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Abstract. Selfish bin packing considers a cost-sharing system of the
classical bin packing problem, where each item is controlled by a selfish
agent and aims to minimize the sharing cost. In this paper we study
an incentive mechanism: Interest-Matrix-based (IM-based) mechanism,
a new perspective that focuses on the interest or the satisfaction between
any pair of items rather than personal sharing cost. Under the IM-based
mechanism, we show that PoA ≤ 1.7 for general instances with item size
inside (1/n0, 1], where n0 is an arbitrary large integer. In special, when
n0 = 4, the PoA of the IM-based mechanism does not exceed 1.5.
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1 Introduction

Selfish bin packing, originating from bin packing problem [6,13], previously con-
siders a cost-sharing game system. Given a set of items and sufficiently unit-
capacity bins. Each item has its size inside the interval (0, 1] and it is controlled
by a selfish agent who chooses bins actively and aims to minimize the sharing cost
rather than the social cost (the number of consumed bins in total). Note that each
bin has unit cost 1, which is shared by all items packed in it. In order to minimize
the social cost in this game circumstance, designing incentive mechanisms to lead
the agent’s actions is necessary. The quality of the mechanism is commonly eval-
uated by the price of anarchy (PoA), which is the ratio between the social welfare
that derives from the worst Nash equilibrium and that of the social optimum.

Selfish bin packing was first introduced in 2006 by Bilò [1] with the first
mechanism, proportional weight mechanism. He showed that a pure Nash equi-
librium always exists and the PoA is between 1.6 and 1.6667. Epstein et al. [4]
did further research of proportional weight mechanism, they proved that the
PoA fell into [1.6416, 1.6428], which is the currently best result of proportional
weight mechanism.

Until 2013, Han et al. [8] present another mechanism for selfish bin packing,
unit weight mechanism. Dosà and Epstein [3] proved that for this mechanism,
PoA ∈ [1.6966, 1.6994]. It is the best-known result of unit weight mechanism.
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Recently, a novel mechanism proposed by Wang et al. [14] for selfish bin pack-
ing was proposed which is a generalization of several well-known mechanisms,
such as, proportional-weight and unit-weight mechanisms. This new mechanism
introduces an interest matrix and it focuses on various interests between any
pair of items while they shares the same bin. In fact, the motivation of this new
mechanism for selfish bin packing is to express that items choose bins not only
considering packing-cost, but they always care about the interest or the satis-
faction of current situations (sharing bins with items). Therefore, it is a natural
idea to take into account the interest between any two items, i.e. interest matrix,
in selfish bin packing [14], Wang et al. showed that (1) there exists Nash equilib-
rium when the matrix is symmetric; (2) the PoA is bounded in several special
matrices while in general it can be arbitrary large.

Under the framework of the interest-matrix-based mechanism proposed by
Wang et al. [14], we construct a new interest matrix based on the idea: leading
the agent to choose bins with the most possible number of items and the largest
possible total size.

The organization of the paper is as follows. In Sect. 2, we introduce the
related definitions. In Sect. 3, we present the new mechanism, Interest-Matrix-
based Mechanism (IM-based mechanism), and give some properties. Section 4
is dedicated to the analysis of PoA of the IM-based mechanism for a special
kind of instances, where the size of the items belongs to (1/4, 1]. In Sect. 5, we
extend the analysis in Sect. 4 to general instances where the size of the items
belongs to (1/n0, 1], and show that the PoA of the IM-based mechanism falls
into [1.623, 1.7].

2 Preliminaries

2.1 Selfish Bin Packing and Previous Mechanisms

Selfish bin packing considers a cost-sharing game system [10]. An instance of
this game, denoted as I = {L, S}, consists of a list L = {a1, . . . , an} of items
and the sizes of the items S = {s(a1), . . . , s(an)}, s(ai) ∈ (0, 1]. Assume that
each item is controlled by a selfish agent whose strategy is to choose bins under
the capacity constraint and aims to minimize the sharing cost rather than the
social cost, i.e., the number of consumed bins. In order to minimize the social
cost in this game system, designing reasonable payoff rules, i.e., mechanisms is
a valid method.

Denote by B a unit-capacity bin that contains a set of items. For a consumed
bin B, denote by s(B) the total size of items, |B| the number of items. Some
known mechanisms, such as proportional weight mechanism and unit weight
mechanism, are extensively studied [2,5,11,15].

– Proportional weight mechanism: item ai’s payoff is proportional to the total
size of items sharing the same bin, i.e.,

p(ai) = s(ai)/s(B),∀ai ∈ B.
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– Unit weight mechanism: item ai’s payoff is proportional to the number of
items sharing the same bin, i.e.,

p(ai) = 1/|B|,∀ai ∈ B.

– General weight mechanism: item ai’s payoff is proportional to the total weight
of items sharing the same bin, i.e.,

p(ai) = w(ai)/w(B),∀ai ∈ B,

which is the generalization of proportional and unit weight mechanisms.

2.2 Nash Equilibrium and Price of Anarchy

Given any instance of selfish bin packing and a specific mechanism, selfish items
actively choose bins or constantly change strategies for minimizing their costs. A
Nash equilibrium (NE) [9] is a feasible packing and a stable state in this game
system that (1) No item can benefit (decrease its cost) by changing only its own
strategy (moving to anther bin) while the other items keep their unchanged. (2)
A Nash equilibrium is not necessarily a optimal packing.

The price of anarchy (PoA) [7,12] is a metric to measure the quality of
mechanisms, which is defined the ratio between the social cost of the worst
NE and that of the optimal solution. Formally, given an instance of selfish bin
packing I and a specific mechanism M, denote by NE(MI) the social cost of
an NE under the mechanism M and denote by OPT (I) the social cost of the
optimal solution. The PoA of mechanism M is defined as

PoA(MI) = lim sup
OPT (I)→∞

max
∀NE

{
NE(MI)
OPT (I)

}
.

3 Interest-Matrix-Based (IM-Based) Mechanism

In this section, we present an interest-matrix-based mechanism for selfish bin
packing. We define the interests between each pair of items as the sum of the
sizes of both items. The personal goal of each item is to maximize the total
interest that derives from other items packed in the same bin.

Given an instance of selfish bin packing I = {L, S}: L = {a1, · · · , an}, S =
{s(a1), · · · , s(an)} and given an interest matrix An×n = [aij ], aij is defined as
aij = s(ai) + s(aj).

Our mechanism M� is as following:

Interest-Matrix-Based (IM-Based) Mechanism M�

For any item ai in the instance I, assume that ai chooses the bin B in the
current situation. The payoff of item ai is

p(ai) =
∑
j∈B

aij =
∑
j∈B

(s(ai) + s(aj)) = |B| · s(ai) + s(B).
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Remark. Under the IM-based mechanism, each item would like to choose the
bin that contains the most possible items and the largest possible total size.
However it is difficult to decide, between the number of items and the total size
of the items in a bin, which is more influential for item’s strategy.

We first show that, under the IM-based mechanism, a Nash equilibrium
always exists and it can be obtained in finite steps from any packing.

Lemma 1. Under the IM-based mechanism M�, an NE always exists and it can
be obtained in finite steps from any feasible packing.

The proof of the lemma is omitted, which follows directly from the result
in [14] by making use of the method of potential functions.

The following proposition describes an important property of IM-based mech-
anism. Denote by Bi = {B|B ∈ NE, |B| = i}.

Proposition 1. Under the IM-based mechanism, there exists at most one bin
Bi

0 ∈ Bi in an NE packing such that s(Bi
0) ≤ i

i+1 .

Proof. For an NE packing induced by IM-based mechanism, if there exists two
bins B1, B2 ∈ Bi such that s(Bk) ≤ i

i+1 , k = 1, 2, we will show the contradiction
at the end. Without loss of generality, assume that s(B1) ≥ s(B2). Consider the
smallest item a2min in the bin B2, we have

s(a2min) ≤ s(B2)
|B2| ≤

i
i+1

i
=

1
i + 1

≤ (1 − s(B1)),

implying that item a2min can move to the bin B1. Observe that item a2min’s
payoff is

p(a2min) = |B2| · s(a2min) + s(B2)
= i · s(a2min) + s(B2), [a2min is packed in B2]

and if a2min moves to the bin B1, the payoff will be

p
′
(a2min) = (|B1| + 1) · s(a2min) + s(B1) + s(a2min)

= (i + 2) · s(a2min) + s(B1)
> i · s(a2min) + s(B2)
= p(a2min), [a2min moves to B1]

Therefore item a2min has an incentive to move from B2 to B1, which contradicts
the property of NE. The proof is complete. ��

4 The Bounds of PoA While s(amin) > 1/4

In this section, we consider a special case Is = {L, S} with s(amin) > 1/4, where
amin is the item of smallest size. We show that under the IM-based mechanism,
the PoA falls into the interval [1.333, 1.5].
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4.1 Upper Bound of the PoA

Given an instance Is = {L, S} where L = {a1, · · · , an}, S = {s(a1), · · · , s(an)}
and an interest matrix An×n = [aij ] where aij = s(ai) + s(aj). We first discuss
the upper bound of the PoA.

Theorem 1. Given a special instance Is with s(amin) > 1/4. Under the IM-
based mechanism for selfish bin packing, we have

PoA(MIs
) ≤ 3

2
.

Proof. Consider an NE packing NE = B1 ∪ B2 ∪ B3 for the instance Is, where

B1 = {B | B ∈ NE, |B| = 1};
B2 = {B | B ∈ NE, |B| = 2};
B3 = {B | B ∈ NE, |B| = 3}.

Note that there exists no bins with four or more items in any feasible packing
since s(amin) > 1/4 and the capacity constraint of bins. Denote by NE(MIs

)
and OPT (Is) the number of bins in an NE packing and the optimal packing.
The following will show the relation between NE(MIs

) and OPT (Is) by the
bridge S(Is) =

∑
i∈Is

s(ai), the total size of items in the instance.
We consider B2 = B2

� ∪ B2
s , where

B2
� = {B|B ∈ B2,∃ai ∈ B, s(ai) >

1
2
};

B2
s = {B|B ∈ B2,∀ai ∈ B, s(ai) ≤ 1

2
}.

Observe that there exists 3|B3|+2|B2
s |+ |B2

� | small items (with size smaller than
1/2) in the item list. The following discusses whether all these small items can
share bins with the large items (with size strictly larger than 1/2).

(1) If 3|B3| + 2|B2
s | ≤ |B1|, then |B3| + |B2

s | ≤ 1
2 |B1|. Thus we obtain

NE(M�
Is

)
OPT (Is)

≤
3
2 |B1| + |B2

� |
|B1| + |B2

� | <
3
2
,

which implies that PoA ≤ 3/2.
(2) If 3|B3| + 2|B2

s | > |B1|, we assume that 3|B3| + 2|B2
s | = |B1| + x, (x > 0).

Since there are |B1|+x+|B2
l | small items in the list, they need at least another

x/3 bins besides sharing bins with large items. Then we obtain

OPT (Is) ≥ |B1| + |B2
� | +

1
3

· x,

NE(M�
Is

) = |B1| + |B2
� | + |B2

s | + |B3| ≤ 3
2
(|B1| +

2
3
|B2

� | +
1
3

· x).

Thus
NE(M�

Is
)

OPT (Is)
≤

3
2 (|B1| + |B2

� | + 1
3 · x)

|B1| + |B2
� | + 1

3 · x
≤ 3

2
,

implying that PoA ≤ 3/2. ��
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4.2 Lower Bound of the PoA

In this subsection, we construct a worst case example for the IM-based mecha-
nism M� to give the lower bound of PoA.

Theorem 2. Under the IM-based mechanism, for the special case s(amin) >
1/4, we have

PoA(M�) ≥ 4
3

> 1.333.

Proof. We construct an instance as follows. Let N be an arbitrary large integer
and let ε = 1/N . There are N large items with size 1/2 + ε and N small items
with size 1/4 + ε.

We present an NE packing that consists of 4/3·N bins as illustrated in Fig. 1,
where each large item monopoly occupies one bin and every three small items
share one bin. It is clear that no item can benefit from moving alone:

1. Each large item can not move to other bins since the capacity constraint;
2. Each small item can not move to other three-item bins since the capacity

constraint and each small item would not like to move to monopoly bins
since its payoff will change from 6/4 + 6ε to 5/4 + 4ε (decreasing).

However, the optimal packing (showed in Fig. 1) only consumes N bins, one large
item is packed with one small item in each bin. Therefore,

PoA(M�) ≥ 4
3
.

��

Fig. 1. A worst case of IM-based mechanism M� while s(amin) > 1/4.

5 The Bounds of PoA While s(amin) > 1/n0

In this section, we consider more general instances of selfish bin packing problem.
Given an instance I of selfish bin packing, I = {L, S}, where L = {a1, · · · , an},
S = {s(a1), · · · , s(an)} and an interest matrix An×n = [aij ] where aij = s(ai) +
s(aj). Note that s(ai) > 1/n0, ∀ai ∈ L and n0 is an arbitrary large integer.
We show that under the IM-based mechanism, the PoA falls into the interval
[1.623, 1.7].
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5.1 Upper Bound of PoA

The following theorem illustrates that under the IM-based mechanism M�, the
upper bound of the PoA is 17/10.

Theorem 3. For any instance I with s(amin) > 1/n0, we show that under the
IM-based mechanism MI ,

PoA(MI) ≤ 17
10

.

For the purpose of showing the upper bound of PoA, we introduce a weight
function to be the bridge connecting the number of bins in optimal packing and
an NE packing. For each item a ∈ I, the weight w(a) is defined as

w(a) =
6
5
s(a) + v(a),

where

v(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < s(a) ≤ 1
6 ;

3
5 (s(a) − 1

6 ), 1
6 < s(a) ≤ 1

3 ;

1
10 , 1

3 < s(a) ≤ 1
2 ;

4
10 , 1

2 < s(a) ≤ 1.

Denote by w(I) =
∑

a∈I w(a) the total weight of all items in the instance. Recall
that NE(MI) and OPT (I) are the number of bins in an NE packing and the
optimal packing respectively.

Sketch of the Proof of Theorem 3. For any instance I and any NE packing,
based on the weight function, we focus on illustrating both inequalities:

w(I) ≤ 17
10

· OPT (I) [total weight & the optimal packing] (1)

w(I) ≥ NE(M�
I) − n0 [total weight & an NE packing] (2)

If these two inequalities hold, we obtain

NE(M�
I) − n0

OPT (I)
≤ 17

10
. [n0 is a constant]

When OPT (I) → ∞,

PoA(MI) ≤ 17
10

.

In the rest of section we will show the both inequalities (1) and (2).

Lemma 2. For any instance I with s(amin) > 1/n0, we show that

w(I) ≤ 17
10

· OPT (I).
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Proof. To show the lemma, it is sufficient to show the following conclusion:

w(B) =
m∑

i=1

w(ai) ≤ 17
10

, ∀B ∈ OPT (I),

where B = {a1, · · · , am} is an arbitrary bin in the optimal packing. Without
loss of generality, assume that s(a1) ≥ · · · ≥ s(am).

Case 1. If s(a1) ∈ ( 12 , 1], s(a2) ∈ ( 13 , 1
2 ], s(a3), · · · , s(am) ∈ (0, 1

6 ]. Based on
the weight function, we have

w(B) =
6
5
s(B) + v(B) ≤ 6

5
· 1 +

4
10

+
1
10

=
17
10

.

Case 2. If s(a1) ∈ ( 12 , 1], s(a2), s(a3) ∈ ( 16 , 1
3 ], s(a4), · · · , s(am) ∈ (0, 1

6 ], then
we obtain

w(B) =
6
5
s(B) + v(B) =

6
5
s(B) +

4
10

+
3
5

[
s(a2) + s(a3) − 2

6

]

≤ 6
5

+
4
10

+
3
5

(
1
2

− 2
6

)
=

17
10

.

Case 3. If s(a1) ∈ ( 12 , 1], s(a2) ∈ ( 16 , 1
3 ], s(a3), · · · , s(am) ∈ (0, 1

6 ], then

w(B) =
6
5
s(B) + v(B) =

6
5
s(B) +

4
10

+
3
5

[
s(a2) − 1

6

]

≤ 6
5

+
4
10

+
3
5

(
1
3

− 1
6

)
=

17
10

.

Case 4. If s(a1) ∈ ( 12 , 1], s(a2), · · · , s(am) ∈ (0, 1
6 ], then we obtain

w(B) =
6
5
s(B) + v(B) ≤ 6

5
· 1 +

4
10

=
8
5
.

Case 5. If s(ai) ∈ (0, 1
2 ],∀ai ∈ B. Observe that there exists at most five

items with size inside (1/6, 1] in B since capacity constraint. That is B contains
at most five items with v(ai) > 0 and v(ai) ≤ 1/10. Thus,

w(B) =
6
5
s(B) + v(B) ≤ 6

5
· 1 +

1
10

· 5 =
17
10

.

Thus, the lemma is proved. ��
Lemma 3. For any instance I with s(amin) > 1/n0, under IM-based mechanism
M�, we show that

w(I) ≥ NE(M�
I) − n0.
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Proof. Consider any NE packing contains bins B1 ∪ B2 ∪ · · · ∪ Bn0−1, where

B1 = {B | B ∈ NE, |B| = 1};
B2 = {B | B ∈ NE, |B| = 2};

· · ·
Bn0−1 = {B | B ∈ NE, |B| = n0 − 1}.

Note that there exists no bins with n0 or more items since s(amin) > 1/n0. To
clearly illustrate the property of NE, we give an order of bins in the NE: sorting
bins in non-decreasing order by the number of items in a bin.

Case 1. For one-item bins B1. Based on Proposition 1, there exists at most
one bin B1

0 belonging to B1 such that s(B1
0) ≤ 1/2. Thus,

w(B) =
6
5

· s(B) + v(B) >
6
5

· 1
2

+
4
10

= 1, ∀B ∈ B1\B1
0 ,

implying that
w(B1) =

∑
B∈B1

w(B) ≥ |B1| − 1.

Case 2. For two-item bins B2. Based on Proposition 1, there exists at most
one bin B2

0 belonging to B2 such that s(B2
0) ≤ 2/3. Let B1, B2 = {a1, a2} be two

bins in B2\B2
0 . Without loss of generality, assume that B1 is arranged before B2

in the order of NE and s(B1) ≥ s(B2). Note that s(B1), s(B2) > 2/3.
(1) If s(B1) ≥ 5/6, then we have

6
5
s(B1) + v(B2) ≥ 6

5
· 5
6

= 1.

(2) If s(B1) < 5/6, assume that s(B1) = 5/6 − x, x ∈ (0, 1/6). By Proposi-
tion 1, we obtain

s(a1), s(a2) > 1 − s(B1) =
1
6

+ x.

Then

v(ai) ≥ 3
5

(
s(ai) − 1

6

)
>

3
5

(
1
6

+ x − 1
6

)
=

3
5

· x, i = 1, 2.

Thus we have

6
5
s(B1) + v(B2) ≥ 6

5

(
5
6

− x

)
+

3
5

· x · 2 = 1,

implying that

w(B2) =
∑

B∈B2

s(B) + v(B) ≥
|B2|−1∑

i=1,Bi∈B2

s(Bi) + v(Bi+1) ≥ |B2| − 2.

Case 3. For three-item bins B3. Based on Proposition 1, there exists at most
one bin B3

0 belonging to B3 such that s(B3
0) ≤ 3/4. Let B = {a1, a2, a3} be any

bin belonging to B3\B3
0 . Note that s(B) > 3/4.



An Interest-Matrix-Based Mechanism for Selfish Bin Packing 89

Based on the case-by-case analysis analogous to the proof of Lemma 2, we
obtain that w(B) ≥ 1.

Thus, we obtain
w(B3) ≥ |B3| − 1.

Case 4. For four-item bins B4. Based on Proposition 1, there exists at most
one bin B4

0 belonging to B4 such that s(B4
0) ≤ 4/5. Let B = {a1, a2, a3, a4} be

any bin belonging to B4\B4
0 . Note that s(B) > 4/5.

Also by similar analysis as in Case 3, we have w(B) ≥ 1.
Thus, we obtain

w(B4) ≥ |B4| − 1.

Case 5. For five-plus-item bins Bj , 5 ≤ j ≤ n0 − 1. Based on Proposition 1,
there exists at most one bin Bj

0 belonging to Bj such that s(Bj
0) ≤ j/(j +1). Let

B = {a1, · · · , aj} be any bin belonging to Bj\Bj
0. Note that s(B) > j/(j + 1) ≥

5/6. We have

w(B) =
6
5
s(B) + v(B) >

6
5

· 5
6

= 1.

Then
w(Bj) ≥ |Bj | − 1, 5 ≤ j ≤ n0 − 1.

In summary,

w(I) =
n0−1∑
i=1

w(Bi) ≥
n0−1∑
i=1

|Bi| − n0 = NE(M�
I) − n0.

��

5.2 Lower Bound of PoA

Given an instance of selfish bin packing with s(ai) ∈ (1/n0, 1](i = 1, 2, · · · , n),
where n0 is an arbitrary large integer. In this subsection, we discuss the lower
bound of PoA for the IM-based mechanism.

Theorem 4. For any instance I with s(amin) > 1/n0, we show that under the
IM-based mechanism M�,

PoA(M�) ≥ 211
130

> 1.623.

Proof. Consider the following instance: let N be an arbitrary large integer and
let ε = 1/N ,

I =
(

1
2

+ ε,N

)
,

(
1
4

+ ε,N

)
,

(
1
6

+ ε,N

)
,

(
1
13

+ ε,N

)
,

(
1

156
− 4ε,N

)
,

which corresponding to five types of items: type I, II, III, IV, and V. Note that
the first number in (, ) is the size, second one is the number of items occurred.
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Fig. 2. A worst case of IM-based mechanism M� while s(amin) > 1/n0.

We present an NE packing that consists of 211/130 · N bins as illustrated
in Fig. 2. All these bins can be divided into five types: type 1, 2, 3, 4, and 5.
More exactly, Each type-I item monopoly occupies one bin; Every three type-II
items share one same bin; Every five type-III items share one same bin; Every
12 type-IV items share one same bin; Every 156 type-V items share one same
bin. Clearly, no item can benefit by moving alone under this packing:

(1) Each type-I item can not move to other bins since the capacity constraint;
(2) Each type-II item can not move to other type 2–5 bins since the capacity

constraint and each type-II item would not like to move to type-1 bins since
its payoff will change from 6/4 + 6ε to 5/4 + 5ε (decreasing);

(3) Each type-III item can not move to other type 3–5 bins since the capacity
constraint and type-III item would not like to move to type-1 or type-2
bins since its payoff will change from 20/12 + 10ε to at most 19/12 + 8ε
(decreasing);

(4) Each type-IV item can not move to other type 4 or type 5 bins since the
capacity constraint and type-IV item would not like to move to type 1–3
bins since its payoff will change from 144/78 + 24ε to at most 107/78 + 12ε
(decreasing);

(5) Each type-V item would not like to move to other bins since it currently
stays in the bin with the largest size and the most number of items.
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However, the optimal packing (showed in Fig. 2), only consumes N bins, in
which each bin is full and consists of five items that belongs to five different
types. Therefore,

PoA(M�) ≥ 211
130

> 1.623.

��

6 Conclusion and Extension

In this paper, we present an interest-matrix-based mechanism for selfish bin
packing that focuses on the interest or the satisfaction between each pair of
items rather than the sharing cost. Under this mechanism, we show that for a
general case where s(amin) > 1/n0 (n0 is an larger integer), the PoA falls into
the interval [1.623, 1.7]. Specially, when n0 = 4, the PoA ∈ [1.333, 1.5]. Based
on our discussion, there are still several open problems.

1. When the smallest item’s size tends to zero, i.e., n0 → ∞ is not a fixed
number, is the upper bound of PoA still 1.7?

2. Does there exist any more incentive mechanism with interest matrix for selfish
bin packing?

3. Is it possible to consider a new social goal, such as the total interest of all
items? Correspondingly, is it desirable to discuss the PoA that is the ratio
between the total interest that derives from the worst NE and the optimal
solution?
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