
Clustering and Parallel Processing
on GPU to Accelerate Circuit Transient
Analysis

Shital V. Jagtap and Y. S. Rao

Abstract Today, in the age of digital era, electronic circuit is the key component
and its design, testing is validated through simulator. But even though use of sim-
ulator is cost-effective, large circuit simulation is quite time consuming. Also var-
ious iterations in transient analysis might make simulation slow. In this paper, we
have addressed parallel computing approach using Graphics Processing Unit (GPU).
Forming clusters of executable procedures are very crucial, so that it can be mapped
to graphics processor for parallel processing. In every circuit nodal analysis finds
current, voltage etc. at various nodes periodically. Matrix operations, linear–nonlin-
ear equations, integration, differential equations, numerical methods are some of the
very basic operations required in circuit analysis. Data-code partitioning, parallel
data mapping, reductions, fast memory access, parallelizing loops are the strategies
adopted for parallel processing on GPU. More than 40% speed gain is achieved on
circuit having at least four components along with transient analysis for more than
thousand iterations.

Keywords GPU (Graphics processing unit) · Transient analysis · Clustering
LU decomposition

1 Introduction

Circuit simulators are used in almost all the electronic industries and plays very
crucial role in electronic circuit design, verification and testing.All electronic designs
rely truly on simulation software. In academics also, students adopts safe practices
and research on simulators. DC, AC, transient, pulse or noise analysis and its graph

S. V. Jagtap (B)
RAIT, Nerul, Navi Mumbai, India
e-mail: svjagtap@gmail.com

Y. S. Rao
SPIT, Andheri, Mumbai, India
e-mail: ysrao@spit.ac.in

© Springer Nature Singapore Pte Ltd. 2019
R. Kamal et al. (eds.), International Conference on Advanced Computing Networking
and Informatics, Advances in Intelligent Systems and Computing 870,
https://doi.org/10.1007/978-981-13-2673-8_36

339

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2673-8_36&domain=pdf
mailto:svjagtap@gmail.com
mailto:ysrao@spit.ac.in
https://doi.org/10.1007/978-981-13-2673-8_36

340 S. V. Jagtap and Y. S. Rao

Fig. 1 System architecture

can be derived easily using simulator. But, with the density of the IC at nanoscale,
the traditional simulators require more and more time to perform simulation as a
whole. Transient analysis is time domain operation in which many Newton Raphson
iterations are required which are very compute intensive. The simulation time of
transient analysis in SPICE grows super-linearly with the number of equations that
describe the circuit. For large circuit transient analysis time may extend to many
hours or days. Transient analysis iteration scales as O(N1.2) where N is number of
equations, whereas the double precision FLOPS of CPUs only as O(N0.96) where
N is the number of transistors in the CPU [1, 2]. It means that as circuit components
increases, CPU simulation time also increases exponentially.

Figure 1 shows various steps and execution of simulator in serial and parallel
mode. To process circuit parameters various mathematical and load operations are
requiredwhich process these parameters thousands of time and needmillions of clock
cycles. Some operations need common processing and common parameters. We
applied clustering approach on these parameters and their operations. These clusters
are then mapped on GPUs to process operations in parallel on many parameters.

This paper addresses system for GPU accelerated circuit simulation especially for
transient analysis. Paper is organized as follows. Section 1 is introduction to topic
and Sect. 2 gives details of previous approaches for accelerating circuit simulation.
Section 3 elaborates the adopted GPU programming strategies and Sect. 4 explains
clustering approach. Section 5 gives performance analysis and results.

Clustering and Parallel Processing on GPU to Accelerate … 341

2 Previous Work

To accelerate the simulation many approaches are proposed like parallel process-
ing, distributed computing or specialized optimized algorithm. Transistor model is
accelerated using GPU in SPICE simulator by Gulati et al. [3]. This acceleration was
model-specific that is applicable to transistor model only. If-else in-lining and coa-
lesced memory access is also proposed which helps in accelerating the operations on
GPU and is useful to everyGPU application. Thework started byGulati was the good
start in research of parallel processing in circuit simulation. Chen and Wang used
pivoting reduction technique for LU sparse solver [4], which is faster compare to the
solvers like NICSLU or PARDISO. NICSLU uses a column-level dependence graph
to schedule the tasks [5]. The dependence is extracted from the symbolic structure
of the factors. Since the structure of the factors cannot be determined before fac-
torization, the elimination tree (ET) is used to represent the dependence. It follows
all the basic steps like numerical update, pruning with proper pivoting. These steps
consume extra time for simple dense small size matrix processing. FPGA based
techniques are also available for LU decomposition which are better than serial pro-
cessing [6–8]. Compare to FPGA techniques GPU parallel programming is simple
and easy to understand. In some approaches rather than accelerating computations,
circuit or gate design is partitioned to find independent components and mapped it in
parallel [9, 10]. Every circuit analysis need lots of computation, so some parallel and
distributed approaches are available for mathematical operations like LU decompo-
sition, integration [11–14]. Chen and Wang modified it for circuit simulation but for
large circuit [15, 16], matrix column dependency causes slower simulation. Davis
and Natarajan proposed KLU data structures and algorithm which can be used in
circuit data storage and processing for sparse matrices [2]. It gives stability in matrix
processing. For small circuit simulation it proves to be slow but adopted by many
simulators like NGSPICE. Saol, Vuducl and Xiaoye proposed distributed approach
to solve sparse matrix. This is costly approach but can be useful to extend GPU
technology also. From all the available approaches, parallel processing using GPU is
very cost effective approach. New faster GPUs are coming in the market. So research
is still persistent to accelerate simulation on new faster GPUs. This paper focuses on
utilizing computational power of GPU for heavy computations of circuit transient
iterations.

3 GPU Strategies

GPU processes graphics and includes thousands of SIMDmulti-threaded, multi-core
processors with inbuilt memory levels having different sizes and access time. For
example Kepler K40 graphics card contain 2880 cores. GPU processor do not con-
sume enormous power, heat indulgence is adequate, so can be used with laptops or
small systems. Cost of GPU is just some thousand rupees. Access to high end GPU

342 S. V. Jagtap and Y. S. Rao

is available free of cost online through GPU clusters (from GPU Excellence centre).
GPU is an emerging parallel processing approach for heavy computations. CUDA is
the software platform available for GPU. It supports heterogeneous programming.
Due to SIMDnature, sequential code is not directly executable onGPU.Redesign and
optimization is needed in memory access-storage, execution configuration, instruc-
tion cycles and control flow. Following strategies are adapted to modify and redesign
sequential code so that it will execute faster on GPU especially for cluster based
circuit simulation.

1. Kernel formation and optimization—Avoid costly operations and replace them
using less costly operations in kernel. Proper partitioning of data or operations
is required which uses adequate kernel size. Two parameters are considered
to decide proper kernel size: a. Maximum GFLOPS obtained from kernel and
b. Maximum memory bandwidth used by that kernel.

2. Parallel reduction—Reduction is a generic operation that takes n>1 values and
returns a single value. Elements can be re-arranged and combined in any order.
Threads need to access results produced by other threads using either shared
memory or by synchronisation. Key requirements for a reduction operator z are:

a. Commutative a z b�b z a; b. Associative a z (b z c)� (a z b) z c

3. Minimize loops by solving data dependency.
4. If-else in-lining-Use minimum if-else statement so that optimum time is used for

execution on all threads.
5. Avoid warp and thread divergence in CUDA kernel. If possible interchange the

work done by warps.
6. Utilize memory hierarchy: a. Coalesced memory access utilizes optimum time to

read or write data items. b. If possible copy data in sharedmemory or registers for
fast access. c. Memory Bandwidth calculation-Choose the kernel giving highest
speed up. d. Reduce/Eliminate data transfers between CPU and GPU. Combine
multiple device memory allocations and transfers in one step. cudaMalloc() and
cudaFree() are costly operations so minimize them by reusing the allocations.
e. Use page-locked host memory for data transfers. f. Use asynchronous data
copy if possible.

4 Clustering for Circuit Simulation

After compilation of netlist many procedures are required to simulate the circuit. We
developed approach for circuit component and procedure partitioning and optimized
for a highly-parallel GPU. Moreover, flow is structured to extract the best simulation
performance from the given circuit execution. Logic is used to verify designs at the
behavioral level, as well as the structural level, ensuring that a synthesized circuit’s
procedure cluster matches the functionality and timing of the behavioral model.

Clustering and Parallel Processing on GPU to Accelerate … 343

4.1 Circuit Analysis

Transient analysis is one that finds voltage (or current) versus time. Linearization of
non-linear devices, operating point analysis, conductance stamping into the modified
nodal analysis (MNA) matrix and linear system solution are time consuming itself.
Matrix methods like LU decomposition can be used to solve linear equations. Dense
matrix library proves to be time and space consumable if matrix is sparse. Various
numerical methods like Newton-Raphson, Runge-Kutta or trapezoidal methods are
useful to find roots of equations, derivative or integration. These methods can be
parallelized to accelerate the computations.

As the execution of software functions are concerned, execution time varies. All
the ‘load’ functions in simulator are compute intensive. It loads default parameters
along with calculated parameters into the simulation matrix and its execution time
sums up to approximately 54% of total analysis time. Other time consuming com-
ponent is actual matrix solving to find unknown circuit node parameters which is
approximately 36% [1]. In order to complete the analysis of time spent in the tran-
sient analysis—5% of time in circuit error, the truncation error calculation, 2% in
NI iterations and 2% in NI integration. Then 1% is spent in rest of simulator. MNA
matrix is solved using LU decomposition. Left-looking LU decomposition algorithm
works columnwise and convenient to make it parallel [11]. Calculation of one col-
umn depends on values generated by previous column. Assign one column at a time
to GPU and execute in parallel. Launch ‘n’ threads, where ‘n is column size. One
thread is executing one element of column. Proper synchronization is required to
remove any data dependent operation. Serial algorithm worst case complexity was
O(n3) whereas parallel algorithm complexity is O(n2).

4.2 Clustering

54% of simulation time is needed just in load and setup operation even if numbers
of components are very few. If component count increased, it increases setup time
exponentially. But if we form one load cluster of all components, load time increases
by few clock cycles, at least not exponentially. So for large circuit or for transient
analysis, cluster formation is better compare to manual parallel execution. Figure 2
shows approximate clusters formation. There are two modes to process complete
netlist using clustering approach.

1. Component clusters—This method create clusters of components of same level.
Same level means fanin of components is ready in previous level. It helps in
execution of one cluster is possible at a time. Graph DFS algorithm is used select
component clusters.

2. Method/Procedure clusters—All component have some common execution steps
like setup or load etc. Creating clusters of these methods is method clustering.

344 S. V. Jagtap and Y. S. Rao

MosLoad
ResLoad

MosTemp
ResTemp

MosSetup
ResSetup

Fig. 2 Component and method clusters

Method clustering is more suitable for GPU computing as many instance of
thread creation is possible due to SIMD nature of GPU.

Common operations are either with same component or different component.
Same componentmeans circuitmay containmany instances of resistors or capacitors.
If components are same, sub-operations are exactly same, so cluster operations are
exactly same. It helps in increasing speedmore compare to different components. For
different components like transistor and diode, some of the sub-operations are same.
So can be mapped to many threads, but thread processing time may vary. Following
are some cluster creation precautions:

4.2.1 Cluster Constraints and Data Set

Data set for circuit simulation with respect to GPU processing are components with
all parameters like Resistance, conductance, drain current, base current etc. In deter-
mining how to partition the netlist into clusters, we considered several factors: (i)
Similarity in processwith parameter data type (ii) Time required to execute functions.
GPU specific factors are: (i) Minimum dependencies among parameters in various
iterations. (ii) Time required to execute process should be more than a. time to load
the data in GPU memory. b. overhead of selecting process from process set.

4.2.2 Partitioning

To exploit the parallelism available in the GPU, segment the simulation procedure
into several logic blocks. a. Divide every logic block into sub-blocks, containing
one operation. b. Compare sub-blocks of one component with other component sub-
blocks. Uniform sub-blocks are given same weight. c. Apply k-means algorithm.
Define number of clusters and initial mean as basic operation for every cluster.
In second step we get the distance vectors. Compare distance vectors and select
subblock of minimum distance as an operation in that cluster. Constraints defined
above can act as threshold for distance vector and used to determine—in which
cluster procedure should be added. d. Distance may vary and there may be overlap
also in the operations. In the overlap, we can set flag to indicate operation is executed
and don’t execute it again.

Clustering and Parallel Processing on GPU to Accelerate … 345

4.2.3 Procedure Balancing

Cluster parameters are copied in global and shared memory. In some structures only
pointers are defined and has to be converted into actual structure before copying. We
map one cluster to graphics processor at a time. As fine-level granulaity, we can even
divide one load method into many instances. E.g. if there are 4 resistor components,
resload is repeated at least 4 times. On GPU, we can create four threads to execute
load resistor function in parallel. But we need thread synchronization to manage
cyclic dependency among the variables.

4.2.4 Simulation Phase

Sequence for cluster execution is based on following parameters: 1. Sequence and
privilege of operation. 2.Data or input/output dependency. 3. Synchronization depen-
dency 4. Data availability in global/shared memory. There are restrictions on GPU
memory size and extra time is needed in loading, unloading all the parameters. So if
cluster execution time is much more compare to serial time plus loading time, that
cluster execution is suitable to make it parallel.

Sufficient memory size is also required to process all the components at a time,
as for large circuit millions of components with thousands of parameters are used.

5 Performance Comparisons

Circuit netlist having basic components are tested on GeForce M980 processor with
296 cores and 2 GB graphics card memory. NGSPICE simulator is used on Ubuntu
14.04 version. NGSPICE with KLU version is considered for comparison. Execu-
tion time of thousands of transient iterations are considered. One complete iteration
involves initialisation, setup, load, LU decomposition, forward- backward substitu-
tion. Setup and load involves many small mathematical operations like solving alge-
braic equations, integration etc. Netlist parsing time is constant for all the circuits.
Clustering and parallel processing is used in parameter setup, load and mathematical
operations. Speed gain is calculated using the Eq. (1)

Percentage speed gain � 100 ∗ (serial − parallel time)/parallel time (1)

Average execution time is considered for every circuit execution. Table 1 gives
serial and parallel execution time of five example circuits having thousands of tran-
sient iterations. Figure 3 shows relative time comparison graph among serial and
parallel execution.

It shows that basic GPU strategies and clustering approach accelerate circuit
processing at least by 40% and increases subsequently for more iterations.

346 S. V. Jagtap and Y. S. Rao

Table 1 Serial and parallel execution of different netlist

Netlist Circuit No. of
iterations

Serial
execution in
(s)

Parallel
execution in
(s)

Speed gain
(%)

1 AC sine wave
voltage

10,000 6.38 3.75 70.13

2 RC circuit 1008 0.853 0.58 47.06

3 Full wave
bridge
rectifier

10,000 12.54 8.23 52.36

4 Common
source jfet
amplifier

10,000 8.71 4.26 104.46

5 Integrator
with square
wave input

2520 2.115 1.4875 42.21

Fig. 3 Execution time comparison graph

References

1. F. Lannnutti, P. Nanzi, M. Olivieri, KLU sparse direct linear solver implementation into
NGSPICE, in 19th International Conference on Mixed Design of Integrated Circuits and Sys-
tems, Poland, 24–26 May 2012

2. T. Davis, E. Palamadai Natarajan, Algorithm 907: KLU, a direct sparse solver for circuit
simulation problems. ACM Trans. Math. Softw. 37(3), Article 36, Sept 2010

3. K. Gulati, J.F. Croix, S.P. Khatri, R. Shastr, Fast circuit simulation on graphics processing units
(IEEE, 2009), pp. 403–408

4. X. Chen, Y. Wang, H. Yang, A fast parallel sparse solver for SPICE-based circuit simulators,
978-3-9815370-48/DATE15/c2015, EDA

5. X. Chen, Y. Wang, H. Yang, NICSLU: an adaptive sparse matrix solver for parallel circuit
simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(2), Feb 2013

Clustering and Parallel Processing on GPU to Accelerate … 347

6. G. Wu, Y. Dou, G.D. Peterson, Blocking LU decomposition for FPGAs, in 2010 18th IEEE
Annual International Symposium on Field-Programmable Custom Computing Machines

7. Y. Shao, L. Jiang, Q. Zhao, Y. Wang, High performance and parallel model for LU decompo-
sition on FPGAs, 978-0-7695-3932-4/09 $26.00 © 2009 IEEE

8. M.K. Jaiswal, N. Chandrachoodan, FPGA-based high performance and scalable block LU
decomposition architecture. IEEE Trans. Comput. 61(1), Jan 2012

9. D.Chatterjee,A.Deorio,V.Bertacco, Event driven gate-level simulationwithGP-GPUs (ACM,
2009), 978-1-60558497-3/09/07

10. D. Chatterjee, A.Deorio, V. Bertacco, Gate-level simulationwithGPU computing. ACMTrans.
Des. Autom. Electron. Syst. V

11. H.M.D.M.Bandara,D.N.Ranasinghe, EffectiveGPU strategies for LUdecomposition, in IEEE
International Conference on High Performance Computing (2011)

12. L.F. Cupertino, A.P. Singulani, C.P. da Silva, M.A. Pacheco, LU Decomposition on GPUs: the
impact of memory access, 978-0-7695-4276-8/10 $26.00 © 2010 IEEE

13. T. Dong, A. Haidar, P. Luszczek, J.A. Harris, S. Tomov, J. Dongarra, LU factorization of small
matrices: accelerating batched DGETRF on the GPU (2014)

14. N. Galoppo, N.K. Govindaraju, M. Henson, D. Manocha, LU-GPU: efficient algorithms for
solving dense linear systems on graphics hardware (ACM, 2005), 1-59593-061-2/05/0011

15. L. Ren, X. Chen, Y. Wang, C. Zhang, H. Yang, Sparse LU factorization for parallel circuit
simulation on GPU (ACM, 2012), 978-1-4503-1199-1/12/06

16. X. Chen, Y. Wang, H. Yang, An adaptive LU factorization algorithm for parallel circuit simu-
lation, 978-1-46730772-7/12/$31.00 ©2012 IEEE

	Clustering and Parallel Processing on GPU to Accelerate Circuit Transient Analysis
	1 Introduction
	2 Previous Work
	3 GPU Strategies
	4 Clustering for Circuit Simulation
	4.1 Circuit Analysis
	4.2 Clustering

	5 Performance Comparisons
	References

