
Study of Multilevel Parallel Algorithm
of KPCA for Hyperspectral Images

Rulin Xu(B), Chang Gao, and Jingfei Jiang

School of Computer, National University of Defense Technology, Changsha, China
xurulin@gmail.com, gaochangjiyi@126.com, jingfeijiang@126.com

Abstract. Hyperspectral remote sensing image data has been widely
used in a variety of applications due to its continuous spectrum and high
spectral resolution. However, reducing huge dimensions with high data
relevance is time-consuming, and parallel processing is required to accel-
erate this process. In the previous work, the KPCA (Kernel Principal
Component Analysis), a nonlinear dimensionality reduction method was
studied, and a parallel KPCA algorithm was proposed based on het-
erogeneous system with a single GPU, and achieved the desired exper-
imental results. However, as data scale grows, the proposed solution
would consume all the available memory on a single node and encounter
performance bottleneck. Therefore, to tackle the limitation of insuffi-
cient memory caused by the reduction of large-scale hyperspectral data
dimension, in this paper the intra-node parallelization using multi-core
CPUs and many-core GPUs are exploited to improve the parallel hierar-
chy of distributed-storage KPCA. Finally, we designed and implemented
a multilevel hybrid parallel KPCA algorithm that achieves 2.75–9.27
times speedup compared to the traditional coarse-grained parallel KPCA
method on MPI.

Keywords: Hyperspectral image · Nonlinear dimensionality reduction
KPCA · GPU · Heterogeneous system · Multilevel parallel

1 Introduction

Hyperspectral remote sensing exploits the imaging spectrometer to obtain many
continuous-spectrum features image with nanometer resolution. With the spatial
information, radiation information and spectral information integrated, hyper-
spectral remote sensing is used in a wide array of applications, including geog-
raphy, biology, agriculture, forestry, marine science, space exploration, anti-
terrorism, and military etc [1].

Evolving from traditional two-dimensional images, hyperspectral remote
sensing images introduce the spectral dimension to form a three-dimensional
hyperspectral data cube. Continuous feature spectrum information can effec-
tively distinguish spectral characteristic of surface material and excavate the
hidden information. However, it also has many problems: (1) high resolution
c© Springer Nature Singapore Pte Ltd. 2018
L. Li et al. (Eds.): NCTCS 2018, CCIS 882, pp. 99–115, 2018.
https://doi.org/10.1007/978-981-13-2712-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2712-4_8&domain=pdf


100 R. Xu et al.

leads to high correlation between continuous bands and weakens the character-
istics of different ground target classifications, thus impairing the classification
accuracy; (2) tremendous information redundancy brings great challenges to
reduce the time and space complexity of execution. In view of above issues,
hyperspectral data dimensionality reduction is proposed, which is crucial part
of hyperspectral image analysis.

Dimensionality reduction is a large-scale and computation-intensive task.
The traditional serial processing method is time-consuming and computation-
ally complex, which makes it difficult to apply to real problems. With the rapid
development of parallel processing, it has become a predominant strategy to
design efficient parallel algorithms that make the best of hardware resources to
solve many scientific computing problems. The combination of the dimension-
ality reduction method and the advanced parallel technology not only brings
tremendous performance benefits, but also helps to expand business scale with-
out causing additional costs.

The common dimension reduction methods fall into two categories: linear
dimensionality reduction and nonlinear dimensionality reduction. In compari-
son, the former’s result is composed of finite parameters, making it convenient
and intuitive to explain the data composition. However, there could be some
nonlinear data clusters in the hyperspectral image, on which applying linear pro-
cessing will cause original characteristic loss and result in the hyperspectral data
ineffectiveness. The results in [2] prove that the nonlinear dimension reduction
technique is appropriate for data with nonlinear features such as hyperspectral
image. However, due to the high computational complexity, long elapsed time
and insufficient running space, it is difficult to apply nonlinear methods to mas-
sive hyperspectral data.

The kernel-based dimension reduction algorithm is an important branch of
the nonlinear dimension-descending algorithm family. Based on the Gaussian
kernel and Principal Component Analysis, the KPCA (Kernel Principal Com-
ponent Analysis) algorithm was initially proposed in the kernel-based dimension-
ality reduction field, where it has solid theoretical basis and significant applica-
tion prospects. Hence, its parallelization is of great importance in hyperspectral
processing field.

In our previous work [3], we proposed a parallel KPCA algorithm (KPCA G)
based on CPU/GPU heterogeneous system with a single GPU, which achieved
good parallel performance. However with the further study, we find that as data
scale grows, the proposed solution would consume all the available memory on
a single node and encounter performance bottleneck. Therefore, in this paper
we are focused on intra-node parallelization and performance optimization of
KPCA algorithm, and the content is organized as follows: The second section
discusses the related work. The third section briefly describes the KPCA algo-
rithm and pinpoints the accelerating hotspot. In the fourth section, our pre-
vious work on single GPU is introduced briefly. In the fifth section, inspired
by the multi-level cooperative parallel technology and optimization strategy
based on CPU/GPU heterogeneous system, we realize the distributed-storage



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 101

KPCA algorithm (KPCA M) and multilevel parallel algorithms (KPCA M O
and KPCA M O G). These methods provide effective solutions especially for
large-scale hyperspectral data nonlinear dimensionality reduction. Section 6
explores the performance improvements of different parallel algorithms through
extensive experiments. The last section provides a summary and some outlooks.

2 Related Work

In recent years, parallel computing on CPU/GPU heterogeneous systems
has emerged in the field of hyperspectral remote sensing image processing.
Bernabe [4] designed a parallel automatic target detection algorithm (ATDCA)
on the GPU platform to meet the real-time processing demands. In some domain
of hyperspectral applications, such as feature target detection and anomaly iden-
tification [5], the parallel design of algorithms on GPU has become key technol-
ogy and is widely applied. Agathos [6] and Torti [7] employed the GPU and
realized a parallel hyperspectral unmixing algorithm, which handles the tremen-
dous complex computing tasks. For processing larger scale of data, Sanchez [8]
achieved real-time hyperspectral unmixing using a GPU cluster. On the other
hand, Keymeulen [9] and Santos [10] accelerated hyperspectral image lossless and
lossy compression algorithm on GPU respectively; ElMaghrbay [11] proposed a
fast GPU algorithm for extracting hyperspectral image features.

As for linear dimensionality reduction of hyperspectral image, Fang [12] pro-
posed a parallel principal component analysis (PCA) algorithm, which obtained
128 times speedup on two GPUs. In the same year, Fang [13] implemented a
three-level hybrid parallel FastICA algorithm for hyperspectral image dimen-
sionality reduction on a CPU/GPU heterogeneous system. This method gained
159 times performance speedup, in which the computation component got accel-
erated by 169 times. Wu [14] improved the maximum noise fractional transform
(MNF) algorithm and implemented a GPU-based G-OMNF algorithm. As for
nonlinear method, Gao [3] gave a parallel KPCA algorithm based on single GPU
platform, which achieved up to 173x speedup over the original serial KPCA.

In summary, GPUs have been used to facilitate the speed of various hyper-
spectral algorithms due to their powerful computing ability and memory band-
width, and they gradually become a research and development trend in hyper-
spectral remote sensing. Regarding the hyperspectral dimensionality reduction,
parallel research of the linear algorithm has become more sophisticated, while
the parallelization of the nonlinear dimensionality reduction algorithm is still in
the infancy and exploration stage. To fill in the gaps, this paper proposes new
parallel algorithms and provides performance optimization on the heterogeneous
system with multiple CPUs and GPUs.

3 KPCA Algorithm and the Analysis of Hot Spot

Through implicit space transformation, KPCA algorithm maps the original
data onto an infinite-dimensional Hilbert Space. The results will have linear



102 R. Xu et al.

properties and the PCA procedure can be applied to extract features here-
after [15]. For the convenience of presentation, we Define the HSI data set as
X= {X1,X2, · · · XI} ={Y1,Y2, · · · YB}T (in which I = W × H, W and H are
spatial dimensions, and B denotes the spectral dimension). Actually, X can be
expressed by a three-dimensional data cube extracted from B images and has a
size of W ×H. After dimensionality reduction, m (m < B) features are extracted
from B original spectral bands. The KPCA approach conceptually involves four
steps:

(1) Compute the Gaussian kernel matrix K = Gauss(X) and get the centering
matrix KL = Gaussmodify(K);

(2) Perform matrix eigenvalue decomposition of KL: V −1KLV = Λ, where Λ
(diag {λ1, λ2, · · · , λI}) is a diagonal matrix, V = {v1, v2 · · · , vI} denotes
eigenvalue matrix and vi represents ith eigenvector that satisfies the condi-
tion of λi (vi · vi) = 1;

(3) Sort eigenvalues {λ1, λ2, · · · , λI} in descending order and rearrange eigen-
vectors in accordance with the eigenvalues’ new sequence. Select the first m
eigenvectors to form Vm;

(4) Execute the KPCA mapping according to the function P = KLV T
m .

1) 2) 3) 4)
100

101

102

103

104

105

106

Step

Ti
m

e 
(m

s)

Fig. 1. The elapse time of all steps in serial KPCA.

We have implemented the serial KPCA algorithm according to the above
steps, in which the Bilateral Jacobi Iteration is applied to conduct symmetric
matrix eigenvalue decomposition. In our implementation, the termination of the
Jacobi iteration is when the maximum absolute value is smaller than the setting
accuracy (e.g. ep = 0.001).



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 103

When profiling the algorithm, we cut out a segment with size of 32 * 32 *
224 from the hyperspectral image to excavate its acceleration module. As shown
in Fig. 1 (see Fig. 1), Jacobi Iteration, calculating Gaussian kernel matrix and
KPCA mapping, which are denoted by step (2), (1) and (4), are the critical
bottlenecks.

4 A GPU-Based Parallel KPCA Algorithm

In this section, we briefly present the previous research on parallel design and
performance optimization of KPCA algorithm on many-core GPU platform. And
here is focused on program design and optimization strategy of Jacobi iteration,
which is the main hotspot of KPCA. The details could be found in [3].

4.1 Design and Optimization of Jacobi Iteration on GPU

The Jacobi iteration method reduces the non-diagonal elements of the symmetric
matrix KL to zero by plane rotation (Givens transformation). The transforma-
tion equation is:

(QT
k ...(QT

1 KLQ1)...Qk) = Λ (1)

Matrix Qi represents the Givens transformation matrix. Givens transfor-
mation is an orthogonal similarity transformation. The rotation transformation
matrix is shown in Eq. 2, in which p and q indicate the number of lines where
the parameters located.

Qi(p, q, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

cos θ sin θ
. . .

− sin θ cos θ
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(p)

(q)
(2)

Let aij be the i − rowj − column element of matrix KL(k) (KL iteration for
k times), bij is the i − rowj − column element of matrix KL(k+1). The Givens
transformation can be denoted by KL(k+1) = QT

k+1KL(k)Qk+1. Related data
updates are shown in Eq. 3–7:

bip = bpi = api cos θ − aqi sin θ, i �= p, q (3)

biq = bqi = api sin θ + aqi cos θ, i �= p, q (4)



104 R. Xu et al.

bpp = appcos2θ + aqqsin2θ − apq sin 2θ (5)

bqq = appsin2θ + aqqcos2θ + apq sin 2θ (6)

bpq = bqp = apq cos 2θ +
app − aqq

2
sin 2θ (7)

In order to transform element bpq with the coordinate (p, q) to zero, we set
Eq. 7 to zero to get the parameter θ. In Eq. 3–7, only elements in row p, q and
column p, q of matrix KL(k) are updated, while other elements are unchanged,
which shows the localization of data updates in Givens transformation. In sum-
mary, if the corresponding parameters (p, q) in Qi are not intersect, a number
of I/2 Givens transformations can be executed in parallel, which reduces I/2
non-diagonal elements to zero and updates the entire matrix elements. Figure 2
shows the work-flow of the parallel algorithm on the GPU platform (see Fig. 2).

Fig. 2. Bilateral Jacobi iteration parallel algorithm based on GPU.

In the GPU-based parallel framework, step 2 contains the left and right
Givens transformation that are executed in a serial manner. In step 3, the element
with absolute maximum value is detected after each round of updates, and if it
is less than the setting threshold, the Jacobi iteration stops.

4.2 Parallel KPCA on GPU

Finally, we select the optimal optimization of the three bottlenecks to implement
GPU-based parallel KPCA algorithm, the model of which is shown here (see
Fig. 3).



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 105

Fig. 3. KPCA algorithm model based on GPU.

5 Parallel Dimensionality Reduction Scheme of
Hyperspectral Image Based on Multilevel Parallelism

As data scale grows, the proposed solution would encounter memory bottleneck.
In this section, we provide a MPI-based KPCA algorithm based on multi-node
systems and exploit parallelization mechanism of intra-node with many-core
GPU for better dimensionality reduction performance.

5.1 MPI-Based KPCA Algorithm

(1) MPI-based Gaussian Kernel Matrix calculation
Considering the specialty of hyperspectral data, we divide the data and pro-

pose a parallel computing scheme of gauss matrix (see Fig. 4).
In this figure, C is the result matrix. Each processor maintains two buffer

(bufA and bufB) to cache the intermediate local data. The computation flow
is illustrated in Fig. 4a. Pi reads blocki into bufA and bufB, and then all the
processors start calculating the data blocks placed on the diagonal line. After
that, the data in bufA remain unchanged but the data in bufB move upwards
recursively, which is shown in Fig. 4b.



106 R. Xu et al.

Fig. 4. Parallel program of Gaussian matrix calculation based on the characteristics of
hyper-spectral data on GPU.

(2) MPI-based Jacobi iteration
The basic idea of Jacobi iteration is to make any off-diagonal element close to

0 through iterations of Givens transformation, so that the result matrix (denoted
as K∗

L) is diagonalized. To analyze parallelism, we partition K∗
L into several

blocks. The process of transforming off-main-diagonal elements in a data block
into 0 is referred to as a sub-task. In each sub-task, data locality is observed.
For example, in the process of left-hand Givens transformation, block(i, j) has
two input lines i and j, which are independent from each other. However, there
are some issues to be addressed if multiple sub-tasks were executed in parallel.

Issue 1: if sub-tasks belonging to different processes are placed on the same
row or column, part of the Givens transformation will be applied on the same
data block. This part of data may subject to out-of-order updates imposed by dif-
ferent processes, eventually leading to non-reproducible results and data incon-
sistency.

Issue 2: the bilateral Jacobi iterations in each sub-task involve left transfor-
mations (update row block) and right transformations (update column block).
If data matrix is partitioned in row, then the column data block to be updated
will not be fully preserved on local storage, vice versa.

To solve issue 1, we partition the tasks and data (see Fig. 5) to make sure
that the transformation will not cause inter-process interference. Each sub-task
therefore has disjoint indices and the data blocks to be updated are independent
from each other.

Figure 6 shows the holistic mapping of sub-tasks and data blocks in the Jacob
iteration (see Fig. 6). On the left-hand side lies the partitioning of diagonal sub-
tasks (the partition granularity is denoted by L). Local diagonal elements in these
sub-tasks are global diagonal elements, so they do not need to be transformed
into 0. The right-hand sub-figure illustrates how the non-diagonal sub-tasks are
assigned to each process (the granularity R = L/2). The arrow to each process
(Pi) represents that all the blocks in the row are preserved locally.



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 107

Fig. 5. Task allocation scheme.

Fig. 6. Global mapping of Jacobi iteration subtasks and related data.

During the right-hand Givens transformation, parts of the data blocks to
be updated and parameters of updates are dispersed on different processes. It
results in the data dependency among different processes. To tackle the second
issue, after updating each row in left-hand Givens rotation, the collection and
broadcast of parameters is performed to obtain the global parameter list, so that
each process store all the needed data on local storage.

In summary, the parallel KPCA process first partitions data for Gaussian
calculation and outputs the Gaussian matrix blocks to the local storage, then
it performs the Jacob iteration to integrate principle eigenvectors to form the
mapping matrix, and broadcast it to all the processes for them to execute the
KPCA mapping independently.



108 R. Xu et al.

5.2 The KPCA Algorithm on Distributed Storage and GPU

The parallel mechanism of the sub-tasks on diagonal line is similar to the descrip-
tion in Sect. 4. Based on the distributed storage KPCA algorithm, this section
studies the fine-grained parallel mechanism of the non-diagonal sub-tasks.

When utilizing multiple threads to perform several Givens transformations
concurrently, dependency of the threads would lead to issues such as computing
overlaps and out-of-order updates, yielding wrong calculation results. Therefore,
before implementing Givens rotations in parallel, we first need to remove rele-
vance of the Givens parameters between different threads. After decorrelation
operation, all the p and q are distinctive, so that the operations and data updates
of the threads do not affect each other.

Because the line numbers and column numbers of non-diagonal sub-task are
different, we can combine each row and column randomly as a return-to-zero
element’s coordinate, all of the coordinate forming an independent sequence. The
max degree of parallelism in non-diagonal sub-task is blocksize. For covering
all the elements in non-diagonal block, Fig. 7 illustrates how the independent
sequence of non-diagonal sub-task is scheduled (see Fig. 7). By enabling parallel
computation within the nodes, the independent Givens transforms are processed
at the same time. In Fig. 8, we implement the programming model of “MPI +
CUDA”. The MPI process is responsible for data communication and coarse-
grained parallel calculation, while the GPU is focused on high-density floating
point operations.

Fig. 7. Scheduling policy of independent sequence.

The execution of the sub-tasks has both independence and correlation, that
is, the row-related data blocks are stored locally, and the column-related blocks
are scattered at each node. Then independent left-hand Givens transforma-
tions launch so that row blocks are updated in parallel, which is referred as
a round of circulation (see Fig. 8). Since the Givens-right-transformed data for
column update is scattered on different nodes, parameter gather and broadcast
are required between the two modules, after which column blocks update begin.
The inner loop contains scheduling the independent sequence and repeating the
above procedure in a node.



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 109

Fig. 8. Jacobi algorithm based on MPI+CUDA.

5.3 KPCA Algorithm Based on Distributed/Shared Storage and
GPU

As discussed in Sect. 5.1, the data and tasks are partitioned and dispatched on
distributed storage. Section 5.2 has expatiated on how the large-scale computing
tasks in Givens transform are handled by GPU. In this section, other suitable
parallel tasks, such as Gaussian kernel calculation and Givens parameter calcula-
tion, are processed using multi-thread OpenMP, achieving the three-level parallel
KPCA algorithm based on MPI + OpenMP + CUDA. The multilevel hybrid
parallel KPCA makes full use of different platform resources and is suitable for
large-scale data processing with good scalability and portability.

In the MPI implementation of the KPCA algorithm, each process reads its
own data and calculates the Gaussian kernel function. The calculation procedure
include three circulations, the first two represent data coordinates, while the
inner loop carries out the specific Gaussian operations. The operations in outer
layer are independent to each other, and therefore can be allocated to different
threads to perform parallel execution. In the Givens parameter calculation, the
independent sequence is updated, in which the parameters are calculated corre-
sponding to the reducing point in coordinate of (p, q). Without data correlation,
the parameter calculation processes are independent and can be executed by
multi-threads.



110 R. Xu et al.

6 Result Analysis

We use the hyperspectral image data provided by AVIRIS in the United States
to run the experiments. Table 1 lists the three sets of hyperspectral image data
used in the experiment. They are extracted from the original hyperspectral image
and the number of pixels is 1024,4096 and 16,384, respectively.

Table 1. Hyperspectral remote sensing image information

ID Width Height Bands

1 32 32 224

2 64 64 224

3 128 128 224

The experimental platform is a heterogeneous cluster, where the CPU/GPU
heterogeneous nodes are equipped with two 8-core Intel (R) Xeon (R) CPU
E5-2670 and two Kepler architecture NVIDIA Tesla K20c GPUs. The system
environment includes Red Hat Enterprise Linux Server release 6.2 (Santiago),
GCC-4.4.6 compiler, CUDA release 5.5 toolkit and the MPICH library compiler.
The spectral information is transformed into pixel information, the original 16-
bit integer data is converted into un-signed char type (unsigned char).

6.1 GPU-Based KPCA Algorithm

The KPCA algorithm is executed on a single node using different processor
configurations, including single-core (CPU), multi-core (CPU) and many-core
(GPU). Table 2 reports the execution time and the speedup of the three KPCA
implementations. These include KPCA S (the serial KPCA), KPCA O (a multi-
thread parallel implementation on OpenMP using 16 processors) and KPCA G
which is based on the many-core GPU architecture. The experimental result is
listed in Table 2. The more details could be found in [3].

Table 2. Time (ms) and speedup of KPCA

Data1 Data2

Time Speedup Time Speedup

KPCA S 82, 017.55 - 15, 710, 746.06 -

KPCA O 18, 519.99 4.43 6, 300, 228.22 2.49

KPCA G 1, 817.25 45.13 90, 778.75 173.07

The results show that KPCA O and KPCA G achieve 2.49–4.43 and 45.13–
173.07 times performance improvement compared to KPCA S, and the acceler-
ation ratio of the GPU-based implementation increases along with the volume



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 111

of the test data, which proves that it is more scalable than the multi-thread
implementation.

The experimental platform used in Sect. 6.1 is a single CPU/GPU hetero-
geneous node. Due to the limited running space, only the first two sets of data
can be calculated. The subsequent multi-node parallel experiment will test the
large-scale data and provide further discussion.

6.2 Analysis of the MPI-Based KPCA

In the Jacobian iteration that is based on distributed storage, obtaining the
global maximum absolute value requires frequent data exchange between nodes,
which results in huge performance loss in production-scale data processing and
gives uncontrollable results. In this paper, we simplify the end-point discrimi-
nation process and set the terminating condition of the Jacobi iteration as the
fixed number of cycles, i.e., all non-diagonal elements are reduced to zero once.
Table 3 shows the execution time of the algorithm.

Table 3. Time (s) of serial KPCA and main modules

Data 1 2 3

KPCA 16.30 1,781.53 170,553.54

Our experiments also evaluate the KPCA algorithm on MPI, where n in
KPCA M (n) is the number of launched processes. We use three sets of data to
test the experiment, and record the execution time of the slowest process. Table 4
records the execution time of overall KPCA M procedure. We also compare
KPCA and KPCA M algorithms and show the acceleration effect of KPCA M
(see Fig. 9). The results show that, the speed ratio increases along with the grow-
ing number of processes. However, when the volume of data increases, the per-
formance of KPCA rises and then falls. Among all the test cases, the KPCA M
using 8 processes has the best result, obtaining 7.78–18.24 times performance
improvement.

Table 4. Time (s) of KPCA M and main modules

Data KPCA M(2) KPCA M(4) KPCA M(8)

1 4.77 2.30 1.14

2 438.71 188.15 97.65

3 40, 228.89 28, 506.95 21, 918.38

As the process number grows, the partition granularity of KPCA M
decreases, so the performance gains. When the data scale is large, the over-
all performance has witnessed a significant degradation, and the performance



112 R. Xu et al.

of these three types of KPCA M is not comparable to the previous test cases
using smaller size of data sets. Our analysis shows that the main factor is the
MPI group communication adopts the “many times, smaller amount” style of
transmission, so with the increase of the data scale, the transmission time also
increases, and results in poor performance. Therefore, when the data size is large,
it may be appropriate to increase the number of nodes to reduce the amount of
communication data and avoid performance degradation.

KPCA_M(2) KPCA_M(4) KPCA_M(8)
0

2

4

6

8

10

12

14

16

18

20

Number of nodes

S
pe

ed
up

Data 1
Data 2
Data 3

Fig. 9. Speedup of KPCA M algorithm.

6.3 Analysis of KPCA Algorithm Based on MPI + CUDA

In the experiment of parallel KPCA algorithm based on MPI + CUDA, two
processes are launched, each of which is equipped with a GPU.

By recording the execution time of the KPCA M G and KPCA M algorithm,
we calculates the performance improvement comparing the KPCA M G (default
2 processes) with KPCA M algorithm (see Fig. 10): the introduction of GPU
parallelization in the nodes has enabled the KPCA M G to be faster 2.56–9.03
times than the original KPCA M(2), and KPCA M G is faster than the extended
4-process KPCA M by 1.24–6.4 times. In addition, when using the smallest data
set, performance of KPCA M G is poorer than the 8-process extended KPCA M.
When the last two sets of data are used, its performance improves by 1.25 and
4.92 times than 8-process extended KPCA M. The experimental results show



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 113

that with the increase of the data volume, the proportion of the calculation in
the node increases, so that the advantage of utilizing GPU gradually appears to
make it suitable for the fine granularity parallelism in the node.

1 2 3
0

1

2

3

4

5

6

7

8

9

10

S
pe

ed
up

Data

KPCA_M(8)/KPCA_M_G
KPCA_M(4)/KPCA_M_G
KPCA_M(2)/KPCA_M_G

Fig. 10. Performance comparison between KPCA M and KPCA M G.

6.4 Analysis of KPCA Algorithm Based on MPI + OpenMP +
CUDA

This section implements the three-level parallel KPCA algorithm based on MPI
+ OpenMP + CUDA. Table 5 records the execution time of various paral-
lel KPCA algorithms. KPCA M O G uses two CPU + GPU heterogeneous
nodes and obtains the acceleration ratio of 2.75–9.27 compared with 2-process
KPCA M, as well as the acceleration ratio of 1.33–6.57 and 1.39–5.05 com-
pared with 4-process and 8-process KPCA M algorithm. By comparing with the
KPCA M algorithm extending the number of nodes, we can effectively reduce
the number of nodes and reduce the cluster size under the same performance
requirements by KPCA M O G.

When the minimum data set (Data 1) is used for the KPCA M O G experi-
ment, compared with KPCA M(8), the performance does not rise but fall, mainly
because the use of GPU optimization algorithm will introduce some additional
over-head, including GPU warming up, kernel boot, data transmission between
host and device. Based on the experimental results, we can draw the following
conclusions:



114 R. Xu et al.

Table 5. Time (s) of KPCA in different ways

Data KPCA M O G KPCA M G KPCA M(2)

1 1.73 1.86 4.77

2 70.22 77.90 438.71

3 4, 340.47 4, 457.39 40, 228.89

(1) When the size of the original hyperspectral data is suitable for a single
machine, the KPCA G algorithm can greatly improve the efficiency of data
reduction;

(2) When the data size increases, and the memory requirement for processing is
beyond the limit of a single-node, the distributed and parallel heterogeneous
cluster platform is an inevitable choice. This paper presents the MPI +
OpenMP + CUDA, a multilevel hybrid parallel algorithm and provides a
good application demo.

7 Summary and Outlook

Taking KPCA algorithm for example, this paper reviews KPCA G algorithm on
CUDA, and designs KPCA M G algorithm on MPI + CUDA and KPCA G O G
algorithm on MPI + OpenMP + CUDA. The experiments prove that all these
algorithms achieve remarkable performance improvements on the CPU/GPU
heterogeneous system.

The research of GPU-based parallel algorithms for nonlinear dimension
reduction of hyperspectral images is still on preliminary stage, there are lots of
open research questions left to be answered, we put forward the following ideas
for the future work: (1) it’s necessary to develop a specialized parallel func-
tion library for hyperspectral dimensionality reduction, which can unify stan-
dard, simplify procedure, and promote application of hyperspectral dimension-
ality reduction algorithm. (2) With the rapid development of high performance
computing technology, optimization of algorithm on different high performance
computing system will be a long-lasting topic.

References

1. Zhang, Z., Zhang, L.: Hyperspectral Remote Sensing. Wuhan University Press,
Wuhan (2005). (in Chinese)

2. Ainsworth, T.L., Bachmann, C.M., Fusina, R.A.: Local intrinsic dimensionality
of hyper-spectral imagery from non-linear manifold coordinate. In: IEEE Interna-
tional on Geoscience and Remote Sensing Symposium, pp. 1541–1542 (2007)

3. Gao, C., Zhou, H., Fang, M.: Parallel Algorithm and Performance Optimization of
Kernel Principal Component Analysis on GPUs for Dimensionality Reduction of
HIS, HPC China, pp. 611–614 (2016)

4. Bernabe, S., Lopez, S., Plaza, A., Sarmiento, R.: GPU implementation of an auto-
matic target detection and classification algorithm for hyperspectral image analy-
sis. IEEE Geosci. Remote Sens. Lett. 10(2), 221–225 (2013)



Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images 115

5. Lokman, G., Yilmaz, G.: Anomaly detection and target recognition with hyper-
spectral images. In: 2014 22nd Signal Processing and Communications Applications
Conference (SIU), pp. 1019–1022, 23–25 2014

6. Agathos, A., Li, J., Petcu, D., Plaza, A.: Multi-GPU implementation of the mini-
mum volume simplex analysis algorithm for hyperspectral unmixing. IEEE J. Sel.
Topics Appl. Earth Obs. Remote Sens. 7(6), 2281–2296 (2014)

7. Torti, E., Danese, G., Leporati, F., Plaza, A.: A hybrid CPU-GPU real-time hyper-
spectral unmixing chain. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 9(2),
945–951 (2016)

8. Sanchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of
remotely sensed hyperspectral image unmixing on GPUs. J. Real-Time Image Pro-
cess. 10, 469–483 (2012)

9. Keymeulen, D., Aranki, N., Hopson, B., Kiely, A., Klimesh, M., Benkrid, K.:
GPU lossless hyperspectral data compression for space applications. In: 2012 IEEE
Aerospace Conference, pp. 1–9, 3–10 March 2012

10. Santos, L., Magli, E., Vitulli, R., Lopez, J.F., Sarmiento, R.: Highly-parallel GPU
architecture for lossy hyperspectral image compression. IEEE Sel. Topics Appl.
Earth Obs. Remote Sens. 6(2), 670–681 (2013)

11. ElMaghrbay, M., Ammar, R., Rajasekaran, S.: Fast GPU algorithms for endmem-
ber extraction from hyperspectral images. In: 2012 IEEE Symposium Computers
and Communications (ISCC), pp. 000631–000636, 1–4 July 2012

12. Fang, M., Zhou, H., Shen, X.: Multilevel parallel algorithm of PCA dimensionality
reduction for hyperspectral image on GPU. Dongbei Daxue Xuebao/J. Northeast-
ern Univ. 35(S1), 238–243 (2014). (in Chinese)

13. Fang, M., Zhou, H., Zhang, W., Shen, X.: A parallel algorithm of FastICA dimen-
sionality reduction for hyperspectral image on GPU. Dongbei Daxue Xuebao/J.
Northeastern Univ. 37(4), 65–70 (2015). (in Chinese)

14. Wu, Y., Gao, L., Zhang, B., Zhao, H., Li, J.: Real-time implementation of optimized
maximum noise fraction transform for feature extraction of hyperspectral images.
J. Appl. Remote Sens. 8(1), 084797 (2014)

15. Scholkopf, B., Smola, A.J., Muller, K.: Nonlinear component analysis as a kernel
eigenvalue problem. Neutral Comput. 1, 1299–1319 (1998)


	Study of Multilevel Parallel Algorithm of KPCA for Hyperspectral Images
	1 Introduction
	2 Related Work
	3 KPCA Algorithm and the Analysis of Hot Spot
	4 A GPU-Based Parallel KPCA Algorithm
	4.1 Design and Optimization of Jacobi Iteration on GPU
	4.2 Parallel KPCA on GPU

	5 Parallel Dimensionality Reduction Scheme of Hyperspectral Image Based on Multilevel Parallelism
	5.1 MPI-Based KPCA Algorithm
	5.2 The KPCA Algorithm on Distributed Storage and GPU
	5.3 KPCA Algorithm Based on Distributed/Shared Storage and GPU

	6 Result Analysis
	6.1 GPU-Based KPCA Algorithm
	6.2 Analysis of the MPI-Based KPCA
	6.3 Analysis of KPCA Algorithm Based on MPI + CUDA
	6.4 Analysis of KPCA Algorithm Based on MPI + OpenMP + CUDA

	7 Summary and Outlook
	References




