
Real-Time Optimal Trajectory Correction (ROTC) for

Autonomous Omnidirectional Robot

Noorfadzli Abdul Razak, Nor Hashim Mohd Arshad, Ramli bin Adnan, Norashikin

M.Thamrin, Ng Kok Mun.

Universiti Teknologi Mara , Shah Alam , Selangor 40450 , Malaysia

noorfadzli@gmail.com

Abstract. This paper proposed a Real-Time Optimal Trajectory Correction

(ROTC) algorithm designed to be applied for autonomous omnidirectional ro-

bot. It is programmed to work when a robot undergoes a deviation, an admissi-

ble trajectory correction path is generated for the robot rapidly returns to the

route line. For the algorithm to do this, initially a deviation scheme is employed

to sense deviation and formulates a vector consists of displacement and angle.

Via the vector, an admissible correction path is originated utilizing Hermite cu-

bic spline method fused with time and tangent transformation schemes. A Dead

Reckoning (DR) technique is applied for robot to pursue the path. Several ex-

periments are arranged to evaluate the reliability of robot navigation with and

without the algorithm. It motion is mapped in Graphical User Interface (GUI)

window using data from Laser Range Finder (LRF) sensors as attached to the

robot controller. Using the map, the performances of the algorithm are evaluat-

ed in terms of distance travel and duration to return on the line. The results sig-

nify robot navigation with the algorithm required shorter distance and duration

as compared to robot navigation without ROTC. Thus, it justifies the algorithm

is feasible in the navigation system where it can assist robot effectively to move

back to the route line after experiencing a deviation caused by a disturbance.

Keywords: Deviation, Line Tracking Technique, Autonomous Control, Omni-

directional Robot; Trajectory Correction Path.

1 Introduction

Applying omnidirectional robot to handle logistic tasks such as transport, sorting,

delivery of products and others in industry becomes relevant nowadays. Implementing

autonomous navigation such as line tracking technique either using several photo

sensors or a camera increases the robot usability to perform the tasks, especially in

tight areas. However, there is a major drawback encountered by this robot where

when it diverges from route line due to disturbance, it suffers difficulty to navigate

back to the line. The disturbance in this situation is referred to false reading from

sensors or camera when tracking the line or may result from robot motion itself per-

forming obstacle avoidance. There are several researchers did propose a corrective

motion technique which can be employed to enable the robot to return to the route

© Springer Nature Singapore Pte Ltd. 2019
R. Alfred et al. (eds.), Computational Science and Technology, Lecture Notes
in Electrical Engineering 481, https://doi.org/10.1007/978-981-13-2622-6_27

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2622-6_27&domain=pdf

line. Such as Seiler et al [1] proposed a motion technique using Lie group of symme-

tries. Pham et al [2] presents corrective motion algorithm based on affine transfor-

mation. For Sprunk et al [3], a kino-dynamic trajectory generation technique is sug-

gested. Meanwhile, Künemun et al [4] designed a fast and accurate generation of

cubic spline trajectories.

As for this research, their works become an inspiration for us to introduce a new

technique that able to perform the similar action. Hence, a novel algorithm name as

ROTC is presented. This algorithm is designed for situation when the robot diverges

from route line because of disturbance, then it will generate an admissible trajectory

path for the robot to pursue in order to return to the line. Admissible path refers a

closest path to the line and can be pursued by robot where it must not exceed its max-

imum velocity. Deviation vector comprises of distance, and angle is used by the algo-

rithm to yield the said path. It will be a cubic type as applied by Zhou et al [5] and

Hermite interpolation technique is fused in the algorithm to yield it. This type of path

is selected since it can preserve the robot navigation momentum and evades backlash

to the drive mechanisms. Meanwhile, using Hermite technique allows the path easily

can be produced using two points and tangent vectors. Special transformation

schemes namely, tangent and time are integrated in the algorithm. For a tangent trans-

formation scheme, it used to alter the target tangent vector so that the correction path

becomes near to route line. In the meantime, time transformation scheme will ensure

velocity of each waypoint on the path can be pursued by the robot. Once the admissi-

ble path is obtained, a DR technique is employed to move the robot to each waypoint

on the path. The robot is tested in three deviation acceleration categories to justify the

algorithm dynamic functionality. Comparative performance is carried where robot

navigation with and without the ROTC algorithm are evaluated.

The process implemented to develop and evaluates the ROTC algorithm perfor-

mance are described throughout this paper according to arrangement as follows. The

workflow of the ROTC algorithm is explained in Section 2. Next, methodologies

perform in the research are particularized in Section 3. Section 4 elaborates the exper-

iment setup, and approach arranges to evaluate the ROTC performance. In Section 5,

it will present and discuss outcomes gained from the experiments. At last, Section 6

concludes the overall works in this research.

2 Design Concept

2.1 ROTC Workflow

Fig.1 demonstrates the pictorial diagram to illustrate the ROTC algorithm work-

flow to generate an admissible trajectory correction path when an autonomous robot

experiences a deviation. According to Fig.1, an omnidirectional robot equipped with

line tracking technique via a camera is arranged to navigate and pursuing the line. In

the event, a disturbance causes the robot to diverge from the route; a deviation vector

is estimated using an approach as introduced by Razak et al [6]. At that moment,

ROTC algorithm is activated and begins to generate an initial linear trajectory path

270 N. A. Razak et al.

based on deviation vector, 𝜎 ⃗⃗ ⃗that comprises displacement, sσ and angle θσ. Then, there

are two scheme are designed namely the tangent and time transformations to correct

the path to become admissible.

Fig. 1. ROTC workflow

In the tangent transformation phase, the algorithm will adaptively adjust the trajec-

tory final tangent vector. The tangent is varied until the resulting trajectory achieves

maximum proximity to the original route. At the same time, the series of points along

the trajectory must be ensured ascending to each other. This is for attaining the conti-

nuity and smooth transitions throughout the vehicle maneuvers. Once the first scheme

establishes the correct tangent for the trajectory, the second scheme which involves

time transformation will commence. The average velocity at each segment of two

points along the trajectory is computed. Then it will be validated with maximum ve-

locity that allowable to be enforced by the robot. This maximum velocity is theoreti-

cally calculated based on the specification of motors employed in the vehicle system.

If one of the segments has velocity exceeds the limitation, therefore, the trajectory

yielded from first phase becomes invalid. Hence, automatically the algorithm makes

an adjustment on the time navigation. At this stage, the time navigation will be in-

creased. Simultaneously, the first scheme is activated again. This process will recur-

Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot 271

rently be executed until both schemes able to identify the best final tangent vector and

optimal navigation time for the trajectory to lead back the vehicle to original route.

At last, the trajectory correction that is expressed as admissible produced. The aver-

age velocity at each segment of the trajectory is also secured. Alongside, via the ve-

locity, the navigation course or angle at the segment can be formulated. Hence, with

the data, it is now conceivable to activate following framework sequence namely DR

navigation technique. This technique is chosen because the technique is simple and

practicable enough for directing the robot to pursue on the generated path. Therefore,

the robot will be moved until the final point of trajectory. At the same time, once the

camera able to sense the route line back, then navigation via line tracking is activated

again, and all the RATC sequences will be reset. The mentioned sequences and pro-

cess will continuously run every time the robot experienced a deviation caused by the

disturbance. This is also applicable either deviation happened to the left or right from

the route line.

3 Methodology

This section reveals the process to design the proposed ROTC algorithm. It in-

cludes on how the trajectory is developed using a cubic Hermite interpolation method

along with respective equations. In addition, the ways the cubic trajectory path is

corrected to be admissible by tangent and time transformations are clarified. Then, a

custom-made controller utilized to implement the algorithm, line tracking and DR

navigation techniques is exposed. This goes along with devices installed on it. After-

ward, the section confers a customize robot as an experimental platform, and its con-

trol model. At last, a GUI window employed for data acquisition and maps robot mo-

tion are presented.

3.1 ROTC algorithm

Once the algorithm activated, it begins to project a linear virtual path, σlin. This

path is projected inversely relative to last location of vehicle deviation toward to orig-

inal navigation route. In time, this location becomes an initial navigation point, pinit

for the vehicle to maneuver back on the route. The displacement, slin of the σlin have

similar values of sσ as recorded by the deviation scheme. The same thing also hap-

pened to the angle, θlin of the σlin, where the amount is set equally to deviation angle,

θσ. However, the direction of the angle at this moment is overturned. The σlin is delib-

erately yielded to fix the 2D maximum permissible position, pmax on the line route for

the vehicle to enter. Likewise, this position will become the target location, ptrgt for

the vehicle to pursue. Therefore, it is essential to determine the target location, in XY

coordinate system and listed are formulas utilized.

 𝑝𝑦_𝑡𝑟𝑔𝑡 = 𝑠𝜎 sin 𝜃𝜎 (1)

 𝑝𝑥_𝑡𝑟𝑔𝑡 = 𝑠𝜎 cos 𝜃𝜎 (2)

272 N. A. Razak et al.

Hence, pinit and ptrgt for robot navigation in the 2D coordinate system at this instant are

recognized. Next, the action will be executed by the algorithm is formulating an ad-

missible trajectory correction path. To do this, since the research does fix the path will

be in form of cubic, therefore, it equations in 2D coordinate as follows:

 𝑝𝑦(𝑡) = 𝑎𝑦3𝑡
3 + 𝑎𝑦2𝑡

2 + 𝑎𝑦1𝑡 + 𝑎𝑦0 (3)

 𝑝𝑥(𝑡) = 𝑎𝑥3𝑡
3 + 𝑎𝑥2𝑡

2 + 𝑎𝑥1𝑡 + 𝑎𝑥0 (4)

The t in the equations is concerned with the time variable. Meanwhile, a3, a2, a1 and

a0 are the coefficients for the equations. These coefficients must be resolved since

they will influence the form of the path. Coefficients for py(t) will be resolved first

and at the same time, similar ways are implemented to find coefficients for px(t). First,

a0 in Equation 1 will be identified. In Fig.1, it is shown that the initial point of the

trajectory path is pinit. Correspondingly, the py(t) in Equation 1 turns out to be py_init(t),

where the value is set to be zero. Furthermore, at that point, t is 0 second. Hence,

substituting the py_init(t) and t in Equation 3 causes ay0 established as listed below:

 𝑎𝑦0 = 𝑝𝑦_𝑖𝑛𝑖𝑡(0) = 0 (5)

Next, to find ay1, Equation 1 is differentiated and result in following equation is ob-

tained.

 𝑝𝑦′(𝑡) = 3𝑎𝑦3𝑡
2 + 2𝑎𝑦2𝑡

1 + 𝑎𝑦1 (6)

This equation actually presents a tangent vector denoted as mx for the path in X-axis

domain. Via this equation, the ax1 now can be identified via following means. The

initial tangent vector, my_init is formulated by substituting t as 0. This is done because

it is located at pinit. As a result, ay1 becomes as shown:

 𝑎𝑦1 = 𝑝𝑦′(0) = 𝑚𝑦_𝑖𝑛𝑖𝑡 (7)

To this extent, only ay2 and ay3 are still unresolved. In order to determine them, it is

necessary to obtain the target point, py_trgt(t) and target tangent vector, my_trgt equa-

tions. To do that, it is assumed the robot arrived at ptrgt, at 1 second, which make t

can be set as 1. Therefore, substituting the t along with ay1 obtained previously in

Equations 3 and 6 give the desired equations appear as follows:

 𝑝𝑦_𝑡𝑟𝑔𝑡(1) = 𝑎𝑦3 + 𝑎𝑦2 + 𝑝𝑦′(0) (8)

 𝑚𝑦_𝑡𝑟𝑔𝑡 = 𝑝𝑦′(1) = 3𝑎𝑦3 + 2𝑎𝑦2 + 𝑝𝑦′(0) (9)

Noticeably, Equations 8 and 9 turn to be in form of linear equations. This permits

matrix manipulation method can be employed to find ay2 and ay3. Applying the said

method gives both coefficients are recognized as stated:

 𝑎𝑦2 = 3𝑝𝑦_𝑡𝑟𝑔𝑡(1) − 2𝑝𝑦′(0) − 𝑝𝑦′(1) (10)

 𝑎𝑦3 = −2𝑝𝑦_𝑡𝑟𝑔𝑡(1) + 𝑝𝑦′(0) + 𝑝𝑦′(1) (11)

Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot 273

All the coefficients at present are established, hence substituting them in Equation 3

results in the cubic trajectory path in Y-axis domain can be finalized as follows:

 𝑝𝑦(𝑡) = [

𝑡3

𝑡2

𝑡1

𝑡0

]

𝑇

[

−2𝑝𝑦_𝑡𝑟𝑔𝑡(1) + 𝑝𝑦′(0) + 𝑝𝑦′(1)

3𝑝𝑦_𝑡𝑟𝑔𝑡(1) − 2𝑝𝑦′(0) − 𝑝𝑦′(1)

𝑝𝑦′(0)

0]

 (12)

Meanwhile, similar approaches above are utilized to recognize coefficients for trajec-

tory path in X-axis domain. Therefore, this path equation is presented in Equation 13.

 𝑝𝑥(𝑡) = [

𝑡3

𝑡2

𝑡1

𝑡0

]

𝑇

[

−2𝑝𝑥_𝑡𝑟𝑔𝑡(1) + 𝑝𝑥′(0) + 𝑝𝑥′(1)

3𝑝𝑥_𝑡𝑟𝑔𝑡(1) − 2𝑝𝑥′(0) − 𝑝𝑥′(1)

𝑝𝑥′(0)

0]

 (13)

At this level, the path equations in Y and X axis domains with respect to t are ob-

tained. Now, it is organized; these paths comprise numbers of waypoints labeled as n.

Correspondingly, each n can be computed via these equations by setting the time as

𝑡 ∈ (
𝑡𝑛𝑎𝑣

10
) 𝑛 where n ∈ {0,1,2 ⋯ , 10}. Giving that the pinit, ptrgt and minit are known,

hence leaving mtrgt becomes indefinite. In concern about this matter, the algorithm has

introduced tangent and time transformation schemes to find the correct for mtrgt. This

is to ensure the path generated will near to line route and can be pursued by robot at

optimum velocity. The flowchart in Fig.2 demonstrates the workflow of the schemes.

Fig. 2. Workflow of tangent and time transformation scheme

274 N. A. Razak et al.

Start

py(n+1) > py(n)

my_trgt = my_trgt - 1

Calculate vnav and θnav

vavg(t) > vmax

tnav = tnav + 0.1

my_trgt established

my_trgt = my_trgt + 1

my_trgt = initial value

End

In the tangent transformation scheme, a preliminary value for mtrgt_y is assigned.

Then it will be elevated one causes the path form to change. At moment, each position

of n on the path will be reviewed. The review process must obey the rule where every

post point must be more than prior point. If the rule obeyed, than mtrgt_y will be in-

creased one. The process continuously runs until the rule is defied. Once happened,

the current mtrgt_y value will be minus by one since the previous value is actually the

optimum mtrgt_y that causes the path nearer to line. Next, time transformation scheme is

activated. The average velocity, vavg between each segment of waypoints on the X and

Y axis paths are calculated using Equation 14 and 15

 𝑣𝑦𝑎𝑣𝑔
(𝑡) =

𝑝𝑦[𝑛+1] (𝑡+0.1)– 𝑝𝑦𝑛 (𝑡)

(𝑡+0.1)−𝑡
 (14)

 𝑣𝑥𝑎𝑣𝑔
(𝑡) =

𝑝𝑥[𝑛+1] (𝑡+0.1)– 𝑝𝑥𝑛 (𝑡)

(𝑡+0.1)−𝑡
 (15)

Respectively, the average velocity for each segment on 2D path and also signified as

navigation velocity, vnav can be obtained with subsequent equation:

 𝑣𝑛𝑎𝑣(𝑡) = √(𝑣𝑥𝑛_𝑎𝑣𝑔 (𝑡))
2
+ (𝑣𝑦𝑛_𝑎𝑣𝑔 (𝑡))

2
 (16)

Meanwhile, the navigation angle, θnav of the segments are also computed via follow-

ing equation

 𝜃𝑛𝑎𝑣(𝑡) = 𝑡𝑎𝑛−1[
𝑣𝑦𝑛𝑎𝑣𝑔(𝑡)

𝑣𝑥𝑛𝑎𝑣𝑔(𝑡)
] (17)

Next the scheme will check either the vavg of each segment is less than vmax. If yes,

then the mtrgt_y value is established and the path generated is optimum for robot to

return to the lone. Contrary, if not, subsequently the time is increased by 0.1s. Tan-

gent transformation scheme is started again, and this process continuously runs until

mtrgt_y value that ensures velocity at each segment less than vmax is gained.

3.2 Robot control model and navigation techniques

A custom-made omnidirectional robot using four wheels is built to be employed as

an experiment platform. Acrylic sheet and aluminum bar is used as robot chassis. The

chassis has dimension of 30 cm height and 60 cm for it width and long. The robot is

driven using four 7.2V DC motors and every motor coupled with 2 inches transwheel.

Overall robot weight is 3.2 kg. Meanwhile to enable the robot to move according to

navigation inputs namely vnav and θnav, a control model for the robot is required. To

obtain the model, Fig.3 shows a free body diagram of the omnidirectional robot. Ac-

cording to the diagram, symbol O as located at the chassis center is meant for robot

gravity. Thus, robot local coordinate in X and Y axis becomes XLOYL. As for robot

global coordinate, it turns to be XGOYG. The αi is angle between the axles of the

wheels relative to XLOYL. Character i is related to the number of wheel used by the

robot. Since the robot used four wheels hence it is fixed to α1 = 90
0
, α2 = 180

0
, α3 =

Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot 275

Fig. 3. Omnidirectional robot free body diagram

270
0

and α4 = 0
0
. The ωi is denoted for the angular velocity of each wheel, and vi sig-

nifies the direction of linear velocity of the center of the wheel with respect to XLOYL.

This robot has a chassis radius, R of 30 cm and radius of the wheel, r is 2.54 cm.

Meanwhile, θ appears to be angle between the coordinates XLOYL and XGOYG. Hence,

via the diagram and applying the methods as carried out by Alves et al [7], the control

model for the robot is like so:

 [

𝜔1

𝜔2

𝜔3

𝜔4

] =
1

𝑟
[

− sin(𝜃 + ∝1) cos(𝜃 + ∝1) 𝑅

− sin(𝜃 + ∝2) cos(𝜃 + ∝2) 𝑅
− sin(𝜃 + ∝3) cos(𝜃 + ∝3) 𝑅

− sin(𝜃 + ∝4) cos(𝜃 + ∝4) 𝑅

] [

𝑉𝐺𝑥

𝑉𝐺𝑦

𝜃̇

] (18)

In this model, the VGx and VGy represent velocities of X and Y axis in XGOYG. Howev-

er, to appropriate steers the robot, it is best to translate VGx and VGy into velocities in

XLOYL. This can be done via Equation 19 to 21.

 [

𝑉𝐺𝑥

𝑉𝐺𝑦

𝜃̇

] = [
cos(𝜃) 0 0

0 cos(𝜃) 0
0 0 1

] [

𝑉𝐿𝑥

𝑉𝐿𝑦

𝜃̇

] (19)

where:

 𝑉𝐿𝑥 = 𝑉𝑛𝑎𝑣 cos 𝜃𝑛𝑎𝑣 (20)

 𝑉𝐿𝑦 = 𝑉𝑛𝑎𝑣 sin 𝜃𝑛𝑎𝑣 (21)

276 N. A. Razak et al.

With these equations, it is possible for the model to receive vnav and θnav and then

determine correct ωi so that robot can move to desired direction and velocity. In the

meantime, the robot is arranged to perform two navigation techniques line tracking

and Dead Reckoning (DR). To enable the robot to navigate via line tracking tech-

nique, an analog camera is utilized. Camera will capture the line image and then a

selective video line technique designed by Arshad et al [8] to track the line. The tech-

nique will produce digital values represent the location of the line. Via the values,

robot is programmed to move at constant vnav and θnav is regulated so that robot steers

in proportion to the line. As for navigation via DR technique, it is used to steer the

robot to move along the correction path. Each segment of waypoints on the path has it

own navigation inputs namely vnav and θnav as calculated via Equations 16 and 17.

Therefore, a timer interrupt is exploited by the controller to supply these inputs to the

control model according to interval t. By doing this robot is ensured to perform the

desired motion to follow the path.

3.3 Controller board and GUI window

To execute the ROTC algorithm and autonomous navigation of the robot, a cus-

tomize controller board based on PIC32MX795F512L microcontroller is built. The

board is equipped with an accelerometer, a camera, four units of 10A motor driver,

two units of LRF sensors and a XBee 2.4GHz module. All of these devices are needed

so that the desired functions can be performed. Like an accelerometer, it is meant for

deviation scheme to compute the vector. A camera is employed for line tracking tech-

nique. Motor driver is used to drive each motor according to respective ωi . Tempo-

rarily, the LRF sensors are used to provide 2D distance data. These data are then

transmitted wirelessly to a custom-made GUI window via the XBee device. The GUI

window is developed using Microsoft Visual Basic 2015 and installed in a PC. A

same XBee module installed on the controller board is plugged to a PC. Hence, the

distance data received are exploited to map the robot motion. The motion includes

robot motion when autonomously pursuing the line route, deviations that happened

and navigates on the trajectory correction path to return to the route. Meanwhile, the

controller and robot itself are powered by 11.1V, 2.2A Lithium Polymer (Li-Po) bat-

tery.

4 Experimental setup and data validation

An indoor controlled environment field as shown in Fig.4 is utilized to test the pro-

posed algorithm performance. The field is built using a grey rubber mat where the

dimension is 6 meters long and 3 meter width. Additionally, a white line with 3cm

width is taped at the center of the mat. With this setup, it is possible for a camera to

track the line and enable the robot to perform autonomous navigation. Meanwhile,

there are few wood blocks positioned within the field. They are utilized as object to

reflect laser beams from LRF sensors to gain 2D distance data. These data are neces-

Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot 277

sary to map robot motion trail when moves along the line. Consequently, the map is

used for evaluation purpose afterward.

Fig. 4. Experiment field

The trials begin by positioning the robot at the start point of navigation line. Then,

robot is activated to move at a constant speed. At a distance from the start point, the

robot is pulled via a string to make it deviate to the left from the route line. Doing this

action actually simulates the same effect when the robot suffers deviation due to dis-

turbance in real practice. At that moment, the process where line tracking technique

is disabled, a deviation scheme will sense deviation and computes the vector; ROTC

generates the path and finally, DR technique moves the robot to return to the line are

monitored. Concurrently, the respective data are captured in GUI window. As the

robot able to return to the line, it is given a time to move steadily on the line. Then the

string is pulled once more to force the robot to diverge to the right from the line path.

Similar robot process as mentioned above is monitored again and data are captured in

GUI window. The experiment is stopped once the robot reaches the end position on

the line route.

Subsequently, the experiment is performed again whereas at this time, robot auton-

omous navigation without the algorithm is implemented. The experiment is not fully

executed as applied in experiment before. The vehicle will be moved manually at end

position of deviation. The position is easily tracked by using LRF modules. The navi-

gation path before and during deviation occurred in prior experiment is presumed to

be similar for this navigation. This goes along with the duration of the navigation.

Next, the vehicle is activated again to move and senses the route via line tracking

technique. Simultaneously, navigation time is resumed and the GUI maps the naviga-

278 N. A. Razak et al.

tion path. The vehicle is programmed to stop once the camera able to track the line of

route. Once it stops, the motion path is unified with the navigation path as recorded

earlier. As for the duration of the navigation, it will be added to time as recorded be-

fore. In the meantime, these steps will be repeated for the situation of second devia-

tion that occurred toward the right of the route.

Accordingly, the methods as explained above is decided since the methods are the

best way to observe and compare the path navigated by vehicle with and without

ROTC algorithm. Particularly, to ensure both navigation systems experience the same

deviation distance and direction. Meanwhile, this experiment has been set up to run in

three different categories of deviation acceleration. The categories are high, moderate

and low having the range of acceleration as specified in Table 1. Such setup is ar-

ranged to test the dynamic operation of the designed algorithm to perform in different

acceleration of deviation. To validate the algorithm performance, the map that plots

robot navigation with and without the algorithm is examined. Via the map, analytical

evaluation can be carried out to differentiate performance of robot navigation with

and without the algorithm in terms of distance and time taken to return to the original

path after experiencing deviation.

Table 1. Deviation acceleration categories

Category Deviation acceleration , a (ms-2)

High a > 10

Moderate 5 ≤ a ≤ 10

Low a < 5

5 Results and Discussion

Fig. 5 to Fig. 7 show the maps that plots robot motion either it autonomous naviga-

tion is integrated with and without ROTC algorithm in all deviation acceleration cate-

gories. Apparently as seen in the figures, robot with autonomous navigation equipped

with ROTC algorithm performs well when maneuvers on the route in all the catego-

ries. Even the robot endures deviation either to the left or right, somehow the algo-

rithm guarantees the robot to return nearly to the original line Moreover, it also can

be realized, the distance taken for the robot where it navigation fused with ROTC

algorithm appears to be shorter. Consequently, robot consumes lesser time to return to

the line. This achievement is compared to robot navigation without the algorithm

where the distance and duration turn out to be longer. All of above declarations actu-

ally justifies decisively according to data as summarized in Table 2. Meanwhile, the

table also reveals the performance of robot navigation with the algorithm becomes

deteriorated from high to medium and subsequently to low category. The duration for

the robot to return to the line appears to increase slightly from one category to anoth-

er. This goes along with the distance traveled by the robot. This matter happened

because of inaccuracy of deviation scheme to estimate the vector. According to Razak

et al [6], the accuracy of the deviation scheme that designed by them becomes de-

Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot 279

clined as the deviation acceleration decrease. Due to this drawback, the correction

path generated by the ROTC algorithm actually doesn’t reach the line route.

Fig. 5. Robot motion in high acceleration category

Fig. 6. Robot motion in moderate acceleration category

0

50

100

150

200

250

300

350

400

450

500

550

600

-50 -30 -10 10 30 50

Y
 -

 a
x
is

 P
o

si
ti

o
n

 D
at

a
(c

m
)

X - axis Position Data (cm)

Navigation

With ROTC

Navigation

Without ROTC

0

50

100

150

200

250

300

350

400

450

500

550

600

-50.0 -30.0 -10.0 10.0 30.0 50.0

Y
 -

 a
x
is

 P
o

si
ti

o
n

 D
at

a
(c

m
)

X - axis Position Data (cm)

Navigation

With ROTC

Navigation

Without ROTC

280 N. A. Razak et al.

Fig. 7. Robot motion in low acceleration category

Table 2. Results for robot navigation with and without ROTC

Deviation
Navigation Time (s) Navigation Distance (cm)

With ROTC Without ROTC With ROTC
Without

ROTC Category Direction

High
Left 2.1 2.7 81.0 89.3

Right 2.5 3.0 79.5 82.5

Moderate
Left 2.9 4.3 85.3 95.4

Right 3.3 4.0 87.3 91.4

Low
Left 3.8 4.8 94.0 110.3

Right 3.7 4.7 97.4 113.5

This causes when the robot arrives at end location of the correction path, more time is

needed for the camera to track the line. Therefore, robot navigates further to reach the

line again and result in the duration turn out to be increased. Nevertheless, at moment,

the research does justify with these achievements, the usability of the ROTC algo-

rithm to assist robot navigation to return to lined route after experienced is practically

relevant.

6 Conclusion

A ROTC algorithm designed using Hermite Spline Interpolation technique is estab-

lished. Integrated with tangent and time transformation schemes enables it to generate

0

50

100

150

200

250

300

350

400

450

500

550

600

-50 -30 -10 10 30 50

Y
-A

x
is

 P
o

st
ii

o
n
 D

at
a

 (
cm

)

X-Axis Postion Data (cm)

Navigation

With ROTC

Navigation

Without
ROTC

Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot 281

an admissible trajectory path. Using DR technique, robot can pursue the path to return

rapidly to the lined route after experienced deviation due to disturbance. Three cate-

gories of deviation acceleration are carried out to test algorithm performance applied

to an autonomous omnidirectional robot. It performances are compared with robot

navigation without the algorithm. The outcomes do reveal, the dynamic practicality of

the algorithm to work in different deviation acceleration. Moreover, the results prove

robot navigation with ROTC performs better where the distance and duration for ro-

bot to return to route line shorter compared to robot navigation without it. Even there

is performance deterioration of the robot when experimented in high, medium and

then low category, however, this achievement is accepted since via the algorithm

robot still able to return the lined route.

Acknowledgment

This research is supported by Ministry of Education fund (600-RMI/RAGS 5/3

(42/2015)). The authors would like to express appreciation to Faculty of Electrical

Engineering and Institute of Research Management and Innovation, Universiti

Teknologi Mara (UiTM) for supplying the financial supports and equipment to con-

duct this research.

References

1. Seiler, K. M., Singh, S. P., Sukkarieh, S., Durrant-Whyte, H.: Using Lie group symmetries

for fast corrective motion planning. The International Journal of Robotics Research 31(2),

pp. 1-16 (2012).

2. Pham, Q. C.: Fast trajectory correction for nonholonomic mobile robots using affine trans-

formations. In Robotics: Science and Systems VII, pp. 265-272 (2012).

3. Sprunk, C., Lau, B., Pfaffz, P., Burgard, W.: Online generation of kinodynamic trajectories

for non-circular omnidirectional robots. In IEEE International Conference on Robotics and

Automation (ICRA), pp. 72-77 (2011).

4. Künemund, F., Kirsch, C., Heß, D., Röhrig, C.: Fast and accurate trajectory generation for

non-circular omnidirectional robots in industrial applications. In 7th German Conference

on Proceedings of ROBOTIK, pp. 1-6 (2012).

5. Zhou, F., Song, B., Tian, G.: Bezier Curve Based Smooth Path Planning for Mobile Robot.

Journal of Information &Computational Science 8(12), pp. 2441-2450 (2011).

6. Razak, N. A., Arshad, N. H. M., Adnan, R., Misnan, M. F., Thamrin, N. M., Mahmud, S.

F.: A Real-Time deviation detection and vector measurement technique for straight line

quadrocopter navigation using accelerometer. In IEEE 5th Control and System Graduate

Research Colloquium (ICSGRC), pp. 69-74 (2014).

7. Alves, S. F., Rosario, J. M., Ferasoli Filho, H., Rincon, L. K., Yamasaki, R. A.: Conceptu-

al bases of robot navigation modeling, control and applications. In Advances in Robot

Navigation (2011).

8.Arshad, N. M., & Razak, N. A.: Vision-based detection technique for effective line-

tracking autonomous vehicle. In IEEE 8th International Colloquium on Signal Processing

and its Applications (CSPA), pp. 441-445 (2012).

282 N. A. Razak et al.

	27 Real-Time Optimal Trajectory Correction (ROTC) for Autonomous Omnidirectional Robot
	1 Introduction
	2 Design Concept
	2.1 ROTC Workflow

	3 Methodology
	3.1 ROTC algorithm
	3.2 Robot control model and navigation techniques
	3.3 Controller board and GUI window

	4 Experimental setup and data validation
	5 Results and Discussion
	6 Conclusion
	Acknowledgment
	References

