
Performance Evaluation
of Multi-operands Floating-Point Adder

Arvind Kumar, Sunil Kumar, Prateek Raj Gautam, Akshay Verma
and Tarique Rashid

Abstract In this paper, an architecture is presented for a fused floating-point three
operand adder unit. This adder executes two additions within a single unit. The
purpose of this execution is to lessen total delay, die area, and power consumption in
contrast with traditional addition method. Various optimization techniques including
exponent comparison, alignment of significands, leading zero detection, addition,
and rounding are used to diminish total delay, die area, and power consumption.
In addition to this, the comparison is described of different blocks in term for die
area, total delay, and power consumption. The proposed scheme is designed and
implemented on Xilinx ISE Design 14.7 and synthesized on Synopsis.

Keywords Floating-point adder · Significand bits · Exponent bits · Total delay
and Xilinx

1 Introduction

The use of floating-point arithmetic, which is according to IEEE-754 standard [1],
is to make general-purpose application specific processor. Floating-point number
contains three components: exponent bits, the sign bit, and significand bits that are

A. Kumar (B) · S. Kumar · P. Raj Gautam · A. Verma · T. Rashid
Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
e-mail: arvindk@mnnit.ac.in

S. Kumar
e-mail: rel1516@mnnit.ac.in

P. Raj Gautam
e-mail: prateekrajgautam@gmail.com

A. Verma
e-mail: rel1602@mnnit.ac.in

T. Rashid
e-mail: rel1404@mnnit.ac.in

© Springer Nature Singapore Pte Ltd. 2019
A. Khare et al. (eds.), Recent Trends in Communication, Computing,
and Electronics, Lecture Notes in Electrical Engineering 524,
https://doi.org/10.1007/978-981-13-2685-1_51

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2685-1_51&domain=pdf
mailto:arvindk@mnnit.ac.in
mailto:rel1516@mnnit.ac.in
mailto:prateekrajgautam@gmail.com
mailto:rel1602@mnnit.ac.in
mailto:rel1404@mnnit.ac.in
https://doi.org/10.1007/978-981-13-2685-1_51

538 A. Kumar et al.

Fig. 1 Representation of single precision floating-point number [1]

Fig. 2 Representation of double precision floating- point number [1]

Fig. 3 Discrete versus fused
floating-point adder [2]

shown in Fig. 1. There are two standard floating-point representations [1]: single
precision and double precision representation. In single precision representation,
there are one sign bit, eight exponent bit, and twenty-three significand bits. However,
in double precision representation, there are one sign bit, eleven exponent bit, and
fifty-two significand bits that are shown in Figs. 1 and 2.

An addition is more significance in arithmetic, and it is widely used operation
in various applications. Discrete floating-point adder uses two operands at a time
which is well optimized. In order to use multiple operands for the addition, we
have to use the multiple traditional adder ones after other because it can use only
two operands at a time. Discrete floating-point adders degrade accuracy owing to
the multiple rounding one after in each addition. Due to this die area, total delay
and power consumption become larger. To improve quality, the fused floating-point
adder is used. It executes two additions in a single unit so that only single rounding is
required which reduces die area and power consumption. The comparison between
discrete and fused floating-point adder [2, 3] is shown in Fig. 3.

The proposed adder performed addition of three floating-point operands and exe-
cuted additions as

S = A ± B ± C

Performance Evaluation of Multi-operands Floating-Point Adder 539

There are many fused floating-point units that are presented: fused multiply-add
(FMA), fused add subtract (FAS), fused dot product (FDP), and a fused three-term
adder (FTA) [4, 5].

2 Methodology

The algorithm of three terms is given in Fig. 4 is represented as [6–8]

1. Unpacking each of the three floating-point numbers A, B, and C to obtained sign
bit (1 bit), exponent (8 bits), and significand (23 bit +1 bit hidden).

2. In order to find the maximum exponent from the three exponents and calculate
the exponent difference.

3. Arrange the significands right shift according to their respective exponent dif-
ference.

4. Sign logic determines the sign of A, B, and C according to op-codes op1 and
op2.

5. Invert the significands according to their respective sign obtained from the sign
logic.

6. Significand addition is performed by using 3:2 CSA (carry-save adder).
7. Leading zero detector is to compute leading zero of the output of CSA, and

accordingly, significand is shifted by the same amount and exponent is also
adjusted.

8. Rounding operation is performed to round off the resultant significand.
9. If output of CSA produces carry, then right shift the significand by 1, and accord-

ingly, exponent will increment by 1.
10. Pack the resultant sign bit, exponent bits, and significand bits to produce the

resultant floating-point number.

3 Proposed Design and Implementation

3.1 Exponent Comparison and Alignment of Significand

For floating-point addition [9, 10], that is essential to compute maximum expo-
nent from the three exponents. Exponent difference is performed by subtracting the
respective exponents from the maximum exponent. Significands are aligned by right
shifting the significand by the amount of the respective exponent difference. All the
arrangements of six subtractions of exponent differences (expa − expb, expb − expa ,
expb − expc, expc − expb, expa − expc, and expc − expa) are performed to calculate.

The differences of each pair, an absolute value is adopted based on the exponent
comprising results that enables skipping the complementation after the subtractions.

540 A. Kumar et al.

Fig. 4 Multi-operands floating point adder

An exponent comparison and significand arrangement logic is shown in Fig. 5.
The control logic estimates the largest exponent and arranged the significands

based on the exponent comprising results as shown in Table 1. In order to guar-
antee the significand precision, the aligned significands become 2 f + 6 bits wide,
including two overflow bits, round bits, guard bits and sticky bits. Where f is the
significand bits can be seen in Fig. 6.

Performance Evaluation of Multi-operands Floating-Point Adder 541

Fig. 5 Exponent comparison and significand arrangement logic

Table 1 Exponent comparison control logic [2]

A ≥ B B ≥ C C ≥ A exp_max shf_a_sel shf_b_sel shf_c_sel

0 0 0 NA NA NA NA

0 0 1 exp_c shf_ca shf_bc signif_c

0 1 0 exp_b shf_ab signif_b shf_bc

0 1 1 exp_b shf_ab signif_b shf_bc

1 0 0 exp_a signif_a shf_ab shf_ca

1 0 1 exp_c shf_ca shf_bc signif_c

1 1 0 exp_a signif_a shf_ab shf_ca

1 1 1 any signif_a signif_b signif_c

3.2 Effective Sign Logic

Sign logic determines the three effective sign bits (sign_e f f _a, sign_e f f _b and
sign_e f f _c) on the basis of the three sign bits and two op-codes as

sign_e f f _a = sign_a

sign_e f f _b = sign_a ⊕ (sign_b ⊕ op1)

542 A. Kumar et al.

Fig. 6 Significand shifter is shown for single precision [2]

sign_e f f _c = sign_a ⊕ (sign_c ⊕ op2)

where ⊕ is the sign of exclusive-OR operation.

3.3 Inversion Block

Inversion block complements the significand on the basis of their respective effective
sign.

Up to two significands are complimented with the help of three operand subtrac-
tion (e.g., A − B − C = A + B′ + 1 + C′ + 1 = A + B′ + C′ + 2). Increments are
avoided after inverters and 2 bits are extended to the LSB of the significands as shown
in Table 2.

Table 2 2-bit extended LSBs for complementation [2]

s_eff_a s_eff_b s_eff_c a−1a−2 b1b−2 c−1c−2 sum0

0 0 0 00 00 00 0

0 0 1 10 00 10 1

0 1 0 00 10 10 1

0 1 1 10 11 11 2

1 0 0 10 10 00 1

1 0 1 11 10 11 2

1 1 0 11 11 10 2

1 1 1 00 00 00 0

Performance Evaluation of Multi-operands Floating-Point Adder 543

3.4 Carry-Save Adder (CSA)

Each significand is passed to the 3:2 reduction tree. Carry save-adder (CSA) is used to
perform the reduction that reduces the three significands with respect to two and then
performed the addition. The advantage of using CSA is that it does not propagate
carry. It saves the carry which minimizes the total delay in performing addition
operation as compared to carry propagate adder.

3.5 Leading Zero Detector and Normalization

This block determines a position of the leading zero from the MSB of the output
of the CSA. Significand becomes normalized significand based on the amount of
left shift obtained from the leading zero detectors. An exponent is also adjusted by
the amount obtained from leading zero detector block. Significand addition with
normalization is the highest bottleneck of fused floating-point adder. To diminish the
overhead, normalization is used.

3.6 Exponent Adjust Block

The largest exponent (expmax) determined by the exponent compare logic is adjusted
by subtracting the shift amount from LZA and adding the carry out of the significand
addition as shown in Fig. 7

Fig. 7 Exponent adjust
block

544 A. Kumar et al.

Table 3 Table for rounding
operation

G R S Operation performed

0 0 X No changes in the LSB

0 1 X No changes in the LSB

1 1 X Add 1 to LSB Bit

1 0 0 Round to nearest even

1 0 1 Add 1 to the LSB

Fig. 8 Figure shows the position of significand and guard, round, and sticky bit

3.7 Rounding

In order to truncate the significand, we have to perform the rounding operation with
the help floating-point multiplier; significand is round off based on guard bit (G),
round bit (R), and sticky bit (S) as shown in Fig. 7 and Table 3. Rounding is determine
to rounded floating the value of carry, guard, LSB, round, and sticky bits (Fig. 8).

Here, least significand bit (LSB) bit is just left of the guard bit as shown above.

4 Result Analysis

In this section, modules of proposed architecture are designed in Xilinx 14.7 and
synthesis on synopsis tool. Their corresponding results are shown, respectively.

The result of the addition of three floating-point numbers is shown in Fig. 9.

Fig. 9 Simulation result

Performance Evaluation of Multi-operands Floating-Point Adder 545

Table 4 Comparison between a proposed paper with implementation of fused floating-point three-
term adder unit [3]

Modules Implementation of fused Performance evaluation of

floating-point three-term adder unit multi-operands floating-point adder

Number of Slices
LUT used

Delay (ns) Number of Slices
LUT used

Delay (ns)

Exponent comparison and
alignment of significand

519 5.965 1035 4.086

Carry save adder (CSA) 2 0.893

Effective sign logic 2 3.696 2 0.889

Inversion Logic 318 2.942

Leading zero detector and
normalization

28 8.524 1052 12.999

Rounding 4 3.809 48 2.788

Control logic 3 3.809 165 0.751

Overall output 2316 18.993

Comparison between execution of fused floating-point three-term adder unit [3]
and performance evaluation of multi-operands floating-point adder on the basis num-
bers of slices LUT used and delay are shown in Table 3. The fundamental differ-
ence between proposed and conventional design is alignment of significand bits and
rounding. The proposed design executes the lesser significand bits addition compared
to conventional designs. Further, the proposed design executes the significand bits
addition and rounding at the same time so that the delay is diminished significantly.

The synthesis result obtained from synopsis tool is shown in Table 4.

5 Conclusion

In this paper, we have introduced an improved architecture for three-term adder with
a fused floating point which is used to diminish die area, total delay, and power con-
sumption in i with the discrete floating point adder. Further, this paper also compares
the different performance of proposed architecture for Implementation of three-term
adder unit with fused floating point in terms of delay and number of slices LUT
used. In addition, die area and power consumption of different optimized blocks
are provided by synthesis result. The optimization blocks are exponent compari-
son, alignment of significand, CSA, effective sign logic, inversion logic, leading
zero detector, normalization, rounding, and control logic. In future, we will design
architecture in order to obtain high-speed adder (Table 5).

546 A. Kumar et al.

Table 5 Synthesis result analysis on synopsis

Modules Power (mW) Area (µm2)

Exponent comparison and
alignment of significand

1.6009 14411.488

Carry-save adder (CSA) 0.6439 2472.736

Effective sign logic 0.00589 31.36

Inversion logic 0.398 3395.50472

Leading zero detector and
normalization

1.0558 5357.856

Rounding 0.006759 700.1120

Control logic 0.5263 3206.5601

Overall output 6.6984 26683.440262

References

1. Zuras, D., Cowlishaw, M., Aiken, A., Applegate, M., Bailey, D., Bass, S., et al. (2008). IEEE
standard for floating-point arithmetic. IEEE Standards, 754–2008, 1–70.

2. Sohn, J., & Swartzlander, E. E. (2014). A fused floating-point three-term adder. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 61(10), 2842–2850.

3. Popalghat, M., & Palsodkar, P. (2016). Implementation of fused floating point three term adder
unit. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp.
1343–1346). IEEE.

4. Drusya, P., & Jacob, V. (2016). Area efficient fused floating point three term adder. In Inter-
national Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp.
1621–1625). IEEE.

5. Sohn, J., & Swartzlander, E. E. (2012). Improved architectures for a fused floating-point add-
subtract unit. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2285–
2291.

6. Tenca, A.F. (2009). Multi-operand floating-point addition. In 2009 19th IEEE Symposium on
Computer Arithmetic, ARITH 2009. (pp. 161–168). IEEE

7. Seidel, P. M., & Even, G. (2004). Delay-optimized implementation of IEEE floating-point
addition. IEEE Transactions on Computers, 53(2), 97–113.

8. Tao, Y., Deyuan, G., Xiaoya, F., & Xianglong, R. (2012). Three-operand floating-point adder.
In 2012 IEEE 12th International Conference on Computer and Information Technology (CIT)
(pp. 192–196). IEEE.

9. Underwood, K. (2004). Fpgas vs. cpus: trends in peak floating-point performance. In Pro-
ceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate
arrays (pp. 171–180). ACM.

10. Monniaux, D. (2008). The pitfalls of verifying floating-point computations. ACM Transactions
on Programming Languages and Systems (TOPLAS), 30(3), 12.

	Performance Evaluation of Multi-operands Floating-Point Adder
	1 Introduction
	2 Methodology
	3 Proposed Design and Implementation
	3.1 Exponent Comparison and Alignment of Significand
	3.2 Effective Sign Logic
	3.3 Inversion Block
	3.4 Carry-Save Adder (CSA)
	3.5 Leading Zero Detector and Normalization
	3.6 Exponent Adjust Block
	3.7 Rounding

	4 Result Analysis
	5 Conclusion
	References

