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Abstract. The current study presents Integer Programming (IP) search method-

ology approaches for solving Curriculum-Based University Course Timetabling 

problem (CB-UCT) on real-life problem instances. The problem is applied in 

University Malaysia Sabah, Labuan International Campus Labuan (UMSLIC). 

This research involves implementing pure 0-1 IP and further incorporates IP in-

to a distributed Multi-Agent System (MAS) in which a central agent coordi-

nates various cooperative IP agents by sharing the best part of the solutions and 

direct the IP agents towards more promising search space and hence improve a 

common global list of the solutions. The objectives are to find applicable solu-

tions and compare the performance of sequential and cooperative IP search 

methodology implementations for solving real-life CB-UCT in UMSLIC. The 

results demonstrate both sequential and parallel implementation search method-

ologies are able to generate and improve the solutions impressively, however, 

the results clearly show that cooperative search that combines the strength of in-

teger programming outperforms the performance of a standalone counterpart in 

UMSLIC instances.  

Keywords: Timetabling, Integer Programming, Multi-Agent System. 

1 Introduction 

Timetabling is one of the problems on which so many researches have been done over 

the years and CB-UCT is an NP-hard and also highly constrained combinatorial prob-

lems. This is because specific circumstances give origin to several problems, with an 

abundance of varying features (constraints) [1].  Timetabling problems are very hard 

to solve because of these arising problems (varying constraints in every semester). 

Replicating previous timetable and manually trying to fix the new problem does not 

solve the problem. In fact, it becomes a burden to academic departments who are 

involved in timetable generation in every semester.  
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Timetabling involves two categories of constraints, hard and soft constraints. Hard 

constraints are mandatory to be satisfied for the timetable to be considered feasible all 

hard constraints must be fully satisfied, however, soft constraints are not only desira-

ble but the more soft constraints are solved the higher the quality of the solution. In 

particular soft constraints are used to measure the quality of the timetables. Each insti-

tution has their own constraints, some constraints may be considered hard in some 

institution while some constraints are considered soft in other institution. In addition, 

the constraints vary from time to time. Additionally, according to [3] modularity is 

other features which contribute to the hardness of the problems i.e. students are al-

lowed to choose the course from other departments or even from another faculty. 

Hence to solve all these problems an effective research and search methodology is 

highly required in this particular domain. In fact, there are so many different tech-

niques proposed in literature such as cooperative search inspired by particle swarm 

optimisation [2], parallel meta-heuristics [16], parallel local search [2], Parallel Con-

straint Programming [5] and many more. In recent years scholars acknowledge paral-

lel search as a natural effective solution approach to timetabling problems [8]. How-

ever, the questions are what is the best parallel strategy? Can these strategies improve 

the performance of stand-alone algorithms (i.e. IP, heuristics, and meta-heuristics 

e.c.t)? Is the proposed parallel IP able to improve the solutions as compared to 

standalone IP? In order to provide some understanding into these questions, we pro-

pose cooperative IP search methodologies to provide some insight into these ques-

tions. 

In this research, we aim to investigate the performance of sequential and parallel IP 

for the CB-UCT in UMSLIC. In particular, the standalone sequential IP and parallel 

IP in which different improving IP agents are running concurrently in different simu-

lated Multi-agent systems are implemented and tested on the real word problem in-

stances. As [2] proposed cooperative search inspired by particle swarm optimisation, 

this research is inspired by three important objects. Firstly the availability of high 

performance computer which makes feasible for us to implement IP model which is 

proven in literature that it requires high performance machine [3], secondly the multi-

processor computers and the rise of MAS which motivate parallel processing [4], and 

finally even though recently there a lot of research devoted to parallel search nonethe-

less there is little which have taken the advantage of the strength of IP into coopera-

tive search methodology. 

Hence the current work contributes to the body of knowledge hereby by proposing 

both sequential and cooperative integer programming for solving CB-UCT on 

UMSLIC instances.  

2 Related Work 

Curriculum-based University Course Timetabling problem (CB_UCT) is very im-

portant to research due to their direct importance and relevance in real-life situations 

[10]. According to [2, 3, 11] requirements differ from one institution to another for 

any given semester and in fact, according to [11] it is very difficult to produce the 
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general methodology to solve all the problems in every institution. As highlighted by 

[12] “the problem becomes more complex if the events vary in duration, and each 

event must occupy only one room for the entirety of this duration”. And so in 

UMSLIC the problems become complex since the duration of each course are not 

same as some courses take duration of two hours i.e. main courses, some take three 

hours i.e. language courses. 

Most literature proposes purely heuristic, meta-heuristics [13, 14] and hyper-

heuristics solution methods [12]. However, in recent years, integer programming (IP) 

methods have been the subject of increased attention [12] because of the availability 

of powerful computers, proven success strength of the IP, and ability to solve large 

instance in a small amount of time. In addition, cooperative search (Multi-Agent Sys-

tems) appears to attract scholars from both artificial intelligence and operational re-

search community [6]. This is because in multi-agent systems-based approaches, in-

tensification and diversification are possible to achieved through agents’ communica-

tion and cooperation [2], negotiation of agents to remove the constraints of the event 

and ability to resources sharing with each other [6], and finally the tendency of  guid-

ing algorithms towards more promising search space [3, 4, 8].  

However, it is worth noting that, approaches based on operational research do not 

have good efficiency in solving scheduling problems [6]. Somewhat, they do have 

easier implementation since they are mostly analyzed by software integrated with 

efficient and heuristic algorithms [6]. In recent years significant advancement of me-

ta-heuristics in solving university timetabling problems and other complex combina-

torial optimization problems have been achieved. These advancements have led to the 

successful deployment of meta-heuristics in the wide range of combinatorial prob-

lems. However, one major drawback of this family of techniques is the lack of ro-

bustness on a wide variety of problem instances [15]. Also, the computation times 

associated with the exploration of the solution space may be very large [8]. Moreover, 

[16] also emphasized the fact that, the  performance of meta-heuristics often  depends 

on the  particular  problem   setting and  data.                                                       

3 Problem Statement 

In every semester, academic institutions are facing difficulties in constructing course 

timetable. The task is to allocate the set of courses offered by the university to a given 

set of time periods and available classrooms in such a way no curriculum, lecturer or 

classroom is used more than once. Essentially the problem in UMSLIC involves as-

signing a set of 35 timeslots (seven days, with five fixed timeslot per day) according 

to UMSLIC teaching guidelines.  

Each lecturer teaching several courses in each semester and each course has at least 

one lecture of minimum two hours per week. In addition, UMSLIC’s administration 

has a guideline for the compulsory, elective, center for promotion of knowledge and 

language learning (PPIB),  and center for co-curriculum and student development 

(PKPP) courses to be enrolled by the students in each of the semesters throughout the 

students’ university days Our approach will also fulfill university teaching guideline 
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where there are some general preferences such as some courses particularly program 

and faculty courses cannot be scheduled on weekends and must be scheduled on the 

first or third timeslots of the weekdays. In addition, some courses such as PKPP 

courses cannot take place on weekdays. In addition, some course such as PPIB cours-

es must be scheduled on second, fourth, or fifth timeslot. Hence, this research concen-

trates on real-life CB-UTT. In fact, in CB-UTT there are five variables identified 

namely periods, courses, lecturers, rooms, and curricula. The objective is to assign a 

period and a room to all lectures of each course according to the hard and soft con-

straints based on UMSLIC teaching guidelines. 

4 Sequential IP  

The proposed sequential IP is formulated to solve the problem in two stages; in the 

first stage, the model solves hard constraints. In the second stage, the model tries to 

deal with soft constraints and maintain the feasibility of the solution.  The objective is 

to generate feasible timetable solution that is able to satisfy all the people affected by 

the timetable [7]. 

In particulars, in the first stage, the IP formulation tackle the hard constraints while 

in the second stage the timetable is being improved by minimizing the soft constraints 

as much as possible. Firstly the proposed search IP starts with an empty timetable. 

Since at the start all the problem instances are already pushed to the hash set (list) 

from the source pre-processed text file and all the information are now in places, the 

search IP generates room, day, period, and course at random. Then check for feasibil-

ity i.e. the room capacity can accommodate the number of students registered in that 

particular course, the period if is already occupied on that particular day, and if the 

course is already scheduled. If all the conditions are feasible, then course will be in-

serted into timetable and the room is registered as already used at that period in a 

given day. The course is registered as already scheduled, the timeslot is registered as 

already used and the number of unscheduled course is decremented. The process re-

peats until all the courses are feasibly scheduled.  

 

 First stage algorithm 

01:  while all courses is not scheduled do 

02:     Select randomly d∈D, r∈R,  p∈P,   c∈C from the problem instance   

03:  if  c∈C feasibly can be scheduled i.e. no hard constraint violation then 

04:       Insert into timetable and update the number of course scheduled 

06:       iter++; 

07: else 

08:       Remove c∈C from timetable and update number of course scheduled 

09: end if 

10: end while 
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In the second stage, the simple local search is introduced. The local search gradual-

ly tries to improve the quality of the solution generated in the first stage with the 

knowledge of maintaining the feasibility of the solution. The search is basically based 

on swapping of events as explained hereby. In this stage, there is two moves, the first 

move the course is selected randomly and places it into feasible timeslot and room 

which are also selected at random. In the second move the event is selected at random 

and insert into empty timeslot. If the course is inserted and the cost factor is improved 

or even similar to previous cost value the timetable is updated however if the course is 

inserted but the cost factor is not improved the timetable is not updated. The process 

keeps repeating until the stopping condition is met which is 300 seconds in this case. 

The time given is only five minutes; however, the larger the problem instance the 

higher the time is required [7] and the better the solution. 

 

 Second stage algorithm 

01:  Stop condition: is set 300 seconds 

02:  Best solution = initial solution 

03:        while stop condition is not met do 

04:  Select two events (d∈D, r∈R, p∈P,   c∈C) AND (d’∈D’,r’∈R’, p’∈P’,   c’∈C’)        

randomly from the feasible solution     and swaps      them: new solution S*, OR 

Select Event randomly from feasible timetable and insert in to empty slot:  new 

solution S* 

06:       if cost Function(S*) < cost Function (best solution 

07: Best solution = S* 

08: iter++; 

09:   else 

10: Best solution = Best solution 

11:   end if 

12:   end while 

 

5 Cooperative IP  

Figure 1 presents the proposed agent-based IP searches framework. In this research, a 

decentralized agent-based framework, which consist of given number of agents (n) is 

proposed. Basically this framework is a generic communication protocol for IP search 

methodology to share solutions among each other. Each IP is an autonomous agent 

with its own representation of the search environment. All IP agents at the beginning 

share the same complete feasible solution and then starts with their own search to-

wards more promising search space. Moreover, the communication or ability of the 

agent to exchange the solutions with one another via the central agents prevent indi-

vidual agent from trapping on the local optima [8]. Essentially all agents in the dis-

tributed environment communicate asynchronously via the central agent. Additional-
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ly, it is worth mentioning that, the initial feasible solution is generated by the central 

agents as well. In clarity this framework will involve asynchronous cooperative com-

munication as follow. 

5.1 Central Agent  (CA) 

The central agent is responsible to generate the initial feasible solution as well as to 

coordinates the communication process of all other agents involved in the proposed 

framework. The central agent acts as intermediate agent among the IP agents where it 

passes the feasible solution and other parameters to the IP agents asynchronously on 

top of FIPA-ACL communication protocol to improve the solutions. On top of that, 

the central agent receives the improved solutions from the IP agents and compares the 

objective function cost value of the received solution with the global solutions on the 

list, if the improved solution’s objective is better than any of the solutions on the 

global solutions then the worse in the list is replaced. Else the received solution is 

discarded and  the central agent randomly select other solution from the list of the 

global solutions and send back to that particular agent This procedure continues until 

the stopping condition is met. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed Agent-based IP Search methodology Framework 

5.2 IP Agents (Ai) 

All other agents’ start from the complete solution received randomly from central 

agent and iteratively perform search to improve the solution autonomously. In this 

case the agents have to maintain the feasibility of the solution i.e. do not violent hard 

constraint. After certain number of iterations according to the rules stated (after every 
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30 seconds) the agent passes the solution back to the central agent and request new 

solution from the central agent.  The central agent accepts the solution if only the 

solution is better to the existing global solutions in the list of the solutions (i.e. the 

solution objective cost is less than the existing global solutions in the list) else the 

solution is discarded. If the solution is accepted then the solution with higher objec-

tive cost function i.e. worse in the list will be replaced. The reason an improving 

agent’s exchange solution is to make sure the agents are not stuck on local optima, 

moreover scholars highlighted in the literature that, by exchanging the solution the 

possibility of the agents (algorithms) changing the position towards more promising 

space is increased [4, 8, 9]. 

 

Best solution Criteria. All of our agents are incorporated with integer programming 

search methodology. Each agent also is capable to compute the final objective func-

tion and return it along with the improved solution.  The central agent places all the 

solutions obtained in a sorted list where the solution on top will be the best solution 

(the solution with minimum objective function value).  

In this framework the value of the objective functions is used to determine the 

quality of the solution. The lower the cost value the better the solution. Hence for the 

solution which has improved by the IP agents to be considered better to the global 

existing solutions, the returned improved solution’s objective function should be low-

er to the one of the available in the global solutions objective functions values. Else 

the solution is discarded.  

6 Experimental Setup and Results 

In order to evaluate the performance of the proposed agent-based framework compare 

to stand alone sequential integer programming we have conducted experiments here-

by. The experiments have been carried out using real-life instances on UMSLIC se-

mester one 2016/2017 and semester two 2016/2017. Table 1 gives an overview of the 

instance characteristics. 

 

Table 1. Summary of the dataset from UMSICL academic division 

 

 Semester1 s2016/2017 Semester2 S2016/2017 

Number of student 2263 2224 

Number of curriculum 65 49 

Number of lectures  108 92 

Number of courses 134 117 

Cumulative number of constraints 4126 2918 

 

The numbers of unavailability (constraints) in each semester greatly differs be-

tween the instances. For example, semester one session 2016/2017 there are 4126 sum 

of all the hard constraints identified while in second-semester session 2016/2017 there 
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are 2918 sum of constraints identified. It should be noted that the constraints men-

tioned here refers to the total number of hard constraints for all the courses offered in 

that particular semester. It can be seen that even it is the dataset from the same univer-

sity but the number of constraints is not the same for particular two semesters. And 

this is demonstrated why it is very difficult for the university to duplicate the previous 

timetables since in every semester the constraints are not the same. 

The IP agents implemented in the framework to solve CB-UCT are described in 

section 4. The central agent reads in the problems and generates initial feasible solu-

tions. The central agent then sends the complete feasible solutions to IP agents to 

improve the solution. When the search is complete (complete n search) the central 

agent receives the results from the improving agents and insert into the sorted list of 

size n. However, after the list is already with n different solutions, whenever the cen-

tral agents receive the new solution from the IP agents it will compare its objectives 

with the existing solutions in the list as explained in section 5 of this paper. 

 As described in research objectives the tests are designed to compare different 

groups of IP agents with their Stand-Alone (SA-IP) counterparts. For each scenario, 

the experiments were conducted over 50 runs for each problem instance and the aver-

age objective values were computed. Basically, we conducted 50 runs for each prob-

lem instances because we wanted to find the upper and lower bound and hence the 

overall consistence of the algorithms. The agents conducted only 30 messages to 

complete each search taking no longer than five minutes to complete whole experi-

ments. The number of conversations 30 is chosen because experimentation shows that 

the rate of solution improvement is reduced after that number. The 30 conversations 

last no longer than about five minutes and this is deemed to be a good stopping condi-

tion. The results are shown in table 2. 

 

Table 2. Experimental results for the proposed Standalone IP (SA-IP) and Coopera-

tive IP search. 

 Number of agents Semester1 s2016/2017 Semester2 s2016/2017 

Initial cost 0-1 IP 368.04 377.29 

Final Average cost SA-IP 326.94 343.69 

Final average cost 3 321.20 338.80 

Final average cost 6 302.20 318.50 

Average improvements (%) SA-IP 10.99 8.91 

Average improvements (%) 3 12.73 10.20 

Average improvements (%) 6 17.89 15.58 

 

The improvement from the initial to final cost value for the Standalone IP (SA-IP) 

is 10.99 and 8.91 for s1 2016/2017 and s2 2016/2017 respectively. Also when three IP 

agents (Ai) are used is 12.73% and 10.20% for s1 2016/2017 and s2 2016/2017 re-

spectively. On the other hand, the improvement of the solution’s cost value when six 

IP agents (Ai) is used is 17.89% and 15.58% % for s1 2016/2017 and s2 2016/2017 

respectively.  
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The results presented clearly demonstrate that cooperative search outperforms 

standalone IP in this context. The IP agents improve solution as compared to 

standalone IP. In addition it worth to note that there is huge possibility that, the solu-

tion can be improved even further. Because in fact in this experiments it is not purely 

parallel as this is just simulation of parallel computing hence the performance might 

increase more as if each agent run on the self-machines. 

  The main benefits of the agent-based approach adopted for CB-UCT in UMSLIC 

are the possibilities of intensifying and diversifying the search space, where IP agents 

(Ai) are able to changes solutions with each other in the distributed MAS [2]. This 

leads the improving agents to easily move towards the most promising search areas of 

the search space [6]. Basically, by the analysis, the results, the numbers of IP agents 

used in the framework determine the quality of the solution generated. In this regard, 

we find that the quality of the solution in this framework proves to increase slightly as 

the number of IP agents (Ai) is increased. 

7 Conclusion 

In this research, we have conducted a comprehensive study of sequential IP search 

methodology approach in solving CB-UCT. In addition, we have focused on methods 

based on a cooperative search by incorporating sequential IP into agent-based multi-

agent systems. In the current study, we have demonstrated on how IP can be integrat-

ed into MAS in order to conduct the cooperative search in solving the CB-UCT. To 

prove this hypothesis, we have justified the capabilities of MAS and how cooperative 

search can be natural approaches to solve the problem and find higher quality solu-

tions as compared to the standalone sequential counterpart. 

The advantages of using MAS in CB-UCT as compared to standalone IP in this 

context is the ability for the IP agents to share the best part of the solutions and the 

possibility of the agent moving towards more promising search space.  

 In general, cooperative outperform standalone IP can be attributed to the fact in 

standalone IP once the algorithms stuck on local optima it cannot improve solution 

anymore however in cooperative search once agent stack on local optima agent can 

changes solutions and through that, the agent is able to escape from local optima. 
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