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Abstract. In this paper, we study the semi-online machine covering
problem on two hierarchical machines, whose objective is to maximize
the minimum machine load. When the processing times are discrete by
{1, 2, 22, . . . , 2k} with k ≥ 2, we prove that no algorithm can have a com-
petitive ratio less than 2k and present an optimal semi-online algorithm
with competitive ratio 2k.
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1 Introduction

Given m hierarchical machines and n jobs, each job can only be processed on
a subset of the machines and each job can only be processed on a machines.
The hierarchical scheduling problem, denoted by P |GoS|Cmax, is to minimize
the maximum load of all machines (makespan). Hwang et al. [2] studied the
offline problem P |GoS|Cmax and designed an approximation algorithm with
the mankspan no more than 5

4 -times the optimum for m = 2, and no more
than 2 − 1

m−1 -times the optimum for m ≥ 3. Ou et al. [7] designed a 4/3-
approximation algorithm and a polynomial time approximation scheme (PTAS,
for short) for P |GoS|Cmax. Li et al. [6] designed an efficient PTAS with running
time O(nlogn) for a special case of the problem P |GoS|Cmax and present a
simple fully polynomial time approximation scheme (FPTAS, for short) with
running time O(n) for the problem Pm|GoS|Cmax, where m is a constant. For
the online version, Park et al. [8] and Jiang et al. [3] designed an optimal online
algorithm with a competitive ratio of 5

3 for the case of two machines, respectively.
Wu et al. [10] designed several optimal semi-online scheduling algorithm on two
hierarchical machines. Zhang et al. [11] designed some optimal online algorithms
on two hierarchical machines with tightly-grouped processing times.

Machine covering on hierarchical machines with the objective of maximiz-
ing the minimum machine load, denoted by P |GoS|Cmin, is not a well-studied
scheduling problem. Li et al. [4] presented a PTAS for P |GoS|Cmin. Wu et al.
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[9] designed two semi-online optimal algorithms for P |GoS|Cmin on two hierar-
chical machines, when both the processing time and the class of the largest job
are known. Luo et al. [5] presented an optimal online algorithm with a compet-
itive ratio of (1 + α) for P |GoS|Cmin on two hierarchical machines, when the
processing time of each job is bounded by an interval [1, α]. Chassid and Epstein
[1] considered the machine covering problem on two hierarchical machines of
possibly different speeds.

In this paper, we consider the online machine covering problem on two hier-
archical machines with discrete processing times. The processing time of all jobs
are discrete by {1, 2, 22, . . . , 2k}, where k ≥ 2. We prove that no algorithm can
have a competitive ratio less than 2k and give an optimal algorithm with the
competitive ratio of 2k. The paper is organized as follows. Section 2 gives some
basic definitions. Section 3 presents an optimal semi-online algorithm. Section 4
presents concluding remarks.

2 Preliminaries

We are given two machines and a series of jobs arriving online which are to be
scheduled irrevocably at the time of their arrivals. The first machine can process
all the jobs while the second one can process only part of the jobs. The arrival of
a new job occurs only after the current job is scheduled. Let J = {J1, J2, . . . , Jn}
be the set of all jobs arranged in the order of arrival. We denote each job as Ji

with pi and gi, where pi > 0 is the processing time (also called job size) of the
job Ji and gi ∈ {1, 2} is the hierarchy of the job Ji. If gi = 1, the job Ji must
be processed by the first machine, and if gi = 2, the job Ji can be processed by
either of the two machines. pi and gi are not known until the arrival of the job
Ji.

The schedule can be seen as the partition of J into two subsets, we denote
as <S1, S2>, where S1 and S2 contain job indices assigned to the first and the
second machine, respectively. Let p(S1) =

∑
Ji∈S1

pi and p(S2) =
∑

Ji∈S2
pi

denote the load of the first machine and the second machine, respectively.
For the first i jobs, we define that T i denote total processing time, TGi

1 is
total processing time the jobs with hierarchy 1; pimax is the largest job time;
p(Si

1) denote total processing time of the jobs scheduled on M1 after the job Ji

is scheduled; p(Si
2) is total processing time of the jobs scheduled on M2 after

the job Ji is scheduled; Vi(opt) denote the optimal minimum machine load after
scheduling the job Ji; Vopt is the optimal function value of the problem in an
offline version; Vout denote the output objective function value by a algorithm.

So, according to the define of above, we have S1 = Sn
1 and S2 = Sn

2 . The
minimum value of p(S1) and p(S2), i.e., min{p(S1), p(S2)}, is defined as the
minimum machine load of the schedule <S1, S2>. The objective is to find a
schedule <S1, S2> that maximizes the minimum machine load.

For the first i jobs, let Li = min{T i − TGi
1,

T i

2 , T i − pimax} and Li is a
standard upper bound of the optimal minimum machine load. Then we can get
following lemma.
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Lemma 1. The optimal minimum machine load is at most Li after scheduling
the job Ji.

Definition 1. For a job sequence J and an algorithm, then the competitive ratio
of algorithm is defined as the smallest η such that for any J , Vopt ≤ ηVout.

At first, we give a lower bounded for the problem.

Theorem 1. There exists no algorithm with a competitive ratio less than 2k.

Proof: Consider an algorithm B and the following job sequence. The first job J1

with p1 = 1 and g1 = 2. If algorithm B schedules J1 on M1, we further generate
the last job J2 with p2 = 2k and g2 = 1 must be scheduled on M1. Therefore, we
have Vopt = 1 and Vout = 0, which lead to the competitive ratio is unbounded.

Otherwise, if algorithm B schedules J1 with p1 = 1 and g1 = 2 on M2. The
job J2 with p2 = 2k and g2 = 2, the algorithm B must schedule J2 with p2 = 2k

and g2 = 2 on M1. If the algorithm B schedule J2 with p2 = 2k and g2 = 2
on M2, we have Vopt = 1 and Vout = 0, which lead to the competitive ratio is
unbounded. The job J3 with p3 = 2k and g3 = 1 must be scheduled on M1. We
have Vopt = 2k and Vout = 1. Hence, there exists no algorithm with a competitive
ratio less than 2k.

3 An Optimal Semi-online Algorithm

In the section, we consider that the hierarchical load balancing problem on
two machines with discrete processing times. All processing times belong to
{1, 2, 22, . . . , 2k}, where k ≥ 2 in this problem. We present an optimal algo-
rithm.

Algorithm A
Input : Ji = (pi, gi)
Output : < S1, S2 >;
Step 0: S0

1 = ∅, S0
2 = ∅, i = 1;

Step 1: On receiving Ji = (pi, gi), update T i, TGi
1, pimax and Li;

Step 2: If gi = 1, schedule Ji on M1. Go to Step 4;
Step 3: If gi = 2 and when p(Si−1

1 ) < 1
2k

Li, schedule Ji on M1.
Else schedule it on M2. Go to Step 4;

Step 4: If there is a new job, let i = i + 1 and go to Step 1.
Else, output S1 and S2.

For the problem and the algorithm, we define that Vout = min{p(Sn
1 ), p(Sn

2 )}
is the output of the Algorithm A and Vopt is the output of the optimal offline
algorithm.

Lemma 2. If Algorithm A schedule the job Ji with gi = 2 on M1, then Li �=
T i − TGi

1.
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Proof: According to Algorithm A, if the job Ji with gi = 2 is scheduled on M1,
we have p(Si−1

1 ) < 1
2k

Li.

If Li = min{T i−TGi
1,

T i

2 , T i−pimax} = T i−TGi
1, then we get T i−TGi

1 ≤ T i

2 ,

which implies TGi
1 ≥ T i

2 . Since p(Si−1
1 ) ≥ TGi−1

1 = TGi
1, then we have

p(Si−1
1 ) ≥ T i

2
≥ Li >

Li

2k

and it is contradictory with p(Si−1
1 ) < Li

2k
. Thus, the proof is complete.

Lemma 3. If Algorithm A schedule the job Ji with gi = 2 on M1 and Li =
T i − pimax, then p(Si

2) ≥ 1
2k

(T i − TGi
1).

Proof: Since Li = T i − pimax, according to the definition of Li, we get T i −
pimax ≤ T i

2 , which means

pimax ≥ T i

2
.

In the first i jobs, we denote job Jj where j ∈ {1, 2, 3 · · · i} has largest processing
time, i.e., pj = pimax. Now, we will discuss two cases:
Case 1. pimax �= pi.

If Jj belongs to Si−1
1 , we have

p(Si−1
1 ) ≥ pimax ≥ T i

2
>

1
2k

Li

and this is contradictory with that Algorithm A schedule the job Ji on M1.
If Jj belongs to Si

2, we have

p(Si
2) ≥ pimax ≥ T i

2
≥ 1

2k
T i ≥ 1

2k
(T i − TGi

1). (1)

Case 2. pimax = pi.
We have

T i − pimax = p(Si
2) + p(Si−1

1 ). (2)

Since Algorithm A schedule the job Ji on M1, we have

p(Si−1
1 ) <

1
2k

Li =
1
2k

(T i − pimax). (3)

Hence, according to the inequalities of (2), (3), we have

p(Si
2) = T i −pimax −p(Si−1

1 ) > T i −pimax − 1
2k

(T i −pimax) =
2k − 1

2k
(T i −pimax).

Since k ≥ 2 and according to the inequalities of (3), we have

p(Si
2) >

2k − 1
2k

(T i − pimax) > (2k − 1)p(Si−1
1 ) ≥ 3p(Si−1

1 ). (4)
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Since p(Si−1
1 ) ≥ 1, we have p(Si

2) > 3. Since pi = pimax ≥ T i

2 > p(Si−1
1 ) and

pi ≤ 2k, we have

T i − TGi
1

p(Si
2)

≤ T i

p(Si
2)

= 1 +
p(Si−1

1 ) + pi
p(Si

2)
< 1 +

2k+1

3
< 2k. (5)

The proof is complete.

Lemma 4. If Algorithm A schedule the job Ji with gi = 2 on M1 and Li = T i

2 ,

then p(Si
2) ≥ T i−TGi

1
2k

.

Proof: Since the job Ji with gi = 2 is scheduled on M1, we have p(Si−1
1 ) <

Li

2k
= T i

2×2k
. Since

Li = min{T i − TGi
1,

T i

2
, T i − pimax} =

T i

2
.

So, we have T i − pimax ≥ T i

2 holds, which implies pimax ≤ T i

2 . Then, we have
pi ≤ pimax ≤ T i

2 and

p(Si
2) = T i − p(Si−1

1 ) − pi > T i − T i

2 × 2k
− T i

2
=

2k − 1
2 × 2k

T i.

Since k ≥ 2 and T i ≥ T i − TGi
1, we have

p(Si
2) >

2k − 1
2 × 2k

T i >
T i

2k
≥ T i − TGi

1

2k
.

We complete the proof.

Theorem 2. If Vout = min{p(Sn
1 ), p(Sn

2 )} = p(Sn
1 ), then Vopt

Vout
≤ 2k.

Proof: According to the question, we know that Sn
2 �= ∅.

We assume that the job Ji is the last job that scheduled on M2. According
to Algorithm A, we have p(Si−1

1 ) ≥ 1
2k

Li. Since

Ln − Li ≤ Tn − T i (6)

and all the jobs arrived after the job Ji will be scheduled on M1.
According to the definition of Ln and Ln ≥ Vopt, we have

1
2k

Li + (Ln − Li) ≥ 1
2k

(Li − Ln) +
Ln

2k
+ (Ln − Li)

≥ (1 − 1
2k

)(Ln − Li) +
Ln

2k

≥ 0.

(7)

Then, according to inequality (7), we have

1
2k

Li + (Ln − Li) ≥ 1
2k

Ln. (8)
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So, according to the inequalities of (6), (8), we have

p(Sn
1 ) = p(Si−1

1 ) + (Tn − T i) ≥ 1
2k

Li + (Ln − Li) ≥ 1
2k

Ln ≥ 1
2k

Vopt. (9)

Thus, according to inequality (9), when Vout = min{p(Sn
1 ), p(Sn

2 )} = p(Sn
1 ),

we have
Vopt

Vout
≤ 2k.

We complete the proof.

Theorem 3. The competitive ratio of Algorithm A is 2k.

Proof: According to Theorem 2, if Vout = min{p(Sn
1 ), p(Sn

2 )} = p(Sn
1 ), then

Vopt

Vout
≤ 2k. (10)

Therefore, we only need to prove when Vout = min{p(Sn
1 ), p(Sn

2 )} = p(Sn
2 ), the

inequality (10) holds.
We discuss the following two cases:

Case 1. Algorithm A doesn’t schedule jobs with hierarchy 2 on M1.
In this case, according to the definition of Ln. We have

p(Sn
2 ) = Tn − TGn

1 ≥ Ln ≥ Vopt >
1
2k

Vopt. (11)

Case 2. At least one job with hierarchy 2 is scheduled on M1.
Let Ja denote the last job with ga = 2 that scheduled on M1. According to

Lemmas 2, 3 and 4, we have

p(Sa
2 ) ≥ 1

2k
(T a − TGa

1).

Since remaining the jobs with hierarchy 2 are scheduled on M2 after job Ja and
we have k ≥ 2 and

Tn − TGn
1 ≥ T a − TGa

1 ,

then we get

p(Sn
2 ) = p(Sa

2 ) + ((Tn − TGn
1 ) − (T a − TGa

1))

≥ 1
2k

(T a − TGa
1) + ((Tn − TGn

1 ) − (T a − TGa
1))

=
1 − 2k

2k
(T a − TGa

1) + (Tn − TGn
1 )

≥ 1 − 2k

2k
(Tn − TGn

1 ) + (Tn − TGn
1 )

=
1
2k

(Tn − TGn
1 )

≥ 1
2k

Ln

≥ 1
2k

Vopt.

(12)
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According to the definition of Vout and the inequalities of (11), (12). We have
the inequality (10) holds.

According to Theorem1, the optimal competitive ratio of Algorithm A is 2k.
We complete the proof of competitive ratio.

4 Conclusion

In the paper, we study the semi-online version of hierarchical scheduling problem
on two parallel machines with the objective of maximizing the minimum machine
load. If the processing times are discrete by {1, 2, 22, . . . , 2k}, where k ≥ 2. We
prove the lower bound of the competitive ratio of any online algorithm is 2k and
present an algorithm which is shown to be optimal.
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