

Agent based integer programming framework for solving

real-life curriculum-based university course timetabling

Mansour Hassani Abdalla, Joe Henry Obit, Rayner Alfred, and Jetol Bolongkikit

Knowledge Technology Research Unit, Universiti Malaysia Sabah, 88400 Kota Kinabalu,

Sabah, Malaysia

mansourabdalla22@gmail.com, joehenry@ums.edu.my,

ralfred@umse.du.my, jetol@ums.edu.my

Abstract. This research proposes an agent-based framework for solving real-

life curriculum-based University Course Timetabling problems (CB-UCT) at

the Universiti Malaysia Sabah, Labuan International Campus (UMSLIC). Simi-

lar to other timetabling problems, CB-UCT in UMSLIC has its own distinctive

constraints and features. The proposed framework deal with the problem using

a distributed Multi-Agent System (MAS) environment in which a central agent

coordinates various IP agents that cooperate by sharing the best part of the solu-

tion and direct the IP agents towards more promising search space and hence

improve a common global list of the solutions. All agents are incorporated with

Integer programming (IP) search methodology, which is used to generate initial

solution in this, regards as well. We discuss how sequential IP search method-

ology can be incorporated into the proposed multi-agent approach in order to

conduct parallel search for CB-UCT. The agent-based IP is tested over two real-

life datasets, semester 1 session 2016/2017 and semester 2 session 2016/2017.

The experimental results show that the agent-based IP is able to improve the so-

lution generated by the sequential counterpart for UMSLIC’s problem instance

used in the current study impressively by 12.73% and 17.89% when three and

six IP agents are used respectively. Moreover, the experiment also shows that

increasing the number of IP agents lead to the better results.

Keywords: Integer Programming, Multi-Agent System, Asynchronous Cooper-

ative Search.

1 Introduction

Curriculum based university course timetabling is an interesting topic to study be-

cause neither modeling nor solving them is a straightforward task to do. This is be-

cause each problem has its own unique characteristics and variations which differ

from one university to another [3]. Besides, duplicating the previous timetable does

not really solve the problems as university are growing with a great pace and the

© Springer Nature Singapore Pte Ltd. 2019
R. Alfred et al. (eds.), Computational Science and Technology, Lecture Notes
in Electrical Engineering 481, https://doi.org/10.1007/978-981-13-2622-6_7

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2622-6_7&domain=pdf

teaching program is evolving towards more modular and distributed nature where

students are able to choose course from other programs or even from other faculty.

These fluctuations of teaching guidelines lead to the problem of constructing different

timetables in every semester. Also as [3] highlight that, “poor quality course timeta-

bling can lead to massive costs for the peoples affected by the timetable, for example

students might not be able to attend all of their lessons if clashes exist”. The cost here

is the student need to take the course in the future semester which ultimately will

result for student to extend study time. A high quality timetable is the one in which

all the peoples (students, lecturers and academic departments) affected by the timeta-

ble are satisfied. However, constructing timetable which satisfies students, lecturers

and academic departments is not an easy task.

Basically, all CB-UCT is associated with constraints which are different from other

universities. In addition, these constraints vary from time to time and are classified

into two categories which are hard constraints and soft constraints [2]. Hard con-

straints must be satisfied at all circumstances while soft constructs are used to deter-

mine the quality of timetable and the more the soft constraints are satisfied the better

the timetable produced. In order to solve this problem for the certain real-life case of

CB-UCT, we have adopted the agent-based incorporated with IP search methodology.

Generally, in past ten to twenty years ago, agent-based technology has entered the

scene of software industry and proves its suitability [4]. MAS fall into the area of

distributed systems, where number of entities work together to cooperatively solve

given problems. [1] Pointed out that, “MAS are concerned with coordinating behavior

among a pool of autonomous intelligent agents (e.g. software agents) that work in an

environment”. In this regard MAS is effective because it facilitates the agent to share

the best part of the solution and hence guide the search process to more promising

region. These agents can be cooperating to achieve common goals however generally

on other systems agents are competing with each other to fulfil the delegated objec-

tives [17] are commonly intended as computational systems where several autono-

mous entities called agents, interact or work together to perform some tasks[2]. Like-

wise, in CB-UCT, the MAS could find a high-quality and acceptable solution with

minimal message passing as well. In this work, we are proposing agent-based frame-

work incorporating IP search methodology where agents are working together by

sharing the best part of the solution to achieve the delegated objectives which in this

work is to improve the global solutions.

2 Problem Definition

In the current study agent-based framework (as shown in figure 1, section 4) incorpo-

rating IP search methodology that fulfills the requirements of zero hard constraints

values and minimum values for soft constraints is proposed. The proposed framework

is used to test on real-life datasets at UMSLIC as shown in table 1. The objective of

the problem is to develop communication protocol that helps agents in the framework

to share the best part of the solution, guide the agents towards more promising search

space, and hence find the improved feasible timetable solutions. The problem in-

68 M. H. Abdalla et al.

volves several hard constraints and soft constraints. Hard constraints need to be satis-

fied in all circumstances, whereas soft constraint violations should be minimised to

increase the timetable quality, and increasing the satisfaction of the people who are

affected by the timetable. The constraints undertaken in this work are explained in the

following subsections.

Essentially the problem in the current study involves allocating a set of 35

timeslots (seven days, with five fixed timeslot per day) according to UMSLIC teach-

ing guidelines. Each lecturer teaching several courses in each semester and each

course has at least one lecture of minimum two hours per week. In addition,

UMSLIC’s administration has a guideline as shown in table 2 for the compulsory,

elective, center for promotion of knowledge and language learning (PPIB), and cen-

ter for co-curriculum and student development (PKPP) courses to be enrolled by the

students in each of the semesters throughout the students’ university days

Our approach will consider certain lecturer's preferences, better utilization of ap-

propriate room and improved evenly student’s schedule. Moreover, our approach also

fulfill university teaching guideline where there are some general preferences such as

some courses particularly program and faculty courses cannot be scheduled on week-

ends and must be scheduled on the first or third timeslots of the weekdays. In addi-

tion, some course such as PKPP courses cannot take place on weekdays. In addition,

some courses such as PPIB course must be scheduled on second, fourth, or fifth in

timeslot.

Hence, this research concentrates on real-life CB-UCT. In fact, in CB-UCT there

are five variables identified namely periods, courses, lecturers, rooms, and curricula.

The objective is to assign a period and a room to all lectures of each course according

to the hard and soft constraints based on UMSLIC teaching guidelines. This research

work aims to implement agent-based incorporating an IP search methodology for

solving real-life CB-UCT for UMSLIC.

Table 1. Summary of the dataset from UMSICL academic division

 Semester1 s2016/2017 Semester2 2016/2017

Number of student 2263 2224

Number of curriculum 65 49

Number of lectures 108 92

Number of courses 134 117

2.1 Hard Constraints

Listed below are all the predefined hard constraints considered in this work:

1. Lectures. Each course has a predetermined amount of lectures that must be given.

Each lecture must be scheduled in distinct time slots and the total number of lec-

tures cannot be exceeded.

2. Room conflict. Each Two lectures cannot take place in the same room in the same

time slot.

Agent based integer programming framework for solving … 69

3. Main and PPIB courses. All main (major) courses cannot be scheduled at week-

end. This is according to UMSLIC teaching guideline. Main course involves pro-

gram core and school course as well as some PPIB courses.

4. Center for co-curriculum and student development (PKPP) courses. All PKPP

courses must be scheduled at weekend. There are some courses under PKPP which

by default must be scheduled at weekend. Normally this course is taught at the ear-

ly semesters of the students’ university years.

5. Room Capacity. The size of the room must be larger or equal to the size of the

course. The room where the course is scheduled should be large enough to accom-

modate the number of students registered for that course.

6. Curriculum and lecturer conflicts. Lectures of courses in the same curriculum or

taught by the same lecturer must all be scheduled in different time slots

2.2 Soft Constraints

Listed below are all the predefined soft constraints considered in this work:

1. Lecturer preferences. The assignment of classrooms and periods of time must al-

low satisfying at best the preferences of lecturers. I.e. there should be a gap for lec-

tures taught by same lecture as well as the lecturers can specify times when they

prefer not to lecture.

2. Appropriate room size. The usage of appropriate room size i.e. does not schedule a

lecture with 30 students in a room with capacity of 300 seats.

3. Evenly timetable. The Student should not have consecutive courses per any given

day.

Table 2. UMSKAL teaching guideline. Where 1 stands for Faculty courses, Program courses or

elective courses; 2 stand for PPIB courses; 3 stand for PKPP courses.

Day/Time
Time groups

Monday - Friday Saturday & Sunday

08.00 AM – 10.00 AM 1 3

10.00 AM – 12.00 PM 2 3

02.00 PM – 04.00 PM 1 3

05.00 PM – 07.00 PM 2 3

07.00 PM – 10.00 PM 2 3

3 Related Works

In general, there are many techniques proposed in literatures for solving timetabling

problems in particular curriculum-based course university timetabling. However,

scholars in operational research and artificial intelligence acknowledge Meta-

70 M. H. Abdalla et al.

heuristics as indispensable techniques to address difficult problems in numerous and

diverse fields [5]. Likewise, recently hype-heuristics has been widely used to address

the issues. Nevertheless, even meta-heuristics may reach quite rapidly the limits of

what may be addressed in acceptable computing times for many problem settings for

research and practice alike [6, 18]. Similarly, hyper-heuristics do not generally guar-

antee optimality, performance often depending on the particular problem setting and

instance characteristics [7]. Therefore, this thought has led birth of the fertile field of

cooperative search especially in the operational research and artificial intelligence

research community.

Generally, cooperative search can be natural approach to address the issues result-

ed from meta-heuristics and heuristics alike. [16] Stated that, “instead of trying to

design new algorithms without downside, a task that is quite difficulty if not impossi-

ble, scholars in operational research and artificial intelligent research community have

been working on the ways to organize the existing techniques in order to suppress

their weakness through cooperation, and together do what separately they might not

be able to accomplish”. Ultimately parallel implementations of sequential algorithms

appear quite naturally as an effective alternative to speed up the search for approxi-

mate solutions of combinatorial optimization problems [8]. Moreover parallel imple-

mentations allow solving larger problems or finding improved solutions, with respect

to their sequential counterparts, due to the partitioning of the search space and to more

possibilities for search intensification and diversification [4, 8, 19].

However, even with recent enormous effort in cooperative search, [15] believes

this area has been little explored in operational research. Also, as computers keep

becoming very powerful nowadays, this present huge opportunity for researcher to do

what was unable to be done in 20 to 30 years ago especially in parallel computational

research area. Similarly, according to [9] in recent years, multi-core processors are

widely used and cooperative search can easily benefit from parallel processing. Thus

in the last few years research community have started to exploit the opportunity pre-

sented by multi-core processors and work on how to develop optimization technique

that is faster, more robust and easier to maintain.

More research in combinatorial optimization is currently being devoted in coopera-

tive search techniques. Several number of cooperative search approaches have been

proposed in the literature [4, 10]. The key idea behind cooperative search is to com-

bine the strengths of different (meta-) heuristics to balance intensification and diversi-

fication and direct the search towards promising regions of the search space [4, 11].

Essentially, by cooperating the chances of finding novel and greatly improved solu-

tions are increased.

[12] Defined cooperative search as the “parallelization strategy for search algo-

rithms where parallelism is obtained by concurrently executing several search pro-

grams”. In general cooperation by these programs is to interact with one another di-

rectly or indirectly, synchronously or asynchronously. Therefore the communication

and sharing of information is an important feature of cooperation in cooperative

search field [15]. The need to interact in such systems occurs because programs

(agents) solve sub problems that are interdependent, either through contention for

resources or through relationships among the sub problems [13]. The benefit of this

Agent based integer programming framework for solving … 71

approach is the fact that, it adds parallel computational resources and possibility of

information exchange (exchange best part of the solution) among the agents [14]

However, so far most of cooperative search focus more on metaheuristics and heu-

ristics. Interestingly, integer programming search naturally offers significant opportu-

nities for parallel computing, yet not enough research has been devoted to parallel

integer programming implementations. In this research, we propose asynchronous

agent-based framework incorporating integer programming search methodology for

solving real-life CB-UCT at UMSLIC.

4 Agent-Based CB-UCT IP Framework

Figure 1 present the proposed agent-based searches framework. In this research, a

decentralized agent-based framework, which consist of given number of agents (n) is

proposed. Basically a framework is a generic communication protocol for integer

programming (IP) search methodology to share solutions among each other. Each IP

is an autonomous agent with its own representation of the search environment. To this

end they share complete feasible solution to enable each other to direct (move) to-

wards more promising search space. Moreover, the communication or ability for the

agent to exchange the solutions with one another via the central agents prevent indi-

vidual agent from stacking on the local optima [8]. Essentially all agents in the dis-

tributed environment communicate asynchronously via the central agent. Additional-

ly, it is worth mentioning that, the initial feasible solution is generated by the central

agents as well. In clarity this framework will involve asynchronous cooperative com-

munication as follow.

Fig. 1. Proposed Agent-based IP Search methodology Framework

72 M. H. Abdalla et al.

4.1 Central agent (CA)

The central agent is responsible to generate the initial feasible solutions as well as to

coordinates the communication process of all other agents involved in the proposed

framework. The central agent acts as intermediate agent among other agents where it

passes the feasible solution and other parameters to the IP agents asynchronously on

top of FIPA-ACL communication protocol. On top of that, the central agent receives

the improved solution from the IP agents and compares the objective function cost

value of the received solution with the existing global solutions on the list, if the im-

proved solution’s objective is better or similar to any of the solutions on the existing

solutions then the worse in the list is replaced. Else the received solution is discarded

and the central agent randomly select other solution from the list of the global solu-

tions and send back to that particular agent so in order for the agent to try to improve

the new solution received from the central agents.

4.2 IP Agents (Ai)

All other agents’ start from the complete solution received randomly from central

agent and iteratively perform search to improve the solution autonomously (inde-

pendently). In this case the agents have to maintain the feasibility of the solution i.e.

do not violent hard constraint. After certain number of iterations according to the

rules stated (after every 10 seconds and no improvement found) the agent passes the

solution back to the central agent and request new solution from the central agent.

The central agent accepts the solution if only the solution is better or similar to the

existing global solutions in the list of the solutions else the solution is discarded. If the

solution is accepted then the solution with higher objective cost function i.e. worse in

the list will be replaced. The reason an IP agent’s exchange solution is to make sure

the agents are not stuck on local optima, moreover scholars highlighted on the litera-

ture that, by exchanging the solution the possibility of the agents (algorithms) chang-

ing the position towards more promising search space is increased [4, 8, 19].

Best solution Criteria. All of our agents are incorporated with integer programming

search methodology. Each agent also is capable to compute the final objective func-

tion and return it along with the improved solution. The central agent places all the

solutions obtained in a sorted list where the solution on top will be the best solution

(the solution with minimum objective function value).

In this framework the value of the objective functions is used to determine the

quality of the solution. The lower the cost value the better the solution. Hence for the

solution which has improved by the IP agents to be considered better than or similar

to the global existing solutions, the returned improved solution’s objective function

should be lower than or similar to the one of the available in the global solutions ob-

jective functions values. Else the solution is discarded. The objective is to enable the

IP agent to escape from local optimal and more importantly to allow the agent to

move towards the most promising search space by sharing the best part of solution.

Agent based integer programming framework for solving … 73

The whole process stops when all the IP agents are not improving the solution any

more in a given number of conversations. Conversation in this regards means number

of communication between the central agent and improving. For example IP agent Ai

request new solution from central agent try to improve the solution however the agent

is unable to improve anymore for three consecutive conversations. In this case the

agent has reach appoint where unable to improve the solution anymore.

Proposed Agent-framework’s Commitments rules.

The communication of an agent is built on top of FIPA-ACL protocol. The send and

receive massage mechanism is well explained in the subsequent sub-sections pseudo-

code. The agents are in the agent society so each agent in the pack of agents follows

the following commitments rules explained in as follow.

Commitments Rules (Pseudocode).
Let
Central agent is denoted as CA,
IP agents are denoted as Ai.

{CA, REQUEST, DO (time, action)
 },;;; msg condition
 (B,
[Now, Friend agent] AND
CAN (self, action) AND
NOT [time, CMT (self, anyaction)
),;;; mental condition
DO (time, self, action)
}

The proposed framework’s commitments rules pseudocode may be paraphrased as

follows:

If IP Agent (Ai) receives a message from central agent (CA) which requests Ai to do

action (improve the solution) at time t, and Ai believe that; CA is currently a friend;

and Ai can do the action; at time t, and Ai not committed to doing any other action,

then Ai will commit to doing that action at time t. All agents in the framework are

following this set of rules. These set of rules, guide agent in the framework on what to

do on a given time to make sure agents do not interfere one action with another

5 Experimental Setup and Results

Now we discuss the performance of the proposed agent-based framework for CB-

UCT, in which two-semester problem instances of different difficulty is tackled. For

each semester (session one (s1) 2016/2017 and session two (s2) 2016/2017) datasets,

74 M. H. Abdalla et al.

the initial solutions generated by the central agent using pure 0-1 IP. In average the

initial solutions are generated in five seconds. To determine the consistence of the al

proposed framework, for each instance, we run the experiments 50 times and the av-

erage final costs are computed in table 3. In this experiment, first we use three IP

agents (Ai), and then we increase the number of IP agents (Ai) from three to six IP

agents (Ai).

The improvement from initial to final cost value when three IP agents (Ai) are used

is 12.73% and 10.20% for s1 2016/2017 and s2 2016/2017 respectively. On the other

hand, the improvement of the solution’s cost value when six IP agents (Ai) is used are

17.89% and 15.58% % for s1 2016/2017 and s2 2016/2017 respectively. The main

benefits of the agent-based approach adopted for CB-UCT are the possibilities of

intensifying and diversifying the search space, where Ai is able to changes solutions

among each other in the distributed MAS. This leads the IP agents to easily move

towards the most promising search areas of the search space. Basically, by the analy-

sis the results, the numbers of IP agents used in the framework determine the quality

of the solution generated. In this regard we find out the quality of the solution in this

framework proves to increase slightly as the number of IP agents (Ai) are increased

Table 3. Experimental results for the proposed agent-based search framework.

 No of agents Semester1 s2016/2017 Semester2 S2016/2017

Initial cost - 368.04 377.29

Final average cost 3 321.20 338.80

Final average cost 6 302.20 318.50

Average improvements (%) 3 12.73 10.20

Average improvements (%) 6 17.89 15.58

6 Conclusion and Future Work

The current study focuses on agent-based IP framework for the CB-UTT for real-life

instances in UMSLIC. The proposed framework is able to produce an applicable solu-

tion for UMSLIC. Based on the methodology employed, it is discovered that the shar-

ing of solutions among agent improved the overall performance of the framework as

the number of agent increase the solution quality slightly improve.

The currents study recommends that the future work may include agent negotia-

tion; the negotiation amongst the IP agents (Ai) may lead to better performances of the

proposed agent-based search framework.

References

1. Oprea M.: Multi-Agent System for University Course Timetable Scheduling. The 1st In-

ternational Conference on Virtual Learning, ICVL (2006)

Agent based integer programming framework for solving … 75

2. Babaei, H., Karimpour, J., & Hadidi, A. (2015). A survey of approaches for university

course timetabling problem. Computers & Industrial Engineering, 86, 43-59.

3. Obit. J. H., Ouelhadj, D., Landa-Silva, D., Vun, T. K.., Alfred, R.: Designing a multi-agent

approach system for distributed course timetabling. IEEE Hybrid Intelligent Systems

(HIS), 10.1109/HIS(2011)-6122088.

4. Obit, J. H., Alfred. R., Abdalla, M.H.: A PSO Inspired Asynchronous Cooperative Distrib-

uted Hyper-Heuristic for Course Timetabling Problems. Advanced Science Letters,

(2017)11016-11022(7)

5. Crainic, T. G., Toulouse, M.: Parallel strategies for meta-heuristics. In Handbook of me-

taheuristics (pp. 475-513): Springer (2003).

6. Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in

combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151.

7. Crainic, T.G.: “Parallel meta-heuristic search", Tech. Rep. CIRRELT-2015-42, (2015)

8. Cung, V.-D., Martins, S. L., Ribeiro, C. C., Roucairol, C.: Strategies for the parallel im-

plementation of metaheuristics. In Essays and surveys in metaheuristics (pp. 263-308):

Springer (2002)..

9. Yasuhara, M., Miyamoto, T., Mori, K., Kitamura, S., Izui, Y.: Multi-objective embarrass-

ingly parallel search for constraint programming. Paper presented at the Industrial Engi-

neering and Engineering Management (IEEM), 2015 IEEE International Conference

10. Crainic, T. G., Gendreau, M.: A Cooperative Parallel Tabu Search for Capacitated Net-

work Design, Technical Report CRT-97-27(1997).

11. Ouelhadj, D., Petrovic, S.: A cooperative hyper-heuristic search framework. Journal of

Heuristics, 16(6) (2010)., 835-857.

12. Toulouse, M., Thulasiraman, K., & Glover, F. (1999, August). Multi-level cooperative

search: A new paradigm for combinatorial optimization and an application to graph parti-

tioning. In European Conference on Parallel Processing (pp. 533-542). Springer, Berlin,

Heidelberg.

13. Lesser, V. R.: Cooperative multi-agent systems: A personal view of the state of the art.

IEEE Transactions on knowledge and data engineering, 11(1) (1999), 133-142.

14. Silva, M. A. L., de Souza, S. R., de Oliveira, S. M., & Souza, M. J. F.: An agent-based

metaheuristic approach applied to the vehicle routing problem with time-windows. Paper

presented at the Proc. of the Brazilian (2014) Conference on Intelligent Systems-Enc. Nac.

de Inteligência Artificial e Computacional (BRACIS-ENIAC 2014).

15. Martin, S., Ouelhadj, D., Smet, P., Berghe, G.V., Özcan, E.: Cooperative search for fair

nurse rosters. Expert Syst. Appl. 40(16), 6674–6683 (2013).

16. Talukdar, S., Baeretzen, L., Gove, A., and de Souza, P.: Asynchronous teams: Cooperation

schemes for autonomous agents. Journal of Heuristics, 4:295–321, 1998.

17. Wooldridge, M, Jennings, N.: Intelligent Agents, Lecture Notes in Artificial Intelligence

890 Springer-Verlag (eds.), 1995b.

18. Obit. J. H, Landa-Silva, D.: Computational Study of Nonlinear Great Deluge for Univer-

sity Course Timetabling, Intelligent Systems - From Theory to Practice, Studies in Compu-

tational Intelligence, Vol. 299, V Eds. Springer-Verlag, 2010, pp. 309-328

19. Obit, J. H.: Developing novel meta-heuristic, hyper-heuristic and cooperative search for

course timetabling problems. Ph.D. Thesis, School of Computer Science University of

Nottingham (2010).

76 M. H. Abdalla et al.

	7 Agent based integer programming framework for solving real-life curriculum-based university course timetabling
	1 Introduction
	2 Problem Definition
	2.1 Hard Constraints
	2.2 Soft Constraints

	3 Related Works
	4 Agent-Based CB-UCT IP Framework
	4.1 Central agent (CA)
	4.2 IP Agents (Ai)

	5 Experimental Setup and Results
	6 Conclusion and Future Work
	References

