
Performance Comparison of Sequential and Cooperative

Integer Programming Search Methodologies in Solving

Curriculum-Based University Course Timetabling

Problems (CB-UCT)

Mansour Hassani Abdalla, Joe Henry Obit, Rayner Alfred and Jetol Bolongkikit

Knowledge Technology Research Unit, Universiti Malaysia Sabah,

88400 Kota Kinabalu, Malaysia

mansourabdalla22@gmail.com, joehenry@ums.edu.my,

ralfred@ums.edu.my, jetol@ums.edu.my

Abstract. The current study presents Integer Programming (IP) search method-

ology approaches for solving Curriculum-Based University Course Timetabling

problem (CB-UCT) on real-life problem instances. The problem is applied in

University Malaysia Sabah, Labuan International Campus Labuan (UMSLIC).

This research involves implementing pure 0-1 IP and further incorporates IP in-

to a distributed Multi-Agent System (MAS) in which a central agent coordi-

nates various cooperative IP agents by sharing the best part of the solutions and

direct the IP agents towards more promising search space and hence improve a

common global list of the solutions. The objectives are to find applicable solu-

tions and compare the performance of sequential and cooperative IP search

methodology implementations for solving real-life CB-UCT in UMSLIC. The

results demonstrate both sequential and parallel implementation search method-

ologies are able to generate and improve the solutions impressively, however,

the results clearly show that cooperative search that combines the strength of in-

teger programming outperforms the performance of a standalone counterpart in

UMSLIC instances.

Keywords: Timetabling, Integer Programming, Multi-Agent System.

1 Introduction

Timetabling is one of the problems on which so many researches have been done over

the years and CB-UCT is an NP-hard and also highly constrained combinatorial prob-

lems. This is because specific circumstances give origin to several problems, with an

abundance of varying features (constraints) [1]. Timetabling problems are very hard

to solve because of these arising problems (varying constraints in every semester).

Replicating previous timetable and manually trying to fix the new problem does not

solve the problem. In fact, it becomes a burden to academic departments who are

involved in timetable generation in every semester.

© Springer Nature Singapore Pte Ltd. 2019
R. Alfred et al. (eds.), Computational Science and Technology, Lecture Notes
in Electrical Engineering 481, https://doi.org/10.1007/978-981-13-2622-6_15

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2622-6_15&domain=pdf

Timetabling involves two categories of constraints, hard and soft constraints. Hard

constraints are mandatory to be satisfied for the timetable to be considered feasible all

hard constraints must be fully satisfied, however, soft constraints are not only desira-

ble but the more soft constraints are solved the higher the quality of the solution. In

particular soft constraints are used to measure the quality of the timetables. Each insti-

tution has their own constraints, some constraints may be considered hard in some

institution while some constraints are considered soft in other institution. In addition,

the constraints vary from time to time. Additionally, according to [3] modularity is

other features which contribute to the hardness of the problems i.e. students are al-

lowed to choose the course from other departments or even from another faculty.

Hence to solve all these problems an effective research and search methodology is

highly required in this particular domain. In fact, there are so many different tech-

niques proposed in literature such as cooperative search inspired by particle swarm

optimisation [2], parallel meta-heuristics [16], parallel local search [2], Parallel Con-

straint Programming [5] and many more. In recent years scholars acknowledge paral-

lel search as a natural effective solution approach to timetabling problems [8]. How-

ever, the questions are what is the best parallel strategy? Can these strategies improve

the performance of stand-alone algorithms (i.e. IP, heuristics, and meta-heuristics

e.c.t)? Is the proposed parallel IP able to improve the solutions as compared to

standalone IP? In order to provide some understanding into these questions, we pro-

pose cooperative IP search methodologies to provide some insight into these ques-

tions.

In this research, we aim to investigate the performance of sequential and parallel IP

for the CB-UCT in UMSLIC. In particular, the standalone sequential IP and parallel

IP in which different improving IP agents are running concurrently in different simu-

lated Multi-agent systems are implemented and tested on the real word problem in-

stances. As [2] proposed cooperative search inspired by particle swarm optimisation,

this research is inspired by three important objects. Firstly the availability of high

performance computer which makes feasible for us to implement IP model which is

proven in literature that it requires high performance machine [3], secondly the multi-

processor computers and the rise of MAS which motivate parallel processing [4], and

finally even though recently there a lot of research devoted to parallel search nonethe-

less there is little which have taken the advantage of the strength of IP into coopera-

tive search methodology.

Hence the current work contributes to the body of knowledge hereby by proposing

both sequential and cooperative integer programming for solving CB-UCT on

UMSLIC instances.

2 Related Work

Curriculum-based University Course Timetabling problem (CB_UCT) is very im-

portant to research due to their direct importance and relevance in real-life situations

[10]. According to [2, 3, 11] requirements differ from one institution to another for

any given semester and in fact, according to [11] it is very difficult to produce the

146 M. H. Abdalla et al.

general methodology to solve all the problems in every institution. As highlighted by

[12] “the problem becomes more complex if the events vary in duration, and each

event must occupy only one room for the entirety of this duration”. And so in

UMSLIC the problems become complex since the duration of each course are not

same as some courses take duration of two hours i.e. main courses, some take three

hours i.e. language courses.

Most literature proposes purely heuristic, meta-heuristics [13, 14] and hyper-

heuristics solution methods [12]. However, in recent years, integer programming (IP)

methods have been the subject of increased attention [12] because of the availability

of powerful computers, proven success strength of the IP, and ability to solve large

instance in a small amount of time. In addition, cooperative search (Multi-Agent Sys-

tems) appears to attract scholars from both artificial intelligence and operational re-

search community [6]. This is because in multi-agent systems-based approaches, in-

tensification and diversification are possible to achieved through agents’ communica-

tion and cooperation [2], negotiation of agents to remove the constraints of the event

and ability to resources sharing with each other [6], and finally the tendency of guid-

ing algorithms towards more promising search space [3, 4, 8].

However, it is worth noting that, approaches based on operational research do not

have good efficiency in solving scheduling problems [6]. Somewhat, they do have

easier implementation since they are mostly analyzed by software integrated with

efficient and heuristic algorithms [6]. In recent years significant advancement of me-

ta-heuristics in solving university timetabling problems and other complex combina-

torial optimization problems have been achieved. These advancements have led to the

successful deployment of meta-heuristics in the wide range of combinatorial prob-

lems. However, one major drawback of this family of techniques is the lack of ro-

bustness on a wide variety of problem instances [15]. Also, the computation times

associated with the exploration of the solution space may be very large [8]. Moreover,

[16] also emphasized the fact that, the performance of meta-heuristics often depends

on the particular problem setting and data.

3 Problem Statement

In every semester, academic institutions are facing difficulties in constructing course

timetable. The task is to allocate the set of courses offered by the university to a given

set of time periods and available classrooms in such a way no curriculum, lecturer or

classroom is used more than once. Essentially the problem in UMSLIC involves as-

signing a set of 35 timeslots (seven days, with five fixed timeslot per day) according

to UMSLIC teaching guidelines.

Each lecturer teaching several courses in each semester and each course has at least

one lecture of minimum two hours per week. In addition, UMSLIC’s administration

has a guideline for the compulsory, elective, center for promotion of knowledge and

language learning (PPIB), and center for co-curriculum and student development

(PKPP) courses to be enrolled by the students in each of the semesters throughout the

students’ university days Our approach will also fulfill university teaching guideline

Performance Comparison of Sequential and Cooperative Integer … 147

where there are some general preferences such as some courses particularly program

and faculty courses cannot be scheduled on weekends and must be scheduled on the

first or third timeslots of the weekdays. In addition, some courses such as PKPP

courses cannot take place on weekdays. In addition, some course such as PPIB cours-

es must be scheduled on second, fourth, or fifth timeslot. Hence, this research concen-

trates on real-life CB-UTT. In fact, in CB-UTT there are five variables identified

namely periods, courses, lecturers, rooms, and curricula. The objective is to assign a

period and a room to all lectures of each course according to the hard and soft con-

straints based on UMSLIC teaching guidelines.

4 Sequential IP

The proposed sequential IP is formulated to solve the problem in two stages; in the

first stage, the model solves hard constraints. In the second stage, the model tries to

deal with soft constraints and maintain the feasibility of the solution. The objective is

to generate feasible timetable solution that is able to satisfy all the people affected by

the timetable [7].

In particulars, in the first stage, the IP formulation tackle the hard constraints while

in the second stage the timetable is being improved by minimizing the soft constraints

as much as possible. Firstly the proposed search IP starts with an empty timetable.

Since at the start all the problem instances are already pushed to the hash set (list)

from the source pre-processed text file and all the information are now in places, the

search IP generates room, day, period, and course at random. Then check for feasibil-

ity i.e. the room capacity can accommodate the number of students registered in that

particular course, the period if is already occupied on that particular day, and if the

course is already scheduled. If all the conditions are feasible, then course will be in-

serted into timetable and the room is registered as already used at that period in a

given day. The course is registered as already scheduled, the timeslot is registered as

already used and the number of unscheduled course is decremented. The process re-

peats until all the courses are feasibly scheduled.

 First stage algorithm

01: while all courses is not scheduled do

02: Select randomly d∈D, r∈R, p∈P, c∈C from the problem instance

03: if c∈C feasibly can be scheduled i.e. no hard constraint violation then

04: Insert into timetable and update the number of course scheduled

06: iter++;

07: else

08: Remove c∈C from timetable and update number of course scheduled

09: end if

10: end while

148 M. H. Abdalla et al.

In the second stage, the simple local search is introduced. The local search gradual-

ly tries to improve the quality of the solution generated in the first stage with the

knowledge of maintaining the feasibility of the solution. The search is basically based

on swapping of events as explained hereby. In this stage, there is two moves, the first

move the course is selected randomly and places it into feasible timeslot and room

which are also selected at random. In the second move the event is selected at random

and insert into empty timeslot. If the course is inserted and the cost factor is improved

or even similar to previous cost value the timetable is updated however if the course is

inserted but the cost factor is not improved the timetable is not updated. The process

keeps repeating until the stopping condition is met which is 300 seconds in this case.

The time given is only five minutes; however, the larger the problem instance the

higher the time is required [7] and the better the solution.

 Second stage algorithm

01: Stop condition: is set 300 seconds

02: Best solution = initial solution

03: while stop condition is not met do

04: Select two events (d∈D, r∈R, p∈P, c∈C) AND (d’∈D’,r’∈R’, p’∈P’, c’∈C’)

randomly from the feasible solution and swaps them: new solution S*, OR

Select Event randomly from feasible timetable and insert in to empty slot: new

solution S*

06: if cost Function(S*) < cost Function (best solution

07: Best solution = S*

08: iter++;

09: else

10: Best solution = Best solution

11: end if

12: end while

5 Cooperative IP

Figure 1 presents the proposed agent-based IP searches framework. In this research, a

decentralized agent-based framework, which consist of given number of agents (n) is

proposed. Basically this framework is a generic communication protocol for IP search

methodology to share solutions among each other. Each IP is an autonomous agent

with its own representation of the search environment. All IP agents at the beginning

share the same complete feasible solution and then starts with their own search to-

wards more promising search space. Moreover, the communication or ability of the

agent to exchange the solutions with one another via the central agents prevent indi-

vidual agent from trapping on the local optima [8]. Essentially all agents in the dis-

tributed environment communicate asynchronously via the central agent. Additional-

Performance Comparison of Sequential and Cooperative Integer … 149

ly, it is worth mentioning that, the initial feasible solution is generated by the central

agents as well. In clarity this framework will involve asynchronous cooperative com-

munication as follow.

5.1 Central Agent (CA)

The central agent is responsible to generate the initial feasible solution as well as to

coordinates the communication process of all other agents involved in the proposed

framework. The central agent acts as intermediate agent among the IP agents where it

passes the feasible solution and other parameters to the IP agents asynchronously on

top of FIPA-ACL communication protocol to improve the solutions. On top of that,

the central agent receives the improved solutions from the IP agents and compares the

objective function cost value of the received solution with the global solutions on the

list, if the improved solution’s objective is better than any of the solutions on the

global solutions then the worse in the list is replaced. Else the received solution is

discarded and the central agent randomly select other solution from the list of the

global solutions and send back to that particular agent This procedure continues until

the stopping condition is met.

Fig. 1. Proposed Agent-based IP Search methodology Framework

5.2 IP Agents (Ai)

All other agents’ start from the complete solution received randomly from central

agent and iteratively perform search to improve the solution autonomously. In this

case the agents have to maintain the feasibility of the solution i.e. do not violent hard

constraint. After certain number of iterations according to the rules stated (after every

150 M. H. Abdalla et al.

30 seconds) the agent passes the solution back to the central agent and request new

solution from the central agent. The central agent accepts the solution if only the

solution is better to the existing global solutions in the list of the solutions (i.e. the

solution objective cost is less than the existing global solutions in the list) else the

solution is discarded. If the solution is accepted then the solution with higher objec-

tive cost function i.e. worse in the list will be replaced. The reason an improving

agent’s exchange solution is to make sure the agents are not stuck on local optima,

moreover scholars highlighted in the literature that, by exchanging the solution the

possibility of the agents (algorithms) changing the position towards more promising

space is increased [4, 8, 9].

Best solution Criteria. All of our agents are incorporated with integer programming

search methodology. Each agent also is capable to compute the final objective func-

tion and return it along with the improved solution. The central agent places all the

solutions obtained in a sorted list where the solution on top will be the best solution

(the solution with minimum objective function value).

In this framework the value of the objective functions is used to determine the

quality of the solution. The lower the cost value the better the solution. Hence for the

solution which has improved by the IP agents to be considered better to the global

existing solutions, the returned improved solution’s objective function should be low-

er to the one of the available in the global solutions objective functions values. Else

the solution is discarded.

6 Experimental Setup and Results

In order to evaluate the performance of the proposed agent-based framework compare

to stand alone sequential integer programming we have conducted experiments here-

by. The experiments have been carried out using real-life instances on UMSLIC se-

mester one 2016/2017 and semester two 2016/2017. Table 1 gives an overview of the

instance characteristics.

Table 1. Summary of the dataset from UMSICL academic division

 Semester1 s2016/2017 Semester2 S2016/2017

Number of student 2263 2224

Number of curriculum 65 49

Number of lectures 108 92

Number of courses 134 117

Cumulative number of constraints 4126 2918

The numbers of unavailability (constraints) in each semester greatly differs be-

tween the instances. For example, semester one session 2016/2017 there are 4126 sum

of all the hard constraints identified while in second-semester session 2016/2017 there

Performance Comparison of Sequential and Cooperative Integer … 151

are 2918 sum of constraints identified. It should be noted that the constraints men-

tioned here refers to the total number of hard constraints for all the courses offered in

that particular semester. It can be seen that even it is the dataset from the same univer-

sity but the number of constraints is not the same for particular two semesters. And

this is demonstrated why it is very difficult for the university to duplicate the previous

timetables since in every semester the constraints are not the same.

The IP agents implemented in the framework to solve CB-UCT are described in

section 4. The central agent reads in the problems and generates initial feasible solu-

tions. The central agent then sends the complete feasible solutions to IP agents to

improve the solution. When the search is complete (complete n search) the central

agent receives the results from the improving agents and insert into the sorted list of

size n. However, after the list is already with n different solutions, whenever the cen-

tral agents receive the new solution from the IP agents it will compare its objectives

with the existing solutions in the list as explained in section 5 of this paper.

 As described in research objectives the tests are designed to compare different

groups of IP agents with their Stand-Alone (SA-IP) counterparts. For each scenario,

the experiments were conducted over 50 runs for each problem instance and the aver-

age objective values were computed. Basically, we conducted 50 runs for each prob-

lem instances because we wanted to find the upper and lower bound and hence the

overall consistence of the algorithms. The agents conducted only 30 messages to

complete each search taking no longer than five minutes to complete whole experi-

ments. The number of conversations 30 is chosen because experimentation shows that

the rate of solution improvement is reduced after that number. The 30 conversations

last no longer than about five minutes and this is deemed to be a good stopping condi-

tion. The results are shown in table 2.

Table 2. Experimental results for the proposed Standalone IP (SA-IP) and Coopera-

tive IP search.

 Number of agents Semester1 s2016/2017 Semester2 s2016/2017

Initial cost 0-1 IP 368.04 377.29

Final Average cost SA-IP 326.94 343.69

Final average cost 3 321.20 338.80

Final average cost 6 302.20 318.50

Average improvements (%) SA-IP 10.99 8.91

Average improvements (%) 3 12.73 10.20

Average improvements (%) 6 17.89 15.58

The improvement from the initial to final cost value for the Standalone IP (SA-IP)

is 10.99 and 8.91 for s1 2016/2017 and s2 2016/2017 respectively. Also when three IP

agents (Ai) are used is 12.73% and 10.20% for s1 2016/2017 and s2 2016/2017 re-

spectively. On the other hand, the improvement of the solution’s cost value when six

IP agents (Ai) is used is 17.89% and 15.58% % for s1 2016/2017 and s2 2016/2017

respectively.

152 M. H. Abdalla et al.

The results presented clearly demonstrate that cooperative search outperforms

standalone IP in this context. The IP agents improve solution as compared to

standalone IP. In addition it worth to note that there is huge possibility that, the solu-

tion can be improved even further. Because in fact in this experiments it is not purely

parallel as this is just simulation of parallel computing hence the performance might

increase more as if each agent run on the self-machines.

 The main benefits of the agent-based approach adopted for CB-UCT in UMSLIC

are the possibilities of intensifying and diversifying the search space, where IP agents

(Ai) are able to changes solutions with each other in the distributed MAS [2]. This

leads the improving agents to easily move towards the most promising search areas of

the search space [6]. Basically, by the analysis, the results, the numbers of IP agents

used in the framework determine the quality of the solution generated. In this regard,

we find that the quality of the solution in this framework proves to increase slightly as

the number of IP agents (Ai) is increased.

7 Conclusion

In this research, we have conducted a comprehensive study of sequential IP search

methodology approach in solving CB-UCT. In addition, we have focused on methods

based on a cooperative search by incorporating sequential IP into agent-based multi-

agent systems. In the current study, we have demonstrated on how IP can be integrat-

ed into MAS in order to conduct the cooperative search in solving the CB-UCT. To

prove this hypothesis, we have justified the capabilities of MAS and how cooperative

search can be natural approaches to solve the problem and find higher quality solu-

tions as compared to the standalone sequential counterpart.

The advantages of using MAS in CB-UCT as compared to standalone IP in this

context is the ability for the IP agents to share the best part of the solutions and the

possibility of the agent moving towards more promising search space.

 In general, cooperative outperform standalone IP can be attributed to the fact in

standalone IP once the algorithms stuck on local optima it cannot improve solution

anymore however in cooperative search once agent stack on local optima agent can

changes solutions and through that, the agent is able to escape from local optima.

References

1. Landir S, Maristela O.S., Alysson M.C.: Parallel local search algorithms for high school

timetabling problems, European Journal of Operational Research,Volume 265, Issue 1,

2018, Pages 81-98, ISSN 0377-2217,

2. Obit, J. H., Alfred. R., Abdalla, M.H.: A PSO Inspired Asynchronous Cooperative Distrib-

uted Hyper-Heuristic for Course Timetabling Problems. Advanced Science Letters,

(2017)11016-11022(7)

3. Obit. J. H., Ouelhadj, D., Landa-Silva, D., Vun, T. K.., Alfred, R.: Designing a multi-agent

approach system for distributed course timetabling. IEEE Hybrid Intelligent Systems

(HIS), 10.1109/HIS(2011)-6122088.

Performance Comparison of Sequential and Cooperative Integer … 153

4. Lach, G., & Lübbecke, M. E. (2012).: Curriculum based course timetabling: new solutions

to Udine benchmark instances. Annals of Operations Research, 194(1), 255-272

5. Regin JC, Malapert A.: Parallel Constraint Programming. (2018). springerprofessional.de.

Retrieved 17 April 2018.

6. Babaei, H., Hadidi, A A.: Review of Distributed Multi-Agent Systems Approach to Solve

University Course Timetabling Problem. Advances In Computer Science : An Internation-

al Journal, 3(5), 19-28. (2014).

7. Lach, G., & Lübbecke, M. E.: Curriculum based course timetabling: new solutions to

Udine benchmark instances. Annals of Operations Research, 194(1), 255-272 (2012).

8. Cung, V.-D., Martins, S. L., Ribeiro, C. C., Roucairol, C.: Strategies for the parallel im-

plementation of metaheuristics. In Essays and surveys in metaheuristics (pp. 263-308):

Springer (2002).

9. Obit, J. H.: Developing novel meta-heuristic, hyper-heuristic and cooperative search for

course timetabling problems. Ph.D. Thesis, School of Computer Science University of

Nottingham (2010)

10. Babaei, H., Karimpour, J., & Hadidi, A. (2015).: A survey of approaches for university

course timetabling problem. Computers & Industrial Engineering, 86, 43-59.

doi:10.1016/j.cie.2014.11.010

11. Obit. J.H., Yik. J. K., Alfred. R.: Performance Comparison of Linear and Non-Linear

Great Deluge Algo...: Ingenta Connect. (2018). Ingentaconnect.com. Retrieved 17 April

2018, from

http://www.ingentaconnect.com/content/asp/asl/2017/00000023/00000011/art00129

12. Antony E.P, Hamish W., Matthias E., David M.R, Integer programming methods for large-

scale practical classroom assignment problems. (2015). Computers & Operations

13. Yik , J. K., Obit, J. H., Alfred, R.: Comparison of Simulated Annealing and Great Del-

uge Algorithms for...: Ingenta Connect. (2018). Ingentaconnect.com. Retrieved 17 April

2018,

14. Norgren, E., Jonasson, J.: Investigating a Genetic Algorithm-Simulated Annealing Hybrid

Applied to University Course Timetabling Problem: A Comparative Study Between Simu-

lated Annealing Initialized with Genetic Algorithm, Genetic Algorithm and Simulated An-

nealing. DIVA. Retrieved 17 April 2018,

15. Di Gaspero, L., McCollum, B., Schaerf, A.: The second international timetabling competi-

tion (ITC-2007): Curriculum-based course timetabling (track 3).

16. Crainic, T. G., Toulouse, M.: Parallel strategies for meta-heuristics. In Handbook of me-

taheuristics (pp. 475-513(2003)): Springer.

154 M. H. Abdalla et al.

	15 Performance Comparison of Sequential and Cooperative Integer Programming Search Methodologies in Solving Curriculum-Based University Course Timetabling Problems (CB-UCT)
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Sequential IP
	5 Cooperative IP
	5.1 Central Agent (CA)
	5.2 IP Agents (Ai)

	6 Experimental Setup and Results
	7 Conclusion
	References

