the Sprint Review Meetings, rather than having
the Project Leader present on their behalf. By having development team members
individually present, recognises their vast contributions to the project and distributes
leadership throughout the team.

The fourth and final recommendation pertains to the Project Close phase, specif-
ically the Project Retrospective. Prior to the meeting, ensure that all Development
Team Members and Stakeholders are briefed on the purpose of the meeting. Use
the meeting as an opportunity to ascertain feedback on how the Agile Manage-
ment of University Projects Framework could be improved and key strengths of the
framework to ensure that it continues to be modelled. Take comprehensive notes of
feedback provided and develop a report based on these lessons learned. Disseminate
these findings to other project teams, so that they can obtain a clearer understanding
of what works well, and what can be improved upon.

These recommendations are intended to provide food for thoughtwhendeveloping
and implementing a bespoke Agile framework within a team or organisation. By no
means are these recommendations exhaustive, but rather have sought to provide
some helpful hints when transforming an organisational culture in adopting an Agile
framework.

8 Conclusion

This chapter took a case study based approach to addressing the strengths, limita-
tions and processual factors of an application ofAgilemethodology. The case context
was an Australian university. The Learning and Teaching Unit (LTU) led multiple
whole-of-university projects whereby stakeholders across the organisation collab-
orated through Agile methodology. Assumptions were confirmed in that the Agile
methodology produced strong outcomes and strengthened interaction and cohesive-
ness between diverse staff and units across the university. Furthermore, this project
management approach increased the regard of the LTU. The unanticipated finding
was that participation in Agile methodology had a significant and sustainable posi-
tive impact on teammembers’ self-confidence. The main contribution of this chapter
to published literature is that the application context is outside of management and
ICT, which are the dominant disciplines wherein almost every account of Agile
methodology is published. The strength of this particular inquiry is that the case
study approach enabled deep discovery, including what worked and did not work,
and from the experiences of diverse stakeholders. For further inquiry into Agile
methodology, researchers are encouraged to build-upon this deep case study inquiry
to conduct a broader empirical study with a larger sample size to further explore the
primary themes and outcomes of this study.



184 M.-M. Judd and H. C. Blair

Acknowledgements We would like to thank the following implementers that shared their insights
into the development and implementation of the Framework within their work: Dr. Kerry Bodle,
Paul Brown, Megan Duffy, Oleg Estrin, Dale Hansen, Darcelle Hinze, Madelaine-Marie Judd,
Shar Keshi, Associate Professor Christopher Klopper, Evelyn Lugiarto, Louise Maddock, Simone
Poulson, Daniel Tedman, Jeff Teng and Associate Professor Michelle Whitford. Without their work
there would be no story to tell.

References

Agile Alliance. (2001). Manifesto for agile software development. Retrieved from http://agilemani
festo.org/principles.html.

Asmar, C. (2002). Strategies to enhance learning and teaching in a research-extensive university.
International Journal for Academic Development, 7(1), 18–30. https://doi.org/10.1080/1360144
0210156448.

Australian Bureau of Statistics. (2017). Australian demographic statistics, June 2017. Retrieved
from http://www.abs.gov.au/AUSSTATS/abs@.nsf/mf/3101.0.

Bradmore, D. J., & Smyrnios, K. X. (2009). The writing on the wall: Responses of Australian
public universities to competition in global higher education. Higher Education Research and
Development, 28(5), 495–508. https://doi.org/10.1080/07294360903161154.

Brew, A., & Cahir, J. (2012). Achieving sustainability in learning and teaching initiatives. Interna-
tional Journal for Academic Development, 19(4), 341–352. https://doi.org/10.1080/1360144X.2
013.848360.

Brown, A., Holtham, C., Rich, M., &Dove, A. (2015). Twenty-first century managers and intuition:
An exploratory example of pedagogic change for business undergraduates. Decision Sciences
Journal of Innovative Education, 13(3), 349–375. https://doi.org/10.1111/dsji.12066.

Craig, C. M. (2004). Higher education culture and organizational change in the 21st century. The
Community College Enterprise, 10(1), 79–89.

Currie, J., & Vidovich, L. (2000). Privatization and competition policies for Australian universities.
International Journal of Educational Development, 20(2), 135–151. https://doi.org/10.1016/S0
738-0593(99)00065-6.

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-scale
agile transformations: A systematic literature review. The Journal of Systems and Software, 119,
87–108. https://doi.org/10.1016/j.jss.2016.06.013.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies:
Towards explaining agile software development. The Journal of Systems and Software, 85(6),
1213–1221. https://doi.org/10.1016/j.jss.2012.02.033.

Dow,C. (2013).Higher education: Sustainability of a demand-drive system.Parliament of Australia.
Retrieved from https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliam
entary_Library/pubs/BriefingBook44p/HigherEducation.

Gren, L., Torkar, R., & Feldt, R. (2017). Group development and group maturity when building
agile teams: A qualitative and quantitative investigation at eight large companies. The Journal of
Systems and Software, 124, 104–119. https://doi.org/10.1016/j.jss.2016.11.024.

Griffith University. (n.d.). Learning futures. Retrieved from https://www2.griffith.edu.au/learning-
futures.

Holt, D., Palmer, S., & Challis, D. (2011). Changing perspectives: Teaching and learning cen-
ters’ strategic contributions to academic development in Australian higher education. Interna-
tional Journal for Academic Development, 16(1), 5–17. https://doi.org/10.1080/1360144X.201
1.546211.

http://agilemanifesto.org/principles.html
https://doi.org/10.1080/13601440210156448
http://www.abs.gov.au/AUSSTATS/abs%40.nsf/mf/3101.0
https://doi.org/10.1080/07294360903161154
https://doi.org/10.1080/1360144X.2013.848360
https://doi.org/10.1111/dsji.12066
https://doi.org/10.1016/S0738-0593(99)00065-6
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1016/j.jss.2012.02.033
https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/BriefingBook44p/HigherEducation
https://doi.org/10.1016/j.jss.2016.11.024
https://www2.griffith.edu.au/learning-futures
https://doi.org/10.1080/1360144X.2011.546211


Leveraging Agile Methodology to Transform … 185

Kolomitro, K., & Anstey, L. M. (2017). A survey on evaluation practices in teaching and learning
centres. International Journal for Academic Development, 22(3), 186–198. https://doi.org/10.10
80/1360144X.2017.1313162.

Ross, J. (2018, February 27). Australian universities fight to save demand-driven system. Times
Higher Education. Retrieved from https://www.timeshighereducation.com/news/australian-univ
ersities-fight-save-demand-driven-system.

Ross, P. K., Ressia, S., Sander, E. J., & Parry, E. (2017). Work in the 21st century: How do I log
on?. Bingley, BD: Emerald Publishing Limited.

Scrum Alliance. (2017). Learn about SCRUM. Retrieved from https://www.SCRUMalliance.org/
why-SCRUM.

Serrador, P., & Pinto, J. K. (2015). DoesAgile work?A quantitative analysis of agile project success.
International Journal of Project Management, 33(5), 1040–1051. https://doi.org/10.1016/j.ijpro
man.2015.01.006.

Stettina, C. J., & Hörz, J. (2015). Agile portfolio management: An empirical perspective on the
practice in use. International Journal of Project Management, 33(1), 140–152. https://doi.org/1
0.1016/j.ijproman.2014.03.008.

Sweeney,D. S.,&Cifuentes, L. (2010).Using agile projectmanagement to enhance the performance
of instructional design teams. Educational Technology, 50(4), 34–41.

Twidale, M. B., & Nichols, D. M. (2013). Agile methods for agile universities. In T. Besley &M. A.
Peters (Eds.), Re-imagining the creative university for the 21st century (pp. 27–48). Rotterdam:
Sense Publishers.

Universities Australia. (2017, March 17). Griffith University. Retrieved from https://www.univer
sitiesaustralia.edu.au/australias-universities/university-profiles/Griffith-University#.Wp58Wkq
WbIU.

Universities Australia. (2018). Data Snapshot 2018. Retrieved from https://www.universitiesaustr
alia.edu.au/australias-universities/key-facts-and-data#.WvOCGi5uapo.

https://doi.org/10.1080/1360144X.2017.1313162
https://www.timeshighereducation.com/news/australian-universities-fight-save-demand-driven-system
https://www.SCRUMalliance.org/why-SCRUM
https://doi.org/10.1016/j.ijproman.2015.01.006
https://doi.org/10.1016/j.ijproman.2014.03.008
https://www.universitiesaustralia.edu.au/australias-universities/university-profiles/Griffith-University#.Wp58WkqWbIU
https://www.universitiesaustralia.edu.au/australias-universities/key-facts-and-data#.WvOCGi5uapo


Lean and Agile Assessment Workflows

Michael Striewe

Abstract The chapter presents and discusses a structured approach to assessment
planning and organization. The approach is inspired by Kanban-style notations as
well as by the SEMAT approach for agile software engineering processes. It is based
on a breakdown of assessments into their essential elements and phases. It is hence
more suitable for agile assessment planning than traditional workflow and process
models. It allows to define assessment workflows very easily, so that teachers, item
authors and staff can focus better on their individual duties. The chapter is organized
in three main sections: The first section introduces the breakdown of assessments
into their essential elements and phases. The second section demonstrates how to
use these elements in a Kanban-style notation to formulate assessment scenarios. It
also discusses examples from practical experience in different scenarios. The third
section very briefly elaborates on tool support.

Keywords Assessment · Process ·Workflow · Planning · Kanban · Phases

1 Introduction

Preparing and conducting educational assessments is not an easy thing. First of all, the
contents have to be created carefully to make sure that the assessment considers right
what is right and wrong what is wrong. Second, test pedagogy and psychometrics
have to be considered to make sure that the assessment really measures what it is
supposed tomeasure. Finally, a lot of organizational aspects concerning thewhen and
where have to be considered. Depending on the setting of the assessment, this may
involve communication with assessment authorities in case of formal assessments,
set-up and management of electronic assessment tools in case of computer-assisted
assessments, but also simple communicationwith participants that has to happen even
in informal low-tech assessment scenarios. Consequently, educatorswill follow some

M. Striewe (B)
University of Duisburg-Essen, Essen, Germany
e-mail: michael.striewe@paluno.uni-due.de

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_10

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_10&domain=pdf
mailto:michael.striewe@paluno.uni-due.de
https://doi.org/10.1007/978-981-13-2751-3_10


188 M. Striewe

kind ofworkfloweven in very simple cases tomake sure that the right things happen in
the right order (Reynolds, Livingston, & Willson, 2009; Johnson & Johnson, 2002;
Banta & Palomba, 2015; Dick, Carey, & Carey, 2014). One can even dig deeper
into the formal definition of workflows and processes and notice that training and
instruction are sometimes understood as a system which follows not only a process
definition, but also has input and output (Laird, Holton, &Naquin, 2003). Since these
are classical terms from development and production, one can also think of adapting
more terms from that domain, such as lean and agile processes.

In the particular context of technology-enhanced assessment, therewas a tendency
in recent years to create models of assessment processes that where very detailed and
formal. An example for this is presented in Danson, Dawson, and Baseley (2001),
which is related to a university-wide process, but limited to a particular existing
tool. We can identify roles like ‘Exam Office’ or ‘Students’ in conjunction with their
activities in these models. The FREMA (Framework Reference Model for Assess-
ment) project collected a more complete set of elements that might occur in process
models. One of the project’s outputs is a concept map for e-learning assessment pro-
cesses (Millard et al., 2006; Wills et al., 2007). This map lists activities that turned
out to be relevant based on interviews within the assessment community. It covers
several didactic aspects such as authoring of assessment items, checking solutions
for plagiarism or creating feedback to students, but also organizational issues such
as checking the availability of candidates and staff or preparing digital and physical
environments. This concept map for e-learning assessment processes is a valuable
source of didactic and organizational activities related to assessments, but does not
provide an actual technique for modelling actual workflows.

Anyway, restricting educational assessments to strict process definitions follow-
ing some formal guidelines does not match the daily experience and requirements
of educators. There is not the single ideal workflow for educational assessments
and there is also not the single ideal workflow for a particular assessment scenario.
Instead, educators have to amend and adapt their workflows based on the resources
available, the time frame they have to prepare the assessment, and also the number of
participants expected take part in the assessment. Educators also usually do not want
to care for a large process description in case of small assessments, but are satisfied
with lean descriptions covering the essential elements of the assessment workflow.
These essential building blocks may be customized for a particular assessment situa-
tion or tailored in the way they are used. These requirements towards an appropriate
workflow description can be summarized in a small list of principles

• Workflow elements should be concise and represent reusable steps. This is a value
known from lean product development.

• Workflow descriptions should only contain the necessary elements while unnec-
essary steps are eliminated. This is a value known from lean production.

• Workflow descriptions must be changeable and adaptable. This is a value known
from agile development.

There is currently no approach documented in literature that covers all these
requirements. However, these requirements represent an understanding of lean and



Lean and Agile Assessment Workflows 189

agile workflows that is not specific to educational assessments. Hence, techniques
and standards can be reused in this domain that have proven their value already in
other domains in which workflows play a major role.

The ESSENCE standard (Essence—Kernel and Language for Software Engineer-
ing Methods, 2015) is a modelling standard created by the ‘Software Engineering
Methods and Theory’ (SEMAT) initiative and issued by the ‘Object Management
Group’ (OMG). It tackles the very same topic of lean workflow descriptions for the
domain of software engineering. It defines a modelling language for software engi-
neering process descriptions and a so-called kernel of key elements (named ‘alphas’
and ‘activity spaces’). These are supposed to be relevant in any software engineering
project. Each alpha defines a set of states with checklists that allow to track project
progress. It is possible to create simple process descriptions by grouping states across
alphas and thus defining phases or milestones. It is possible to add more details by
assigning ‘work products’ to alpha states or ‘activities’ to activity spaces. This allows
a very lean and agile style of defining and using workflows with exactly as much
detail and formalisms as necessary (Jacobson, Spence, & Ng, 2013). As a means
of graphical representation, the ESSENCE standard introduces the notion of alpha
state cards. They are concise representations of an alpha state and its checklist items
that can actually be used in the form of small physical cards. These allow enacting
many agile practices in planning and monitoring of workflows in a very smooth and
natural manner.

While the standard explicitly talks about software engineering, there is no reason
to refrain from using the concepts of kernel and alphas in other domains as well.
Thus, this chapter uses the ideas of ESSENCE to create both a kernel of key con-
cepts related to educational assessments and some sample workflow descriptions
based on this kernel. These descriptions are intended to serve as a blueprint for dif-
ferent workflow descriptions covering several kinds of educational assessments, such
as traditional written exams, modern electronic assessments, and oral assessments
as well as less formal assessments. A short section on electronic tool support is also
included towards the end of the chapter. Hence, the reader may get two main contri-
butions from this chapter: First, it creates a general and unified process model in the
domain of educational assessment that covers both traditional and modern forms of
assessment. Second, it demonstrates how to define lean and agile workflows on top
of this kernel. It thus provides a starting point for modelling one’s own workflows.

2 Kernel for Educational Assessment

The ESSENCE Kernel for Educational Assessment presented in this section is
intended to form a common base for all kinds of educational assessment processes. It
is neither limited to a particular didactic purpose of the assessment (e.g. diagnostic,
formative or summative) nor to a particular form of assessment (e.g. written assess-
ment, oral assessment or electronic assessment). In order to achieve full but flexible
coverage of all kinds of processes in educational assessment, the kernel consists of



190 M. Striewe

Fig. 1 Overview of the eight alphas in the Kernel for Educational Assessment and some of their
relationships. Dashed borders indicate optional alphas

eight alphas from which two are optional in most cases. The alphas can be grouped
into three so-called ‘areas of concern’ similar to the original ESSENCE standard.
An overview of the kernel alphas and some of their relationships is shown in Fig. 1.

2.1 Area of Concern ‘Content’

Probably the most important parts of an assessment are its functional contents. They
reflect its professional or scientific domain and are represented by this area of con-
cern. Typically, experts in the particular domain create and maintain these contents
and assure that they are right. Failure in reaching the desired quality of content in
an assessment most likely causes useless assessment results. This area of concern
consists of three alphas, representing the different bits an assessment and its results
are composed of.

2.1.1 Alpha ‘Test Items’

A test item is the smallest consistent unit within an assessment that allows candidates
to demonstrate their competencies. For the purpose of this kernel, it is assumed that a
test item contains some kind of task description and that the candidates are expected
to respond to it in some way, e.g. by ticking answer options, drawing a diagram or
answering orally.



Lean and Agile Assessment Workflows 191

Fig. 2 Alpha states and checklists for the four states of alpha ‘Test Items’

The alpha ‘Test Items’ covers all items potentially used in the assessment and
does not ask how an actual test is composed. The test items may form a general item
pool or several distinct item pools from which a certain number of items is used in
the actual assessment. However, it is assumed that all test items that are potentially
used need to be prepared in the same way.

The proposed kernel defines an alpha with four states to represent all essential
aspects of test items (see Fig. 2). The names of the first three states are ‘Scoped’,
‘Designed’ and ‘Verified’. They are concernedwith the different stages of preparation
for test items. The alpha particularly reflects the observation that test items have some
formal properties (such as an item type, language and intended difficulty) which are
defined in the first state, while their functional properties (such as a task description
and a sample solution) are defined in the second state. As legal regulations may
explicitly require a second author to do a review of all proposed test items, the
third state handles verification and double-checking. The name of the fourth state is
‘Outcome reviewed’. It reflects the didactic practice to review the outcomes of a test
with respect to test item performance in order to identify test items with unexpected
results (e.g. ones that were often answered wrong by good candidates or ones that
were answered right by anybody).

2.1.2 Alpha ‘Test’

A test is the actual collection of test items that is delivered to the candidates of
the assessment in some way, e.g. by handing out papers, displaying on a screen
or asking questions orally. The alpha refers to the test as an abstract construct and
hence does not ask whether a candidate actually sees the whole test at once or only
can see and answer the test items within the test one after another. There is also no
assumptionmade onwhether the test is a static composition of test items or generated
adaptively like in computer adaptive testing. Consequently, a test may be the same
for all candidates or may be composed individually from one or more item pools.

The proposed kernel defines an alpha with five states to represent all essential
aspects of tests (see Fig. 3). The names of the first and second state are ‘Goals



192 M. Striewe

Fig. 3 Alpha states and checklists for the five states of alpha ‘Test’

clarified’ and ‘Designed’. They correspond to the first two states of the alpha for
test items, as also the whole test needs both a definition of its formal and functional
properties. The name of the third state is ‘Generated’. It is fulfilled when an actual
instance of the test is created for each candidate. As already mentioned above, this
may be a physical representation such as some pieces of paper, but it may also be
the specific sequence of questions asked to one particular candidate in an oral exam.
The name of the fourth state is ‘Conducted’. It is fulfilled when all candidates have
completed their tests. Notably, in a written exam this state may be reached days
or even weeks after ‘Generated’ depending on how long before the day of the test
the exam sheets are printed. Different to that it may be reached minutes or even
seconds after the last question is posed in an oral exam. The fifth state with name
‘Evaluated’ represents the fact that a test needs to be evaluated. This also includes
the retrospective analysis of test item performance as above.

2.1.3 Alpha ‘Grades and Feedback’

As the outcome of test evaluation can be very different depending on the didactic
purpose and context of an assessment, it is worth modelling grades and feedback as a
separate alpha. Each response to a test item contributes to the actual test result, which
may consist of marks, credit points, texts, or anything else that is used to inform the
candidates about their performance. Results can be assigned both to single test items



Lean and Agile Assessment Workflows 193

Fig. 4 Alpha states and checklists for the four states of alpha ‘Grades and Feedback’

and to the whole test (or arbitrary parts of it). The alpha covers all these different
kinds of feedback and makes no assumptions about whether candidates have access
to results during the assessment or only afterwards.

The proposed kernel defines an alpha with four states to represent all essential
aspects of grades and feedback (see Fig. 4). Again, the first two are concerned with
preparations: State ‘Granularity decided’ reflects that fact that there are many ways
of how to give feedback and that the didactic purpose of the assessment determines
the choice. State ‘Prepared’ refers to the creation of appropriate marking schemes
or alike as well as organizational set-up of grading sessions. The name of the third
state is ‘Generated’. It is fulfilled if all grades and feedback are created. The final
state is fulfilled when grades and feedback are available to the candidates and is
thus named ‘Published’. Notably, in a written exam it may take some time after the
submission to reach state ‘Generated’ and it may also take some more time to reach
‘Published’. Different to that, feedback in an oral exam is often generated right after
a candidate answered a question and is also published immediately by responding
to the candidate’s answer. However, as the alpha refers to grades and feedback in
general, state ‘Published’ may nevertheless be fulfilled later, as grades are typically
not mentioned after every answer, but only at the end of an exam or even at some
later point in time.

2.2 Area of Concern ‘People’

Although we already mentioned domain experts as the authors of assessment con-
tent, they are not the people in the focus of an assessment for two reasons: First,
assessments can be conducted by using predefined tests or test items, keeping the
authors completely out of the process. Second, the steps performed by test item or
test authors may be domain-specific and are thus out of the scope of a generic kernel
for educational assessments.



194 M. Striewe

Hence, this area of concern focuses on people who are more directly concerned
with an assessment. It represents each group with a separate alpha: The organizers
running the assessment (who may also author test items as part of their duties while
preparing the assessment), the candidates taking part in the assessment and optionally
the authorities concerned with the legal aspects of the assessment. If either of these
parties fails to fulfil their role within the assessment process, there is no guarantee
that it will produce the desired outcome.

2.2.1 Alpha ‘Organizers’

For each assessment, there is at least one person responsible for organizing it and
thus managing the assessment process. For larger assessments, it can be assumed
that more people are involved in setting up and conducting the assessment, including
test item authors, assessors and technical staff. Each of them pick up parts of the
responsibility for conducting the assessment and are thus responsible for some part
of the assessment process.

The proposed kernel defines an alpha with four states to represent all essential
aspects of the organizers’ duties (see Fig. 5). The name of the first state is ‘Identified’.
It represents the fact that itmay require somework tofindoutwhoneeds to be involved
into the assessment for which tasks. The name of the second state is ‘Working’. It
is fulfilled when all responsible persons have picked up their duties. Once they have
done everything that is required to start the actual assessment, state ‘Satisfied for
Start’ is reached. Similarly, the final state ‘Satisfied for Closing’ is reached when all
evaluation and post-processing is done and the organizers have no more open duties.

2.2.2 Alpha ‘Candidates’

The largest group of people concerned with an assessment are usually the candidates,
which are the persons who take part in the assessment by solving a test. Although

Fig. 5 Alpha states and checklists for the four states of alpha ‘Organizers’



Lean and Agile Assessment Workflows 195

Fig. 6 Alpha states and checklists for the seven states of alpha ‘Candidates’

they are involved personally in the assessment process for a relatively short period
of time, the proposed kernel includes an alpha with seven states to represent all
essential aspects related to candidates (see Fig. 6). The names of the first two states
are ‘Scoped’ and ‘Selected’. They refer to the part of the process in which it is
first defined who is allowed to take part in the assessment and second the actual
persons are identified. The third state ‘Invited’ is fulfilled when candidates know
how to prepare themselves for the assessment. The following two states ‘Present’
and ‘Dismissed’ refer to the physical presence of the candidate at the location where
the assessment takes place. Notably, that does not mean that all candidates will be
at the same place at the same point in time. They are also considered ‘Present’ if
they are in different locations. It is also possible that some candidates are already
dismissed, before the last one is present, as it is usual in oral exams. The names of
the sixth and seventh state are ‘Informed’ and ‘Satisfied’. They reflect the fact that
candidates need explicitly to be informed about their results, which corresponds to
state ‘Published’ for grades and feedback. In addition, they also often have some
time frame to place complaints before the grades formally count as accepted.

2.2.3 Optional Alpha ‘Authorities’

Depending on the didactic and formal setting of the assessment, some official party
may be formally responsible for any legal issues related to conducting the assess-



196 M. Striewe

Fig. 7 Alpha states and checklists for the four states of alpha ‘Authorities’

ment. As this may introduce additional process steps or dependencies between states,
authorities are introduced as an additional optional alpha in the kernel. This alpha is
only relevant for formal assessments. States and checkpoints for alpha ‘Authorities’
are shown in Fig. 7. The name of the first state is ‘Identified’. It covers the same
aspects as the corresponding state of alpha ‘Organizers’. The name of the second
state is ‘Involved’. It is fulfilled when all assessment information relevant to the
authorities have been provided. The naming of the state is different from the second
state of alpha ‘Organizers’, as authorities are supposed to play a less active role in the
assessment process. Hence they may be involved in terms of providing information
or verifying documents, but do not necessarily work in terms of creating contents
or making design decisions. The names of the third and fourth state are ‘Satisfied
for Start’ and ‘Satisfied for Closing’. This is again similar to the states of alpha
‘Organizers’. They are reached when there are no more legal obstacles to start the
assessment or the legal files for the assessment are ready to be closed, respectively.

2.3 Area of Concern ‘Logistics’

Besides contents and people, there is also a demand for physical or technical facili-
ties to conduct an assessment. In any case, there are one or many physical locations
where candidates are located while taking the assessment. Optionally, they are also
using some technical system in case of a computer-aided assessment. This area of
concern thus consists of two alphas for the physical and technical aspects of assess-
ment organization. One can imagine adding a third optional alpha for materials or
equipment needed during the assessment in case the candidates have to perform
physical experiments in natural sciences, artistic or musical exercises using instru-
ments or requisites, or similar. However, the states and checkpoints necessary for
this kind of alpha are very likely to be domain-specific. Thus, they are out of scope



Lean and Agile Assessment Workflows 197

for a generic kernel. Instead, they can be added as domain-specific extensions to the
kernel, similar to the domain-specific extensions that are defined in the ESSENCE
standard.

2.3.1 Alpha ‘Location’

It is assumed that each assessment needs some physical location where candidates
will be located while taking part in the assessment. Depending on the kind and size
of assessment, this may be a single room for all candidates (at the same time or one
single candidate or group after another) or a set of distributed locations.

The proposed kernel defines an alpha with six states to represent all essential
aspects related to the assessment location (see Fig. 8). Quite similar to the states
for candidates, the names of the first two states for the location are ‘Defined’ and
‘Selected’. They refer to the fact that first some abstract requirements are formulated
towards the properties of the assessment location and then an actual room or set of
rooms is selected. As rooms are physical resources, they may cause conflicts with
other assessments happening at the same time. Hence, state ‘Reserved’ is explicitly
introduced to cover the necessary communication as well as the calculation of set-up
time. If all set-up is done, the location is considered ‘Prepared’, which is the fourth
state (corresponding to ‘Satisfied for Start’ for the organizers). The names of the final
two states are ‘In Use’ and ‘Left’. They correspond to some extent to ‘Present’ and
‘Dismissed’ for the candidates but also cover the fact that the location needs to be
restored after the assessment.

2.3.2 Optional Alpha ‘System’

In case a computer-aided assessment system or similar electronic system is used
to conduct the assessment, it can be represented by an additional optional alpha.
The alpha covers all possible duties of this system such as administering the tests,
accepting submissions, associating grades and feedback to submissions and per-
forming grade and feedback generation automatically. This alpha is only relevant
for electronic assessments. States and checkpoints for alpha ‘System’ are shown in
Fig. 9.

Similar to the previous alpha, the names of the first two states are ‘Defined’ and
‘Selected’. This again reflects the fact that (at least in an ideal scenario) one would
first define some abstract requirements towards the assessment system and then select
and actual system fulfilling these requirements. In reality, organizers sometimes have
no choice, as theymust use the system provided by their institution. In this case, these
two states are fulfilled by default and the features of the available systemmay restrict
organizers in the selection of test item formats they can use. Since the ESSENCE
notation does not require to define dependencies between states from different alphas
explicitly, processes for both orders can be defined and monitored using this kernel.
The name of the third state is ‘Available’. It refers to the fact that the selected system



198 M. Striewe

Fig. 8 Alpha states and checklists for the six states of alpha ‘Location’

Fig. 9 Alpha states and checklists for the six states of alpha ‘System’



Lean and Agile Assessment Workflows 199

also needs to be accessible to continue preparation. This in turn will lead to the fourth
state, which is named ‘Ready for Start’. The name of the fifth state is ‘In Use’. It
depicts the period of time in which candidates interact with the system. This is also
the period of time in which it performs tasks like automated grading on its own. The
name of the final state is ‘Ready for Closing’. This state makes no assumptions on
whether the whole system will actually be closed or whether it is just the assessment
that is closed and archived. However, it is assumed that any remaining steps of the
process will not require any more interaction with the assessment system.

3 Sample Workflow Definitions

To demonstrate how to define processes based on the Kernel for Educational Assess-
ment we consider a summative e-assessment such as an electronic exam. This sce-
nario is based on practical experience of the author with exams held several times a
year. In this scenario, candidates come to the exam hall that is equipped with com-
puters and an appropriate e-assessment system. There is no need to provide direct
feedback to the candidates while they are present in the exam hall so that solutions
can be graded asynchronously. In fact, this scenario requires a quite large and com-
plex workflow. However, it can be described in very lean and concise way, as the
next sections will demonstrate.

The technique used to model the process is to group states from several alphas
into a phase and define the process as a linear sequence of phases. One phase can
cover more than one state of a single alpha, but there may also be alphas that do not
contribute one of their states for a particular phase. There are other ways to model
processes as well, e.g. linking alpha states via activities, but as neither activities
nor activity spaces have been discussed in this chapter, this way of modelling is
also ignored here. The process model thus comes close to what is suggested as ‘big
picture of assessment’ as suggested in Banta and Palomba (2015).

Our scenario of a summative e-assessment can be described using five phases:

1. The preparation phase contains all states that are considered while planning
the assessment. While scope, shape or the number of people involved in the
assessment are not clear at the beginning of this phase, most of these bounds and
circumstances should be made clear during this phase. However, states dealing
with details that are considered of minor importance can be deferred to later
phases. On the other hand, any state bearing major decisions about cancelling
the assessment should be included into this phase, as cancelling later will result
in wasting significant amounts of work.

2. The construction phase contains all states that relate in some way to the produc-
tion of resources and artefacts needed during the assessment. It can be assumed
that a significant amount of time will be spent on tasks arising from this phase.
Any state that must be completed before that assessment starts should be placed
in this phase at the latest.



200 M. Striewe

3. The conduction phase represents the time frame in which the actual assessment
is conducted. Thus, all states related to delivering tests, collecting submissions
andmonitoring the assessment should be grouped in this phase. In particular, this
is most likely the only phase in which the candidates have direct contact with the
assessment.

4. The evaluation phase bundles states related to assessing submissions or answers
from the candidates and generating feedback. From the didactic point of view, this
is one of the most important phases, as this phase produces the actual outcome
of the assessment and thus contributes much to its overall value. Depending
on the domain of the assessment, the test item types used and the mechanisms
applied for grading, this phase can consume a lot of time in the whole assessment
process. Aswe assumed asynchronous grading for our sample process, this phase
is clearly distinct from the conduction phase.

5. The review phase is considered to be the final phase in the assessment process.
It should cover both legal and organizational post-processing and also tasks on
documenting how well the assessment process actually worked. It is likely that
some people who have been involved in the assessment process so far have no
duties in this phase and thus can leave the process early. Consequently, some
alphas may have reached their final state already in an earlier phase and do thus
not contribute to the review phase.

The resulting process description in terms of alpha states assigned to phases is
depicted in Fig. 10. All alphas including the optional ones are used, as we employ
an electronic system and have to involve the exam authorities. Notably, we can skip
the alpha ‘System’ from the process and retain a process that represents a traditional
written exam that is graded manually after conduction.

Although this is a concise representation of a complex process, the process itself
is not very lean. However, the kernel and the phase model can also be used to
represent much more lightweight processes by skipping not only optional alphas,
but also some more alphas and also particular states of alphas. To illustrate this, we
consider a second scenario in which an assessor interacts spontaneously with some
candidates just where they are. This is what many educators do when running lab
exercises or alike. In contrast to the scenario used before, we can expect to see a very
lean workflow here. Consequently, it is quite unlikely that a process description for
this scenario will be used to guide the assessor in this process, but it can be used
descriptively to explain what is going on.

The process differs in several points from the one discussed so far: First, we
can exclude alphas ‘Authorities’, ‘System’ and also ‘Location’, as the assessment is
informal, includes no e-assessment system and can happen anywhere. Second, we
can exclude several states of some of the involved alphas: As the assessor interacts
with the candidates who are just present, we can exclude the first two stages of
alpha ‘Candidates’. Thus ‘Present’ is the first state for candidates to be considered
in this process. With similar arguments, we can also exclude state ‘Identified’ for
alpha ‘Organizers’. Third, the scenario poses less strict requirements with respect to
verification and review of assessment contents. Hence, we can exclude the last two



Lean and Agile Assessment Workflows 201

Fig. 10 Overview on the assessment process for a summative e-assessment using five phases. The
process assumes the application of asynchronous grading, so evaluation happens in a separate phase
after conduction

Fig. 11 Overview on the assessment process for a lightweight ad hoc assessment using just two
phases. The very informal setting allows to skip the alphas ‘Authorities’ and ‘Location’ from the
process description. Also ‘System’ can be skipped as this assessment is not considered to be an
e-assessment

states for alpha ‘Test Items’ as well as the final state for ‘Organizers’. The resulting
process description in terms of alpha states assigned to phases is depicted in Fig. 11.

The remaining states of the five alphas can then be grouped into just two phases.
The construction phase consequently contains the first two states for ‘Test Items’,
‘Test’, ‘Grades & Feedback’ and ‘Organizers’. It thus describes the time frame in



202 M. Striewe

which the organizer thinks about doing the assessment and plans what to ask. As we
assume this scenario to be a spontaneous assessment, no preparations have happened
before. Candidates are not involved in this phase. The other phase is the conduction
phase in which only ‘Test’, ‘Grades & Feedback’ and ‘Candidates’ are involved in
terms of changing states. This phase is rather similar to the one seen above besides the
fact that state ‘Satisfied’ for alpha ‘Candidates’ is also included here. The idea is that
in an ad hoc assessment, any appeals are handled directly and thus no formal review
phase is needed. As already discussed above, the organizer is also not interested in
detailed verification and review. Thus, the respective states from the review phases
in the other case studies are simply skipped here.

One could think of making the process description even smaller by skipping state
‘Dismissed’ for alpha ‘Candidates’. This would stress the point that the assessment
can happen anywhere and candidates are not required to come to a certain loca-
tion (and consequently leave it later). On the other hand, one can understand the
state ‘Dismissed’ also in a less literal way and consider a candidate dismissed once
the organizer stopped asking questions to this candidate. Notably, the ESSENCE
standard allows to make customizations to states in terms of adding or removing
checklist items. Consequently, one could define an even more fine-grained adoption
of the kernel for this particular scenario by changing the checklists but keeping the
overall idea of each of the alpha states included in the process description.

4 Tool Support

The ESSENCE standard defines the notion of cards for each alpha state. This idea
was also used throughout this chapter to present the different alphas. Hence, a very
native way of tool support is to print out small cards and use them on a pin board or
desk to arrange them into phases and tick off checklist items. However, this is hardly
practical for educators who have to prepare and run several different assessments in
parallel. Electronic tool support can be considered much more practical in this case.
On the other hand, tool support in terms of strict workflow engines is less appropriate
when agile processes are to be used.

A simple web application that provides an overview on a process but deliberately
provides no automated enactment of processes is shown in Fig. 12. It is based on an
industry tool for software engineering process management (Brandt, Striewe, Beck,
& Goedicke, 2017) that can be used with different kernel and process descriptions
based on the ESSENCE standard.

There are two ways how educators can use this tool to handle their workflows:
First, they can use it to provide a concise description of their assessment process.
This can be helpfulwhen discussing processeswith colleagues or comparing different
assessment workflows. At the same time, they can use it to customize their workflows
bymoving states to different phases, hiding alphas or adding specific checklist items.
As the tool does not provide any formal workflow engine as other tools do, it also
does not make any constraints on how educators can change a process description.



Lean and Agile Assessment Workflows 203

Fig. 12 Web application showing an overview on the sample process from Fig. 10. Phases run
from left to right here instead of top to bottom. Users can click on the small boxes to get a detail
view for each alpha state and to tick off checklist items

Second, educators can use the tool to enact and monitor their workflow by ticking
off checklist items and thus tracking progress. The tool indicates fulfilled checklist
items and states with different colouring, so educators always can see what is already
done and what has to be done next. Again, the tool does not force them to perform
a particular activity at a particular point in time, but allows an agile enactment in
which the educators set their own goals. The tool also allows working collaboratively
and thus sharing the responsibility for a particular assessment process. Practical
experience with staff responsible for managing assessment processes in universities
revealed that they prefer using a tool like this with customized workflows over using
general workflow management tools. They also preferred using a tool like this over
managing assessment processes by hand or with standard office tools.

5 Summary and Discussion

This chapter introduced the Kernel for Educational Assessment and demonstrated
how tomodel lean andagile assessmentworkflows.Thekernel contains a universal set
of elements that can be used as building blocks for individual workflow descriptions.
Each element is small and has a concise representation. Practical experience as
expressed in the two sample processes shows that there are enough elements for
complex workflows. At the same time, the set can also be stripped down to a very
small number of elements used in very lightweight assessment processes. The notion
of states and checkpoints can be used both for describing an assessment process and
for monitoring the workflow while enacting it.



204 M. Striewe

Notably, the process of stripping down a complex workflow by removing alpha
states looks very mechanic. This seems to be an interesting antithesis to the ideas
of agile processes on the first glance. However, one has to watch the different meta-
levels: The way of describing processes is somewhat mechanic. The processes them-
selves can be as complex or lean as needed and can be changed in an agile way
whenever needed.

References

Banta, T. W., & Palomba, C. A. (2015). Assessment essentials (2nd ed.). Wiley.
Brandt, S., Striewe, M., Beck, F., & Goedicke, M. (2017). A dashboard for visualizing software
engineering processes based on ESSENCE. In 5th IEEE Working Conference on Software Visu-
alization (VISSOFT).

Danson, M., Dawson, B., & Baseley, T. (2001). Large scale implementation of question mark per-
ception (V2.5)—Experiences at Loughborough University. In Proceedings of the 5th Computer-
Assisted Assessment Conference (CAA).

Dick, W., Carey, L., & Carey, J. O. (2014). The systematic design of instruction (8th ed.). Pearson
Education.

Essence—Kernel and Language for Software Engineering Methods. (2015, Dec). Retrieved from
http://www.omg.org/spec/Essence/1.1.

Jacobson, I., Spence, I., & Ng, P.-W. (2013, September). Agile and SEMAT—Perfect Partners.
ACM Queue, 11(9), 30:30–30:41. https://doi.org/10.1145/2538031.2541674.

Johnson, D. H., & Johnson, R. T. (2002). Meaningful assessment: A manageable and cooperative
process. Pearson.

Laird, D., Holton, E. F., & Naquin, S. S. (2003). Approaches to training and development. Basic
Books.

Millard, D. E., Bailey, C., Davis, H. C., Gilbert, L., Howard, Y., & Wills, G. (2006, July). The
e-learning assessment landscape. In Sixth IEEE International Conference on Advanced Learning
Technologies (ICALT’06) (pp. 964–966). https://doi.org/10.1109/icalt.2006.1652604.

Reynolds, C., Livingston, R., & Willson, V. (2009). Measurement and assessment in education.
Pearson.

Wills, G. B., Bailey, C. P., Davis, H. C., Gilbert, L., Howard, Y., Jeyes, S., … Young, R. (2007). An
e-learning framework for assessment (FREMA). In Proceedings of the 11th Computer-Assisted
Assessment Conference (CAA).

http://www.omg.org/spec/Essence/1.1
https://doi.org/10.1145/2538031.2541674
https://doi.org/10.1109/icalt.2006.1652604


Part IV
Agile and Lean Learning Processes



Criterion-Based Grading, Agile Goal
Setting, and Course (Un)Completion
Strategies

Petri Ihantola , Essi Isohanni, Pietari Heino and Tommi Mikkonen

Abstract When teaching large groups of students with heterogeneous backgrounds
and different learning goals, it is essential to personalize the learning experience.
In this chapter, we describe how we have implemented this in a university-wide
introductory programming course. Each student sets a personal target grade, i.e., the
grade they aim at, based on how deep an understanding of programming they need
(depending on their major subject, etc.) and on how much effort they are willing
to invest in the course. To enable such setup, course assignments are divided into
different levels and the grading directs the students in choosing which assignments
to work on to meet the goals they have set. Furthermore, the students can change
their target grade during the course in an agile manner.

Keywords Criterion-based grading · Automated assessment · CS1
Student strategies · Agile goal setting

1 Introduction

The constructivist learning theories propose that a learner constructs their own com-
prehension of the subject through their prior knowledge (Illeris, 2002). These theories
emphasize that learning is an individual process that reflects the background of the

P. Ihantola (B) · T. Mikkonen
University of Helsinki, Helsinki, Finland
e-mail: petri.ihantola@helsinki.fi

T. Mikkonen
e-mail: tommi.mikkonen@helsinki.fi

E. Isohanni · P. Heino
Tampere University of Technology, Tampere, Finland
e-mail: essi.isohanni@tut.fi

P. Heino
e-mail: pietari.heino@tut.fi

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_11

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_11&domain=pdf
http://orcid.org/0000-0003-1197-7266
mailto:petri.ihantola@helsinki.fi
mailto:tommi.mikkonen@helsinki.fi
mailto:essi.isohanni@tut.fi
mailto:pietari.heino@tut.fi
https://doi.org/10.1007/978-981-13-2751-3_11


208 P. Ihantola et al.

learner. Therefore, it is essential to let the learner personalize the learning process
by choosing learning materials according to personal preference.

In self-directed learning—typical in adult education—the learner also takes the
initiative to formulate and pursue learning goals (Merriam, 2001). Unfortunately,
this self-imposed setting of goals is often poorly supported. As Lister and Leaney
(2003) state:

In the traditional […] approach to grading, all students in a CS1 class attempt the same
programming tasks, and those attempts are graded “to a curve”. The danger is that such
tasks are aimed at a hypothetical average student. Weaker students can do little of these
tasks, and learn little. Meanwhile, these tasks do not stretch the stronger students, so they
too are denied an opportunity to learn.

In the same article, Lister and Leaney propose a criterion-referenced grading
scheme, where the students do different assignments, according to their abilities.
Moreover, the assignments are designed to match the cognitive domains of Bloom’s
taxonomy (Bloom et al., 1956), a classification of levels of intellectual behavior
important in learning (Seddon, 1978). While the taxonomy consists of three hier-
archical models—cognitive, affective, and sensory domains—the cognitive part has
been the primary focus of most traditional education. In particular, it has been com-
monly used as the basis for structuring curriculum learning goals, assessments, and
activities (Fuller et al., 2007).

In this chapter, we describe how we have implemented the criterion-referenced
grading scheme in the context of a university-wide introductory programming course.
In addition, we introduce an agile course concept: We explicitly ask each student to
choose their learning goals, which define the assignments they should complete.
In connection to agile software development, the analogy is to allow the team to
decide which features to pick from the product backlog. Here, the students decide
how much work they are willing to invest in learning a certain topic in the course,
and pick assignments with corresponding complexity. The approach was designed
to support both struggling (Ahadi, Lister, Haapala, & Vihavainen, 2015) and over
performing (Carter et al., 2010, 2011) students by providing a personal, agile learning
experience despite extremely large teaching groups.

Struggling and over-performance are often related to a mismatch between prior
skills and learning goals.We have divided all our programming assignments into four
categories, with increasing complexity. The way this is done resembles grouping
the levels of Bloom (Lister & Leaney, 2003; Johnson, Gaspar, Boyer, Bennett, &
Armitage, 2012). However, as applying Bloom’s taxonomy consistently in Computer
Science (CS) education can be very challenging (Johnson&Fuller, 2006; Thompson,
Luxton-Reilly, Whalley, Hu, & Robbins, 2008), our approach is more practically
oriented: Skills learned from the higher category assignments are prerequisites of
a future course only if a student is planning to take programming as their major
or minor. Moreover, assignments from the lower categories may be too simple for
students with prior knowledge. Thus, they are optional for students aiming at higher
grades.

Our main tool for organizing the course in an agile way is the grading rules of
the course. In our setup, the final grade is based on solving automatically graded



Criterion-Based Grading, Agile Goal Setting … 209

programming assignments throughout the course. The approach is applicable also in
other contexts, however. We describe the course to give an overall understanding and
to reflect our results. In addition to explaining the details of howwehave implemented
agile into education, our main objective is to seek understanding regarding how
students behave in the setup.

The rest of the chapter is structured as follows. First, in Sect. 2, we introduce
the agile course setting, which forms the background of this paper. Then, in Sect. 3,
we describe the research questions related to students’ behavior and the related
methodology. Next, in Sect. 4, we introduce our results, and in Sect. 5, we provide
an extended discussion regarding our main observations. Finally, in Sect. 6 we draw
some conclusions.

2 Agile Course Setting

In order to describe how the agile goal setting has been implemented in our introduc-
tory programming course, we first describewhy the course is needed in our university
and who takes it (Sect. 2.1). Next, we define the teaching methods (Sect. 2.2), and
the grading scheme enabling the individual learning paths (Sect. 2.3). Finally, the
idea of the grading scheme is illustrated with examples of different learning goals
(Sect. 2.4).

2.1 Versatile Needs

The overarching learning goal of the Introduction to Programming course in Tampere
University of Technology, Finland, is to learn to write small programs on one’s own.
We use Python as the programming language, and in addition to basic computer
usage skills, there are no other prerequisites for the course.

The course is obligatory for almost all the students in the whole university, more
than 1000 students every year. Consequently, large and heterogeneous student groups
are included—in addition to computer science students, also, for instance, electrical
engineering, automation engineering, mechanical engineering, and even material
science students take the course. The background for this decision is that in the
modern world all graduates need to know at least the basics of programming to
better understand the use of computer applications in their own fields.

While computer science students build almost all of their professional skills on
top of their ability to program, the students in many other fields just need to under-
stand what programming is. In addition, students’ previous programming skills vary
greatly: most of the students start with no previous programming knowledge, but the
teaching group also includes students who have been programming in high school
and in their free time.



210 P. Ihantola et al.

Fig. 1 Diverse student
population, with special
target groups A, B, and C
identified

The diversity of the teaching group is illustrated in Fig. 1. Students in Group A
are majoring in some other field than computer science. Consequently, they only
need elementary programming skills. Group B consists of students who start with no
prior programming experience and need to cover all the topics of the course. They
need to work really hard in this course. Group C consists of students that know the
basics prior to the course. Thus, they cope even without special attention from the
teacher and are most often neglected in large teaching groups. In our case, all of these
students are attending the same course, and hence our goal is to meet the needs of
all these student groups in our pedagogical design.

Another solution would be that all the different curricula that need programming
would be free to create their own courses with small number of students participating
in each of them. However, our solution where all students attend the same course
ensures flexible possibilities of changing study plans for students. There are many
students who do not know what programming is before they attend the course. In
our course, they can decide that they want to cover the topics more thoroughly and
proceed to further programming courses. In addition, in comparison to going for
different courses, this model allows fine-tuning the goals in accordance to students’
views, not only on individual course definitions.

2.2 Practical Arrangements

All the course material is available online, delivered by using the A+course platform
(Karavirta, Ihantola, & Koskinen, 2013). The material contains an e-book where
all the theory is explained and embeds automatically assessed programming assign-
ments with immediate feedback. Each assignment can be submitted for evaluation at
most ten times. This kind of automated approach is widely applied in programming
education (Carter et al., 2003; Douce, Livingstone, & Orwell, 2005).



Criterion-Based Grading, Agile Goal Setting … 211

In addition to automated feedback, the students also receive feedback from teach-
ing assistants for selected assignments. These selected assignments test the core ideas
of programming thus giving the students first-hand feedback on whether they have
actually understood the problems at hand or if there is something to improve on and
pay attention to in the future.

The course spans over two teaching periods (in total 14 weeks), and it is five
ECTS credits in size. A number of assignments are to be completed weekly. We
use the flipped classroom method (Bishop & Verleger, 2013), where the students
first complete the programming assignments and then attend the class to discuss
different ways of solving the assignments and the problems they faced. Students
work self-guided and ask for help from the teaching staff if necessary. To this end,
we use a multipurpose computer classroom, where the students are allowed to work
whenever theywant. In addition, there are teaching assistant hours in themultipurpose
classroom at least 20 h a week.

At the end of the course, students take an electronic exam which is like a skills
demonstration where the student shows under controlled conditions that he/she can
complete a small programming assignment independently. The exam is not sup-
posed to be difficult. Essentially it is a programming assignment of the same style
as provided during the course.

Our course design is learner-centered. The students work according to their per-
sonal weekly schedules and the teaching assistants are available upon request in the
multipurpose classroom at least during peak times. This way of working requires a
lot of self-discipline from our students. On the other hand, it is very flexible. We also
highlight that working in their own schedule does not mean working alone. They are
encouraged to work in pairs and also to discuss their problems both with the teaching
assistants and in the lectures.

The course design and all the practical arrangements follow the principle of con-
structive alignment (Biggs &Tang, 2007) in which teaching and assessment methods
are chosen to meet predetermined learning goals. As the learning goal is to learn to
implement small programs on one’s own, that is exactly what the student does every
week during the course in all the assignments and in the exam.

2.3 Grading

Our course is graded on a scale from zero (failed) to five (the best). The final grade
is defined by the completed assignments. In the A+course platform, there are over
120 programming assignments, which we divided into four categories:

• Aelementary: small assignments,where the studentmostly just repeats something
that was exemplified in the materials.

• B basic: further small assignments, which mainly concentrate on one new topic,
but are more difficult than elementary assignments because the solution is not
directly in the materials.



212 P. Ihantola et al.

Table 1 The grading rules table lists what are the requirements for each grade

Grade A-points
(elementary)

B-points
(basic)

C-points
(applied)

D-points
(advanced)

Exam2

1 600 700 – – Basic

2 600 800 200 – Basic

3 400 900 400 – Extended

4 200 900 400 200 Extended

5 – 700 400 500 Extended

• C applied: typically, the student has to combine knowledge related to more than
one topic. Some of these assignments are so large that we call them projects,
despite the students working on them only for a few hours.

• D advanced: these assignments require the student to get familiar with materials
outside the core content of the course or are in some other way more difficult than
assignments in the other categories.

Points are allocated to assignments in accordance to how laborious they are. The
largest ones constitute approximately 100 points and the smallest 10 points. There is
a deadline every week, with an optional, discouraged extension. If an assignment is
submitted during the extension, one can only receive 70% of the associated points.
Even during the extension, it is possible to meet the teaching assistants in the class.
This is important, because immediate automated feedbackmay reveal misunderstood
requirements and other problems.

Assignments are associated with grading rules. Table 1 presents a slightly sim-
plified version of them. To achieve grade 3, the student should collect 400 points
from the elementary, 900 points from the basic, and 400 points from the applied
assignments, and pass the extended exam. Both exams are only graded as pass/fail.
The verbal explanation for grade 3 is “good” in our university. Thus, the require-
ment is that the student achieving this grade knows the core content of the course
well enough to apply it in practice (applied assignments, level C). Students targeting
grades higher than 3 also need to accomplish advanced assignments. If the student
has set the target lower than grade 3, he/she is allowed to pass the course with less
work. However, a grade of 3 is a prerequisite for the more advanced programming
courses.

As different students achieve different skill levels, there are two versions of the
exam, basic and extended. The grading rules (Table 1) also define which exam the
student has to take. The extended exam is not necessarily any harder than the basic
one, but it covers a wider selection of topics. The role of the exam is only to double-
check that students did their assignments independently enough to reach the learning
objectives. Therefore, the exam is graded pass/fail and failing it will cause failing
the course.

It is possible to patch upmissing points by completing assignments from the higher
categories. The purpose of this rule is to enforce that missing a single deadline is
never fatal. If you miss deadlines, the first consequence is that it is impossible to gain



Criterion-Based Grading, Agile Goal Setting … 213

Fig. 2 Screen shot of the course platform showing progress bars and completion status of different
assignments

the grade 5. By missing more deadlines, the grade 4 will also be unreachable, and so
on. To fail the course completely, the state of affairs has to be such that the student
has repeatedly missed deadlines.

On the course platform, the student is presented with progress bars showing the
number of collected points in each category. It is easy to follow how the points
accumulate. In addition, the fully completed assignment scores are shown in green-
colored circles and partly completed in yellow. Figure 2 shows the students view of
the course platform. On the right-hand side, the student sees the accumulated points
from different assignment categories and in the middle the progress of different
rounds; the first four rounds (weeks) that have already been closed are collapsed
while the last one is open.

2.4 Individual Learning Goals and Learning Paths

As already pointed out, the overarching learning goal of the course is that the student
is able to implement small programs independently. However, in the spirit of the
criterion-referenced grading (Lister & Leaney, 2003), with such a diverse student
group in question, the students’ individual learning goals may vary greatly.

All the students passing the course are required to meet the learning goal of
implementing small programs independently. This means all students cover the basic
concepts of Python—i.e., functions, lists, dicts, for instance—in some way. In levels
A and B, the learning goal is just to get familiar with all these concepts. In level
C, the students need to be able to apply this knowledge in more difficult situations.



214 P. Ihantola et al.

Fig. 3 Illustrating the differentiation of learning paths in our course setting

For example, in addition to knowing the data structures list and dict, they need to
be able to combine the data structures, i.e., implement a program where the items
of a list are dicts, for instance. In level D, the assumption is that the student will go
further with programming studies and thus needs to learn how programmers search
for information in work life. Therefore, some of the D assignments require searching
for information in the Python documentation.

In contrast to traditional grading, here the grade that the student receives does not
describe how well the student can implement given tasks but how widely he/she has
covered the topics handled in the course.

Setting individual learning goals does not mean that the students who only cover
assignments in levels A and B cover all the materials but do it somehow worse than
other students. It means that they have identified they do not need to cover all the
materials. They can still do all their work thoroughly. For example, for a student of
some discipline other than computing, it is enough that he/she is able to apply the
information provided in the course materials and there is no need to learn to use the
Python documentation.

Figure 3 presents two simplified illustrations regarding how the course can pro-
ceed. The time-axis of the illustrations runs horizontally from left to right. There are a
number of assignments on different levels each week. In the beginning of the course,
there are mainly elementary and basic assignments and, in the end, applied, and
advanced. Figure 3a illustrates the course completion of a student who has set a very
low target grade and only worked on level A- and B-assignments. Figure 3b illus-
trates the course completion of a student who has had prior programming experience
already when starting the course and thus has skipped all the A-level assignments.
When comparing these two accomplishments, we can almost say that these two stu-
dents have almost taken a different course because their learning paths differ somuch
from each other despite them taking the same course.

Thisway of implementing differentiation of learning paths allows us to pay special
attention to the student group C (Fig. 1), which is often neglected simply because
other student groups need more attention. As no student in the course is supposed to
complete all assignments available on the course platform, some of the advanced ones
can be so difficult that they also challenge the students with previous programming



Criterion-Based Grading, Agile Goal Setting … 215

experience. Some of the advanced assignments can also cover topics that are not
important for all the students.

The students—especially those with no prior programming experience—are
encouraged to complete as many assignments as possible in the first weeks of the
course. If they do not know anything about the course content, it is almost impossible
to set the targets. At the end of the third week of the course, they have already seen
assignments at all difficulty levels and know a little better so it is possible to set the
target grades. At this point, we inquire what their targets are for this course. Despite
their answers, nothing prevents the students from changing their targets later on,
however. For example, many of the advanced assignments are “deep diving” into a
specific topic. Skipping advanced assignments in the first half of the course does not
prevent the student from completing assignments from the advanced category in the
latter half of the course. Naturally, even easier is to stop working on the assignments
from the higher levels.

3 Research Questions and Methodology

In the previous section, we presented the agile grading scheme and how we assumed
students would apply it. In this section, we describe the research setup aiming at
understanding how students really use the setup.

3.1 Research Questions

In addition to describing our implementation of the agile course setup, the main
objective of this study is to understand how students utilize the agile course setup
defined in the previous section. The related research questions are as follows:

1. How are students’ self-reported target grades (i.e., individual learning goals) in
the beginning of the course related to the final learning outcomes?

2. What kinds of behavioral patterns can be detected among students in the agile
course setup?

Studying these research questions helps us to understand the course setup from
the perspective of the diverse student population (Fig. 1) attending our course.

3.2 Data

To answer the research questions, we collected data in two course implementations
during the academic year 2016–2017. The CS students were mainly attending the
first implementation (Autumn 2016). Students from the other disciplines attended



216 P. Ihantola et al.

both implementations (Autumn 2016 and Spring 2017). We had access to log data of
all the submissions from the course platform, grade targets set after the third week
and final grades.

When comparing the grades in RQ1, we analyzed the data of all the students who
were active in the course platform during any 2weeks of the course, or who answered
the question about the grade target. This is because, in our context, it is quite common
that students sign up to the course platform just to see what the course looks like
and may then immediately drop out from the course. The selected inclusion criteria
resulted in 831 students; 527 in the 2016 course version from where 482 (91%)
answered the grade target question, and 304 in the 2016 course version from where
267 (88%) answered the question. When answering the RQ2, we focused on the
subset of the students who had answered the question about the grade target.

3.3 Methods

To answer RQ1, addressing the effect of defining an individual learning goal, we
used Wilcoxon signed-rank test to compare the grade distributions of students who
set their grade targets and students who did not. In addition, for students who set a
target, we examined the predictive power of a linear regression model to estimate
the final grade based on the target.

In RQ2, we applied visual data analytics to identify different behavioral patterns
among the students taking the course. As defined by Keim (2002): “The visual data
exploration process can be seen a hypothesis generation process: The visualizations
of the data allow the user to gain insight into the data and come up with new hypothe-
ses”. This kind of manual exploration of visualizations is typical in learning analytics
and educational data mining (Mazza & Milani, 2005; Romero & Ventura, 2010).

Two teachers of the course who had knowledge on the content of the assignments
looked at the visualizations and identified students with similar characteristics in
their course completion paths. Examples of visualizations will be provided later on
in this paper in Sect. 4.2. Patterns were identified and the data was then reanalyzed
in order to confirm visualizations that can be divided into these categories. Although
visualizations of all study paths were viewed for identifying archetypal course com-
pletion patterns, the exact frequencies of the different learning strategies were not
calculated.

4 Results

In this section, we describe the phenomena discovered in the data using both the
visualizations and the additional data related to the course context. Section 4.1 is
related to RQ1 and Sect. 4.2 to RQ2.



Criterion-Based Grading, Agile Goal Setting … 217

4.1 Comparison of Grades and Targets

Table 2 presents the distributions of the final grades in both course versions. Pre-
sentation separates students with and without grade target set. As expected, grades
in the autumn 2016 course version (with CS-majors) are higher than in spring 2017
when participants were mostly nonmajors.

We calculated the Wilcoxon signed-rank test with continuity correction to com-
pare grades of students who answered the questions about the goal grade and students
whodid not.Nonparametricmethodwas selected because of the relatively small num-
ber and skewed distribution of the students who did not set their target grades (see
Table 2). Students who answered the question performed significantly better with
Z�5232, p<0.000 and Z�3683, p�0.004, respectively, in 2016 and 2017 course
versions. We conclude that merely setting a grade target (i.e., an individual learning
goal) seems to play an important role in performance. The grade difference in terms
of median grades in 2016 was one and in 2017 two grades. Defining a goal seems
to be especially important in passing the course. As illustrated in Table 2, dropout
rates in 2016 were 17.4% and 42.2%, respectively, for students with and without an
individual goal. The same stats in 2017 were 40.1 and 70.3%.

For students who set their targets, we constructed simple linear regression models
to predict the final grade based on the self-reported grade target. Both course ver-
sions resulted to a significant model with adjusted R2 of 0.277 (F(1,481)�185.71,
p<0.000) and 0.18 (F(1,265)�58.89, p<0.000), respectively, for the 2016 and 2017
course versions. The exact models and related illustrations are provided in Fig. 4.
Negative offset and slope less than 1 in both models indicate that estimates are often
optimistic. Means of the target grades among the students who defined that were 3.7
and 3.4, whereas means of the actual grades were 2.7 and 1.7, respectively, for the
2016 and 2017 course versions. Moreover, we found that it is almost impossible to
exceed your own expectations if the grade target is low (i.e., 1 or 2). Only one student
who set the target grade at 1 or 2 achieved a better grade. Among the students who
set a reasonable target grade, e.g., 3 or 4, there were more of those who exceeded
their expectations (see discussion on casual well-performers in Sect. 4.2).

Table 2 The grade distribution of students in both the course implementations

Grade 2016 2017

Goal set No goal Goal set No goal

0 84 (17.4%) 19 (42.2%) 107 (40.1%) 26 (70.3%)

1 58 (12.0%) 13 (28.9%) 44 (16.5%) 4 (10.8%)

2 79 (16.4%) 7 (15.6%) 30 (11.2%) –

3 51 (10.6%) 5 (11.1%) 12 (4.5%) 1 (2.7%)

4 99 (20.5%) – 47 (17.6%) 4 (10.8%)

5 111 (23.0) 1 (2.2) 27 (10.15) 5 (5.4%)



218 P. Ihantola et al.

0
50

100
150

1 2 3 4 5

co
un

t

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ●

● ● ● ●

● ●

0

1

2

3

4

5

1 2 3 4 5
goal

gr
ad

e

0

1

2

3

4

5

count
grade = -0.48 + 0.87 * goal

0
20
40
60
80

1 2 3 4 5

co
un

t

● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ●

● ● ●

● ● ●

0

1

2

3

4

5

1 2 3 4 5
goal

gr
ad

e

0

1

2

3

4

5

0 3060900 306090
count

grade = -0.56 + 0.67 * goal

Fig. 4 Self-reported grade goal against the final grade and the regression model to predict the latter
based on the target grade. Autumn 2016 course version (with CS students) is on the left. Spring
2017 course version with only a few CS students attending is on the right. The difference in student
background is clearly visible in grade goals as well as eventual grades

4.2 Students’ Strategies

To answer RQ2 (what kinds of behavioral patterns can be detected among students in
the agile course setup) we started by looking at students who got the best grades. The
rationale of thiswas to identify different strategies that lead to similar outcomes.After
manual inspection of the data, we identified the following archetypes of students:

1. Perfectionists, who set their goal high and do practically all the available assign-
ments.

2. Opportunists, who set their goal high, and did not do the optional (i.e., easier)
assignments.

3. Casual well-performers, who did not set their goals too high but who still got
a good grade at the end.

The exact frequencies of the patterns are not calculated. However, in comparison
to perfectionists, the number of opportunists is small. Among casualwell-performers,
there is a continuous spectrum from perfectionists to opportunists, again dominated
by perfectionists—or at least studentswho domore voluntaryA-exercises. This is not
surprising, as casual well-performers started with the assumption they will actually
need someA-points (i.e., lower grade target). In addition to high performers, dropouts
turned out as an interesting subgroup and the following patterns were recognized
among them:

4. Dropouts bymissing assignments: Students who after some point were not able
to pass the course or get the desired grade and stopped immediately after that.



Criterion-Based Grading, Agile Goal Setting … 219

5. Dropouts by missing skills: Students who completed enough assignments and
even participated in the exam (multiple times) without passing it.

6. Dropouts by failing personal expectations: Students who gained enough points
to pass the course but not enough to meet the requirements of the target grade
failed the course because they did not show up in the exam.

In addition to the above observations, two generic behavioral patterns that extend
over the whole student population, almost disregarding their eventual grades, are as
follows:

7. Goal-driven students will stop all their activities immediately after they have
gained enough points for their target grade.

8. Compensating students who have missed a significant number of assignments
but who then end up compensating the missing points by doing more demanding
assignments.

In the following, we study these groups in more detail by using visualizations of
their course completion paths.

Group 1: Perfectionists: This group of students did not care for the point require-
ments much. They completed all or almost all the assignments despite they had
already gained enough of points for grade 5. There were more of these students in
the first-course implementation that the CS students took.

Figure 5 illustrates a typical course completion path for a student in this group. It
is typical for enthusiastic learners to be interested in completing challenging assign-
ments like the ones we had in level D. However, this student has also completed
almost all A-assignments. It is especially noteworthy, that the A- and B-assignments
in week 9 were all clearly instructed to be aimed for students who did not cover this
topic in the earlier week. The students who had covered it, for instance, the student
presented in Fig. 5, were instructed to proceed directly to the C-assignment of this
week. Still, this student has completed them all, exactly like all the other assignments
too.

For this student, the course platform contains lines of green-colored circles and
full progress bars. We assume that this was one of the motivational reasons for
completing so many assignments that did not contribute to learning. This is why we
have named the group perfectionist

Group 2: Opportunists: Although it was not usual, there were also students who
took the advantage of not having to complete the A-level assignments since they
were targeting grade 5 and had prior programming experience. Figure 6 illustrates
one such completion path. In some of the weeks, this student has completed some of
the easiest assignments probably to checkwhat the newmaterials are about. However,
he has mainly concentrated on completing the applied and advanced assignments,
which is more meaningful for a student who already has the basic knowledge. The
week 10, where he has completedmultiple B-assignments, was about object-oriented
programming, which was probably a new topic for this student.

Group 3: Casual well-performers: As can be perceived in Fig. 4, a number of
students targeting grades 3 and 4 exceeded their personal targets and ended up with
a better grade. The course completion path visualizations of these students do not



220 P. Ihantola et al.

Fig. 5 Perfectionist. Student who targeted grade 5 and achieved it. He completed practically all
the assignments in the whole course. His only non-completed assignments are the so-called “extra
assignments” that were open after the end of the course and assignments he was not required to do.
Colors of the circles represent the assignment level and are explained in the upper right corner of
the figure. Empty circles illustrate unfinished assignments. If reading the article in black-and-white,
there are horizontal lines with equal labels between all the color groups

Fig. 6 Opportunist. Student who targeted grade 5 and achieved it. He had previous programming
experience before this course and thus took advantage of the grading rules. He has only checked
some of the A-level assignments but mainly skipped them



Criterion-Based Grading, Agile Goal Setting … 221

differ much from the visualizations of groups 1 and 2. We identified these students
by also looking at the targets they had set for themselves in the third week of the
course.

These students probably did not know exactly what to expect from this course.
They just started completing the assignments and kept on working even if they had
reached the point requirements of the grade they were targeting. The aim of the
grading system was that you can change your targets during the course and this
group of students proves that it works.

Group 4: Dropouts by missing assignments: Some students missed so many
assignments that it was not possible to compensate anymore. They gave up with
the course and stopped working on the programming assignments. Typically, these
students collected more points in the beginning of the course but then suddenly
changed the direction completely.

There can be various reasons for this behavior. Some of the students realized that
completing the course required more time than they had expected and allocated in
their weekly schedules. Some of the students realized that they have already missed
so many points that it was impossible to gain enough points by completing all the
remaining assignments.

Group 5: Dropouts by missing skills: These students completed a lot of pro-
gramming assignments and gathered enough points to pass the course. However, they
failed due to not passing the exam. As explained earlier, the exam was not a difficult
programming assignment, but similar to the regular assignments done during the
course. What made the exam different from the regular assignments was that the
student was expected to demonstrate the ability to write some code on their own in
a controlled environment.

We have observed that there are students belonging in this group for two reasons:
some of them co-operated all the time with a friend or a group of friends and some of
them were regularly working in the multipurpose classroom waiting for the teaching
assistant to solve all the problems they ran into. Nevertheless, the problem was the
same for all of them: they did not learn the necessary programming skills to be able
to work on their own and thus complete the programming assignment in the exam.

Group 6: Dropouts by failing personal expectations: These students were aim-
ing at a high grade but collected enough points for passing at a lower grade only.
They never took the exam of the course, and thus failed the course. It seems that
they are ambitious and did not want to have a bad grade in their study register. These
students most likely signed up for the course’s next implementation.

Group 7: Goal-driven students: In the beginning of the course, these students
completed asmany assignments as possible.When they gained enough points for one
of the categories, they immediately stopped working on assignments in that category.
The students aiming at grade 1 could gain enough points for passing the course at
aroundweek 9. Figure 7 illustrates a course completion path for a student in this group
who stopped working on the course assignments after week 9. Figure 8 illustrates
a rather more complicated course completion path from a student representing this
group. He stopped working on the assignments in different categories step by step.



222 P. Ihantola et al.

Fig. 7 Goal-driven. Student who targeted grade 1 and achieved it. In the beginning of the course,
he completed almost all the assignments. Then, on week 9 he gained enough of points for passing
the course and stopped working on the course

Fig. 8 Goal-driven. Student who targeted grade 3 and achieved it. He reached the requirements
for A-points in week 7. After that he did not complete any A-assignments. Then, he reached the
requirement for B-points in the middle of week 10 and did not complete any more B-assignments
after that

The teaching assistants reported that some students were complaining that the
assignments in the higher levelswere too difficult to be completedwithout completing
A-assignments related to the same topic but there was no need to complete the



Criterion-Based Grading, Agile Goal Setting … 223

Fig. 9 Compensating. Student who targeted grade 3. However, he missed so many assignments
that he only got grade 1. The biggest losses were the most difficult assignments in weeks 3–4 and
almost all the assignments during weeks 5–6. Looking at the visualization quickly, it might seem
that he has completed a lot of assignments. However, there are many large red circles (weeks 3,
5, and 6) that are not colored. He was grouped in the compensating students because he was able
to catch up by completing some of the last assignments that were targeted for students targeting
grades 3–5

A-assignments after fulfilling the A-point requirement. The complaining students
were from this group and targeting grades 3–5. The complaints really encapsulate
the aim of completing the programming assignments only to gain enough points.
They did not see that completing the assignment in high-level categories would be
easier if you had first completed the easy assignments related to the same topic.

Group 8: Compensating students: These students had a phase of the course
where they missed a lot of deadlines or handed in a lot of solutions by the extended
deadline and thusmissed points. Formany students, such an incident lead to dropping
out from the course.However, the students in this group did not give up but patched up
the missing points by extra assignments at the end of the course. Figure 9 illustrates
one-course completion path of a student who was missing quite a lot of assignments
in the first half of the course but did not dropout.

All the topics handled in the course build on the topics from the earlier weeks. This
means that a student cannot just start working on the new assignment after missing
all the assignments from the previous week(s). You always need some knowledge
from the earlier weeks to complete the new assignments. Therefore, patching up the
missed points can become very laborious.

The aim of the grading was that none of the assignments is so important that
missing it would lead to failing the course. This grading system allows the students
to compensate for missed assignments very liberally. However, compensating is not



224 P. Ihantola et al.

easy so the students really pay for the free time they have taken in the middle of the
course.

A student with less thorough knowledge is most likely not able to compensate for
missing many assignments. We also observed multiple ways of dropping out from
the course.

4.3 Student Feedback

This student-centered, agile style of arranging the course that allowed the students
to work according to their own schedule was praised by the students who completed
the course. Approximately, 80% of students in each course implementation reported
they worked “mostly independently” and over 10% “more often independently than
in the multipurpose classroom” when asked for feedback after the course was over.
The open-ended feedback from students mentioned often, e.g., “It is very effective
to be able to work on one’s own pace”. Of course, there was also negative feedback
from students who did not like the approach of working independently but most of
the feedback was positive.

The students who were not majoring in computer science also gave positive feed-
back regarding the possibility to pass the course with less work. However, some
students criticized the grading because they felt that it was unfair that you cannot
have a good grade without completing the advanced assignments.

In the feedback, over half of the students checked that the course was too labo-
rious. This, of course, was not our intention—rather, our idea was that the students
work every week until their time for this course is up and then leave the rest of the
assignments uncompleted. However, many of the students took more time for this
course and completed most of the assignments even if they did not manage to do it in
the time they were planning to. The teaching assistants reported that many students
felt that they need to have grade 5 because they can decide the grade themselves. In
the traditional way of grading, you typically do your best and hand in your solution
for grading. Then the grader decides about your grade. Our way of grading turned
this scene in the opposite direction: the students were able to decide their grade
themselves by working for a longer time. Psychologically, there is a big difference in
getting the grade that the grader decides for you and in making the decision yourself.
For a student targeting grade 5, the decision to complete almost all the assignments
had to be taken weekly again and again.

5 Discussion

Fundamentally, our goal was to be able to meet the needs of different student groups.
The results section gave us insights into student feedback, the grades they achieved,
and different kinds of strategies for taking the course. While the feedback was gener-



Criterion-Based Grading, Agile Goal Setting … 225

ally positive and the students mostly liked the agile course setup, we also identified
subjects for discussion and improvement.

5.1 Criterion-Referenced Grading with Automated Feedback

In the “traditional” way of grading, it is possible to define the requirements for
each grade after all submissions have been received. In the criterion-referenced
approach, the requirements have to be defined beforehand because they are the tool
for guiding what students do. When this is combined with automated feedback,
students know all the time what grades they have already earned and what grades
are still reachable—provided they are able to pass the exam. After all, feedback
students get from the assignments is one of the powerful influences on learning
and achievement—either good or bad (Hattie & Timperley, 2007). In this study, we
observed both sides of the feedback.

Automated assessment is sometimes criticized as it allows students to gather
points from partially correct implementations. This can lead to a mismatch between
actual and expected skills. In general, this could be tackled, for example, with a more
coarse-grained grading of the assignments or by having somemandatory assignments
where the feedback—even if automated—would be delayed (Spacco et al., 2006).
Other approaches to addressing trial and error learning in the context of automatically
assessed programming exercises are surveyed by Ihantola et al. (Ihantola, Ahoniemi,
Karavirta, & Seppälä, 2010). We approached this challenge by grading nearly all
assignments as passed/failed.

5.2 (Un)Selecting the Assignments

When looking at the strategies defined in the previous section, bothOpportunists and
Goal-driven students followed a clear strategy for optimizing their workload. This
anticipated pattern is demonstrated by advantage taking students skipping the easy
assignments. Goal-driven students, however, made a sudden stop before the end of
the course when they had enough points for their target grade. They might have been
able to pursue a higher grade but as the criterion-based grading scheme was publicly
available, they decided to use the remaining time for something else—hopefully for
other courses they felt more relevant for their further studies.

An alternative interpretation for the goal-driven group could be that after a certain
point, the assignments simply became too difficult. The fact that some goal-driven
students applied also the opportunist strategy at the same time, and that some of the
stops were between grades supports this. Thus, we can ask, is it reasonable to allow
students to choose which assignments are valuable for their learning? If the grading
rules direct the student in the wrong direction, correcting the course of learning takes
a lot of self-discipline and good self-regulatory skills.



226 P. Ihantola et al.

Moreover, looking at the group’s Dropouts by missing assignments and Com-
pensating students, we perceive that there is a very fine line between passing and
failing the course. This raises the question, is it fair for students to allow them to
skip assignments if the consequences are troublesome: compensating work or failing
the course entirely. We assume that the difference between Compensating students
and Dropouts by missing assignments is closely linked to the self-regulatory skills
of students. Thus, in the future, we should support such skills as well. For example,
gamification and various visualizations affect self-regulation (Auvinen, 2015). In
addition, peer review can boost self-efficacy (Zingaro, 2014), which contributes to
the students’ persistence to pass the course.

5.3 Learning the Necessary Skills

The group Dropouts by missing skills did well during the course but failed the exam.
We assume that free riding in pair programming could have led to disparity between
the exam and the assignments. Thus, we argue that Dropouts by missing skills could
be helped by adding a midterm exam into the course requirements. This way they
would recognize earlier that their way of working has led to problems with learning.
If they recognized this early enough, it would still be possible to correct the problem
before the final exam. Moreover, our electronic exam setting (Laine, Sipilä, Ander-
son, & Sydänheimo, 2016) allows students to take the exam in their own schedule,
so it would be easy to add the midterm exam. We will consider it in the following
course implementations. Another problem in our exam setup was that the students
self-selected the difficulty of the exam. A longer exam where students would solve
both easier and more demanding tasks should solve this problem.

5.4 The Requirements of Passing the Course

Finally, the group Dropouts by failing personal expectations is problematic from the
teacher’s perspective. The obligatory exam leaves students the possibility to decide
to fail the course on purpose.

In our context, students can re-take this course and raise their grades later. The
teachers, of course, wish that students would first make sure they pass and then later
promote their grade if they still feel it is important. Thus, it seems that there is a need
for redesigning the passing requirements so that it is not possible for the student
to decide that he/she wants to fail the course like this. However, making the exam
optional for grade 1 is not ideal, since the existence of the group Dropouts bymissing
skills proves that there is a need for a controlled exam. Midterm exam, discussed in
the previous section, and improved (automated) detection of extensive collaboration
(Hellas, Leinonen, & Ihantola, 2017; Yan, McKeown, Sahami, & Piech, 2018) are
the alternatives we consider to address these challenges in the future.



Criterion-Based Grading, Agile Goal Setting … 227

5.5 Over Performing

In our study, the group Perfectionists did extra on the A-level assignments as well
as over-performed by completing assignments where they learned new and exciting
things (level C and D in our case).

There can, of course, be explanations as to why students want to complete the
voluntary A-assignments: Some of them do not have prior programming experience
and thus need to learn all the details. The A-assignments are designed for this and
thus useful. It is also possible that some students completed them at the beginning
of the course just to do something since there were not many C- and D-level
assignments at this phase of the course. However, in the later part of the course, there
were also A-assignments for the students who had difficulties in the course, and thus
missed some assignments here and there. These A-assignments are repeating the
basic concepts that have already been learned in the earlier assignments. Therefore,
we assume that a student who is going to have grade 5 will not learn much by
completing these repetitive extra A-assignments. To our understanding, the only
motivation of this student group for completing these repetitive extra A-assignments
is that they want to have the maximum points on the course platform. Thus, we
decided to name them the Perfectionists.

5.6 Summarizing Different Student Strategies

The course completion strategies resemble the strategies identified by Karavirta,
Korhonen, andMalmi (2005). Based on the clustering of how students use resubmits
in the context of automated assessment, they divide learners between passers, ordi-
naries, iterators, ambitious, and talented. One can argue that our Perfectionists are
also ambitious. Advantage taking students are most likely talented, and both com-
pensating and goal-driven students could belong into passers. In the future, it would
be extremely interesting to combine the information from resubmissions to learning
paths and use the improved profiling for adaptive learning (Brusilovsky et al., 1998).

5.7 Further Observations

Finally, it can be regarded as unfair that the students, who fail to complete advanced
assignments, cannot get grade 5. However, we believe it is also important to learn
to set priorities, which is an important work-life skill for the later career—if you are
not majoring in CS do you need to have the best grade in a laborious programming



228 P. Ihantola et al.

course? Granted, for a more homogeneous student group, such considerations might
be misleading, but based on experience, students, in any case, set different priorities
to their courses, and hence offering an agile, well-defined approach to do so has been
regarded welcome.

6 Conclusions

In this chapter, we have provided an insight into the way that we provide personalized
learning experiences in a university-wide introductory programming course. Course
content is flexibly defined by the learners, and, based on the individual goal setting,
the students are allowed to choose the assignments they work on. In analogy to
agile software development, this corresponds to allowing the development team to
decide which features they choose to work on, depending on the complexity and
other factors associated with the feature. We have also shed light on how students
experience and utilize the agile course setup by analyzing their study paths. In this
respect, the following research questions directed our study.

1. How are students’ self-reported target grades in the beginning of the course
related to the final learning outcomes?

Just setting a goal—in our case, the target grade—seems to have a strong positive
correlation with passing the course. Moreover, there is a small/medium correlation
between the target grade and final grade. Interestingly, the means of the target grades
in Autumn 2016 (including CS students) and Spring 2017 (mainly other students)
were nearly the same, while the actual performance in Autumn 2016wasmuch better
(see histograms in Fig. 4). This hints that the presumably weaker students did not
utilize the grading scheme as we expected. Perhaps it is difficult to set yourself low
expectations. Given the way that the course was designed, this may have guided
weaker students to do tasks that were too difficult.

2. What kinds of behavioral patterns can be detected among students in the agile
course setup?

The main objective of this study was to understand how students utilize the agile
course and how it works from the perspective of the diverse student population. How-
ever, in the process, we identified three distinct behavioral patterns that were related
to high performance (i.e., Perfectionists, Opportunists, and Casual well-performers),
three patterns of failing the course (i.e., Dropouts by missing assignments, by miss-
ing skills, and by failing personal expectations), and two other behavioral patterns
associated with how students work (i.e., Goal-driven students and Compensating
students).

The analysis of the goals and the perceived behavioral patterns show that there
are various ways of completing the course. Unfortunately, we also perceived various
ways of failing the course which suggests that the low performing students should
be taken more into consideration when developing the course. Notwithstanding,



Criterion-Based Grading, Agile Goal Setting … 229

the diversity of the students’ strategies demonstrates that the criterion-referenced
grading scheme certainly supports the diversity of the student population better than
a traditional course setup where all students complete the course in the same manner.
Adjustment of the grading criterion is needed though.

Obviously, there are numerous directions for future work. In fact, almost any
of the identified student groups could be more elaborately studied to understand
their motives and goals. In particular, understanding why some talented and clearly
capable students also complete simpler assignments rather than directly focusing on
more complex problems is an interesting issue we plan to address in the future. In
addition, studying how the students advance in their studies later on, and whether
this correlates with their results and motivations in this course forms an interesting
piece of further research.

References

Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015, July). Exploring machine learning
methods to automatically identify students in need of assistance. In Proceedings of the Eleventh
Annual InternationalConference on InternationalComputingEducationResearch (pp. 121–130).
ACM.

Auvinen, T. (2015). Educational technologies for supporting self-regulated learning in online learn-
ing environments. Doctoral dissertation. Retrieved from http://urn.fi/URN. ISBN:978-952-60-
6281-5.

Biggs, J., & Tang, C. (2007). Teaching for quality learning at university (3rd ed.). Open University
Press.

Bishop, J. L., & Verleger, M. A. (2013, June). The flipped classroom: A survey of the research.
In ASEE National Conference Proceedings, Atlanta, GA, USA (Vol. 30, No. 9, pp. 1–18).

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill,W. H., Krathwohl, D. R., et al. (1956). Taxonomy of
educational objectives: The classification of educational goals. Handbook I: Cognitive domain.
New York: David McKay Company, Inc. (7th Edition 1972).

Brusilovsky, P., et al. (1998). Adaptive educational systems on the world-wide-web: A review of
available technologies. In Proceedings of Workshop “www-Based Tutoring” at 4th International
Conference on Intelligent Tutoring Systems (ITS’98), San Antonio, TX, USA.

Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., English, J., Fone, W., et al. (2003). How shall we
assess this? In ACM SIGCSE Bulletin (Vol. 35, pp. 107–123).

Carter, J., Bouvier, D., Cardell-Oliver, R., Hamilton, M., Kurkovsky, S., Markham, S., et al. (2011).
Motivating all our students? InProceedings of the 16th Annual Conference Reports on Innovation
and Technology in Computer Science Education-Working Group Reports (ITiCSE’11) (pp. 1–18).
ACM.

Carter, J., White, S., Fraser, K., Kurkovsky, S., McCreesh, C., & Wieck, M. (2010). ITiCSE 2010
working group report motivating our top students. In Proceedings of the 2010 ITiCSE Working
Group Reports (pp. 29–47). ACM.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of programming:
A review. Journal on Educational Resources in Computing (JERIC), 5(3), 4.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernan-Losada, I., Jackova, J.,…, Thomp-
son, E. (2007, December). Developing a computer science-specific learning taxonomy. SIGCSE
Bulletin, 39(4), 152–170.

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1),
81–112.

http://urn.fi/URN


230 P. Ihantola et al.

Hellas, A., Leinonen, J., & Ihantola, P. (2017). Plagiarism in take-home exams: Help-seeking, col-
laboration, and systematic cheating. In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education (pp. 238–243). ACM.

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for
automatic assessment of programming assignments. In Proceedings of the 10th Koli Calling
International Conference on Computing Education Research (pp. 86–93).

Illeris, K. (2002). The three dimensions of learning. Malabar, Florida: Krieger Publishing Company.
Johnson, C. G., & Fuller, U. (2006). Is Bloom’s taxonomy appropriate for computer science? In
Proceedings of the 6th Baltic Sea Conference on Computing Education Research: Koli Calling
2006 (pp. 120–123).

Johnson, G., Gaspar, A., Boyer, N., Bennett, C., & Armitage, W. (2012). Applying the revised
Bloom’s taxonomy of the cognitive domain to Linux system administration assessments. Journal
of Computing Sciences in Colleges, 28(2), 238–247.

Karavirta, V., Ihantola, P., & Koskinen, T. (2013, July). Service-oriented approach to improve
interoperability of e-learning systems. In 2013 IEEE 13th International Conference on Advanced
Learning Technologies (ICALT) (pp. 341–345). IEEE.

Karavirta, V., Korhonen, A., & Malmi, L. (2005). Different learners need different resubmission
policies in automatic assessment systems. In Proceedings of the 5th Annual Finnish/Baltic Sea
Conference on Computer Science Education (pp. 95–102).

Keim, D. A. (2002). Information visualization and visual data mining. IEEE Transactions on Visu-
alization and Computer Graphics, 8(1), 1–8.

Laine, K., Sipilä, E., Anderson, M., & Sydänheimo, L. (2016, 9). Electronic exam in electronics
studies. In SEFI Annual Conference 2016.

Lister, R., & Leaney, J. (2003). Introductory programming, criterion-referencing, and bloom. ACM
SIGCSE Bulletin, 35(1), 143–147.

Mazza, R., & Milani, C. (2005). Exploring usage analysis in learning systems: Gaining insights
from visualisations. In Workshop on Usage Analysis in Learning Systems at 12th International
Conference on Artificial Intelligence in Education (pp. 65–72).

Merriam, S. (2001). Andragogy and self-directed learning: Pillars of adult learning theory. New
Directions for Adult and Continuing Education, 89, 3–14.

Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6),
601–618.

Seddon, G. M. (1978). The properties of Bloom’s taxonomy of educational objectives for the
cognitive domain. Review of Educational Research, 48(2), 303–323.

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., & Padua-Perez, N. (2006).
Experiences with Marmoset: Designing and using an advanced submission and testing system
for programming courses. ACM SIGCSE Bulletin, 38(3), 13–17.

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., & Robbins, P. (2008). Bloom’s taxonomy
for CS assessment. InProceedings of the TenthConference on AustralasianComputing Education
Conference (Vol. 78, pp. 155–161).

Yan, L., McKeown, N., Sahami, M., & Piech, C. (2018). TMOSS: Using intermediate assignment
work to understand excessive collaboration in large classes. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (pp. 110–115).

Zingaro, D. (2014). Peer instruction contributes to self-efficacy in CS1. In Proceedings of the 45th
ACM Technical Symposium on Computer Science Education (pp. 373–378).



Teaching and Fostering Reflection
in Software Engineering Project Courses

Håkan Burden and Jan-Philipp Steghöfer

Abstract Reflection is an important part of agile software processes as witnessed,
e.g., by the Sprint Retrospectives in Scrum or by the various learning feedback loops
in XP. Engineering education also emphasizes the importance of reflective practice,
e.g., in Kolb’s learning cycle and Schön’s reflection-in/on-action. Our contribution
in this chapter is a toolkit for reflective practice that shows how reflection can be used
by software engineering students for two purposes: to reflect on the application of
a software process and to reflect on their learning process. In order to help students
understand the purpose of reflection and how to approach reflection, we follow a
cognitive apprenticeship approach in which the teachers reflect about the events in
the course, their own goals, and how they are aligned with the teaching. Students
are asked to reflect during supervisions and as part of their written assignments
from the very beginning of the course. We thus combine a meta-cognitive approach
where reflection is taught as a learning strategy with a common software engineering
practice of continuous improvement through reflection. We evaluate the reflective
model and a course design based on it through the student, teacher, and theoretical
lenses based on empirical data.

Keywords Agile · Scrum · Computer science education · Software engineering
Project course · Reflective practice

H. Burden (B)
RISE Viktoria, Gothenburg, Sweden
e-mail: hakan.burden@ri.se

H. Burden · J.-P. Steghöfer (B)
Chalmers | University of Gothenburg, Gothenburg, Sweden
e-mail: jan-philipp.steghofer@cse.gu.se

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_12

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_12&domain=pdf
mailto:hakan.burden@ri.se
mailto:jan-philipp.steghofer@cse.gu.se
https://doi.org/10.1007/978-981-13-2751-3_12


232 H. Burden and J.-P. Steghöfer

1 Introduction

Reflective practice is to evaluate your ownactions and their consequences to engage in
a process of continuous learning and is therefore an essential ability for professional
development (Brookfield, 1995; Lyons, 2010). It enables us to not only learn from
our experiences but to grow as professionals since reflection helps us challenge our
assumptions and develop new professional skills as well as meta-cognitive strategies
which will help us make informed decisions even when time and resources are scarce
(Schön, 1983).

Despite the known benefits of reflection for professional development, there is a
lack of attention within engineering education on integrating reflective practice in
both courses and educational programs (Turns, Sattler, Yasuhara, Borgford-Parnell,
& Atman, 2014). One of the reasons is that reflection can be intimidating since it is
often perceived as sharing private thoughts and even shortcomings (Gunn, 2010). It is
also challenging in the sense that reflection in some way or other asks the question of
what could have been done differently. The third obstacle for teaching and learning
reflective practice is that there is no clear definition of what reflection actually is.

We, therefore, explore reflective practice—from both a student and a teacher
perspective—within an engineering project course and provide answers to two
research questions:

RQ 1 How can we facilitate reflective practice in a software engineering project
course?

RQ 2 How do students utilize opportunities for reflective practice for their con-
tinuous learning?

We will answer these research questions in the context of the development of a
software engineering project course, which also shows how the outcomes directly
inform a course design.

Our contribution is a toolkit for reflective practice, an artifact based on our strategy
to plan, perform, and assess reflection in our course.

This chapter is structured so that first, Sect. 2 details the theoretical framework
and related work and Sect. 3 describes action design research, the methodology we
have chosen for our own course development. The situation as it stood when we
started teaching the course is described in Sect. 4 which is then followed in Sect. 5
by a description of the toolkit for reflective action we derived from applying our
methodology to the challenges we faced. Section 6 details the changes to the course
after applying the toolkit. We then share both our own and the student reflections in
Sect. 7 before we broaden the scope in Sect. 8 to look at how the toolkit could be
applied outside software engineering. Finally, the last section concludes our reflection
and points to future work.



Teaching and Fostering Reflection in Software … 233

2 Background

In this section, wewill discuss the role of reflection in software engineering education
and in software engineering practice as a starting point for our proposal to introduce
reflection as a mainstay in software engineering project courses.

2.1 Reflection and Education

There are numerous definitions of reflection in the educational literature. Shkedi
states that “Reflection ismeta-thinking (thinking about thinking) inwhichwe consider
the relationship betweenour thoughts andour actions in a particular context” (2000).
Smith defines reflection as “What is in relation to what might or should be and
includes feedback to reduce the gap” (2001) while Mann defines that “reflection is a
process of inner dialogue” (2005). Loughran summarizes the situation by stating that
“for some [reflection] simplymeans thinking about something, whereas for others it is
a well-defined and crafted practice that carries very specific meaning and associated
action” (2002).

Schön—in describing the reflective practitioner—distinguishes between
reflection-in-action and reflection-on-action (1983). Reflection-in-action is what we
do when we encounter new situations and need to improvize on how to best proceed.
Reflection-on-action is when we, later on, have an opportunity to sit down and go
through the experience again in our minds to assess how it went and see what we
could have done differently. On the same bearing, Freire defines praxis as the balance
between theory and action where reflection is a means to achieve practices grounded
in reflection (2000). He further states that praxis is not easy as it requires “wise and
prudent practical judgement about how to act in this situation”.

Kolb’s learning cycle (2014) ties concrete experiences in a specific context to
conceptualized insights from reflective practice. The transformation is facilitated
by reflecting on one’s own experiences to modify known concepts, generate new
hypotheses and seek out what others have to say about similar situations. The gained
insights are then used to set up new experiments where the hypotheses can be tested
and new experiences gained.

However, applying Kolb’s learning cycle will yield different results depending on
who does it. Brookfield refers to this by using different lenses, where applying a new
lens gives new insights (1995). For an educational setting, Brookfield defines four
lenses to structure reflection for the teacher. The first lens is the autobiographical
lens which is used to reflect from a personal point of view. The second lens is the
student’s perspective while the third lens is that of the teacher’s peers. Finally, the
fourth lens represents relevant theory and proven practice.

Cognitive apprenticeship (Brown, Collins, & Duguid, 1989) can be seen as an
attempt to reason around the two lenses of student and teacher from the well-known
concept of apprenticeship. But instead of a setting where the craft has a central role,



234 H. Burden and J.-P. Steghöfer

Learning

Reflection

Feedback

Experience

Reviewing

Generalisation

Renewal

Reflection

Comparison

Dis- 
semination

Student Teacher Peers & Theory

Fig. 1 The triple learning cycle, adapted fromElmgren andHenriksson (2010). Student and teacher
learning is interconnected

the focus is on the cognitive skills needed for higher education. The roles of novice
and master are now substituted for the roles of teacher and student as the teacher
uses different techniques for the students to fathom the knowledge and skills of the
master. There are six techniques:

Modeling: The master demonstrates explicitly how a task is done.
Coaching: The master supervises the novice in carrying out a task.
Scaffolding: Themaster sets up supportive structures to guide and help the student

to experiment on their own.
Articulation: The novice uses the terminology of the trade to express new insights,

their reasoning and formulate new challenges.
Reflection: The novice is given the opportunity to compare their own knowledge

and skills in relation to those of the master.
Exploration: The novice is given the freedom to explore on his or her ownwithout

the interference of the master.

Being the master in such a context requires to both assess in advance how to conduct
the different techniques but also to reflect-in-action to adjust them, such as in the
case of scaffolding or coaching.

Inspired by Kolb, Elmgren and Henriksson (2010) represent Brookfield’s four
lenses in a triple learning cycle (cf. Fig. 1) where the students and the teachers meet
in the concrete experience and the teacher’s generalizations are shared and reviewed
by peers. In this way, each cycle is informed by other cycles and knowledge is shared
and spread beyond the personal cycle.

Apart from the aspects already mentioned, the literature referenced above reveals
twomore interesting takeaways: (1) reflection requires doing, be it in terms of experi-
mentation (Kolb, 2014), action (Freire, 2000) or exploration (Brown et al., 1989); and
(2) reflection is contextual and varies over time (Schön, 1983) and person (Brookfield,
1995).

2.2 Reflection in Software Engineering

Reflective practice is an essential aspect of software process improvement (SPI).
The classic SPI loop championed, e.g., by Villalón et al. (2002), consists of the four



Teaching and Fostering Reflection in Software … 235

steps “evaluation of the current situation,” “plan for improvement”, “implement the
improvements,” and “evaluate the effect of the improvements” and thus constitutes
a classic reflection loop as discussed above. Most SPI methods are built around
this notion and contain approaches for some or all of these steps. For instance,
inductive approaches like quality improvement paradigm (QPI)/Experience Factory
(1993, 1995) and iFLAP (2008) focus on the evaluation of the current situation, the
derivation of goals, and the creation of measurement plans to determine whether any
changes were successful. Descriptive approaches like CMMI (2010) on the other
hand focus on the planning of concrete improvement steps.

Since a structured improvement effort using one of the methods mentioned above
is usually associated with a dedicated effort on the organization level and significant
resources are contributed to it, long-term strategic goals are the focus of SPI (Huber,
1996). Reflection, therefore, takes place on an abstract level that encompasses a
larger part of the organization and several software development efforts. The goals
are often to increase long-term productivity, quality, or responsiveness to customer
needs.

In contrast, iterative processes, in particular, agile ones, have a strong focus on
constant change and improvement (Williams & Cockburn, 2003) and allow embed-
ding a similar loop into each iteration and even in daily activities. An overview
of such activities is provided by Babb (2014). They include group programming
where reflection-in-action is practised by the people working together, estimation
and planning activities, as well as the daily standups that many agile teams perform.
In these cases, the reflection is implicit in the interaction of the team members and
thus constitutes a social effort in communities of practice (Wenger, 1998).

Reflection is most explicitly practised in sprint or iteration retrospectives that are
used to allow the team to discuss the current situation, identify desired future states,
and devise a plan to get there. This shortens the round-trip time for improvements
considerably and allows the developers to quickly try out and evaluate improvement
ideas that can be helpful in the short term. Three questions are usually addressed in
these short meetings:What worked well for us?What did not work well for us?What
actions can we take to improve our process going forward? These questions focus
the team on rather immediate issues. The reflection is therefore mostly tactical. This
is in the agile spirit where immediate benefits, responding to changes, and short-term
wins are emphasized over long-term strategy. However, even in such an environment,
retrospectives with a broader scope that stretch all iterations for one release have been
suggested as a way to reflect on the longer-term planning (Maham, 2008).

In situations in which iterations are not used (e.g., in classic waterfall projects or
in projects using the V-model prominent in the automotive industry), post-mortem
reviews are a tool that allows the development team to reflect on theirwork (Dingsøyr,
2005). In contrast to iteration retrospectives, postmortems have a broader scope
that goes beyond a single iteration, are usually more formal and more involved,
and emphasize organizational learning (Dingsøyr, 2005). Combining several post-
mortems from the same organization can even help to reflect on high-level manage-
ment practices that influence the effectiveness of all software development efforts in
the company (Dingsøyr, Moe, Schalken, & Stålhane, 2007).



236 H. Burden and J.-P. Steghöfer

Even though the reflective practice iswidespread and its positive impact is reported
and empirically validated, the concrete design of the reflective activities need to be
carefully tuned to achieve the desired results. The accuracy of effort estimations, e.g.,
is a common problem in software development projects. It was shown that it does
not improve if the engineers that estimated the efforts reflected on their estimations
themselves, but that improvements are only made if other professionals provide
feedback (Jørgensen & Gruschke, 2009). This indicates that reflection needs to be
explicitly fostered and “engineered” in order to be effective in practice.

3 Methodology

We use a modified version of action design research (Sein, Henfridsson, Purao,
Rossi, & Lindgren, 2011), a combination of action research and design science
research that focuses on designing and evaluating artifacts in a situation that “is
dependent on the interaction of the participants of the research” and “can only be
performed in the context of the organization and with the involvement of people
within the environment under study.” (Dresch, Lacerda, &Antunes, 2014, p. 94). Our
modifications target the type of artifact created: instead of an ensemble of IT artifacts
as described by Sein et al. (2011), we create an ensemble of teaching artifacts. This
ensemble constitutes our toolkit for reflective practice in SE education (cf. Sect. 5).
We describe the main characteristics and steps of action design research and how we
implemented them in the following.

3.1 Action Design Research Applied to Education

Action design research is characterized by how it engages with the organization the
subject of the research is embedded in. In particular, it is suitable for situations in
a specific organizational setting that are addressed by intervention and evaluation
within this setting. This maps very well to the educational context since we address
situations that are dependent on the specific settings of the course, the students, the
program, the university, etc. Solutions to challenges observed in specific courses thus
constitute the artifacts that are the outcome of the methodology. They address this
situation and have to be evaluated within it. The artifact is thus not only an outcome
achieved by the knowledge and expertise of the researchers but heavily influenced
by the users (the students and teachers in this case) and the dynamically changing
situation it is designed for and evaluated in.

We follow the four stages and the associated principles suggested by Sein et al.
(2011), mapping each to the educational context to which we apply the methodology.
In the following, we will describe these stages and how we mapped them to our
situation.



Teaching and Fostering Reflection in Software … 237

Stage 1: Problem Formulation The intended outcome of this stage is the framed
problem and the theoretical premise. The two principles to follow prescribed by
Sein et al. (2011) are that the research should be practice-inspired and that the
artifact should be theory-ingrained. We found ourselves in a situation where there
was a gap between the course’s intended learning outcomes and the tools available
to achieve them. This was clearly a practically relevant problem since it affected
our work as teachers as well as the learning process of the students. Constructive
alignment (Biggs, 1996) served as a theoretical foundation to evaluate this gap and
the principle of the reflective practitioner (Schön, 1983) informed our first ideas for
a solution approach. An additional, important practical component was that both
involved teachers had a long-term commitment to the course and were thus not only
interested in improving it in several iterations but could also expend the necessary
resources to do so.

Stage 2: Building, Intervention, and Evaluation This stage’s intended outcome is a
realized (educational) artifact that has been evaluated and refined by use in the rele-
vant situation. It is based on the problem formulation from the first stage. In this stage,
we developed the artifact, a toolkit of reflective practices for the software engineering
project to improve the course’s constructive alignment. The artifact was deployed
and evaluated in several iterations of the course and refined after each iteration. We
followed the principle of reciprocal shaping since the educational artifact shapes the
work with the students in the classroomwhich in turn has an influence on the artifact.
We also ensured the mutual learning principle by giving the students the chance to
learn from us and our attempts to use the toolkit and using the feedback from the
students to learn about the effectiveness of the different tools. Finally, we adhered
to the authentic and concurrent evaluation principle by evaluating the interventions
immediately in an authentic setting.

Stage 3: Reflection and Learning The intended outcome of the reflection and learn-
ing stage is a generalized artifact that applies “to a broader class of problems” (Sein
et al., 2011) achieved within a continuous learning cycle. In our context, that meant
abstracting the developed toolkit from the specifics of the course andmaking it appli-
cable to different course settings. We achieved this through continuous evaluation of
the results in the classroom w.r.t. our goals and constructive alignment. Generality
was achieved by identifying the specific issues in the course, separating them from
the abstract concepts and ideas we applied, and using these concepts to identify new
approaches (i.e., new tools to add to our toolkit). The artifact thus emerged guided by
our reflection of the evaluation results, fulfilling the principle of guided emergence.

Stage 4: Formalization of Learning This stage builds upon the previous one by
abstracting the generalized artifact and the problem further into design principles and
the characteristics of a problem class. This stage thus allowed us to move the toolkit
from the specific course instance into a broader context and abstract it to become
usable for other teachers. We generalized the outcomes of the specific course to for-
malize the toolkit as described in Sect. 5. The abstract toolkit was then instantiated for
the course iteration in spring 2017 and evaluated there to show its viability. Our final



238 H. Burden and J.-P. Steghöfer

result includes a generalization of the problem instance (software engineering project
courses), a generalization of solution (toolkit), and design principles (model aspect
of toolkit), thus following the generalized outcomes principle. The formalization of
the results for dissemination is represented by this publication.

3.2 Data Collection and Analysis

In order to formulate the problem (stage 1) and to reflect and learn (stage 2) from our
experience, we used a number of data sources that we analyzed repeatedly, mostly
to derive qualitative data about the effectiveness of the toolkit for reflective practice
and thus our teaching approach. While we evaluated data from all course iterations
between autumn 2014 and spring 2017, our discussion in this chapter is focused on
the latter iteration and the insights we gain from the evaluation of our current, stable
version of the developed artifact.

Course evaluations We used the course evaluations conducted by the university as
a tool to gauge the satisfaction of the students and identify issues with constructive
alignment, workload, and cognitive demand. The evaluations consist of a voluntary,
anonymous, web-based survey among the students, and a meeting with student rep-
resentatives from the course itself as well as from the student union that is led by the
course coordinator. We thus had the results of the survey as well as the notes from the
evaluation meetings as a basis for our own analysis. We focused the analysis of the
evaluation results on course development (Edström, 2008) and used it to understand
which aspects the students struggled with and needed to be addressed better. As such,
we attempted to receive formative feedback from the students, in particular through
the discussions at the meeting.

Student reports A further source of information were the reports the students wrote
throughout the course. There are three mandatory written hand-ins: the students need
to reflect on how they defined their process, they need to give a report on their progress
by half-time of the course, including how they refined the process, and they need to
describe their overall process and lessons learned at the end of the course. In many
cases, the students refer to lessons they transferred from specific teaching moments.
In addition, the feedback the students got from the teachers on their reports contains
connections between the reports and the individual teaching moments. We use this
information to check if our toolkit is constructively aligned and yields the desired
outcomes. We analyzed the reports quantitatively, applying a lightweight coding in
a separate session that was independent of the grading.

Teacher notes Whenever we introduced a new teaching moment (i.e., a new tool in
our reflective toolkit), we took extensive notes about the reaction of the students,
whether or not we feel we achieved our objective, which questions students asked, if
the time allotted was sufficient, etc. Usually, there were two sets of notes available,
but occasionally only one teacher could be present during the introduction of a new
tool and we relied on his notes in this case.



Teaching and Fostering Reflection in Software … 239

3.3 Threats to Validity

We discuss threats to the validity of our study and the methods used to minimize the
threats, following the classification in Tomal (2010). While this classification was
intended for action research, it applies well to action design research since it has a
strong focus on the participants of the study, i.e., the organizational setting in which
the research takes place.

One of themain threats is differential selection, i.e., collecting and comparing data
from different groups of students in the different iterations of the course. Indeed, in
different course iterations, there are changing proportions of students from different
programs. In the spring iterations, most of the students come from the program on
Industrial Economy, while in the autumn, most of the students are from Information
Technology or Computer Engineering. The different backgrounds cause differences
in how the students perceive different teachingmoments andwhich expectations they
have coming into the course. While students with a computer science background,
e.g., expect a stronger technical focus and are surprised by the focus on process and
reflection, industrial economy students can feel overwhelmed by the programming
tasks. We addressed this threat by leveraging the longitudinal aspect of our study and
trying out our tools in both settings for increased generality.

A related threat is that of history, i.e., differenceswhen data is collected at different
points in time. This is certainly an issue here since we combine data from different
course iterations. However, we have mitigated this threat since we evaluated the data
directly after the course instance in order to develop the course and our toolkit further.

Contamination, i.e., unaccounted factors outside of the study influencing its result,
can be a factor here. For instance, a persistent student complaint is that the scheduling
of students of different programs is not compatible, making it hard for mixed groups
to find time to work together. However, due to the considerable experience of the
teachers, we have a good overview of the course environment and can take such
factors into account.

The threat of instrumentation, i.e., influences of the data collection method, can
play a role, in particular since graded material was used. However, all data sources
were always cross-referenced andnoneused in isolation. In particular, the anonymous
course evaluation survey reduced the threat of bias. However, since the different data
sources capture different kinds of data, a residual effect might remain.

Finally, the threat of researcher bias has been addressed by planning, designing,
acting, and evaluating as a team.While it is possible that the teamas awhole has a bias,
the two teachers provide complementary viewpoints and approaches. In addition,
there has been continuous exchange with program managers, the student union,
students in the course, and other teachers about the course and the different attempts
made to improve it.

Furthermore, there are a number of potential threats to validity that were not
observed in our study: Attrition, i.e., the loss of participants while the study was
ongoing, was not a major issue in this study since almost all students that enrolled in
the course instances finished them. The Hawthorne effect, i.e., participants perform



240 H. Burden and J.-P. Steghöfer

better since they are given attention, is also negligible since our data collection
methods are nonintrusive and only use elements that occur in the normal progress of
the course anyway. While there is maturation of the participants during each course
instance as an effect of the teaching, this is not a major concern for our study since
each course instance started with a new set of students with little to no carryover from
previous instances. The threat of testing, i.e., participants learning from pretests and
thus answering differently in posttests, was also not an issue since our data sources
did not include such tests. There might be a learning effect from the different student
reports based on the feedback from the teachers, but this effect is intentional.

4 The Old Course Design

The starting point for our endeavor is the course instance in which the authors were
first involved in the autumn of 2014. The Software Engineering Project Course rep-
resents 7.5 ECTS or 10 weeks of half-time studies and was taken by 173 students
from 3 different bachelor programs run by the Computer science and Engineering
department, which is a shared department of Chalmers University of Technology and
the University of Gothenburg. The students formed 29 teams and collaborated with
an external stakeholder in developing Android apps for truck drivers which were safe
to use while driving.

The rest of this section is organized following a constructive alignment perspective
where we first introduce the intended learning outcomes (ILO), learning activities
and assessment tasks (Biggs, 1996) before we discuss the benefits and shortcomings
of the course from a teacher and a student perspective.

4.1 Intended Learning Outcomes

The course’s intended learning outcomes reflect the ambition to give an overview of
what canonical software engineering is as a subject area (Burden, 2017), for instance,
as defined in the Software Engineering Body of Knowledge [SWEBOK, (Bourque
et al. 2014)]. Thus, the course aims regarding knowledge and understanding state
that the student should be able to…

ILO1 …identify the complexities of software design and development,
ILO2 …describe the fundamentals of software engineering, such as stakeholders

and requirements, and
ILO3 …describe the difference between the Customer, the Solution, and the

Endeavor as well as the different methods used for each

after successfully finishing the course. In terms of skills and abilities, the student
should be able to…



Teaching and Fostering Reflection in Software … 241

ILO4 …elicitate requirements from and design a solution to a real-world problem,
ILO5 …plan and execute a small software development project in a team,
ILO6 …apply skills from programming and other relevant courses, as well as
ILO7 …learn new tools and APIs on his/her own.

Finally, the students are also expected to be able to…

ILO8 …reflect on the choice of software engineering methods used throughout
the project.

Following Bloom’s revised taxonomy (Anderson, Krathwohl, & Bloom, 2001),
the first three ILOs revolve around factual and conceptual knowledge such as basic
terminology and how these relate to each other. The rest of the ILOs focus on procedu-
ral knowledge such as methods and procedures within the SE domain. The exception
is ILO7 which is meta-cognitive since it requires the students to reason around their
own learning.

4.2 Learning Activities

The learning activities consisted of lectures and supervision with a final presentation
at the end of the course. The supervision was run on a weekly basis and students who
had already taken the course were paid to supervise. The content of the supervision
was supposed to target the process aspects that the student teams encountered but
often revolved around tool and technology issues, such as git merging or Android
debugging. There were 13 lectures which included a lecture each to introduce the
course and the project scope, 4 lectures on the project-specific tools and technologies,
2 lectures on software engineering in general and 2 lectures on Scrum, 1 guest lecture,
and a lecture on which tests and documentation the teams were supposed to hand in.
Since the students were supposed to reflect on their choice of methods and practices
but never had been given the opportunity to get feedback on their reflections, a final
lecture was added while the course was running to give the students an idea of what
reflection could be. During the reflection lecture, one of the authors presented his
own reflections on how the course had panned out and what could be done differently
for the next course instance.

The project started the same week as the course so that the second lecture intro-
duced the project scope. This meant that the lectures regarding Scrum were given
after the students had started their development effort. Subsequently, they had to
make large changes to how they worked or disregard Scrum to continue working in
an ad-hoc manner.



242 H. Burden and J.-P. Steghöfer

4.3 Assessment

The assessment was purely summative in terms of teacher engagement and consisted
of five major elements:

Vision 30% of the grade was determined by how well the product matched the
vision, the stability of the product, and the user experience;

Design Design decisions and how these were documented accounted for 10% of
the final grade;

Code The code quality and the technical complexity of the solution made up 15%
of the final grade;

Tests A further 15% of the final grade depended on which tests had been done and
the documentation of the product;

PMR Finally, 30% of the final grade was based on a postmortem report written
after the final presentation.

The five elements assessed the team performance. To be able to give the student’s
individual grades, the students were also asked to fill out a personal evaluation for
each team member. Together with a summary of who had contributed what to the
code base, this enabled the teachers to give individual students a grade that differed
from the team’s overall grade.

4.4 Constructive Alignment and Student Perception

The relationship between the ILOs, learning activities, and assessment tasks are
visualized in Table 1. Activities and tasks can overlap: the lecture on how to use
Android, e.g., relates both to ILO6 and ILO7 since it both offer an opportunity to
apply skills from previous courses and learn new technologies. In the same way,
the project was used to identify the complexities of software development (ILO1)
and give an opportunity to execute a small software project in a team (ILO5). A
shortcoming of the old course design was how the student teams needed to find ways

Table 1 The course alignment matrix for the old course design

ILO Learning activity Assessment tasks

ILO1 11 lectures and project 7 supervisions and terminology

ILO2 11 lectures and project 7 supervisions and terminology

ILO3 8 lectures and project 7 supervisions, vision, design and PMR

ILO4 6 lectures and project 7 supervisions, vision, design and PMR

ILO5 3 lectures and project 7 supervisions and PMR

ILO6 5 lectures and project 7 supervisions, design, code and tests

ILO7 5 lectures and project 7 supervisions, design, code and tests

ILO8 1 lecture and project 7 supervisions and PMR



Teaching and Fostering Reflection in Software … 243

to transfer the theoretical content of the lectures into practical skills during the project
themselves. This was also remarked upon in the course evaluation and strategies to
carry out the transfer were requested by the students. Regarding ILO7—students
should be able to learn new tools and APIs on their own—the content of the five
lectures centered around demonstrating how to configure the tools and make calls
to the API. During the course, it became obvious that the students struggled with
reflecting on their process and the decisions they took. Therefore, one of the teachers
decided to add a final lecture to the schedule where he reflected himself upon the
design of the course and what he would do differently if he had the opportunity to
give the course again.

Regarding assessment, the only opportunity for formative feedback was during
the weekly supervision slots. This relied on the student supervisors to be present
and capable of handling process-related discussions. The course evaluations indicate
that a recurring problem was that half of the supervisors were difficult or impossible
to get in touch with and that those who carried out their supervision focused on
tool related issues: “The TA was not involved [, did not have] enough knowledge
of the course or helped us in any way”. There were no assessment tasks directly
related to ILO1 and ILO2. Instead, the understanding of the complexities and the
fundamentals of software engineering were assessed indirectly by the terminology
used by the students throughout the project and in their written deliverables.

Since the teams found it difficult to adjust their way of working to Scrum, their
experiences of the Scrum practices were often superficial which led to imprecise
descriptions of how they had implemented Scrum and what they learnt from their
application. Instead, quite a few of the teams focused on technical descriptions of
the technology they had used or the product they delivered. Furthermore, a recurring
situation among those teams that did describe their process decisions focused on
what happened but not alternative paths, turning the reflection into an experience
report. This is also mirrored by the fact that only 3 out of 29 teams made a clear
connection to the literature or the guest lectures when reflecting on their own praxis.

Among the comments given by the students in the course survey, we could see
both that “It’s not easy to divide the learning goals into concrete goals which I can
check if I learned” as well as that “It is very easy to understand what I was supposed
to learn, but the course did not make it easy to learn”. Table 2 shows the student
responses to selected relevant statements in the course evaluation survey.

5 A Toolkit for Reflective Practice

The artifact we developed to address the shortcomings of the course described in
the previous section is a toolkit composed of different learning activities, assessment
tasks, and professional practices applied by the teachers. These components are
complemented by guidelines for a course structure as well as a model of reflective
practice in an educational setting that provides a framework for the deployment and
use of the different tools. We are going to discuss the different elements of the toolkit



244 H. Burden and J.-P. Steghöfer

in the following using the model of reflective practice as a starting point and structure
for our explanations.

Our toolkit for reflective practice is not limited to teaching software processes. It
is also appropriate for software architecture, testing, etc. since the ability to describe
what is, what might or should be and how to bridge the gap is a useful exercise to
include in all software engineering education. This is further elaborated for non-
software engineering courses in Sect. 8.

5.1 Model of Reflective Practice

Themodel of reflective practice we developed (cf. Fig. 2) is based on reflection loops
by both the student [who is the novice in terms of cognitive apprenticeship (Brown
et al., 1989)] and the teacher (who is the master in terms of cognitive apprentice-

Table 2 Mean and median student responses to questions in the course evaluation on a scale from
1 to 5 where 5 is best unless otherwise noted

Statement Mean Median

“I had enough prior knowledge to follow the course” 3.63 4

“The learning outcomes clearly describe what I was expected to learn in the
course”

3.5 4

“The course structure is appropriate in order to reach the intended learning
outcomes of the course”

2.54 2

“The teaching worked well” 2.53 3

“The assessment tested whether I had reached the intended learning
outcomes of the course”

3.22 3

“The course administration worked well” 2.98 3

“The course workload as related to the number of credits was 1—too low,
5—too high”

3.31 3

“What is your overall impression of the course?” 2.69 3

Fig. 2 A model of reflective practice, showing the different reflection loops for both teachers and
students



Teaching and Fostering Reflection in Software … 245

ship). These reflection loops are connected to each other and follow the structure of
Kolb’s learning cycle (Kolb, 2014). Out of experimentation arises experience which
is reflected upon either in-action or on-action (i.e., directly in the situation in which
the experience is created or later on). This reflection leads to new insights that are
either conceptualised before being used in a new round of experimentation or lead
to new experimentation directly.

The reflection-in-action loop (Schön, 1983) shown at the top also operates on a
different timescale than the lower one. For the students, the upper loop operates on the
timescale of a sprint (usually about a week), while the lower loop operates on several
weeks where the conceptualization is supported by deliverables in which the students
document their reflection. For the teachers, the upper loop has a similar timescale
to that of the students, but the lower loop operates on the scale of course instances,
where conceptualization is performed after the end of each course instance and
experimentation begins again with the new course. Thus, the student side represents
a continuous learning process (Schön, 1983) facilitated by reflection whereas the
teacher side represents in-course intervention and long-term course development.

There are numerous connections between these reflection loops. The teachers’
conceptualization and its manifestation in experimentation provide the students with
the opportunity to experience and enter their own reflection loop. On the other hand,
the teachers observe the students’ experiences and use them in their own reflection.
More subtly, when teachers transition through Kolb’s learning cycle from concep-
tualization to experimentation, they explain their own reasoning to the students and
thus share their own reflections (see professional practices below) by articulating
their praxis to the students. This is, in turn, a way to model the teachers’ own reflec-
tions and serves as an example for the students in how they can reflect on their own
experiences to better understand and form new concepts.

In summary, the model captures that reflection requires doing in that both stu-
dents and teachers are involved in various actions and thereby also acquire shared
experiences throughout the course. In addition, since reflection is conceptual it is
not planned as a one-shot activity but repeatedly carried out during the course and
different viewpoints are shared and considered to be able to form informed concepts
(cf. Sect. 2).

5.2 Course Structure

The second part of the toolkit is the way the course is structured. In general, we try
to get the students started as quickly as possible and avoid theory-laden lectures at
the start. Instead, we apply the practical learning activities early on and then begin
the iterative–incremental development quickly. The main part of the course is thus
organized in sprints where each sprint starts with a planning session and concludes
with a review and a retrospective. Students are encouraged early on to take other
obligations into account when planning a sprint and set a reasonable velocity for
each. Necessarily, estimations of velocity and of the user story effort are unreliable



246 H. Burden and J.-P. Steghöfer

in the beginning, but we encourage the students to learn from these mistakes and
continuously improve their estimations based on their reflections. The reviews are
coupled with a supervision learning activity, but are itself focused on the product and
thus ideally conducted by a third party that provided the project. Students perform
their retrospectives on their own, but need to record them (cf. Sect. 5.4).

5.3 Learning Activities

An important part of the toolkit is learning activities that provide students with shared
experiences that they can use to develop their knowledge and skill through reflective
practice. The learning activities are thus designed to trigger reflection in the students
and are accompanied by specific assessment tasks that reinforce this (see below).
In particular, we are utilizing three learning activities, further discussed below: a
Lego Scrum simulation, a Kata for learning about scientific thinking and continuous
improvement, and an exercise to teach students how to break down and estimate
tasks.

To familiarize students with a modern software development process, we utilize
Lego Scrum simulations (Steghöfer, Burden, Alahyari, & Haneberg, 2017). In these
simulations, the students apply the Scrummethodology to build a Lego city based on
user stories provided by the teachers. An essential element of the simulation is that the
students need to reflect after each sprint and learn from their experiences. The setup
of the simulations forces some issues—e.g., communication problems and a lack
of planning—to come up that negatively affect the students. Through the reflective
practice in the retrospectives, by reflections done by the product owner during the
sprint reviews, and by reflection-on-action after the simulation, the students improve
their process and approach during and after the simulation.

In order to help students understand the reflective cycle (cf. Fig. 1), we are using
“Kata to Grow” (Rother, 2017), a simple exercise in which students apply repeated
experiments to reach their goal based on the analysis of their current condition. The
goal is to complete a jigsaw as quickly as possible and the students improve this
process with changing constraints (e.g., “all jigsaw pieces need to be face down at
the start”) iteratively based on “experiments” they devise and measurements of their
current state. The kata, therefore, embodies a reflection loop and shows how small
improvements based on clear measurements and a defined goal canmake tremendous
differences. This thinking is reinforced when students are later asked to define KPIs
and reflect on them in their assessment.

Finally, we are using the Elephant Carpaccio (Kniberg & Cockburn, 2013) exer-
cise to demonstrate how a large assignment can be accomplished by cutting it into
very thin slices—like eating an elephant. The students are asked to create small
implementation tasks for a shipping cost calculator that are prioritized to deliver
customer value as quickly as possible. During the exercise, the students are asked to
share their reasoning in multiple iterations. After each iteration, students reformulate



Teaching and Fostering Reflection in Software … 247

the tasks. The exercise concludes with a reflection on how the exercise went, what
the students learnt, and how this relates to the upcoming project.

5.4 Assessment Tasks

Aparticular focus of the assessment tasks is to embedeach individual learning activity
into the overall learning process. For that purpose, supervision sessions and hand-ins
are distributed over the duration of the course. The final deliverable is used for setting
the grade and should contain the content of all the previous hand-ins. This allows us
to spread the workload over the course, get input for our reflection in the classroom
(see below), and incentivizes the students to reflect on the learning activities right
after they took place. After the Lego Scrum simulation, e.g., the students are asked to
reflect on their experience and how it influences the way they set up the development
process for the project.

An important ongoing assessment strategy is the process supervision performed
by the teachers with each of the groups on a weekly basis. These supervisions are
coupled with the reviews the groups conduct with the Product Owner and precede the
groups’ own retrospectives. In the supervisions, no technical details of the solution
are discussed. Instead, the students are asked to describe their experiences with the
process and associated topics such as teamwork. If students have trouble formulating
issues themselves, they are nudged along those lines by questions such as “which
aspect required more time than you expected?” followed by asking about the lessons
learned. This triggers a reflection process that allows the teams to analyze shortcom-
ings in the process and to have a focused discussion later on in the retrospective. It
also allows the teachers to provide an outside perspective on any challenges or plans
for improvement.

Since the learning outcomes state that students should demonstrate the ability to
“learn new tools and APIs on his/her own”, the final deliverable should contain a
reflection of how well these tools worked for them. The practices the students pick
up (e.g., pair programming, continuous integration, or a certain merging scheme)
then become part of the reflective practice again and students evaluate their own
application and their usefulness in the context of their experience. This also generates
ideas on how to apply these practices better in the future, allowing students to create
connections to their praxis in coming courses and their professional careers, thus
lifting the learning from the current course into a larger perspective.

Furthermore, students are asked to reflect on their overall process, including the
sprint reviews and retrospectives, as well as the relationship between prototype,
process and stakeholder value and the relationship between their process and the
theoretical literature and guest lectures. These reflections are intended to let the
students reflect on the purpose of a process and how its implementation influences its
effectiveness. The process should be driven by stakeholder value, result in a prototype
to deliver that value, and use the different activities in the Scrum lifecycle to evaluate
both the quality of the product and the quality of the process. Since the guest lectures



248 H. Burden and J.-P. Steghöfer

illuminate process issues in a context that is different from the students’, it allows
the students to establish whether their experience is generalizable or not and how the
industrial experience differs from their own.

In the final deliverable, students are also asked to reflect on the previous deliv-
erables and how they influenced the progress of the team and the learning. This is
intended as a kind of meta-reflection to let the students reflect on their own learning
process. By revisiting previous decisions and their reasoning, students are able to see
the impact of their choices and how they influenced their work.

5.5 Professional Practices

Finally, the teachers themselves use reflective practice throughout the course, both
in their own praxis as well as in front of the class. Reflections within the teacher
group about the different course moments are in-action and allow teachers to react
to emerging situations within the course. Regularly, the teachers also reflect in front
of the class, thus providing an element of cognitive apprenticeships. For instance,
at the beginning of a lecture, the teachers could discuss the past week or issues that
have come up since they last saw the students. They would then discuss the current
state, describe the state they would like to reach, and outline the plan they would
like to take to get there. This kind of critical evaluation of the teachers’ own work
creates an atmosphere in which criticism is welcomed and students feel that their
issues are being taken up. Finally, the teachers share their reflections on the course
evaluation as well as on their own assessment as well as ideas and results of course
development activities with the students.

6 The New Course Design

The course instance to which we applied the full toolkit took place during the spring
of 2017 and was taken by 50 undergraduate students with a major in Industrial
Engineering and Management and 8 students from other undergraduate programs.
We use the same structure to describe the course instance as in Sect. 4 to describe
the new course design.

6.1 Intended Learning Outcomes

Since the intended learning outcomes have not been identified as a prominent issue
in the course, they have remained the same throughout our endeavor. Thus, the ILOs
are the same as those found in Sect. 4.



Teaching and Fostering Reflection in Software … 249

6.2 Learning Activities

The learning activities are taken from our toolkit (cf. Sect. 5.3) and combined with
professional practices (cf. Sect. 5.5). All activities align with our model (cf. Sect.
5.1). An overview of the course structure, how the learning activities and assessment
tasks are distributed over the duration of the course, and how they relate to the model
of reflective practice in Fig. 2 is given in Table 3.

The course as a whole is modeled after an iterative–incremental process that
provides fast feedback to the students. A main principle to achieve this is to reduce
the up-front theoretical lectures to a minimum and expose the students to practical
experiences that they can use to reflect-in/on-action as quickly as possible. At the
same time, these shared experiences are extremely useful in the classroom since the
teachers can also reflect-on-action and help the students with the conceptualization
of the experience. The other principle is to provide formative feedback to the students
as often as possible in the second part of the course and to let them experience the
whole reflective cycle (cf. Fig. 2) several times during the course.

Thefirst lecture introduces the learningoutcomes, the activities and the assessment
tasks. We also describe what is new for this course instance based on the last course
evaluation. This serves two purposes: first, it lets us communicate that we apply a
reflective approach to our own course improvement; second, it lets us discuss what
we came up with as concrete changes from reflecting on the course, thus employing
one of our professional practices from the toolkit. As definition of reflection, we cite
Smith’s “assessment of what is in relation to what might or should be and includes
feedback designed to reduce the gap” (2001). We end the first lecture by introducing
Scrum in terms of roles and activities in the lifecycle.

The next scheduled activity is the Lego Scrum simulation. In the simulation, the
students carry out a mini project in terms of building a Lego city (Steghöfer et al.,
2017). The students go through the reflective cycle several times (once in each of
four sprints) with the aim to understand and improve how they conduct Scrum.
Thus we practice an agile methodology in an iterative and incremental way, where
each cycle builds on the previous one and includes explicit reflective activities. The
students are then asked to reflect and conceptualize their findings in D1. As teachers,
we treat each sprint as one iteration of the experiment—experience—reflection-on-
action cycle. In each cycle, our reflection on how we perceive the student’s efforts
influences our feedback to the teams during the review and the retrospective, what we
want to accomplish with the next sprint, how the current exercise relates to previous
exercises, and how we want to use the exercise next time around.

The practical activity of the Lego Scrum simulation is followed by a lecture
where the more intricate details of Scrum as well as how to scale Scrum in a large
organization is explained. The teachers relate the new theory to the experiences from
the Scrum exercise and thus couple theory to practice and reflect on specific situations
during the exercise together with the students.

Next up is the Kata to Grow exercise (Rother, 2017). The students are asked
to complete a jigsaw as a team, iteratively improving their approach and reducing



250 H. Burden and J.-P. Steghöfer

Table 3 The course structure, outlining the different activities. Elements taken from the toolkit or
using elements of the toolkit are emphasized. The relation to the elements of the model in Fig. 2
is made from the teacher perspective (T:) and the student perspective (S:). Reflection-in-action and
reflection-on-action are abbreviated as RiA and RoA, respectively

Week Type Activity/Task Relation to model

0 Course preparation Preparation of material,
lectures, course plan, schedule,
guest lectures, etc.

T: RoA, Conceptualization

1 Learning activity Lecture: Course introduction T: Experiment.;
S: Concept.

Lego Scrum Simulation, Kata
to Grow

T: Experiment., RiA;
S: Whole cycle

Assessment Technical supervision
D1: Reflections on Lego Scrum
simulation
D2: KPI

S:RoA

2 Learning activity Lectures: Scrum & Assessment,
Software Quality

T: Experiment., RiA;
S: Concept., RiA

Elephant Carpaccio T: Experiment., RiA;
S: Whole cycle

Assessment Process supervision
D3: Initial product backlog

T: Experiment.;
S: RoA, Concept.

3 Learning activity Lecture: Project background S: RoA, Concept., RiA

Assessment Process supervision

4 Assessment Process supervision

5 Learning activity Guest lecture S: RoA, Concept., RiA

Assessment Process supervision

D4: Half-time evaluation;
reflection on the work so far

S: RoA

6 Learning activity Guest lecture

Assessment Process supervision

7 Learning activity Lecture: Reflections on course
and project

T: RoA, Experiment.;

Assessment Process supervision S: Concept.

8 Assessment Final presentations
D5: Working prototype

9 Assessment D6: Reflection report S: RoA

10 Course
Evaluation

Feedback from students and
discussions in teacher group

T: RoA, Concept.;
S: Concept.

the required time. In total, the students complete the plan-act-reflect cycle six times
this way. We end the exercise by sharing our reflections on the outcome and intro-
ducing the concept of key performance indicators (KPIs). The exercise concludes
with a presentation of KPIs other than time that can be used for evaluating process
improvement.



Teaching and Fostering Reflection in Software … 251

The third exercise, Elephant Carpaccio (Kniberg & Cockburn, 2013), shows how
a large assignment can be accomplished by cutting it into very thin slices. During
the exercise, the students are asked to share their reasoning at multiple intervals and
receive feedback for each iteration. The exercise concludes with a reflection on how
the exercise went, what the students learnt and how it relates to the upcoming project.

We follow-up with more lectures on software engineering basics, such as require-
ments and testing and introduce the project topic. After that, the lecture format shifts
to guests from industry presenting their experiences from agile software develop-
ment where each presentation is limited to the first half of the lecture. The second
half is then used to reflect on how the guests’ experiences resonate with those of the
students and how they tie into the learning outcomes of the course. The guest lectures
are in this way a possibility for the students to reflect on the praxis of a professional
in relation to their own experiences.

In the last lecture, we repeat how the course evaluation has led to changes to the
current course instance, how we assess the outcome and what we propose to change
for the next course instance, thus highlighting our own plan-act-reflect cycle. The
students are also given the opportunity to share their reflections on how the course
panned out. The ILOs are then discussed with the students and they are asked to
reflect on which opportunities they have had to reach the ILOs and what kind of
assessment they have been given or expect to receive. The last lecture concludes by
detailing the remaining deliveries and how the final presentation will be handled.

6.3 Assessment

The assessment tasks are now both formative and summative.We use the supervision
slots to give the students formative feedback on their application of Scrumand discuss
other aspects of the course as the teams find appropriate for their current needs. This
is also inspired by agile practices: we aim to provide the students with fast and
frequent feedback to adapt their behavior as they go along, instead of having to
rely on a single feedback opportunity at the end of the course. The supervisions are
divided into feedback on the product the students are building (modeled after sprint
reviews) and feedback about the process the students apply (modeled after sprint
retrospectives). The teachers are only engaged in the latter kind of feedback while
the sprint review is conducted with an external Product Owner.

Assessment is also done by the teams handing in six different deliverables during
the course, most of which contain elements of reflection as described in Sect. 5.4:

D1: Three reflections from the Lego exercise in terms of what the team would like
to continue doing, stop doing or do differently when they apply Scrum in their
project. The changes should be motivated and feasible to implement. D1 serves
as the basis for a session where we select some of the reflections to illustrate how
the assessment strategy will be applied. The teams also submit a social contract



252 H. Burden and J.-P. Steghöfer

detailing their ambition levels, when and how to have meetings, etc. D1 is handed
in at the end of the first-course week.

D2: After the Kata exercise, the teams are asked to choose three KPIs to monitor
the strategies detailed in D1. To be handed in by the end of week two.

D3: When the project scope has been introduced, the teams are asked to come up
with an initial product backlog in week three. The backlog can contain epics and
larger elements but should have enough user stories to fit the first sprint. D3 is
then used during the Elephant Carpaccio exercises to illustrate how large stories
can be split more and more thinly.

D4: Half-way through the project, in week six of the course, the teams are asked to
hand in a one-page document reflecting on thework so far, both in terms of process
and product. At the subsequent supervision slot, the teams pair up to facilitate the
sharing of experiences and insights across teams but also to give opportunities for
reflecting on each other’s progress.

D5: The fifth deliverable is a working prototype for the final presentation in week
eight. It does not need to be documented but it should be executable so that the
students can demonstrate how they have chosen to tackle the project scope and
what value they deliver to the PO.

D6: The last deliverable consists of the source code and the output from a git
repository analysis tool as well as the artifacts asked for under Prototype and the
Reflection Report (see below). D6 is handed in at the end of week nine which is
the last week of the course.

The final team grade now relies on three elements:

Value The relevance and completeness of what is delivered in relation to how the
teams have defined the scope of the project based on what the stakeholder has
asked for makes up 24% of the final grade.

Prototype 30% of the final grade is based on the documentation, automatic code
quality analysis, automatic and manual tests as well as design decisions.

Process Reflecting on how the team has applied Scrum as well as on the interme-
diate deliveries D1 to D5, describing their best practices for using new tools, and
how their process relates to literature and guest lectures make up the remaining
46% of the final grade.

Just as in the old course design, we use personal evaluations and metrics from the
code base to assess if there are team members that deserve a higher or a lower grade
than the teamgrade.Deviations are never based on one source but need to be anchored
in both and are often supplemented by our own observations during supervision or
follow-up discussions.

6.4 Constructive Alignment and Student Perception

We supply data to show what the students report w.r.t. the course design in Table 4.
Since both what we assess and how we prepare the students is different, it is not



Teaching and Fostering Reflection in Software … 253

Table 4 Mean and median student responses to questions in the course evaluation for Spring 2017
on a scale from 1 to 5 where 5 is best unless otherwise noted

Statement Mean Median

“I had enough prior knowledge to follow the course” 3.85 4

“The learning outcomes clearly describe what I was expected to learn
in the course”

4.35 5

“The course structure is appropriate in order to reach the intended
learning outcomes of the course”

4.25 4

“The teaching worked well” 4.45 5

“The assessment tested whether I had reached the intended learning
outcomes of the course”

4.10 4

“The course administration worked well” 4.25 5

“The course workload as related to the number of credits was 1—too
low, 5—too high”

3.30 3

“What is your overall impression of the course?” 4.20 5

possible to say what has caused the change in student perception. However, the
overall increase of the scores indicates that the new course design is not seen as
contradicting a good learning situation as well as supporting our view as teachers
that the new design supports the students’ ability to reach the intended learning
outcomes.

In response to the free text question about what should be kept for the next course
instance, one student replied “The practical setup and “trial and error” approach.
You learn better from making mistakes, rather than doing it right the first time.”
This implies that we still have something to work on. Not only mistakes should
drive learning, but reflecting on the practical experience as a whole, including both
problems that occurred and things that went well. However, mistakes tend to force
reflection since the identification of the mistake resonates with the description of
what is. If the mistake is to be corrected, a change is needed which also encourages
to consider what should be and feedback to reduce the gap. But success is also an
experience worth reflecting over since understanding what enabled the success and
how it can be repeated saves both effort and time in the future.

In terms of constructive alignment, comparing Table 1 with Table 5 shows that
the intended learning outcomes are now addressed with additional exercises, thus
emphasizing skill development and practical experience instead of a mostly theoret-
ical approach. Since these exercises are always connected to reflections, this element
is significantly strengthened accordingly.

In relation to ILO7—students should be able to learn new tools by themselves—
the lectures and exercises do not mention how to use the new tools but reflect on what
the students have experienced during the exercises and how that can be transferred to
the project. The exercises also present teachers and students with shared experiences
that can serve as basis for reflecting together as illustrative examples to explain
concepts and strategies for handling these. For instance, the students played with



254 H. Burden and J.-P. Steghöfer

Table 5 The course alignment matrix for the new course design

ILO Learning activity Assessment tasks

ILO1 6 lectures, 2 exercises and project 5 supervisions, D2 and terminology

ILO2 6 lectures, 2 exercises and project 5 supervisions and terminology

ILO3 6 lectures, 2 exercises and project 5 supervisions, process and terminology

ILO4 4 lectures, 2 exercises and project 5 supervisions, D3 and prototype

ILO5 3 lectures, 3 exercises and project 5 supervisions, D1, D2, prototype and
process

ILO6 3 lectures, 3 exercises and project 5 supervisions

ILO7 1 lecture, 3 exercises and project 5 supervisions and process

ILO8 4 lectures, 3 exercises and project 5 supervisions, D1, D4 and process

Lego as kids but still struggle with finding the right Lego pieces for their buildings.
This shared experience is something we can go back to as we reflect on how their
programming skills might transfer to using a new API and development tools.

7 Reflections on the Toolkit

This section will first detail how the students utilized the opportunities for reflection-
in- and -on-action, before we describe our own thoughts and relate those to existing
literature.

7.1 Student Lens

Immediate reflection-in-action is relevant as events unravel during the course and stu-
dents need to handle situations for which they are not prepared. These reflections are
sometimes difficult to document due to the time and placewhen andwhere they occur.
However, the students have recurring opportunities to reflect on their experiences,
e.g., during daily stand-up meetings or sprint retrospectives. These opportunities are
easier to document and reflect on since they occur at defined points during the sprints
and allow to define what should be and how to bridge the gap while the project still
runs. The teams’ reflection-on-action is documented in the reflection report after
the final presentation (D6), meaning that the students do not have the possibility to
implement their suggested feedback within the course. Instead, the intention is that
the insights will be of use in their future studies and professional life.

Reflection-in-Action Two teams decided to structure their reports to mirror Smith’s
definition of reflection by first describingwhat they did, and then describedwhat they
would do differently and how. The first team consistently used the subheadings “The



Teaching and Fostering Reflection in Software … 255

situation as it is” and “What we would like it to be” where the latter also included
strategies for realizing the change. The other team defined what went well, what
could improve and how they could improve for each of the bullets required for the
reflection report. As an example, they stated that their communication with the PO
went well, that they could improve in how they used roles within the team and that
the improvement could be realized by not only assigning responsibilities but also
defining what each responsibility covered.

One of the student teams wrote in their reflection report that they would include
how to conduct daily Scrum meetings in their social contract. Since the team mem-
bers took different parallel courses, they had difficulties finding a time that suited
everyone. They therefore suggested to regulate how all team members can partici-
pate even if they cannot be physically present upfront. Another team stated that it
was difficult in the beginning to keep the meetings short and concise since when a
team member described what they had done, other members wanted to know how
a specific task had been solved. The meetings, therefore, tended to involve lengthy
technical descriptions. The team came up with two strategies to shorten the meeting
time. First, they decided to stand up during the meetings since this improved focus
and was recommended by literature. Second, they planned meetings where insights
regarding how to handle new tools and technologies could be shared. Their conclu-
sion was that while it is important to share information it is also important to know
when to share what.

A similar experience was reported by a third team in relation to the sprint retro-
spectives. In the beginning of the project, these were held at the supervision slot and
as a consequence just after the retrospective and before the planning as well as in the
same location. The discussions quickly became technical and focus shifted from pro-
cess to product. Therefore, they decided to have the retrospectives at another physical
location and ban visible computers. In this way, the focus on process improved and
the team reports that their satisfaction with the retrospectives increased over time.

Reflection-on-Action Regarding the peer lens, one team stated that it was helpful to
see how another team handled the same challenges they faced. However, they did
not provide details about the challenges and what they could have done differently.
Other teams were more articulate but concluded that the peer discussion came a
week too late for them to have a real impact. By the time they were asked to reflect
on their first two deliverables, they had just overcome a major obstacle in how to
communicate with the shared backend. Therefore, they felt that the rest of the sprints
would bemore straightforward andwould allow the team to focus on delivering value
instead of debugging. This gave them the opportunity to assess what lay ahead and
to evaluate what they just had done in relation to what they thought they would do.

In relation to the first delivery (D1), one team felt that they were initially right
in stating the importance of understanding the needs of the product owner (PO)
instead of the desired solution since there might be other ways of delivering value:
“Focus was on how our sketch and vision could be adapted to the PO’s instead of
understanding why the PO came with a specific solution”. Half-way through the
project the teammanaged to shift focus and concentrate on the context of the PO and



256 H. Burden and J.-P. Steghöfer

from there redirect their development effort towards a system more suitable for the
needs of the PO.

An example of how a team identified their own learning progress throughout
the project relates to the definition of done that they used for their user stories:
“As our understanding of the system and project grew, it became easier to identify
and structure these definitions.” As we saw in relation to daily Scrums and the
introduction of meetings with the specific purpose of sharing knowledge between
team members, the peer lens was also applied within teams to share knowledge and
reflect on how to improve their way of working.

An interesting observation is that while all teams relate their reflections on the
course literature and the guest lectures, none of the teams relate their reflections to
what the teachers have said.

7.2 Teacher Lens

The toolkit for reflective practice proposed in Sect. 5 allowed us to address the gap
between what we imagined the course to be and what it was. It is the result of a 3-year
effort to improve the course andmove it from a product-focused programming project
with poor constructive alignment and a mismatch between theory from lectures and
what was practically applied towards a process-focused engineering course that is
driven by practical experience and continuous reflection.

Reflection-on-Action Our own perception of the course has improved significantly
with the introduction of the different elements of the toolkit for reflective practice.
While the course is still known amongst the student body as “the android course”, we
are confident thatwe now focus on the process issues that is at the heart of the intended
learning outcomes much better. This also makes it easier for us to communicate our
vision for the course to the students. The expectations of the students and the place
of the course in the different programs are also much clearer. Instead of being yet
another development project, the course now offers different and novel content.

In relation to the old course design, the project now starts on the third week of the
course. Instead of letting the students immediately get to work on the project we use
the first weeks to introduce the central concepts and Scrum. These concepts are then
explored during three exercises where each exercise has a component of reflection
and feedback. This change means that there are fewer supervisions but also that the
students get help in bridging the gap between theory presented in the lectures and
the practice they are asked to explore during the project as well as an opportunity to
reflect on what they have done during the exercise and what they want to do during
the project.

Including collective feedback into the lectures also means that we as teachers
not only have the opportunity to motivate the exercise and the deliverable, we can
also reflect on what went well with the exercise and how we aim to improve it for
the next time. We thereby verbalize our own reflection in front of the students and



Teaching and Fostering Reflection in Software … 257

model how we came to give the exercise the way we did. In this way, the exercises
supply a scaffold for the students to reflect on how they plan, execute, and evaluate
a team project as well as agile practices like splitting user stories into tasks. Since
supervision is handled by the teachers with a deliberate focus on process matters
they provide opportunities to coach the students in their reflective practice based on
the ideas, uncertainties, and milestones they want to bring up. We as teachers can
also bring up topics we find worth discussing. Throughout the different activities,
we can go back and relate what is happening and how we reflect within the current
context to the shared experiences we obtained through the three exercises. In this
way, our new course design mirrors the recommendations to combine subject matter
with reflective practice so that the task becomes more concrete and has an immediate
bearing on the students’ professional development (Mathiassen & Purao, 2002).

An important aspect of this new structure and the progression of assessment tasks
is thatwe are able to build a trustful relationshipwith the students (Gunn, 2010). Since
they have the opportunity to receive formative feedback continuously but only the
final hand-in is graded, they understand our expectations and how they can address
them much better. Trust is also built by articulating our own reflections and being
open about problems in the course and how we are going to address them. We thus
demonstrate that failure is an opportunity to learn and that admitting mistakes is an
important step in the learning process. We thus allow a cognitive apprenticeship to
form in the classroom.

Reflection-in-Action Having reflected on what we do and how we want to improve
the course gives us an understanding of what we want to achieve with the different
learning activities and the corresponding assessment. At the same time, we also gain
new experiences each time we give the course. By sharing these experiences and how
we acted and reasoned provides us teachers with a portfolio of situated reflections
that we can rely upon when we encounter situations for which we are not prepared.
In this way, reflection-on-action supports our reflection-in-action.

7.3 Theoretical Lens

When comparing our ownwork with related literature, it becomes evident that reflec-
tive practice is a recurrent theme in software engineering education. In the work of
Hazzan, e.g., reflection is seen as a driving factor in education about human fac-
tors in software engineering (2004). The same author also suggests to use reflection
with a tutor as a way to continuously drive a project forward in a studio environment
(Hazzan, 2002). However, Hazzan couples reflective practice in software engineering
education directly to the specific method of the studio in which students meet with
a capable tutor several times a week, thus increasing commitment and motivation
and exposing the students to constructive criticism and different social interactions
connected to collaborative work.While this method is very intriguing, it also requires
significant resources, both in terms of meeting space and effort by the tutors. Such a



258 H. Burden and J.-P. Steghöfer

method is thus not feasible in the resource-constrained environmentwefind ourselves
in.

Another take on the studio as an instrument for reflection is presented by Bull
and Whittle (2014). They argue that project-based courses are better for facilitating
reflection than lecture-based courses since they give students the opportunity to work
iteratively. Still, such courses often suffer from considering reflection as an implicit
learning objective and do not explicitly address it through the teaching activities. The
authors conclude that the studio approach is recommendable for fostering reflection
at program level and allows addressing learning objectives over multiple courses.We
agree, while we also believe that our own course is an example of how a single course
can introduce explicit learning objectives, activities, and assessment strategies that
foster student reflection.

The studiomethod championed byHazzan and Bull andWhittle is one example of
the more abstract concept of communities of practice (Wenger, 1998). They regard
learning as a social and collaborative effort that is based on the common passion
for a subject and the interaction between the learners and the teachers. Our toolkit
for reflective practice helps us in establishing such a community of practice: joint
activities in the course within a common domain create a community that is based
on practical experience and reflective practice about this experience. Continuous
interaction between the students and between students and teachers and the learning
activities are designed to create a “shared repertoire of resources” that helps the
students in their learning process and in achieving the intended learning outcomes.

Reflection has also been acknowledged as a problem-solving strategy in software
engineering education. For instance, teaching students how to reflect in order to
improve their skills in writing software tests (Edwards, 2004) enables them to move
away from a trial-and-error approach and thus allows them to find solutions more
quickly and efficiently. In particular, the role of feedback for the success of reflec-
tive practice is emphasized in Edwards (2004). While this feedback is provided by
an automated system in the course the contribution reports on, we aim to provide
formative feedback in our supervision sessions with the students and in the different
learning activities throughout the course.

In terms of assessment, the assessment strategies in our toolkit for reflective prac-
tice are instantiated, among others, in the final deliverable that contains a reflection
report in which students reflect on their experience with the process. This is similar
to the use of postmortem reports to evaluate software architecture projects suggested
by Wang and Stalhane (2005). Such reports are often used in the industry to analyze
a product development effort and draw conclusions that can support a software pro-
cess improvement initiative (Dingsøyr, 2005). However, the cited paper proposes to
only include positive and negative experiences in the report. While this is an impor-
tant part of reflective practice, the crucial part of deriving concrete improvement
steps and evaluating those in practice—an essential part of our toolkit for reflective
practice—is missing.



Teaching and Fostering Reflection in Software … 259

8 Applying the Toolkit Outside SE Education

While we developed the toolkit for use in a software engineering project course,
its general outline should be applicable to different course structures within engi-
neering and the sciences in general. The model of reflective practice (cf. Sect. 5.1) is
independent of concrete course content and onlymandates an iterative approach. The
assessment tasks (cf. Sect. 5.4) we use are likewise independent of the concrete prod-
uct or discipline of engineering and focus on reflecting on the students’ praxis and
choices. Similarly, the professional practice of the teachers (cf. Sect. 5.5) of reflect-
ing about the course amongst themselves and in front of the class is completely
independent of the concrete discipline being taught.

We see the main application area in engineering project courses in which an
artifact needs to be developed by students following a specific process. In these
situations, students often exhibit a “product over process” attitude (Steghöfer et al.,
2016). Using reflective practice that is focused on the process draws the students’
attention to these issues and makes it easier for the teachers to put process aspects
into the foreground. The course structure (cf. Sect. 5.2) is applicable in such project
courses with minimal modifications based on the background knowledge and skills
students need to acquire before being able to start working on the product and the
length of the course. The learning activities (cf. Sect. 5.3) might also be adapted.
While the kata and the process supervision are transferrable to other disciplines,
the Lego Scrum exercise uses a dedicated software development process. However,
other simulations or serious games could be used to achieve a similar effect. One
example is the urban planning game described in Mayer, Carton, de Jong, Leijten,
and Dammers (2004) in which students simulate the development of a city and the
necessary negotiations between the involved stakeholders.

9 Conclusions

In this chapter, we have described the toolkit for reflective practice, a set of teaching,
assessment, and professional practices based on a model of reflective practice for
engineering courses with a particular focus on software engineering. We have shown
how the toolkit was developed using action design research based on issues observed
in a project course we teach and how the toolkit is applied in the current version of
the course. The toolkit is thus an answer to RQ1: How can we facilitate reflective
practice in a software engineering project course? Our discussion of the student
perception, our own perception and the relation to other published work also shows
that the toolkit is viable, thus providing an answer to RQ2: How do students utilize
opportunities for reflective practice for their continuous learning?

It is important to note that our toolkit for reflective practice contains many aspects
that allow us to teach how reflection actually works. Being able to reflect is a skill
that needs to be acquired by our students. Our experience shows that students are



260 H. Burden and J.-P. Steghöfer

successful in doing this by following the teacher’s example and by being encouraged
to reflect continuously while the course is running.

In the future, we would like to make reflection of both students and teachers an
even more prominent feature of the course. One way to achieve this is to instate daily
stand-up meetings, a practice that many student groups already take up on their own.
Another would be to start each lecture could with a reflection by the teachers. At the
moment, this only happens if there are events that make it prudent to do so. A further
possibility is to include additional opportunities for peer assessment in the course,
where students perform peer reviews of the reflection reports of the other students
to see positive and negative examples. Notably, being able to write a good review is
another skill that we cannot expect from our students. Thus, reviewing would have to
be introduced and formative feedback on the reviews would be necessary. However,
since architecture and code reviews are common practices in software engineering,
this could provide an additional opportunity to include an important professional
practice in the course.

References

Anderson,L.,Krathwohl,D.,&Bloom,B. (2001). A taxonomy for learning, teaching, andassessing:
A revision of Bloom’s taxonomy of educational objectives. Longman.

Babb, J.,Hoda,R.,&Nørbjerg, J. (2014, July). Embedding reflection and learning into agile software
development. IEEE Software, 31(4), 51–57. https://doi.org/10.1109/MS.2014.54.

Basili, V. R. (1993). The experience factory and its relationship to other improvement paradigms.
In European Software Engineering Conference (pp. 68–83). Springer.

Basili, V. R., &Caldiera, G. (1995). Improve software quality by reusing knowledge and experience.
MIT Sloan Management Review, 37(1), 55.

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education, 32(3),
347–364.

Bourque, P., Fairley, R. E., et al. (2014). Guide to the software engineering body of knowledge
(SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

Brookfield, S. (1995). Becoming a critically reflective teacher. San Francisco: Jossey-Bass.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.
Educational Researcher, 18(1), 32–42.

Bull, C., &Whittle, J. (2014, July). Supporting reflective practice in software engineering education
through a studio-based approach. IEEE Software, 31(4), 44–50.

Burden, H. (2017). DAT255 Software Engineering Project, HT2014. Retrieved March 29, 2018,
from https://github.com/hburden/DAT255/tree/ht2014.

CMMI Product Team. (2010). CMMI for development, version 1.3 (tech. rep. No. CMU/SEI-2010-
TR-033). Software Engineering Institute, Carnegie Mellon University.

Dingsøyr, T. (2005). Postmortem reviews: Purpose and approaches in software engineering. Infor-
mation and Software Technology, 47(5), 293–303.

Dingsøyr, T., Moe, N., Schalken, J., & Stålhane, T. (2007). Organizational learning through project
postmortem reviews—An explorative case study. Software Process Improvement, 136–147.

Dresch, A., Lacerda, D. P., & Antunes, J. A. V. (2014). Design science research: A method for
science and technology advancement. Springer Publishing Company, Incorporated.

Edström,K. (2008).Doing course evaluation as if learningmattersmost.HigherEducationResearch
& Development, 27(2), 95–106. https://doi.org/10.1080/07294360701805234. eprint: http://dx.
doi.org/10.1080/07294360701805234.

https://doi.org/10.1109/MS.2014.54
https://github.com/hburden/DAT255/tree/ht2014
https://doi.org/10.1080/07294360701805234
http://dx.doi.org/10.1080/07294360701805234
http://dx.doi.org/10.1080/07294360701805234


Teaching and Fostering Reflection in Software … 261

Edwards, S. H. (2004). Using software testing to move students from trial-and error to reflection-in-
action. In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Educa-
tion, SIGCSE ’04 (pp. 26–30). Norfolk, Virginia, USA: ACM. https://doi.org/10.1145/971300.
971312.

Elmgren, M., & Henriksson, A. (2010). Universitetspedagogik. Norstedts.
Freire, P. (2000). Pedagogy of the oppressed: 30th anniversary edition. Bloomsbury Academic.
Gunn, C. L. (2010). Exploring MATESOL student ‘resistance’ to reflection. Language Teaching
Research, 14(2), 208–223.

Hazzan, O. (2002). The reflective practitioner perspective in software engineering education. Jour-
nal of Systems and Software, 63(3), 161–171.

Hazzan, O., & Tomayko, J. E. (2004, March). Reflection processes in the teaching and learning of
human aspects of software engineering. In 17th Conference on Software Engineering Education
And Training, 2004. Proceedings (pp. 32–38). https://doi.org/10.1109/CSEE.2004.1276507.

Huber, G. P. (1996). Organizational learning: A guide for executives in technology-critical organi-
zations. International Journal of Technology Management, 11(7–8), 821–832.

Jørgensen, M., & Gruschke, T. M. (2009). May). The impact of lessons-learned sessions on effort
estimation and uncertainty assessments. IEEE Transactions on Software Engineering, 35(3),
368–383. https://doi.org/10.1109/TSE.2009.2.

Kniberg,H.,&Cockburn,A. (2013). ElephantCarpaccio exercise. RetrievedOctober 30, 2017, from
https://docs.google.com/document/d/1TCuuu8Mm14oxsOnlk8DqfZAA1cvtYu9WGv67YjsSk/
pub.

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development
(2nd ed.). FT Press.

Loughran, J. J. (2002). Effective reflective practice in search of meaning in learning about teaching.
Journal of Teacher Education, 53(1), 33–43.

Lyons, N. (Ed.). (2010). Handbook of reflection and reflective inquiry—Mapping a way of knowing
for professional reflective inquiry. New York, NY: Springer.

Maham, M. (2008, August). Planning and facilitating release retrospectives. In Agile 2008 Confer-
ence (pp. 176–180). https://doi.org/10.1109/Agile.2008.60.

Mann, S. (2005, July). The language teacher’s development. Language Teaching, 38, 103–118.
Mathiassen, L., & Purao, S. (2002). Educating reflective systems developers. Information Systems
Journal, 12(2), 81–102.

Mayer, I. S., Carton, L., de Jong, M., Leijten, M., & Dammers, E. (2004). Gaming the future of an
urban network. Futures, 36(3), 311–333.

Pettersson, F., Ivarsson, M., Gorschek, T., & öhman, P. (2008, June). A practitioner’s guide to light
weight software process assessment and improvement planning. Journal of Systems and Software,
81(6), 972–995. https://doi.org/10.1016/j.jss.2007.08.032.

Rother, M. (2017). Kata to grow–A simple, free exercise to help teach scientific thinking [online].
Retrieved October 30, 2017, from https://www.katatogrow.com/.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. Harper torch-
books. Basic Books.

Sein, M. K., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design research.
MIS Quarterly, 35(1), 37–56. Retrieved from http://www.jstor.org/stable/23043488.

Shkedi, A. (2000). Educating reflective teachers for teaching culturally valued subjects: Evaluation
of a teacher-training project. Evaluation & Research in Education, 14(2), 94–110.

Smith, R. A. (2001). Formative evaluation and the scholarship of teaching and learning. NewDirec-
tions for Teaching and Learning, 2001(88), 51–62.

Steghöfer, J.-P., Burden, H., Alahyari, H., & Haneberg, D. (2017). No silver brick: Opportunities
and limitations of teaching Scrum with Lego workshops. Journal of Systems and Software, 131,
230–247.

Steghöfer, J.-P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., & Ericsson, M. (2016, May).
Teaching agile—Addressing the Conflict between project delivery and application of agile. In

https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/971300.971312
https://doi.org/10.1109/CSEE.2004.1276507
https://doi.org/10.1109/TSE.2009.2
https://docs.google.com/document/d/1TCuuu8Mm14oxsOnlk8DqfZAA1cvtYu9WGv67YjsSk/pub
https://docs.google.com/document/d/1TCuuu8Mm14oxsOnlk8DqfZAA1cvtYu9WGv67YjsSk/pub
https://doi.org/10.1109/Agile.2008.60
https://doi.org/10.1016/j.jss.2007.08.032
https://www.katatogrow.com/
http://www.jstor.org/stable/23043488


262 H. Burden and J.-P. Steghöfer

Software Engineering Education and Training Track, the 38th International Conference on Soft-
ware Engineering, Austin, TX.

Tomal, D. R. (2010). Action research for educators. Rowman & Littlefield Publishers.
Turns, J., Sattler, B., Yasuhara, K., Borgford-Parnell, J., &Atman, C. J. (2014). Integrating reflection
into engineering education. InProceedings of theASEEAnnualConference andExposition.ACM.

Villalón, J. A. C.-M., Agustín, G. C., Gilabert, T. S. F., Seco, A. D. A., Sánchez, L. G., & Cota, M.
P. (2002). Experiences in the application of software process improvement in SMES. Software
Quality Journal, 10(3), 261–273.

Wang, A. I., & Stalhane, T. (2005, April). Using post mortem analysis to evaluate software
architecture student projects. In 18th Conference on Software Engineering Education Training
(CSEET’05) (pp. 43–50). https://doi.org/10.1109/CSEET.2005.42.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge Univer-
sity Press.

Williams, L., & Cockburn, A. (2003, June). Agile software development: It’s about feedback and
change. Computer, 36(6), 39–43. https://doi.org/10.1109/MC.2003.1204373.

https://doi.org/10.1109/CSEET.2005.42
https://doi.org/10.1109/MC.2003.1204373


Lean Learning of Risks in Students’
Agile Teams

Wentao Wang, Chaitra Thota, Xiaoyu Jin, Nan Niu and Carla C. Purdy

Abstract Risk—the possibility of resulting in an unsatisfactory outcome—is an
important driving force for a software development project to progress. Although
techniques like identifying a project’s top-10 risk items are taught commonly in
software engineering courses, little work has been carried out to examine how stu-
dents working in agile teams perceive and mitigate the risks over multiple software
development cycles. In this chapter, we summarize our recent workwhere we discov-
ered the collaborative nature of students’ risk management strategies. Furthermore,
we show that students also followed lean practices by wasting little effort on non-
actionable risks. Linking collaboration and waste-elimination provided additional
insights into teaching a wider range of lean principles in agile settings, e.g., students
should deliver as fast as possible the non-collaborative risk mitigations but should
decide as late as possible when facing interdependent mitigations.

Keywords Risks · Risk management · Agile software development · Agile teams
Lean learning

W. Wang · C. Thota · X. Jin · N. Niu (B) · C. C. Purdy
Department of EECS, University of Cincinnati, Cincinnati, OH 45221, USA
e-mail: nan.niu@uc.edu

W. Wang
e-mail: wang2wt@mail.uc.edu

C. Thota
e-mail: thotava@mail.uc.edu

X. Jin
e-mail: jinxu@mail.uc.edu

C. C. Purdy
e-mail: carla.purdy@uc.edu

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_13

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_13&domain=pdf
mailto:nan.niu@uc.edu
mailto:wang2wt@mail.uc.edu
mailto:thotava@mail.uc.edu
mailto:jinxu@mail.uc.edu
mailto:carla.purdy@uc.edu
https://doi.org/10.1007/978-981-13-2751-3_13


264 W. Wang et al.

1 Introduction

A software project can face many risks throughout its lifecycle, from construc-
tion to deployment and maintenance. Risk is defined as any potential situation or
event that negatively affects the project’s success (Ropponen & Lyytinen, 2000), and
such failure can be multifaceted: integration difficulty (Kamble, Jin, Niu, & Simon,
2017), requirements dissatisfaction (Niu & Easterbrook, 2007), lack of reuse (Niu,
Bhowmik, Liu, & Niu, 2014a; Niu, Savolainen, Niu, Jin, & Cheng, 2014b), and so
on. Risk itself is neutral, but if ignored or unmanaged, it can lead to project failure.

Risks, then, serve as an essential vehicle for a class of iterative and incremental
process models, e.g., the spiral model (Boehm, 1986) and the agile software develop-
ment (Beck et al., 2001). Agile incorporates the rapid and evolutionary development
styles, and is now ubiquitous in the industry (Niu, Brinkkemper, Franch, Partanen,
& Savolainen, 2018). Therefore, before the students enter the software industry,
it is important for them to learn and practice agile software project development.
Many teaching and education experiences in agile development have been reported
(Schroeder, Klarl, Mayer, & Kroiss, 2012; Rico & Sayani, 2009; Anslow &Maurer,
2015; Devedzic & Milenkovic, 2011), but little is known about students’ own per-
ceptions of risks. Having this knowledge gap is crucial because risk is fundamental to
change (Boehm, 1986; Bhowmik et al., 2016) and the agile manifesto values prompt
responses to change (Beck et al., 2001).

Our recent work (Thota, Niu, Wang, & Purdy, 2017) examined the risks that
students identified and mitigated in their agile projects while learning software engi-
neering. In this chapter, we further analyze those risks as they relate to lean principles.
In particular, we show that students’ lean learning is reflected by the trend of their
working on a smaller number of non-actionable risks. Linking this waste-elimination
pattern and the collaborative riskmanagement emerging fromour recent study (Thota
et al., 2017) offered additional insights into teaching other lean principles in agile
settings. In our work, risks serve as the underlying connections between agile and
lean. Specifically, mitigating identified risks is viewed as a key driver for agile teams
to organize themselves and reducing the effort in non-actionable risks is considered
to reflect students’ lean learnings.

This chapter is organized as follows. Section 2 surveys the literature on risk man-
agement and its education in agile and lean contexts. Section 3 introduces our soft-
ware engineering classes from which the risks of students’ agile teams are collected.
Section 4 presents the results where the students’ risks are analyzed, especially from
the collaborative and lean dimensions and their interactions. Section 5 discusses our
work’s limitations and implications. Section 6 concludes the chapter.



Lean Learning of Risks in Students’ Agile Teams 265

2 Background and Related Work

Riskmanagement is fundamental for industrial software development, and thus often
taught in software engineering classes. Risk management is about managing risk
items that refer to some particular aspects of software development task, environ-
ment, or process which, if ignored, will increase the likelihood of a project failure
(Ropponen&Lyytinen, 2000).Managing can be decomposed into risk identification,
analysis, mitigation, and monitoring. There are some techniques commonly taught
in (undergraduate) software engineering courses, such as calculating risk exposure
and identifying and monitoring top-n risk items (e.g., n�10) (Boehm, 1991; Reifer,
2002; Boehm, 2007; Koolmanojwong & Boehm, 2013). In agile projects, one may
encounter risk items like intrinsic schedule flaws and productivity variation (Cohn,
2013). Despite the perceived risks from client or contractor perspectives (Schmidt,
Dart, Johnston, Sterling, & Thorne, 1999), the focus of our chapter is from the learn-
ing and practice perspectives of students themselves.

When teaching a two-semester sequence of a graduate-level software engineering
course where the students worked in a five- or six-people team, Koolmanojwong
and Boehm (2013) reported that better risk management was correlated with better
grades. Furthermore, it was observed that students who identified risks in an earlier
semester would mitigate those risks collaboratively in the later semester. To help
organize risks, standards and referencemodels such as ISO 31000 (ISO 2018) and the
Software Engineering Institute’s potential risk items (Carr, Konda, Monarch, Ulrich,
& Walker, 1993) have been developed. When exposed to the 194 questions aimed
for a comprehensive identification of risks, the students perceived only 36 questions
relevant in the waterfall project development (Collofello & Pinkerton, 1997).

In contrast to practicing waterfall software development, agile methodologies
such as Scrum and XP (extreme programming) have been taught in an increasing
number of courses (Rico & Sayani, 2009; Devedzic & Milenkovic, 2011; Schroeder
et al., 2012; Anslow & Maurer, 2015). One subculture within the agile community
advocates the transformation of lean manufacturing principles and practices to soft-
ware development (Poppendieck & Poppendieck, 2003). Lean manufacturing (often
simply “lean”) refers to a systematic method for waste minimization so that the right
products are made for the right customers (both internal and external) at the right
time and in the right amount to achieve perfect work flow (Holweg, 2007). The
successful applications in service industries (Hanna, 2007), business management
(Radnor, Walley, Stephens, & Bucci, 2006), healthcare (Ker, Wang, Hajli, Song, &
Ker, 2014), and other domains have positioned lean a solid conceptual framework
as well as a practical tool suite. Poppendieck and Poppendieck (2003) described 22
tools and compared them to different agile practices. As a result, agile organizations
are empowered by such lean principles as “eliminate waste”, “see the whole”, “build
integrity in”, “decide as late as possible”, “deliver as fast as possible”, and the like
(Poppendieck & Poppendieck, 2003). Examining the interactions of risks and these
lean principles in students’ agile projects is a focus of our work.



266 W. Wang et al.

Previous work by Emiliani (2004) attempted to introduce the lean principles in
educational settings. Emiliani (2004) applied lean principles to the design and deliv-
ery of a graduate business course on leadership taken by part-time working profes-
sional students. The principles instructed were centered on “eliminate waste” and
were instantiated by various practices such as direct and simplified readings, clear
and targeted assignments, a summary of content in visual control, and so forth. The
results indicated a higher level of student satisfaction (Emiliani, 2004).

Similar to Emiliani’s work, in this chapter, we have focused on the core lean prin-
ciple of “eliminate waste”. However, in this chapter, we are analyzing undergraduate
students’ perceptions of their agile projects’ risks and shed light on some other lean
principles like “decide as late as possible” and “deliver as fast as possible” in software
engineering teaching and learning.

3 Software Engineering Courses

This section introduces the software engineering courses in which the undergraduate
students were grouped in agile teams to meet project milestones. In addition to the
working software, the students were required to deliver the risks as part of their agile
reflection documents at each milestone.

For the Spring 2015 semester, we chose iTrust as the working system for our
students to engineer. iTrust is a web application written in Java, and the version
of iTrust (v19 which was released in January 2015) that we used in the beginning
of our Spring 2015 semester contained about 24.6 thousand lines of code. For that
semester, 62 undergraduate students were enrolled in our software engineering class.
These students worked in 15 teams and used the Eclipse development environment
in their lab sessions. Four project milestones were defined: Lab1 was to index tex-
tual requirements, Lab2 was to index source code artifacts, Lab3 was to perform
refactoring, and Lab4 was to handle changing requirements.

For the Spring 2016 semester, there were 103 students enrolled in our software
engineering class. They worked in 25 teams and their subject system was a mobile
application calledMapbox.We adopted v3.0.0whichwas released inDecember 2015
to be the baseline for the students to work on. This version of Mapbox contained
around 6,214 lines of code written primarily in Java. The students used Android
Studio in their lab sessions for their development tasks on Mapbox. The four mile-
stones for the Spring 2016 semester focused on delivering new features of Mapbox.
They were: Lab1 was on implementing the feature of route navigation, Lab2 was on
adding a new feature of making phone calls, Lab3 was refactoring, and Lab4 was
hardening security (Cantrell, Dampier, Dandass, Niu, & Bogen, 2012) of Mapbox
by dealing with changing requirements.

In the two semesters, a total of 160 lists of top five risks were collected from
the 40 student teams. At each of the four milestone deliverables, each team was
required to submit a lightweight reflection document, in which the top five risk items
that they encountered in the current iteration had to be identified. We instructed the



Lean Learning of Risks in Students’ Agile Teams 267

students to rank their self-identified risks based on how seriously those items could
negatively impact them move forward as a team. Note that relevant materials like
risk exposure were taught and practiced early on in those semesters to provide the
students with necessary background on riskmanagement. It is also worth mentioning
that the risks submitted as part of the last lab’s reflectionmight bemore perceived than
those identified in other labs due to the end of the semester; however, the differences
should not be significant, in our opinion, since the students were practicing active
risk management in their agile software projects throughout the semester frequently
in short cycles (3–4 weeks per milestone delivery).

4 Results and Analysis

In the results, we will be focusing on the risks identified by students involved in the
agile teams enrolled in the two semesters of the software engineering course. While
our analysis covers the collaborative and lean natures of these risks, we will first
discuss how the risks collected in our study differ from those reported in prior work.

Within the literature, there are a number of different studies looking at top risks
within software projects. In Table 1, we list the top 10 risks identified by notable
researchers within the industry (Boehm, 1991; Reifer, 2002; Boehm, 2007). The lists
shown in Table 1 focus on risks within the industry, however, when comparing these
risks to risks that may be more likely within an academic context these risks are natu-
rally going to be a bit different. For example, in Koolmanojwong and Boehm (2013),
the authors argued the importance of requirements-related issues for teams working
in an academic software engineering setting as not fully understanding the client’s
requirements would lead to project failures and expensive revisit of requirements
later on in the development phase.

Based on our study’s results, the students identified a number of risks specific
to their context. Table 2 presents the aggregated risks alongside the top-10 risks
identified in (Koolmanojwong & Boehm, 2013). In our analysis, an item was ranked
higher based on the frequency of occurrence, that is, if the item appeared more times
(irrespective of being ranked first, second, third, etc.) when we considered all the
student teams’ risk submissions.

When compared to Koolmanojwong and Boehm (2013), some top-ranked risks
like requirements mismatch and personnel shortfalls identified by our students were
similar. However, some risk items were more refined, e.g., the lack of overview was
a manifestation of architecture complexity. In addition, we note when comparing our
students’ top risks with the other studies (Tables 1 and 2) that some risks were no
longer ranked as highly by our students.Most noticeable of thesewas the requirement
volatility. This risk only appeared a few times in the students’ lists, indicating that
new and changing requirements were possibly not perceived to be as such a high risk
but more likely to be something to be expected in an agile environment.



268 W. Wang et al.

Table 1 Top-10 risk items with industrial relevance

Rank Boehm (1991) Reifer (2002) Boehm (2007)

1 Personnel shortfalls Personnel shortfalls Architecture complexity,
quality tradeoffs

2 Unrealistic schedules and
budgets

Misalignment with
business goals

Requirements volatility

3 Requirements mismatch Unrealistic customer and
schedule expectations

Acquisition and
contracting process
mismatches

4 User interface (UI)
mismatch

Volatile technology (e.g.,
.NET, Persistence, J2EE,
etc.)

Budget and schedule
constraints

5 Gold plating Unstable software releases
(especially poor
performance and frequent
crashes)

Customer–developer–user
team cohesion

6 Requirements volatility Constant changes in
software functionality

Requirements mismatch

7 Shortfalls in externally
furnished components

Even newer methods and
more unstable tools

Personnel shortfalls

8 Shortfalls in externally
performed tasks

High turnover (especially
of those personnel skilled
in the new technology)

COTS (commercial
off-the-shelf) complexity
and shortfalls

9 Real-time performance
shortfalls

Friction within the team
(lack of leadership,
overwork, etc.)

Technology maturity

10 Straining computer science
capabilities

Unproductive office space Migration complexity

4.1 Collaborative Nature of Risks

We summarize our finding of the collaborative nature of students’ perceived risks in
this subsection; interested readers can refer to (Thota et al., 2017) for more detailed
information. We classified the collected risk items into four categories based on risk
identification and mitigation. The first category (C1) refers to those risk items that
were identified individually and mitigated individually as well. An example of C1 is
a student’s insufficient background knowledge of a development environment (e.g.,
Eclipse or Android Studio). The second category (C2) contains the risks that were
identified individually but mitigated collaboratively. A case in point is resolving
merge conflicts in parallel development. The third category (C3) is composed of the
risks that were identified collaboratively but mitigated individually. For instance, a
number of requirements mismatches were reported by more than one team member
but the resolutions were carried out predominantly solo. The fourth category (C4) has



Lean Learning of Risks in Students’ Agile Teams 269

Table 2 Comparison of students’ perceived top-10 risk items

Rank Graduate-level courses
(Koolmanojwong &
Boehm, 2013)

Our junior-level software
engineering courses

Example

1 Architecture complexity,
quality tradeoffs

Team cohesion and
communication

Team members do not
respond to each other when
support is needed

2 Personnel shortfalls Software artifact
dependencies

Certain requirements are
requisite for implementing
others

3 Budget and schedule
constraints

Schedule constraints Different course schedules
limit team members’
face-to-face meeting

4 COTS and other
independently evolving
systems

Task dependencies Teams have difficulty in
distributing workload and
integrating individual
contributions

5 Customer–developer–user
team cohesion

Architecture complexity
(especially lack of an
architectural overview)

Team lacks an overall
picture of the software as it
relates to the lab
deliverables

6 Requirements volatility Personnel shortfalls A single member needs to
play multiple roles,
sometimes with less
competency

7 UI mismatch Operational environment
interoperability

Software debugged in one
machine (e.g., Mac) has
unexpected runtime
behavior in another (e.g.,
Windows)

8 Process quality assurance Requirements mismatch Underspecifying
requirements or making
incorrect assumptions

9 Requirements mismatch Process quality assurance Team members cannot
decide a sufficient unit
testing level

10 Acquisition and
contracting process
mismatches

Unstable software releases External components (e.g.,
libraries or APIs) become
deprecated, causing
unexpected crashes

Originally published in Chaitra Thota et al., “Students’ Perceptions of Software Risks,” 2017 ASEE
Annual Conference, Columbus, Oh. © 2017 American Society for Engineering Education
Note Although our student teams submitted their top-5 risk items at each milestone we have aggre-
gated this to show the top-10 risk items for the purpose of comparison



270 W. Wang et al.

those risks that were both identified and mitigated collaboratively. Many instances
of task dependencies (e.g., integration testing) fell into C4.

The temporal trends of each category’s mean rank are plotted in Fig. 1. The mean
score represents the average ranking of the risk items in a specific category where
the students themselves provided the ranking (e.g., first, second, third, etc.) to imply
that risk item’s degree of negative impacts. There are quite a few C1 risk items
related to the insufficient technical background. As shown in Fig. 1a, these risks
were addressed (i.e., having lower ranks) in a rather quick manner as the students
became familiar with the development environment, as well as the subject system
(i.e., iTrust and Mapbox). A contrasting pattern was observed for the category C4.
Figure 1d shows that it was not typical for C4 risks to emerge at the beginning of the
software engineering course. However, once they were recognized, they tended to be
ranked higher by the student teams, showing this type of risks’ greater likelihood of
occurrence and potential negative impacts. C2 risks, as shown in Fig. 1b, had a fluc-
tuating temporal pattern, indicating the difficulty and uncertainty of jointly resolving
the risks recognized only personally. Finally, for both semesters, the severity of C3
risk items depicted in Fig. 1c dropped as the semester went along. This implies
that individually addressing the team-wide risks (C3) might be more effective than
mitigating those risks in a joint manner (C4). As such, raising the awareness of the
team-wide risks, without hinging on any particular mitigation or resolution, could
be a valuable teaching strategy when teaching software development (Thota et al.,
2017).

4.2 Lean Nature of Risks

Within the analysis of the risks, there is a strong focus on eliminating “muda” (waste).
Muda can be classified into two types: non-value-adding but necessary for end-
customers (Type I) and non-value-adding but unnecessary for end-customers (Type
II) (Poppendieck & Poppendieck, 2003). Extending the muda types, a risk can be
viewed as a waste if its actionality is low, i.e., non-value-adding but unnecessary for
the students’ agile team. In this chapter, we have adopted explicit semantic analysis
(ESA) in order to automatically quantify the actionality of a risk. ESA (Gabrilovich&
Markovitch, 2007) is a semantic relatedness method aimed at quantifying the degree
to which two concepts semantically relate to each other, by exploiting different types
of semantic relations connecting them. Themain intent is to mimic the humanmental
model when computing the relatedness of words.

Our main motivation for adopting ESA is to automatically classify the level of
actionability of the risks, and according to Gabrilovich and Markovitch (2007),
Wikipedia provides reliable sources for implementing ESA. ESA represents the
meaning of texts in a high-dimensional weighted vector of concepts derived from
Wikipedia. In particular, given a text fragment T �{ti}, and a space of Wikipedia
articles C, initially, let [vi] be the TFIDFweight (Baeza-Yates &Ribeiro-Neto, 1999)
of the term ti. Using a centroid-based classifier (Gabrilovich and Markovitch, 2007),



Lean Learning of Risks in Students’ Agile Teams 271

Fig. 1 Ranking changes of risk categories. Originally published in Chaitra Thota et al., “Students’
Perceptions of Software Risks,” 2017 ASEE Annual Conference, Columbus, Oh. © 2017 American
Society for Engineering Education

all Wikipedia articles in C are ranked according to their relevance to the text. Let kj
be the strength of association of term ti withWikipedia article cj, {cj ε c1, c2, …, cN}
(where N is the total number of Wikipedia articles). Then the semantic interpretation
vector S � [s1, s2, …, sN ] for text fragment T is a vector of length N, in which the
weight of each concept cj is defined as

si �
∑

c j∈c1,c2,...,cN
vi k j

Entries of this vector reflect the relevance of the corresponding articles to text
T. Finally, semantic relatedness between two text fragments is calculated as the
cosine between their corresponding vectors. Among the different Wikipedia-based



272 W. Wang et al.

Table 3 Wikipedia categories included in and excluded from our ESA analysis

Included categories Excluded categories

Category # Articles Category # Articles

Software 2,929,221 Human name
disambiguation

2,634,660

Software design 2,645,816 County
disambiguation

2,620,466

Software development 2,575,218 Days 2,495,113

Software quality 1,935,906 Geography by place 2,453,533

Human–computer
interaction

1,756,037 Social media 2,391,391

Agile development 1,169,671 Business 2,133,730

Software requirements 1,125,125 Artificial objects 2,031,328

Computer
programming

952,890 … …

measures proposed in the literature, ESA has been proven to achieve the highest
correlation with human judgment (Strube & Ponzetto, 2006; Mahmoud, Niu, & Xu,
2012; Mahmoud & Niu, 2015). In addition, ESA compares text fragments. This
makes it a suitable approach for risk description analysis tasks. In this study, ESA
is used to create a semantic relatedness vector w �{w1, w2, …, wm−1}, where wi is
semantic relatedness between adjacent text fragments {ti} and {ti+1} in a risk r �
{t1, t2, …, tm}. Then, the actionability score of r is defined as:

ar �
∑

i�1,2,...,m−1 wi

m − 1

The assumption here is that instead of using general terms which indicate sev-
eral unrelated concepts, the actionable risk contains more terms which are related
to the specific issues. Our operation, therefore, selects a certain group of Wikipedia
categories and ignores many other categories. The inclusion criteria are based on
software engineering, and the included categories, along with the number of articles
in each category are listed in Table 3. In comparison, Table 3 also provides a sample
of excluded categories. In addition to the software engineering categories, project-
specific ones shown in Table 4 are also used. For the spring 2015 semester (SS15),
categories related to software artifacts indexing and tracing (information retrieval,
and natural language processing), as well as the development environment cate-
gory (Eclipse plugins) are taken into account. For the spring 2016 semester (SS16),
mobile app development categories (mobile apps and Android) and a couple of soft-
ware security category (computer security and software testing) are included for the
computation of a risk’s actionability.



Lean Learning of Risks in Students’ Agile Teams 273

Table 4 Project-specific categories included in our ESA analysis

SS15 SS16

Category # Articles Category # Articles

Information retrieval 1,994,217 Mobile apps 1,764,546

Natural language
processing

1,631,682 Android 1,642,365

Eclipse plugins 673,241 Computer security 1,519,731

Software testing 1,433,519

We illustrate our ESA-based risk actionability method with several examples:

• Risk1 (incorrect assumptions; SS16): “When we met the first time for this Lab,
we did not explicitly state how the program should function. Instead of going over
the requirements carefully, we ended up making a lot of assumptions. This caused
us to be crunched [for] time at the last moment (when we found out that our
assumptions were partly incorrect). Next time [we] need to learn to communicate
these requirements across before coding and starting the project. We need to read
the Lab manual together to discuss it and also ask the TA for help if needed and
establish the requirements. This was one of the weaknesses of the four of us as a
team.”

• Risk2 (inadequate testing; SS15): “Moving forward, we are consciously aware
of the need for test cases as well as improved quality in the software. Then we will
be able to more confidently say that we are delivering a quality software product.”

• Risk3 (cross-platform compatibility; SS15): “Our customers will use different
operating systems. Support all our customers is an important task.”

• Risk4 (new to Android development; SS16): “We need to understand how
Android Studio Works. We also shall share our understanding and have group
discussions.”

Using the software engineering and project-specific Wikipedia categories, the
ESA-based actionability score of Risk1, Risk2, Risk3, and Risk4 is 0.77, 0.64, 0.21,
and 0.42, respectively. Observing other ESA results suggests the threshold of 0.5 in
terms of distinguishing actionable risks and non-actionable ones.Using this heuristic,
Risk1 and Risk2 are regarded as actionable due to the sufficient descriptions of the
risk itself and the specific plans for addressing the risk (e.g., establishingmore correct
requirements byworking together with the TA, developingmore and better test cases,
etc.). In contrast, Risk3 and Risk4 exhibit significant vagueness (for example, which
operating systems need to be compatible with which other ones, how to go about
learning Android Studio, etc.). In order to use Risk3 and Risk4 as assets to move
forwardwith the agile project,moreworkmust be carried out. Compared toRisk1 and
Risk2, these non-actionable risks would more likely lend themselves to be classed
as muda. which lean intends to eliminate (Poppendieck & Poppendieck, 2003).

To test the impact of the excluded Wikipedia categories on the quantification of
risks’ actionability, we randomly chose one such category and added its articles to



274 W. Wang et al.

the ESA calculation: “Business” for SS15 and “Social media” for SS16. As a result,
the actionability score of Risk2 and Risk4 changed to 0.47 and 0.53, respectively.
The same ESA calculation was applied to all the students’ risks collected in our
study. Using the same 0.5 threshold value would lead the classification of Risk2
and Risk4 to be actionable and non-actionable, respectively. This demonstrates the
effectiveness of our selected categories and our adaptation of ESA in computing the
risks’ actionability.

Figure 2, shows the temporal trends of the actionable and non-actionable risks.
Because the number of risks differs from each lab,within the same semester aswell as
across the two semesters, we show in Fig. 2 the raw numbers on top of each bar. The
comparisons are then performed by the normalized percentages. As the semester
proceeds, it is evident from Fig. 2 that the proportion of actionable risks keeps
increasing.Meanwhile, the trend of the decreasing proportion of non-actionable risks
indicates thewasteswere eliminated as the students’ agile teamsworked through their
milestone deliverables. We conclude that when risks are instrumented as an essential
part of the agile deliverable, students tend to apply lean learning by eliminating
non-actionable risks and identifying more actionable ones.

Fig. 2 Distribution of
actionable and
non-actionable risks



Lean Learning of Risks in Students’ Agile Teams 275

4.3 Collaborative Meets Lean

Having shown the collaborative and lean natures of the risks in students’ agile teams,
we now analyze the interactions between the two. We use Pearson’s chi-squared test
for the interaction analysis. Chi-square fits our purposes because it is a statistical
test applied to sets of categorical data to evaluate how likely it is that any observed
difference between the sets arose by chance and the test is suitable for unpaired data
samples (Gosall & Gosall, 2015). In our case, we are interested in the positive or
negative association between risks’ collaborative nature (i.e., C1, C2, C3, and C4)
and their actionality (i.e., actionable and non-actionable).

The results of the risks’ collaborative and lean analysis are shown in Table 5
where the positive/negative residual values indicate the positive/negative associa-
tions. However, the association is significant only when the residual value exceeds
some threshold. According toAgresti (2007), a standardized residual having an abso-
lute value that exceeds about 2when there are fewcells or about 3when there aremany
cells indicates the significance of the association. Since our analysis involved few
cells (for each semester, 8 cells were involved), we used the absolute value of 2 as the
threshold. The bolded values in Table 5 then signal significance. For SS15, C3 (col-
laboratively identified, individuallymitigated) risks have highly positive associations
with being actionable, andmeanwhile, C4 (collaboratively identified, collaboratively
mitigated) risks correlate positively with being non-actionable in a significant way.

The results shown in Table 5 reveal the significant association between {C3,
C4} and {actionable, non-actionable}, though the statistical significance holds only
in one semester but not both. To consider both semesters, we further employed
partitioning (Sharpe, 2015) to perform pairwise analysis of the association between
{C3, C4} and {actionable, non-actionable}. The null hypothesis H0 is that there is
no association of the collaborative and lean natures of the risks. The results, shown
in Table 6, show that for SS15, χ2 � 10.486, d f � 1, p � 0.001, and for SS16:

Table 5 Chi-square analysis of the collaborative and lean risks

Category Data SS15 SS16

Non-
actionable

Actionable Non-
actionable

Actionable

C1 Raw 47 43 102 43

Residuals +0.66 −0.66 −0.21 +0.21

C2 Raw 49 44 134 60

Residuals +0.79 −0.79 −0.77 +0.77

C3 Raw 14 38 29 20

Residuals −3.56 +3.56 −1.92 +1.92

C4 Raw 35 24 88 21

Residuals +1.72 −1.72 +2.53 −2.53

Note Items in bold indicate a significant association,+means a positive association, and − means
a negative association



276 W. Wang et al.

Table 6 Partition-based chi-square tests where all the results are statistically significant

Category Data SS15 SS16

Non-
actionable

Actionable Non-
actionable

Actionable

C3 Raw 14 38 29 20

Residuals −3.43 +3.43 −2.86 +2.86

C4 Raw 35 24 88 21

Residuals +3.43 −3.43 +2.86 −2.86

χ2 � 7.086, d f � 1, p � 0.008, where df stands for degree of freedom. These
results lead to the rejection of H0. We, therefore, conclude that risks impacting the
students’ agile team as a whole (C3 or C4) tend to be either highly actionable or
non-actionable at all. We next discuss the implications of our results in the context
of lean learning.

5 Discussion

When risks were instrumented as an essential part of the project’s deliverable,
the students’ agile teams in our software engineering courses managed the risks
in a collaborative and lean manner. Our findings could guide the ongoing effort of
applying the lean principles in agile teaching, learning, and practice. We depict the
implications of our work in Fig. 3. Risks represent potentials that lead to project
failures, but risks themselves are neutral. Our results indicate that compared to the

Fig. 3 Lean principles in agile risk management



Lean Learning of Risks in Students’ Agile Teams 277

risks identified by individuals, the ones recognized jointly by the agile team should
receive more attention and therefore become more amenable to the lean principles.

While a risk hasmany properties, such as the likelihood of occurrence and severity,
our work implies that the actionability should be considered as a prerequisite of
applying the lean principles, especially the principle of elimination of waste. Our
work further contributes an automated method based on semantic relatedness to
quantify whether a risk’s description is actionable or not. Although other methods
such as risks’ tree structures (Hoodat & Rashidi, 2009) can help differentiate the
actionability, our method achieves the objective to a great extent.

In Fig. 3, if a risk is identified as actionable (for example, using our ESA-based
method), then the lean principle, “deliver as early as possible”, could be followed.
The reason is that the risk item contains a sufficient level of details, which compared
to non-actionable risks, could lead to more prompt actions. The actions, in turn, will
increase the speed of the feedback loop. For example, in addressing the actionable
Risk1 discussed in Sect. 4.2, gaining more correct, or at least more comprehensive,
understandings about the functionality of the software by studying the requirements
document carefully and by interacting with the customer representatives more fre-
quently, this could be performed or delivered as early as possible. The challenge is
to assign either an individual team member or a group of team members to deliver.
From the perspective of risk management, certain aspects should be updated after the
delivery, such as the outcome of risk mitigation, and in case the risk (for example,
incorrect assumption about requirements) still exists, the updated likelihood and the
severity of the risk should be updated. From the viewpoint of team management,
factors such as expertise (who addressed the risk), workload (how much work was
involved in mitigating the risk), and assessment (who validated and updated the risk)
shall be maintained.

If a risk is recognized as less or not actionable, then Fig. 3 suggests that a differ-
ent lean principle needs to be followed: “decide as late as possible.” Moreover, the
decision making shall be carried out in a collaborative way rather than individually.
The progression can be made by decomposition if the risk covers too many concerns
(e.g., quality tradeoffs among privacy, availability, and usability in mobile app devel-
opment), by specialization if the risk is too general (e.g., the learnability of Risk4
discussed in Sect. 4.2), and by clarification if the risk’s description is vague (e.g.,
which operating system or operating systems the customers require the software
to be compatible with—Risk3 mentioned in Sect. 4.2). In addition to making the
risk’s description more detailed, options for mitigating the risk shall also be decided
upon to improve actionability. As an example, Fig. 4 shows the risks related to UI
mismatch between Mapbox as an implementation host and the “route navigation”
as the to-be-implemented feature. In particular, there already exists a DoubleClick-
ZoomHandler extending GestureDetector in Mapbox which zooms the map at a
touch point by double-clicking. Should the students apply double clicking to set up
the to-be-navigated point, the risk of UI mismatch would arise. Similar UI mismatch
risk items include LongPressHandler, SingleTapHandler, and TapAndDragHandler
in Mapbox. When “decide as late as possible” is practiced, the agile team shall be
thorough about the ways such a risk could be addressed, e.g., by using a single



278 W. Wang et al.

Fig. 4 Code snippet showing a UI mismatch risk in Mapbox

click to implement “route navigation” or by overwriting DoubleClickZoomHandler
in Mapbox. While such decisions may always take long to be arrived at, we interpret
the lean principle here to be “decide as thoroughly as possible”.

Our work has several limitations. First of all, the collaborative classification was
done manually and in a post hoc manner. This, however, becomes less of a concern
in Fig. 3 due to the focus on our implications on the actionability of the risks. While
every risk can be automatically checked for its actionability, the collaborative analysis
suggests that the ones impacting the team as a whole would be especially important
for the agile and lean software development. Furthermore, the ESA-based method
requires proper inclusion and exclusion of Wikipedia categories, which is currently
performedmanually.We believe that it is critical to the successful application of ESA
to examine the actionability of the risks if one focuses on the risk categories that are
specific to a software development project. Moreover, the chi-square correlation
analysis that we performed in Sect. 4.3 treated the risks independent of the temporal
properties. While this correlation analysis was informed by the temporal pattern
of “eliminate waste” (cf. Fig. 2), having temporally sensitive analysis about the
correlations may reveal further insights into how to apply the lean principles such as
“deliver as early as possible” and “decide as late as possible”.



Lean Learning of Risks in Students’ Agile Teams 279

6 Conclusion

Risk is a fundamental vehicle for a software development project to progress and risk
management is regarded as a critical skill in the software industry. We report in this
chapter our two semesters’ of teaching of a junior-level software engineering course,
where students were grouped in agile teams to use risks to drive their milestone
deliverables. Our analysis uncovered the collaborative and the lean natures of the
risks in students’ agile teams and further revealed the significant interactions between
those natures. This allowed us to suggest specific lean principles for riskmanagement
in students’ agile teams. Our future work includes improving the risk management
teaching and practice in undergraduate software engineering courses, incorporating
industrial-strength tools in teaching and learning risk management, and applying
more lean principles in the context of agile risk management.

References

Agresti, A. (2007). An introduction to categorical data analysis. Wiley.
Anslow, C., & Maurer, F. (2015). An experience report at teaching a group based agile software
development project course. In Proceedings of the ACM Technical Symposium on Computer
Science Education, Kansas City, MO, USA (pp. 500–505).

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison-Wesley.
Beck, K., et al. (2001). Manifesto for agile software development. Agile Alliance. Retrieved from
http://agilemanifesto.org/.

Bhowmik, T., Niu, N., Wang, W., Cheng, J.-R. C., Li, L., & Cao, X. (2016). Optimal group size
for software change tasks: A social information foraging perspective. IEEE Transactions on
Cybernetics, 46(8), 1784–1795.

Boehm, B. (1986). A spiral model of software development and enhancement. ACM SIGSOFT
Software Engineering Notes, 11(4), 14–24.

Boehm,B. (1991). Software riskmanagement: Principles and practices. IEEESoftware, 8(1), 32–41.
Boehm, B. (2007). Top 10 software-intensive system risk items. In Presentation at USC Annual
Research Review.

Cantrell, G., Dampier, D., Dandass, Y., Niu, N., & Bogen, C. (2012). Research toward a partially-
automated, and crime specific digital triage process model. Computer and Information Science,
5(2), 29–38.

Carr, M. J., Konda, S. L., Monarch, I., Ulrich, F. C., & Walker, C. F. (1993). Taxonomy-based risk
identification. Technical Report, CMU/SEI-93-TR-6.

Cohn, M. (2013). A framework for evaluating agile risk management. Retrieved from https://tcagl
ey.wordpress.com/2013/10/01/a-framework-for-evaluating-agile-risk-management-daily-proce
ss-thoughts/.

Collofello, J. S., & Pinkerton, A. K. (1997). Integrating risk management into an undergraduate
software engineering course. In Proceedings of the 27th Annual Conference on Frontiers in
Education, Pittsburgh, PA, USA (pp. 856–860).

Devedzic, V., & Milenkovic, S. (2011). Teaching agile software development: A case study. IEEE
Transactions on Education, 54(2), 273–278.

Emiliani,M.L. (2004). Improving business school courses by applying lean principles and practices.
Quality Assurance in Education, 12(4), 175–187.

http://agilemanifesto.org/
https://tcagley.wordpress.com/2013/10/01/a-framework-for-evaluating-agile-risk-management-daily-process-thoughts/


280 W. Wang et al.

Gabrilovich, M., &Markovitch, S. (2007). Computing semantic relatedness usingWikipedia-based
explicit semantic analysis. In Proceedings of the International Joint Conference on Artificial
Intelligence, Hyderabad, India (pp. 1606–1611).

Gosall, N. K., & Gosall, G. S. (2015). The doctor’s guide to critical appraisal. Chestire: Knutsford.
Hanna, J. (2007). Bringing ‘lean’ principles to service industries.Harvard Business School Working
Paper, No. 08-001.

Holweg, M. (2007). The genealogy of lean production. Journal of Operations Management, 25(2),
420–437.

Hoodat, H., & Rashidi, H. (2009). Classification and analysis of risks in software engineering.
International Journal ofComputer, Electrical, Automation,Control and InformationEngineering,
3(8), 2044–2050.

ISO. (2018). ISO (International Organization for Standardization) 31000—Risk management.
Retrieved from https://www.iso.org/iso-31000-risk-management.html.

Kamble, S., Jin, X., Niu, N., & Simon,M. (2017). A novel coupling pattern in computational science
and engineering software. InProceedings of the InternationalWorkshop on Software Engineering
for Science, Buenos Aires, Argentina (pp. 9–12).

Ker, J. I., Wang, Y., Hajli, M. N., Song, J., & Ker, C. W. (2014). Deploying lean in healthcare: Eval-
uating information technology effectiveness in US hospital pharmacies. International Journal of
Information Management, 34(4), 556–560.

Koolmanojwong, S., & Boehm, B. (2013). A look at software engineering risks in a team project
course. In Proceedings of the International Conference on Software Engineering Education and
Training, San Francisco, CA, USA (pp. 21–30).

Mahmoud, A., Niu, N., & Xu, S. (2012). A semantic relatedness approach for traceability link
recovery. In Proceedings of the International Conference on Program Comprehension, Passau,
Germany (pp. 183–192).

Mahmoud, A., & Niu, N. (2015). One the role of semantics in automated requirements tracing.
Requirements Engineering, 20(3), 281–300.

Niu, N., Bhowmik, T., Liu, H., & Niu, Z. (2014a). Traceability-enabled refactoring for manag-
ing just-in-time requirements. In Proceedings of the International Requirements Engineering
Conference, Karlskrona, Sweden (pp. 133–142).

Niu, N., Brinkkemper, S., Franch, X., Partanen, J., & Savolainen, S. (2018). Requirements engi-
neering and continuous deployment. IEEE Software, 35(2), 86–90.

Niu,N.,&Easterbrook, S. (2007).Analysis of early aspects in requirements goalmodels:A concept-
driven approach. Transactions on Aspect-Oriented Software Development, III, 40–72.

Niu, N., Savolainen, J., Niu, Z., Jin, M., & Cheng, J.-R. C. (2014b). A systems approach to product
requirements reuse. IEEE Systems Journal, 8(3), 826–827.

Poppendieck,M.,&Poppendieck, T. (2003). Lean software development: An agile toolkit. Addison-
Wesley.

Radnor, Z.,Walley, P., Stephens, A., &Bucci, G. (2006). Evaluation of the lean approach to business
management and its use in the public section. Scottish Executive Social Research.

Reifer, D. (2002). Ten deadly risks in internet and intranet software development. IEEE Software,
6(2), 12–14.

Rico, D. F., & Sayani, H. H. (2009). Use of agile methods in software engineering education. In
Proceedings of the Agile Conference, Chicago, IL, USA (pp. 174–179).

Ropponen, J., & Lyytinen, K. (2000). Components of software development risks: How to address
them? A project manager survey. IEEE Transactions on Software Engineering, 26(2), 98–112.

Schmidt, C., Dart, P., Johnston, L., Sterling, L., & Thorne, P. (1999). Disincentives for communi-
cating risk: A risk paradox. Information and Software Technology, 41(7), 403–411.

Schroeder, A., Klarl, A., Mayer, P., & Kroiss, C. (2012). Teaching agile software development
through lab courses. In Proceedings of the IEEE Global Engineering Education Conference,
Marrakech, Morocco (pp. 1–10).

Sharpe, D. (2015). Your chi-square test is statistically significant: Nowwhat? Practical Assessment,
Research & Evaluation, 20(8), 1–10.

https://www.iso.org/iso-31000-risk-management.html


Lean Learning of Risks in Students’ Agile Teams 281

Strube, M., & Ponzetto, S. (2006). Wikirelate! Computing semantic relatedness using Wikipedia.
In Proceedings of the National Conference on Artificial Intelligence, Boston, MA, USA
(pp. 1419–1424).

Thota, C., Niu, N., Wang, W., & Purdy, C. C. (2017). Students’ perceptions of software risks. In
Proceedings of the ASEE Annual Conference, Columbus, OH, USA, Article No. 18053.



Part V
Using Agile and Lean Methods to Teach

Software Development



Applying Lean Learning to Software
Engineering Education

Robert Chatley

Abstract In this chapter, we describe the ways that we have applied lean and agile
techniques to teaching software engineering at Imperial College London. We give
details of the structure and evolution of our programme, which is centred on the
tools, techniques and issues that feature in the everyday life of a professional soft-
ware developer working in a modern team. We also show how aligning our teaching
methods with the principles of lean software delivery has enabled us to provide sus-
tained high-quality learning experiences.We examine two different types of course in
detail: first, a ‘traditional’ lecture course, where we transformed the way that course
is taught and assessed, aiming to create tighter feedback loops, and second a project-
based course where we ask students to put agile methods into practice themselves,
working in teams to build a substantial software system over a number of months.
We describe concretely how we run and structure these courses to set up effective
learning experiences.

Keywords Software engineering · University · Automation · Feedback
Project-based learning · Peer-instruction

1 Introduction

Lean and agile methods are prevalent in industrial software engineering today (Pap-
atheocharous & Andreou, 2014). Scrum, Kanban and eXtreme Programming (XP)
are all common in software development organisations, helping teams to develop
software iteratively, in reliable and predictable ways, whilst responding to changing
requirements in a fast moving world. In university Computer Science departments,
we are training the next generation of software engineers, and it is therefore important
that we teach these methods to prepare students for their future working lives.

R. Chatley (B)
Department of Computing, Imperial College London, London, UK
e-mail: rbc@imperial.ac.uk

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_14

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_14&domain=pdf
mailto:rbc@imperial.ac.uk
https://doi.org/10.1007/978-981-13-2751-3_14


286 R. Chatley

Many universities and other higher education institutions are striving to bring
modern industrial software development techniques into the classroom, and like
any such institution, Imperial College London has been faced with the challenge of
updating and evolving its software engineering education to prepare its students for
modern industrial careers. Keeping pace with rapid changes in industrial practice has
required changes in the way software engineering is taught. This includes teaching
modern development methods and giving students hands-on experience of putting
those methods into action through practical work (Anslow & Maurer, 2015; Kropp
& Meier, 2014). This evolution has not been easy but, through continuous experi-
mentation and iterative improvement, we believe that we have evolved a software
engineering programme that strikes a good balance between teaching, learning, and
assessment.

Given that we are teaching lean and agile methods, and believe that they have
positive effects on software engineering practice, it seems natural that we use them
to inform our teaching practice too. If we are looking to reduce waste, and to improve
quality and feedback in our educational systems, can we apply the principles and
practices that we teach to the teaching itself?

Although our own courses are focussed on software engineering, we believe that
many of the lessons we have learned are transferable to other disciplines.

1.1 Perspectives on Teaching

In order to discuss the approaches that we have tried, we will borrow some vocabu-
lary from Mark Guzdial’s 2015 book ‘Learner-Centered Design of Computing Edu-
cation’ (Guzdial, 2015). Guzdial gives us three useful terms to describe different
types of learning experience. The first is transmission, which describes the classic
lecture situation. An expert holds a body of knowledge and tries to transmit it to
a—hopefully—attentive audience. This is typically a one-way interaction between
one teacher and many learners.

The second perspective is apprenticeship, which we use to describe a learning
experience focussed on the development of skills rather than theoretical knowledge,
most likely through kinaesthetic learning and practical exercises. You can imag-
ine this in a setting like a cookery class, where each student can practice a recipe
repeatedly until they have mastered a dish.

The third perspective is developmental, which describes a personalised learning
experience without a set curriculum. It focuses on taking the learner from where
they are to somewhere more advanced, in a particular direction depending on their
strengths and weaknesses. This sort of individual tuition works well in a situation
like a piano lesson, but it is hard to replicate it with a lecture class of 150 students.

Unfortunately, we do not have the resources in our university to offer individual
tuition and personally tailored programmes for every student taking Computer Sci-
ence, perhaps as a student at a music conservatoire might experience. However, we



Applying Lean Learning to Software Engineering … 287

will discuss howwe have tried to blend these three approaches in order to improve on
a style of teaching purely based on weeks of transmission followed by final exams.

1.2 The Rest of This Chapter

In the remainder of this chapter, we will illustrate how we have transformed two
different types of courses to increase the value of the learning experience, and to
incorporate more frequent, high-quality feedback. We move from courses primarily
based on transmission to courses that focus on the development of skills through an
apprenticeship model, and also incorporate individual and small group tuition from
instructors and peers, moving towards more developmental education. In Sect. 2, we
look at the evolution of a traditional lecture course, and in Sect. 3 we describe how
we support different types of project-based learning. Section 4 discusses possible
challenges for future adoption of similar techniques in more courses and at larger
scales. We also give some qualitative feedback taken from our student survey, which
is conducted across all students, anonymously, at the end of each term of study.

2 Lecture Courses

Within Imperial’s Computing curriculum, we have a second-year undergraduate
module called Software Engineering Design. The content of this module concerns
methods, tools, and techniques for the development and deployment of large-scale
software systems that are robust, well-engineered and easy to maintain by design.
In an earlier incarnation of the course, the material concentrated on notation, formal
specification languages and catalogues of design patterns (Gamma, Helm, Johnson,
& Vlissides, 1995). This meant that students would learn a range of ways to doc-
ument and communicate software designs, but these were not tied to a particular
implementation language. Much of the material was thus taught ‘in the abstract’ and
the students did not get much opportunity to put their theoretical knowledge into
practice. The following comment in our student survey typified concerns that this
was not the best approach:

Would have preferred design patterns to be practiced more in lab exercises, … the patterns
I understood best were the ones for which I wrote and tested actual code…

We wanted to find a way to move the focus from learning theoretical knowledge
to applying and demonstrating practical skills. We hoped that this would not only
improve the students’ experience of the class, but also provide them with a more
valuable learning experience.

Historically, teaching in this class was based largely on transmission. Students
attended lectures twice per week throughout the autumn, took other modules during



288 R. Chatley

Fig. 1 The structure of a traditional lecture course at Imperial, with lectures over the autumn
term, and examinations in the summer. Figure © 2017 IEEE. Reprinted, with permission, from
proceedings of 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)

the spring, and then had their examinations after Easter (see Fig. 1). There were tuto-
rial classes alongside the lectures, usually with paper-based exercises, but typically
only the most diligent students kept up with the exercises week by week and most
left them to use as revision aids come exam time.

This approach is completely at odds with the typical delivery cycle of a modern
industrial software project. The feedback cycle is very long, and a large amount of
work is in process beforewe get to the ‘quality assurance’ stage.Onlywhenweget the
exam results do we really know whether we have taught the students effectively. We
can think of the course as starting out with a long list of requirements for things that
students should learn—a syllabus—and that we then go into a phase of transmission,
after which we check the results. There is no iteration or incremental delivery—it is
one big batch.

Inmodern software development projects, we typically strive to reduce batch size,
with the aim of decreasing cycle time, decreasing risk, and increasing quality. One
mechanism by which we might do this would be to employ Kanban, a lean method
that focusses on flow through a system, and by using it we can aim to maximise
throughput and minimise cycle time (Anderson, 2010). In software development,
we want to minimise the time between someone having an idea for a feature and
prioritising it, and that feature being working software in the hands of the users.
In learning and teaching, we instead want to minimise the time from introducing an
idea, to having a student internalise it, to verifying that their understanding is correct.

One of the tools of a Kanban practitioner is to visualise theworkflow. In a software
project, this is typically done with a physical or virtual ‘card wall’, divided into
columns for the different phases that each piece of work needs to go through. The
different columnsmap the value stream (Rother & Shook, 2003). Typically the board
is divided into columns representing the ‘backlog’ of upcoming tasks, those that are
in analysis, those in development, those being tested, and those ready for release,
or released. Cards representing separate tasks are moved from column to column as
work on them progresses. Similar boards are also often used in other agile methods
such as Scrum and XP, but where in those methods the board is an information
radiator to help to display the current state of the team’s work, within a regular



Applying Lean Learning to Software Engineering … 289

Fig. 2 The value stream of
learning, which maps the
different phases of learning.
Figure © 2017 IEEE.
Reprinted, with permission,
from proceedings of 2017
IEEE/ACM 39th
International Conference on
Software Engineering
(ICSE)

delivery cadence (e.g. a 2-week iteration), in Kanban the board is used as a tool to
define and optimise the flow of work through the system. The key idea is to use the
current state of the work to decide what to do next, and always to ‘pull from the
right’, so that we concentrate on getting individual pieces of work finished before
starting new ones (Ottinger, 2015). This way we focus on completion and keep the
work in process low. A limit can be placed on the number of pieces of work that may
appear in any column at once in order to enforce this focus on finishing.

We take this idea and redraw the columns on the board to form a value stream of
learning. Here we list the items on the syllabus as our backlog—‘to do’—and then
have columns for ‘explain’ (transmission), ‘practice’ (apprenticeship), ‘check’ and
‘learnt’ (see Fig. 2). If we follow the ‘pull from the right’ mantra, then we want to
get each item over to the right-hand side as quickly as possible. That means that
we aim to do a minimal amount of transmission on each topic before the students
get to practice in a hands-on exercise, and then verify the quality of their learning,
obtaining feedback before we move further on in the syllabus.

Putting this into practice, we first tried the common approach of adding a small
project as coursework part way through the term. However, as it took a couple of
weeks to complete the project, and about the same again to get all the assignments
marked up and graded, it was pretty much the end of the course before the students
got their feedback. There was a wide variation in how students chose to approach the
design project we gave them. Those who were more dedicated and had understood
well tried out a lot of different ideas and added many features. Those who had not
understoodwell didmuch less or did the wrong thing. If anything, rather thanmaking
sure that everyone had learnt the material, it seemed that we had widened the gap
between the stronger students and the weaker ones. We needed something better.

2.1 Reducing Cycle Time

In order to give more guidance, and earlier feedback, we changed from asking stu-
dents to design awhole system to asking them to consider individual design choices in
different situations, and examining how implementing something one way or another



290 R. Chatley

Fig. 3 Revised course structure, with a weekly cycle of assessment and feedback. Figure © 2017
IEEE. Reprinted, with permission, from proceedings of 2017 IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE)

would affect the future maintenance of the system. In terms of the assignments that
were set, we moved from ‘design a system with the following requirements, discuss
the design choices you made’, to a set of weekly smaller coding exercises of the form
‘Add feature X to this system by using design pattern Y. Now try design pattern Z.
What are the trade-offs?’. By carefully constructing a number of small scenarios to
work through one-by-one, we ensured that each student had the same design issues
to think about, and by making them into coding examples students got a much more
hands-on, kinaesthetic learning experience.

Fittingwith theweekly nature of the university timetable, this led to aweekly cycle
of assessment (see Fig. 3). A new topic is addressed each week with an associated
assignment, and students submit their solution later the same week. Grades and
feedback are then returned within three or four working days, i.e. before they submit
their next assignment.

The obvious problemwith weekly assignments is the volume of grading and feed-
back required. Because of the limited teaching resources that institutions generally
have to work with, the temptation is to reduce the frequency of assignments, e.g. to
once every 2 weeks, in order to be able to deliver feedback ‘at scale’. However, this is
at odds with what we are trying to achieve. Relating this again to the conditions that
apply in a software development project, often we strive to release software more
frequently, but integrating and testing new code requires a lot of time and effort. XP
promotes adopting a process of continuous integration (Duvall, Matyas & Glover,
2011), through which we tend to find that doing these things more often causes us to
streamline processes, remove waste, and often apply automation. As Martin Fowler
often says ‘if it hurts, do it more often’ (Fowler, 2011).

2.2 Peer Coaching

One change that made a big difference to both student learning andmarking load was
to encourage students to pair-program,which has been shown to be highly effective in



Applying Lean Learning to Software Engineering … 291

a classroom environment (Williams&Upchurch, 2001).We have found that students
enjoy the experience of working with a colleague—a class survey showed that from
148 students, 119 declared that they found learning to through pair-programming to
be a good experience, 18 were neutral, and just 9 stated that they preferred to work
individually. Students get to practice pair-programming,which is an industry-relevant
skill, but not something that necessarily comes naturally to everyone; becoming good
at it is difficult and requires work. The students get to coach each other and help
each other to learn and understand. By engaging them in pair-programming, we
had effectively set up a network of peer coaches—a developmental learning style
personalised to each individual. Although we are aware of studies that show that
constructing pairs by matching weak and strong students perhaps produces more
learning, in this case, we allowed them to work with whomever they liked as we
wanted to smooth the path to adoption. We may experiment with pre-selected pairs
in future. Last, a major benefit in terms of giving weekly feedback on assignments
was that pair-programming reduced the number of submissions from 150 to 75!

2.3 Automation

A key to reducing the burden of assessment and feedback has been to add automation
where possible. This ties back to the engineering practices of XP where automation
is used to allow testing of software to be done quickly, repeatably and reliably. Our
approach here has been to provide tools that enable students to test their exercise
solutions as they work, to detect basic problems early and allow students to fix them
before they submit their work. From the first week of their first year, students learn
to use version control through Git and GitLab.1 When they start a coding exercise
they clone a repository to obtain skeleton files that form a starting point and are
encouraged to work in small steps, committing each change as they go. When they
submit their work for assessment, what they actually submit is a Git commit hash
corresponding to the version to be marked. We have also implemented a software
testing tool the ‘Lab Test System’ (LabTS), which allows students to view and test
each version of their code themselves (see Fig. 4).

For first-year courses, we provide a (partial) test suite that students can run against
their code, to check the correctness of their solutions. However, later, when learning
about software design, we do not want students to follow the same approach. Pro-
viding a set test suite has a consequence of defining an API that the students need
to implement. In our design exercises, we want them to design their own API as
part of the exercise, and to write their own automated tests against that API. Writing
automated tests and utilising test-driven development is a key skill that we want to
instil at this stage of the students’ education.

As a mechanism to encourage students to write their own tests, we use LabTS to
check a test-coverage metric, with a coverage threshold that we deem appropriate

1https://about.gitlab.com/.

https://about.gitlab.com/


292 R. Chatley

Fig. 4 Screenshot of our LabTS system—a web-based tool that allows students to run automated
tests on each iteration of their exercise solutions

for that week’s exercise. LabTS gives each submission a score out of 3: 1 point if the
code compiles, 1 point if all the tests the students have written pass, and 1 point if
these tests meet the code coverage threshold and the code passes some basic layout
and formatting checks. The exercises for our second-year design course are in Java,
so we use a Gradle2 build to choreograph the compilation, testing and other checks.
We configure Gradle plugins to check code formatting against a given style guide,
and to measure test-coverage. LabTS is then set up to run this Gradle build against
each submission and report the results. Usually, if a LabTS test run does not score
3/3, it is relatively easy for the student to see what they need to do to make up the
remainder of the marks. We put a policy in place for the class that if a solution does
not score 3/3 on LabTS then a human marker does not need to look at it.

With this system in place, we cannot yet dispense with the human markers, but
they can give more nuanced feedback on issues of design, and should not have to
pick up on basic points about compilation, style, or test-coverage. Even the simple
application of checks on code layout and style mean that by the time a person looks
at the code, it is laid out in a way that is easy to read. This makes the most of the
marker’s time by allowing them to focus on more subtle design issues, and not to
waste time commenting on things that can be detected automatically. For our cohort
of 150 students, working in pairs, with a team of 5 or 6 markers, we can mark and
give feedback with about 2 hours of effort per marker per week, which allows us to
sustain weekly feedback throughout the course.

2https://gradle.org.

https://gradle.org


Applying Lean Learning to Software Engineering … 293

2.4 Summary

Changing the delivery format of this course from knowledge acquisition through
transmission in lectures, to a focus on skills development through apprenticeship and
practical exercises, togetherwith the developmental support of peer coaching through
pair-programming seems to have been a great success. To enable consistent progress
and feedback through weekly exercises we had to solve the problem of scaling our
feedback mechanisms, and have used automation techniques, as well as paring back
the exercises to really focus on the core message, to make this manageable. The
concrete nature of the exercises results in students feeling that their coding skills as
well as their design skills are improved by completing them. They also appreciate
getting weekly feedback on their work. The following comments from recent student
surveys are quite typical:

A well-structured and engaging course, which I could immediately benefit from as it helped
improve the quality of my code and Java knowledge.

I liked that I had to submit the tutorials every week, otherwise I would not have done them.

The weekly cycle of assessment and feedback now works really well. The small
batch size and short turnaround time means that students are motivated to do the
weekly assignments and this gets them to practice and to improve. Although we
have not been able to automate marking completely—this seems like a grand chal-
lenge—we have found that a team of five people can now complete the feedback for
the entire class in around 2 hours each week.

3 Project-Based Courses

Another key feature of Imperial’s Computing curriculum is team-based practical
projects. Team working is an essential component of any software engineering pro-
gramme and is a key skill that many employers look for when hiring graduates.
Modern software development methods focus on teamwork and collaboration for
the development of software, and we feel that the best way for students to learn
these is to experience them practically in project-based courses. Again, we aim to
focus on apprenticeship and developmental learning, allowing students to learn for
themselves and from each other through solving practical problems.

In our programme, students get experience of working in small groups from as
early as the first year, but we increase the structure and process around the manage-
ment of project work, alongwith the scale of the projects they tackle, as they progress
through their education. First-year projects are left fairly freeform, with small groups
and fairly short timelines, for the students to manage, however, they see fit. After
that, we begin to introduce more structure as their projects grow, to allow them to
experience something closer to an industrial development environment. Rather than
concentrating on transmitting them the relevant theory, we focus on creating a learn-



294 R. Chatley

ing experience where the structure in which projects are assessed naturally promotes
an agile way of working.

3.1 Second Year—Web Application Development Projects

By the end of their second year of study, computing students should have learned
the skills and knowledge needed to build a complete application. At the end of
the summer term (the end of the academic year), we give them the opportunity to
exercise these skills in a group project, and through this introduce some elements of
agile development methods (such as Scrum or XP). The aims of these second-year
group projects are to…

• explore user focussed design and development
• experience and practice an agile method in a small project
• apply software development tools and techniques
• develop team work

These projects are done in groups of four students, and run full-time over a period
of 4 weeks, which we structure as four 1-week iterations. Each project team develops
a web or mobile application of their own design to solve a problem that they have
identified. They make the product decisions; they do not have an external customer.
To emphasise an iterative approach we run the projects with the following structure:

• 1-week iterations, with groups required to demo their software every Friday.
• Demos are assessed in a lightweight way focussing on: product increment (have
they delivered anything thisweek?) and user research (have they gathered feedback
from their target users?).

Rather than marking the project entirely at the end, a proportion of the marks is
available each week, so that sustained, iterative progress is rewarded—a big bang
release at the end is not. We also want to steer the students towards quantitative
evaluation of their ownwork throughmeaningful experiments with users. The Friday
demos allow groups to demonstrate both their newly developed features and the
results of thatweek’s user trials in a short informalmeeting. Each group gets 5–10min
to meet with tutors in the computer lab and showcase their latest work. We do not
require a big final project report, just a few lightweight deliverables to document
the purpose of the application, the overall technical architecture, and the use of
appropriate development techniques.

The emphasis is on creativity, user experience, rapid iteration and vertical slicing
of development. We do not go into the details of any particular project management
practices or enforce that students must follow them. The weekly demos mean that
the teams must integrate their features to have a working system each week, so they
naturally follow a process of continuous integration and frequent release, without us
requiring those practices explicitly. Our experience shows that if we require a team to
demonstrate, for example, specific Scrum practices, then they tend to show them lip



Applying Lean Learning to Software Engineering … 295

service, and write a report telling us what they think we want to hear, without really
feeling the benefit of the practices in their projects (especially when projects are
relatively small scale, as university projects tend to be). Hence, we focus on regular
delivery of working software above all else.

These projects are a fun way to finish the year, allowing students to apply their
knowledge and build a product. They also serve as a warm-up for the larger projects
that they will undertake when they return in the third year.

3.2 Third Year—Software Engineering Group Projects

By their third year of study, computing students should be in the position where
they can use their skills to engineer a substantial software system. We want to give
them the opportunity to exercise and develop these skills in a relatively large group
project over the course of a fewmonths.Where the second-year projects have a small
team, a short timescale, and creative freedom to develop whatever they want, third-
year projects have bigger teams, a longer timescale, and a customer relationship to
manage. All of this naturally requires more conscious management, and so we can
support this by encouraging teams to follow agile methods more explicitly. The aims
of these projects are to…

• apply software engineering tools and techniques
• apply management techniques for software projects
• develop a complex system for and with a customer, with a particular user in mind
• improve team work

Projects are done in groups of 5–6, between October and January (see Fig. 5), to
a brief suggested by an academic supervisor (or in some cases an external company)
acting as a customer to set requirements and guide the product direction. Students
do not work on the project full-time, but alongside their lecture courses, including a
Software Engineering course designed to support the project work. Each group has a
different brief, but all are aiming to build a piece of software that solves a particular
problem or provides a certain service for their users. Recent examples include an
open-source implementation of Microsoft’s RoomAlive (Jones et al., 2014), systems
for estimating heart rate based on video or speech recordings, and verifying product
provenance using BlockChain technology.

The aims from an educational point of view are to build the students’ skills in
teamwork and collaboration and to put into practice software engineering techniques
that support this kind of development work.



296 R. Chatley

Fig. 5 Schedule for third-year Group Projects—project duration is 3 months. Figure © 2017 IEEE.
Reprinted, with permission, from proceedings of 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE)

Fig. 6 Perceived effort curve for students during Group Projects (in blue). Figure © 2017 IEEE.
Reprinted, with permission, from proceedings of 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE)

3.3 Sustainable Pace

We run these projects during the first term of the academic year when the students
have just returned from their summer vacation. Something we observed in previous
years was that students tended to leave the bulk of the work on their project to
later in the term, with a big effort spike as the deadline neared—not working at the
sustainable pace that we would hope to see in an agile project (see Fig. 6).

To encourage a more sustained pace of work, we introduced structured, time-
boxed iterations. In the second-year projects described previously, students com-
pleted four 1-week iterations, and now for third-year projects we expect them to run
their project as four 2-week iterations, through the autumn term, with a checkpoint
at the end of each iteration where they demo their progress to their supervisors.
More advanced teams could complete eight 1-week iterations if they prefer. In the
9th week, they should take a break for exams, and this then gives them the Christ-
mas vacation to polish any final features, write up their reports and prepare their



Applying Lean Learning to Software Engineering … 297

presentations which are given in January. The aims of the following structure and
deliverables are…

• to encourage students to do more work on the projects earlier in the term
• to encourage sustained, iterative progress on projects
• to encourage projects to ‘build a system that lets person X achieve Y’, rather than
research projects

• to remove any deliverables (such as reports, etc.) that do not directly add to the
project

We wanted to find ways to get the students to start earlier. To this end, we have
now phased out the lectures, and instead give them introductory talks introducing
the structure and goals of the project on the first Monday of the new term, have them
form groups on Tuesday, select projects on Wednesday and complete allocations of
projects to groups by the end of Thursday. Given the way that our timetable works,
this then gives them a couple of clear days to make plans and get started on the
project before their lecture courses start the following week. We then run the four
2-week iterations from weeks 2 to 9 of the term (Fig. 7).

In forming project groups, so far we have let students select their own teammates.
Although, as with pair-programming, there are suggestions that learning can be
improved by carefully selecting students of varying academic strength and mixing
them together in each group, we felt that overall, the experience of restructuring and
improving our projects would be smoother if we did not have students complaining
that they were not able to work with their friends. This is something that we might
revisit in future, but for themoment we plan to leave the groups as self-selecting—we
only constrain the team size. Before our focus on agile methods, we specified that
each team should appoint a team leader, but mandating this did not seem to fit well
with the collaborative nature of agile methods, so we have left it to teams to do as
they think best. If they choose to do Scrum, they should appoint a ScrumMaster, but
that is someone who is responsible for the execution of the Scrum process and as
such very different from a team leader who makes the decisions and allocates work.

Fig. 7 Lightweight end-of-iteration checkpoints every 2 weeks. Figure © 2017 IEEE. Reprinted,
with permission, from proceedings of 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE)



298 R. Chatley

3.4 Customer Relationships

The aim of these projects is to deliver a particular piece of software, rather than to
conduct an investigation in a research area. Particularly in the case of some academic
supervisors, we have had to steer them quite strongly to propose suitable projects.We
found that projects that were very investigative, or required a lot of up-front reading
of research papers, were generally not very compatible with our aims of delivery
working software early and often.

To help to gather appropriate project briefs, we provide a template for the potential
supervisors and customers to complete. The aim of using the template is to provide
some consistency across project proposals, to make sure that the students have all
the information they need in making their selection, and to make sure that project
proposals fit well with the learning objectives in agile software development. Our
project proposal template is as follows:

Please make sure that you have a particular piece of software in mind for the
students to build. Your proposal should specify the following:

The project title is…
General background… a brief description of the context and purpose—a couple

of paragraphs
The target user is… identify a particular user (or class of users)—be specific
The system should allow the user to achieve… be specific about the capability

that the application should provide—what can you do when it exists that I can’t do
now.

Any technical (or other) constraints… e.g. this must be an iPhone app; this
must run on a video wall; you must integrate this C++ library; you must collaborate
with this external company, etc.

3.5 Lecturing Versus Coaching

Having completed their second-year projects, students should already have experi-
ence of working in an iterative way for a small project. Now, having reduced the
transmission of Software Engineering materials through lectures, we just provide a
recap lecture during the first week of term, reminding them of the agile techniques
they used in their previous projects. Additional material givingmore detail about spe-
cific methods (Scrum, XP and Kanban) is provided online. We also provide online
material on continuous integration and delivery techniques, as well as case studies
of commercial implementations of agile methods at companies like Spotify who are
quite open (Kniberg, 2014) about the methods that they use.

Rather than giving further lectures, we now provide individual consulting time to
all groups by holding office hours. Groups can book slots to get specific advice on
any problems they are having, particularly around the areas of project management,
evaluation, or other software engineering matters relevant to their project. Making



Applying Lean Learning to Software Engineering … 299

these office hours optional meant that only the keen groups (often those not requiring
much help) took up the opportunity. In light of that, we nowmandate that each group
must arrange at least two consultations over the course of the project, one during
the first four weeks, and one during the second four weeks. The consultations are
30 min each, and we have around 30 groups, so this is 30 hours worth of work for
the tutor over an 8 week period. We ensure that the tutor running these consultations
is an experienced industry professional with experience of applying various agile
methods in many different software engineering contexts. This way we can give
high value, context-specific advice to each group, rather than advising them only
on the textbook principles of agile. This approach, following a more developmental
learning style, increases the relevance of the lessons taken away by each group
and—hopefully—allows them to apply the specific advice directly to their project.
Students can pull relevant theory as they encounter problems in their project work.

We do not mandate a set development process for the students to follow, but we
encourage teams to adopt practices that might be used by an industrial team of a
similar size carrying out a similar type of project. We suggest that they follow either
Extreme Programming, Scrum, or Kanban (not a mixture)—and back this up with
engineering practices such as continuous integration, automated testing and staged
deployments. While these practices may not manifest themselves in exactly the same
way between different teams, depending on the exact nature of their project, each
team should be able to adopt and benefit from most of these in some guise. Again,
individual coaching can help teams to adopt appropriate tools and techniques for
their specific context.

3.6 Checkpoints

As previously explained, we structure these projects as four 2-week iterations. At the
end of each iteration project, teams must meet with their supervisor/customer and
give them a demonstration of the current state of their software. They should be able
to show that they have made progress, and that their software has more (or better)
features than it did at the last demo.

To structure these meetings, and to provide some consistency across groups and
supervisors, we provide a simple checklist. We want to keep the assessment process
lightweight for all parties, so we want to avoid writing and reading detailed reports.
The checkpoint forms are quick to complete and quick to check. We provide each
team with a 1-page PDF form, which they take with them when they demonstrate
their product, and they ask the customer to complete and sign it. The team then
scans the signed sheet and submits it as a piece of coursework. We also ask them to
submit a set of three screenshots showing the current state of the digital tools they
are using to manage three aspects of their project—their version control repository,
their continuous integration build, and their project plan. Again, the idea is to have
a deliverable that is quick to produce, and quick to check. The checkpoint form has
the following questions for the customer to answer:



300 R. Chatley

I certify that in this iteration I feel the group has… (check one):

• not been able to demonstrate any new working software
• shown me something working, but a bit less than I had hoped for, or not what we
agreed

• adequately delivered the features that we agreed on
• made better progress than I expected
• made amazing progress with wonderful results

Has the list of risks to project success changed since you last met the group? What
are the two main features agreed to be delivered for the next checkpoint?

Customer Signature/Date

Previously we just had binary checkpoints—either the customer was satisfied or
they were not—but we have found that giving a way for customers to express their
satisfaction on a scale has led to a more meaningful interaction, as well as more
motivation on behalf of the teams to try to please their customers. This system of
end-of-iteration checkpoints seems to be working well as a way to produce a more
sustained pace of development across the term, rather than a big bang before the
deadline, and also provides the benefits of agile development to the customer as
they have more opportunities to see the product running, and steer future feature
development so that they end up with something that meets their needs.

3.7 Summary

Ourmain learning in restructuring our project-based courses in Software Engineering
was to focus on the regular delivery of working software.Whatever types of technical
practice or project management technique we might encourage the students to adopt,
they need to feel the benefits of those in helping them to deliver reliable software
that meets their customer’s needs, without working to a crazy schedule. As we want
to foster creativity, and believe that students are more motivated when they get to
choose from a wide range of projects, we need to provide support and tutoring that
is specific to each team. Following a coaching model allows us to provide relevant,
specific, help and advice to each team, at the point that they need it. This seems to be
much more effective than more generalised transmission through lectures, especially
given the varying needs of the different teams.

By coming up with an overall iteration structure, and a lightweight way of assess-
ment through end-of-iteration checklists, it is possible for us to have a degree of
consistency across the class, while still allowing different teams to work in quite dif-
ferent ways.We also found that this outline structure helps students to plan their work
across the term, rather than leaving everything until just before the final deadline.



Applying Lean Learning to Software Engineering … 301

4 Future Directions

The methods described in this chapter are working well for us in these Software
Engineering modules. But our Computing curriculum comprises many more mod-
ules besides these—modules on basic programming, compilers, operating systems,
databases, logic, mathematics, etc. It is tempting to try to spread our agile and lean
approaches to more modules, but we suspect there will be friction. Just as when
introducing agile methods to software development organisations, change is hard.
Lecturers running traditional lecture courses may be reluctant to increase the fre-
quency of practical exercises, especially if that means more frequent assessment.
The path of least resistance may be to stay with the status quo, but we believe that in
transforming the modules described here we have increased their educational value,
and hope that we can gradually spread this across our curriculum. Perhaps it is nat-
ural that instructors with experience of agile methods are the most keen to introduce
them to their teaching, but we hope some enthusiastic colleagues will try to apply
similar techniques in their classes too.

Another question is whether we can scale to larger class sizes. Lean methods
allow us to improve efficiency and aim to make contact time between students and
teachers more valuable. However, the close collaboration and frequent feedback we
have implemented in our new structures do not relieve staff time. If we increased
class sizes then we would still need more markers, more tutors, more coaches and
more customers. Automation helps to remove some trivial tasks and to streamline
some of the others, but so far we cannot see a way to remove the human element,
and neither are we sure that we would want to.

In fact, the role of the instructor becomes critical. As agile implies high-contact
collaboration, working closely together exposes problems and uncovers any lack
of experience on behalf of the teacher. When coaching a project team, textbook
knowledge is not enough, we need specialists with real experience of running agile
projects in the wild. Removing waste from the learning experience has made the
need for expert tuition the bottleneck in our system, which rather than a problem, is
perhaps to be seen as a sign of success.

Acknowledgements We would like to acknowledge colleagues and students at Imperial College
London for their contributions to the evolution of our curriculum.

References

Anderson, D. (2010). Kanban: Successful evolutionary change for your technology business. Blue
Hole Press.

Anslow, C., & Maurer, F. (2015). An experience report at teaching a group based agile software
development project course. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (pp. 500–505).

Duvall, P., Matyas, S. M., & Glover, A. (2007). Continuous integration: Improving software quality
and reducing risk. Addison Wesley.



302 R. Chatley

Fowler, M. (2011, July). Frequency reduces difficulty [online]. Retrieved from http://martinfowler.
com/bliki/FrequencyReducesDifficulty.html.

Gamma, E., Helm, R., Johnson, R., & Glissades, J. (1995). Design patterns: Elements of reusable
object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for
everyone. Morgan & Claypool Publishers.

Jones, B., Sodhi, R., Murdock,M., Mehra, R., Benko, H.,Wilson, A., & Shapira, L. (2014). Rooma-
live: Magical experiences enabled by scalable, adaptive projector-camera units. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and Technology (pp. 637–644).
New York, NY, USA: ACM. https://doi.org/10.1145/2642918.2647383.

Kniberg, H. (2014, March). Spotify engineering culture [online]. Retrieved from https://labs.spotif
y.com/2014/03/27/spotify-engineering-culture-part-1/.

Kropp, M., &Meier, A. (2014). New sustainable teaching approaches in software engineering edu-
cation. In 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 1019–1022).

Ottinger, T. (2015). Over-starting and under-finishing [online]. Retrieved October 4, 2016, from
https://www.industriallogic.com/blog/over-starting-and-under-finishing/.

Papatheocharous, E., & Andreou, A. S. (2014). Empirical evidence and state of practice of software
agile teams. Journal of Software: Evolution and Process, 26(9), 855–866. https://doi.org/10.100
2/smr.1664.

Rother, M., Shook, J., & Institute, L. E. (2003). Learning to see: Value streammapping to add value
and eliminate muda. Productivity Press.

Williams, L., & Upchurch, R. L. (2001). In support of student pair-programming. In Proceedings of
the Thirty-Second SIGCSE Technical Symposium on Computer Science Education (pp. 327–331).
New York, NY, USA: ACM. https://doi.org/10.1145/364447.364614.

http://martinfowler.com/bliki/FrequencyReducesDifficulty.html
https://doi.org/10.1145/2642918.2647383
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://www.industriallogic.com/blog/over-starting-and-under-finishing/
https://doi.org/10.1002/smr.1664
https://doi.org/10.1145/364447.364614


Developing a Spiral Curriculum
for Teaching Agile at the National
Software Academy

James Osborne, Wendy Ivins and Carl Jones

Abstract The National Software Academy (NSA) was established at Cardiff Uni-
versity in October 2016 as a centre of excellence for Applied Software Engineering.
We work in partnership with Welsh Government and industry leaders to address the
national shortage of software engineering graduates with the skills, knowledge, and
hands-on experience required to be immediately effective as commercial software
engineers.We run an innovative, industry-focused B.Sc. which uses agile methods to
facilitate our project-based learning (PjBL) approach. The projects are provided by
our network of industrial partners and are used across multiple modules as a basis for
assessment across the disciplines. Although the degree course has yet to produce any
graduates, a significant proportion already hold conditional job offers. A conversion
M.Sc. in Applied Software Engineering for STEM graduates has also been devel-
oped, and will benefit from lessons learned as we continue to inspect and adapt the
undergraduate degree programme. This chapter outlines how a spiral curriculum has
been developed for teaching agile that progressively introduces complexity whilst
building on previous learning.

Keywords Spiral learning · Agile project management · Project-based learning
Industrial collaboration · Applied software engineering

1 Introduction

Our Applied Software Engineering degree is developed in collaboration with indus-
try partners in order to ensure that graduates from the programme have the neces-
sary skills to enter industry and be productive from their first day of employment.

J. Osborne (B) · W. Ivins · C. Jones
Cardiff University, Cardiff, UK
e-mail: osbornej8@cardiff.ac.uk

W. Ivins
e-mail: ivinswk@cardiff.ac.uk

C. Jones
e-mail: jonesc162@cardiff.ac.uk

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_15

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_15&domain=pdf
mailto:osbornej8@cardiff.ac.uk
mailto:ivinswk@cardiff.ac.uk
mailto:jonesc162@cardiff.ac.uk
https://doi.org/10.1007/978-981-13-2751-3_15


304 J. Osborne et al.

We work with companies ranging in size from small- to medium-sized enterprises,
all the way up to large multinationals, to develop and deliver the curriculum, using a
project-based learning approach. Industry interest and support in our approach has
been overwhelming. Since our launch in October 2016, over 220 organisations have
visited the NSA.

Companies pitch their project ideas to a panel of academics, who review them
for suitability of fit within the modules included in the programme. Students work
collaboratively in small teams of about four students, developing software for real
clients. Students typically spend 30–50% of each semester working on developing
solutions for those companies who can take the projects forward as they see fit. The
teams adopt an agile approach to development and will meet their clients at regular
intervals. Various aspects of the project work form part of the assessment towards
their final degree. This project-based approach to learning helps the NSA bring work
experience into the teaching environment so that all students benefit from gaining
real project experience. All intellectual property is owned by the industrial partner;
however, we ask that they allow students to use these projects to showcase their
talents to future employers.

Our teaching environment is an open plan office, where students are arranged in
small groups of three to four. Students are provided with a laptop, preloaded with
the development tools required and can connect to an external monitor, keyboard
and mouse as needed. Our teaching sessions usually run for 2.5 h at a time, during
which students are taught new concepts for a short time, and then they are given the
opportunity to put their learning into practice immediately within the same session.
The teaching environment enables collaborative learning during the project phases.
Students use physical whiteboards and virtual agile project management tools to
gain a shared understanding of the project’s progress. Academic staff are on hand
to support the teams, but each team is responsible for managing the direction and
allocation of tasks for their projects. It is during the project phases that the teaching
environment takes on a vibrant ‘start-up’ atmosphere.

We will reflect on our first 2 years of teaching agile at the NSA. We have been
continually improving our approach, whilst taking into consideration feedback from
students and industry. We will also reflect on the extent that the teaching approach
at the NSA aligns with the values of the Agile Manifesto.

2 Related Work

The teaching of Agile Project Management skills in higher education is a well-
established practice at both undergraduate (Schilling & Klamma, 2010; Mahnic,
2012; Schroeder, Klarl, Mayer, & Kroiss, 2012; Kropp & Meier, 2013; Anslow &
Maurer, 2015; Steghöfer et al., 2016; Matthies, Kowark, & Uflacker, 2016) and
postgraduate (Rico & Sayani, 2009; Martin, Anslow, & Johnson, 2017) levels where
students typically demonstrate their agile understanding as part of a capstone project,



Developing a Spiral Curriculum for Teaching … 305

in contrast to our approach, which builds upon students agile understanding over
several taught modules.

Of those sources listed above, only Schilling and Klamma (2010) use real projects
set by industry collaborators like we do at the NSA. Unfortunately, their experi-
ence was that ‘the establishment of communities of practice between employees
of a company and university students was not successful’. We note that success-
ful industry engagement is paramount for the success of our programme. Devedžic
and Milenkovic (2011) outline a programme with some similarities to ours, with a
wealth of experience gathered over 8 years across both undergraduate and postgradu-
ate courses with a good section on lessons learned, but unfortunately no cooperation
with industry collaborators.

Both Mahnic (2012) and Anslow and Maurer (2015) teach agile concepts by
sprinting for a full semester using projects set by teaching staff mixing theory and
application throughout, whereas Kropp and Meier (2013) adopt an approach similar
to ours, covering theory during the first half of the semester and sprinting for the
remaining half. In contrast both Mahnic (2012) and Anslow and Maurer (2015)
sprint during contact time for their modules, whereas, in our module on Agile Project
Management, students sprint during contact time for all modules for the final third
of the semester as a mini capstone project.

3 Programme Overview

Our undergraduate Applied Software Engineering degree was developed in close
collaboration with industry. It is structured as a full-time, 3-year degree programme,
with two semesters a year. All modules are 20 credits (200 h) except for the 40-credit
Large Team Project in the final year. Project-based learning is embedded throughout
the degree programme and provides a significant contribution to the assessment in
14 out of the 17 modules. Projects typically run in the last 4 teaching weeks in the
semester, except for the Large Team Project that will run across the final semester.
Students are encouraged to take optional summer placements at the end of their first
and second years (see Table 1).

Themajority of assessments are based on students generating a portfolio of exam-
ples of work which can be used to showcase their talents to future employers. The
quality of portfolio entries is marked against criteria set by module leaders and in
accordance with university best practice.

In the first year, students work primarily with languages such as JavaScript, Java
and Python to design, develop and deploy mobile and web applications as per the
needs of customers. Students learn how touse the same industry standard tools that are
used by real-world developers, following best practice to develop quality software.
They begin to develop their professional skills, including communication and project
management. They work as a development team and gain their first experiences of
agile development by applying Scrum as defined in Schwaber and Sutherland (2017).



306 J. Osborne et al.

Table 1 An overview of the Applied Software Engineering degree programme

Programme overview

Year 1—Autumn Year 2—Autumn Year 3—Autumn

• Computational thinking
• Introduction to web
development

• Software development skills
1

• Agile project management
• Database systems
• Commercial applications
with Java

• Commercial frameworks,
languages and tools

• Adopting technology
• Emerging technologies

Year 1—Spring Year 2—Spring Year 3—Spring

• Software development skills
2

• Fundamentals of computing
with Java

• Mobile development with
Android

• DevOps
• Security
• Performance and scalability

• Managing software enabled
change in large
organisations

• Large team project

Year 1—Summer Year 2—Summer Year 3—Summer

• Optional summer placement • Optional summer placement • Graduation

In the second year, students work on larger, more complex and technically difficult
projects. They expand their knowledge in areas such as performance and scalability,
databases, security and DevOps. Students are exposed to a wider range of agile
approaches and at this point, students are expected to take greater responsibility
for their agile practices. Students get the opportunity to serve their teams as Scrum
Masters and to work with their customers as Product Owners.

In the final year, students learn about emerging trends and use them to develop
a product with an appreciation of the latest frameworks, languages and tools. They
take full responsibility formanaging and developing a significant client-based project
as part of the 40 credit Large Team Project module. The final year builds upon the
experiences of years one and two, and brings together all the elements students need
to think and work like commercial software engineers. The students learn about the
challenges of applying agile practices to large organisations and historical projects
since most of their work up to this point will be on new developments.

As staff, we regularly inspect, review and adapt our teaching practices, based on
feedback from students and the companies we work with. Sometimes it is possible
to make changes mid-semester, however the majority of changes are made in time
for the next cohort to begin that stage of the programme. In particular, we would like
to thank our first cohort for their feedback as this has been particularly valuable in
helping us to adapt the course based on their experience.



Developing a Spiral Curriculum for Teaching … 307

4 Developing Spiral Learning for Teaching Agile

This section reflects on our first 2 years’ experience in teaching agile.
Pedagogically, the university adopts an approach to programme development

called constructive alignment (Biggs&Tang, 2011)which involves developing teach-
ing and learning activities, and assessment tasks, that assess well-defined learning
outcomes. Those learning outcomes are set at the programme and module level.
Learning outcomes and assessments are reviewed periodically to make sure they are
up to date, and teaching and learning activities are also updated in line with those
learning outcomes. The current learning outcomes for the Agile ProjectManagement
module in the 2nd year of our degree programme are as follows:

1. Apply agile project management principles to the development of user stories,
the breaking down of stories into tasks, and the management of project and sprint
backlogs in collaboration with an external product owner using the Scrum and/or
Kanban framework.

2. Apply agile project management principles both whilst leading (as scrum mas-
ter) and taking part (as scrum team member) in planning, daily scrum, and ret-
rospective meetings with the rest of their group using the Scrum and/or Kanban
framework.

3. Apply agile project management principles whilst taking part in product review
meetings with their external product owner and potentially other project stake-
holders.

4. Compare and contrast Scrum and Kanban frameworks.
5. Reflect on their application of agile principles to a real-world software project.

We also use an approach called Spiral Learning or Spiral Curriculum (Bruner,
1960), where students build up their understanding of a topic, in this case, Agile
Project Management, by repeated exposure to the concepts, starting with the core
concepts, and building upon this foundationwithmore complex concepts, to reinforce
prior learning (see Fig. 1). Spiral learning can be further broken down into two types,
horizontal and vertical integration (Brauer & Ferguson, 2014).

Horizontal integrationworks acrossmodules delivered in a single semester.Client-
basedprojects span thesemodules so lecturerswork in semester teams and collaborate
to schedule and deliver teaching, coordinate and scope projects, whilst ensuring
all learning outcomes are addressed. Our horizontal integration is similar to the
Spotify model (Kniberg & Ivarsson, 2012) where semester teams resemble a single
squad. We use the term ‘semester team’ as this is terminology more familiar to
the wider academic community than a squad where, for example, the Agile Project
Managementmodule leader reviews the process, theDatabaseSystemsmodule leader
reviews the database layer, and theCommercialApplicationswith Javamodule leader
reviews the Spring Boot application itself.

Vertical integration represents integration across time (see Fig. 2). Thematic
teams, such as the agile development team, collaborate and share experiences to
ensure effective scaffolding across the programme. Our vertical integration is again



308 J. Osborne et al.

Fig. 1 An overview of Spiral Learning showing how breadth of knowledge increases over time as
students progress through the modules

Fig. 2 An overview of Spiral Learning showing how modules are refined over time as we continue
to inspect and adapt the programme with reference to a previous research output and this chapter

similar to the Spotifymodel (Kniberg& Ivarsson, 2012)where thematic teams resem-
ble chapters. Again, we use the term ‘thematic team’ as this is terminology more
familiar to the wider academic community than chapters. The agile spiral begins in
the first year as part of two modules on Software Development Skills. In the second



Developing a Spiral Curriculum for Teaching … 309

year, students complete both the Agile Project Management and DevOps modules,
and in the final year work as part of a Large Team Project.

4.1 Our First Year—2015–16

4.1.1 First Cohort—Year 1—Autumn Semester 2015

The client-based projects ran in the last 4 weeks. Those projects were web applica-
tions for: (a) the School of Computer Science, (b) a Local Dental Practice, and (c)
the Welsh Football Association. Two teams of 3–4 students worked on each project.

During the semester, we introduced students to a minimum of agile practices as
part of the Software Development Skills 1module.We assumed students had no prior
knowledge of coding or working as part of a team. We asked the students to begin by
developing skills in self-learning, knowledge sharing, problem-solving techniques,
basics of code quality and the simplest use of source control before introducing the
students to their commercial customers.

Students were taught how to ask good questions during client meetings, how to
record notes and playback understanding to develop requirements that were of value
to the user (e.g. User Stories), how to formulate an initial backlog of requirements and
how to track development progress. We briefly discussed Scrum as a methodology
allowing students to use as much or as little as they could learn independently for
their projects. We also encouraged the use of Trello (2018) and Slack (2018) for
project communication.

Our main aim was to teach the students just enough agile to perform and to
encourage them to learn from their mistakes. In terms of Scrum process over the
4-week project period, students were able to complete two 2-week iterations, the
first of which began with a client meeting to gather requirements, followed by a
show and tell session at the project mid and end points with the client, followed by
a team retrospective.

We were able to compare team behaviours and dynamics as well as progress
against user stories and application of agile methodologies across all teams. Stu-
dents received feedback as they progressed from academic staff, which supplemented
feedback from the industrial client during review meetings.

4.1.2 First Cohort—Year 1—Spring Semester 2016

The projects ran over the last 6 weeks of the semester across all modules. Those
projects were mobile applications using Bluetooth beacons from a company called
GCell for: (a) GCell, (b) a Local Historian, and (c) Newport City Council. Again,
two teams of 3–4 students worked on each project.

During the semester, we expanded upon student’s understanding of agile practices
as part of Software Development Skills 2. We taught students further use of source



310 J. Osborne et al.

control techniques such as branching, and how branching strategies can be used
to maintain separate development and master branches. We also discussed feature
branching, hinting at the appropriateness of that branching strategy for the DevOps
module in the second year.

We briefly discussed estimation using T-Shirt sizing as well as the idea
of#NoEstimates. We also introduced the concepts of Shu-Ha-Ri, well-formed user
stories, Test Driven Development, Behaviour Driven Development and an alternative
project tracking tool (Taiga, 2018). We aimed to cover refactoring with students at
this time, however, since the students had only just been exposed to Object Oriented
Development, they were unable to appreciate the need for refactoring, given the
maturity and complexity of the code bases they were working on.

Our aim was that by the end of the first year, students should understand the prin-
ciple of delivering value to the customer at regular intervals, having software in a
deployable state, team communication and measurement, and using those measure-
ments to inform next decisions.

The reality was, however, a little different. Students grasped Scrum and User
Stories well enough and Taiga was preferred over Trello by most. The ethos
of#NoEstimates was completely missed by most, and performing estimation ground
to a halt, since estimation was not actually being assessed. This was something we
would be able to consider in the second year.

Overall, students found it difficult to link the separate concepts, often resulting in
stories that were too big, branches that lasted too long, making merging difficult and
deployments impossible. The teams were able to demonstrate working software and
the clients found value in the student’s work. However, the students had not applied
agile practices as well as we hoped. Therefore, it was decided to introduce agile more
formally in the first semester of the first year.

The lack of discipline at this stage was not such a total disaster. Some students
could reflect on their mistakes, though not as many as we would have liked. Again,
this would be something to refine in the second year, as valuable learning comes
from reflecting on these experiences.

4.2 Our Second Year—2016–17

4.2.1 Second Cohort—Year 1—Autumn Semester 2016

The second time we ran the semester, we made several changes. We again reserved
the last 4 weeks across all modules for the students to work on their commercial
projects. This time, our biggest challenge was scalability, as we had increased our
intake of students by a factor of three. Again, the commercial projects were web
applications for: (a) an Independent Financial Advisor, (b) our Local Dental Practice
and (c) the Newport Business Improvement District. This time around, five teams of
4–5 students worked on each project.



Developing a Spiral Curriculum for Teaching … 311

This time we decided that students should use the Scrum framework (Schwaber &
Sutherland, 2017) more formally to help manage their commercial projects. Clients
would meet with the students at the start of the project to discuss their needs. The
students would then demonstrate their progress to their clients in a show and tell
session after 2 weeks, and the students would provide a final demonstration to their
clients at the end of 4 weeks, as before.

Teams were expected to run weekly Sprint Planning sessions to determine the
User Stories they would implement in the week’s sprint, then break them down into
suitable tasks. Students were asked to ensure that the User Stories provided value
for the client and were introduced to Cohn’s (2004) template for writing user stories:
‘As a <type of user>, I want <some goal> so that <some reason>.’ Students were
also required to develop acceptance criteria for each User Story.

Studentswere expected to hold aDaily ScrumMeetingwhen they had project time
allocated in their timetable. During the sprint, the teams were expected to use other
good practices to manage their software, such as source control and code review.

Each team would meet with an academic staff member every week for a Sprint
Review, to discuss their progress on the project in the previous week and to talk
through their plans for the subsequent sprint.Academic staff took on the role of Scrum
Master to provide guidance on the use of Scrum. Academic staff saw improvements
in the planning of projects over the 4 weeks.

Students initially struggled to write user stories that provided value to the client
and produced stories that were too technically focused such as ‘Produce Database’.
They also struggled to reduce the stories into suitable tasks. Later in the project, the
students produced more suitable user stories with clear acceptance criteria and broke
these down into suitable tasks.

The projects also needed to meet the learning outcomes for the modules. The stu-
dentswere assessed against their ability to set appropriateUserStories and acceptance
criteria, as well as to plan and track their project using Scrum. Assessment was also
made on the student’s reflection on their use of the Scrum framework to ‘address
complex adaptive problems, while productively and creatively delivering products
of the highest possible value’ (Schwaber & Sutherland, 2017).

The students hadundergone a steep learning curve across all three of theirmodules,
and we did not want this first introduction to agile to be too complex. Therefore, we
left some key concepts to be covered in Software Development Skills 2 in the Spring
Semester:

• Wedid not cover estimation and tracking the progress of the projectwithBurndown
charts. Students were asked only to reduce their User Stories if they could not be
completed in a 1-week sprint.

• Wedid not fully implement the Definition of Done, because we did not have clients
as Product Owners in the Sprint Planning, Review, Daily Scrum and Retrospective
Meetings. Academic staff would discuss the progress of the project and plans for
the subsequent Sprint with each team during the weekly Sprint Review Meeting.

Students got an opportunity to demonstrate their software to their client at the
midpoint of the project, and upon completion of the project after 4 weeks. Students



312 J. Osborne et al.

were encouraged to demonstrate working software in each of these meetings as
‘Working software is the primary measure of progress’ (Agile Manifesto, 2001).
All team members were advised to demonstrate their own work and practice their
demonstration before the meeting.

Students demonstrated their software and received feedback from the client in
front of the other four teams completing the same project for the client. All 15 teams
demonstrated working software at both meetings. The clients were pleased with the
progress of most of the teams and each client gained a range of valuable ideas for
their proposed project. Several of the teamsmade impressive progress, given that they
only had 4 weeks to work on the projects and each client had at least one outstanding
project.

4.2.2 Second Cohort—Year 1—Spring Semester 2017

In the second iteration, the emphasis shifted from the agile learning outcomes to
design-based learning outcomes. Also, with larger numbers of students, a build-up
of technical debt could reduce the productivity of many teams and go beyond the
capacity of the teaching team to support. It was also felt that the agile principles had
been covered in greater depth in the autumn semester and so there was scope to do
less in the spring semester. The module still took time to introduce estimation and
requirements decomposition (via User Story splitting) in order to get the students
thinking about predictability. It also introduced Git branches and source control
workflows linking these to story splitting, as a way of reinforcing the idea of frequent
delivery of value and the developers’ responsibility for code quality in maintaining
a flow of value.

We observed that the students slightly improved their code, design and testing, but
they didn’t partition their work successfully. Too often, a particular student would
only implement part of a feature rather than the full end-to-end slice. This not only
affected their ability to learn the complete development stack but also led to a number
of partial solutions being committed and the improvement in design and discipline
was not sufficient to deal with this change of workflow.

With these two forces in mind, it will be necessary to find the right balance
between writing the right software and writing the software right. The pendulum
has swung both ways, and we need to re-emphasise the decomposition of work into
features and the focus on quality to enable smooth integration of those features into
the deliverable.

4.2.3 First Cohort—Year 2—Autumn Semester 2016

This was the first timewe ran our year 2modules.We reserved the last 6 weeks across
allmodules for the students toworkon their commercial projects. Those projectswere
multi-tiered applications: (a) A Wellness Monitoring System for COPD Sufferers
for Medivate, (b) A Performance Monitoring System for Grassroots Players for the



Developing a Spiral Curriculum for Teaching … 313

Welsh Rugby Union and (c) A Back-Office System for Lettings andMaintenance for
the Zest Letting Agency. One team of 7–8 students worked on each project. During
this iteration, the Agile and DevOps modules were taught concurrently across both
semesters rather than consecutively.

Students took on the role of ScrumMaster and convened meetings as appropriate.
Students also had to familiarise their industrial partner with agile methodologies,
with as little assistance as possible from lecturing staff, so their industrial partner
could act as a Product Owner.

Scrum Masters would work together with Product Owners to define the Prod-
uct and Scrum Backlogs. Agile topics that we expanded upon in the first semester
included: Plan Do Check Act, Scrum Team Dynamics, Lean Start-up, Information
Radiators, Collective Ownership, Working Agreements, Pair Programming, Refac-
toring, Product Owners, ScrumMasters, Developers, Testers, Sprint Planning, Plan-
ning Poker, Backlogs, Features, Flippers, INVEST Stories, SMART Tasks, Spikes,
Bugs, Definition of Done, Scrum and Kanban boards, WIP Limits, Daily Scrum
and Retrospectives. Based on our industry experience, and the topics we wanted the
students to understand, some of which are listed above, our recommended reading
included approximately 75% of the material from Cohn (2004), parts II and III on
individuals and teams from Cohn (2010), and approximately 66% of the material
from Rubin (2012). Although the lecture materials sufficiently covered those top-
ics, having exposure to Cohn and Rubin as thought leaders, with a different way
of explaining topics, with their own experiences and case studies has enriched the
students’ learning experience.

TheScrumartefacts required for the project included: Product andSprintBacklogs
from Sprint Planning Meetings with stories that are INVEST (Independent, Nego-
tiable, Valuable, Estimable, Small and Testable) and tasks that are SMART (Specific,
Measurable, Achievable, Relevant and Time-Boxed), that have been estimated using
Planning Poker; Brief notes from Daily Stand Up Meetings about Stories, Tasks,
Blockers and Spikes and how they were being resolved or investigated; Customer
comments and assessment of professionalism at Sprint Review Meetings where the
demonstration of working software was paramount; and techniques used in Sprint
Retrospective Meetings, such as those presented in Derby and Larsen (2006).

We were also interested in the students presenting snapshots of stories at regular
intervals so that we could monitor quality and estimation practices. For example,
using a Burndown chart to estimate Velocity for subsequent Sprints, to set Sprint
Scope and Sprint Goals, and of course the use of either electronic or physical Scrum
Boards, optionally with WIP (Work In Progress) limits, if the teams were applying
some of the principles of Kanban.

We would like to take this opportunity to thank the members of the South Wales
Agile Group (2018) for running several activities with the students including (a)
getKanban, a game which simulates a development team working on a project using
the principles of Kanban (The getKanban Board Game, 2018); and (b) the Lego Flow



314 J. Osborne et al.

Game, a gamewhich uses the StarWars advent calendar to compareWaterfall, Scrum
and Kanban processes as applied to Lego Minifigure construction (AvailAgility,
2018).

4.2.4 First Cohort—Year 2—Spring Semester 2017

The focus in this semester changed from the development of functionality to meet
client needs to addressing the technical debt in order to improve deployability, secu-
rity, performance and scalability. This is the only semester when clients were not
directly involved. The semester team were concerned that if we continued to assess
the students as a group then not all students would get the same opportunities to
meet all of the learning outcomes. The students were therefore assessed individually
in this semester.

We expanded on students understanding of agile principles by introducing Scaled
Agile Framework, Large Scale Scrum, and Disciplined Agile Delivery; alongside
other agile methodologies including Extreme Programming, Crystal, Dynamic Sys-
tems Development Method and Feature Driven Development; as well as more tra-
ditional methodologies for software development to understand how agile method-
ologies have evolved and that agile methods may not be appropriate for all software
engineering projects.

We also introduced the students to a number of case studies from a range of
public and private companies showing their use of agile practices and how well
those practices aligned with the Agile Manifesto. The assessment for this module
was a portfolio entry worth 80% of themarks for themodule. This assessed the topics
mentioned above, as well as their reasoning as to why they may or may not want to
work for the companies we reviewed giving reasons.

In terms of the DevOps module, students were asked to create a Terraform plan
(Terraform, 2018) that could be run by a member of staff, to deploy the complete
solution for their commercial customer into our departmental cloud. The staff mem-
ber would be able to see tests run and interact with the system to retrieve data from the
database layer, through to the web presentation layer. The assessment for the DevOps
module was a portfolio entry assessing the quality of their deployment plans. The
remainder of themarks came from a timed exercise, deploying databaseX to server Y
by developing a Vagrant script (Vagrant, 2018) and an overview of how the students
could implement continuous integration and deployment pipelines into their devel-
opment processes.

5 Summer Placements

At the time ofwriting, our first cohort of students is halfway through the first semester
of their final year, meaning we have yet to produce any graduates from the pro-
gramme. We encourage companies to offer summer placements as a means of giving



Developing a Spiral Curriculum for Teaching … 315

an extended interview to our future graduates. Companies use their own selection
processes to choose students, including technical tests and interviews. In return, stu-
dents gain experience of a range of interview techniques and have the opportunity to
work in those companies to see if they fit both technically and culturally into their
environment.

Our current understanding of the work-readiness of students has been reinforced
by the positive feedback from the employers. A number of students from our first
cohort are already holding conditional job offers which validates both the programme
and the project-based learning approach for us.

5.1 First Cohort—Summer 2016

Our first batch of Summer placements were offered to our current third year students.
Five students went on placement with four industrial partners that we had talked to
while setting up the programme. Feedback from the industrial partners was over-
whelmingly positive. Some even highlighted that the companies benefitted from the
student’s use of agile practices.

“StudentA joined our web team at the start of the summer and immediately got to work
helping us with the project delivery” … StudentA started with some small bug fixes, things
like wording or layout changes and then progressed to more complex business functionality.
StudentA is a quick learner, enthusiastic and knowledgeable. StudentA got on with the team
and those around them, and took an active role in team meetings and daily scrums. …
StudentA demonstrated their progress during the build of the tool to the team through our
regular show and tell sessions, in which they were confident and communicated well.”

“CompanyB has supported the innovative and industry-need based approach that underpins
the philosophy of the NSA since its inception.” … “This summer, we had the opportunity
to experience, first-hand, the benefits of the approach, from an employer’s perspective, by
offering two 12-week summer placements. It was an entirely positive experience. Their
familiarity with the agile processes we use and the skills they had gained in extending their
knowledge and skills quickly to meet new challenges meant that within the first 2 weeks it
felt as if they were long-standing valued, members of the team.”

5.2 First and Second Cohorts—Summer 2017

Our second batch of Summer placements were offered to our current second and third
year students. Eighteen students went on placement with twelve of our industrial
partners. Again, they were extremely successful and a number of them already have
conditional job offers from the companies since their placement. Here are some
comments from those companies about those students with conditional job offers.

StudentB has been fantastic addition to the team, despite him being new, he was not afraid
to voice his opinion, particularly on how to implement agile and DevOps methodologies
correctly. His course has taught him all this and this is something very new to us. His



316 J. Osborne et al.

programming knowledge is also very good, he is currently working on rewriting the 360
degree feedback site using Spring Boot, which is coming along quite nicely. He has built a
prototype quite quickly, considering he has had other work to do such as helping our SME
write stories for sprints. He has been very quick to pick up new things and it feels as though
he has always been there, it does not feel like he is an intern.

StudentC has been a blessing to the team these last few months. She is always willing and
eager to learn and will jump into help with anything you need, she has picked up the work
we do within data support really quickly and has suggested ideas on how to improve our
processes. She has really helped us over these last few months, especially picking up the
best practice document that has been so well written and taking it out to the business and
getting their buy in. She has fitted in with the team well and has really taken on board the
CompanyC spirit and is always extremely helpful. Overall I think she has been great asset
to the team and will be missed.

6 Reflection

6.1 Pedagogical Constraints on Teaching Agile

First and foremost, the NSA is part of a larger educational institution with processes
around curriculum design and delivery that influence heavily the way in which we
can teach agile practices to our students. Our university prefers all academic staff
to use constructive alignment (Biggs & Tang, 2011) to define a series of learning
outcomes for each module.

The NSA uses a project-based learning approach as its main way of delivering
many of the learning outcomes in the programme (Cooper, Gwilliams, Ivins, Jones,
& Turner, 2016). It is therefore vitally important that industry projects are carefully
selected to deliver against the relevant learning outcomes of each of the modules
delivered in a semester. Students are assessed primarily through project portfolios
that contain project deliverables, samples of work, and reflection on project learning.

We are in the fortunate position of being able to select from a wide range of
industry projects. However, if any industrial projects are unable to deliver against all
the learning outcomes, we have developed some internal projects that can be used
instead.

We are also fortunate, though somemay argue against this, that as a staff we have a
single open plan office at the NSA which is a great way to foster collaboration and to
allowothermembers of the team to learn agile practices from their peers. This became
vital as staff, not experts in agilemethods, became involved in the assessment process
for the first year students and were involved in Sprint Reviews. Students benefitted
from this weekly formal feedback so regular reviews with academic staff will be
adopted across all client-based projects in the future.

Assessments typically flow from artefacts that students are generating as part of
their application of agilemethods, to their industry projects. Students keep a portfolio
including a wide range of items, the quality of which can be easily assessed. Students



Developing a Spiral Curriculum for Teaching … 317

are also asked towrite reflective essays summarising the positive and negative aspects
of their industrial projects.

Industry partners are also encouraged to mark the students on their level of pro-
fessionalism and engagement, though there must be an element of moderation led
by staff. Clients marked against a set of assessment criteria for the first year students
but they did not provide marks. We must also ensure that assessments work across
modules in combination so as students are not overwhelmed with assessments for
modules all due in quick succession at the end of the semester.

A key consideration for effective team working is setting a team size that is right
for the context of the project. Projects in the first year are relatively simple and are
delivered in a short timeframe of typically 4–6 weeks. Team sizes should be small
(ideally 4–5 students) to ensure that each student can make a fair contribution to the
project. We learned that teams of 3 were simply too small and decided that for the
second year, we would have larger teams of 7–8 students instead. However, as team
sizes grow, then it is easier for students to hide behind the achievements of other team
members, unless there is a regular and effective way of monitoring each student’s
contribution. The weekly reviews with staff used with the second cohort of first years
were found to be an effective way of monitoring each student’s contribution to the
project, and regular reviews with staff will be used in all client-based projects in the
future.

The remainder of this section reflects on how we promote the core values of the
Agile Manifesto and the value of an agile approach to all the stakeholders.

6.2 Individuals and Interactions over Processes and Tools

Students have timetabled contact sessions for 15 h a week but are expected to work
a 40-h week, completing a significant amount of project work outside of scheduled
sessions. This means that teams work as a co-located team during contact sessions,
and a distributed team outside of timetabled hours. This presents real challenges for
interactions outside of contact sessions and maintaining awareness of what the other
team members are working on.

The first cohort of students, currently in their final year, were using a combination
of both physical and electronic Scrum/Kanban boards. Though students are working
in a regular Scrum cadence, some of themunderstand the principles ofWIP limits and
have decided to apply them to their projects. This is possible because there are only
20 students working across three projects and there are enough physical whiteboards
to go around.

The problem arises when they are working off-site or in distributed fashion, and
collaborative tools such as Trello and Slack and even Facebook Messenger come
into play. Students take on the role of ScrumMaster in the second year, a role which
rotates around all team members on a per Scrum basis, and they are responsible for
convening the Sprint Planning, Review, Daily Scrum and Retrospective Meetings.
Staff are on hand to advise during Planning, Review, and Retrospective Meetings.



318 J. Osborne et al.

The second cohort of students, currently in their second year, could maintain a
shared awareness of the project progress through online tools such as the Scrum
Template in Taiga, and collaborative tools such as Microsoft Teams (Microsoft,
2018). It was impractical to provide sufficient whiteboards in our physical space for
15 teams. It was also much easier for academic staff to discuss the effectiveness of
planning and tracking the projects in the weekly Scrum Review Meetings, as the
Scrum Template became a key artefact to centre the discussion around. Academic
staff acted as Scrum Masters and gave targeted advice about each team’s use of
Scrum in the weekly Scrum Review Meetings. Students could also seek advice on
their use of Scrum during their project sessions.

Students were introduced to version control with Git in the first week of the first
semester using a Gitlab repository (Gitlab, 2018). Their use of Git at this time is
rather unsophisticated as the concept of branching and merging is only being taught
during the second semester of the first year. As students progress to the second year,
Git is also used tomanage infrastructure as code as part of theDevOpsmodule, which
initially ran concurrently with the Agile Project Management module in the second
year. Some of the students also maintain their own remote repository using GitHub
(Github, 2018), though they are encouraged to use school services where possible.
GitHub has effective inspection tools to show when students are committing code to
the project, helping staff determine to what extent team members are contributing to
the project. These tools must be used with caution as they do not indicate the amount
and quality of the source code that has been contributed.

As students progress through the programme, their understanding of the advan-
tages and disadvantages of working as part of a team develops. Students are often
overly concerned with how they are being marked when working as part of a team.
Some of them are more interested in making sure they do well in the assessment to
the detriment of contributing to the team in a positive way. Addressing this issue is
something we continue to struggle with.

Additionally, we have had to step in several times when team members have been
unable to get along with each other. Some of us believe we should encourage the
students to work through their differences, as would be the case in the real world.
However, if the team was unable to resolve these issues, then academic staff have
stepped in and moved team members onto other projects.

6.3 Working Software over Comprehensive Documentation

Delivery of working software is our clients’ preferred measure of success. Students
need to be seen to be delivering features on their projects, and to show progression
of software incrementally at each Sprint ReviewMeeting. When working as part of a
team, students are encouraged to commit early and often, to prevent merge conflicts
and enable Continuous Integration and Continuous Deployment.

We have taken on the mantra of ‘if it isn’t in the repo, it doesn’t exist’ as a way of
dealing with student excuses for not completing work. We would like the students to



Developing a Spiral Curriculum for Teaching … 319

take that to heart, making commitments to each other, so that when they say they will
deliver a piece of functionality by a certain time, that they will do so. Some students
are however more diligent than others—as are developers in the real world—and
sometimes students find it difficult to balance delivering working software, with
working on their assessments.

Teams of students also informally discuss their projects with their peers, allowing
ideas to cross-pollinate between projects. If more than one team is working with a
customer, it allows different teams to work on different Product and Sprint Backlogs
independently so that different functional themes may be explored. Moving forward,
it might be nice to use a more formal Scrum-of-Scrums process with students to
encourage further cross-pollination.

Given our experience of working on industrial projects, we are a little concerned
with the quality of documentation produced by the students, all the way from docu-
menting architectural and platform decisions, through to documenting Scrum Meet-
ing outputs. Their use of Scrum and Kanban boards has been impressive, facilitated
by readily available tools for them to use. We have not standardised on a Wiki plat-
formor similar, somethingwe should probably do sooner rather than later, to facilitate
document sharing and storage for students.

Working in a university environment, staff are regularly working on documenta-
tion which, for procedural reasons may have to be stored in several different places
including learning central—the online system we use to store lecture materials and
manage assessments—and shared drives for documents pertaining to programme
management and assessment.

Some of the processes within the university that we must adhere to certainly
cannot be described as agile, however we use agile principles to adapt the curriculum
in response to feedback from industrial partners and students as soon as possible,
feeding adaptations into the university module review processes as soon as we can.

6.4 Customer Collaboration over Contract Negotiation

Customer collaboration comes mainly through the client projects. Students are
engaged because they have real-world projects and they can see the value of their
work through the feedback from the clients. However, there is a limitation to the
amount of time the clients can give to the project, making it difficult for the clients
to fully act as Product Owners.

This is a challenge with the growth of student numbers in our second cohort, as the
client is giving feedback on five independent projects. Thismeant that each team took
responsibility for prioritising the Product Backlog Items based on their understanding
of the client’s needs and selected the items for each Sprint. One advantage to the client
is that they get a range of ideas from the different teams. These teams also sit in on
the other teams’ demonstrations and listen to the client feedback, which students
found to be insightful.



320 J. Osborne et al.

Client-based projects are the main catalyst for learning at the NSA (Cooper,
Gwilliams, Ivins, Jones, & Turner, 2016) but these projects must allow students to
achieve their learning outcomes, across the appropriate modules, through the exe-
cution of the project. Clients gain value through the ideas presented by the different
teams.

Students gain important softer skills through their interactionwith their customers.
They must elicit the requirements from their clients to develop appropriate user
stories and acceptance criteria. They develop their communication skills through
regular demonstrations and interactions with different clients during their degree
programme.

A key challenge is maintaining a healthy pipeline of suitable projects across
the programme. Considerable time is needed to establish the relationships with our
industrial partners, scope the projects and manage client expectations. This is a key
responsibility of the School Manager at the NSA, who spends considerable time
working on stakeholder engagement. In total, we have been visited by over 220
different organisations.We have also been visited by theWelshGovernmentMinister
of Economy, Science and Transport, and the UK Government’s Director General,
Business and Science, Department for Business Innovation and Skills. We have also
gained industry recognition to win the ESTNet Collaborative Partnership of the Year
Award 2016 (ESTNet, 2016) and the ESTNet Industry Trailblazer of the Year Award
2017 (ESTNet, 2017).

Working with industrial clients to develop prototype or proof-of-concept systems
often requires that staff and students at the NSA enter into non-disclosure agree-
ments with customers that may wish to protect an element of intellectual property
in the software system developed. Normally, the university would retain intellectual
property rights of anything developed by staff and students during their time at uni-
versity—the same often being said of developers working on side projects whilst
working for a company—however the NSA is different in this regard. We have our
own form of Non-Disclosure Agreement in which the university and students waive
any intellectual property rights, and that the software system developed is only a
proof-of-concept. If the customer wishes to develop the system for commercial gain,
they must deploy the code on their own systems.

6.5 Responding to Change over Following a Plan

Students are taught that they should spend less time planning and more time devel-
oping and evolving systems, as is the agile way. We know it is impossible to predict
with any certainty beyond a given time horizon and students come to appreciate
the wisdom of this approach early on. The Sprint Planning Meetings they hold do
involve Backlog Grooming, making sure stories are well formed and that estimates
are derived as appropriate and metrics are captured.

Given the light-touchwe use for planning, students find it easier to adapt to change
and even expect it, although they may not be able to come up with mitigating actions,



Developing a Spiral Curriculum for Teaching … 321

as plans change during the first year. Hopefully, with experience and wisdom, their
ability to plan for change will improve.

Students in the first year benefit from regular feedback by reviewing plans with
staff on a weekly basis. The first year students were introduced the concept of the
Sprint Retrospective rather late in the cycle, as we wanted them to concentrate on
learning how to apply other aspects of agile practice first. The first years were not
expected to come up with estimates of effort beyond making sure that user stories in
each Sprint could be completed within a week. Towards the end of the semester, each
team held a retrospective to review progress and teams were encouraged to continue
the practice into the next semester.

Students were then introduced to estimation in the second semester and started
using the process in their client projects. In the second year, we go into greater
depth with estimation using Planning Poker as part of the Sprint Planning Meetings,
subsequently used to calculate Velocity and therefore, manage customer expectations
on what will be delivered during a Sprint. This may either last for 1 or 2 weeks,
depending on the cadence teams can use with the client.

For the university, we must fit into the programme approval process, which means
that, depending on the scope of changeswemake,wemayhave towork through either
a light-touch change management process for minor changes, or a more rigorous
change process for more significant changes.

We have recently completed the university approvals process for a new conversion
Masters level qualification, aimed at graduates fromSTEMprogrammes, andwe look
forward to delivering this qualification for the first time in the 2018–19 academic
year.

7 Conclusions

Working within the constraints of academia whilst teaching agile practices to stu-
dents, provides us with a constantly evolving challenge. From an academic perspec-
tive, we want students to think critically about everything they do and how they apply
agile practices to their group projects. We don’t just want the students to go through
the motions of following an agile process, we want them to understand agile in such
a way that they can both apply and teach agile practices wherever they end up, so
they are disruptive in a positive way on entering the workforce.

We appreciate the enormous value that project-based learning has brought to the
programme in developing work-ready graduates. Students are given a chance to put
their agile learning into practice, in a safe environment, with real customers. Using
agile concentrates the students on deliveringworking software andmanaging projects
within a sensible and lightweight framework.

With the arrival of the second cohort of students, we realised that we needed to
introduce agile principles even earlier than with the first cohort.

As academics, we must balance the time we spend teaching agile concepts, with
allowing students the time to run projects and hold project meetings during regu-



322 J. Osborne et al.

lar contact hours. This remains one of the key challenges to teaching agile in the
structured way required in academia with a semi-structured timetable and a need to
assess students understanding of the subject. Our approach to spiral learning allows
students to learn incrementally and progressively develop their agile practices. This
allows us to break down what are truly artificial barriers between modules that can
be problematic, in a more traditionally structured modular degree programme.

References

Agile Manifesto. (2001). Manifesto for agile software development. Retrieved from http://agilema
nifesto.org/.

Anslow, C., & Maurer, F. (2015). An experience report at teaching a group based agile software
development project course. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education—SIGCSE ‘15. http://dx.doi.org/10.1145/2676723.2677284.

AvailAgility. (2018). Lego flow game. Retrieved from https://availagility.co.uk/resources/games/le
go-flow-game/.

Biggs, J., & Tang, C. (2011). Teaching for quality learning at university. Open University Press.
Brauer, D., & Ferguson, K. (2014). The integrated curriculum in medical education: AMEE Guide
No. 96. Medical Teacher, 37(4), 312–322. https://doi.org/10.3109/0142159x.2014.970998.

Bruner, J. (1960). The process of education. Harvard University Press.
Cohn, M. (2004). User stories applied: For agile software development. Addison-Wesley.
Cohn, M. (2010). Succeeding with agile: Software development using scrum. Addison-Wesley.
Cooper, I., Gwilliams, C., Ivins, W., Jones, C., & Turner, M. (2016). Developing work-ready soft-
ware engineers using real-world team-based projects as a catalyst for learning. In 7th Annual
International Conference on Computer Science Education: Innovation & Technology (CSEIT
2016). http://dx.doi.org/10.5176/2251-2195_cseit16.37.

Derby, E., & Larsen, D. (2006). Agile retrospectives: Making good teams great. The Pragmatic
Bookshelf.

Devedžic, V., & Milenkovic, S. (2011). Teaching agile software development: A case study. IEEE
Transactions on Education, 54(2), 273–278. https://doi.org/10.1109/te.2010.2052104.

ESTNet. (2016). Collaborative partnership of the year award. Retrieved from https://www.estneta
wards.co.uk/estnet-award-winners-and-finalists-2016/.

ESTNet. (2017). Industry trailblazer of the year award. Retrieved from https://estnetawards.co.uk/
winners-finalists-2017/.

Github. (2018). Built for developers. Retrieved from https://github.com/.
Gitlab. (2018). Complete DevOps. Retrieved from https://about.gitlab.com.
Kniberg, H., & Ivarsson, A. (2012). Scaling agile @ Spotify with tribes, squads, chapters & guilds.
Retrieved from https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf.

Kropp, M., & Meier, A. (2013). Teaching agile software development at university level: Values,
management, and craftsmanship. In 2013 26th International Conference on Software Engineering
Education and Training (CSEE&T). http://dx.doi.org/10.1109/cseet.2013.6595249.

Mahnic, V. (2012). A capstone course on agile software development using scrum. IEEE Transac-
tions on Education, 55(1), 99–106. https://doi.org/10.1109/te.2011.2142311.

Martin, A., Anslow, C., & Johnson, D. (2017). Teaching agile methods to software engineering
professionals: 10 years, 1000 release plans. Lecture Notes in Business Information Processing,
151–166. http://dx.doi.org/10.1007/978-3-319-57633-6_10.

Matthies, C., Kowark, T., & Uflacker, M. (2016). Teaching agile the agile way—Employing self-
organizing teams in a university software engineering course. In 2016 ASEE International Forum.
https://peer.asee.org/27259.

http://agilemanifesto.org/
http://dx.doi.org/10.1145/2676723.2677284
https://availagility.co.uk/resources/games/lego-flow-game/
https://doi.org/10.3109/0142159x.2014.970998
http://dx.doi.org/10.5176/2251-2195_cseit16.37
https://doi.org/10.1109/te.2010.2052104
https://www.estnetawards.co.uk/estnet-award-winners-and-finalists-2016/
https://estnetawards.co.uk/winners-finalists-2017/
https://github.com/
https://about.gitlab.com
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
http://dx.doi.org/10.1109/cseet.2013.6595249
https://doi.org/10.1109/te.2011.2142311
http://dx.doi.org/10.1007/978-3-319-57633-6_10
https://peer.asee.org/27259


Developing a Spiral Curriculum for Teaching … 323

Microsoft. (2018). Microsoft teams. Retrieved from https://products.office.com/en-us/microsoft-te
ams/group-chat-software/.

Rico, D., & Sayani, H. (2009). Use of agile methods in software engineering education. In 2009
Agile Conference. http://dx.doi.org/10.1109/agile.2009.13.

Rubin, K. (2012). Essential scrum: A practical guide to the most popular agile process. Addison-
Wesley.

Schilling, J., & Klamma, R. (2010). The difficult bridge between university and industry: A case
study in computer science teaching. Assessment & Evaluation in Higher Education, 35(4),
367–380. https://doi.org/10.1080/02602930902795893.

Schroeder, A., Klarl, A., Mayer, P., & Kroiss, C. (2012). Teaching agile software development
through lab courses. InProceedingsOf The 2012 IEEEGlobal EngineeringEducationConference
(EDUCON). http://dx.doi.org/10.1109/educon.2012.6201194.

Schwaber, K., & Sutherland, J. (2017). The scrum guide. Retrieved from https://www.scrumguide
s.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf.

Slack. (2018). Where work happens. Retrieved from https://slack.com/.
South Wales Agile Group. (2018). South wales agile group. Retrieved from https://www.meetup.c
om/en-AU/South-Wales-Agile-Group/.

Steghöfer, J., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., & Ericsson, M. (2016). Teaching
Agile. In Proceedings of the 38th International Conference on Software Engineering Compan-
ion—ICSE ‘16. http://dx.doi.org/10.1145/2889160.2889181.

Taiga. (2018). Love your project. Retrieved from https://taiga.io/.
Terraform. (2018). Write, plan, and create infrastructure as code. Retrieved from https://www.terr
aform.io/.

The getKanban Board Game. (2018). The getKanban Board Game. Retrieved from https://getkanb
an.com/.

Trello. (2018). Trello lets you work more collaboratively and get more done. Retrieved from https://
trello.com/.

Vagrant. (2018). Development environments made easy. Retrieved from https://www.vagrantup.
com/.

https://products.office.com/en-us/microsoft-teams/group-chat-software/
http://dx.doi.org/10.1109/agile.2009.13
https://doi.org/10.1080/02602930902795893
http://dx.doi.org/10.1109/educon.2012.6201194
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://slack.com/
https://www.meetup.com/en-AU/South-Wales-Agile-Group/
http://dx.doi.org/10.1145/2889160.2889181
https://taiga.io/
https://www.terraform.io/
https://getkanban.com/
https://trello.com/
https://www.vagrantup.com/


Agile Approaches for Teaching
and Learning Software Architecture
Design Processes and Methods

Muhammad Aufeef Chauhan, Christian W. Probst and Muhammad Ali Babar

Abstract Software architecture plays a vital role in the analysis, design, evaluation
and evolution of large-scale projects. Successful adoption of an agile methodology in
large-scale projects requires not only tailoring of the software architecture analysis,
design and evaluation methods but also a fundamental understanding of these meth-
ods. In this chapter, we provide agile teaching and learning approaches for software
architecture analysis, design and evaluation. In particular, we focus on agile teams in
architecturally significant (quality) requirements analysis and change management
for collocated and distributed agile projects, iterative and continuous architecture
design delivery using story boards and collaboration platforms, and using software
reference architectures to monitor and control the design and evolution of a software
architecture. The methods presented in this chapter are based upon the following
research methods. We have explored the literature to identify key characteristics of
agile software architecture processes and roles of agile teams in software architec-
ture. We have presented agile teaching and learning approaches with reference to the
case studies conducted in classes over 2 years of software architecture courses. We
have specifically focused on designing course activities that can support lean educa-
tion and collaboration among the students and course instructors. We foresee that the
presented approaches can be used by academics to teach software architecture design
methods and processes in particular, and software engineering techniques in general.
Practitioners can also take advantage of the proposed approaches to continuously

M. A. Chauhan (B)
Netcompany A/S, Copenhagen, Denmark
e-mail: auch@netcompany.com

C. W. Probst
Unitec Institute of Technology, Auckland, New Zealand
e-mail: cprobst@unitec.ac.nz

M. A. Babar
The University of Adelaide,Adelaide, Australia
e-mail: al.babar@adelaide.edu.au

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_16

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_16&domain=pdf
mailto:auch@netcompany.com
mailto:cprobst@unitec.ac.nz
mailto:al.babar@adelaide.edu.au
https://doi.org/10.1007/978-981-13-2751-3_16


326 M. A. Chauhan et al.

educate their staff when applying agile methods for architecture design and evolu-
tion of complex software systems.

Keywords Agile learning · Software architecture · Software engineering
Architecturally significant requirements (ARSs) · Architecture design
Architecture evaluation · Architecture evolution
Software reference architecture (SRA) · Internet of Things (IoT)

1 Introduction

Software architecture (Gorton, 2006) and agile software development (Hoda, Noble,
& Marshall, 2013) have received ample attention from academics and practitioners.
However, teaching software architecture in an agile context and learning to apply
software architecture analysis, design and development methods for agile software
projects remains a challenging undertaking. Adopting agile methods for teaching
and learning software architecture requires teamwork, substantial coaching (Babar,
Brown, & Mistrik, 2013) and tailoring of the software architecture analysis, design
and evaluation methods. To equip the students with comprehensive understanding
of the agile methods, it is important to enable them not only to learn in an agile
environment but also to provide ample opportunities for the students to apply and
practice the agile methods.

Agile software education and learning brings unique challenges with respect to
achieving the learning objectives, selection and delivery of the course contents, and
participation of the students in agile teaching and learning activities. Agile education
objectives have to be in-line with agile software development (Sievi-Korte, Systä, &
Hjelsvold, 2015; Angelov & de Beer, 2017) including but not limited to involvement
of peers in learning activities, regular meetings, short learning cycles, continuous
feedback and measurable artefacts at the end of each learning sprint. Introduction of
electronic learning and collaboration platforms such as Moodle1 and GitHub2 can
support collaboration among the students and course instructors.

Like other aspects of software engineering methods, software architecture prac-
tices in agile environment including agile education requires specific considerations.
Software architecture describes not only different elements of a software system
(such as classes, components and services) and relations among the elements but
also encompasses the process and methods that are used for analysis, design, evalua-
tion and evolution of a software architecture (Gorton, 2006). Traditionally, software
architecture design processes have been categorized as activities that are carried
out in the early phases of the software development life cycle. In the early days of
agile software development, software architecture in agile projects was not explic-
itly focused because the agile process was being used during development of small-
scale software systems only (Abrahamsson, Babar, & Kruchten, 2010). However,
software architecture has become an important element with adoption of the agile

1https://moodle.org/.
2https://github.com/.

https://moodle.org/
https://github.com/


Agile Approaches for Teaching and Learning Software Architecture … 327

development methodology in complex projects, for which software development is
carried out over a longer period. Software architecture can help to keep the focus
on architecturally significant quality requirements can facilitate internal and exter-
nal coordination, and can keep software development in line with core architecture
design decisions (Abrahamsson et al., 2010).

A number of activities and design practices associated with software architecture
need to be tailored and enhanced to educate practitioners and students for smooth
adoption of software architecting processes in agile projects. Software architecture
design and analysis activity encompasses architecturally significant requirement’s
analysis, identification of a system’s elements (in terms of components, services,
classes, persistence entities, etc.) and relations among the elements, software archi-
tecture evaluation and careful monitoring of an architecture’s evolution to avoid
software architecture erosion (Chauhan, Babar, & Probst, 2016b; Gorton, 2006).
The high-level software architecture design focuses on architecturally significant
quality (or non-functional) requirements, whereas detailed design focuses on quality
as well as functional requirements. In non-agile software development approaches,
high-level architecture analysis and design of the complete system is performed in
early phases of a software development life cycle. However, as only features in the
current sprint are addressed in agile projects, an overview of the overall architec-
ture can get out of focus. Moreover, the absence of incremental analysis and impact
analysis of the new features, which are added in each sprint can negatively impact
overall quality of a system in general and architecture quality in particular.

Raising awareness of architecture decisions, as these are made during an agile
project, in not trivial. In agile projects, rather than having an upfront detailed archi-
tecture design, architecture evolves as a project progresses. As a consequence, archi-
tecture design decisions are delayed until corresponding modules are developed.
Communication among the team members in the form of face-to-face kick off meet-
ings and daily stand-up meetings is a key characteristic of agile teams (Sievi-Korte
et al., 2015). However, such meetings often encompass only a quick overview of the
tasks and activities of the team members, and do not include details of architecture
design decisions and choices made during day-to-day activities. Agile tools such as
storyboards and project back-logs only focus on functional requirements. Architec-
ture often remains invisible in agile projects, which can result in low-quality software
in medium and large-scale projects. Hence, it is important to not only teach agile
architecting methods to the students but also to teach the methods in an agile learning
environment so that the students can practice agile architecture design and analysis
methods in an environment that enables agile and lean learning.

To adequately address the afore-mentioned challenges, there is a need to have a
specialized approach for teaching and learning software architecture analysis and
design methods for agile projects. In particular, we focus on the following objectives
in this chapter:

• We discuss the importance of agile and lean education with reference to software
engineering in general and software architecture in particular. We discuss different
dimensions of agile learning and teaching for software architecture-centric activ-
ities, which can facilitate analysis of the new courses and redesign of the existing



328 M. A. Chauhan et al.

courses aiming at teaching agile software architecture analysis and design for
students and practitioners.

• We analyse the impact of agility, teams distribution and complexity of the projects
on architecture quality, which is elaborated in terms of Architecturally Significant
Requirements (ASRs), e.g. security, scalability and reliability. The impact analysis
can help to select methods corresponding to the activities that are related to key
learning objectives of a course.

• We present agile teaching and learning methods for software architecture analysis,
design and evaluation. We elaborate application of the presented methods with
reference to case studies that have been conducted in graduate courses with a
primary focus on software architecture analysis, design and development. We also
discuss in a broader context how the presented methods can be used for teaching
and learning software engineering topics. We discuss how the presented methods
and case studies of their application can provide a practical guide for adoption of
the agile methods for tertiary education.

This chapter is organized as follows. Section 2 provides an insight to the key
dimensions of agile learning. Section 3 builds foundation for the presented agile
learning approach by describing an analysis of key dimensions of software archi-
tecture with reference to agility and how agility impacts activities associated with
software architecture analysis, design and evaluation. Section 4 elaborates method-
ology for agile software architecture education and learning. Section 5 describes
application of the proposed agile education and lean learning methodology with ref-
erence to a course on software architecture. Section 6 summarizes our experiences
of the case studies and discusses applicability of the proposed methods for soft-
ware engineering education in broader context. Section 7 discusses related work and
Sect. 8 concludes this chapter.

2 Key Dimensions of Agile Learning

Different dimensions of agile and lean methods have specific relevance to software
engineering education in general and software architecture education in particular. In
this section, we provide an overview of the key elements and roles in agile processes,
correspondence of the roles to agile education and insight on the structure of a
software engineering focused course for incorporating agile and lean learning.

2.1 Key Elements and Roles in an Agile Process

Agility is regarded as ability of an organization, team or a person to adapt and respond
to changes in its operating environment to make profit (Abrahamsson et al., 2010).
The profit can be a direct reward such as monetary benefit or an indirect reward
such as an increase in organizational productivity. Self-organization is one of the key



Agile Approaches for Teaching and Learning Software Architecture … 329

characteristics of agile teams. Self-organizing teams are formed spontaneously to
work on a task, are not part of the formal organizational structure, and have a shared
purpose (Hoda et al., 2013). Moreover, while keeping the focus on the team goals,
individual team members make decisions for their own tasks (Hoda et al., 2013).
Even though teams are self-organizing, the role of mentor in agile teams cannot be
underestimated. An agile team member can perform one or more of the following
roles: mentor, coordinator, translator, promoter and terminator (Hoda et al., 2013).
The mentor guides and supports the development and team members during initial
set-up and encourages self-organization practices during execution of the tasks. The
mentor provides not only guidance and support for continuous adherence to the
agile principles but also helps to remove misconceptions of agile activities (Hoda
et al., 2013). The co-ordinatormanages and coordinates customers expectationswith
the agile team members, whereas the translator translates the business language
used by the customers to technical terms used by the team members. The promoter
promotes the agilemethodologywith the customers and the terminator facilitates the
movement of unsuitable teammembers,who do not conform to the agile development
practices, away from an agile team.

In agile teams, one’s knowledge is not limited to one’s own self. Members of
an agile team use and take advantage of the knowledge of other team members as
well (Nevo & Chengalur-Smith, 2011). As a result, communication and knowledge
sharing among the agile team members play a vital role in agile processes. The
capability of a communication medium and the process that is used for communica-
tion are also critical to smoothly carry out activities associated with an agile project
(Nevo & Chengalur-Smith, 2011). Shared patterns of communication are evolved,
and coordinated behaviours are established among the agile team members as they
progress and work together on the shared tasks. Communication media can also
facilitate awareness of the activities among the team members. Another attribute of
the communication medium is to provide a sense of social presence among the team
members with as little effort by the team members as possible. Convergence of the
communication media facilitates conflict resolution and problem-solving (depend-
ing upon the convergence ability of a communication medium). Hence, the stronger
the communication attained by a team’s members, the better they perform in agile
settings.

2.2 Correspondence of Agile Education to Key Agile
Elements and Roles

The key elements and roles of agile (as discussed in Sect. 2.1) are also relevant
to agile education and lean learning. To enable students to work in agile settings,
learning activities are to be carried out in groups of students, which can be analogous
to teams in an agile process. Unlike traditional classroom teaching, agile teaching
encompasses a number of cohesive and loosely coupled tasks, which signifies the



330 M. A. Chauhan et al.

importance of self-organization among the agile student teams. The teaching staff
members can perform the roles of mentor, coordinator, translator and promoter by
enabling the students to carry out learning activities in agile settings. As learning
activities following agile methods are carried out in groups, communication among
the team members and teaching staff, as well as use of communication media for
awareness, conflict resolution and problem-solving is important. Some important
aspects of agile software engineering education is pair programming, face-to-face
meetings or meetings using digital platforms, clearly defined roles and well-defined
distribution of work tasks (Sievi-Korte et al., 2015).

2.3 Structure of a Software Engineering Course for Agile
and Lean Learning

For enabling the students to learn agile software engineering and agile software
architecting, the course should provide a platform where the students can engage in
activities characterizing agile software development. These activities include inter-
group and intra-group collaboration, face-to-face and digital communication, clarifi-
cation on the semantics of the course contents, incremental feedback to the students
on course assignments and projects, and clear description of inter-group and intra-
group activities. Angelov and de Beer (2017) have emphasized the need to explain
the following points to the students in an agile learning environment:

• project context and objectives,
• roles that are performed by the stakeholders in real-life scenarios,
• nature and type of the documentation to be used in the projects and
• explicit explanation of the specific methods that are to be used by the students to
carry out learning activities in a course.

3 Agility, Software Architecture and Lean Learning

Architectural activities in a project vary widely depending upon the project domain,
organizational structure, project size, business model and rate of change in a system
under development (Abrahamsson et al., 2010). Activities related to software archi-
tecture can be classified generally into four main categories: (i) architecture analysis,
(ii) architecture design, (iii) architecture evaluation and (iv) architecture evolution
(Gorton, 2006). The architecture of a software intensive system also reflects organiza-
tional structure, application domain and mental models of the stakeholders (Coplien
& Bjørnvig, 2011). In non-agile and incremental software development models,
initial phases of the projects have extensive focus on software architecture includ-
ing (i) high-level architecture design in terms or architecture styles and patterns
and (ii) detailed architecture design in terms of design patterns, frameworks and



Agile Approaches for Teaching and Learning Software Architecture … 331

Agile Architecture

Defers Engineering

Room for Change

Defers Implementation

Lightweight Documentation

Collective Planning

Collaboration

Mental Models of Stakeholders

Fig. 1 Agile architecture elements (Coplien & Bjørnvig, 2011)

programming languages, data structures and persistence approaches. Many of the
architecture decisions can be hard to undo at later stages without amajor re-factoring.
Software architects perform the role of a liaison to bridge the gap between business
and technical stakeholders, support high-level and detailed architecture design activ-
ities, evaluate software architecture designs and monitor architecture evolution to
control architecture erosion.

Contrary to non-agile software design, agile software design is characterized by
postponing the architecture decisions as late as possible and to provide flexibility
to make changes in the design at later stages. Organizational as well as software
architectural analysis and design activities for agile development differ from non-
agile development in terms of (Coplien & Bjørnvig, 2011):

• when the architecture decisions are made,
• what architecture decisions are documented,
• how an agile project is planned and manage and
• how people are organized in an agile project in terms or roles, responsibilities and
task assignments.

Each of the afore-mentioned questions is handled differently in agile architecting.
Engineering activities are deferred until the time the related requirements are to be
implemented in an agile project. A classic software architecture design tries to limit
the changes, whereas an agile software architecture provides room for changes in
the architecture while detailed system requirements are analysed and implemented.
Software architecture documentation is also limited to key design decisions in agile
projects (Abrahamsson et al., 2010). Team members are assigned clearly defined
roles during different phases of an agile project, which might be different from
that of the organizational hierarchy. Collective planning and cooperation is ensured
by the managers to keep a project’s activities on track (Coplien & Bjørnvig, 2011).
Instead of focusing on technical details such as coupling and cohesion of the detailed
architecture elements (e.g. components and classes), an agile architecture focuses
more on end users’ mental models, which can inspire implementation of the project
at later stages (Coplien & Bjørnvig, 2011). The characteristics of agile software
architecture process is presented in Fig. 1.



332 M. A. Chauhan et al.

The lean and light weight nature of the agile architecture design practices impose
a number of challenges for teaching agile architecture design processes. Educating
students about incremental design of comprehensive systems architecture in complex
domains such as providing software design and implementation Tools as a Service
(TaaS) following pay per use model (Chauhan, Babar, & Sheng, 2015), require inter-
active learning methods requiring active participation of the students. Especially,
when such systems are used as part of the collaborative workspaces and have high
degree of dependency upon other systems (Chauhan, Babar, & Sheng, 2017).

3.1 Activities of the Software Architects in Agile Projects

Software architects in agile projects need to focus on traditional as well as agile spe-
cific activities. Traditional activities include describing the elements of a software
system and relationship between the elements, and establishing the processes and
methods that are used for software architecture analysis, design, evaluation and evo-
lution (Chauhan et al., 2017; Gorton, 2006). Agile specific activities include (Coplien
& Bjørnvig, 2011):

(a) Focusing on essence of the system rather than functionality.
(b) Defining components and subsystems according to their rate of change as well

as functionality.
(c) Identifying components and subsystems so that each of these can be managed

as autonomously as possible.
(d) Focusing on locality of the changes.
(e) Prioritizing human considerations while driving the partitioning for software

engineering concerns.

The agile specific activities are particularly important to structure the architec-
ture and encompass the activities that are suitable for agile development. Defining
components and subsystem based upon the expected rate of change and functionality
helps to achieve point b, i.e. to separate parts of the system requiring rapid develop-
ment and changes from that of more stable areas of the system. Defining modularity
based upon the rate of change also help to achieve point c, i.e. autonomous develop-
ment on each module without having significant impact and interdependency upon
other modules. Keeping the domain knowledge of a specific part of the system in
the same geographic locations and within the same architecture unit during design
and development of a system positively contributes to achieve cohesion. Partitioning
of modules following the domain knowledge also achieves cohesion. If the archi-
tects do not have a comprehensive understanding of the domain while architecture
is being designed, they can use end user cognitive models of the domain to derive a
system’s modularity (Coplien & Bjørnvig, 2011). Using product lines development
approaches for domain partitioning can also facilitate reuse of the system compo-
nents and domain knowledge to a certain extent (Coplien & Bjørnvig, 2011), i.e. to
achieve points d and e.



Agile Approaches for Teaching and Learning Software Architecture … 333

Agile Architecture Quality

Elasticity +©

Availability +©

Security -©

Privacy -©

Interoperability +©

Multi-tenancy -©

SLA Compliance -©

Fine grained and loosely coupled ser-
vices/components.

Stateless components/services and de-
ployment redundancy.

System wide security impact analysis
and invisible requirements.

System wide privacy analysis of data
and unknown end users.

Loosely coupled services/components
and well defined interfaces.

Invisibility of system wide ASRs and
nature of data.

Invisibility of all systems stakeholders
and complete system use cases.

Fig. 2 Impact of agility on software architecture quality

3.2 Impact of Agility on Architecture Quality

Based on the principles of agile software development, agile architecture evolves as
different parts of the system are designed and implemented. As software architec-
ture primarily focuses on architecture quality attributes (also referred as architec-
turally significant or non-functional requirements), some quality requirements are
positively impacted by architecture agility, whereas other requirements are nega-
tively impacted by architecture agility. Figure 2 shows a pictorial representation of
the relation between architecture quality attributes (Chauhan, Babar, & Benatallah,
2016a) and agility. A description in the box corresponding to each quality attribute
explains what influences agility (positively +© or negatively -©) for the respective
quality attribute. An agile learning approach for software architecture education
should enable the students to learn how to focus on desired architecture quality
attributes.



334 M. A. Chauhan et al.

3.3 Impact of Distribution of Agile Teams on Software
Architecture

Agile teams focus on coordination, collaboration and communication, also referred
as three ‘C’s of agile (Dingsøyr, Dybå, & Moe, 2010). The agile teams can be dis-
tributed or co-located. Agile teams need to make architecture decisions within teams
and communicate the decisions with other teams. Hence, the three ‘C’s have a key
place in agile architecture development in different phases from elicitation of the
architecturally significant requirements to the detailed architecture design. Agile
teams need to communicate architecture design decisions that are made locally to
other distributed and co-located teams, and need to collaborate with each other to
resolve conflicting architecture design decisions. Agile teams’ distribution signifies
the importance of having architecture controlmechanisms aswell. The controlmech-
anisms make sure that architecture design choices that are made by each individual
team are in line with system-wide software architecture design and quality objec-
tives. Hence, lean software architecture education method should focus on three C’s
of agile.

3.4 Impact of Complexity and Domain of the Projects on
Agile Processes

The complexity of the domain of a specific project also impacts the process that is
adopted for agile software architecture analysis, design and evaluation. For complex
domains, core design decisions and design artefacts, which are central to the system
should be controlled and governed by a core teamof architectswith domain expertise.

4 Methodology for Agile and Lean Software Architecture
Education

A comprehensive methodology for agile and lean learning should encompass all
important topics for software architecture and organize the course to incorporate all
the key elements of an agile process. Themethodology should provide an opportunity
to the students so that they can perform software architecture analysis, design and
evaluation activities following agile and lean processes.

Incorporating agility in software architecture education requires incremental and
iterative delivery of the course contents, and quick feedback on the student’s deliv-
erables. Heavyweight software architecture design and evaluation methods need to
be tailored to match specific needs of agility in software architecture. In this section,
we describe an agile education strategy for software architecture intensive courses.
We also describe strategies for software architecture design and evaluation activities,



Agile Approaches for Teaching and Learning Software Architecture … 335

Fig. 3 Agile teaching and learning process for a course on software architecture

which are tailored to maximize engagement of the students in the learning activities
and bring the learning experience closer to real-life agile projects.

An aggregated view of the agile architecture education and learning process is pre-
sented in Fig. 3. The centre of the figure shows learning activities that can be included
in each sprint of the agile software architecture learning process. The students can be
taught requirements elicitation, architecture design, and evaluation activities corre-
sponding to the selected set of user stories in each sprint. Related literature (depicted
in the figure as an input to the course activities) can be taught to perform the activities
in accordance with the schedule of a course. The teaching and learning activities can
be organized based upon the complexity of the course topics. Each sprint can have
more than one iteration, and each proceeding iteration can havemore complex course
contents along with exercises as compared to previous iterations.

Electronic communication and collaboration platforms, which can be used by
the course instructors and students, are represented at top right of the figure. All
the exercises and assignment descriptions, deliverables submitted by the students,
feedback on the deliverables by the teaching staff and preparation notes along with
results of the evaluation sessions can be managed using the communication and
collaboration platform.



336 M. A. Chauhan et al.

In the following subsections, we first describe the key elements of a software
architecture course for agile and lean learning. We then provide details of the key
elements of the agile and lean learning methodology specific to software architecture
education.

4.1 Key Elements of the Agile Software Architecture Course
and Students’ Activities

Designing software architecture involves: (i) identifying requirements that can have
an impact on a software architecture, (ii) detailed design and presentation of the
architecture to represent structure and behaviour of a system and (iii) evaluating
the candidate architecture solution to make sure that it can comply with the desired
functional and quality requirements (Gorton, 2006). For long-term maintainability
and evolution of the software, software architecture evolution needs to be monitored
and controlled to reduce the risk of architecture erosion (Chauhan et al., 2016b).

ArchitecturallySignificantRequirementsElicitation,DocumentationandMan-
agement: Elicitation, documentation and management of Architecturally Significant
Requirements (ASRs) is a key activity of the architecture design process. It involves
identification of architecture savvy personae (Cleland-Huang, 2013) and capturing
their user stories for functional and quality aspects of the system. Each persona rep-
resents a specific stakeholder of a system. It can be a domain expert, a software
developer or an end user. Each persona specifies what is acceptable and what is not
acceptable for them from the system under design. The system’s expected behaviour
is specified in terms of user stories. The user stories can capture both functional
and non-functional (also referred as ASRs) requirements. However, for software
architecture perspective, only ASRs are important.

The ASRs specified by the users are described in terms of three attributes: (i)
stimulus, (ii) response and (iii) responsemeasure (Clements et al., 2002). The process
of refining the requirements helps to identify incomplete requirements. For example,
if anASR is associatedwith availability and it does not provide anymetric tomeasure
satisfiability of the requirement (e.g. 24 × 7), then the requirement is incomplete. The
refinement process also helps to identify complementary or conflicting requirements
(Chauhan et al., 2016b). For example, if availability ASR states that the system
should be available 24 × 7 and maintainability, ASR states that the system should
be down while installing new upgrades, then there is a conflict.

Software Architecture Design: The artefacts produced as a result of software
architecture design activity are used as a baseline for software development. The
design artefacts can correspond to any of the logical, process, development or deploy-
ment view (Kruchten, 1995). These views include different types of design diagrams,
e.g. class diagrams are a part of logical view, sequence and collaboration diagrams
are a part of process view, component diagrams are a part of development view, and
deployment diagrams are a part of physical view (Kruchten, 1995). The primary



Agile Approaches for Teaching and Learning Software Architecture … 337

activity of the design phase is to incorporate a number of architecture and design
patterns to achieve architecture quality, i.e. to satisfy the ASRs.

Software Architecture Evaluation: The purpose of architecture evaluation activ-
ity is to make sure that the architecture is compliant to the desired quality, i.e. all
the important ASRs are properly transformed into the architecture design docu-
ments. A number of software architecture evaluation methods such as Architecture
Trade-Off Analysis Method (ATAM) (Kazman et al., 1998), Software Architecture
Analysis Method (SAAM) (Kazman, Bass, Webb, & Abowd, 1994) and Quality-
Driven Architecture Design and quality Analysis (QADA) (Matinlassi, Niemelä, &
Dobrica, 2002) can be adopted based on the requirements of a specific project.

Monitoring and Controlling Software Architecture Evolution: Control over the
process of software architecture evolution is important to protect the software archi-
tecture from erosion and deviation from the long-term architecture quality objec-
tives. Hence, it is an important course topic. Though it is challenging to measure
the impact of change on software architecture, using software reference architecture
to capture a blueprint of the architecture and adaptation of semi-formal approaches
such as attack-defence trees can help to monitor architecture evolution (Chauhan
et al., 2016b).

Different course topics and key elements of each topic are summarized in Table 1.

4.2 Iterative Delivery of the Course Contents Combined
with Short Hands-On Exercises

In order to incorporate agility in software architecture education, rather than follow-
ing a waterfall delivery approach, the course topics should be delivered iteratively.
That requires splitting up course contents on the basis of the difficulty level of each
topic (e.g. ranging from basic to advanced) and grouping the course contents from the
different topics based upon the difficulty level. For example, the process of require-
ments elicitation covers architecturally significant requirements identification and
documentation (in terms of quality to be achieved, stimulus of the requirements,
response of the system when the requirement is implemented in the system and
metrics for response measure) (Gorton, 2006).

For agile learning, in the first phase of the architecture design sprint, only quality
attributes corresponding to the most important quality requirements can be focused
on, e.g. scalability or elasticity. Next, architecture scenarios in terms of stimulus,
response and response measures can be taught. In the second phase, the quality
attribute can be taught and combined with the high-level architecture design tactics
and architecture patterns. For example, scalability and elasticity can be achieved
using multi-tier architecture and stateless system services. Multi-tier architecture
and stateless services facilitate adjustment in the runtime configuration of the system
as the system needs to be scaled up or down. In next phase, stimulus, response
and response measures can be taught in combination with detailed design tactics



338 M. A. Chauhan et al.

Table 1 Software architecture course contents and elements

Course topic Element Description

Personae Profile Details on a persona including picture, name, designation,
education, professional background and role in the system
under development

User stories
(what is
expected)

What functional and non-functional (quality)
requirements a persona expects to be implemented in the
system

Anti stories
(what is not
expected)

System behaviour that is not expected by a persona

Quality attributes
of interest

A list of quality attributes that a persona is interested to
have in the system

Architecturally
Significant
Requirements
(ASRs)

Quality A specific quality or a non-functional requirement, e.g.
scalability, reliability, security, privacy, etc.

Scenario Description of the quality requirement in terms of
stimulus (what triggers a quality requirement), response
(what should be the system’s behaviour satisfying the
quality requirement) and response measure (metric to
measure the quality response)

Architecture
design

Design views Multiple views of software architecture design including
process view, logical view, development view and
physical view

Diagrams in each
view

Diagrams corresponding to different views including
sequence and activity diagrams for process view; service,
class and state diagrams for logical view; component and
package diagrams for development view; and deployment
diagram for physical view

Evaluation Software
architecture
evaluation
methods

Evaluating software architecture using methods such as
ATAM, SAAM and QADA

Architecture evo-
lution

Controlling
architecture
evolution

Methods and techniques to monitor and control software
architecture evolution

for scalability and elasticity such as cache, facade, redundant system deployment,
data synchronization methods, and distributed computing (Buschmann, Henney, &
Schmidt, 2007). The whole process can be repeated in the second and third sprints
for user stories and quality requirements that are more difficult to achieve. A course
can have multiple sprints depending upon the duration of the course and education
background of the students.



Agile Approaches for Teaching and Learning Software Architecture … 339

4.3 Using Digital Platform(s) for Communication,
Collaboration and Feedback

Communication, collaboration and self-organization are key practices of agile teams
(Campanelli & Parreiras, 2015). When multiple agile teams are working on related
or dependent tasks, they frequently need to communicate and collaborate with each
other. The same is true for student teams and teaching staff for agile software archi-
tecture education. Use of digital platforms for communication, collaboration and
feedback on assignments and project deliverables can support frequent interaction
and rapid exchange of the artefacts among the student team members, and between
student teams and teaching staff. Digital platforms can also facilitate teaching staff
to share learning material related to a specific phase of the agile education project
and can provide a single point of access for all the relevant course information.

4.4 Incremental Deliverables and Rapid Feedback

A key strategy for incorporating agility in software architecture education is to have
iterative deliverables of the students’ assignments and projects, following by a rapid
feedback on the deliverables. A key step in this regard is to devise a strategy for
assignment and project delivery so that output of the preceding phase can be used as
an input to the proceeding phase.

For example, Architecturally Significant Requirements (ASRs) (Chauhan et al.,
2016a) elicitation and management process can be divided into the following phases.
In the first phase, the students can be asked to capture the user stories (Gorton, 2006),
i.e. to identify what can be potential users of a given software system and what can
be their expectations (in terms of features) from the system. In the second phase,
the students can be asked to identify ASRs (quality requirements or non-functional
requirements) from the user stories. In the third phase, the students can be asked
to capture the details of the ASRs in terms of stimulus (source of the requirement),
response (outcome if the requirement is incorporated in the system) and response
measure (how to verify if the requirement is implemented correctly) (Clements et al.,
2002).

Software architecture can be incrementally designed corresponding to the require-
ments’ elicitation and management phases. After the first and the second phase of
requirements elicitation, high-level architecture decisions can be made. After the
third phase of requirements management, detailed architecture design decisions
can be made such as using model-view-control pattern (Buschmann et al., 2007)
to increase modularity and modifiability, or using redundant deployments of the
system’s services (Buschmann et al., 2007) to increase availability.



340 M. A. Chauhan et al.

4.5 Learning Software Architecture Design

Agile software architecture design encompasses the incremental design of different
aspects and views of a software architecture (Kruchten, 1995), which gradually con-
tributes to a complete system architecture. Agile and lean architecture learning can
be achieved by combining small class exercises on software architecture design and
by complementing the exercises with dedicated architecture design evenings.

The first step for agile architecture design is to use the personae-based approach to
capture user stories (as discussed in Sect. 4.1) which can later be used to refinedASRs
and architecture scenarios. The personae can be an important input for prioritizing
ASRs for different sprints of the agile design process. The personae can be helpful
to resolve conflicting ASRs because these can identify the sources of the ASRs.

The following architecture design activities can include transforming ASRs into
concrete architecture scenarios, identifying relevant architecture patterns
(Buschmann et al., 2007) to satisfy high-level ASRs, selecting design patterns (Shal-
loway&Trott, 2004) to material detailed architecture design, and selecting appropri-
ate views of 4 + 1 architecture viewmodel (Kruchten, 1995) that best suit the domain
of a systembeing designed. In the first sprint, primaryASRs, appropriate systemview
and high-level architecture patterns can be decided. In the second sprint, while the
detailed design is elaborated in terms of design patterns and concrete implementation
strategies based upon the output from the first sprint, ASRs from the remaining pool
of the requirements can be selected.

A key practice for the agile architecture design is to maintain a backlog of all the
important decisions made and traceability between ASRs and architecture design
decisions (architecture patterns, design patterns and concrete scenarios correspond-
ing to the architecture significant requirements). The scrum meetings can be orga-
nized at the beginning of every exercise session, where group members quickly
review and analyse ASRs and corresponding architecture scenarios, architecture
patterns and design patterns that other members of the group have worked on. The
project backlog can be the list of tasks that the students are expected to perform
throughout the course. The project backlogs should be shared between a group and
teaching staff. In the beginning of the course, the project description and tasks list
should be shared with the students.

One of the key characteristics of the agile project is continuous delivery of a
product under development. For a semester-based course on software architecture,
the course can be divided into two sprints of 5 weeks each. The first sprint can begin
after 2weeks of the first lecture.After each sprint, the students submit a formal project
report. Within the sprint, the teaching staff can have semi-formal meetings with each
student team to track the progress. Inter-group and intra-group correspondence can
be carried out through a digital platforms, e.g. by using Moodle.3

3https://moodle.org/.

https://moodle.org/


Agile Approaches for Teaching and Learning Software Architecture … 341

4.6 Learning Agile Software Architecture Evaluation

Software architecture evaluation is a key activity of the software architecting process.
Hence, it should also be a part of the agile learning activities in a software archi-
tecture course. To make architecture evaluation part of the agile learning process, 3
weeks period can be scheduled between the sprints (considering that a course has two
sprints). The output of the first sprint can be used as an input for the evaluation activ-
ities and output of the evaluation activities can be used in sprint two for refinements
in the architecture design along with incorporation of the new requirements. The
number of sprints in a course can be increased depending upon the course duration
and contents.

Architecture evaluation sessions should be organized in such a way that members
of each group participate in at least two evaluation sessions. In the first evaluation
session, the group members can participate to present the key areas of their architec-
ture design and get their architecture design evaluated. In the second session, they
can evaluate the architecture of another group and provide feedback on the designed
architecture. The architecture of the system that is to be evaluated, should be shared
with the evaluation team members in advance (e.g. 1 week before the evaluation ses-
sion) so that they can have a good understanding of the system design. For example,
if group B is to evaluate group A’s architecture, group A’s architecture should be
shared with group B. Evaluation sessions can be organized by following guidelines
for any of the architecture evaluation methods [such as ATAM (Kazman et al., 1998),
SAAM (Kazman et al., 1994) and QADA (Matinlassi et al., 2002)], depending upon
which method suits the project. Each group has to prepare two reports. Before the
evaluation session, the group that is evaluating the architecture (group B) has to
present a short list of architecture concerns (ASRs, patterns, architecture diagrams,
etc.) that they want to focus on during the evaluation session. After the evaluation
session, each group that has evaluated an architecture (group B) has to prepare an
evaluation report which can be used as an input for the second sprint.

4.7 Learning Agile Software Architecture Evolution

Controlling architecture evolution when multiple teams work on designing related
and dependent subsystems in large-scale software systems is not trivial. In agile
projects, architecture evolves in each sprint. Therefore, it is critical to monitor and
control the architecture evolution to keep it on track and avoid architecture erosion.
ReferenceArchitectures (RAs) (Chauhan et al., 2016b) can be a useful tool tomonitor
and control architecture evolution. Depending upon the maturity of the domain, a
RA can be adopted to control evolution in two different ways.

• For mature domains (where one or more comprehensive RAs already exist), a RA
that is more closely related to the project scope and domain, can be selected. The
selected RA can be used as a starting point to guide the design of the software



342 M. A. Chauhan et al.

system to be developed. For each sprint, trace links of the detailed architecture
artefacts (including personae, ASRs, architecture design decisions, architecture
patterns, design patterns and different views of the architecture) should be estab-
lished with the RA and this information should be shared among all the student
teams working on the system (in project settings when multiple teams are working
on different parts of the same system) and teaching staff.

• For domains inwhich comprehensiveRAs are not available, an abstraction of archi-
tecture can be derived from the detailed design after each sprint. This abstraction
can contain trace links to the detailed artefacts. This step should be repeated after
each sprint.

As a project progresses, the RA can server as a single point of access for all
architecture artefacts designed in each sprint. As the new artefacts are added, trace
links to the newartefacts are added andprevious links are updated if needed.Relations
between different types of the artefacts and their impact upon each other can be
analysed by the trace links. The RA along with the trace links to the detailed artefacts
can be used to identify conflicting and complementing architecture decisions. For
example, ASRs can be evaluated by using a probabilistic analysis method to analyse
the impact of the ASRs on each other in terms of whether the requirements are
dependent on each other, complement each other, or contradict each other (Chauhan
& Probst, 2017). The continuous impact analysis allows monitoring of the evolution
of the architecture as it matures and protects it from erosion even if the complete
architecture is not designed upfront (in one go).

5 Case Studies on Application of the Proposed
Methodology

The agile and lean software architecture methodology presented in Sect. 4 was used
in a Software Architecture course for a Master’s Degree in Software Development
Technologies at IT University of Copenhagen (ITU) Denmark4 in the fall 2015 and
2016 semesters. There were 35 students on average in the class in both years, and
3 course instructors. One of the course instructors was course manager and main
lecturer. The other two instructors were responsible for delivery of lectures on spe-
cific topics and execution of the exercises. In this section, we describe details on
application of the presented approach in the course.

4www.itu.dk.

www.itu.dk


Agile Approaches for Teaching and Learning Software Architecture … 343

5.1 Course Structure and Distribution of the Roles

The courses consist of 14 weeks of teaching with 1 week of teaching break after the
17thweek. In both years, the coursewas divided into 2 sprints. The first 2weeks of the
course were dedicated to an introduction to basic topics on software architecture, the
UnifiedModelling Language (UML)5 and formation of the students working groups.
Each group had at least three members. The groups were free to choose the roles
within the group (e.g. scrummaster and architect teammembers). The first sprint was
organized from week three till week seven. Weeks within the teaching break and the
eighth week of teaching were allocated for preparation of the software architecture
evaluation sessions (in which each student group evaluated architecture of another
group). In addition to the evaluation sessions, the teaching team also evaluated the
architecture of each group. The second sprintwas organized fromweek 9 till week 13.
In the 14th week, the teaching team evaluated the final architecture report of each
group and shared evaluation findings with the respective groups.

The course in both sessions (2015 and 2016) covered the following topics (as
described in Sect. 4.1). The students are asked to use UML and Service-oriented
architecture Modelling Language (SoaML6) to design the architecture diagrams.
The students were given the tasks to design the architecture of a part of the Internet
of Things (IoT) for smart homes. Only the high-level requirements of the system
were shared with the students. The students were asked to choose a part of the
IoT smart home system. For example, electricity plus appliance management and
control of entrance into the home were the areas chosen by majority of the groups.
All members of the teaching staff were actively involved in reviewing the students’
intermediate submissions and providing feedback on the submissions.

5.2 Digital Platform Structure

The digital course management platform LearnIT7 was used in the course for sharing
the course material, updates on daily activities, and collaboration among the students
and course instructors. Figure 4 shows a screenshot of the course home page on
LearnIT. The course page had areas for submission of the students’ deliverables
(individual and group assignment submission areas) as well as discussion forums
(e.g. IoT Architecture Discussion Forum). The course page had sections for each
lecture session where details on the learning and exercise materials were shared with
the students by the course instructors. Therewas also a news forumonwhich teaching
staff and the students could post important details on the course.

5http://www.uml.org/.
6http://www.omg.org/spec/SoaML/About-SoaML/.
7https://learnit.itu.dk.

http://www.uml.org/
http://www.omg.org/spec/SoaML/About-SoaML/
https://learnit.itu.dk


344 M. A. Chauhan et al.

Fig. 4 LearnIT—a digital content sharing and collaboration platform

5.3 Weekly Architecture Analysis and Design Sessions Using
Drawing Boards and CASE Tools

The was an exercise session each week during both sprints. A dedicated area was
allocated to each student group where they could work on the given tasks. The
students used drawing boards and Computer Aided Software Engineering (CASE)
tools to design architecture artefacts. The tasks carried out during each exercise
session contributed to the detailed architecture design of the respective sprint. In the
first sprint, the students were asked to focus on simple ASRs (such as modularity,
scalability, etc.) alongwith functional requirements. In the second sprint, the students
were asked to focus on more complex ASRs (such as security, reliability, etc.). In
beginning of the first sprint, the groups were asked to define personae for their
respective part of the system. As an example, personae identified by one of the
groups is shown in Fig. 5. In beginning of the second sprint, the groups were asked
to refine the personae for the additional quality requirements. However, during each
sprint, the groups were also improving the personae and user stories following the
feedback from the teaching staff. After identification of the personae and extraction
of the ASRs from the personae, the groups designed the architecture using UML and
suitable design plus architecture patterns in each sprint.



Agile Approaches for Teaching and Learning Software Architecture … 345

Fig. 5 Example architecture personae generated during weekly exercises

5.4 Deliverable and Feedback Cycles

The students were given a quick feedback on their deliverables at the end of each
exercise session. The students were asked to deliver a short informal presentation (of
5–10 mins) to one of the teaching staff members, describing the architecture anal-
ysis and design activities they performed along with outcome of the activities. The
teaching staff members provided feedback on the produced artefacts. The students
were then asked to submit the corrected artefacts in the assignments and projects
submission folder as part of the continuous delivery of the architecture design. At
the end of each sprint, there was a formal feedback on the final submitted report of
the sprint following a separate discussion with each group. The same process was
repeated in the second sprint.

5.5 Architecture Design Sessions

In addition to the weekly exercise sessions, there was also a dedicated session on
the design in the middle of each sprint for which the groups were asked to make
modifications in the design following on the spot input from the teaching staff.



346 M. A. Chauhan et al.

The students worked on the same part of the IoT subsystem during design session
as part of their project. The students were asked to use drawing boards, case tools
and flip charts so that they could engage in intra-group communication effectively.
Design sessions consisted of only intra-group activities plus reviews and feedback
from the teaching staff.

5.6 Architecture Evaluation Sessions

Architecture evaluation sessions were scheduled at the end of the first sprint and
before the beginning of second sprint. The evaluation sessions were organized so
that each group’s architecture was evaluated by another group. For this purpose, the
architecture design document produced as a result of the first sprint was shared with
the group who was going to evaluate the architecture, 1 week prior to the evaluation
session.The studentswere asked to prepare two reports for each evaluation session. (i)
A short report (one to two pages) describing their initial analysis of the architecture
prior to the session. This report was used as a guide for the students during the
evaluation session. (ii) A second report (four to five pages) describing evaluation
results of the architecture after the evaluation session. The students were asked to
submit the first report before the evaluation session and second report 1 week after
the evaluation session. Both of these reports were individual tasks and each student
was asked to submit the reports as part of their individual assignments. However, the
students were encouraged to collaborate with each other before, during and after the
evaluation sessions.

The students were given a rough guideline on organization of the evaluation
sessions. Each evaluation session was scheduled for one hour and thirty minutes.
The organization of the evaluation sessions is presented in Table 2. The groups were

Table 2 Organization of each evaluation session

Time (min) Activity Description

10 Introduction Members of the architecture evaluation
session introduced each other and their
core expertise

30 Presentation of the architecture The group whose architecture design
was to be evaluated gave a presentation
to the group who was evaluating their
architecture

30 Questions and discussion The group who was evaluating the
architecture asked questions and
presented their view on different parts
of the architecture

20 Debriefing and notes The groups summarized the findings of
the session and took notes to be used in
the evaluation reports



Agile Approaches for Teaching and Learning Software Architecture … 347

allowed to use any of the evaluation methods such as ATAM, SAAM, QADA or their
own tailored evaluation approach. However, they were asked to provide the details
on the process they followed in their evaluation report. The students were asked
to incorporate feedback of the evaluation sessions along with feedback provided
by the teaching staff in the second sprint of the architecture design. There was no
dedicated evaluation session after the second sprint and the teaching staff evaluated
the architecture deliverables submitted by the students.

5.7 Using Architecture Meta-models and a Reference
Architecture to Support Architecture Evolution

A key activity to manage agile architecture evolution is to explore the availability
of Reference Architecture (RA) and meta-models so that an appropriate strategy
to handle traces and variability in the architecture can be adopted (as discussed in
Sect. 4.7). Because of the availability of the RA for IoT, the students were given
the reference architecture presented by Boussard et al. (2013). The students were
asked to follow the high-level architecture description presented in the RA to design
the architecture skeleton of a particular area of the smart home system they chose
and establish its trace links to the reference architecture abstractions. As all the
groups were using the same RA as a baseline, the students were asked to share their
design choices for a particular area of smart homes system with reference to the RA
on the discussion forum. The course manager and main lecturer also maintained an
aggregated enhanced version of the RA for smart homes IoT, based upon abstractions
from Boussard et al. RA (Bauer et al., 2013) and by using the students’ architecture
deliverables at the end of each sprint. The enhanced RA enabled the students to learn
how their architecture fits into overall aggregated smart homes system domain.

6 Students Feedback and Discussion on Application
of the Proposed Methodology on General Software
Engineering Education

Feedback from the students participating in the case studies (described in Sect. 5)
reported a positive feedback of the proposed agile and lean software architecture
design processes and methods. Table 3 shows average evaluation of the course mate-
rial and teaching methodology by industrial students from ITUs official Software
Architecture course evaluation of 2015 session. The evaluation was conducted via
online questionnaire. Each of the students selected a value (between 1 and 6, where
1 is least positive) corresponding to a question. The questions along with average
score corresponding to each question is shown in Table 3. The evaluation results
show a positive feedback and all the students (in both years) who appeared in the
final exam passed the course. Hence, it can be concluded that the adopted methods



348 M. A. Chauhan et al.

Table 3 Feedback on the agile learning approaches from 2015 session

Questions Feedback score

Overall course satisfaction 5.14

Correlation between course topics and exam requirements 5.00

Relevance for future job 5.14

Satisfaction with course workload and effort 4.86

Selection of learning activities 4.57

Teaching at sufficiently high level 4.71

Lowest possible value = 1, highest possible value = 6, higher is better

were effective in teaching software architecture design to the students. However,
it is to be noted that course evaluation was not mandatory and not all the students
participated in the course evaluation.

A number of additional factors can also influence adaptation of agile education
and learning in software engineering and related disciplines. The main essence of
the agile education and learning approach for software engineering is to organize
and deliver the course contents iteratively rather than following traditional waterfall
lectures delivery approach. Engagement of the students in a learning process where
they can practise applications of the agile approaches while doing class exercises and
projects is also vital. Therefore, the focus of agile educationmethodology for software
engineering disciplines should be on providing a combination of iterative delivery
of the course topics during lectures combined with exercises to enable learning-by-
doing.

A generic process for agile and lean learning of software engineering and related
disciplines (derived from Fig. 3) is presented in Fig. 6. As the figure shows, a course
following an agile learning approach can havemultiple iterations on the topics during
sprints. At the end of each sprint, the students should provide concrete artefacts that
can be evaluated by the teaching staff members and can be used as a baseline for
the next sprint. For courses that involve software development, the last iteration of
each sprint can include implementation of a part of the software system. Learning
material and lectures should be adjusted according to the exercises planned in each
sprint. A digital education platform such as Moodle should be used so that rapid
exchange of information among the students and teaching staff can take place for
continuous collaboration, which is a core characteristic of every agile process. High-
level abstractions can be used as a guideline for the group activities. An electronic
collaboration platform can facilitate collaboration among the students, as well as
between the students and teaching staff, in terms of collaborativework on the artefacts
and feedback on the deliverables.

Adoption of agile education and lean learning approaches for software engineering
courses can introduce additional challenges. For a course with a large number of stu-
dents, managing inter-group communication and collaboration can be a challenging
undertaking. A large number of students can also put additional overhead on teaching
staff for providing continuous feedback on the deliverable as well as on educational
institute for providing logistic support to the students so that they can practice agile.



Agile Approaches for Teaching and Learning Software Architecture … 349

Fig. 6 A generic agile teaching and learning process for software engineering courses

For the courses that are of theoretical nature, agile education approaches might not
be applicable for whole length of the course. Specialized courses focusing on specific
ASRs including security, privacy, multi-tenancy and service level agreement com-
pliance, might not be the best candidate to adopt agile learning approaches because
a rigorous architecture analysis of whole system is needed for such ASRs before
implementation can begin.

7 Related Work

The prospects of agile education for software architecture have not been explored
much. However, a few studies have focused on agile architecture development in aca-
demic and industrial contexts. A case study on software architecting for agile projects
in education has been reported in Angelov and de Beer (2017). The authors suggest
dividing the achitecting activities intomultiple sprints and students to be taught about
the basics of agile development and software architecture in the first sprint. After that,
the students can design architecture for a selected set of non-functional requirements
and can participate in informal architecture reviews in each sprint. Abrahamsson
et al. (2010) have discussed software architecture in the context of the agile projects
and have suggested that software architecture in agile projects should focus on key



350 M. A. Chauhan et al.

architecturally significant requirements and minimum documentation. Coplien and
Bjørnvig (2011) have presented key principles of agile architecture development
including deferred engineering and implementation, room for change, lightweight
documentation and collaborative planning. Babar (2009) have presented common
challenges faced during agile architecture development, which include incorrect pri-
oritization of user stories and lack of focus on important architecturally significant
requirements.

We have attempted to address the gaps in the related literature by providing a
comprehensive approach for teaching and learning software architecture in an agile
manner.

8 Conclusions

In this chapter, we have presented an approach for agile and lean learning. The pre-
sented approach has been developed with focus on software architecture education
(tertiary level), however, the approach can be applied on other disciplines of software
engineering education as well. The presented approach suggests iterative delivery of
the course contents and lectures to the students followed by incremental deliverables
of students’ assignments and projects, and splitting students’ exercises and project
tasks into multiple sprints. Splitting design exercises into multiple sprints enables
the students to get familiar with the agile development process and have hands-on
experience with it. A lightweight software architecture evaluation process for edu-
cational environment highlights the importance of collaboration among the students
for learning design of complex and large-scale systems when multiple teams work
on different aspects of the same system.

We foresee that the proposed approach can help academics to align software
engineering focused courses with agile practices and facilitate educational institutes
to prepare their students for current and future industrial needs.

Acknowledgements We acknowledge the students of software architecture course in 2015 and
2016 at IT University of Copenhagen for their participation in the process and activities described
in this chapter.Dr.Chauhan likes to thankhis colleagues fromNetcompanyA/S aswell, for providing
valuable insight into the software architecture design challenges in agile projects.

References

Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010). Agility and architecture: Can they coexist?
IEEE Software, 27(2).

Angelov, S., & de Beer, P. (2017). Designing and applying an approach to software architecting in
agile projects in education. Journal of Systems and Software, 127, 78–90.

Babar,M., Brown, A., &Mistrik, I. (2013).Making software architecture and agile approacheswork
together: Foundations and approaches. Agile software architecture: Aligning agile processes and
software architectures.



Agile Approaches for Teaching and Learning Software Architecture … 351

Babar, M. A. (2009). An exploratory study of architectural practices and challenges in using agile
software development approaches. In Joint Working IEEE/IFIP Conference on Software Archi-
tecture, 2009& European Conference on Software Architecture. WICSA/ECSA 2009 (pp. 81–90).
IEEE.

Bauer, M., Boussard, M., Bui, N., De Loof, J., Magerkurth, C., Meissner, S., ..., Walewski, J. W.
(2013). IoT reference architecture. In Enabling Things to Talk (pp. 163–211). Springer.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-oriented software architecture, on
patterns and pattern languages (Vol. 5). Wiley.

Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods tailoring—A systematic literature
review. Journal of Systems and Software, 110, 85–100.

Chauhan, M. A., Babar, M. A., & Benatallah, B. (2016a). Architecting cloud-enabled systems: A
systematic survey of challenges and solutions. Software: Practice and Experience.

Chauhan, M. A., Babar, M. A., & Probst, C. W. (2016b). A process framework for designing
software reference architectures for providing tools as a service. In Product-Focused Software
Process Improvement: 17th International Conference, PROFES2016, Trondheim,Norway, 22–24
November 2016, Proceedings 17 (pp. 111–126). Springer.

Chauhan, M. A., Babar, M. A., & Sheng, Q. Z. (2015). A reference architecture for a cloud-based
tools as a service workspace. In 2015 IEEE International Conference on Services Computing
(SCC) (pp. 475–482). IEEE.

Chauhan, M. A., Babar, M. A., & Sheng, Q. Z. (2017). A reference architecture for provisioning
of tools as a service: Meta-model, ontologies and design elements. Future Generation Computer
Systems, 69, 41–65.

Chauhan, M. A. & Probst, C. W. (2017). Architecturally significant requirements identification,
classification and change management for multi-tenant cloud-based systems. In Requirements
Engineering for Service and Cloud Computing (pp. 181–205). Springer.

Cleland-Huang, J. (2013). Meet Elaine: A persona-driven approach to exploring architecturally
significant requirements. IEEE Software, 30(4), 18–21.

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., & Little, R. (2002).Documenting
software architectures: Views and beyond. Pearson Education.

Coplien, J. O. & Bjørnvig, G. (2011). Lean architecture: For agile software development. Wiley.
Dingsøyr, T., Dybå, T., & Moe, N. B. (2010). Agile software development: Current research and
future directions. Springer Science & Business Media.

Gorton, I. (2006). Essential software architecture. Springer Science & Business Media.
Hoda, R., Noble, J., & Marshall, S. (2013). Self-organizing roles on agile software development
teams. IEEE Transactions on Software Engineering, 39(3), 422–444.

Kazman, R., Bass, L., Webb, M., & Abowd, G. (1994). SAAM: A method for analyzing the prop-
erties of software architectures. In Proceedings of the 16th International Conference on Software
Engineering (pp. 81–90). IEEE Computer Society Press.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The archi-
tecture tradeoff analysis method. In Fourth IEEE International Conference on Engineering of
Complex Computer Systems, 1998. ICECCS’98. Proceedings (pp. 68–78). IEEE.

Kruchten, P. B. (1995). The 4 + 1 view model of architecture. IEEE Software, 12(6), 42–50.
Matinlassi, M., Niemelä, E., & Dobrica, L. (2002). Quality-driven architecture design and quality
analysis method. A revolutionary initiation approach to a product line architecture. Espoo: VTT
Technical Research Centre of Finland.

Nevo, S., & Chengalur-Smith, I. (2011). Enhancing the performance of software development
virtual teams through the use of agile methods: A pilot study. In 2011 44th Hawaii International
Conference on System Sciences (HICSS) (pp. 1–10). IEEE.

Shalloway, A., & Trott, J. R. (2004). Design patterns explained: A new perspective on object-
oriented design. Pearson Education.

Sievi-Korte, O., Systä, K., &Hjelsvold, R. (2015). Global vs. local—Experiences from a distributed
software project course using agile methodologies. In Frontiers in Education Conference (FIE),
2015. 32614 2015. IEEE (pp. 1–8). IEEE.



Part VI
Agile and Lean Activities and Games

for the Classroom



A Practical Approach to Teaching Agile
Methodologies and Principles at Tertiary
Level Using Student-Centred Activities

Visham Hurbungs and Soulakshmee Devi Nagowah

Abstract This chapter presents a practical approach to better understand agile
methodologies and principles in an educational context. An overview of the main
agile principles is given alongwith agilemethodologies that can be taught and applied
in the classroom at tertiary level. The main objective is to train final year university
students with agile practices currently used by the software industry. Apart from
traditional activities such as homework, tests, assignments and lectures, practical
approaches have been incorporated into the curriculum to engage students in active
learning. In this context, the activitieswhichwere plannedhavebeenvalidated against
agile practices at Infosys Ltd., a leading Indian-based IT company having a branch in
Mauritius. In this chapter, the main focus is how team-based activities and student-
centred groupwork have helped university students learn, understand and apply agile
concepts such as Scrum, User Stories, Extreme Programming (XP), Lean, Kanban
and Test-Driven Development (TDD).

Keywords Agile · Methodologies · Classroom · Activities · Tertiary · Learning

1 Introduction

The University ofMauritius (UoM) currently offers an undergraduate course in Soft-
ware Engineering. ‘Agile methodologies, principles and practices’ are taught in the
final year as a core module. The module aims at providing an in-depth understanding
of agile concepts from a historical perspective. It additionally trains students on how
to apply the values and principles of the agile methodologies for software develop-
ment. Furthermore, students learn the skills, techniques and mindset needed to set up

V. Hurbungs (B) · S. D. Nagowah
Department of Software and Information Systems, Faculty of Information, Communication &
Digital Technologies, University of Mauritius, Reduit, Mauritius
e-mail: v.hurbungs@uom.ac.mu

S. D. Nagowah
e-mail: s.ghurbhurrun@uom.ac.mu

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_17

355

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_17&domain=pdf
mailto:v.hurbungs@uom.ac.mu
mailto:s.ghurbhurrun@uom.ac.mu
https://doi.org/10.1007/978-981-13-2751-3_17


356 V. Hurbungs and S. D. Nagowah

an agile team, collaborate with stakeholders and support self-organising agile teams.
It has been, however, observed that UoM students have difficulties in understanding
the essence of agile methodologies by simply learning the theoretical aspects of the
module.

Therefore, the module map was modified to include practical approaches to agile
methodologies and principles as from the academic year 2016–2017. One of the
learning styles adopted for the module is team-based learning, which emphasises on
students practicing course concepts to solve problems rather than simply covering
content (Michaelsen & Sweet, 2008). This learning style is closely related to the con-
cepts adopted by self-organising teams in agile methodologies. It includes important
elements such as working in groups, accountability for individual and group work,
frequent and timely feedback and design thinking which promote learning and team
development (Dorst, 2011; Dym, Agogino, Eris, Frey, & Leifer, 2005; Michaelsen
& Sweet, 2008). The new module map has inculcated in students the concept of
active learning (Bonwell & Eison, 1991) by engaging them into meaningful learning
activities and helping them to think about what they are doing. All students were
given the opportunity to engage in active learning while participating in activities in
the classroom rather than follow a traditional agile lecture where students passively
received information from the lecturer.

Additionally, the new module map was designed to cater for a large number of
students. A total of 80 students followed the new module map for the first time
in 2016–2017 and the feedback received was positive and very encouraging. Stu-
dents acknowledged that the class activities, teamwork and games helped them bet-
ter understand concepts such as Scrum, User Stories, XP, Lean, Kanban and Test-
Driven Development (TDD). The rest of the chapter is structured as follows: Sect. 2
describes the different agile methodologies and principles. Section 3 presents the
different classroom activities and lab practicals adopted to help university students
better understand the agile methodologies, principles and practices. Important feed-
back and observations from students with respect to the activities have also been
included in Sect. 3. Feedback concerning the whole module has been included in
Sect. 4. Section 5 finally concludes the chapter.

2 Agile Methodologies and Principles

This section describes the main agile methodologies, principles and practices used
by the software industry. Agile methodologies follow the agile manifesto which
aims at providing better ways for developing software (Fowler & Highsmith, 2001).
Compared to the traditional methods, the manifesto presents agile principles which
value more (‘Manifesto for Agile Software Development’, 2001):

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.



A Practical Approach to Teaching Agile Methodologies … 357

In traditional methods, systems are fully specifiable, whereas in agile method-
ologies, the systems are mostly adaptive. Nerur, Mahapatra, and Mangalaraj (2005)
highlight a number of other differences between traditional systems andagilemethod-
ologies. There is a growing interest in agile methods in industry. The two main rea-
sons for agile adoption highlighted during a survey carried out by Version One are
that agile methods accelerate product delivery and enhance the ability to manage
changing priorities (‘Unified Agile & DevOps’, 2018).

2.1 Scrum Methodology

Scrum is an agile and lightweight methodology which aims at improving project
productivity (Barza, Cardozo, França, Neto, & Silva, 2010; Cervone, 2011). Scrum
consists of three main components: roles, activities and artefacts (Cervone, 2011).
The set of predefined roles include the product owner, scrum master and a self-
organising scrum team. The main roles of the product owner are to prioritise the
product requirements, act as an intermediate between the development team and the
business, and decide on the release date and content (Mahalakshmi & Sundararajan,
2013). The scrummaster helps to remove obstacles in the team and plans daily scrum
meetings. The scrum team is a self-organising team consisting of normally five to ten
persons who develop the product (Cervone, 2011; Hoda, Noble, & Marshall, 2010).

The methodology makes use of an iterative and incremental approach as shown
in Fig. 1. Activities in the scrum development process include sprint planning, sprint
review and scrum meeting (Hoda, Noble, & Marshall, 2008). The sprint planning
meeting is organised between the scrum master, the product owner and the scrum
team to define the product requirements which is listed in an artefact called product
backlog (Cervone, 2011). Once the meeting is over, the sprint begins. It is ‘a set of
development activities conducted over a predefined period, usually one to fourweeks’
(Schwaber, 1997). The development team normally selects some requirements from
the product backlog and includes it in another artefact called the sprint backlog. A
daily meeting is organised by the scrum master and the development team to enable
team members to describe their tasks and concerns (Hoda et al., 2010). A sprint
review is conducted at the end of each sprint to provide feedback about the previous
sprint in terms of tasks achieved. Details of the next sprint are also discussed and
defined in the sprint review.

Scrum lays emphasis onwork done through the use of burn down charts: the sprint
burn down chart for documenting the progress of the sprint, the release burn down
chart for keeping track of the progress of the release, and the product burn down
chart for detailing the overall project progress (Cervone, 2011). Several games have
been used to teach scrum in a university environment namely Scrum Game, Scrum
Simulation using LEGO Bricks, PlayScrum, Scrumia and Scrum Lego Challenge
(Paasivaara, Heikkilä, Lassenius, & Toivola, 2014).



358 V. Hurbungs and S. D. Nagowah

Fig. 1 Scrum methodology

2.2 User Stories

User stories are used in agile software development to describe a functionality that
adds value to a user or customer (Cohn, 2004; Patton, 2014). O’hEocha and Conboy
(2010) define user stories as ‘a technique of establishing a shared understanding
of software requirements using a low-overhead, user centric and flexible approach’.
The user stories have the following characteristics: independent, negotiable, valuable,
estimable, small and testable (Cohn, 2004).

User stories consist of 3Cs which stand for Card, Conversation and Confirmation
as illustrated in Fig. 2. ‘Card’ represents a written description of the user story that
can be used for planning or reminder purposes, ‘conversation’ aims at representing
additional information regarding the story and ‘confirmation’ conveys the tests that
should be carried out to confirm the user story is complete and working as expected
(Cohn, 2004; O’hEocha & Conboy, 2010). Compound and complex user stories
which are generally large form an ‘epic’ that needs further decomposition (Cohn,
2004).

Fig. 2 User stories



A Practical Approach to Teaching Agile Methodologies … 359

2.3 Extreme Programming

Extreme programming is a well-known agile methodology guided by the agile mani-
festo. It lays emphasis on important values such as simplicity, communication, feed-
back and courage to be integrated into the software development process (Lindstrom
& Jeffries, 2004). Extreme programming is a methodology explicitly built on its
values and practices (Lindstrom & Jeffries, 2004). It additionally defines a set of
best practices for managing the development team (Beck, 1999, 2000) as shown in
Table 1.

Pair programming is one of themain concepts in extreme programmingwhere pro-
grammers write the production codes and perform tasks in pairs (Bryant & Romero,
2006; Muller & Tichy, 2001). In a university environment, pair programming has
improved student retention, confidence and program quality and is seen as a collab-
orative learning technique (Bryant & Romero, 2006; McDowell, Werner, Bullock,
& Fernald, 2006; Muller & Tichy, 2001; Williams, Wiebe, Yang, Ferzli, & Miller,
2002). Refactoring refers to the process of improving the design of code without
affecting its external behaviour. It aims to keep the design simple and maintain-
able (Keefe, Sheard, & Dick, 2006). Test-Driven Development (TDD) is the process
of writing the test cases before the codes using unit test automation. TDD has been
adopted in higher education (Kollanus & Isomöttönen, 2008) and according to Keefe
et al. (2006), it is one of the most difficult XP practice to apply for students. Simple
design aims atwriting codeswithout unnecessary complexity andduplication (Astels,
Miller, & Novak, 2002). Small releases refer to the development of software with a
minimal useful set of functionality as the first release. Additional functionalities are
then added incrementally to this first release (Beck, 1999). The Planning Game is an
activity whereby customers decide on the scope and dates of the releases based on
estimates submitted by the programmers who in turn decide on the next step ahead
(Beck, 1999; Lindstrom & Jeffries, 2004). During the continuous integration phase,
as soon as a task is completed and new codes are ready, they are integrated in the

Table 1 Extreme programming practices

XP practice Short description

1 Pair programming Work in a team of two person

2 Refactoring Restructure existing codes

3 Test-driven development Write tests before codes

4 Simple design Avoid complex code structures

5 Small releases Deliver frequently

6 Planning game Quickly come up with a tentative plan

7 Continuous integration Merge codes into a shared repository

8 Acceptance tests Evaluate system compliance with requirements

9 Collective ownership Promote collective responsibility



360 V. Hurbungs and S. D. Nagowah

whole system. All tests must pass after the integration (Kuppuswami, Vivekanandan,
Ramaswamy, & Rodrigues, 2003). With collective ownership, developers in a team
have the right to change and improve the codes all the times and all developers take
responsibility of all the codes (Lindstrom& Jeffries, 2004). The customer defines one
or more acceptance tests to show that a functionality or feature is working correctly
(Lindstrom & Jeffries, 2004).

2.4 Lean

TheLeanmethodology is based on concepts of LeanManagement for Software Engi-
neering (Janes & Succi, 2014). Lean development focuses mainly on removing waste
from a system and improving value for the customer (Corona & Pani, 2013). The
main principles adopted by Lean are listed in Table 2 (Poppendieck & Poppendieck,
2007).

According to Poppendieck and Cusumano (2012), unnecessary features, lost
knowledge, partially done work, handovers and multitasking are among the biggest
causes of waste in software development and lean methodology aims at eliminating
such waste. The Defer Commitment principle ‘is based on the idea of making a deci-
sion at the last responsible moment or delay commitment’ (Svitis, 2013). Software
should be optimised as a complete product that fits the purpose of customers, rather
than just parts (Poppendieck & Cusumano, 2012; Svitis, 2013). Empowering the
team aims at letting those people who add value, use their full potential to carry out a
task (Poppendieck & Poppendieck, 2003). The principle also encourages the team to
resolve and address their own problems (Svitis, 2013). The goal of Amplify Learn-
ing is to experiment, increase feedback based on data and incorporate things learnt
to tackle tough problems that are barriers to success (Poppendieck & Poppendieck,
2003; Svitis, 2013). It is of utmost importance to produce releases frequently such as
daily, weekly or even continuously to deliver fast and promote competitive advantage
(Poppendieck & Cusumano, 2012). Additionally, integrity has to be incorporated in

Table 2 Lean principles

Lean principle Short description

1 Eliminate waste Remove processes that do not add value

2 Defer commitment Make decisions using precise information

3 Optimise whole Consider the product in its entirety

4 Team empowerment Promote the skills of all team members

5 Amplify learning Learn from past experiences

6 Deliver fast Quick delivery to be more competitive

7 Build integrity in Improve quality



A Practical Approach to Teaching Agile Methodologies … 361

software product by avoiding defects, which in turn provide high-quality software
and competitive advantage (Poppendieck & Poppendieck, 2003; Svitis, 2013).

At Oakland University, a problem-solving learning approach has been adopted to
teach Lean principles to university students whereby the latter team up to conduct
a Lean analysis of a real-world manufacturing system or service system (Van Til,
Tracey, Sengupta, & Fliedner, 2009). Da Silva, Xambre, and Lopes (2013) adopted
a game-based approach to teach professionals concepts of Lean production.

2.5 Kanban

One of the key Lean practices applied to the software process is Kanban (Corona
& Pani, 2013; Jyothi & Rao, 2012). Similar to Lean, Kanban defines, manages
and improves systems with the aim of delivering value-added services to customers
(Anderson & Carmichael, 2016). Kanban makes use of a Kanban board as shown in
Fig. 3 (‘What is a Kanban Board?’, 2018). The main activities of a particular project
are highlighted on the board. The latter allows software teams to display task cards,
visualise the workflow and stages of the development process, limit work in progress
(WIP) at each workflow stage and measure cycle time (Ahmad, Markkula, & Oivo,
2013; Heikkilä, Paasivaara, & Lassenius, 2016). The WIP limits are specified on top
of each of the board columns.

Anslow and Maurer (2015) have set an exercise whereby students were asked
to create invitation cards to learn Kanban in a university environment. From the
activity, students learnt that single piece flow is faster than batch and queue process.

Fig. 3 Kanban board



362 V. Hurbungs and S. D. Nagowah

A collaborative game such as GetKanban v4.0 has also been developed at Aalto
University with the aim to teach Kanban to university students (Heikkilä et al.,
2016).

2.6 Test-Driven Development

Test-Driven Development is a practice integrated into Extreme Programming as
highlighted in Sect. 2.3. It is a testing method involving automated tests cases that
are incorporated in program codes (Janzen & Saiedian, 2005). Figure 4 shows the
cycle adopted for test-driven development (Famuyide, 2017). A test case is written
and in case the test fails, the production codes are rewritten until the test passes
(Erdogmus, Melnik, & Jeffies, 2010). Once the codes have been written, they are
refactored and cleaned up to improve the design as shown in Fig. 4. Automated
frameworks like JUnit are often used for automated testing (‘JUnit 5’, 2018).

Spacco and Pugh (2006) have proposed incentives for university students to appre-
ciate TDD and write their test cases early. Kollanus and Isomöttönen (2008) state
that ‘TDD is a very demanding task for university students and it is extremely hard to
implement at the same timewith other technically challenging tasks’. They, therefore,
recommend that TDD be integrated early in the curriculum, not too early though.
Lappalainen, Itkonen, Isomöttönen, and Kollanus (2010) propose a software-based
solution named ComTool to ease students test writing process for TDD. ComTool
aims to reduce the technical and cognitive load for students learning TDD in an early
computing curriculum.

Fig. 4 Test-driven development



A Practical Approach to Teaching Agile Methodologies … 363

3 Practical Approaches

Agile values are difficult to teach as they represent working values (Kropp &Meier,
2013). It is therefore of utmost importance to engage students in active learning and
let students adopt working styles typical to software development in small teams as
practiced by the industry (Devedžić & Milenkovic, 2011). In order to achieve this,
much research has been carried out in recent years. Lynch et al. (2011) define anAgile
Boot Camp using a Lego-based active game to ground agile development principles.
Battou (2017) presents a framework for designing an adaptive learning system based
on a balanced combination of agile learner design and learner-centred approach.
However, this work highlights the foundation of a framework without mentioning
the practical side of agile. D’Souza and Rodrigues (2015) propose Extreme Peda-
gogy, an agile teaching–learning methodology for engineering education. Extreme
Pedagogy has three characteristics: Learning by continuous doing, learning by con-
tinuous collaboration and Learning by continuous testing. This work describes the
transition from Extreme Programming to Extreme Pedagogy. However, it does not
provide any practical clues on how the practical agile objectives could be achieved.
Kropp andMeier (2013) provide an overview of teaching agile software development
at university level using values, management, and craftsmanship. This work presents
some agile game development workshops to teach Scrum, user stories extreme pro-
gramming among others. However, the detailed game development steps are not
provided.

Our work, therefore, aims to bridge the gap between agile theory and practice, and
presents detailed practical approaches with respect to different agile methodologies
and practices in a single work. It additionally demonstrates how university students
can better understand agile concepts by adopting active learning and being engaged
in team-based activities similar to working styles in the industry.

The practical approaches adopted are divided into two sections as shown in Fig. 5:

1. ClassroomActivities: The main objective of the classroom activities was to give
students hands-on experience of the different agile concepts. The activities are
described in Sect. 3.1. These activities not only apply to software engineering

Classroom Activities
Ball Point Game
Lego City
Pair Draw
Paper Plane
Pizza Game

Lab Practicals
User Stories

Product Backlog
Sprint Backlog

Pair Programming
Test-Driven Development

AGILE
METHODOLOGIES

AND 
PRINCIPLES

Fig. 5 Agile activities and practical approaches



364 V. Hurbungs and S. D. Nagowah

but the principles could also be applied outside the context of software engineer-
ing. Since agile supports adaptive planning, quality, early delivery, continuous
improvement, flexibility, customer involvement and fast response to changes
among others, it could also be used for real state construction or management
project (Bahceci & Holmgren, 2014).

2. Lab Practicals: The main objective of the lab sessions was to initiate students to
agile software tools. They then applied the concepts learned from the classroom
activities by using the tools to practice what they learned. The lab practicals are
described in Sect. 3.2.

3.1 Classroom Activities

The student-centred classroom activities that were brought together to explain the
agile methodologies and principles in a tertiary educational context are detailed in
Table 3.

The above classroomactivities are described inmore details in the next subsections
along with steps used, outputs from students, images, formula used and feedback
from students. The main objective of each activity is also discussed in terms of agile
teaching and learning.

Table 3 Agile classroom activities

Agile methodologies and
principles

Activities Objectives

1 Agile core values Ball Point Game Show the importance of both
teamwork and individual skills

2 Scrum Lego City Use Lego blocks to help students
translate user stories into backlog
tasks and prioritise tasks

3 Extreme programming Pair Draw Help students understand the
benefits of working as a pair

4 Lean Paper Plane Make students determine their
group productivity and eliminate
waste during production

5 Kanban Pizza Game Help students know how to
minimise work in progress and
maximise on completed tasks and
visual workflow



A Practical Approach to Teaching Agile Methodologies … 365

3.1.1 Ball Point Game

The first objective of themodule was to inculcate students with basic agile principles.
One example is to form a big team and demonstrate that success depends on the team
output, not on individual output. A variation of the Ball Point Game by Boris Gloger
was set up (Boersema, 2011; Waters, 2011). In this variation, ping-pong balls had
to be thrown in cups. Students organised themselves in teams of 4–5 members of
different abilities and each team was given a total of 6 balls. The team members
were not predetermined but students chose their teams randomly before starting the
activity. Team members had to throw a maximum number of balls in the cups placed
on the table. Each team was also responsible to self-organise itself and allocate tasks
to members based on individual skills. This was achieved via several rounds where
each team had the opportunity to produce a better output after each round.

Activity Requirements
Ping-pong balls, Plastic cups, Water bottle, Desks or appropriate space to
throw the balls.

For this experiment, a total of three cups were used and the time limit was set
to 1 min, although these are not strict guidelines. The parameters could be changed
based on the team size and time available for the activity. If the ball entered the cup, a
counterwas incremented and the ballwas re-used as part of the activity until the round
was over. The Ball Point Game setup and illustration are shown in Figs. 6 and 7.

Fig. 6 Ball point game activity setup



366 V. Hurbungs and S. D. Nagowah

Fig. 7 Ball point game illustration

At the end of the time limit, the total number of balls successfully entered in a
cup was counted. The activity was repeated over a minimum of 2 rounds. It is also
important to note that teams were allowed to choose their own strategy to maximise
on the number of balls. If in the first round, the strategy was not successful, the team
had the choice to change strategy and re-organise itself in subsequent rounds. Sample
results for two teams over 3 rounds are summarised in Table 4.

From the sample results obtained, it is clear that the teams struggled in the first
round to have a maximum number of balls since they did not know who was good at
throwing balls, what the best strategy to adopt was and how to synchronise the team
members. In round 2, the teams learnt from their mistakes and were able to throw
more balls in the cups. One strategy that was adopted was throwing and picking of
balls in parallel by selected team members in order to gain on time. In round 3, the
ball-throwing process improved as the teamwas fully functional, teammemberswere
allocated tasks for which they were skilled at, and there was good communication
between themembers.One strategy thatwas adopted in this roundwas an allocationof
tasks based on skills. As an example, students who were good at throwing balls were
assigned the ball-throwing task while others were picking the balls. To summarise,
the teams were able to throw more balls in the cups in the final round compared to
round 1 or round 2.

Table 4 Ball point game
results sample 1

Team A Team B

Round 1 3 5

Round 2 5 9

Round 3 7 13



A Practical Approach to Teaching Agile Methodologies … 367

Feedbackwas collected fromeach teamafter the experiment. The feedback proved
that the objectives set for this activitywere achieved and students understood the basic
agile principles. Some of the feedback is listed below:

1. The game relied on close co-operation and collaboration between all
team members in order to gain the highest score.

2. Every team member must share ideas and brainstorm about the different
possibilities to put maximum balls in the cup.

3. We have to assign team members the task which they have more knowledge
on, like aiming to put the balls in the cups more often.

4. After each round, we had to discuss and improve on what we previously
did.

5. Time limit should be respected and other rules as well like distance from
the table and the person.

6. Working as a team was crucial to win the game.
7. Analyse the team member’s ability and assign them to what they do best

so as to increase team efficiency and get the job done quicker.
8. We have understood that it was really important to learn from our mistakes

and those from others in order to move forward.
9. We learned that we have to organise ourselves based on our skills in a

team to be effective and saw the direct implication through the activity.
10. We needed to be flexible. At a given time, we had to swap the tasks when

a particular team member was not able to perform as expected.

After the Ball Point Game, students recognised the importance of self-organising
teams, learned from previous experience and they were given the opportunity of
deciding on the best strategy to complete a group work. Task allocation based on
skills, time management and the significance of team collaboration was also part of
this activity.

One of the biggest challenges of this activity was team collaboration. Since the
team members were chosen randomly, each team consisted of team members of
different abilities. In the first round, it was observed that some members could not
collaborate together since it was the first time they were working together. There was
also a lack of leadership in some teams. As part of the strategy to be adopted, the
teams had to appoint a team leader who would guide them during the activity and
assign tasks based on individual skills. Since some students were working together
for the first time, it was challenging for the team leader to assign tasks appropriately.

3.1.2 Lego City

The objective of this experiment was to help students understand the Scrummethod-
ology and learn how to write requirements in terms of user stories. The Lego City



368 V. Hurbungs and S. D. Nagowah

(Friesen, 2015) was chosen as the class activity where the team had to put into prac-
tice different aspects of Scrum such as user stories, product backlog, prioritisation
and sprints among others. From a training perspective, students were expected to
experience the role of the following stakeholders: Product Owner, Team member
and Scrum master.

Activity Requirements
List of user stories with acceptance criteria, Lego blocks representing city
element, Bristol papers, Coloured pencils, Markers and Rulers.

The Lego City steps are as follows:

1. Grouping of students in different teams of approximately 5 students to inculcate
concepts such as self-organising teams.

2. Each team received a set of user stories which they had to translate into feasible
tasks. A stand-up meeting was conducted before each sprint to discuss on the
way forward.

3. The team then implemented the tasks and constructed different parts of the city
in several rounds.

4. During implementation, some additional user stories were given to selected
team(s) to make students learn how to deal with changing requirements.

5. At the end of the activity, the teams had to merge their work to form the final
Lego City.

6. Finally, the teams had to review the Lego city and discuss on implementation
issues. This step helped them better understand the concept of retrospective.

User stories were given to students using the user story 3Cs format: Card, Con-
versation and Confirmation. The Lego City activity was structured in terms of Epic,
Theme and User Stories as shown in Fig. 8.

The main focus of this activity was to make students learn the scrum iterative
framework by building a city using Lego blocks and user stories. The latter were pre-
compiled and represented various buildings and elements of the city. In this activity,
the city consisted of different themes (road network, animal park, school, consulate
and construction site) as shown in Fig. 9. These themes were further broken down
into user stories that represented the requirements of the city. Each team was allo-
cated a theme and the corresponding user stories which were then converted into
feasible tasks. Teams had to complete each task in different sprints. One team was
also given additional user stories during one of their sprint. They had to decide on
how to proceed with the new user stories and had to judge whether the new stories
were of higher priority. If the priority was higher, these stories were then allocated
in the next sprint.

Figure 9 illustrates the completed Lego City after all teams have merged their
tasks. A video version of the Lego City activity is also available on YouTube on the
following link: https://youtu.be/AKjlDZyfGic.

https://youtu.be/AKjlDZyfGic


A Practical Approach to Teaching Agile Methodologies … 369

Fig. 8 Lego city activity breakdown

Fig. 9 Scrum Lego city



370 V. Hurbungs and S. D. Nagowah

Similar to the first activity, feedback was collected from students. Some of the
feedback received are listed below:

1. We learned the importance of planning beforehand so as to better organise
the upcoming task.

2. Absence of a teammate affected the work. We learnt how to manage the
work without ‘Abdel’.

3. Lack of collaboration with external teams. Better take into consideration
the work of other teams which might affect our work.

4. Distributing tasks to each member according to his/her capacity helped to
give a better and faster result. Each member proposed his/her ideas, and
all the ideas were combined to build the project. Changes were constantly
being done and monitored to give a better result.

5. The game has helped us to collaborate among each other towards a com-
mon success and the end result that is the city element was built as per
expectations.

6. With short sprints and constant feedback from the team, it was easier to
cope with the changes needed.

7. The Lego city taught us that bringing our skills together and with a good
design decided by the team made us aware how important it is to cooperate
and make a good project with dynamic communication between members.

8. Face-to-face conversation is mostly used to discuss issues with team mem-
bers.

9. We had to manage our task in a time frame and assign our resources in
an efficient way. Moreover, more requirements were added in the middle
of the time frame and we had to adjust everything in a limited amount of
time.

After the Lego experiment, students learned how to build a product backlog and
technical tasks from user stories. They also practiced concepts such as sprints, stand-
up meetings, teamwork and face-to-face communication to reach a common goal
related to the Scrum methodology.

Students faced several challenges for the completion of the Lego City. First of all,
the Scrum methodology was new to them and they had some difficulties making the
transition from thewaterfall style of product development to agile development. They
took some time to practice the iteration process as some teams started constructing
their Lego blocks in the first step. Students had to be reminded that they had to
use Scrum concepts such as Sprint planning, Sprint review, Sprint retrospective in
each iteration for better task organisation. Another challenge encountered was lack
of collaboration with external teams since each team was working in isolation. To
tackle this issue, the ScrumMaster should ensure that all teams are well coordinated
by enforcing Scrum values and practices. Last but not least, the precompiled user
stories should be well defined since they would affect the output of each team. The



A Practical Approach to Teaching Agile Methodologies … 371

user story must be well written including the acceptance criteria so that all team
members have a common idea of the requirements.

3.1.3 Pair Draw

The objective of the Pair Draw activity (Kerievsky, 2001) was to help students under-
stand the concept of Extreme Programming. In this experiment, students worked in
pairs, checking each other’s work and providing the support to do a good job. They
were given the task of drawing one of their friends. Figures 10 and 11 illustrate some
of the sample individual and pair drawings that students had drawn as part of this
activity.

Activity Requirements
A4 paper, Pencils or Pens with at least 2 different colours.

The Pair Draw steps are as follows:

• Round 1: Each student draws an image of one of their friends.
• Round 2: Students pair themselves and draw a single image of one of their friends
together in only one drawing. One student draws the left-hand side while the other
student draws the right-hand side of the drawing at the same time.

• Round 3: Students change pair and re-draw a single image of another friend
together in only one drawing. Again, one student draws the left-hand side while
the other student draws the right-hand side of the drawing at the same time.

Fig. 10 Sample drawings by individual students



372 V. Hurbungs and S. D. Nagowah

Fig. 11 Sample drawings by a pair of students

Some observations gathered after the Pair Draw activity are listed below:

1. In step 1, students completed their drawings without any interaction with
other students.

2. In step 2, students were able to discuss on the way to proceed with their
drawings. Those who were more skilled at drawings led the team while
the other student followed the same path. In addition, any errors made by
one student was immediately rectified by his/her pair. The quality of the
drawing was also continuously monitored in pair.

3. In step 3, when the pair changes, not every pair could come up with the
same quality drawing as in Step 2. Students had to adapt to their pair and
the new pair generated different drawings.

After the Pair Draw activity, students learned the importance of collective own-
ership and avoid long working hours by using the concept of pair programming.
Collective ownership allowed the students to take responsibility for the all the work
done by the pair. If the work is of good quality, both students got credit for their
work. Otherwise, both of them were accountable if the work was of poor quality.

Students were very much involved in this activity as they were drawing images
of their friends and this made the activity more interesting. In round 2, students
selected one of their friends to work in pair and some of them came up with very
good drawings. However, in round 3 when the pair changed, the quality of the images
was not the same. Those who were able to draw good images in round 2 could not
achieve the same quality drawing when working in a different pair. Therefore, it



A Practical Approach to Teaching Agile Methodologies … 373

is important to highlight that it is the skills of both students in a pair that would
determine the quality of the output.

3.1.4 Paper Plane

The objective of the Lean Paper Plane activity (Boersema, 2012) was to teach the
basic principles of the Lean methodology to students. Each group of students had to
assemble paper planes without defects. Only planes without defects were counted as
good planes and the activity was repeated more than once. The process was iterated
twice for a period of 5 min.

Activity Requirements
A4 white paper, Ruler and Pen or pencil.

In this experiment, the students practiced the following Lean principles:

• Eliminate waste and defects.
• Learn as the product is being developed.
• Make decisions on correct information.
• Empower the team by involving all team members in decision making.
• Fast delivery of completed works and minimise partially completed work.
• Optimise the entire product, not just parts of the product.

The following productivity formula (‘Overall Equipment Effectiveness’, 2017)
was used to evaluate the correctness of the paper planes of each team:

Productivity� (Good Count * Ideal Cycle Time)/Planned Production Time

Example
5 min and 2 good planes
[Assuming ideal cycle time to build a good plane is approximately 1 min]
Productivity�2 * 1/5�0.4 {40%}
Ideal situation: 5 good count, 100% productive.

The assembly of the paper plane includes the steps as shown in Table 5.
The students grouped themselves in teams of 4–5 students for this activity and

the productivity of each team was computed at the end of each round, which was of
5 min duration. The assumption was that one paper plane assembly took on average
1 min. Each team improved their productivity over time and they learned how to
produce planes with less defects. Teams which adopted the Lean concepts normally
had more planes without defects. Sample results of 2 teams over 2 rounds are shown
in Table 6.



374 V. Hurbungs and S. D. Nagowah

Table 5 Assembly of the paper plane (Boersema, 2012)

Step Description Illustration

1 Fold first corner on one side

2 Fold first corner on each side

3 Fold wing on each side

4 Fold wing on each side again

5 Finished paper plane

Table 6 Lean paper plane productivity

Round 1 productivity Round 2 productivity

Team A 2×1/5�40% 3×1/5�60%

Team B 0×1/5�0% 1×1/5�20%

Some of the lessons learned from this activity are:

1. One mistake students made was wastage and overuse of resources.
2. In the first round, students rushed towards the completion of a maximum

number of planes without considering quality. Many planes, therefore, con-
tained defects.

3. The planes that were not fit for use were discarded and therefore considered
as wastage of resources.

4. In round 2, each team recognised the importance of quality and they pro-
duced better planes with less defects and were, therefore, more productive.



A Practical Approach to Teaching Agile Methodologies … 375

After the paper plane activity, students learned how the removal of waste from a
production system improved the product value for the customer. Students also deter-
mined their productivity as a team and they acknowledged that good team cohesion
resulted in better decision making, team empowerment, fast delivery and product
optimisation.

The first challenge of this activity was that students had difficulty in achieving a
perfect paper plane in round 1. They ignored the quality aspect of the paper planes
and almost all teams started creating a maximum number of paper planes. The first
round resulted in a lot of paper wastage and therefore, adequate provision must be
made in terms of the number of papers provided to each team. In round 2, defects
in the paper planes were removed and teams were now aware that they should focus
on quality. The second challenge was that the quality parameters and defects should
be well defined before round 2 so that teams are aware of the expected output. For
example, paper planes should be symmetrical and folds should be done neatly. It was
observed that teams had varying definitions of the paper plane quality.

3.1.5 Pizza Game

The objective of the Pizza Game (Swanson, 2013) was to help students learn the
basic principles of the Kanban methodology in terms of product development with
an emphasis on continuous delivery while not overloading the development team.
This activity concentrated on the visual representation of work items and allowed
team members to see the state of a particular piece of work at any point in time. A
kanban boardwith task decompositionwas used as part of the PizzaGame. The board
enabled the team to remain focused and concentrate on the cycle time of delivered
work and resolve bottlenecks by providing a visual view of the workflow.

Activity Requirements
A4 coloured paper (White, Yellow, Pink, Green), Red markers, Paper Glue or
Double-sided tape, Scissors and Bristol paper.

For this experiment, students had to group themselves in teams and they were
given the materials to build the pizza. Sample pizza slices are illustrated in Fig. 12.
The steps of the Pizza Game are detailed in Table 7.

After each round, the output of the teams was measured. The formula used was
the sum of finished slices and remaining pizza bases and toppings. Table 8 shows the
results of 2 teams over 3 rounds.

Output � Finishedslice + Pizza base + Toppings

From the results, it is clear that both teams improved the pizza delivery process.
In round 1, the teams concentrated more on the final pizza slices without paying



376 V. Hurbungs and S. D. Nagowah

Fig. 12 Sample Kanban Pizza slices

attention to the workflow or work in progress. There was a wastage of items and
process policies were not well defined. However, the output was superior for both
teams in round 3 compared to round 2 and round 1. This was possible by taking into
consideration kanban principles such as workflow visualisation and limit work in
progress during the pizza-making process. A sample kanban workflow based on the
pizza activity is shown in Fig. 13.

Similar to the previous activities, feedback from students was recorded. Some of
the feedback received are listed below:

1. Lessons were learned by making mistakes. One of the mistakes we made
was wastage and overuse of resources.

2. The use of the Kanban board helped us to devise a strategy to tackle the
production of the products (pizza) as we gradually learnt that the product
quality depends on how well we devise a plan/strategy to carry out the
activities while adding maximum value to the final product.

3. The activity helped in having a better understanding of Kanban. It helped
us apply the concept and thus reduce our waste products and increase the
final product outcome.

4. Doing this activity really helped us in seeing the amount of waste produced
and how it was consequently reduced to obtain more deliverable products,
this would have been more difficult to visualise only in theory.

5. We have also understood the effects of limiting our work in progress and
on top of that, we have had lots of fun during the Pizza Game.



A Practical Approach to Teaching Agile Methodologies … 377

Table 7 Kanban Pizza Game steps (‘Kanban Pizza Game’, 2013)

Round Steps Observations

1 • Produce as many slices until the team is
told to stop

• Workflow: Create base, Add toppings,
Put in oven

• Measure the output. Each piece counts
negative until the slice is 100% done

– Pizza base (with or without sauce): −4
points

– Toppings: −1 point each
– Finished slice: +10 point

• Make the workflow explicit
• Limit the work in process (WIP)
• Use the best pizzas to create a common
definition of done

2 • Play again and repeat the steps in
Round 1

• Introduce a new pizza type where the
toppings must be added after baking the
pizza

• Measure the output

• Points are given only for fully delivered
orders

3 • Round 1 can be repeated several times
and the output is measured

4 • Wrap-up: Draw your workflow
• Look back at the game
• Draw the flow including WIP limits
• Use the materials to make it look nice

• Six core Kanban practices: (1) visualise
the workflow, (2) limit work in progress
(WIP), (3) measure and optimise flow,
(4) make process policies explicit, (5)
implement feedback loops, (6) improve
collaboratively, improve experimentally

Table 8 Pizza Game results

Round 1 output Round 2 output Round 3 output

Team A 30 − 8 − 9�13 130 − 4 − 3�123 180+0 + 0�180

Team B 70 − 8 − 4�58 120+0 + 0�120 180+0 + 0�180

After the pizza game, students learned the importance of limiting work in pro-
cess, continuous workflow, reducing waste and promoting visual control to increase
throughput. They also learned how to pull individual work requests through a
sequence of value-added activities, quickly and without interruption, and manage
their time as a team by reallocate unused time for other tasks.

The main challenge of this activity was to make team members visualise the
workflow during the activity. However, since the kanban board was mounted after
the activity, it was difficult for the teams to reflect on the processes involved in pizza-
making. To better help teams in this activity, it is important to give a sample kanban
board prior to start this activity. This sample workflow should also highlight the
idea of limiting work in process. Another challenge was that teams could not readily
identify and cope with bottlenecks. Teams should, therefore, be aware of how WIP
limits drive and change the behaviour of people by producing the right things and



378 V. Hurbungs and S. D. Nagowah

Fig. 13 Kanban Pizza workflow visual representation

avoiding wastage of materials. Yet, another challenge was that teams were different
and some of them were working too fast which in turn led to the making of ugly
pizzas. Therefore, it is important tomake the process explicit and highlight the quality
aspect to all teams and ask them to agree on the quality level prior to the game.

3.2 Lab Activities

The lab activities that were designed to initiate students to agile software tools are
detailed in Table 9.

3.2.1 User Stories, Product Backlog, Sprint Backlog

AgileApex (AgileApex, 2017; Knepper, 2017) was chosen as the software tool for
the lab practicals on user stories, product backlog and sprint backlog. AgileApex is an
easy to use agile project management tool. The main features are: User authorisation



A Practical Approach to Teaching Agile Methodologies … 379

Table 9 Agile lab activities

Agile
methodologies
and principles

Activities Software tool Outcome

1 Scrum User stories AgileApex • Learn how to formulate good
user stories using the 3 C’s card
format

• Write user stories that are clear
to both the product owner and
the development team

2 Scrum Product backlog AgileApex • Practice how to translate user
stories from a real-world
scenario into a set of technical
tasks for the product backlog

• Learn how the Scrum team
performs backlog prioritisation
by getting constant feedback
from the product owner

3 Scrum Sprint backlog AgileApex • Learn how to generate a sprint
backlog from the product
backlog during the sprint
planning process

• Learn how to monitor the sprint
using a sprint burndown chart

4 Extreme
programming

Pair
programming

Collabedit • Perform some Java
programming tasks as a pair

• Practice the roles of both a
Driver and Observer, and learn
how switching roles can affect
the programming task

5 Kanban Kanban board Trello • Learn how to visually monitor
the work progress using a
kanban board

• Understand how kanban can be
used to organise many areas of
an organisation by using work
on progress limits

6 Test-driven
development

Case study Eclipse • Understand how TDD differs
from traditional testing

• Recognise the added value of
TDD on code design

• Understand the relationship
between TDD and Refactoring



380 V. Hurbungs and S. D. Nagowah

Fig. 14 Agile Apex (AgileApex, 2017)

andmanagement, Product backlog, Hierarchical backlogs, Projects-Releases-Sprints
and Sprint planning.

At the time of designing the practicals, AgileApexwas available as a free software
download. The software was set up using XAMPPwhich is an easy to install Apache
distribution. XAMPP services used were Apache, MySQL and Tomcat. AgileApex
was installed on a local server in the lab.

As shown in Fig. 14, AgileApex provides the following Scrum-related options to
the user:

• Projects: One project can contain multiple releases and one release can contain
multiple sprints.

• Backlogs: Product backlog can bemanaged by project managers or sprint planners
and tasks can be re-ordered. Tasks can also be logically organised in terms of
hierarchical backlogs.

• Task Board: Team members can edit and report their progress in the Task board
page. Managers, product owners and other interest groups can also easily view
progress in the Task board page.

• Admin: Admin can create user profiles (Viewer, Reporter, Sprint planner, Man-
ager) with different access rights.

User Stories/Product Backlog

In this practical, students learned how to write the requirements as user stories and
translate them into a set of product backlog items on Agile Apex. Students also
learned the importance of prioritising the product backlog. Each team had to perform
a small brainstorming session to describe the requirements of ‘An electronic mail
application’.

As shown in Fig. 15, the project manager can add tasks into the Project Backlog
after the project is created. The effort for each task may represent different units of
measurement depending on the project. A person who will be in charge of this task
can be assigned by Editing the task at a later stage.



A Practical Approach to Teaching Agile Methodologies … 381

Fig. 15 Agile Apex product backlog (AgileApex, 2017)

Fig. 16 Agile Apex Sprint Backlog (AgileApex, 2017)

Sprint Backlog

The objective of this practical was to show students how to create a sprint backlog
by selecting items from the product backlog. Each team was required to create the
product backlog and sprint backlog for the Lego City activity described in Sect. 3.1.2
in AgileApex.

Figure 16 illustrates the Product Backlog and Sprint Backlog. During the sprint
planning meeting, the team selected some number of product backlog items to form
part of the Sprint backlog. Managers could drag and drop tasks between the product
backlog and the sprint backlog.



382 V. Hurbungs and S. D. Nagowah

Fig. 17 Collabedit Pair Programming editor (‘Collabedit’, 2016)

3.2.2 Pair Programming

Studentswere given somepair programming tasks using the Java language. Theyused
the online pair programming editor, collabedit, towork as a pair for this programming
exercise (‘Collabedit’, 2016). Collabedit is an online code editor that lets people
collaborate in real time. It works in the web browser and therefore does not require
any installation. This practical helped the students to understand the concept of
working as a pair.

Figure 17 illustrates theCollabedit interfacewhich provided the pair programming
environment. On the left-hand side, the codes are displayed while the programming
language and collaborators are displayed on the right-hand side. As collaborators are
working together, everyone will see the updated codes.

3.2.3 Kanban Board

Students used Trello (‘Buildbettersoftware—Trello Guide’, 2018) as a project man-
agement tool. Trello uses the kanban paradigm for managing projects which are
represented by boards, which contain task lists and tasks. Tasks can progress from
one list to another and grouping of tasks is also supported. Trello is also available
for iPhone, Android and Windows 8 mobile platforms.

Students were required to create a kanban board by specifying the user stories as
their backlog. They prioritised and planned which user stories they would start to



A Practical Approach to Teaching Agile Methodologies … 383

Fig. 18 Trello project management tool (‘Buildbettersoftware—Trello Guide’, 2018)

work with. They then practiced pulling one task from one section to another while
taking into consideration work in progress. Tasks were tagged as done after they
were hundred percent completed. At the end of this practical, students learned how
to use boards, lists, and cards to organise and prioritise tasks.

Figure 18 illustrates the Trello user interfacewhere theworkflow can be visualised
from left to right until the tasks are completed. The columns can be user-defined and
adapted for each development environment. Individual tasks are represented using
simple cards where the following can be defined: name of task, name of developer,
due date or any other relevant information.Also, another important point is that Trello
can limit assigned tasks to a reasonable number that will not produce bottlenecks.

3.2.4 Test-Driven Development

Thegoal of this activitywas to compare and evaluate the impact of Test-DrivenDevel-
opment (TDD) with Traditional Development taking into account factors related to
software quality assurance and productivity. The students had to read a case study
entitled ‘Impact of Using Test-Driven Development: A Case Study’ (Yenduri &
Perkins, 2006). They use the Eclipse IDE to implement a Java application with
relevant methods with data saved in an appropriate database and used the JUnit
framework (‘JUnit 5’, 2018) for automated testing.

Students also had to apply both Traditional and TDD for testing the Java program.
The following metrics were used during the testing process:

• Number of test cases written
• Number of faults detected during all the units tested
• Number of faults detected during integration testing
• Total Person Hours spent.

A sample Java program developed included the following components:



384 V. Hurbungs and S. D. Nagowah

Fig. 19 Test-driven development steps

1. Insert: Enter product details, perform validation on barcode digit and save the
data in a database.

2. Update: Search product, Modify fields in the database.
3. Delete: Search product, display product details, Confirm product deletion.
4. Near Depletion: Allow the user to enter a threshold value for product quantity,

Retrieve products falling within a depletion range.
5. Near Expiration: Allow the user to enter a threshold expiration date, retrieve

products based on the expiration data.

The TDD steps used to develop the Insert component are shown in Fig. 19.
The overall results after testing all the components are shown in Tables 10 and

11. The test-driven approach is more productive as it resulted in fewer faults and
less time taken during development. While the traditional approach took more time
and produced more test errors, the value gap between both approaches was not
significant. This may be explained by the test subjects were more proficient in the
traditional approach compared to test-driven which was a new concept introduced in
this module.



A Practical Approach to Teaching Agile Methodologies … 385

Table 10 Traditional approach results

Module name Number of faults detected Amount of time taken

Insert 24 2 h 23 min

Update 14 30 min

Delete 6 2 h 28 min

Query depletion 2 42 min

Query expiration 17 2 h 30 min

Total 63 8 h 33 min

Table 11 Test-driven approach results

Module name Number of test cases
written

Number of faults
detected

Amount of time taken

Insert 28 14 2 h 33 min

Update 9 10 45 min

Delete 5 10 1 h 16 min

Query depletion 4 9 53 min

Query expiration 3 13 2 h

Total 49 57 7 h 27 min

4 Student Feedback

As part of the Quality Assurance process at the University of Mauritius, some of
the raw feedback obtained from students after completion of the agile module in
the academic year 2016–2017 are listed below in Table 12. The feedback obtained
was very encouraging. It additionally supports the practical approaches adopted to
build the conceptual understanding of agile concepts by engaging students in active
learning. The feedback has been taken in due consideration for improving themodule
in terms of teaching, delivery and contents for the next academic year.

5 Conclusion

This chapter presents a new approach undertaken at the University of Mauritius to
help final year Software Engineering students better understand agile methodologies
and principles. For the academic year 2016–2017, the module map was modified
to include practical approaches based on agile methodologies and concepts such as
Scrum, User Stories, Extreme Programming (XP), Lean, Kanban and Test-Driven
Development (TDD). Compared to other research work carried out, the chapter aims
to bridge the gap between agile theory and practice and presents detailed practical
approaches with respect to different agile methodologies and practices in a single
work.



386 V. Hurbungs and S. D. Nagowah

Table 12 Student feedback at the University of Mauritius, 2016–2017

What did you like most about this module and teaching?
•Very interesting. Adapted to work environment
•Activities done in class brings a lot more fun in learning this module. Lecturer always
encourages students to participate in class
•The guest lecture from Infosys illustrates what is happening in the real world
•How can be Agile be applied in real life project
•The concept of class activities enable us to have a glimpse of the real life in industry
•The activities demonstrating how team members should behave in a working environment
•Class activities are very nice. This is probably the best classes i have attended
•Lecturer encouraged learning through activities that enabled us to put theory to practice
•The module involves interaction and the lecturer provides many games and tasks to perform in
groups to get the idea behind each principle in the module

Improvements for the module in terms of teaching, delivery and contents
•Too many methodologies (Agile, Scrum, Kanban) resemble each other, so it can be confusing at
times. Maybe, have a summary of each methodology at the beginning of each week just to really
differentiate them
•The lecture notes could have included some more details about each agile practices
•Lecturer must continue using interactive tutoring and live talk from experts
•The lecturer can give more feedback to students for them to ensure that they are on the right
track

Any other relevant comments
•Hats off to the lecturer who was able to turn a pretty boring theory class into a really
interesting one!
•In overall, turn out that activities put in place really gave me a view of Agile if I had read only
the lecture. I think these activities make answering case studies much easier. Gives you a
broader overview of the approaches

Moreover, learning styles adopted for the module were active learning and team-
based learning which emphasised on students practicing course concepts to solve
problems rather than simply learning the theory. After each activity, feedback was
gathered from students and relevant observations were also recorded. Students
enjoyed activities like playing ping-pong, constructing Lego blocks, building paper
planes and playing pizza game while learning at the same time. Students greatly
valued opportunities to engage themselves in team-based activities and practical
experiments for this module. They viewed this as a means to help them better under-
stand agile concepts and maintain their interest during the sessions. The activities
encouraged all students to participate with high enthusiasm that enhanced their learn-
ing process. Additionally, they learnt to work as a team, understand the importance
of teamwork and recognise the different roles within a team consisting of members
with different skills.

Acknowledgements Wewould like to thank all the students of B.Sc. (Hons) Software Engineering
Level 3 (both normal cohort and mixed-mode), who participated and provided their valuable input
for the experiments during the University of Mauritius academic year 2016–2017.



A Practical Approach to Teaching Agile Methodologies … 387

References

AgileApex [Computer software]. (2017). Retrieved from http://www.agileapex.com.
Ahmad,M.,Markkula, J., &Oivo,M. (2013). Kanban in software development: A systematic litera-
ture review. In 39th Euromicro Conference on Software Engineering and Advanced Applications.

Anderson, D., & Carmichael, A. (2016). Essential Kanban condensed. Blue Hole Press.
Anslow, C., & Maurer, F. (2015). An experience report at teaching a group based agile software
development project course. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education—SIGCSE ‘15.

Astels, D., Miller, G., & Novak, M. (2002). The practical guide to extreme programming. Prentice
Hall PTR.

Bahceci, D., & Holmgren, L. (2014). Agile perspectives in construction projects—How to improve
efficiency in the design phase (Postgraduate). School of Architecture and the Built Environment.

Barza, A., Cardozo, E. S., França, A. C., Neto, J. B., & Silva, F. Q. (2010). SCRUM and productivity
in software projects: A systematic literature review. EASE.

Battou, A. (2017). Designing an adaptive learning system based on a balanced combination of
agile learner design and learner. Centered approach. American Scientific Research Journal for
Engineering, Technology, and Sciences, 37(1), 178–186.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70–77.
Beck, K. (2000). Extreme programming explained. Addison-Wesley.
Boersema, M. (2011). The Scrum Ball Point Game—Tennis, anyone?. Lean simulations. Retrieved
March 18, 2018, from http://www.leansimulations.org/2011/08/scrum-ball-point-game-tennis-a
nyone.html.

Boersema, M. (2012). Lean Paper Airplane Game Instructions. Lean simulations. Retrieved March
18, 2018, from http://www.leansimulations.org/2012/10/lean-paper-airplane-game-instructions.
html.

Bonwell, C. C., & Eison, J. A. (1991). Active learning; creating excitement in the classroom. ASHE-
ERIC Higher Education Report No. 1. Washington, D.C.: The George Washington University,
School of Education and Human Development.

Bryant, S., & Romero, P. (2006). XP and pair programming practices. PPIG Newsletter, 17–20.
Buildbettersoftware—Trello Guide. (2018). Using Trello for agile software development: The com-

plete guide. Retrieved March 18, 2018, from http://buildbettersoftware.com/trello-for-software-
development.

Cervone,H. (2011). Understanding agile projectmanagementmethods using Scrum.OCLC Systems
& Services: International Digital Library Perspectives, 27(1), 18–22.

Cohn, M. (2004). User stories applied. For agile software development. Boston: Addison-Wesley.
Collabedit. (2016). Collabedit—Online text editor. Retrieved March 18, 2018, from http://collabe
dit.com.

Corona, E., & Pani, F. E. (2013). A review of Lean-Kanban approaches in the software development.
WSEAS Transactions on Information Science and Applications, 10(1), 1–13.

Da Silva, I., Xambre, A. R., & Lopes, R. B. (2013). A simulation game framework for teaching
Lean production. International Journal of Industrial Engineering and Management, 4(2), 81–86.

Devedžić, V., & Milenković, S. (2011). Teaching agile software development: A case study. IEEE
Transactions on Education, 54(2), 273–278.

Dorst, K. (2011). The core of ‘design thinking’ and its application. Design Studies, 32(6), 521–532.
D’Souza, M., & Rodrigues, P. (2015). Extreme pedagogy: An agile teaching-learning methodology
for engineering education. Indian Journal of Science and Technology, 8(9), 828.

Dym, C., Agogino, A., Eris, O., Frey, D., &Leifer, L. (2005). Engineering design thinking, teaching,
and learning. Journal of Engineering Education, 94(1), 103–120.

Erdogmus,H.,Melnik,G.,& Jeffries, R. (2010). Test-driven development.Encyclopedia of Software
Engineering. Taylor & Francis.

http://www.agileapex.com
http://www.leansimulations.org/2011/08/scrum-ball-point-game-tennis-anyone.html
http://www.leansimulations.org/2012/10/lean-paper-airplane-game-instructions.html
http://buildbettersoftware.com/trello-for-software-development
http://collabedit.com


388 V. Hurbungs and S. D. Nagowah

Famuyide, S. (2017). Test-driven vs behaviour-driven development. Business analyst learnings.
Retrieved October 31, 2017, from https://businessanalystlearnings.com/technology-matters/201
4/8/13/test-driven-vs-behaviour-driven-development.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8), 28–35.
Friesen, K. (2015). LEGO Scrum City. Plays-In-Business. Retrieved March 18, 2018, from http://
www.plays-in-business.com/lego-scrum-city.

Heikkilä, V., Paasivaara, M., & Lassenius, C. (2016). Teaching university students Kanban with
a collaborative board game. In Proceedings of the 38th International Conference on Software
Engineering Companion—ICSE ‘16.

Hoda, R., Noble, J., & Marshall, S. (2008). Agile project management. In New Zealand Computer
Science Research Student Conference (pp. 218–221).

Hoda, R., Noble, J., & Marshall, S. (2010). Organizing self-organizing teams. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering—ICSE ‘10.

Janes, A., & Succi, G. (2014). Lean software development in action. Berlin, Heidelberg: Springer.
Janzen, D., & Saiedian, H. (2005). Test-driven development concepts, taxonomy, and future direc-
tion. Computer, 38(9), 43–50.

JUnit 5. (2018). Junit.org. Retrieved March 18, 2018, from http://junit.org.
Jyothi, V. E., & Rao, K. N. (2012). Effective implementation of agile practices-in coordination with
Lean Kanban. International Journal on Computer Science and Engineering, 4(1), 87.

Kanban Pizza Game. (2013). agile42—The agile coaching company. Retrieved March 31, 2018,
from https://www.agile42.com/en/training/kanban-pizza-game/.

Keefe,K., Sheard, J.,&Dick,M. (2006, January).AdoptingXPpractices for teachingobject oriented
programming. In Proceedings of the 8th Australasian Conference on Computing Education (Vol.
52, pp. 91–100).

Kerievsky, J. (2001). PairDraw—Industrial Logic. Industrial Logic. RetrievedMarch 18, 2018, from
https://www.industriallogic.com/blog/pairdraw-2.

Knepper, T. (2017). Agile apex introduction video. Learn agile provided by Agilest.org. Retrieved
March 18, 2018, from http://learn.agilest.org/project-management/agile-apex-introduction-v
ideo.

Kollanus, S., & Isomöttönen, V. (2008). Test-driven development in education: Experiences with
critical viewpoints. ACM SIGCSE Bulletin, 40(3), 124–127.

Kropp, M., & Meier, A. (2013). Teaching agile software development at university level: Values,
management, and craftsmanship. In 26th International Conference on Software Engineering
Education and Training (CSEE&T).

Kuppuswami, S., Vivekanandan, K., Ramaswamy, P., & Rodrigues, P. (2003). The effects of individ-
ual XP practices on software development effort. ACM SIGSOFT Software Engineering Notes,
28(6), 6.

Lappalainen, V., Itkonen, J., Isomöttönen, V., & Kollanus, S. (2010). ComTest. In Proceedings of
the Fifteenth Annual Conference on Innovation and Technology in Computer Science Educa-
tion—Iticse ‘10.

Lindstrom,L.,& Jeffries,R. (2004). Extremeprogramming and agile software developmentmethod-
ologies. Information Systems Management, 21(3), 41–52.

Lynch, T., Herold, M., Bolinger, J., Deshpande, S., Bihari, T., Ramanathan, J., & Ramnath, R.
(2011). An agile boot camp: Using a LEGO-based active game to ground agile development
principles. In 2011 Frontiers in Education Conference (FIE).

Mahalakshmi, M., & Sundararajan, M. (2013). Traditional SDLC vs scrum methodology—A com-
parative study. International Journal of Emerging Technology and Advanced Engineering, 3(6),
192–196.

Manifesto for Agile Software Development. (2001). Agile manifesto. Retrieved March 28, 2018,
from http://www.agilemanifesto.org.

McDowell, C.,Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student
retention, confidence, and program quality. Communications of the ACM, 49(8), 90–95.

https://businessanalystlearnings.com/technology-matters/2014/8/13/test-driven-vs-behaviour-driven-development
http://www.plays-in-business.com/lego-scrum-city
http://junit.org
https://www.agile42.com/en/training/kanban-pizza-game/
https://www.industriallogic.com/blog/pairdraw-2
http://learn.agilest.org/project-management/agile-apex-introduction-video
http://www.agilemanifesto.org


A Practical Approach to Teaching Agile Methodologies … 389

Michaelsen, L., & Sweet,M. (2008). The essential elements of team-based learning.New Directions
For Teaching And Learning, 2008(116), 7–27.

Muller, M., & Tichy, W. (2001) Case study: Extreme programming in a university environment. In
Proceedings of the 23rd International Conference on Software Engineering, ICSE.

Nerur, S., Mahapatra, R., &Mangalaraj, G. (2005). Challenges of migrating to agile methodologies.
Communications of the ACM, 48(5), 72–78.

O’hEocha, C., & Conboy, K. (2010). The role of the user story agile practice in innovation. In Lean
Enterprise Software and Systems (pp. 20–30).

Overall Equipment Effectiveness. (2017). Leanproduction.com. Retrieved March 29, 2018, from
https://www.leanproduction.com/oee.html.

Paasivaara, M., Heikkilä, V., Lassenius, C., & Toivola, T. (2014). Teaching students scrum using
LEGO blocks. In Companion Proceedings of the 36th International Conference on Software
Engineering—ICSE Companion 2014.

Patton, J. (2014). User story mapping: Discover the whole story, build the right product. O’Reilly
Media.

Poppendieck, M., & Cusumano, M. (2012). Lean software development: A tutorial. IEEE Software,
29(5), 26–32.

Poppendieck, M., & Poppendieck, T. (2007). Implementing Lean software development: From
concept to cash. Pearson Education.

Poppendieck,M., & Poppendieck, T. (2003). Lean software development. Boston: Addison-Wesley.
Schwaber, K. (1997). SCRUM development process. Business Object Design and Implementation,
117–134.

Spacco, J., & Pugh, W. (2006). Helping students appreciate test-driven development (TDD). In
Companion to the 21st ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications—OOPSLA ‘06.

Svitis, C. (2013). Lean software development: Theory validation in terms of cost reduction and qual-
ity improvement. Unpublished bachelor’s thesis, University of Gothenburg, Chalmers University
of Technology, Göteborg, Sweden.

Swanson, B. (2013). Kanban Pizza Game at Agile Development Conference East 2013.
agile42—The Agile Coaching company. Retrieved March 18, 2018, from http://www.agile42.
com/en/blog/2013/10/01/kanban-pizza-game-agile-development-conference-east-2013.

Unified Agile & DevOps. (2018). VersionOne. Retrieved March 28, 2018, from https://www.versi
onone.com.

Waters, K. (2011). Agile Games—ball point game | 101 Ways. 101 Ways Blog. Retrieved March
18, 2018, from https://www.101ways.com/agile-games-ball-point-game/.

What is a Kanban Board?. (2018). LeanKit. Retrieved March 29, 2018, from https://leankit.com/le
arn/kanban/kanban-board.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair programming
in the introductory computer science course. Computer Science Education, 12(3), 197–212.

Van Til, R. P., Tracey, M. W., Sengupta, S., & Fliedner, G. (2009). Teaching Lean with an interdis-
ciplinary problem-solving learning approach. International Journal of Engineering Education,
25(1), 173.

Yenduri, S., & Perkins, A. (2006). Impact of using test-driven development: A case study. In
Proceedings of the International Conference on Software Engineering Research and Practice &
Conference on Programming Languages and Compilers, SERP 2006.

https://www.leanproduction.com/oee.html
http://www.agile42.com/en/blog/2013/10/01/kanban-pizza-game-agile-development-conference-east-2013
https://www.versionone.com
https://www.101ways.com/agile-games-ball-point-game/
https://leankit.com/learn/kanban/kanban-board


Using Agile Games to Invigorate Agile
and Lean Software Development
Learning in Classrooms

Rashina Hoda

Abstract Awide variety of professional certifications, trainings and dedicated aca-
demic courses are attempting to meet the ever-growing demand for software pro-
fessionals competent in the knowledge and use of agile and lean software methods
and practices. Agile games, embodying experiential learning, are popular in indus-
trial contexts and are increasingly being trialed in academic settings as a feasible
alternative or a complement to traditional instructional learning approaches. Most
games reported, however, focus exclusively on the Scrummethod and practices. This
study reports on the use of four agile games for learning fundamental agile and lean
concepts such as iterative and incremental delivery, collaborative estimation, pair
programming and work-in-progress limits. Based on classroom observations and
survey-based quantitative and qualitative data, we found that: agile games are a use-
ful supplement for effective learning, can easily invigorate learner engagement and
promote team building. Effective facilitation and debriefing sessions are imperative
to the success of agile games in classrooms. Educators can easily introduce agile
games by selecting from a variety of accessible online resources based on their abil-
ity to deliver desired learning outcomes and graduate attributes to invigorate learning
about agile and lean software development.

Keywords Agile software development · Games · Engagement · Learning
Teaching · Classroom

1 Introduction

Agile and lean software development has witnessed widespread adoption in the soft-
ware industry (Deemer, Benefield, Larman, & Vodde, 2010) as well as in academia
over the past two decades (Scott, Rodríguez, Soria, & Campo, 2016). Rapid response

R. Hoda (B)
SEPTA Research, Department of Electrical and Computer Engineering,
The University of Auckland, Auckland, New Zealand
e-mail: r.hoda@auckland.ac.nz

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_18

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_18&domain=pdf
mailto:r.hoda@auckland.ac.nz
https://doi.org/10.1007/978-981-13-2751-3_18


392 R. Hoda

to frequent changes in requirements, fast delivery times, close customer collabora-
tion, empowered self-organizing teams and adaptivemanagement are someof the dis-
tinguishing features that have accelerated the adoption and practice of agile methods
(Schwaber &Beedle, 2002; Beck, 1999; Hoda, Noble, &Marshall, 2013; Augustine,
2005). The industry’s demands for software professionals trained and competent in
agile and lean methods and practices are met by efforts from several professional
trainers and universities offering dedicated courses on these topics (Kruchten, 2011;
Wangenheim, Savi,&Borgatto, 2013). The use of capstone projects to introduce agile
methods has been a popular approach in such agile courses (Mahnic, 2012; Lu &
DeClue, 2011; Schroeder, Klarl, Mayer, & Kroiß, 2012; Scott et al., 2016). The theo-
retical concepts underlying agile and lean software development, however, still need
to be imparted regardless of whether the course includes a practical component. This
is typically achieved through traditional classroom instructional approaches such as
lectures (Wangenheim et al., 2013; Mahnic, 2012). Making the information-laden
component of the course engaging and effective is nontrivial.

Games—embodying experiential learning—are viewed as a feasible alternative
or a complement to traditional instructional learning approaches (Percival, Ellington,
& Race, 1993;Wangenheim& Shull, 2009). Games are seen to offer a unique oppor-
tunity to leverage high user engagement and interactivity potential combined with
learning objectives (Wouters et al., 2009; Arnab et al., 2014); and provide motivation
for learning (Malone, 1981) as players often display deep concentration and imbibe
concepts through gameplay (Shneiderman, 2004).

Games for learning Agile software development concepts, termed in this chapter
as ‘Agile games’, are widely prevalent in industrial training contexts and many
games are easily accessible online (e.g. Heintz, 2016; Cohn, 2016; Kerievsky, 2016;
Kniberg, 2016). The efficacy and ability of games to support agile learning are
increasingly being trialed in academic contexts (Fernandes & Sousa, 2010; Wangen-
heim et al., 2013; Paasivaara, Heikkila, Lassenius, & Toivola, 2014). Games such
as PlayScrum (Fernandes & Sousa, 2010), Scrumia (Wangenheim et al., 2013) and
those using Lego®-bricks (Lynch et al., 2011; Paasivaara et al., 2014), designed to
simulate the Scrum lifecycle, have reported evidence of successful use in academic
settings. Most of these games, however, have focused on one particular agile method,
Scrum, simulating the entire Scrumdevelopment cycle or a particular Scrumpractice.
Other concepts and practices of agile software development such asXP’s popular pair
programming have received relatively little attention. Similarly, Lean and Kanban
concepts have remained relatively untouched in reported academic contexts.

This study involved the use four games—Paper Planes (Heintz, 2016), Planning
Poker (Cohn, 2016), Pair Draw (Kerievsky, 2016), and the Name Game (Kniberg,
2016)—in a graduate-level, dedicated agile and lean software development course at
the University of Auckland. These games primarily focus on concepts such as: agile
software development’s iterative and incremental deliverymodel; Scrum’s collective
team estimation practice; XP’s pair programming practice; and Kanban’s work-in-
progress limit concept, respectively. They were selected from a plethora of available
online Agile games based on their ability to map to the desired learning outcomes
and graduate attributes of the course, as described later.



Using Agile Games to Invigorate Agile … 393

Based on classroom observations and qualitative and quantitative data collected
through a specially designed survey, our main findings are that: the four Agile games
effectively supplemented learning of fundamental agile and lean concepts; the games
strongly invigorated classroom engagement; and promoted team building. Some of
the lessons learned from the experience include: effective facilitation was found to be
valuable to the efficient use of games in the classroom; and that a dedicated debriefing
session was imperative for each game to help establish connections between the
game experience and the underlying theoretical concepts and instigate discussions
and insights.

2 Background and Related Works

2.1 Agile and Lean Software Development

Agile software development (Fowler & Highsmith, 2001) is an umbrella term that
captures a set of values and principles that guide the modern, lightweight software
development processes such as Scrum (Schwaber & Beedle, 2002) and eXtreme
Programming (Beck, 1999). Among its core values are: people and interactions;
customer collaboration; working software as a measure of progress; and embracing
change. Emerging in the late 1990s, agile methods have rapidly become the default
software development method of choice in the global software industry (Deemer
et al., 2010).

Along similar lines and originating from the Toyota Product System (Taiichi,
1988; Womack, Jones, & Roos, 1990) is the concept of Lean software develop-
ment. Manifested in concrete methods such as Kanban (Anderson, 2010), Lean pro-
pounds the values of eliminating waste, optimizing the whole, building in quality,
constant learning, fast delivery, engaging everyone and continuous improvement
(Poppendieck & Poppendieck, 2003). Lean values are adopted independently or
often alongside agile methods to fine-tune the software development process.

There are several fundamental concepts related to agile and leanmethods available
in accessible formats (Deemer et al., 2010). The four key concepts that are most
relevant to this research study and were used in the course are described below.

• Iterative and incremental delivery: is one of the defining features of agile soft-
ware development where iterative refers to the short two-to-four-weekwork cycles
within which a team develops a prioritized subset of product features; and incre-
mental refers to the continuous integration of these features to form a complete
product over the course of the project. Such an approach is in stark contrast to
the traditional sequential development and delivery models which were marked
by specific stages of design, development, testing and deployment (Royce, 1970).
In agile methods such as Scrum, a selected set of requirements move through all
the above stages and are delivery-ready by the end of every iteration (Schwaber &
Beedle, 2002). The concept of such fixed time-boxed iterations, however, is not a



394 R. Hoda

part of lean methods such as Kanban which focus more on continuous workflow
(Wang, Conboy, & Cawley, 2012).

• Effort estimation: is the practice of estimating the effort involved in producing a
customer requirement expressed in the form of a user story and often representing
a particular product feature; including design, development, and testing. A unique
aspect of effort estimation in an agile or lean context is that it not only involves
project managers or technical leads but rather the whole team including developers
and testers (Fowler & Highsmith, 2001). Since the user stories are typically self-
assigned later in the iteration, estimation of these stories in the early planning stages
needs to involve the whole team so that everyone can discuss and understand the
requirements and can provide their input into the estimation based on experience
(Hoda et al., 2013).

• Pair programming: is one of the most well-known XP practices which involves
two developers working together on a single computer to develop software features
together, where one writes the code, referred to as the driver, and the other is
meant to provide guidance and help, referred to as the navigator (Beck, 1999). The
partners swap roles frequently. Pair programming continues to be an important and
popular agile practice (Williams, 2010).

• Work-in-Progress (WIP) limit: is the concept of placing constraints on the num-
ber of work items being executed at any given time with the aim to reduce mul-
titasking and improve productivity. The WIP limit ensures that a pull system is
followed and nothing is built before it is needed (Wang et al., 2012). Kanban’s
focus on limiting WIP differentiates it from most agile methods.

Following the rapid growth and popularity of agile and lean methods worldwide,
many professional training courses, workshops and certificates are available (e.g.
Scrum Master certification by the Scrum Alliance, Agile Certified Practitioner by
the Project Management Institute). Several multinational companies are dedicated to
producing tools and offering services to support agile and lean software teams (e.g.
VersionOne, Rally Software, ThoughtWorks).

Similar trends have been witnessed in the education domain where courses dedi-
cated to agile and lean software development are offered by many computer science
and software engineering departments in universities around the world, e.g. Univer-
sity of Oxford, Carnegie Mellon, John Hopkins, Alto University, UNICEN Univer-
sity. While it is obvious that knowledge and experience in agile and lean methods
are beneficial to the job prospects of current and future graduates, the approaches to
teaching and learning of these methods vary. Using capstone projects to allow stu-
dents to practice and experience agile methods has been widely reported (Mahnic,
2012; Lu and DeClue, 2011; Schroeder et al., 2012; Scott et al., 2016). While our
course SOFTENG761 at the University of Auckland includes a quasi-real-world
project experience component as described later, where the delivery of the funda-
mental agile and lean concepts prior to commencing the project in an engaging and
effective manner was a challenge.



Using Agile Games to Invigorate Agile … 395

2.2 Learning Agile and Lean Through Games

Games have been described as goal-directed, competitive activities with agreed rules
(Lindley, 2003;Wouters et al., 2009). Games whosemain purpose is other than enter-
tainment such as for learning and instruction are referred to as serious or educational
games (Wouters et al., 2009). Educational games often involve simulations and role
playing which are seen to embody experiential learning (Kolb, 1984).

There is a growing interest in the use of games for learning as they offer a unique
opportunity to leverage high user engagement and interactivity potential combined
with learning objectives (Wouters et al., 2009; Arnab et al., 2014). Furthermore,
games are seen to provide motivation for learning (Malone, 1981) as players often
display deep concentration and imbibe concepts through gameplay (Shneiderman,
2004).

Since agile and lean methods focus on people and interactions, collaborative
games harness as well as promote these skills. Furthermore, agile methods propound
rapid response and games provide hands-on opportunities to experience and promptly
react to situations and contexts. It is therefore no surprise that games are popular
means of teaching and learning agile concepts in professional training contexts and
are being increasingly trialed in academic settings.

2.2.1 Industrial Offerings

In industrial training contexts, simulations, role play and games-based learning have
been actively used (e.g. certification courses offered by the Scrum Alliance). A
plethora of resources are freely available online to support game-driven approaches
for use by industrial professionals and academics alike. The games relevant to our
study include: Paper Planes (Heintz, 2016), Planning Poker (Cohn, 2016), Pair Draw
(Kerievsky, 2016), and the Name Game (Kniberg, 2016). Complete descriptions and
instructions for each of these games are available on their respective websites. Brief
descriptions of the purpose, execution and expected outcomes of the four games are
presented below to aid the understanding of the research context and results to follow.

• Paper Planes: is a collaborative simulation game used to introduce agile soft-
ware development. It primarily focuses on the iterative and incremental delivery
model and provides the opportunity to experience teamwork, customer collabora-
tion and reflective practice. It involves multiple teams working on creating paper
planes within time-boxed intervals or iterations. The facilitator explains the rules
of the game and keeps time. They also act as the customer during the simulation,
providing requirements and conducting acceptance tests of delivered product, for
example, all planes must have blunt heads for safety and those not complying
are rejected. The simulation typically includes three iterations and lasts around
2 h. Each iteration is divided into a ‘plan-do-check’ cycle where the plan stage
involves the team planning their iteration and lasts 1 min, the do stage involves the
actual production of the paper planes and lasts 2 min, and the check stage involves



396 R. Hoda

reflection as a team and lasts 1 min. Teams are typically able to understand the
importance of planning and reflection as their productivity expectations change
from being over-inflated to realistic over the course of the simulation. Different
versions of this popular game are available online along with details of materials
required, play instructions, and game resources (Heintz, 2016).

• Planning Poker: is a collaborative gamified estimation technique used for effort
estimation in Scrum (Cohn, 2016). Instead of estimating real user stories, in a sim-
ulated, training context, the learner teams are asked to estimate the sizes of various
items, such as animals on a scale of one to ten, where one is the smallest and ten
represents the largest. A photo of an animal is presented and individuals are asked
to think of a size rating in their mind without sharing or discussing with others. On
the count of three, all learners are asked to show their rating by raising equivalent
number of fingers (or cards printed with numbers). The facilitator then goes up to
each team and singles out the individuals with the maximum difference in estima-
tions, e.g. one and four, for the same animal and asks them to discuss their rationale.
The idea is to allow teammembers to hear and understand other’s perspectives and
potentially refine their estimation based on the new information. The discussions
continue until the gap is closed or lessened. This is repeated for other animals. As
new information becomes available to teams, they may decide to recalibrate their
previous estimations. The simulation enables individuals to appreciate multiple
perspectives gained during collaborative estimation and learn to think and esti-
mate as a team as opposed to individuals. The game usually takes around an hour
including time for debriefing. Various rating scales include sequential numbers,
the Fibonacci series or T-shirt sizes (extra small, small, medium, large, extra large)
and others.

• Pair Draw: (Kerievsky, 2016) is a game which simulates XP’s pair programming
practice. First, the learners are asked to individual draw a face on a sheet of paper.
The drawings can be as simple or as detailed as they prefer. Then, the facilitator
asks the learners to form pairs (having an even number of learners helps). The
exercise is repeated but this time, the pairs need to coordinate with each other
to draw a single face collaboratively. Individuals within a pair are asked to use
different coloured pens so it is easy to tell which bits were drawn by whom. Pairs
can share their experiences and drawings with the wider group. The simulation
is followed by a debrief session where the facilitator highlights the similarities
between the simulation and the actual pair programming practice. Other questions
are also posed to the group for discussion, such as what was the difference in
drawing alone and drawing as a pair?What were the advantages and disadvantages
of each? These allow the learners to form some expectations of what actual pair
programming may entail.

• The Name Game: (Kniberg, 2016) is a simulation game that helps illustrate how
multitasking can reduce efficiency and productivity. It is used to enforce the con-
cept of applying work-in-progress (WIP) limits in Kanban. It involves team mem-
bers playing the role of customers providing their names while one of the team
members plays the developer who writes the names down. Two iterations of the
game are played. In the first iteration, each customer provides a single letter of



Using Agile Games to Invigorate Agile … 397

their name at a time to the developer who writes it down on the customer’s piece of
paper and then attends to the next customer. This continues until all customers are
served (i.e. their complete names are written). This scenario represents multitask-
ing as the developer simultaneously works on all customer requests. The second
iteration involves the same task but the approach is different. Here, the developer
attends to one customer at a time, writing their full name down before moving on
to the next customer. In other words, a WIP limit of one customer request at a time
is applied. It is usually noticed that the second scenario (with WIP limit in place)
yields better productivity and generally better experiences for the developer and
customers.

2.2.2 Academic Adoption

In the academic context, the use of games and simulations for imparting software
engineering concepts has been reported (Drappa&Ludewig, 2000;Baker,Navarro,&
van der Hoek, 2005; Carrington, Baker, & van der Hoek, 2005). The use of games for
learning agile and lean concepts has also been trialed in various contexts. Fernandes
& Sousa (2010), Lynch et al. (2011), Wangenheim et al. (2013), and Paasivaara et al.
(2014) form a growing body of evidence in support of using games for teaching and
learning agile concepts.

PlayScrum—a card game devised for use in the university context (Fernandes &
Sousa, 2010). The focus of the game was to provide players with the experience of
the Scrummethod and the role of the ScrumMaster. Feedback from 13Masters level
students who trialed the game found it be to visual, simple, useful and enjoyable.
The authors noted that the game was best used to complement the teaching of the
theoretical concepts in class.

Wangenheim et al. (2013) presented and used Scrumia—a physical paper-based
game, as a low-budget approach to complement more the traditional classroom
instruction of Scrum. It involved simulating a scrum development cycle in teams
of six people. The study provided evidence that the game provided a positive effect
on learning Scrum. Like Fernandes & Sousa (2010), Wangenheim et al. (2013) also
propound that such games are effective in complementing theoretical lectures.

The use of Lego®-based games has also been explored in academic settings (Lynch
et al., 2011; Paasivaara et al., 2014). Lego® bricks were used to build physical prod-
ucts in an agile boot camp setting involving learning across three iterations (Lynch
et al., 2011). Students showed a preference for the agile boot camp over lecture-based
teaching. Paasivaara et al. (2014) used a Lego®-based simulation game in a Masters
level course at Alto University. Surveys of learner experiences showed high levels of
satisfaction. While Lynch et al. (2011) found no difference in the recall of concepts
introduced through games and those in lectures, Paasivaara et al. (2014) reported
gains in learning and insight as a result of gameplay.

As explained above, numerous low-budget, paper-based games originating from
industry are easily accessible online while some have originated from the academic
domain (Fernandes & Sousa, 2010; Wangenheim et al., 2013). Most of these games



398 R. Hoda

have focused on one particular agile method—Scrum—and aimed to simulate the
entire Scrum development cycle or a particular Scrum practice. Other concepts and
practices of agile software development such as XP’s popular pair programming
have received relatively little attention. Similarly, lean and Kanban concepts have
remained relatively untouched in academic contexts.

Our research study reports on the use of fourAgile games—Paper Planes, Planning
Poker, Pair Draw and the Name Game—for learning agile software development’s
iterative and incremental delivery, Scrum’s collective team estimations, XP’s pair
programming and Kanban’s WIP limits concept respectively, in an academic con-
text and provides evidence to support the games-driven approach for agile and lean
learning.

3 Research Context and Design

3.1 The Course Context

SOFTENG761—Agile and Lean Software Development is a course offered to final
year bachelor of engineering (BE) and masters of engineering studies (ME studies)
learners specializing in software engineering in the Electrical and Computer Engi-
neering department at theUniversity ofAuckland. Likemost courses at the university,
this is a 12-week coursewith a 2-week break typically separating two parts of 6weeks
each. The ratio of BE final year and the ME studies learners tends to vary between
three to two (3:2) and equal (1:1). The course was first designed and launched by
the author who has continued to run the course in the capacity of the course direc-
tor and lecturer. It has since witnessed consistent interest and growth, reflecting the
growth of the software engineering program. Learners enrolling into the course are
expected to possess advanced programming skills in popular languages such as Java,
and have prior academic or industrial experience of team-based software projects.
Their advanced skills and experience are expected to help them select from a variety
of projects to implement, requiring a multitude of latest technologies and tools.

The main purpose of the course is to teach: the fundamental concepts of agile and
lean software development such as iterative and incremental software development,
self-organizing teamwork, customer collaboration and project management; and the
core practices from the Scrum, XP, and Kanbanmethods such as release and iteration
planning, pair programming and team estimations. The teaching approach for SOFT-
ENG761 is based on a three-tier learning approach comprising of three progressive
parts focusing on:

• Part I—Theory: provides learners with the fundamental knowledge about agile
and lean software development over the first 3 weeks, typically imparted in the
form of direct lecture-based instruction using PowerPoint slides, supplemented by
videos and classroom discussions. Theory is tested at the end of week three in a
test worth 25%.



Using Agile Games to Invigorate Agile … 399

• Part II—Practice: provides learners with the opportunity of hands-on practice
in agile and lean software development. Learners are required to self-form teams
and select from the project options offered by local software companies. Students
typically form teams of seven to eight students each. The projects cover a 6–7
week period following weekly iterations and hands-on practice of several Scrum,
XP and Kanban practices. This makes up 50% of the assessment. Further details
of the projects and the industry collaboration aspects of this course are beyond the
scope of this chapter.

• Part III—Research: requires learners to search and review current research liter-
ature on various agile and lean-related topics with a focus on critically analysing
these concepts in light of literature and their own project experiences and present-
ing them as an individual research essay worth 25%.

3.2 The Challenge

Delivering fundamental knowledge on any subject requires the definition and descrip-
tion of several new terminologies, concepts and ideas. In the earliest offering of the
course, this was achieved through the instructor talking through PowerPoint slides
to a classroom full of learners with occasional questions and answers. In a bid to
make things more interactive, learners were presented with scenarios from software
development contexts and encouraged to discuss and debate possible outcomes rel-
evant to agile practices. The main challenges associated with this approach were:
level of learner engagement remained average as only some learners participated in
the question–answer sessions or discussions around contexts while a majority of the
class remained in passive recipient mode. As such it was unclear to what extent the
class was engaged and whether the learners effectively comprehended the concepts
being covered.

3.3 Introducing Games

Games were introduced into the course to improve the level of engagement and
learning in the theory part of the course. A set of four different Agile game (games for
learning Agile software development) were identified and added to the instructional
materials anddesign. Thesewere selected based on their ability to align to the course’s
desired learning outcomes and set of graduate attributes listed by the Washington
Accord (Accord, 2013), an international agreement between bodies responsible for
the accreditation of tertiary level engineering qualifications. Employing a set of
graduate attributes defined by the Accord, such asWA09 individual and team work,
provides a valuable framework for achieving constructive alignment with learning
outcomes during design of engineering courses. A mapping between the games,
learning outcomes and graduate attributes is presented in Table 1.



400 R. Hoda

Table 1 Mapping of collaborative games deployed, underlying agile and lean concepts, course
learning outcomes, and graduate attributes defined by the Washington Accord (Accord, 2013)

Agile games Underlying agile and
lean concepts

Learning outcomes Most relevant
graduate attributesa

Paper Planes Iterative and
incremental software
delivery

LO 1. Plan for project
release and iterative
delivery
LO2. Develop, test,
and deliver software
in an iterative and
incremental fashion

WA09, WA10, WK04,
WK06, WA11

Planning Poker Collective team
estimations

LO3. Estimate user
stories

WA09, WA10, WK04,
WK05, WK06

Pair Draw Pair programming LO4. Work effectively
in a self-organizing
team environment

WA09, WA10, WK04,
WK06

Name Game Work-in-progress
(WIP) limit

LO5: Design
strategies to overcome
common challenges of
Agile and Lean
practices

WA09, WA10, WK04,
WK06, WP06

aWA09: individual and team work; WA10: communication; WK04: specialist knowledge; WK05:
engineering design; WK06: engineering practice; WA11: project management and finance; WP06:
conflicting stakeholder requirements

As the games were played prior to the projects commencing, learners from the
same project teams were asked to play together. All games were played as project
teams, except for Pair Draw, where learners were asked to form pairs within teams.
Brief descriptions of these games have been provided earlier in (Heintz, 2016; Cohn,
2016; Kerievsky, 2016; Kniberg, 2016) and complete details are available on their
respective websites as referenced.

The games were played in classroom sessions following a brief introduction to
the relevant concepts via PowerPoint slides and in-class discussions. Two-hour ses-
sions were found to be necessary and sufficient for including some instructional
material and at least one game. However, the Paper Planes game took up the entire
2 h as it involved several steps and iterations. The games were facilitated by the
lecturer/author with the help of a teaching assistant in charge of time keeping. The
lecturer/author is an agile researcher and a certified Scrum Master with wide expe-
rience of teaching agile and lean concepts and practices. The lecturer moved around
the entire classroom, encouraging learners through questions about their approach
and progress. All learners were seen to actively engage in the games. Further details
of classroom experiences are discussed and shown later in the Findings section.



Using Agile Games to Invigorate Agile … 401

3.4 Data Collection and Analysis

Human ethics approval was gained prior to collecting data from the learners. The
game sessions were observed by the lecturer and the teaching assistant. Notes were
taken to record these observations. Quantitative and qualitative data were collected
from learners about their experience of playing the games in the course through
a specially designed games survey. The games survey was created and hosted on
Google Forms and was conducted soon after the last game was played in class and
the theory part of the course was over, in week four. The form was set up to require
user authentication using the university credentials to ensure only learners from the
course participated, however, the details of the participants were not stored to allow
for anonymous and more candid responses. The form was further set to accept only
one response per person. A link to the survey was emailed out to the class and
participation was completely voluntary. Twenty-three of the total 51 learners (45%)
responded to the survey.

The games survey included a set of questions about games for learning in general
and about the experience of playing specific games in class (see full list in Appendix).
The questions were of three types: multiple choice questions (MCQs), ratings using
Likert scale (1–5) type questions, and open-ended questions, for example:

• [MCQ] The number of games used in SOFTENG761 was: Too few/Just right/Too
many.

• [Rate on scale of 1–5 where 1 is strongly disagree and 5 is strongly agree]
• It was more effective to learn through collaborative games than learning on my
own in class (e.g. listening to lectures).

• [Open-ended questions]
• What did you like about the games in class?
• What didn’t you like about the games in class? Please share ideas for improve-
ments.

The observation notes were synthesized to draw out insights into the games’
execution and outcomes. The games survey results were analysed and presented in
graphical format by theGoogle Forms tools. The open-ended answers weremanually
analysed to identify the most significant concerns of the learners following thematic
analysis (Braun & Clarke, 2006). The results of the surveys and qualitative findings
are presented in the next section.

4 Findings

Observations of the games played in class and the responses to the games survey
showed a strong support for games-driven learning in classrooms in general and for
learning about agile and lean software development concepts. We first present the
observations made in the classroom, followed by the survey results pertaining to
specific games played in the classroom and then report on learners’ perceptions of
the use of games for learning in general.



402 R. Hoda

4.1 Classroom Observations

All learners were seen to engage in the Paper Planes game. High levels of team-
work and competition between teams were observed. In the first iteration, all teams
overestimated their productivity, most left testing to the end, running out of time.
When the ‘customer’ (lecturer/author) inspected the deliverables (planes) at the end
of the iteration, several planes were rejected because they did not meet the accep-
tance criteria. This led to teams paying closer attention to the customer’s acceptance
criteria in future iterations. In the ‘check’ (reflection) stage, teams could discuss what
was working well for them and what improvements they needed to make; both to
the design of the planes (technical improvements) and their approach to production
and testing (process improvements). Most teams adjusted their estimates to more
realistic numbers in the second iteration and commenced testing early in the ‘do’
stage, some ascribing a dedicated tester. The productivity rose incrementally until it
peaked in the third iteration where teams had now begun to fine-tune their designs
and process. The final debriefing session allowed learners to share their thoughts on
the experience. Learners could appreciate the value of explicit ‘plan’ and ‘check’
stages in addition to the usual ‘do’ stage. This was particularly useful for the final
year undergraduate students who are often seen to place more value on software
coding or development and underestimate the importance of design, planning and
reflection. They also observed the value of iterative delivery to deliver constant value
to the customer and receive early feedback on design which could be incorporated
into future iterations.

In the Name Game, one team member played the developer and the remaining
members played the customers. Customers were seenwaiting for their turn to interact
with the developer.When asked about this in the debriefing session,most ‘customers’
agreed that they preferred longer waiting in some cases (e.g. the last few customers
in queue) to receive the full, undivided attention of the developer to their request than
to be served simultaneously alongside other customers. One of the customers didn’t
find any observable difference in their experience as they were the last to be served
in both scenarios. In the real world, however, with WIP limits in place, customers
wouldn’t necessarily need to wait idly while the developer is serving others and can
in fact attend to their own work until their request is ready for action.

It was seen that the whole class was engaged in the Planning Poker game, plac-
ing their hands up to represent their individual estimations by number of fingers
and looking around to see with interest what their teammates and other peers esti-
mated. The facilitator/author interacted with some teams to demonstrate the process
of discussing and resolving estimation differences. It is important that the facilitator
explains the importance of such discussions and clarifies that the intent is to enable
outliers to voice their multiple perspectives rather than to pick on them.

Figure 1 shows some of the faces drawn as pairs during the Pair Draw game.
The three drawings were drawn by three different learner pairs. Within each pair,
individuals took turns to draw a single face feature using different coloured pens. The
first drawing shows an approach where the two individuals drew different complete



Using Agile Games to Invigorate Agile … 403

Fig. 1 Face drawings created in pairs during the Pair Draw game; each of the three drawings was
created by a pair each using two different coloured pens (e.g. blue and black in the first drawing.)

parts of the face (e.g. both eyebrows drawn in black by one and both eyes drawn in
blue by another).

The second and third drawings show an approach where the individuals attempted
to mirror each other’s actions on either side of the face. It was observed that often
individuals tended to mirror their pair, e.g. if an individual drew the right eye, the
other drew the left eye and so forth. Some were more creative in their efforts than
others, but overall most pairs attempted to create a coherent face together. As the
facilitator, it is important to reassure learners that the aim of the game is not to assess
their drawing skills rather to allow them to experience working on a single task as
pairs as some learners can be inhibited otherwise.

4.2 Games Survey Results: Specific Games

When asked about the ability of the game Paper Planes to teach the underlying agile
concept of iterative delivery in the games survey, most learners (n�18 of 23) agreed
or strongly agreed while only one learner disagreed.

We further probed about the game’s effectiveness despite not involving any actual
software delivery. Most of the respondents still agreed. Similar questions were asked
for the remaining games.

Figures 2a, 3a, and 4a show the responses for the games Planning Poker, Pair
Draw, and NameGame to teach estimation, pair programming, and work-in-progress
limits, respectively. Figures 2b, 3b, and 4b show the samewhen emphasizing the non-
software nature of the games.



404 R. Hoda

Fig. 2 a Effectiveness of Planning Poker game to teach effort estimation. b Effectiveness of Plan-
ning Poker game to teach about effort estimation, despite not involving actual user stories

Fig. 3 a Effectiveness of Pair Draw game to teach about pair programming. b Effectiveness of Pair
Draw game to teach about Pair Programming, despite not involving actual programming

Fig. 4 a Effectiveness of Name Game to teach about Work-in-Progress Limits. b Effectiveness of
Name Game to teach about Work-in-Progress Limits, despite not involving software work

4.3 Games Survey Results: General Questions

In introducing games into the curriculum, we wanted to include an optimum number
of games in classroom sessions such that the learners felt neither over- nor under-
whelmed. Most respondents said that the number was ‘just right’, while 3 learners
said there were ‘too few’. None of them thought that the number of games was ‘too
many’ suggesting that we had managed to achieve a reasonable balance with four
games in a 3-week learning period.

We posed a series of questions aimed at assessing the learners’ opinions of games
for learning as a means to improve fun and enjoyment leading to better engagement
in classroom learning. An overwhelming majority of learners enjoyed playing the
collaborative games in class as seen from the results in Fig. 5a. Most of the learners
(n�19 of 23) found collaborative games to be more fun than individual or solo
learning in a classroom setting as depicted in Fig. 5b.



Using Agile Games to Invigorate Agile … 405

Fig. 5 a Perceived enjoyment in playing games in the class. b Comparing collaborative games to
individual learning in classroom based on perceived levels of fun and engagement

While the ability of games to improve engagement is almost intuitive and well
established (Wangenheim et al., 2013; Scott et al., 2016), evidence to support their
learning effectiveness can be elusive. We posed a series of questions to assess the
learners’ opinions of the games as effective classroom learning mechanisms. Most of
the learners (n�20 of 23) agreed that they learned about the underlying agile and lean
concepts effectively through the games played in class as shown in Fig. 6a. Further-
more, when comparing individual learning to collaborative games-based learning in
classrooms,most (n�20) also agreed that the latterwasmore effective for their learn-
ing than the former, as depicted in Fig. 6b. Only one learner disagreed in each case.

We also explored the learners’ opinions on the ability of collaborative classroom-
based games to assist with team building. An overwhelmingmajority of learners (n�
22 of 23) agreed that collaborative games were good for team building, as shown in
Fig. 7.

Finally, we asked a set of questions to gauge the learners’ perceptions of games
for learning in general. Many learners (n�16) agreed that teaching through games
was both useful and necessary, as depicted in Fig. 8a. Some learners (n�6) found
games to be useful for teaching, but not necessary and one learner responded by
saying they neither found games useful nor necessary for teaching.

When asked about the appropriate role of games in delivery of content, most
learners (n�19) selected games to supplement traditional delivery of content while
a small percentage (n�4) said that games can replace traditional delivery, as shown in
Fig. 8a and 8b, respectively. As seen in Fig. 8c, respondents (n�18) strongly/agreed
that games should be used more often in classroom teaching in general, clearly
implying a strong support for games-based learning in modern classrooms.



406 R. Hoda

Fig. 6 a Perceived learning effectiveness of games. bComparing collaborative games to individual
learning in classroom based on perceived learning effectiveness

Fig. 7 The ability of collaborative games to assist with team building

4.4 Games Survey Results: Open-Ended Questions

In addition to structured questions, we also included some open-ended questions.
When asked about what they liked about the games in class. The responses to these
questions were analysed to group concept aspects together into themes. Here the
main themes, italicized below, are presented along with relevant sample quotes.

Learners said that the interactive nature of the games improved engagement and
saw their usage as a welcome alternative to traditional lecturing.

Helped to break up two-hour lectures keeping the class fresh and engaged.

It helped teach the concepts in Agile in a more fun and interactive way. Rather than listening
to the lecturer go over the concepts, it was more fun to play a game and then understand how
it relates to Agile.

It makes the learning more engaging.



Using Agile Games to Invigorate Agile … 407

Fig. 8 a Teaching potential and role of games. b The role of games in the delivery of content. c
The use of games in classrooms in general

It is fun. Classes filled by boring speeches make me sleepy. Games in class are really good
for me to focus on the content easily. I can learn knowledge with pleasure.

It was also evident from the comments that some learners found games to be an
effective way of learning key agile and lean concepts, for example:

Simple to do, which made it easier to understand the underlying concepts related the game.

Created a fun environment for pupils, understanding key concepts at the same time.

Many learners pointed to the collaborative games’ ability to assist with team build-
ing, further strengthening similar observations from the classroom and the ratings
questions:

All the team work together and we can get more closer.

It helped us work as a team. Our main aimwas to succeed as a team rather than an individual.

When asked about what they didn’t like about the games in class and ideas for
improvement, two respondents noted that they didn’t find Pair Draw particularly
relevant to real-world pair programming. The same observation resonated in the
results of the rating questions, where Pair Draw was rated least among the four
games with regards to its ability to explain underlying agile and lean concepts.
This may be because the Pair Draw exercise while presenting an opportunity to
practice collaborative working, did not represent some of the other aspects of pair
programming well, such as the ability to question each other, clarify uncertainties,
make and correct mistakes, thereby carrying lesser real-world relevance than the
other games.

Another improvement suggested by a few learners was keeping the game instruc-
tions visible. While instruction slides were provided for the Paper Planes and the



408 R. Hoda

Name Game games, other games such as Pair Draw and Planning Poker were
described verbally.

A bit hard to know what exactly we had to. Maybe a slide or printout with the instructions
instead of being mostly verbal.

The rules of the game are sometime confused. It is better to put the rules on slides and we
can see it clearly.

We have since then added written instructions for these games in the classroom
to cater to all types of learners, not just those who follow verbally. We also asked the
learners about other agile and lean concepts they would have liked to learn through
games. Some suggestions included: daily scrum, writing user stories, the pull system
from Kanban, the role of the scrum master, and use of product and sprint backlog,
and games that helped compare scrum, XP and Kanban approaches. Of these, we
have recently included the Kanban Pizza Game (Agile42, 2015) for simulating the
pull system and WIP limit in Kanban.

5 Discussion

Classroom observations and the qualitative and quantitative results of the games
survey showed strong evidence in support of collaborative games in the classroom.
The key findings, lessons learned and related implications for practice resulting from
this study are discussed below and summarized in Table 2.

Based on the experience of introducing games in SOFTENG761, it can be said that
games are a useful way to supplement the learning of agile and lean software devel-
opment concepts and practices. The use of traditional lecturing using PowerPoint
in-class discussions and question–answers was seen to provide the necessary albeit
brief background information before learners could engage in gameplay. With some
background information, the learners were familiarized with the concepts underly-
ing the game or exercise so they could draw better connections between the game
experience and the learning content.

Whilemost of the learners preferred games over traditional forms of delivery,most
also subscribed to the view that games can supplement traditional delivery rather than
replace it. Similar conclusions were drawn by Fernandes and Sousa (2010) andWan-
genheim et al. (2013) who reported that their physical games PlayScrum and Scrumia
respectively were best used in combination with traditional classroom instruction of
the basic theoretical concepts. As such, trainers and educators, especially those in the
academic domains, can consider selecting from a plethora of Agile games available
online. While not all may be suitable, games can be assessed and selected based
on how well their various components map to the desired learning outcomes and
graduate attributes (Table 1).

Considered from a theoretical perspective, learning via games seems to embody
reflection-in-action from Schön’s theory of reflective practice (Schön, 1983) where



Using Agile Games to Invigorate Agile … 409

Table 2 Key findings, lessons learned and implications for practice

Main findings and lessons learned Implications for practice

The games effectively supplemented learning Educators and trainers should consider
introducing collaborative games to supplement
the content shared in traditional lecture-based
delivery. Using them in isolation is not advised
as typically some background information is
required before learners can indulge in the
games and gain insights from them. Games
easily available online can be selected based on
their ability to map to desired learning
outcomes and graduate attributes

The games improved classroom engagement Collaborative games can be used to easily
invigorate the engagement of learners in the
content and in the classroom in a fun,
interactive way. Team-based games promote
interpersonal interaction, attract interests from
a wide variety of leaners, and tend to engage
all learners instead of a selective few

The games promoted team building Educators and trainers can use collaborative
games to promote team building prior to
commencing team-based agile projects

Effective facilitation was vital Facilitators should not only explain the game
rules and keep time but also actively encourage
participation and discussion throughout the
game. New facilitators should playtest with
colleagues or assistants beforehand

Debriefing was imperative Enough time should be allocated to debriefing
each game. Learners should be encouraged to
share experiences, insights, and questions.
Most games include a list of questions to drive
the debriefing session

reflection occurs during a given action (in this case, the game), as opposed to post
the action occurring.

There was ample evidence of improved engagement from the classroom observa-
tions and the survey results. This is in line with similar assertions by Shneiderman
(2004) and Paasivaara et al. (2014) who reported gains in learning and insight.

An additional finding from our study was that collaborative classroom games can
be used effectively for team building. While this was not the primary purpose of the
games, they served as a good way to break the ice within the newly formed teams
where members were not familiar with each other and promote cohesion in others.
This can be especially useful in courses which include a practical project-based
component.

Effective facilitation was found to be useful. The facilitators not only explained
the rules of the game and kept time for the different activities but also moved around
the classroom to actively encourage participation and discuss how the different teams



410 R. Hoda

were executing the various game activities. It would be best for new facilitators to
familiarize themselves with the game and playtest it with colleagues or teaching
assistants prior to implementing in the classroom.

A dedicated debriefing session provided the opportunity to verbalize and estab-
lish the connections between the game experience and the underlying theoretical
concepts. It allowed not only the learners to reflect on their game experience but
also enabled the facilitator to discover new aspects about the game shared by learn-
ers. The importance of such post-game debriefing—embodying reflection-on-action
(Schön, 1983) where reflection occurs after the action (in this case, the game) has
finished—has been previously emphasized by Crookall (2010).

5.1 Limitations and Future Work

While the facilitator and learners could play all the games within the given lecture-
style classroom setup, it was observed that a different, more open-plan room setup
would potentially be better for the game execution. For example, in the paper planes
games, it would have been better to have an open area to test the airplanes. Similarly,
for the name game and planning poker, a round table seating for each team would
have helped them face each other more easily and potentially improve collaboration.
In the future, we aim to request for more open-plan rooms for our course.

The Pair Draw game received the least amount of support among all the four
games. Many students had no prior concept or experience of pair programming and
linking the Pair Draw to pair programming may have been a wide leap for some.
However, it is also a reflection on the relative low relevance of this game, Pair Draw,
to the real Agile practice it was meant to represent, pair programming, as discussed
earlier. We have since then dropped this game, and introduced the Kanban Pizza
Game as discussed earlier.

Finally, while the evaluation of the games through student feedback, question-
naires and surveys is not the most robust or only method, it is a common method
used in other studies on use of games for agile learning (Fernandes and Sousa, 2010;
Lynch, 2011;Wangenheim et al., 2013). The survey instrument used in this studywas
developed from scratch and some of the questions could have been better phrased
for clarity and validity. For example, in hindsight, the question on the ‘effectiveness’
of the games for learning compared to learning on one’s own could have captured
responses comparing active and passive learning, rather than game and non-game-
based learning. To better address such issues in future studies, we plan to find, and if
needed extend, validated and well-established questionnaires to assess learner satis-
faction and explore the possibility of pre/post testing.



Using Agile Games to Invigorate Agile … 411

6 Conclusion

Games are widely used in industrial agile software development certification and
training workshops. There is an increasing trend of trialling games for learning agile
software development in academic contexts, in particular, the Scrum method and its
practices. We introduced four paper-based collaborative games in a dedicated agile
and lean software development course to help learners understand and experience
concepts such as iterative and incremental delivery, team-based effort estimation,
pair programming, and work-in-progress limits. Through classroom observations
and survey-based quantitative and qualitative data, we found that collaborative games
were preferred by most learners over tradition ways of individual learning in class,
both in terms of their potential for fun and learning effectiveness. These collaborative
games were found to supplement learning; helped invigorate learner engagement;
and promoted team building. While new games originating from academic contexts
are welcomed, educators can select from a variety of existing agile games easily
accessible with resources online to introduce games into their classrooms based on
their ability to deliver desired learning outcomes and graduate attributes. The suc-
cessful use of the games, however, is dependent on effective facilitation by knowl-
edgeable and experienced educators and on dedicated debriefing sessions that relate
the game experience with the underlying theoretical concepts. Other types of games
in academic contexts and industry-based professional agile certifications, trainings
and workshops can be studied in the future to gauge the impact of Agile games on
engagement and learning effectiveness.

Acknowledgements Sincere gratitude is due to the students of SOFTENG761 Agile and Lean
Software Development course at the Department of Electrical and Computer Engineering at The
University of Auckland, New Zealand.

Appendix: Survey Questions

Part 1: General Questions

• Number of games used in SOFTENG761 were: Too few/Just right/Too many
• Teaching through games is: Useful and necessary/Useful but not necessary/Neither
useful nor necessary

• In your opinion, games can: Replace traditional delivery of content/Supplement
traditional delivery of content

• Rate the following statements (Strongly Disagree/Disagree/Neutral/Agree/
Strongly Agree)

– I enjoyed playing the games in class.
– I learned about the underlying concepts through the games (e.g. pair program-
ming, estimation) effectively.



412 R. Hoda

– Learning through playing games teaches concepts in a way that traditional lec-
tures cannot.

– It was awkward to play games in class.
– Games cannot teach concepts effectively.
– It was more EFFECTIVE to learn through collaborative games than learning on
my own in class (e.g. listening to lectures).

– It was more FUN to learn through collaborative games than learning on my own
in class (e.g. listening to lectures).

– I think collaborative games are good for team building. o Games should be used
more often in classroom teaching in general.

• Open-Ended Questions

– What did you like about the games in class?
– What didn’t you like about the games in class? Please share any ideas for
improvements.

– What other Agile and Lean concepts would you have liked to learn through a
game-based learning approach?

– What other kinds of learning approaches or content delivery styles (other than
games) would you like us to try in SOFTENG761?

– Would you like to play such games online to learn other Agile and Lean con-
cepts?

Part 2: Game-Specific Questions (Repeated for Each Game,
Shown for Pair Draw Here.)

• Did you play PAIR DRAW in the class? Yes/No
• Rate the following statements (Strongly Disagree/Disagree/Neutral/Agree/
Strongly Agree)

– I found the game effective in teaching me the concept of PAIR PROGRAM-
MING.

– I am more likely to attempt PAIR PROGRAMMING as a result of playing
PAIRDRAW.

– PAIRDRAW helped me understand the different aspects of PAIR PROGRAM-
MING even though it did not involve actual programming.

– I expect to have similar experiences with PAIR PROGRAMMING on the actual
project as I did with the PAIRDRAW simulation in class.



Using Agile Games to Invigorate Agile … 413

References

Accord, W. (2013). Graduate attributes and professional competencies. Version, 3, 21. Retrieved
May 8, 2018, from http://www.ieagreements.org/accords/washington/.

Agile42. (2015). Kanban Pizza Game. Retrieved May 9, 2018, from https://www.agile42.com/en/t
raining/kanban-pizza-game/.

Anderson, D. (2010). Kanban: Successful evolutionary change for your technology business. Blue
Hole Press.

Arnab, S., Ger, P. M., Lim, T., Lameras, P., Hendrix, M., Kiili, K., ... & Dahlbom, A. (2014, July).
A conceptual model towards the scaffolding of learning experience. In International conference
on games and learning alliance (pp. 83–96). Cham: Springer.

Augustine, S. (2005). Managing agile projects. Prentice Hall PTR.
Baker, A., Navarro, E., & van derHoek, A. (2005). An experimental card game for teaching software
engineering. Journal of Systems and Software, 75(1–2), 3–16. https://doi.org/10.1016/j.jss.2004.
02.033.

Beck, K. (1999). Extreme programming explained: Embrace change (1st ed.). Addison-Wesley
Professional.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in
Psychology, 3(2), 77–101. ISSN 1478-0887.

Carrington, D., Baker, A., & van der Hoek, A. (2005). It’s all in the game: Teaching software process
concepts. In Proceedings of the 35th Frontiers in Education Conference.

Cohn, M. (2016). Planning Poker Game. Retrieved May 9, 2018, from https://www.planningpoke
r.com/.

Crookall, D. (2010). Serious games, debriefing, and simulation/gaming as a discipline. Simulation
& Gaming, 41(6), 898–920.

Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2010). The scrum primer. Scrum Primer is
an indepth introduction to the theory and practice of Scrum, albeit primarily from a software
development perspective. Retrieved from http://assets.scrumtraininginstitute.com/downloads/1/
scrumprimer121.pdf, 1285931497, 15.

Drappa, A., &Ludewig, J. (2000, June). Simulation in software engineering training. In Proceedings
of the 22nd international conference on software engineering (pp. 199–208). ACM.

Fernandes, J. M., & Sousa, S. M. (2010, March). Playscrum-a card game to learn the scrum agile
method. In Games and virtual worlds for serious applications (VS-GAMES), 2010 second inter-
national conference on (pp. 52–59). IEEE.ö

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8), 28–35.
Hoda, R., Noble, J., & Marshall, S. (2013). Self-organizing roles on agile software development
teams. IEEE Transactions on Software Engineering, 39(3), 422–444 (IEEE).

Heintz, J. (2016). Agile Airplane Game, Gist Labs. Retrieved May 9, 2018, from http://gistlabs.co
m/2011/06/agile-airplane-game/.

Kerievsky, J. (2016). PairDraw, Industrial Logic. Retrieved May 9, 2018, from https://www.indust
riallogic.com/blog/pairdraw-2/.

Kniberg, H. (2016). Multitasking Name Game, Crisp. Retrieved May 9, 2018, from https://www.c
risp.se/gratis-material-ochguider/multitasking-name-game.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development.
Upper Saddle River, NJ: Prentice Hall.

Kruchten, P. (2011). Experience teaching software project management in both industrial and aca-
demic settings. In Proceedings of 24th IEEE-CS Conference on Software Engineering Education
and Training, Honolulu/Hawaii (pp. 199–208).

Lindley, C. A. (2003). Game taxonomies: A high level framework for game analysis and design.
Gamasutra Website. Retrieved May 9, 2018, from http://www.gamasutra.com/view/feature/131
205/game_taxonomies_a_high_level_.php.

Lu, B.,&DeClue, T. (2011). Teaching agilemethodology in a software engineering capstone course.
Journal of Computing Sciences in Colleges, 26(5), 293–299.

http://www.ieagreements.org/accords/washington/
https://www.agile42.com/en/training/kanban-pizza-game/
https://doi.org/10.1016/j.jss.2004.02.033
https://www.planningpoker.com/
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://gistlabs.com/2011/06/agile-airplane-game/
https://www.industriallogic.com/blog/pairdraw-2/
https://www.crisp.se/gratis-material-ochguider/multitasking-name-game
http://www.gamasutra.com/view/feature/131205/game_taxonomies_a_high_level_.php


414 R. Hoda

Lynch, T. D., Herold, M., Bolinger, J., Deshpande, S., Bihari, T., Ramanathan, J., et al. (2011,
October). An agile boot camp: Using a LEGO®-based active game to ground agile development
principles. In Frontiers in education conference (FIE), 2011 (pp. F1H–1). IEEE.

Mahnic, V. (2012). A Capstone Course on agile software development using scrum. IEEE Trans-
actions on Education, 55(1), 99–106.

Malone, T. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 4,
333–369.

Paasivaara, M., Heikkila, V., Lassenius, C., & Toivola, T. (2014). Teaching students scrum using
lego blocks. In Proceedings of the 36th International Conference on Software Engineering
(pp. 382–391). http://doi.acm.org/10.1145/2591062.2591169.

Percival, F., Ellington, H., & Race, P. (1993).Handbook of educational technology. London: Kogan
Page.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile toolkit. The
Agile Software Development Series. Addison Wesley.

Royce, W. W. (1970). Managing the development of large software systems (pp. 328–333).
Schön, D. (1983). The reflective practitioner: How professionals think in action. Basic Books.
Schroeder, A., Klarl, A., Mayer, P., & Kroiß, C. (2012). Teaching agile software development
through lab courses. InProceedings of theGlobal EngineeringEducationConference (EDUCON)
(pp. 1–10). IEEE.

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Prentice-Hall.
Scott, E., Rodríguez, G., Soria, Á., & Campo, M. (2016). Towards better Scrum learning using
learning styles. Journal of Systems and Software, 111, 242–253. https://doi.org/10.1016/j.jss.20
15.10.022.

Shneiderman, B. (2004). Designing for fun: How can we design user interfaces to be more fun?
Interactions, 11(5), 48–50.

Taiichi, O. (1988). Toyota production system—Beyond large-scale production (pp. 25–28). Produc-
tivity Press. ISBN 0-915299-14-3.

Wang, X., Conboy, K., & Cawley, O. (2012). Leagile software development: An experience report
analysis of the application of lean approaches in agile software development. The Journal of
Systems and Software, 85(6), 1287–1299.

Wangenheim, C. G., Savi, R., & Borgatto, A. F. (2013). SCRUMIA—An educational game for
teaching SCRUM in computing courses. Journal of Systems and Software, 86(10), 26752687.
http://dx.doi.org/10.1016/j.jss.2013.05.030. ISSN 0164-1212.

Wangenheim, C. G., & Shull, F. V. (2009). To game or not to game? IEEE Software, 26(2), 92–94.
Williams, L. (2010). Pair programming. Encyclopedia of software engineering (Vol. 2).
Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world. Free Press.
ISBN-13: 978-0-7432-9979-4.

Wouters, P., et al. (2009). Current practices in serious game research: A review from a learning
outcomes perspective. In M. Stansfield & L. Boyle (Eds.), Game-based learning advancements
for multi-sensory human computer interfaces.

http://doi.acm.org/10.1145/2591062.2591169
https://doi.org/10.1016/j.jss.2015.10.022
http://dx.doi.org/10.1016/j.jss.2013.05.030


Red-Green-Go! A Self-Organising Game
for Teaching Test-Driven Development

Suzanne M. Embury, Martin Borizanov and Caroline Jay

Abstract Teaching test-driven development (TDD) in an already crowded under-
graduate curriculum presents a number of challenges. How can we achieve deep
understanding of the technique in a limited number of hours, in large classes, with
extremely varying programming ability amongst the students and even with wide
variations in the prior experience of students with TDD itself? We describe how
we have applied a range of agile practices in the design of Red-Green-Go!, a board
game for learning TDD that allows students to tailor the learning experience to suit
their own level of experience and skill. After unsatisfactory attempts to use tradi-
tional teaching methods in our TDD classes, we made use of self-organising teams,
big visible charts, frequent feedback and reflection to create a self-paced teaching
activity. The game board guides pairs of students through the TDD cycle, as well as
introducing students to different pair-coding styles. Feedback is available in various
forms, including “community chest” style hint cards, with more extensive explana-
tions and examples on a GitHub wiki for those that need them. Further scaffolding
is provided by fully worked examples. As well as describing the agile principles and
practices used in the design of the game, we present an experience report from its
use over 3 years, with cohorts of up to 100 students per year. We also reflect on
the approach we took as a general technique for maximising learning amongst large
student groups with widely varying levels of knowledge, experience and skills.

Keywords Test-driven development · Agile games · Software refactoring
Software testing · Big visible charts · Information radiator · Fail fast

S. M. Embury (B) · M. Borizanov · C. Jay
School of Computer Science, The University of Manchester, Oxford Road, Manchester, UK
e-mail: suzanne.m.embury@manchester.ac.uk

M. Borizanov
e-mail: martin.m.borizanov@gmail.com

C. Jay
e-mail: caroline.jay@manchester.ac.uk

© Springer Nature Singapore Pte Ltd. 2019
D. Parsons and K. MacCallum (eds.), Agile and Lean Concepts for Teaching
and Learning, https://doi.org/10.1007/978-981-13-2751-3_19

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2751-3_19&domain=pdf
mailto:suzanne.m.embury@manchester.ac.uk
mailto:martin.m.borizanov@gmail.com
mailto:caroline.jay@manchester.ac.uk
https://doi.org/10.1007/978-981-13-2751-3_19


416 S. M. Embury et al.

1 Introduction

As agile approaches become embedded in industrial software engineering practice,
the need to include such practices in undergraduate curricula has grown. But teaching
agile software engineering in a university context presents a number of pedagogical
challenges. It is easy (and efficient) to deliver selected core facts about agile software
engineering to large classes using the traditional university lecture format. What is
harder to do is to convey the change inmindset needed for agile software engineering,
especially when that mindset directly conflicts with the traditional teaching methods
themselves. There is an inherent tension in using a standard lecture to convey the
idea that, in software engineering, dialogue is a more valuable and effective means
of communication than monologue, that “doing” is more useful than “listening”
and “observing”, that sometimes the most knowledgeable person in the room is the
least experienced or most junior and that control of the communication must shift
according to the current goal. How can we embed a genuine understanding of these
concepts in the lab and the lecture theatre with the teaching resources available to
most university departments?

The agile software engineering community has faced this problem itself, when
working out how to prepare software engineers versed in themore traditional forms of
software engineering for roles in agile software teams. One solution proposed is the
“coaching game” (Parsons, 2014; Paasivaara, Heikkilä, Lassenius, & Toivola, 2014).
Coaching games are short, structured activities that place participants in a position
analogous to one that could be encountered in an agile team. The game rules guide
participants in what actions they can take, while also leaving some aspects open
to choice. The game rules then show the consequences of the decisions made by
the participants, and allow the team to reflect on the courses of action that led to
a successful result and those that led to failure. If the game is well designed, the
analogy between the game situation and real software engineering will be clear, and
during the debrief participants can reflect on their experiences in the game to deepen
their understanding of the core principles being taught.

We have used a number of coaching games proposed by agile participants with
success in our undergraduate courses in agile software engineering at the University
of Manchester. Games such as the Agile Lego Game,1 the Specification Game,2 the
99 Test Balloons Game (McCullough, 2009) and the Ball Point Game (Gloger, n.d.)
have all been played in our classes, in some cases with groups of more than 100
students at a time. Feedback from students has been very positive, with at least half
of the respondents in end-of-unit surveys reporting that the coaching games helped
them to learn the concepts as well as enjoying the active approach to learning.

Where we have been less successful in using coaching games is in teaching the
more technical agile practices. In particular, we have not found suitable coach-
ing games to help us teach the test-driven approaches to programming. We have

1Designed by Sam Newman, Dan North and Mike Hill, at Thoughtworks.
2We use the version by Jens Ostergaard, adapted from an original game devised by James Shore.



Red-Green-Go! A Self-Organising Game … 417

experienced substantial difficulties in teaching these topics, especially test-driven
development (TDD), effectively to our larger classes:

• In a class of 100 undergraduate students, even at final year, there will be a very
broad range of programming abilities, knowledge and experience. How do we
proceed at a sufficiently fast pace to keep the strong coders engaged, without
losing those who are less confident?

• Increasingly, as students are exposed to agile practices and test-driven approaches
in industry placements and in their part-time work, classes will also have a very
broad range of familiarity with test-driven coding practices. How do we run a
single class that deepens the understanding of all students present, regardless of
their starting position in terms of TDD knowledge?

• In a crowded software engineering syllabus, we have very limited time (just 2
hours per semester at the time of writing) in which to introduce TDD. How do we
convey a meaningful chunk of TDD understanding in this short session?

• It is easy to list the core rules of TDD in a lecture, but applying them in practice
is more difficult. How do we steer a class of 100 through the decisions needed to
complete several iterations of the TDD cycle, with just one member of academic
staff and three teaching assistants (TAs) to steer students back on track when they
go astray?

We found a solution to these problems by applying agile techniques to develop a
board game for teaching TDD. The game is played by pairs of students, at a variety
of different levels. Each pair chooses the level of play to focus on, depending on
their particular learning goals, and the level of support and guidance they want to
get from the game. These choices can be reviewed and adapted during the lesson, as
pairs discover that they need more or less support from the game than they originally
envisaged.

In this chapter, we present Red-Green-Go!, the board game we developed to teach
TDD, and show howwe used a range of agile practices to solve the teaching problems
we faced. In summary, we leveraged the following agile practices:

• Self-organising teams: each student pair chooses to play a version of the game that
fits their level of ability/experience, and moves forward at a pace that suits their
changing level of understanding.

• Information radiators: the game board gives an instant visual indication of where
each pair is in the test-code-refactor cycle, as well as the role each pair partner
should be playing depending on the style of pair programming being adopted.

• Pair programming: students work in pairs to enable conversations about the prob-
lem at hand, and the steps the game leads them through. Thus, students act as the
first level of feedback, checking each other’s decisions and proposing alternative
viewpoints.

• Fail fast: student pairs start to code using TDD right from the first move of the
game. Guidance cards kept face down on the board allow students to make their
own decisions, while providing on-demand feedback on those decisions, to give
an early warning when students are heading off track.



418 S. M. Embury et al.

• Feedback: to complement the fail fast approach, the game structure offers multiple
levels of feedback, which students can choose to access or not, as appropriate to
their current learning stage. “Community chest” style cards offer brief guidance
in the core TDD and refactoring principles, backed by links to a wiki, containing
more in-depth explanations and examples for those who need them. Full worked
scenarios give the final level of feedback for teamswhowant to check the sequence
of decisions they made while working through the set problem.

We have used this game to teach three cohorts of students, as part of a final
year elective course unit on agile software engineering. Its use has transformed our
experience of teaching TDD at undergraduate level.

The remainder of this chapter is organised as follows. We begin by surveying the
state of the art in the teaching of TDD and other test-driven methods (Sect. 2). We
present the basic form of the game board and how it supports students through the
mechanics of the TDD cycle (Sect. 3) before describing the various levels and forms
of feedback that we have embedded in the game (Sect. 4). We close by reporting our
experiences of using the game to teach undergraduates, including some limitations
of the current game (Sect. 5), and draw lessons for the application of this approach
to undergraduate level teaching more generally (Sect. 6).

2 Teaching Test-Driven Development

2.1 Background

Test-driven development is a systematic approach to software programming in which
the code for a unit (typically, a class in object-oriented programming) is created
gradually, in lockstep with the automated unit tests for the unit. It was proposed
by Kent Beck and Robert Martin in the late 1990s, and popularised as part of the
eXtremeProgramming (XP)methodology (Beck, 2000). The aim is (inBeck’swords)
to create “clean code that works” (Beck, 2003), by reversing the order in which the
main coding steps are undertaken. In conventional approaches, we first attempt to
create an elegant and clean design for the code we plan to write, then we implement
it and finally we write tests to check whether it works correctly. In other words, we
follow these steps:

1. Design
2. Code
3. Test.

However, as Beck explains, this seemingly logical approach turns out to be more
problematic than would at first appear. We start with a clean design, but in the final
testing step discover that our code does not actually work. That is, some of the tests
fail. The complete implementation exists at this stage, and so fixing the problems
revealed by the tests can require a complex sequence of code changes that usually



Red-Green-Go! A Self-Organising Game … 419

involves doing some damage to the elegance and clarity of the design we started off
with. We end up with code which “works” (i.e., passes the tests) but which is no
longer “clean”.

Test-driven development turns this process on its head. Instead of starting by
trying to write a clean design, in TDD we concentrate first on writing code that
works and that is well covered by unit tests. We then make what changes we need to,
to clean up the design. We can make these changes with confidence because the unit
tests act as a regression test suite, and will tell us (i.e., fail) when we make a code
change that breaks our previously working implementation. Thus, coding progresses
by undertaking the following sequence of steps:

1. Test
2. Code
3. Design.

As can be seen, this is exactly the opposite of the order in which the tasks are
done in the conventional coding approach.

In addition to reversing the order of the steps, TDD requires us to break down our
coding tasks into very fine-grained chunks of implementation. Rather than writing
tests for the whole of the required functionality in one step, and implementing the
complete solution in the next, in TDDwe work in units of functionality equivalent to
a single unit test at a time. This means that, instead of going through this sequence of
steps once per major implementation task, we instead repeat the cycle many times,
each time adding a small sliver of additional functionality to the code.

The process works by asking us to first write a unit test that describes an aspect of
the requirements that has not yet been implemented. This test should fail when run
against the current implementation (which is merely an empty stub at the start of the
process). The next step in the cycle asks us to write code that causes the test to pass.
More than this, we are asked to make only the simplest smallest code change that
will cause the new unit test to pass (while not causing any other tests to fail). In the
final step of the process, we examine the quality of the code as a whole, and refactor
where we see opportunities to improve and solidify the design, or to generalise the
current solution to cover more, similar cases.

Thus, this sequence of steps is actually a cycle that we repeat many times while
coding a single unit, in some cases iterating round the entire cycle in just a few
minutes. This means that all three tasks (testing, coding and design) must be divided
up into a sequence of much smaller tasks. In particular, the design task is converted
into a sequence of small-scale design improvements (although periodically it can be
necessary to make changes with a broader architectural impact). Such small-scale
improvements are known as “refactorings”. Hence, the steps of the TDD cycle are
more commonly labelled:

1. Test
2. Code
3. Refactor.



420 S. M. Embury et al.

This cycle is also sometimes referred to as the “red, green, green” cycle, after the
test results that we expect to see on completion of each step. After the first step, we
should have at least one failing test case, which is conventionally shown as a red result
in unit testing harnesses. After the coding step, the failing test should pass (and no
other tests should have started to fail) so we expect to see the whole test suite passing,
conventionally shown as a green result in a unit test harness. Any refactorings we
make to improve the design should also not cause any functional regression, and so
we again look for a green result as the unit test harness finds that all tests continue
to pass.

2.2 The Challenges of Teaching TDD

The TDD approach sounds simple but in practice requires a significant change of
approach compared with conventional coding, and its benefits can remain opaque in
the face of the additional challenges it brings for the novice TDDer. To begin with,
students need to learn to think about coding problems in terms of a sequence of fine-
grained unit tests, rather than in terms of modules and functions. After this, if the
unit tests that are identified are too coarse-grained (that is, the student is attempting
to code too much functionality in one step), then problems will immediately follow.
The coding step will involve adding many lines of code, making it conceptually
more challenging and increasing the chance of errors. A too-large coding step can
also obscure some of the opportunities for refactoring which need to be applied
in order to simplify the subsequent testing and coding steps, as well as making the
refactorings harder to apply accurately.Worst of all, if the tests are all coarse-grained,
then the test coverage may not be sufficient to catch errors made in the coding step,
and these will lie hidden in the code base until some later stage, when they will be
much harder to fix.

To add to all this, the sequence in which the unit tests are tackled can make
all the difference between a smooth TDD experience and a frustrating one. Unit
tests should be chosen in an order that allows the functionality implemented by
the unit to grow gradually, in a logical sequence of extensions. This minimises the
code changes needed in each coding step and maximises our chances of spotting the
refactorings needed to keep the design clean. If tests are tackled in an inappropriate
order, then the code unit under development will contain incomplete fragments of
different aspects of the implementation, and we will need to keep each strand of
the development separate in our mind, in order to refactor effectively. In practice,
novice TDD developers in this position simply fail to spot the opportunities for
refactoring. The result is that the implementation grows larger, and messier, as the
student attempts to graft on the new code needed to make each successive failing
test pass. The messy code becomes impossible to understand, so that the student
struggles to work out which test cases may still need to be implemented in order to
finish. And the clues that would allow the student to refactor their way out of the
mess are hopelessly buried.



Red-Green-Go! A Self-Organising Game … 421

The importance of the refactoring step in the TDD process is easily missed by
students. In fact, refactoring plays two roles in TDD. One of these, the obvious one,
is the tidying up of design errors: the renaming of variables once their full role is
understood; the combining of cascaded conditional statements into a single more
complex conditional; and the wrapping of related groups of primitive variables into
value classes, to give a few examples. These are true refactorings in the strictest sense
of the word: they change the structure but not the behaviour of the code.

The other role refactoring plays in TDD is to transform code which operates
correctly on a select set of input parameters (as defined by the tests) into code which
will operate correctly across the whole domain of possible input parameters (or a
well-defined sub-domain). This is the kind of refactoring which transforms a code
fragment such as the following:

if (n == 1) { 
   return x; 
}
if (n == 2) { 
   return x * x; 
}
return x * x * x; 

into the more general form:
return x ˆ n;

Refactorings of this kind do not fit the original, strict definition of the term, since
they do change the behaviour of the code, as well as its structure. But they preserve
the aspects of the behaviour that are verified by the test suite; all the tests that passed
before the refactoring still pass after the refactoring. The difference is only in the
interpretation of the test suite. Before the refactoring, the test cases describe single
point cases. After it, they are representative examples of an equivalence class of
tests, standing in for a possibly infinite set of test cases covering a whole domain or
sub-domain of input values and their corresponding output values.

The example we have given is over-simplified in order to make the point but
is nonetheless representative of the kind of transformation that occurs repeatedly
in TDD. The code first grows, somewhat clumsily, as the TDDer follows the strict
interpretation of what the tests are asking for, with each new test being followed
by the addition of an extra if-statement in the coding steps. Then, when the general
pattern is revealed and the refactoring that is required is made plain, the code shrinks,
often dramatically, to a more readable and general form.

This kind of refactoring is an essential partner to the TDD coding steps, in which
the requirements of the tests are followed exactly and somewhat bloody-mindedly.
Without it, the code bloats up in a confusing manner, and never manages to converge
on the kind of general solution that is needed. Since most TDD novices start work
on very simple examples, the experience can be one of setting out to write code that



422 S. M. Embury et al.

would be straightforward to code from scratch using conventional approaches but
that turns into a confusing and error-strewn mess when coded using TDD. If the
student does not realise that they have missed a key step in the process, they can end
up baffled as to what the supposed point of TDD can be.

These problems are compounded by the fact that many undergraduate students
are not yet adept at writing automated tests, especially in advance of the code that the
tests are aimed at verifying. Nor have they had the chance to develop good refactoring
instincts, to be able to spot the code smells that suggest refactorings or to apply them
with enough confidence to make the process a painless one. And, in our experience,
a significant number of students can find it difficult even to remember what kind
of coding step (testing, coding or refactoring) they are supposed to be doing at any
one time. All these problems can add up to a frustrating and fruitless teaching and
learning experience, for staff and students alike.

2.3 Approaches to Teaching TDD

Unsurprisingly, there is general agreement that TDD must be tried, hands-on, to be
learnt effectively (Vodde&Koskela, 2007; Bravo&Goldman, 2010). How to achieve
that in a university environment, with the environment and resource limitations is a
more difficult question.

Mugridge (2003) identifies twomain challenges in teachingTDDtoundergraduate
students: the need to change the thinking processes involved in coding and the need
to develop skills in testing and design that are often undeveloped in students at this
stage.He proposes that fast feedbackmechanisms are the solution to these challenges,
but notes the difficulty of achieving this in practice.

Some academics have attempted to tackle this problem using different delivery
mechanisms, such as coding dojos. In a coding dojo, students volunteer to take it
in turns to come and execute each step of the TDD cycle, while the others in the
room observe and give suggestions. The coding work is thus done collaboratively,
and knowledge is shared throughout the participants. For example, Da Luz, Neto,
and Noronha (2013) delivered a TDD class using a mix between a lecture style
and a workshop style by adopting the coding dojo approach. A survey of students
taking the classes revealed an increase in engagement and interest in TDD after the
sessions. Lee, Marepalli, and Yang (2017) undertook a similar study, carrying out
two different experiments in which the outcomes for students who attended Coding
Dojo style training in TDD were compared with the outcomes for students taught
using traditional lectures and labs. They found that code coverage was better for
the Coding Dojo participants, and that students in that group viewed the activity as
non-competitive and non-threatening.

The codingdojo technique, however, shares someof the disadvantages of a lecture-
based style of presentation. In a large class, it is possible for a student never to
volunteer, or be selected to implement any of the steps in the process, and it would
be easy to disengage and lose focus, and therefore lose the ability to jump in and



Red-Green-Go! A Self-Organising Game … 423

contribute code or ideas. Moreover, the whole class must work at the same pace,
regardless of the understanding or skill levels of the participants. An extension of
the coding dojo idea is the coderetreat, in which participants take a day to repeatedly
solve the same coding problem, with different pair partners and exploring different
techniques (Parsons, Mathrani, Susnjak, & Leist, 2014). Pairing and TDD are at the
heart of this approach, due to their ability to promote conversation and reflection
within the coding process.

Other course leaders have looked to tool support to assist in the teaching of
TDD. In particular, a number of authors have focused on the difficulty some novice
developers experience in writing tests, noting that this is a key barrier for the effective
learning of TDD, and have proposed tools to make test writing easier. Miller (2004),
for example, proposed the use of a simple text file, containing input/expected output
pairs for tests, rather than asking students to learn to code xUnit style tests at the
same time as learning to code in general. A very lightweight approach is taken in
which the algorithm under implementation is embedded within a programme that
executes the code for each input/output pair in the test file.

A more sophisticated approach to the same idea is taken in the ComTest system
(Lappalainen, Itkonen, Isomöttönen, & Kollanus, 2010). Students using ComTest
can write their tests as Java code embedded within JavaDoc comments in the same
file as their solution. An Eclipse plug-in has been developed that allows the tests
to be executed, and the results viewed. This approach extends the work of Miller,
by allowing test fixture code (setup and teardown) to be included in the specifica-
tion of the tests, along with more complex input/output specifications. For example,
input/output values can be specified as a simple textual table. Wellington, Briggs,
and Girard (2007) attempted to make testing even easier for beginning coders, by
creating a wizard for test creation, for use within an Eclipse plug-in. The student
uses the wizard to select the unit of code under test and supplies the necessary input
values and the expected outputs. The wizard then generates the equivalent JUnit code
on the student’s behalf.

These tools are intended only as a stepping stone to allow beginning programmers
to develop the habit of TDD while learning to code, without the added headache of
needing to learn a testing harness. It is expected that students will graduate to writing
true tests, at some point. The question then becomes how to assess programming
exercises carried out using TDD. It is not enough simply to assess the solution as
produced at the end of the coding process.We need to know that students havewritten
appropriate tests, and may also wish to assess whether students have followed the
TDD rules in order to reach their solution.

Various approaches have been taken to the assessment of TDD-based coding
exercises.One solution is tomakeuse of tools common in industry, such as continuous
build and test tools in combinationwith version control systems such asGit. Goodwin
and Drange (2015) report the use of T-FLIP, an industry-like coding environment, in
which students get feedback on their work through the use of Git and the Bamboo
continuous integration tool. The feedback reports on the results of a model test suite
prepared by the instructor in advance, and executed against the students’ solutions
when they are pushed to the Git repository. Feedback is also given regarding student



424 S. M. Embury et al.

performance compared with the rest of their cohort. A variety of other tools have
been proposed to provide feedback using tests, including Marmoset (Spacco et al.,
2006) and Professor CI (Matthies, Treffer, & Uflacker, 2017).

Checking that model tests pass when run against student submissions (and inter-
mediate solutions) can be a useful aid in teaching TDD, especially for assessed work.
But test results do not in themselves tell us anything about the quality of the test suite
created by students (or its fit to the rules of TDD). Some researchers have proposed
tools that can assess the quality of the tests directly. Notably, the Web-CAT system
checks the correctness of the tests written by students for correctness by running them
against a model solution provided by the investigator, and also assesses complete-
ness of student test suites by measuring the code coverage they give on the model
solution (Edwards, 2003). Suleman, Jamieson and Keet (2017) proposed a different
approach, in which completeness of student test suites is assessed by running them
on mutants created automatically from the model solution.

As can be seen from this survey, while we are beginning to understand the delivery
mechanisms and tooling that can help us to teach TDD effectively to undergraduates,
a number of open questions remain. Providing students with detailed feedback as
they work through hands-on examples seems to be an important part of the solution,
but techniques for achieving this in class for large undergraduate classes are still
needed. In particular, feedback on the combined results of carrying out the steps of
the TDD cycle is needed, even if good support is in place for teaching students the
skills needed for the individual steps (such as testing and refactoring).

3 Information Radiator: The Red-Green-Go! Game Board

The teaching challenges we described in the introduction to this chapter and the pre-
ceding section are easy to address when novice TDDers can code in partnership with
someone experienced in TDD. The more experienced developer can steer the novice
away from potential pitfalls, as well as emphasising key steps that the novice might
otherwise miss (such as giving thought to the order in which test cases are tackled,
and the need to apply generalising refactorings as well as strict refactorings). Unfor-
tunately, this is not possible in a class of 100 students, taught by 1 lecturer and 2–3
TAs. While it is usual to have between 5 and 10 students with some TDD experience
in our cohorts, this is far too few to go around. Moreover, these experienced students
will actually have a varied amount of knowledge and understanding, since the term
TDD is used loosely by some industry practitioners. In some cases, it can be used
to mean merely a type of coding that places emphasis on writing automated tests in
some form, either before or after the implementation of the desired functionality. It
is therefore risky to rely on students who self-identify as TDD experts to teach other
students.



Red-Green-Go! A Self-Organising Game … 425

We needed some form of teaching aid that would substitute for a knowledgeable
coding partner, as far as possible. Since coaching games had proved effective and
popular with our students in other parts of the course, as well as for other aspects
of software engineering (Caulfield, Xia, Veal, & Maj, 2011), we set out to develop
a teaching game for TDD. The rigid and cyclical structure of the TDD process sug-
gested that a board game might help. Students could place counters on the positions
on the board, which would tell them whether they should be writing a test, imple-
menting some code or refactoring. Themarkings on the boardwould show the student
where to move their counter to, once the current step was complete, and so guide
them as to the next kind of coding step to be undertaken.

Here, we are applying the agile practice of the information radiator, also known
as the big visible chart. Rather than requiring students to keep the TDD cycle in their
heads, the board and game counters give a clear visual indicator of the current stage
of the work, as well as an unambiguous route to the next stage.

At first, we envisaged a simple cyclical board, with three places for counters,
corresponding to the three steps of the classic red-green-green TDD cycle, and with
arrows indicating the direction of travel. We used colour coding to indicate the test
execution result needed to pass to the next stage. However, a prototype made clear
that this lacked some essential game-like elements: the starting point was not clear,
and nor was the end goal. The game just seemed to loop pointlessly forever.

It also lacked any support for students working in pairs. A secondary learning
outcome for us for this session was for students to gain a deeper understanding of the
practice of pair programming (Williams, Kessler, Cunningham, & Jeffries, 2000).
There were several reasons for this. It is a core agile practice that we wished our
students to be familiar with, in order to deepen their understanding of the collabora-
tion principles behind the agile approach. We also wished to obtain the educational
benefits that come from use of the practice in a classroom situation (McDowell,
Werner, Bullock, & Fernald, 2002). Finally, we were concerned that while many of
our students were aware of the term pair programming, they often had only a surface
understanding of the term.

Like many agile practices, the evocative name of this practice appears to tell you
everything you need to know about it: pair programming is when two people work
together on a programming task. In reality, there is more to pair programming than
just having two people sit at one computer. To be effective, pair programmers must
genuinely share the work, swapping who is typing at the keyboard frequently, with
the person who is not typing working just as intensively as the one who is. Two
distinct roles are usually mandated: the driver role and the navigator role (Wray,
2010). The driver sits at the keyboard and focusses on the detail of the coding task
to be completed. The navigator observes the code as typed, and tries to think about
the bigger picture and whether the pair is moving in the correct direction overall.
Like many agile practices, pair programming converts the business of coding from a
solitary activity into a shared one, with conversation (dialogue) as the central means
of making progress and checking correctness.



426 S. M. Embury et al.

Wewanted these same benefits for our students.Wewanted the game to encourage
students to learn through a conversation about the process of TDD and how it applied
to the example they were working on. To maximise this, we needed students to be
taking both the driver and navigator roles, and swapping them frequently, rather than
having the more confident student hog the keyboard while the less confident student
looks on, getting increasingly lost and disengaged.

In our early attempts to introduce pair programming, we found that students really
struggled to keep in mind which role they were supposed to be playing. Many were
already confused as to which stage of the TDD cycle they were in, and the need to
swap pair programming roles as well just added to the confusion. So, we needed our
game board to clearly signpost the pairing strategy as well as the TDD cycle.

The board designwe came upwith is shown in Fig. 1. The board shows two routes,
one by road and one by river. Each student in the pair chooses one route and sticks
with it throughout the game. The ellipses on the routes indicate places where students
should place their counters (we use halma pawns) and pause to complete a task in
the TDD cycle. When the student lands on a large ellipse, they must take the driver
role, and when they land on a small white ellipse they must take the navigator role.
The text on the driver role ellipse indicates which stage of the TDD cycle the pair is
in, and so which coding action should be taken. These ellipses are also colour coded;
to indicate the result, we expect to see in the test suite when the step is completed.

It can be seen from the game board that the driver and navigator roles switch
from one route to the next with each stage in the cycle, following the style of pair
programming known as ping-pong pairing. This shows students which role they
should play at any time and enables them tomanage the frequent role shifts alongside
the need to remember which stage of the TDD cycle they are in. The instructions for
play are given to students on laminated cards (shown in Fig. 2).

The board shows four full TDD cycles, after which point the students will be at
the top of the board. This gives a sense of completion and progress for students,
who often struggle through their first few cycles. It also gives us a useful checkpoint
of team progress when teaching the class, and a point at which a small reward (a
chocolate, for example) can be given to keep students motivated. After this point,
both routes lead the students back to the bottom of the board for another round of
four TDD cycles. Students are often moving more quickly by this point, with more
confidence, and the second journey up the board typically takes place much more
quickly than the first.

Since we were not guaranteed to have an even number of students in each class,
and since we wanted a resource that students could use outside of class should they
wish to, we also developed a “solitaire” version of the board, for solo play. This
can be seen in Fig. 3. In this version of the board, only the road route is populated
with ellipses, and there are no navigator role ellipses. Otherwise, the operation of the
board is the same. Other variants of the board can be envisaged for teaching different
pairing styles.



Red-Green-Go! A Self-Organising Game … 427

Fig. 1 The Red-Green-Go! Game board for ping-pong pairing



428 S. M. Embury et al.

Fig. 2 Instruction card for playing Red-Green-Go!

4 Self-Organisation and Trust in Red-Green-Go!

The game board described in the previous section helps students to know what they
are supposed to be attempting at each stage, but this will only take them so far.
Students also need guidance regarding what is involved in carrying out each step.
While we present the basic TDD stages in a short lecture at the beginning of a session,
our experience is that students forget most of what they are told when it comes to
the business of actually carrying out each stage. On-the-spot guidance is needed to
help students get started, and to keep moving forward under their own steam, even
when they do not yet fully understand the process they are trying to implement.

To solve this problem, we provided various levels of guidance to students, and
allowed each pair to self-organise and set its own goals and starting point.We provide
three scenarios that students can choose to work on:

• A quick and easy introductory example covering a small domain and requiring a
single method implementation (based on the game Fizz Buzz).

• A simple example covering a bigger domain and requiring a single method imple-
mentation (a Roman Numeral converter).

• A trickier example mixing a collection data structure and the need to calculate to
a fix point (a text processing example, called Soldiers on Parade).

The scenarios are presented as laminated cards. An example is shown in Fig. 4.
Notice that the scenario itself can be played at three different levels, depending on



Red-Green-Go! A Self-Organising Game … 429

Fig. 3 The Red-Green-Go! Game board for solo play

how much scaffolding students want to get from the materials. Students who are
uncertain of how to begin can download a class structure, with stub methods and an



430 S. M. Embury et al.

Fig. 4 The roman numerals scenario instruction card

outline test case, from a Git repository to get them started more quickly. Those who
are more familiar with test-first coding techniques can design their own production
code classes and methods, and write their own tests from scratch.

In addition to the scenarios, we provide “community chest” style guidance cards,
giving information and hints about the three steps of the TDD cycle. These cards
are placed face down on the three boxes near the top of the game board (labelled
Test, Code and Refactor). The idea is that students who are uncertain and can’t move
forward can select the top card, read the statement on it and discuss it. If the statement
helps, then the students can put the card at the bottom of the pile and start work on
their current task. If it does not, they can take another from the top of the pile. Some
of the guidance cards for the coding step are shown in Fig. 5 as an example.

As the figure shows, these cards contain only brief, gnomic statements. They can
help to jog the memory of a student already familiar with the ideas, or to trigger
understanding in a student who is close to that point already, but they will not help
the truly baffled. To help in this case, we added a further layer of guidance. Each
guidance card comes with an ID code printed on the side (“C1”, “C2”, etc.). This
code can be used to locate a fuller description of the concept described by the card,
with examples, on the Red-Green-Go! wiki.

Another form of scaffolding we have provided to allow self-organisation of pairs
concerns the test cases needed to specify and drive the implementation of the code
described in the scenario. At the top right of the board is a box labelled “test cases”.
We found that some students experienced difficulties in generating test cases at the



Red-Green-Go! A Self-Organising Game … 431

Fig. 5 Examples of the guidance cards for the coding step

correct level of granularity, and that this was a stumbling block for progress with
TDD. We also wanted to encourage students to think explicitly about the important
question in TDD of the order in which to tackle the test cases. To meet both these
needs, we provided with each scenario a set of cards giving the test cases that need to
be considered in order to implement the solution with fine-grained TDD steps. The
cards are placed face down on the game board. This means that students know they
are there, in case of difficulties, but are also first encouraged to try some test design
for themselves before they are distracted by the cards. Pairs who are stuck can turn
over one or more of the cards and experiment with different orderings before starting
to code. A sample of the cards provided for the Roman Numerals scenario is given
in Fig. 6.

These cards also act as a form of rapid, on-demand feedback for more confident
pairs. Students can first work out for themselves what they think the important early
test cases are. Then they can check their answer against the test cases we provided for
them. They can compare the granularity of their own tests with the sample solution
tests, and make adjustments to their strategy as seems appropriate.

Finally, the Red-Green-Go wiki also contains full worked versions of the scenar-
ios, describing in detail the testing, coding and refactoring steps taken en route to a
solution, and the reasoning behind each step. They are intended to allow students to
check their own solution once it is complete, but also to provide scenario-specific
guidance to students who have made some progress, but who become stuck part way
through the development.

All these guidance and feedback mechanisms provide a hierarchy of mechanisms
by which students can get help to get past blocks in understanding or confidence.
The full hierarchy supported by the game, in roughly the order we expect students
to consult each item, is as follows:



432 S. M. Embury et al.

Fig. 6 The roman numerals scenario test case cards

1. The game board can give feedback on whether each coding partner is doing the
right kind of thing at any one time.

2. The test case cards give help in identifying the right granularity of code incre-
ments, and in knowing when the task is complete.

3. The guidance cards give help on carrying out each of the three types of activity
(writing a failing test, making a failing test pass, and refactoring to raise the
quality level of the code).

4. Advanced level guidance cards cover aspects of TDD that beginners don’t need
to worry about. Students can choose which level of guidance card they use.

5. The game wiki has additional explanation for all the guidance cards, in case
the somewhat terse pronouncements on the cards are not clear or helpful in
themselves.

6. Full worked versions of the scenario solutions, showing the steps and reasoning
involved, allow students to check their own thinking andprovide scenario-specific
guidance when the more general resources are not proving useful.

7. Staff and TAs circulate around the room as a last line of defence. Pairs can call
for help at any time (though preferably after trying at least some of the other
forms of feedback).

The feedback/guidance mechanisms that appear early in the list are quick to
access but provide only high-level hints as to the next step needed. Later mechanisms



Red-Green-Go! A Self-Organising Game … 433

require more commitment from the students but provide deeper information and
more extensive explanation. Staff and TAs are consulted when students feel the
cost of accessing the next level of guidance is too high, or when they need help in
navigating the choice of guidance mechanism available.

The result is a learning experience in which each pair in the cohort is trusted to
set their own goals and to work towards them in the session. The structured nature
of the activity means that staff and TAs can zoom in on the particular level/stage of
each pair quickly, even when class sizes are large and each pair is working at a very
different pace and from a very different starting point. In theory, the activity should
scale well to even larger classes than we have tried so far, requiring only a modest
increase in the number of TAs as the class size grows.

5 Reflections on Red-Green-Go! in Practice

Since the development of the Red-Green-Go! game in the summer of 2014, we have
used it with three cohorts of our own students and with one cohort of trainees at
an external industry partner. In this section, we report on the experience of using
Red-Green-Go! in the classroom and on which parts have been successful and which
need further thought.

5.1 The Game Board

Feedback from students regarding the game board as a way of inculcating the steps in
the TDD cycle (and the role swaps involved in pair programming) has fallen broadly
into two camps. One group of students has been enthusiastic about the game, found it
very helpful and also a fun and engaging way to learn about TDD. The second group
failed to see the point of the game, and found it instead an unhelpful distraction. This
group tended to abandon the game board early in the session and just concentrated
on coding. On our first run of the game, these two groups were roughly equal in size,
but in later runs (as we have got better at explaining the point of the game, and as
we refined the design of the materials provided to students) this second group has
grown smaller in comparison to the first (though still represent a sizeable proportion
of the students—roughly a quarter of those who gave feedback in the most recent
run of the game).

Students seemed to have few difficulties in navigating the array of choices the
game presents them with. Most students started off with very little confidence, and
so were happy to go for the easiest scenarios and to make full use of the test case
cards. A small number of students each year chose the more advanced scenarios,
which have turned out to be important in keeping more experienced students in the
room and learning. In previous runs of the course unit, students with TDD experience
from their industrial placement year, or from work outside their studies, would steer



434 S. M. Embury et al.

clear of any session labelled as an “introduction” to TDD “basics” (labelling which
was important for motivating the students without experience). But, even students
who have worked on a TDD team for a year in industry can still have a lot to learn,
and their presence in the room is important in conveying the value and spread of
TDD in practice. Through the advanced scenarios, students with TDD experience
can still get a lot out of the session, because it gives them time to reflect on the TDD
process they have learnt, to experiment with variations and to compare approaches
with students who have worked in other teams and used TDD in different ways.

We also encourage more experienced students to pair with less experienced stu-
dents, taking a coaching role. Coaching is an important part of the agile approach
to software engineering, and the game board gives students confidence to take on a
coaching role during the session, where in a more free-flow lab-style session, they
might be wary of guiding fellow students wrongly. This was a benefit of the game
(and particularly the self-organising nature) that we had not anticipated at the start.

The value of the graded scenarios is shown by the way they are used in practice.
In each year, we have had a small number of pairs who initially elected to work on
the more advanced scenario, only to retreat to the basic scenario after a short time
working with it. Students can make this change quietly and without needing to signal
any “failure” with the harder scenario. Without this flexibility, inevitably, a portion
of students would have been working on a scenario that was too hard or too easy for
their current needs, and would feel that the session had wasted their time.

Across all the sessions, we observed that a significant number of pairs (approach-
ing half the class, and including some of those who were enthusiastic about the
game) abandoned the use of the game board quite early on. This is not necessarily a
problem. The point of the board is to help students form the red-green-green cycle
(and the role swapping of pair programming) into a habit that no longer requires
conscious thought. If a pair uses the board to learn the basic cycle and starts to feels
confident enough to continue without it, then the board has done its job. It was not
clear, however, that all pairs who abandon the board are in this happy position. We
have noticed a deterioration in the amount of pair role swapping in some teams who
abandon the board early, and in the quality of the code produced by these teams.
It is impossible to track the detailed progress of all students in these classes, but
from the pairs we have been able to observe that it seems that the refactoring step
is the one most likely to be neglected when the board is no longer used. Students
can successfully operate a test-code-test-code sequence without the board’s help, but
often forget to refactor, or else don’t give the time needed to spot the refactoring
opportunities present in the code.

5.2 The Guidance/Feedback Mechanisms

Of the various guidance mechanismsmade available to students, the most commonly
used, across all cohorts we have observed, are the test case cards. All pairs choosing
to work on the easier scenarios will make some use of the test case cards at some



Red-Green-Go! A Self-Organising Game … 435

point. Most importantly, the existence of the test case cards forces students to think
about the order in which they will work on the tests, in an explicit way, whereas
without them students will work on whatever test they can think of next. This aspect
of the game has been very successful, and we are planning to increase the number of
scenarios with test case cards included. At present, the advanced scenario contains
only blank cards, for students to write their own test case ideas on.

The step guidance cards are used by many pairs, especially in the early steps,
but are also completely ignored by many pairs. We have observed some teams who
do not even place the cards on the board, but leave them to one side. Again, this is
not necessarily problematic if pairs are making progress without them. There is the
possibility, though, that the cards are not doing their job and that pairs are turning
to staff and teaching assistants with queries before looking at the guidance cards. It
is possible that the brief cards we have used to date are too aphoristic. They may be
good at triggering a remembrance of a concept already understood by a student, but
may be much less successful at imparting that concept in the first place.

The wiki pages, containing a more detailed description of the concepts behind
the cards, are almost universally ignored by players of the game in our classes. The
wiki is hosted in a GitHub repository, and we are able to monitor hits on the pages
during the session using the GitHub traffic facility. In some years, there has not been
a single access to thewiki pages during the sessions themselves. This was not entirely
unexpected. The wiki pages were designed for use by students playing Red-Green-
Go! outside the session, using game sets we have made available for students to loan
out and play in their own time. Typically, in each cohort, a few students explore the
wiki pages in the days following the session, and a handful more do so during the run-
up to the exams. But, for the most part, students ignore the additional explanations
on the wiki pages. This further raises the question of whether the guidance cards in
their current form are sufficient, since it seems that for many students they are the
only resource that will be looked at. Maybe a slightly bigger card, that does not sit
on the game board itself, and that can contain more information is needed? Maybe
students would benefit more from cards that give clues to the specific coding and
refactoring steps needed in response to each suggested test case card, rather than the
general guidance we currently give? While the solution is not immediately obvious
to us, it is clear that this aspect of the game is not providing the benefits we hoped
for from it originally and that something different is needed.

The full worked solutions to the scenarios have been used by students, however,
andwe have receivedmore positive feedback from students about these than about the
game itself. These scenarios are intended to be used by students after the session, to
reflect on the process as they followed it compared with the TDD steps in the worked
solution (and the code produced). For the most part, this is how they have been used,
although we have observed a small number of pairs working through the document
in the session, when they have got irretrievably stuck while working from the game
board and guidance cards alone. The success of the worked solutions, in conjunction
with the lessons from the less-successful guidance cards, leads us to conclude that
we need to find some way of codifying the knowledge and experience the worked
solutions contain, into a form that more easily accessible during gameplay.



436 S. M. Embury et al.

5.3 The Lecturer’s View

From an instructional point of view, the game has been a success compared with our
earlier attempts at a more conventional teaching approach to this topic. In our earlier
attempts, most staff and TA time was taken up by explaining the basic mechanics
of TDD. Students were continually uncertain regarding whether they were supposed
to be writing a test, or coding, or refactoring. Since few students were following the
TDD cycle correctly for even the earliest, easiest cycles, answering these questions
for individual pairs proved difficult. Often, they had not followed TDD at all, so
working out what stage in the cycle they were at by looking briefly at their code was
a futile activity. Telling these students they needed to throw away what they had done
and start again from scratch did not make for a rewarding and meaningful learning
experience, for anyone concerned.

The introduction of the Red-Green-Go! board game changed this dramatically.
An unexpected benefit of the game was the way the game board (in its information
radiator role) gives a clear visual indicator to staff of which student pairs are making
progress and which are not. In a conventional computer-based exercise, it would not
be possible to walk along a row of students sat at computers and understand instantly
at which stage each one is at. With the Red-Green-Go! board game, students who
are stuck or who are making faster than expected progress are easily visible. Since
we also hand out small chocolates each time a pair makes a full circuit of the board,
we can tell from the number of sweet wrappers how far a pair is progressing with a
scenario. We can also see which scenarios a pair is working on, based on the cards
that are placed on the board, and which of the scenario envelopes has been opened.

With the introduction of Red-Green-Go!, all students have been able to follow
the TDD cycle for at least a few complete cycles, and the questions about what kind
of coding activity needs to be done next have completely disappeared. These have
been replaced with questions about the motivation behind TDD, and its strengths
and weaknesses: much more productive and useful conversations all round.

The major area of learning that the game does not support well at present is in
the refactoring step. Students report that this step is the one where they feel the most
uncertainty while playing the game at present, in terms of how to refactor but also
in terms of when to refactor. Although the game clearly indicates when refactoring
should be considered in the TDD cycle, it is often the case that no refactorings are
needed in some cycles. It is even possible to refactor too early or too enthusiastically
when carrying out TDD, making subsequent coding steps more complicated and
future refactoring opportunities (especially for generalising type refactorings) harder
to spot. Thus, the refactoring step requires considerablymore judgment than the other
two steps (both of which are quite mechanical, once the tricky question of the order
in which tests will be tackled has been dealt with).

Once again, the mechanics of the Red-Green-Go! board, by keeping students
following some approximation of the TDD cycle, allow us to see quickly which
pairs are struggling. For pairs who are not carrying out the refactoring step ade-
quately, their code grows in size with each TDD cycle, but decreases dramatically



Red-Green-Go! A Self-Organising Game … 437

in quality—without the balancing aspect of the refactoring, students who follow
the instructions to “code to the test” in the coding step succeed only in producing
large amounts of increasingly horrible code. Success in TDD is vitally dependent
on correct refactoring, and this is the aspect of TDD that is least well supported by
the Red-Green-Go! game at present. Wider curriculum changes at The University of
Manchester are helping with this, in that we are now teaching the writing of auto-
mated tests and the skill of refactoring and identifying code smells in the first and
second year course units on our undergraduate degree programmes. We will need to
observe how these changes affect players of Red-Green-Go! in future cohorts who
arrive in our course unit withmore of the skills needed for effective TDD than hereto-
fore. But, we should also examinewhether changes to Red-Green-Go! can give better
support for the refactoring step. One option would be to provide scenario-specific
hints (e.g., “If your code for this method grows larger than 12 lines long, you need to
go back and refactor”). Keeping the hints scenario specific will allow us to be more
prescriptive, and maybe more helpful, than the generic refactoring guidance we give
at present.

Even the recognition of this challenge for the design of the game is also evidence
of its value, however. In previous years, we would not have been able to gauge the
points at which student understanding was being blocked with such precision as
Red-Green-Go! allows. The structured nature of the game, while limiting student
actions during the session, has freed up both staff and students to consider the deeper
aspects of the TDD process. This has been the biggest instructional success of the
game: the generation of meaningful conversations about TDD between students, and
between students and staff.

5.4 Limitations/Data Gathering

The significance and generalizability of the above reflections on the use of Red-
Green-Go! in our classes are limited by their anecdotal nature. In assessing the
success or otherwise of Red-Green-Go! we faced all the usual challenges of research
in computer science education. As Holmboe, McIver and George have stated:

[…] there are obvious difficulties in empirically evaluating [teaching innovations] – aside
from the expense of running two concurrent courses and comparing results, such techniques
would be ethically dubious, potentially disadvantaging students in one course or the other.
Where comparisons can be done across different years, the number of changes between the
courses makes it difficult, if not impossible, to evaluate the effect of individual changes.
(Holmboe, McIver, & George, 2001, p. 4)

Software engineering academics who wish to gather rigorous evidence regarding
the effects of specific approaches to education often fall back on the tried and tested
method of issuing questionnaires to their students, after experiencing the innovation
in action. But our experience in the course unit supported by Red-Green-Go! is
that undergraduate students suffer from survey fatigue, as well as a full timetable.
Responses in sufficient numbers to bemeaningful can only be obtained by sacrificing



438 S. M. Embury et al.

significant amounts of class time. This is a difficult decision for a course leader to
make, given that the questionnaire results will not benefit the students who take the
time to complete them. Nor does it seem likely that students will be able to correctly
assess the depth to which they have learnt a skill in the hours, days or even weeks
following the class.

To gather more rigorous evidence for or against the use of Red-Green-Go! in its
current form, an alternative approach is to record the actual coding steps taken by
students. From this, we could assess how closely students are following the TDD
cycle, and how their ability to follow the cycle changes over time. We could ask
students to check their code into a Git repository after each small code change, but
this adds an additional burden onto students (would we need to include a reminder
to commit on the game board?) and seems unlikely to result in records of consistent
granularity across cohorts.Alternatively,we couldmakeuse of automatedmonitoring
systems, such as that provided by theMarmoset automated assessment system,which
captures snapshots of student code on each save (Spacco, 2006). Or, to take this
further, we could experiment with the use of the Zorro system, which records low-
level coder behaviours within an IDE, such as running a test or invoking a refactoring
operation, and which attempts to determine from this whether the users of the IDE
are following the TDD cycle or not (Johnson & Kou, 2007).

This could be very informative as regards the learning of TDD, but it will not tell
us whether players of Red-Green-Go! are following the correct pairing procedures.
For this, we may need to resort to video recording the pairs (with permission) and
analysing the pattern of keyboard swaps. However, as always when experimenting
on our own students, we will have to consider whether the time taken to gather and
analyse the data is worth the resulting gain to future generations of students in the
generation of genuinely transferable knowledge.

6 Conclusions

Our goal in designing Red-Green-Go! was to enable a class of 60–100 students to be
able to experience TDD on a real example, in the space of just 2 hours, with a single
staff member and three teaching assistants in support. We wanted a mechanism that
would allow students to start doing TDD immediately, even when they do not yet
understand what it is or the concepts behind it. This learning-by-doing approach is
at the heart of the agile philosophy and continues the theme of asking students to
have the courage to “fail fast” in their learning, by trying out techniques even before
they have been thoroughly introduced to them.

The game we have designed achieves this by offering several levels of guidance
mechanism, from the information radiator of the game board itself, through the
various types of guidance card, to the conversations that students have with staff
and teaching assistants during and after the session. The guidance mechanisms we
have designed are available on-demand to all students, and can also act as a feedback
mechanism to allow students to check their decisions at each point, as well as guiding



Red-Green-Go! A Self-Organising Game … 439

those decisions in the first place. Further information about the game, and access
to some of the game resources used in our teaching, can be found on GitHub at:
github.com/redgreengo/Red-Green-Go.

In our experiences of teaching TDD with the game to three cohorts of undergrad-
uates and one industry team, we have discovered its value as a means of assessing the
progress, and points of blockage, of a large class, as well as its value to the students
themselves. We have also gained a better understanding of the more challenging
aspects of teaching TDD, and of the ways in which our current game design is not
providing the support students need. In particular, we need to look at the design of the
guidance cards on the TDD steps, and the organisation of the explanatory material
in the wiki. We also need to look at ways to help students perform refactoring with
more confidence, especially in the key steps towards the middle of each scenario,
when important refactoring decisions have to be made. A possible route forward here
is in pulling some of the information from the worked solutions (which have proven
to be very useful to students) more explicitly into the gameplay.

Our experience with applying the agile practices of information radiators, self-
organisation and feedback in the design of this one instructional device points out
lessons for the design of teaching materials in general. For us, probably the biggest
lesson is the value to be gained from designing teaching activities in a self-pacedway,
as opposed to a lecturer-guided way. In a self-paced activity, students are provided
with thematerial in a form that allows them towork at their ownpace, start at their own
starting point, and finish at the point where the learning benefits for them personally
start to decline. We have started to move towards this approach with our second year
teaching, in which general software engineering concepts are covered, and have been
receiving very positive student feedback. These teaching approaches require students
to be more engaged, and to take responsibility for their own decisions and for how
hard they push themselves in workshops. This is in contrast to the alternative, more
passive form of teaching, in which students act as observers while the lecturer guides
students (all at the same time) through an activity.

We have also found that taking an information radiator approach to the design of
course materials can be helpful in managing a large class of students, all working at
their own pace. By considering not only the design of the materials but also the visual
manifestation of progress, we can design teaching materials that provide lecturers
with minute-by-minute feedback on how student understanding is progressing, at a
far finer-grained level than with techniques such as clickers, and in-class quizzes. Of
course, not all subjects will be amenable to an information radiator approach, but
simple progress charts and scorecards are widely applicable.

In peer review of our TDD workshops for undergraduates by a fellow lecturer, it
was commented that our approach requires the lecturer to trust the students to get
on with the activity and for the students to have the courage to attempt the exercise
even before they had begun to learn about it. Trust and courage to do rather than plan
are both key parts of the agile approach to software development that seem likely to
have value in any teaching activity to which they are applied.



440 S. M. Embury et al.

Acknowledgments Wewould like to thank themembers of the InformationManagement Research
group at Manchester who volunteered to play the Red-Green-Go! game in our early trials, and who
gave excellent feedback. We would particularly like to thank Iliada Eleftheriou, FardeenMackenzie
and Leonard Peter Binamungu, for their assistance in running the Red-Green-Go! game in our
classes, and to all the University of Manchester undergraduate students who were willing to try the
game and to report back on the experience.

References

Beck, K. (2000).Extreme programming explained: Embrace change. Boston,MA:Addison-Wesley
Professional.

Beck, K. (2003). Test-driven development: By example. Boston,MA:Addison-Wesley Professional.
Bravo, M., & Goldman, A. (2010). Reinforcing the learning of agile practices using coding dojos.
In International Conference on Agile Software Development (pp. 379–380). Berlin, Heidelberg:
Springer.

Caulfield, C., Xia, J. C., Veal, D., &Maj, S. (2011). A systematic survey of games used for software
engineering education. Modern Applied Science, 5(6), 28–43.

Da Luz, R., Neto, A., &Noronha, R. (2013). Teaching TDD, the coding dojo style. InProceedings of
13th IEEE International Conference on Advanced Learning Technologies (pp. 371–375). IEEE.

Edwards, S. H. (2003). Using test-driven development in the classroom: Providing students with
automatic, concrete feedback on performance. In Proceedings of the International Conference
on Education and Information Systems: Technologies and Applications EISTA (Vol. 3). Citeseer.

Gloger, B. (n.d.). The Ball Point Game. Retrieved from https://borisgloger.com/wp-content/upload
s/2016/08/Ball_Point_Game.pdf.

Holmboe, C., McIver, L., & George, C. (2001). Research agenda for computer science education.
In 13th Workshop of the Psychology of Programming Interest Group (pp. 207–223).

Johnson, P. M., & Kou, H. (2007). Automated recognition of test-driven development with Zorro.
In Agile Conference (AGILE), 2007 (pp. 15–25). IEEE.

Lappalainen, V., Itkonen, J., Isomöttönen, V., & Kollanus, S. (2010). ComTest: A tool to impart
TDD and unit testing to introductory level programming. In Proceedings of the Fifteenth Annual
Conference on Innovation and Technology in Computer Science Education (pp. 63–67). ACM.

Lee, Y., Marepalli, D. B., & Yang, J. (2017). Teaching test-driven development using Dojo. Journal
of Computing Sciences in Colleges, 32(4), 106–112.

Matthies, C., Treffer,A.,&Uflacker,M. (2017). Prof. CI: Employing continuous integration services
and Github workflows to teach test-driven development. In 2017 IEEE Frontiers in Education
Conference (pp. 1–8). IEEE.

McCullough, M. (2009). 99 Test Balloons agile game. Retrieved from http://tastycupcakes.org/20
09/06/99-test-balloons.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002). The effects of pair-programming on
performance in an introductory programming course. ACM SIGCSE Bulletin, 34(1), 38–42.

Miller, K. W. (2004). Test driven development on the cheap: Text files and explicit scaffolding.
Journal of Computing Sciences in Colleges, 20(2), 181–189.

Mugridge, R. (2003). Challenges in teaching test driven development. In International Conference
on Extreme Programming and Agile Processes in Software Engineering (pp. 410–413). Berlin,
Heidelberg: Springer.

Paasivaara, M., Heikkilä, V., Lassenius, C., & Toivola, T. (2014). Teaching students scrum using
LEGO blocks. In Companion Proceedings of the 36th International Conference on Software
Engineering (pp. 382–391). ACM.

https://borisgloger.com/wp-content/uploads/2016/08/Ball_Point_Game.pdf
http://tastycupcakes.org/2009/06/99-test-balloons


Red-Green-Go! A Self-Organising Game … 441

Parsons, D. (2014). Creating game-like activities in agile software engineering education. In Pro-
ceedings of the Australasian Software Engineering Conference, Education Track, Sydney, Aus-
tralia.

Parsons, D., Mathrani, A., Susnjak, T., & Leist, A. (2014). Coderetreats: Reflective practice and the
game of life. IEEE Software, 31(4), 58–64.

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., & Padua-Perez, N. (2006).
Experiences with Marmoset: Designing and using an advanced submission and testing system
for programming courses. ACM SIGCSE Bulletin, 38(3), 13–17.

Suleman, H., Jamieson, S., & Keet, M. (2017). Testing test-driven development. In Annual Confer-
ence of the Southern African Computer Lecturers’ Association (pp. 241–248). Cham: Springer.

Vodde, B., & Koskela, L. (2007). Learning test-driven development by counting lines. IEEE Soft-
ware, 24(3).

Wellington, C. A., Briggs, T. H., & Girard, C. D. (2007, August). Experiences using automated
tests and test driven development in computer science I. In Agile Conference (AGILE), 2007
(pp. 106–112). IEEE.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair
programming. IEEE Software, 17(4), 19–25.

Wray, S. (2010). How pair programming really works. IEEE Software, 27(1), 50–55.


	Foreword
	Preface
	Introduction: The Motivation for This Book
	The Selection Process
	Book Structure
	Part I: Agile and Lean Concepts in Education
	Part II: Agile Methods in the School Classroom
	Part III: Reconceptualising Learning Environments Using Agile and Lean Approaches
	Part IV: Agile and Lean Learning Processes
	Part V: Using Agile and Lean Methods to Teach Software Development
	Part VI: Agile and Lean Activities and Games for the Classroom

	Acknowledgements
	International Review Board

	Contents
	Contributors
	Part I Agile and Lean Concepts in Education
	Agile Education, Lean Learning
	1 Introduction
	1.1 Using Agile to Teach Agile and Lean to Teach Lean
	1.2 Agile and Lean Education

	2 Agile Methods
	2.1 Agile in Education
	2.2 Mapping Agile Methods to Classroom Practice

	3 Reinterpreting Agile Practice for Teaching and Learning
	3.1 Agile Values
	3.2 Agile Processes
	3.3 Agile Techniques

	4 Making Learning Agile
	5 Lean Manufacturing
	5.1 From the Toyota Production System to Lean Software Development
	5.2 Lean Concepts in Education

	6 Reinterpreting Lean Thinking for Teaching and Learning
	6.1 Value, the Value Stream, and Perfection
	6.2 Lean Processes
	6.3 Lean Techniques

	7 Making Learning Lean
	8 Agile Education, Lean Learning
	9 Conclusion
	References

	Agile Methodologies in Education: A Review
	1 Introduction
	2 Search Strategy
	2.1 Search Goals
	2.2 Source Engines and Search Keywords
	2.3 Selected Papers

	3 Agile
	3.1 Agile in Education

	4 eXtreme Programming
	4.1 XP in Education

	5 Scrum
	5.1 Scrum in Education

	6 Conclusions
	References

	Practices of Agile Educational Environments: Analysis from the Perspective of the Public, Private, and Third Sectors
	1 Introduction
	2 Agile Anywhere
	3 HOT—Three Perspectives of Agile Environments
	4 MERge—Management, Education, Research
	5 Application of Agile Teaching Practices in the Three Sectors
	5.1 First Sector: School Principal
	5.2 Second Sector: Team Leader
	5.3 Third Sector: Faculty Member

	6 Sub-practices
	7 Conclusion
	References

	Kaizen and Education
	1 What Is Kaizen and Lean?
	1.1 Defining Kaizen and Lean
	1.2 A Brief Perspective on Recent History
	1.3 The Purpose of Kaizen
	1.4 Defining What ‘Change-for-the-Better’ Is in Education

	2 Foundational Principles of Kaizen
	2.1 Create Customer Value
	2.2 Remove Inefficiencies or Waste
	2.3 Engage and Develop People
	2.4 Focus on Gemba
	2.5 Manage Visually
	2.6 Process and Results
	2.7 Pull and Flow

	3 Kaizen and Education
	3.1 Where and How to Start with Kaizen in Education?

	4 Conclusion
	References

	Part II Agile Methods in the School Classroom
	Transforming Education with eduScrum
	1 Introduction: Change, Education, and Agile Methods
	1.1 The Origins of eduScrum
	1.2 What Is eduScrum?

	2 An Outline of eduScrum
	2.1 Teams
	2.2 The Teacher as Product Owner and Servant Leader to the Student Teams
	2.3 Start with the Why
	2.4 Framework and Process
	2.5 eduScrum Sprint
	2.6 Planning Meeting
	2.7 Stories
	2.8 Celebration Criteria
	2.9 Working Agreements/Definition of Doing and Fun
	2.10 Stand-up
	2.11 Review
	2.12 Personal and Team Retrospective and Reflection
	2.13 Team and Personal Development

	3 The Flap
	3.1 To Do, Busy and Done
	3.2 Run-Up Chart
	3.3 Impediments

	4 The Pillars of eduScrum
	4.1 Transparency
	4.2 Investigation
	4.3 Adaptation

	5 eduScrum Principles and Values
	5.1 Trust
	5.2 Communication
	5.3 Commitment
	5.4 Accountability
	5.5 Result

	6 Challenges of eduScrum
	7 Practitioner Report from Alisa Stolze
	8 Student Experiences
	8.1 Lars’ Student Experience with eduScrum
	8.2 Marente’s Student Experience with eduScrum

	9 Summary
	References

	Getting Agile at School
	1 Introduction
	1.1 The Agile Mindset
	1.2 The Core of Agile in Education
	1.3 Our Context

	2 Ten Actionable Practices
	2.1 Exploration
	2.2 Growth Mindset
	2.3 Trust
	2.4 Transparency
	2.5 Adaptability
	2.6 Smallify
	2.7 Value
	2.8 Collaboration
	2.9 Redo
	2.10 Uplift

	3 Conclusion
	References

	Bringing the Benefits of Agile Techniques Inside the Classroom: A Practical Guide
	1 End-User Software Engineering in K-12: Introduction
	2 End-User Software Engineering in K-12: State of the Art
	3 Bringing Agile to K-12 Education
	3.1 Why Agile?
	3.2 Why Extreme Programming?

	4 Mapping XP Practices to K-12 Practices: A Toolbox  
	4.1 User Stories
	4.2 Small Releases
	4.3 Metaphors
	4.4 Coding Standards
	4.5 Collective Ownership
	4.6 Simple Design
	4.7 Refactoring
	4.8 Testing
	4.9 Pair Programming
	4.10 Continuous Integration
	4.11 On-site Customer

	5 Getting the Right Practice from the Toolbox: A Selection Strategy
	6 Conclusion 
	References

	Part III Reconceptualising Learning Environments Using Agile and Lean Approaches
	Lean and Agile Higher Education: Death to Grades, Courses, and Degree Programs?
	1 Introduction
	2 Lean and Agile as a Departure from Plan-Based Education
	2.1 Meaning of Lean and Agile
	2.2 Key Differences from Plan-Based Education
	2.3 Pursuing the Minimum Viable Competence

	3 Obstacles to Lean and Agile
	4 IT as an Enabler for Lean and Agile Education
	4.1 E-learning and Crowdsourcing
	4.2 The Future of Grades and Grade Transcripts
	4.3 Ontologies of Learning Outcomes

	5 Conclusion: Death to Grades, Courses, and Degree Programs?
	References

	Leveraging Agile Methodology to Transform a University Learning and Teaching Unit
	1 Introduction
	2 Case Study Context
	2.1 Working Group
	2.2 The Agile Methodology Framework

	3 Process of Agile Methodology
	4 Agile Methodology Projects Within Organisational Culture
	5 Professional Learning Needs
	6 Unexpected Gains in Staff Self-confidence
	7 Implications for Practice
	8 Conclusion
	References

	Lean and Agile Assessment Workflows
	1 Introduction
	2 Kernel for Educational Assessment
	2.1 Area of Concern ‘Content’
	2.2 Area of Concern ‘People’
	2.3 Area of Concern ‘Logistics’

	3 Sample Workflow Definitions
	4 Tool Support
	5 Summary and Discussion
	References

	Part IV Agile and Lean Learning Processes
	Criterion-Based Grading, Agile Goal Setting, and Course (Un)Completion Strategies
	1 Introduction
	2 Agile Course Setting
	2.1 Versatile Needs
	2.2 Practical Arrangements
	2.3 Grading
	2.4 Individual Learning Goals and Learning Paths

	3 Research Questions and Methodology
	3.1 Research Questions
	3.2 Data
	3.3 Methods

	4 Results
	4.1 Comparison of Grades and Targets
	4.2 Students’ Strategies
	4.3 Student Feedback

	5 Discussion
	5.1 Criterion-Referenced Grading with Automated Feedback
	5.2 (Un)Selecting the Assignments
	5.3 Learning the Necessary Skills
	5.4 The Requirements of Passing the Course
	5.5 Over Performing
	5.6 Summarizing Different Student Strategies
	5.7 Further Observations

	6 Conclusions
	References

	Teaching and Fostering Reflection  in Software Engineering Project Courses
	1 Introduction
	2 Background
	2.1 Reflection and Education
	2.2 Reflection in Software Engineering

	3 Methodology
	3.1 Action Design Research Applied to Education
	3.2 Data Collection and Analysis
	3.3 Threats to Validity

	4 The Old Course Design
	4.1 Intended Learning Outcomes
	4.2 Learning Activities
	4.3 Assessment
	4.4 Constructive Alignment and Student Perception

	5 A Toolkit for Reflective Practice
	5.1 Model of Reflective Practice
	5.2 Course Structure
	5.3 Learning Activities
	5.4 Assessment Tasks
	5.5 Professional Practices

	6 The New Course Design
	6.1 Intended Learning Outcomes
	6.2 Learning Activities
	6.3 Assessment
	6.4 Constructive Alignment and Student Perception

	7 Reflections on the Toolkit
	7.1 Student Lens
	7.2 Teacher Lens
	7.3 Theoretical Lens

	8 Applying the Toolkit Outside SE Education
	9 Conclusions
	References

	Lean Learning of Risks in Students’ Agile Teams
	1 Introduction
	2 Background and Related Work
	3 Software Engineering Courses
	4 Results and Analysis
	4.1 Collaborative Nature of Risks
	4.2 Lean Nature of Risks
	4.3 Collaborative Meets Lean

	5 Discussion
	6 Conclusion
	References

	Part V Using Agile and Lean Methods to Teach Software Development
	Applying Lean Learning to Software Engineering Education
	1 Introduction
	1.1 Perspectives on Teaching
	1.2 The Rest of This Chapter

	2 Lecture Courses
	2.1 Reducing Cycle Time
	2.2 Peer Coaching
	2.3 Automation
	2.4 Summary

	3 Project-Based Courses
	3.1 Second Year—Web Application Development Projects
	3.2 Third Year—Software Engineering Group Projects
	3.3 Sustainable Pace
	3.4 Customer Relationships
	3.5 Lecturing Versus Coaching
	3.6 Checkpoints
	3.7 Summary

	4 Future Directions
	References

	Developing a Spiral Curriculum for Teaching Agile at the National Software Academy
	1 Introduction
	2 Related Work
	3 Programme Overview
	4 Developing Spiral Learning for Teaching Agile
	4.1 Our First Year—2015–16
	4.2 Our Second Year—2016–17

	5 Summer Placements
	5.1 First Cohort—Summer 2016
	5.2 First and Second Cohorts—Summer 2017

	6 Reflection
	6.1 Pedagogical Constraints on Teaching Agile
	6.2 Individuals and Interactions over Processes and Tools
	6.3 Working Software over Comprehensive Documentation
	6.4 Customer Collaboration over Contract Negotiation
	6.5 Responding to Change over Following a Plan

	7 Conclusions
	References

	Agile Approaches for Teaching  and Learning Software Architecture Design Processes and Methods
	1 Introduction
	2 Key Dimensions of Agile Learning
	2.1 Key Elements and Roles in an Agile Process
	2.2 Correspondence of Agile Education to Key Agile Elements and Roles
	2.3 Structure of a Software Engineering Course for Agile and Lean Learning

	3 Agility, Software Architecture and Lean Learning
	3.1 Activities of the Software Architects in Agile Projects
	3.2 Impact of Agility on Architecture Quality
	3.3 Impact of Distribution of Agile Teams on Software Architecture
	3.4 Impact of Complexity and Domain of the Projects on Agile Processes

	4 Methodology for Agile and Lean Software Architecture Education
	4.1 Key Elements of the Agile Software Architecture Course and Students' Activities
	4.2 Iterative Delivery of the Course Contents Combined  with Short Hands-On Exercises
	4.3 Using Digital Platform(s) for Communication, Collaboration and Feedback
	4.4 Incremental Deliverables and Rapid Feedback
	4.5 Learning Software Architecture Design
	4.6 Learning Agile Software Architecture Evaluation
	4.7 Learning Agile Software Architecture Evolution

	5 Case Studies on Application of the Proposed Methodology
	5.1 Course Structure and Distribution of the Roles
	5.2 Digital Platform Structure
	5.3 Weekly Architecture Analysis and Design Sessions Using Drawing Boards and CASE Tools
	5.4 Deliverable and Feedback Cycles
	5.5 Architecture Design Sessions
	5.6 Architecture Evaluation Sessions
	5.7 Using Architecture Meta-models and a Reference Architecture to Support Architecture Evolution

	6 Students Feedback and Discussion on Application  of the Proposed Methodology on General Software Engineering Education
	7 Related Work
	8 Conclusions
	References

	Part VI Agile and Lean Activities and Games  for the Classroom
	A Practical Approach to Teaching Agile Methodologies and Principles at Tertiary Level Using Student-Centred Activities
	1 Introduction
	2 Agile Methodologies and Principles
	2.1 Scrum Methodology
	2.2 User Stories
	2.3 Extreme Programming
	2.4 Lean
	2.5 Kanban
	2.6 Test-Driven Development

	3 Practical Approaches
	3.1 Classroom Activities
	3.2 Lab Activities

	4 Student Feedback
	5 Conclusion
	References

	Using Agile Games to Invigorate Agile and Lean Software Development Learning in Classrooms
	1 Introduction
	2 Background and Related Works
	2.1 Agile and Lean Software Development
	2.2 Learning Agile and Lean Through Games

	3 Research Context and Design
	3.1 The Course Context
	3.2 The Challenge
	3.3 Introducing Games
	3.4 Data Collection and Analysis

	4 Findings
	4.1 Classroom Observations
	4.2 Games Survey Results: Specific Games
	4.3 Games Survey Results: General Questions
	4.4 Games Survey Results: Open-Ended Questions

	5 Discussion
	5.1 Limitations and Future Work

	6 Conclusion
	Appendix: Survey Questions
	References

	Red-Green-Go! A Self-Organising Game for Teaching Test-Driven Development
	1 Introduction
	2 Teaching Test-Driven Development
	2.1 Background
	2.2 The Challenges of Teaching TDD
	2.3 Approaches to Teaching TDD

	3 Information Radiator: The Red-Green-Go! Game Board
	4 Self-Organisation and Trust in Red-Green-Go!
	5 Reflections on Red-Green-Go! in Practice
	5.1 The Game Board
	5.2 The Guidance/Feedback Mechanisms
	5.3 The Lecturer’s View
	5.4 Limitations/Data Gathering

	6 Conclusions
	References




