An Efficient Parallel Implementation)
of CPU Scheduling Algorithms Using L
Data Parallel Algorithms

Suvigya Agrawal, Aishwarya Yadav, Disha Parwani and Veena Mayya

Abstract Modern graphics processors provide high processing power, and fur-
thermore, frameworks like CUDA increase their usability as high-performance
co-processors for general-purpose computing. The Graphical Processing Units
(GPUs) can be easily programmed using CUDA. This paper presents an efficient
parallel implementation of CPU scheduling algorithms on modern The Graphical
Processing Units (GPUs). The proposed method achieves high speed by efficiently
exploiting the data parallelism computing of the The Graphical Processing Units
(GPUs).

1 Introduction

The modern GPU is a many-core processor which supports execution of thousands
of threads concurrently. GPU comprises of a series of streaming processors with hun-
dreds of core aligned in a particular way which facilitate single instruction multiple
threads (SIMTs) programming model.

General-purpose computing on GPU is a graphical processing unit which is very
efficient at computer graphics manipulation and image processing. The highly paral-
lel structure of GPU makes it easy to use to perform the general-purpose computation
and accelerate traditional CPU-based computational tasks. Recently, general-purpose

S. Agrawal (<) - A. Yadav - D. Parwani - V. Mayya
Department of Information and Communication Technology,
Manipal Institute of Technology, Manipal Academy of Higher
Education, Manipal 576104, India

e-mail: suvigyalst@gmail.com

A. Yadav
e-mail: aishwaryayadav91 @yahoo.com

D. Parwani
e-mail: disha.parwani9927 @ gmail.com

V. Mayya
e-mail: veena.mayya@manipal.edu

© Springer Nature Singapore Pte Ltd. 2019 429
R. Kamal et al. (eds.), International Conference on Advanced Computing Networking

and Informatics, Advances in Intelligent Systems and Computing 870,
https://doi.org/10.1007/978-981-13-2673-8_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2673-8_45&domain=pdf
mailto:suvigya1st@gmail.com
mailto:aishwaryayadav91@yahoo.com
mailto:disha.parwani9927@gmail.com
mailto:veena.mayya@manipal.edu
https://doi.org/10.1007/978-981-13-2673-8_45

430 S. Agrawal et al.

35
3

(]

U
O
w

-~

4

»

3
7
8 2
4

[+ -]

VARV AV
v
%/

> >) >

6> 5 5
2> 2 7
1 1 8

Fig. 1 Example of bitonic parallel sort algorithm

2

n

6
5

—y

5 1

computation on graphics processing units (GPGPU) has been adopted in acceler-
ating many algorithms such as sorting [11], graph algorithms [12], data encryption
algorithms [5], and other generic algorithms [13]. Several libraries and programming
environment are available that allow programmers to perform GPGPU and exploit
computational power of GPU. Compute Unified Device Architecture (CUDA) [8]
framework is one of the programming environments provided by NVIDIA that
allows to exploit data parallelism of GPU using C-style programming language.

Scheduling is a way by which work specified by some means is assigned to
resources that complete the work. Job/process scheduling is the process of arrang-
ing, controlling, and optimizing the allocation of system resources to threads, pro-
cesses, and data flows for maximum utilization. The operating system schedules
the processes for execution using several scheduling algorithms based on various
scheduling criteria such as CPU utilization, throughput, turnaround time, waiting
time, and priority. System resources can be equally and effectively utilized by prop-
erly scheduling the processes and hence achieve a target quality of service. The major
scheduling algorithms types of CPU/job scheduling algorithms include as follows:
First Come First Serve (FCFES), Shortest Job First (SJF), Round Robin (RR), and
Priority-Based Scheduling (PBS). Scheduling is required to perform multitasking
and multiplexing. Scheduling is a complex job requiring extensive processing which
is better performed on a parallel platform.

In this paper, a novel parallel approach to perform scheduling using CUDA tech-
nology to enhance the performance of process scheduling algorithms is proposed. A
combination of well-established data parallel algorithms and parallel sorting tech-
niques has been adopted to achieve drastic performance increase in execution time
of scheduling algorithms (Fig. 1).

An Efficient Parallel Implementation of CPU Scheduling ... 431

Xo Xg X100 X11 X912 X13 X14 Xis

+)(+)(+)(+

[Zxo.x1) | [Zxo.xa) || Zxe.xs| | [Zxexr]| [Zxexa] || Exso. x4 Exaz x1l [Ex1a.x1g]
[EXL.XZI |2X3_.14| IE)‘s_)‘s[[217_?‘3 IE"Q._Xm |2"11.."12 24“13_."14'

+)(+) () (H)H)E) (HH)H) (H)HEH) T+

[0 | || Zxx || [e [265 | [2050 [2% [2{11.."14

[]| [2xx] | [Zxex] | [26260]| | Exexs | Exi0.245 |[Ex00 246 |
—

]

i

D) HHHE) (+
[2% % ||| £x6.% | || £x % |

Yo Y1 Y2 Y3 Ya ¥y Yo Yr Y Yo Yo Yi1 Yi2 Yia Y Vis

Fig. 2 Prefix sum data parallel algorithm

1.1 Data Parallel Algorithms

In data parallel algorithms, parallelism is involved in simultaneous operations across
large sets of data, rather than from multiple threads of control [4]. Prefix sum or scan is
one among the most common data parallelism algorithms. The prefix sum, cumulative
sum, inclusive scan, or simply scan of a sequence of numbers xg, x1, X2, ... X,_| are
the second sequence of numbers yg, yi, V2, ... Yu—1, the sums of prefixes (running
totals) of the input sequence where yy = xo;y1 = X0 D X131 = X0 D x1 Dx2...,
as shown in Fig. 2. Mathematically y; = xo ®x @ x, ®--- B x;V; € 0...n — 1.
Figure 2 depicts the pictorial representation for the scan data parallel algorithm [6].

1.2 Bitonic Sort

There are multiple sorting algorithms available such as Merge sort, Quick sort, Radix
sort, and Heap sort. Bitonic sort is one among the sorting algorithms that can make
use of GPU computing power and thus is efficient in terms of both space and time
complexities [7].

432 S. Agrawal et al.

] 1 ¥ 1 ¥ I ¥
I o ¥l v ¥l
1 L w9 ol I¥
+ iy | ¥ | ¥
1 11 ¥ ¥
| 131 1 i3l [M L T 11
kg Ll L3 [L 1 ¥
I 1 ¥ | ¥l v
] ST 3 1] ol ¥
¥ LML LTS |[C_MiE
I 1 11 11 $1
| 131 l i3l | 131 :]

Fig. 3 Representation of bitonic sort

Bitonic Sequence: A sequence is called Bitonic ifitis firstincreasing, then decreas-
ing. In other words, an array arr[0..n — 1] is Bitonic if there exists an index i where
0 <i <n — 1 such that,

ap <a; <--- < ayp_1and ayy > Appe1 > -0 > Ay
The Bitonic Sort Algorithm (as illustrated in Fig. 1):

(1) Lets={ay,ai,ao,...,a,—1) be abitonic sequence such that

(@ ap<ar =<...<ayn1,and
(b) anp = apjpe1 = ... = Ay

(2) Consider the following subsequences of s

(@) s1 = min(ao,a,,/z),min(al,an/2+1), ...,min(an/z_],an_l))
(b) s, = max(ao,an/z),max(al,an/2+1),...,min(an/z_l,an_l

(3) Sequence properties

(a) sjyandsyarebothbitonic
(b) VaVyx es;,yesn,x<y

(4) Apply recursively on s; and s to produce a sorted sequence
(5) Works for any bitonic sequence, even if |s1| # |s3].

Given an unordered sequence of size 2n, exactly log,2n stages of merging are
required to produce a completely ordered list (Fig. 3).

1.3 Prefix Sum (Scan)

Prefix sum of a sequence of numbers x, x1, X2, ..., X, is another sequence of numbers
Y0, Y15 Y2, ---» ¥n given by:

Yo = X0; Y1 = X0 D X151 = X0 D x1 D x2

An Efficient Parallel Implementation of CPU Scheduling ... 433

Initial Array of Arbitrary Values

Scan Block 0 Scan Block 1 Scan Block 2 Scan Block 3

Store Block Sum to Auxiliary Array m

Add Scanned Block
Sum i to All Values of
Scanned Blocki+1 !

......... I "’ '-.....+.......,‘

T |

Fig. 4 Block-wise data parallel scan operation

The general mathematical representation of inclusive prefix sum for computing
the output value in a sequential order is:

yi=x; i=0

Vi=Yi-1®xi; i>0

The given data set is divided into blocks of fixed size. The scan is performed
individually on each block. The result obtained is not the final result. It is a tempo-
rary array, as second block does not counter for first block elements and similarly
henceforth. Each block sum is the last element of that block. The concept used first
involves extracting the last element of the block that will give the individual block
sum and storing these in a separate array let’s say Y in the corresponding positions,
i.e., block O sum stored at zeroth index and block 1 sum stored in first index. The final
result is obtained by adding the elements in array Y to the corresponding temporary
array elements by using indices of block and the thread. For instance, the block O
contains final result so we do not have to perform any computation. But for block
1, Y[O] (which is nothing but the block sum of block 0) is to be added to each and
every element of block 1 present in the temporary array. For block 2, Y[0]+ Y[1] is
added to every element, which is nothing but the block sum of zeroth and first block,
respectively, as shown in Fig. 4, similarly for further blocks. Finally, the resultant
array is obtained.

434 S. Agrawal et al.

2 Related Work

Job/process scheduling is one of the important tasks performed by the operating
system (OS). The performance of the OS depends on the CPU scheduling algorithms.
Recently, several improved CPU scheduling algorithms such as [2, 9, 10] have been
introduced for improving the system performance. Scheduling needs to be carried
out very frequently by the operating system and is a complex job which may require
repetitive computation. State-of-the-art performance is achieved by implementing
many generic algorithms [1, 3] on GPU. This motivates to implement scheduling
algorithms on GPU and analyze the performance.

3 Implementation

Algorithm 1 provides the steps carried out to implement the parallel non-preemptive
scheduling algorithm.

Algorithm 1 Algorithm for parallel scheduling using data
parallel algorithm

1: procedure MainModule
Allocate memory for the input using cudaMallocManaged

3: Read and store the input priority, burst time, arrival
time in the above allocated variables
Launch the SORT kernel as depicted in Algorithm 2.
Perform block SCAN kernel as depicted in Algorithm 4
with required parameters.

6: Launch the Reduction kernel with required parameters
to find the average waiting time and turnaround time

Algorithm 2 Algorithm for Bitonic Sort kernel launch

1: procedure SortingFirst (int *pr, int *bt)

2 dim3 blocks (BLOCKS, 1) ;

3 dim3 threads (THREADS, 1) ;

4: for (int k = 2; k <= NUM; k <= 1) do

5 for (int j = k >>1; j >0; j = j >>1) do

6 BitonicSortStep <<<blocks,threads>>>(pr,j, k) ;
7 //The kernel is shown in Algorithm 3.

An Efficient Parallel Implementation of CPU Scheduling ... 435

Algorithm 3 Main Algorithm of Bitonic Sort

1: procedure BitonicSortStep(float *values, int j, int k)
2 unsigned int i, ixj;

3 i = threadIdx.x + blockDim.x * blockIdx.x;
4: ixj = 1 © 3;

5 if ((ixj)>i) then

6 if ((i & k)==0) then

7 if (values[i] > values[ixj]) then

8 float temp = values[i];

9: values[i] = values[ixj];

10: values [ixj] = temp;

11: if ((i & k)!=0) then

12: if (values[i] < values[ixj]) then
13: float temp = values[i];

14: values[i] = values[ixj];

15: values [ixj] = temp;

To form a bitonic sequence from a random input, we start by forming four-element
bitonic sequences from consecutive two-element sequence. Consider four-element
in sequence Xg, Xi, X2, X3. We sort Xo and x; in ascending order and x,; and X3 in
descending order. We then concatenate the two pairs to form a four-element bitonic
sequence. Next, we take two four-element bitonic sequences, sorting one in ascending
order, the other in descending order (using the bitonic sort which we will discuss
below), and so on, until we obtain the bitonic sequence as shown in Fig. 3.

Algorithm 4 Algorithm for Scan kernel

1: procedure BlockSum (x)

2 n = length (x)

3 y = £i11(x[1],n)

4: for i = 2 : n do

5 xy[i] = xy[i-1] + x[i]

6 Wait for all threads in a block to finish

7 Copy xy into y

8: Wait for all threads of all block to finish

9: if (threadIdx.x <blockIdx.x) then

10: Extract last element of every block and put in xy.
11: Wait for all the threads to finish.

12: for i = 0 : blockIdx.x do

13: Add the block sums to all the elements of that

block from xy.

436 S. Agrawal et al.

The experiment done was on analyzing the performance of the Priority-Based
Scheduling (PBS) algorithm. A large number of processes are taken which include
parameters such as burst time, arrival time, and priority. The processes are sorted
based on the priority first, and then, the tie is broken between the processes having
same priority depending upon their burst time. The scheduling is performed placing
the processes with the highest priority and lowest burst time first (the highest priority
corresponds to lowest number). The input elements are sorted using bitonic sort.
Further, the block-wise work-efficient scan operation is performed to obtain the
waiting time and turnaround time as shown in Fig. 4. Data parallel reduction algorithm
is applied to sum waiting time and turnaround time and thus compute average waiting
time and turnaround time. The scan algorithm iterates [og(n) time.

4 Results

The proposed method uses parallel bitonic sort, and the computation of this sorting
has a complexity of O((log N)?) that makes it n times faster than its serial complexity
O(N (log N)?). Param Shavak with Kepler GTX GPU card is used to analyze the
proposed method. Screenshots of execution are shown in Figs. 5 and 6 that depict
the time taken to execute serial and parallel scheduling code, respectively. Figure 7
shows the graphical representation for the same. It can be seen that execution speed
of parallel code is almost 10-15 times more than that of serial code.

Computation Elapsed time: ©.000263s for 256 process
Computation Elapsed time: 0.000921s for 512 process
Computation Elapsed time: 0.003582s for 1024 process

serial Computation Ellapsed time: 0.013594s for 2048 process

Serial Computation Elapsed time: 0.044259s for 4096 process
Serial Computation Elapsed time: 0.121259s for 8192 process

Fig. 5 Screenshot of serial execution of the PBS

Parallel Computation Elapsed time: 0.000489s for 256 process
Parallel Computation Elapsed time: ©.000557s for 512 process

Parallel Computation Elapsed time: 0.000615s for 1024 process

Parallel Computation Elapsed time: 0.000738s for 2048 process
Parallel Computation Elapsed time: ©0.000890s for 4096 process
Parallel Computation Elapsed time: 0.001673s for 8192 process

Fig. 6 Screenshot of parallel execution of the proposed method

An Efficient Parallel Implementation of CPU Scheduling ... 437

@ Serial Computation @ Parallel Computation

100000
44259
50000

10000

5000

us3

Time (micro seconds)

1000

500

256 512 1024 2048 4096 8192
Number of processes

Fig. 7 Graphical representation of the comparison of serial and parallel scheduling algorithms

5 Conclusion

The paper focuses on solving a priority-based algorithm using bitonic sort and the
prefix scan, where all the codes are implemented in parallel and executed on GPU,
to enable faster execution of the problem.

The entire task is broadly classified into two sub-tasks that are as follows:

1. Sorting the processes based on priority first and then on burst time (execution
time) using the parallel code for the bitonic sort by launching multiple kernels.

2. Priority-Based Scheduling is implemented by using the parallel code for prefix
scan which again has two stages:

a. Data that are divided into blocks are first put through initial prefix scan which
results in scanned results, but block-wise.

b. The second stage involves the different blocks to encounter for all the ele-
ments that are present in the block previous to it.

The prefix scan is again done by launching multiple kernels.

It is observed that when the number of processes to be scheduled increases, the
amount of the time taken for the CPU to schedule these processes also increases
drastically. But, however, in the case, when there is an increase in the number of
processes that are to be scheduled on the GPU, the amount of the time taken by it to
schedule these processes increases but by a relatively very less value.

In other words, the proposed parallel implementation is 10—15 times faster than
the serial implementation. Future work involves analyzing the proposed method for
non-preemptive scheduling algorithms.

438

S. Agrawal et al.

References

12.

13.

. J.P. Arun, M. Mishra, S.V. Subramaniam, Parallel implementation of MOPSO on GPU using

OpenCL and CUDA, in 2011 18th International Conference on High Performance Computing
(HiPC), pp. 1-10

. N. Goel, R.B. Garg, Simulation of an optimum multilevel dynamic round robin scheduling

algorithm (2013), http://arxiv.org/abs/1309.3096

. P. Harish, P.J. Narayanan, Accelerating large graph algorithms on the GPU using CUDA, in

Proceedings of the 14th International Conference on High Performance Computing, p. 197,
Heidelberg (2007), http://dl.acm.org/citation.cfm?id=1782174.1782200

. W.D. Hillis, G.L. Steele Jr., Data parallel algorithms. Commun. ACM 29(12), 1170-1183

(1986), http://doi.acm.org/10.1145/7902.7903

. H. Jo, S.T. Hong, J.W. Chang, D.H. Choi, Data encryption on GPU for high-performance

database systems. Procedia Comput. Sci. 19(Supplement C), 147-154 (2013), http://www.
sciencedirect.com/science/article/pii/S1877050913006327, The 4th International Conference
on Ambient Systems, Networks and Technologies (ANT 2013), The 3rd International Confer-
ence on Sustainable Energy Information Technology (SEIT-2013)

. D.B. Kirk, WM.W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach,

2nd edn. (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2013)

. Q. Mu, L. Cui, Y. Song, The implementation and optimization of Bitonic sort algorithm based

on CUDA, (2015), http://arxiv.org/abs/1506.01446

. J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with cuda. Queue

6(2), 40-53 (2008), http://doi.acm.org/10.1145/1365490.1365500

. A. Pandey, P. Singh, N.H. Gebreegziabher, A. Kemal, Chronically evaluated highest instan-

taneous priority next: a novel algorithm for processor scheduling. J. Comput. Commun. 4,
146159 (2016), http://www.scirp.org/JOURNAL/PaperInformation.aspx ?PaperID=65949

. H.B. Parekh, S. Chaudhari, Improved round robin CPU scheduling algorithm: round robin,

shortest job first and priority algorithm coupled to increase throughput and decrease waiting
time and turnaround time, in 2016 International Conference on Global Trends in Signal Pro-
cessing, Information Computing and Communication (ICGTSPICC), pp. 184—187, Dec 2016

. N. Satish, M. Harris, M. Garland, Designing efficient sorting algorithms for manycore gpus, in

Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS’09) (IEEE Computer Society, Washington, DC, USA 2009), pp. 1-10, https://doi.org/
10.1109/IPDPS.2009.5161005

P. Zhang, E. Holk, J. Matty, S. Misurda, M. Zalewski, J. Chu, S. McMillan, A. Lumsdaine,
Dynamic parallelism for simple and efficient GPU graph algorithms, in Proceedings of the
Sth Workshop on Irregular Applications: Architectures and Algorithms (IA3°15) (ACM, New
York, NY, USA, 2015), pp. 11:1-11:4, http://doi.acm.org/10.1145/2833179.2833189

Y. Zhang, J.D. Owens, A quantitative performance analysis model for GPU architectures, in
Proceedings of the 2011 IEEE 17th International Symposium on High Performance Computer
Architecture (HPCA’11) (IEEE Computer Society, Washington, DC, USA, 2011), p. 382, http://
dl.acm.org/citation.cfm?id=2014698.2014875

http://arxiv.org/abs/1309.3096
http://dl.acm.org/citation.cfm?id=1782174.1782200
http://doi.acm.org/10.1145/7902.7903
http://www.sciencedirect.com/science/article/pii/S1877050913006327
http://arxiv.org/abs/1506.01446
http://doi.acm.org/10.1145/1365490.1365500
http://www.scirp.org/JOURNAL/PaperInformation.aspx?PaperID=65949
https://doi.org/10.1109/IPDPS.2009.5161005
http://doi.acm.org/10.1145/2833179.2833189
http://dl.acm.org/citation.cfm?id=2014698.2014875

	An Efficient Parallel Implementation of CPU Scheduling Algorithms Using Data Parallel Algorithms
	1 Introduction
	1.1 Data Parallel Algorithms
	1.2 Bitonic Sort
	1.3 Prefix Sum (Scan)

	2 Related Work
	3 Implementation
	4 Results
	5 Conclusion
	References

