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1 Introduction

Rapid depletion of groundwater storage (GWS) at world’s densest populated areas
(Rodell et al. 2009; Feng et al. 2013; Voss et al. 2013; Bhanja et al. 2014) would
make billions of people suffer from socioeconomic stress in the near future. Water
management framework design becomes further complex due to changes in hydro-
logical cycle in the form of increasing atmospheric water vapor content; alteration in
patterns, intensity, and extremes of precipitation; snow cover reduction; and change
in soil moisture as well as runoff, in the current global warming scenario (Bates et al.
2008). Most of the global hydrological models are not capable enough to simulate
groundwater storage over all of the places of the globe at an optimum accuracys; it
might be due to absence of groundwater pumping, irrigation, and reservoir impound-
ment (Sacks et al. 2009) or deficiency in groundwater or surface water components
(Maxwell and Miller 2005).

The Gravity Recovery and Climate Experiment (GRACE) has been continuously
monitoring the change in earth’s gravity with exceptional accuracy (Tapley et al.
2004; Famiglietti and Rodell 2013). The change in gravity field has been related to
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the variation in mass in the fluidic layers of the earth, i.e., air and water. To compute
terrestrial water storage (TWS) estimates, different algorithms are utilized to remove
the signals lined to solid earth processes (Wahr 2007), atmospheric and oceanic
waves (Flechtner 2007). Numerous studies report groundwater storage depletion
across the globe (in either basin-scale or continental-scale) using satellite-based
approach (e.g., Rodell et al. 2009; Tiwari et al. 2009; Reager and Famiglietti
2013; Voss et al. 2013; Richey et al. 2015). The earlier studies converted ground-
water levels to groundwater storage using a constant specific yield value in the entire
study region. For example, Rodell et al. (2009) and Panda and Wahr (2016) both
used a uniform specific yield value of 0.12. Bhanja et al. (2016) has developed a
specific yield database for the country.

In situ and satellite-based groundwater storage anomalies are estimated in this
chapter. The in situ data has been retrieved from a well-maintained network of
groundwater level monitoring locations in India and studied across different parts
of India.

2 Methodology

2.1 In Situ Groundwater-Level Observations

Groundwater level (GWL) information are obtained from the Central Ground Water
Board (CGWB, India) in January 2005 to November 2013. The data are collected
from typically unconfined aquifers (~87%) (CGWB 2014b), from >19,000
observation wells having GWL data of four times a year (late post-monsoon
(January), pre-monsoon (May), monsoon (August), and early post-monsoon
(November)). To use the continuous data for anomaly analyses, observation loca-
tions are selected based on the availability of at least three seasonal data in the years.
Outliers were removed following the inter-quartile approach (Davis 2002), which
reduced the well numbers to 3907. CGWB has been maintaining the densely spaced
monitoring wells network very well; this is linked with observation of very less
spatial error that might be arising as a result of groundwater spatial variability
(Bhanja et al. 2017a). GWL anomaly (GWLA) in the individual well has been
estimated by subtraction of time-averaged depth to water table from the depth of
water table in each observation time. The sign was reversed in the process for depth
below the surface rule. The GWLA are converted to GWS anomalies (GWSA,;)
using specific yield values for each well (Bhanja et al. 2016; MacDonald et al. 2016).
GWSA o, median values within each grid cell were utilized to build 1° x 1° gridded
data in the study area and for comparing with GWSA,,.
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2.2 Agquifer-Specific Yield Computation

High-resolution (0.1° x 0.1°) specific yield map is made using hydrogeology map of
India (Bhanja et al. 2016). The tributaries and the main channel of Ganges is the largest
river system in India having a catchment area of ~86.1 million ha (CWC 2010). Indus-
Ganges-Brahmaputra (IGB) rivers system has created a regional aquifer system in
parts of the northern and eastern India, which is considered to be one of the most
prolific aquifers in the world (Mukherjee et al. 2015). On the contrary, central and
southern India has been consisting of Pre-Cenozoic crystalline rocks, sedimentary
formations, and multilayered basalt of the Indian craton (CGWB 2014b).

The aquifers are composed of six hydrogeological units, such as unconsolidated
sedimentary aquifers; consolidated, permeable sedimentary aquifers; sedimentary
aquitards; folded metasediment/metamorphic aquifers; jointed crystalline aquifers;
and fractured crystalline aquifers (Bhanja et al. 2016).

The S, values (Table 1) are segregated from the CGWB database (CGWB
2012a). The S, information were characterized according to the aquifer
hydrogeology shown in Fig. 1. Ranges and mean specific yield information are
provided in Table 1. Details on S, can be found in Bhanja et al. (2016) (Fig. 2).

Individual S, values are allocated to the wells located in hydrogeologic forma-
tion. Observed GWS are computed by multiplying Ah and Sy values. GWS anomaly
has been calculated by subtracting all time-averaged GWS from the individual data.

2.3 Gravity Recovery and Climate Experiment (GRACE)

Gridded (1° x 19, monthly mean liquid water equivalent thickness (LWET) data
were obtained from NASA-JPL archive. Mascon solutions (RLO5) are used for
133 months in January 2003 to December 2014 (Watkins et al. 2015). Several data
processing techniques are used to separate the TWS signal from the data (details can

Table 1 Specific yield values of different hydrogeologic formations shown in Fig. 1

Mean
Hydrogeology S, range Sy
1 | Unconsolidated sedimentary (high hydraulic conductivity) 0.06-0.20 | 0.130
2 | Consolidated, permeable sedimentary (medium hydraulic Upto0.08 |0.043
conductivity)
3 | Sedimentary aquitards (low hydraulic conductivity) Upto0.03 |0.018
4 | Folded metasediments/metamorphics (low hydraulic conductivity) Upto0.03 |0.018
5 | Jointed crystalline (low to variable hydraulic conductivity) 0.01-0.03 | 0.020
6 | Fractured crystalline (low to variable hydraulic conductivity) Upto0.04 |0.023
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Fig. 1 Hydrogeology map of the ISC. The five HMZs are marked. (Modified from Bhanja et al.
2016)

be found in http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/ accessed on
26 April, 2016). Degree 2 and order O coefficients are substituted using the coeffi-
cients obtained from Satellite Laser Ranging (Cheng and Tapley 2004). Geocenter
corrections have been retrieved from Swenson et al. (2008). Glacial isostatic adjust-
ment (GIA) values in the data are separated following Geruo et al. (2013). One of the
major differences between SH and mascon approach is linked to the division of the
globe in spherical, 3° equal area mass concentration blocks in mascon approach
(Watkins et al. 2015). Further, use of the a priori values leading to the omission of
correlated noise (stripes), as a result, post-processing filters are no more required to
be used in mascon approach (Watkins et al. 2015). Another benefit of mascon
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Fig. 2 Specific yield map (0.1° x 0.1%) of the study region. Specific yield fractions are shown in
color bar. (Modified from Bhanja et al. 2016)

approach over the spherical harmonics solutions deals with the comparatively lower
dependency on scale factors for estimating the mass change calculations in the river
basins (Watkins et al. 2015). The scale factors are multiplied with the TWS solutions
for consideration of local-scale phenomena.

2.4 Satellite-Based Groundwater Storage Anomaly
Estimation

The anomaly in satellite-based groundwater storage (AGWS) has been estimated
after separating the anomalies of other water components such as the soil moisture
anomaly (ASM) and surface water (ASW) equivalents (surface runoff data used
here). The study region has never experienced snow accumulation (exception is the
northernmost Himalayan region); hence, snow data are not used. Time-averaged data
has been removed from individual data to compute the anomaly (A). Continuous
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observation data for SM and SW were not available; we used the model estimates
from the NASA Global Land Data Assimilation System (GLDAS) (Rodell et al.
2004). The combination of three different GLDAS models’ output, such as the
Community Land Model (CLM), Variable Infiltration Capacity (VIC), and Noah
models, is used to avoid any bias associated with a particular model. The CLM
simulation includes soil moisture in ten different soil layers (0-343 mm) and other
models, while VIC and Noah simulation includes soil moisture in three layers
(0—190 mm) and four layers (0200 mm), respectively. For estimating anomaly in
any of the components, time-averaged value for that component has been subtracted
from the individual data. Finally, the groundwater storage (AGWS) anomaly is
estimated by removing anomalies of ASM and ASW from the TWS anomaly.

3 Results and Discussions

3.1 Groundwater Storage Estimation

In situ groundwater level trends show simultaneous occurrence of wells with
increasing and decreasing water level between 2005 and 2013 (Fig. 3). However,
parts of the IGB basin mostly show reducing groundwater levels, whereas parts of
western and southern India show increasing trends (Fig. 3). The GWS anomaly
shows strong spatial variability in the study region (Figs. 4 and 5). Observed GWS
data indicate renewal in GWS in western (HMZ B) and southern (HMZ E) zones at
a rate of 1.06 & 0.03 and 0.31 £ 0.02 km3/year. On the other hand, the northern
(HMZ A) and eastern (HMZ D) zones are experiencing rapid GWS depletion at
rates of 4.55 + 0.11 km*/year and 3.59 =+ 0.14 km>/year, respectively (Figs. 4 and
5). Satellite-based estimates indicate rapid depletion in northern (zone A) and
eastern (zone D) zones at a rate of —1.40 & 0.14 and —1.16 + 0.35 cm/year
(—14.02 + 1.37 km’/year and —14.49 + 4.36 km?/year) in the study period,
respectively (Fig. 5). These depletion observations are in line with the satellite-
based findings of northwest (17.7 km?®/year, between 2002 and 2008) (Rodell et al.
2009) and northern (54 km3/year in 2002-2008) (Tiwari et al. 2009) India and
Bangladesh (located at eastern zone) (Shamsudduha et al. 2012). Corroborating
the above observations, comparison of field measured groundwater level
fluctuation of decadal mean (2001-2010) to 2011 by Indian government
authorities, in general, suggests groundwater decline in northern, northwestern,
and eastern India and rise in southern and western India for most seasons (CGWB
2012b). They reported a declining water level trend for pre-monsoon during 2007
to 2012 with >55% of measured wells (n = 11,024) having groundwater level drop
of >1 m/year (MoWR 2013).

The fertile alluvial plains of the IGB basin are extremely conducive for
irrigational activities. Consequently, the IGB plains have been one of the cradles
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Fig. 3 Maps of in situ groundwater level trends in 2005-2013

of human civilization, and presently it is known as one of the most densely populated
parts in the world. The rapidly accelerating groundwater demands in these areas are
directly proportional to the increasing population, introduction of water-intensive
crops (e.g., boro rice), and changes in cropping pattern (e.g., replacing food crop by
cash crop) (FAO 2013) and coincide with the areas showing highest GWS depletion.
Most of Bangladesh (percentage of gross irrigated area to gross cropped area, >60%;
FAO 2013) and Indian states such as Punjab (98%), Haryana (85%), Uttar Pradesh
(76%), Bihar (61%), and West Bengal (56%) are all located in these depletion zones
(MoA 2012). More than 4 m groundwater decline have been observed during the last
decade in Indian states of Delhi, Haryana, Punjab, Rajasthan, and West Bengal
(CGWB 2014a). The drastic groundwater level depletion in Ganges basin has been
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Fig. 4 Maps of the annual mean groundwater storage (GWS) anomalies (cm)

found to be linked with surface water quantity reduction in Ganges river during
recent summers (Mukherjee et al. 2018).

3.2 Groundwater Storage Replenishments and Policy
Interventions

Despite rapid GWS depletion in northern and eastern parts, GWSA replenishments
have been observed in southern, central, and western parts of India (Figs. 4, 5, and
6). In situ estimates show groundwater level replenishing trend in Andhra Pradesh,
Maharashtra, Gujarat, Tamil Nadu, and Chhattisgarh between 2005 and 2013. The
estimates are consistent with published reports of CGWB (CGWB 2013, 2014b).
Based on the satellite-based estimates, it has been found that several districts of the
western, central, and southern study regions have been subjected to GWS
replenishments. The reasons for the replenishment are investigated in detail in
Bhanja et al. (2017b). Reasons include reduction in irrigation-linked groundwater
withdrawal, change in agricultural practice, increasing artificial recharge, surface
water irrigation increase, etc. (Bhanja et al. 2017b, and references therein).
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Fig. 5 Time series of GWS anomaly in (a) northern (HMZ A), (b) western (HMZ B), (c) central
(HMZ C), (d) eastern (HMZ D), (e) southern (HMZ E), and (f) the entire study area

Uncontrolled withdrawal for increasing irrigation of water-intensive cropping prac-
tice (e.g., boro rice paddy) has been leading to one of the most critical groundwater
depletion in human history. Recent shift in Indian government policies on groundwater
withdrawal and incorporation of management strategies are facilitating increasing
groundwater storage. Policies such as inhibition of subsidized electricity for irrigation,
creation of large-scale recharge systems in crystalline aquifers (e.g., ~700 million USD
allocated to the Tapi river Mega Recharge Project), targeted artificial recharge of
85 BCM/year in ~0.5 million km? through creation of ~10 million structures, and
increased recharge as a function of the interlinking of river catchments (such as the
Narmada-Sabarmati interlinking) have been implemented. Based on these, we hypoth-
esize to have probably started replenishing the groundwater storage, as evident in
GWL and GWS trends in parts of India (Bhanja et al. 2017b).

The potential implications of groundwater management policies are studied using
the longterm (between 1996 and 2014), groundwater level information from the
Indian states of Gujarat and Andhra Pradesh. The GWS were characterized as trends
and cycles using the Hodrick-Prescott (HP) filter approach. The result suggests
reducing groundwater trends from 1996 to 2002-2003 in Gujarat, at a rate of
5.81 + 0.38 km*/year (linear trend), and trend reversals to increasing GWS have
been observed at a rate of 2.04 + 0.20 km>/year between 20022003 and 2014. A
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Fig. 6 District-wide groundwater replenishment from satellite-based observations. Districts with
more than 2 cm/year are marked here

declining GWS trend has been observed in Andhra Pradesh (0.92 4+ 0.12 km3/year)
in 1996-2003. Similar to Gujarat, the GWS trend has been following increasing
trend in 2003-2014, at a rate of 0.76 + 0.08 km3/year. The trend reversals are found
to be associated with implementation of several groundwater policy modifications in
these two states (Bhanja et al. 2017b). In the same time period (i.e., 1996-2014), no
distinct changes in HP trends of precipitation have been found in the two states
(Fig. 3b and d), hence reducing possibilities of influence of precipitation on the
groundwater storage trends.

A net decrease in agricultural power supply from 16 to 10 billion units in
2001-2006 resulted in 20-30% decrease in groundwater withdrawal in Gujarat.
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Results of our analyses show electricity usage for groundwater irrigation (P value
<0.05) was found to have negative influence on GWS anomaly in Gujarat, indicating
the decrease in electricity usage facilitating reduction in groundwater pumping from
2002, possibly resulting to GWS replenishment in Gujarat. In Andhra Pradesh, UN
FAO conducts program for farmers, associated with groundwater sustainable
management training practice in 2004-2008. Another scheme named APWELL
was associated with large-scale groundwater development in Andhra Pradesh
(Bhanja et al. 2017b). An overall enhancement in surface water irrigation is observed
1996 onward (~20% increase in surface water irrigation have been recorded in
2003-2014 comparing the 2002 level), thus possibly inducing the increased
non-meteoric recharge.

4 Summary and Conclusion

Over the past decade, the issue of diminishing groundwater resources in India has
garnered significant concern worldwide. Several studies have shown the rapid
depletion of groundwater storage as a consequence of intensifying crop irrigation
and rapid urbanization. Our studies have identified replenishment of groundwater
storage at regional scale in parts of southern and western India. In recent times, large
parts of the country experience severe water crisis during every summer. Pervasive,
unregulated groundwater withdrawal for enhancing irrigation of water-intensive
cultivation is linked to one of the most severe groundwater depletion in the world
and may be ascribed as “largest groundwater abstraction in human history.”

Our study shows that a recent crucial shift in the Indian groundwater management
policies for water utilization might be associated with the aquifer replenishment by
increasing storage in western and southern India. We observed, in parts of western
(Gujarat) and southern (Andhra Pradesh) India, groundwater storage had been
decreasing at rates of —5.81 + 0.38 km?>/year and — 0.92 + 0.12 km*/year in
1996 to 2001-2002, respectively. Consequently, the groundwater storage has been
found to increase at rates of 2.04 + 0.20 km*/year in Gujarat and 0.76 & 0.08 km?/
year in Andhra Pradesh, respectively, during 2002-2003 to 2014.

The groundwater replenishment is probably caused by a combination of govern-
ment policy changes and the grassroots efforts of local communities, who have
undertaken several projects over the last several years in the form of efficient
groundwater management and utilization policies. Recent changes in Indian gov-
ernment’s policies on groundwater management processes, such as inhibition of
subsidized electricity for irrigation, distinct electricity distribution for agriculture
(e.g., Jyotigram Yojana), creation of large-scale recharge systems in crystalline
aquifers (e.g., the Tapi river Mega Recharge Project), artificial recharge of 85 Billion
cubic meter/year in approximately 0.5 million km?® by creation of ~10 million
structures (e.g., Pradhan Mantri Krishi Sinchayee Yojana), and increasing recharge
by interlinking of rivers (e.g., Narmada-Sabarmati interlinking), are worth to be
noted. The sustainable policy implementation is possibly starting to replenish the
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aquifers in the form of increasing groundwater storage in the future. Hence, the
results of our study illustrate a potentially optimistic scenario, where under condu-
cive groundwater management policies India can transform from a “groundwater-
scarce” to a “groundwater-sufficient” country.
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