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Strategies for Monitoring and Modeling
the Growth of Hairy Root Cultures: An In
Silico Perspective
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Abstract Hairy roots have been identified as a good source of secondary metabo-
lites in plants. These secondary metabolites in the genera of phytochemicals have
been used by humans since long in the form of drugs, flavors, colors, and others.
Thereby, large-scale culture of hairy roots, its management, and production have
been conferred as most important and critical steps at industrial scale. Conversely,
culture of hairy roots in bioreactors at industrial scale has proven to be a tedious job
and requires continuous monitoring and precise control of the system. These chal-
lenges for hairy roots owe to their heterogeneous nature. Conventional methods for
monitoring of such cultures have failed to work well within this system. So, indirect
methods are being used for continuous monitoring of growth and metabolite content
in hairy roots. Efficiency and efficacy of these indirect methods depend largely upon
models of hairy root growth, product synthesis, and substrate utilization. Several
mathematical and computational models have been developed to explain hairy root
growth. Some of these models are complex mathematical equations which are based
on physical principles, while others are computational models derived from empir-
ical data. This chapter intends to outline and explain some of the prominent models
for hairy root growth and their mode and mechanism of action in large-scale
bioreactors.
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14.1 Introduction

Hairy roots are plant disease syndrome caused by the infection of soil-borne
bacterium Agrobacterium rhizogenes to the higher plants. Upon infection
A. rhizogenes transfers a DNA segment (T-DNA) from its root-inducing
(Ri) plasmid into the genome of the host plant. Set of genes, carried by T-DNA
segment, codes for the enzymes which interfere into the auxin and cytokine in the
biosynthesis of the host (Chandra 2012; Mehrotra et al. 2015; Srivastava et al. 2016).
Due to this reason, the hormonal imbalance at the wounded site occurs that causes
the rapid growth of hairy rootlike mass at the wounded sites. These are called hairy
roots and are prominent disease syndrome of higher plants (Georgiev et al. 2012).
The hairy roots are characterized by high growth rate, genetic stability, and growth in
hormone-free media. These roots are very much similar to the native roots of the host
plant in terms of their capacity to produce similar or much higher amount of
secondary metabolites that are normally produced by the plant (Pistelli et al.
2010). In laboratories, hairy roots are cultured to explore secondary metabolite
synthesis both in terms of their production for commercial purposes and to investi-
gate their biochemical and molecular aspects. Hairy root cultures have proven their
worth for the production of commercially valuable secondary metabolites. This
property of hairy roots is of particular interest for researchers who strive for large-
scale production of these metabolites. Secondary metabolites are the chemicals
produced by plants for which no role has been found in growth, photosynthesis,
reproduction, or other primary functions. Humans use some of these compounds as
medicines, flavorings, fragrance, recreational drugs, biopesticides, nutrients, cos-
metic additives, etc. The procurement of these phytochemicals at large scale from
plants requires vast agricultural land, time and labour. Further, their chemical
synthesis is a costly and labor-intensive affair. Therefore, the constant use, ever-
increasing demand, and less availability of these important phytochemicals from
natural sources are the driving efforts to develop new ways to optimize their
alternative production. In this reference, hairy root-based production of plant-
derived metabolites needs scientific consideration. Another commercially important
aspect of hairy root is their ability to produce proteins. Although there are some
problems associated with production of foreign proteins by hairy roots like low
accumulation levels, instability of proteins, etc., hairy roots have great potential for
large-scale production of proteins (Doran 2006). Furthermore, hairy root cultures are
known for their use in value-added applications like phyto-/rhizoremediation of
toxic compounds, biotransformation of exo-/endogenously supplemented substrates
into commercially more valuable compounds, etc. (Mehrotra and Srivastava 2017;
Srivastava et al. 2017).

To sum up, hairy root cultures have gained popularity as one of the most suitable
biological systems to fulfill various biotechnological objectives. For this purpose,
the establishment and maintenance of the culture system is a prerequisite. Further,
before using any hairy root culture system, sometimes there is a need to know about
their biological behavior and their responses to various environmental factors as
these factors determine their overall growth and productivity. Practically, in
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biological systems it is troublesome and tedious to optimize all the factors every time
before using a system for any purpose as biological behaviors are nonlinear and
nondeterministic. For this question, the use of modeling of biological systems to
investigate their growth patterns, responses to their physical and chemical environ-
ment, production potential, etc. can provide an answer. The upcoming text provides
condensed information about modeling of biological system and their applications
with particular reference to hairy root cultures.

14.2 Modeling of Biological Systems

Advances in various fields of biology and information technology have produced
huge amounts of data. Accumulation of this data is day to day increasing and is in
continuous need of interpretation and investigation in order to understand the
behavior of biological systems. These advances are changing the way biological
research, development, and applications are conducted. Modeling is the human
activity which includes representation, manipulation, and communication with
real-world life objects. A model can be defined as a portrayal of a system (comprised
of many integral parts) in terms of its constitutive parts and their association/
interactions, where the portrayal itself is decodable or interpretable by humans.
Biological processes are nonlinear and complex because of their collective behavior
and changes in various phases of development. They depend upon different external
and internal factors (Gago et al. 2009). The challenge in modeling any biological
process is to find a model which is accurate and able to provide deep insight of the
process. Because of the complexity of biological data, simple algorithms or math-
ematical equations cannot be used to describe the process (Osama et al. 2015).
Deterministic models of biological process have been developed based on physical
interactions. These models are helpful in providing underlying information of the
process. However, due to complexity of biological systems, these models are
difficult to develop and are very complex to interpret and solve. Modeling the
biological processes requires accounting for action and feedback involving a wide
range of spatial and temporal scale. The upcoming text provides an informative
description upon various approaches for modeling in hairy root cultures to explore
their growth and production phenomenon. Some models of hairy root growth in
bioreactors have been summarized in Table 14.1.

14.3 Statistical and Mathematical Models for Hairy Root
Growth

Statistical designs can be used to model relationships of different factors on hairy
root growth. These designs are simple and easy but require some prior data. Bhadra
and Shanks (1995) used statistical design to model the effect of inoculum conditions
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Table 14.1 Summary of reported models for the hairy root growth

S. no. Model Hairy roots Effects of model References

1. Box-Behnken
design (BBD)

Isatis tinctoria Secondary metabolites
(rutin, neohesperidin,
buddleoside, liquiritigenin,
quercetin, isorhamnetin,
kaempferol, and
isoliquiritigenin)

Gai et al.
(2015)

2. Agent-based
modeling (ABM)
approaches

Beta vulgaris Total root length,
branching point distribu-
tion, segment distribution,
and
secondary metabolite
accumulation

Lenk et al.
(2014)

3. Artificial neural
network in combi-
nation with hidden
Markov model

Rauwolfia serpentina Overall productivity of a
bioprocess

Mehrotra
et al.
(2013)

4. Artificial neural
network-based
model

Artemisia annua Effect of different reactor
parameters on hairy root
biomass

Osama
et al.
(2013)

5. Artificial neural
network (ANN)

Glycyrrhiza glabra Prediction of optimal cul-
ture conditions for maxi-
mum hairy root biomass
yield

Prakash
et al.
(2010)

6. Mathematical
model

Artemisia annua On and off cycle in a nutri-
ent mist reactor

Ranjan
et al.
(2009)

7. Multi-scale mathe-
matical model

Ophiorrhiza
mungos Linn.

Temporal evolution of bio-
mass increase and nutrient
uptake

Bastian
et al.
(2008)

8. Structured nutri-
tional model

Catharanthus roseus,
Daucus carota

Secondary metabolites
(nitrogenous compounds
and storage carbohydrates,
recombinant protein)

Cloutier
et al.
(2008)

9. Feed-forward back
propagation neural
network-based
model

Glycyrrhiza glabra Optimum culture condition
on biomass growth

Mehrotra
et al.
(2008)

10. Population-based
model

Helianthus annuus Biomass increase based on
age distribution of cells and
branching

Han et al.
(2004)

11. Kinetic model for
pigment associated
with root growth

Beta vulgaris Kinetic behavior of root
and pigmentation based on
hairy root growth

Kino-oka
et al.
(1995)

12. Aerosol model Artemisia annua Deposition of mist droplets
on root hairs in a nutrient
mist reactor

Wyslouzil
et al.
(1997)

13. Branching number
and age

Tagetes erecta Kim et al.
(1995)

(continued)

314 M. Goswami et al.



on growth of hairy roots of Catharanthus roseus. In this study, a two-level factorial
design was used to study the effect of a number of root tips inoculated, the length of
inoculated root tips, and the initial volume of media. Experimental and statistical
analysis demonstrated that hairy root growth is highly influenced by the inoculum
conditions particularly with the length of root tips which were the dominant variable
without any clonal variability. Statistical designs have also been extensively used in
media optimization. Growth media composition plays most an important role for
both growth and productivity in any culture practice. Thus, during initiation and
maintenance of culture, variables of chemical and physical conditions as well play a
dominant role. Additionally, the biological condition of culture initiating material
(explant) also plays a definite role in growth, development, and productivity.
Therefore, optimization of these culture conditions is a prerequisite. Traditionally,
optimization of media in biological analyses has been carried out by monitoring the
influence of one factor at a time. This technique is called one-variable-at-a-time.
However, the main disadvantage of this method is that it does not include any
interactive effects among the variables studied. Further, it requires a large number
of experimental set, labor and cost inputs, and finally time consumption (Bezerra
et al. 2008). To avoid all these limitations, statistical methods for optimization of
various culture conditions have been introduced in various culture systems including
hairy root cultures (Toivonen et al. 1991; Srivastava and Srivastava 2012). Among
initial studies, the effect of sucrose, phosphate, nitrate, and ammonia concentrations
on growth and indole alkaloid production of C. roseus hairy root cultures was
investigated with the help of statistical experimental designs and linear regression
analysis (Toivonen et al. 1991). Interestingly, a contradictory effect of these nutri-
ents on growth and indole alkaloid production in Catharanthus hairy roots was
found. Statistical medium optimization for enhanced azadirachtin production from

Table 14.1 (continued)

S. no. Model Hairy roots Effects of model References

distribution-based
model

Specific growth rate of
hairy root based on
branching dynamics

14. Image analysis Brassica napus,
Brassica campestris

Assessment of phenotypic
effects of expressing for-
eign genes in plant
root systems

Coles et al.
(1991)

15. Comprehensive
model based on
conductivity

Coffea arabica, Nico-
tiana tabacum,
Withania somnifera,
Catharanthus roseus

Dry weight of hairy root
based on conductivity

Taya et al.
(1989a)

16. Kinetic model for
branching

Daucus carota
Armoracia
lapathifolia
Cassia torosa
Ipomoea aquatica

Increase in hairy root
biomass

Taya et al.
(1989b)
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the hairy root cultures of Azadirachta is one of the most cited examples of the use of
statistical methods in media optimization (Srivastava and Srivastava 2012). Plackett-
Burman experimental design protocol was used to identify dominating medium
components and their concentrations to support high root biomass production and
azadirachtin accumulation in hairy roots. The overall exercise has resulted in
increased azadirachtin production by 68% in Azadirachta indica hairy roots. RSM
are efficient tools for optimization, and an increase in productivity by more than
200% can be achieved. In another study, medium optimization for hairy root cultures
of Stizolobium hassjoo producing secondary metabolites was studied through sta-
tistical experimental design (Sung and Huang 2000). The increased production of
L-DOPA from hairy roots by 280% was obtained by optimizing medium compo-
nents using steepest ascent method with central composite design. Also, the study
reported 18% increase in the biomass of Stizolobium hassjoo hairy roots from the
basal media.

Response surface methodology (RSM) has evolved as the most popular optimi-
zation method having versatile applicability in various disciplines. RSM is a well-
known, dynamic, and efficient mathematical approach which comprises of statistical
experimental designs and multiple regression analysis which are the best combina-
tion for the formulation of constrained equations (Bezerra et al. 2008). RSM has
often applied for the optimization of the fermentation as well as hairy root cultivation
(Amdoun et al. 2010; Latha et al. 2017; Singh et al. 2017; Adebo et al. 2018).

RSM is a combination of mathematical and statistical techniques used for model-
ing of process based on empirical parameters. This method optimizes the response
(output variable) which is dependent upon several independent variables (input
variable). RSM requires a careful design of experiment; most commonly central
composite design or Box-Behnken design is used. In this technique a second-order
mathematical model is developed to relate response and independent variables. The
model is then differentiated to find the global maxima or minima in order to optimize
response (Amdoun et al. 2010). RSM allows the researcher to study the interactive
effect between the independent variables. RSM has also been used to optimize the
culture medium composition for the growth of elicited Datura stramonium L. hairy
roots to improve the production of hyoscyamine (Amdoun et al. 2010). In B5
medium the content of nitrate, calcium, and sucrose was optimized to get the best
hyoscyamine production. In continuation of the study, the use of the RSM was also
made in biological factors, like plant material, to establish a predictive model with
the planning of experiments, analysis of the model, and interpretation of the accu-
racy of the model. Also, the effect of nitrogen, phosphorus, potassium, calcium, and
magnesium ions on production of tropane alkaloids from Datura stramonium hairy
roots was investigated with the help of RSM. The model was developed to study the
effect of ions on production of hyoscyamine from Datura stramonium hairy roots
with elicitation and without elicitation (Amdoun et al. 2009, 2010).

In a recent study, A. rhizogenes-mediated hairy root cultures of Portulaca
oleracea were established for which Box-Behnken model of response surface
methodology (RSM) was employed to optimize B5 medium for the growth and
noradrenaline production. Upon experimental validation, the optimal conditions for
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growth and metabolite production predicted by RSM were confirmed as appropriate
for the enhancement of overall productivity (Ghorbani et al. 2015). Further, in a
similar study, one-factor model of RSM was utilized to formulate L-arginine amino
acid levels along with bacterial strains (ATCC 15834, C58C1, and R1000), type of
explant (leaf and stem), and co-cultivation medium (B5 and MS) as three different
variables for hairy root induction in Rubia tinctorum (Ghorbani et al. 2014).
According to the results, L-arginine concentration of 1.00 mM, bacterial strain
C58C1, leaf explant, and B5 medium were found optimal for best results. These
optimal conditions predicted by RAS were validated and confirmed experimentally
to enhance hairy root induction and its implementation for increased metabolite
production.

In this context, growth monitoring of hairy roots in liquid medium is a major
point of concern. Basically, the growth monitoring in liquid medium is required
during large-scale cultures of hairy roots in bioreactors for various purposes. In a
culture vessel, during running culture one can visually observe the growth and
distribution of hairy root tissue throughout the vessel. However, it is not possible
to measure the biomass accurately like this. Several mathematical models have been
developed for the estimation of biomass and related metabolite accumulation in
hairy root cultures keeping in mind the bioreactor type and culture vessel configu-
ration. The complex interplay of variables like dissolved O2, temperature, aeration
and agitation rates, pH, etc. is monitored, and values are inserted to mathematical
models. These models interpret the values and predict the results very near to
accuracy in a very short time. The synergistic and individual roles of various vari-
ables are thus defined, and in this way growth of subjected root is monitored and
maintained throughout culture duration. This ultimately leads to desired productiv-
ity. An online monitoring of growth characteristics of hairy root cultures was done
by the measurement of conductivity in the bioreactor system (Taya et al. 1989a). A
comprehensive model was developed based on conductivity measurements to assess
the biomass concentration of hairy root cultures of Coffea arabica, Nicotiana
tabacum, Withania somnifera, and Catharanthus roseus. A linear relationship
between dry cell mass and conductivity for all the root cultures was observed.
This method provided an effective means of in situ monitoring of hairy growth in
the culture. Later this method was used to determine the biomass concentration of
horseradish and carrot in stirred tank and airlift loop bioreactors (Taya et al. 1989c).
During the cultivation of high-density biomass, the volume of liquid media reduces
with the growth. This change in media volume was considered as a parameter for
estimation of biomass growth. Jung et al. (1998) used this method for estimation of
biomass of Catharanthus roseus hairy root in a 2 liter bubble column bioreactor. It
was observed that this method was more accurate in biomass prediction than the
conventional method using electrical conductivity as the only parameter. However,
in another study, electrical conductivity (EC) in the media along with kinetics of
changes in ion concentrations and sugar was monitored to understand the relation-
ship between growth, ginsenoside production, and nutrient partitioning with the help
of gaseous composition gradient in terms of O2, CO2, and ethylene content (Jeong
et al. 2006). In another study, a 3 L nutrient trickling reactor was operated on the
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basis of online monitoring of conductivity, pH, and dissolved oxygen. An enhanced
production of L-DOPA was observed from hairy root culture of Stizolobium hassjoo
(Huang et al. 2004). In an earlier study, Wyslouzil et al. (1997) developed an aerosol
model for deposition of mist droplets on root hairs in nutrient mist reactor. The
Artemisia annua hairy root bed was assumed as a fibrous filters, and a model was
prepared for mist deposition on the single root fiber. In this study, the deposition of
mist across a packed bed of roots was modelled as a function of droplet size, bed
length, and gas flow rate. The predictions of the aerosol deposition model were
validated with experimental measurements which were found similar.

In nutrient mist reactor, the time of mist on and off cycle is very important. If on
cycle is long, it results in accumulation of media on hairy roots causing a gas-phase
nutrient deficiency. While during long off cycle, roots can be starved of liquid-phase
nutrients. A mathematical model for the mist on and off cycle was prepared by
Ranjan et al. (2009), for maximum root density and root growth in nutrient mist
reactor. If the mist flow rate in the on cycle is low and the rate of drainage of the
media from the bed is equal to the rate of mist deposition, then the reactor could be
run in a continuous on cycle. In nutrient mist reactors, to study the kinetic growth of
hairy roots, a discrete model was developed (Ranjan et al. 2015). The elongation rate
is modeled as exponential growth with the growth coefficient being dependent on
mass transfer coefficient, nutrient concentration difference, and distribution of
nutrients in growth and sustenance requirements. The experimentally validated
results have shown that the primary root growth is reduced by one-fifth of its initial
growth rate due to the branching process, and the growth of new branches is
significantly faster than its primary root growth due to internal transport of nutrients.
Bastian et al. (2008) used a multi-scale approach to simulate hairy root growth. They
treated root bulk as a macroscopic porous filter of varying porosity, and all processes
were defined in its continuum. The growth was assumed to depend upon nutrient
concentration in the medium and inside the root. On microscopic scale the structure
of root affects the flow and transport process of nutrients around the root network.

Attempts have been made to model the branching pattern in hairy roots. Hairy
roots generally grow by elongation of nodes. New nodes develop and on elongation
they form new branches. A kinetic model of branching in hairy roots was developed
and simulated for different root cultures in shake flask (Taya et al. 1989b). The
model was found to fit the experimental results and was used to estimate different
kinetic parameters of hairy roots. Kim et al. (1995) developed a mathematical model
for describing branching patterns in hairy roots. This model was then combined with
age distribution balance to give a model of age distribution in root culture. Similarly,
Han et al. (2004) modeled hairy root growth based on population balance approach.
The model proposed that growth of hairy roots depends on formation of new
branches and elongation of existing branches. Although probability of formation
of new branch is high at a certain age, some lateral branches can develop over
distribution of ages of the parent branch.

The growth of hairy roots can also be monitored by the pigment production. A
kinetic model was developed for pigment production associated with growth of red
beet hairy roots (Kino-oka et al. 1995). The model was based on concept of
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distribution of age of cells in hairy roots. The model was able to describe the kinetic
behaviors of growth and pigmentation during hairy root growth.

Mass and oxygen transfer rates have a crucial role in the growth of hairy roots in
liquid medium. Different workers have proposed methods to investigate and opti-
mize this event for desired productivity. In a study, a mathematical model is
developed that defines the oxygen transfer kinetics in the cultured Azadirachta
indica hairy root matrix as a case study for offline simulation of process control
strategies ensuring non-limiting concentrations of oxygen in the medium throughout
the hairy root cultivation period. The unstructured model simulates the effect of
oxygen transfer limitation in terms of efficiency factor on specific growth rate of the
hairy root biomass. The model is able to predict effectively the onset of oxygen
transfer limitation in the inner core of the growing hairy root matrix such that the
bulk oxygen concentration can be increased so as to prevent the subsequent inhibi-
tion in growth of the hairy root biomass due to oxygen transfer (diffusional)
limitation (Palavalli et al. 2012).

14.4 Image Analysis

Image analysis is the procurement of meaningful information from images particu-
larly from digital images with the help of digital image processing techniques. In
recent years, many image analysis softwares have been designed for more detailed
root morphological and architectural measurements. One example of such software
is WinRHIZO root-scanning software (Regent Instruments Inc., Ottawa, ON
Canada). This software has the ability of rapid measurement of multiple root
parameters such as root length, volume, surface area, diameter, tips, and crossings
and has been widely used in research related to plant root growth and responses
(Aryal et al. 2015; Kadam et al. 2017). WinRHIZO, however, is a costly software,
and several freeware like ROOTEDGE are also available which are highly efficient
(Kaspar and Ewing 1997). Image analysis provides an efficient way for noninvasive
and nondestructive monitoring of hairy root growth kinetics on the basis of their
morphological characteristics (Coles et al. 1991). A manual imaging method
“PetriCam” along with an image processing algorithm was initially proposed by
Lenk et al. (2012, 2014) to assess the growth performance and secondary metabolite
production in Beta vulgaris hairy root cultures growing in petri plates. The unique-
ness of the method is its ability to take images from the closed petri plates without
destroying the culture. However, as the image consists of planner 2D growth pattern,
the major limitation of this method is that it does not provide any information
regarding the distribution of hairy roots in z-axis. Considering the fact that different
HR morphologies result in dissimilar levels of secondary metabolite production, the
effect of morphological features on growth and production potential needs proper
attention. As two HR clones with a similar biomass but different root architectures
could have completely different product yields, it becomes important to investigate
their differential production. Image analysis has been successfully adapted by many
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researchers for measurement of root length, diameter, and other morphological
characteristics (Cai et al. 2015). These workers demonstrate a near to perfect
numerical scheme for accurate, detailed, and high-throughput image analysis of
plant roots. Involvement of image analysis methods provides better results in
terms of accuracy, robustness, and the ability to process root images under high-
throughput conditions (Flavel et al. 2017). In context of hairy roots, Berzin et al. in
1997 developed a morphological structured model of Symphytum officinale hairy
roots using a desktop scanner for image analysis and NIH image program which is a
public image processing and analysis program developed by the National Institutes
of Health. In another study, nondestructive measurement of the chlorophyll pigment
based on color image analysis was done for the assessment of herbal toxicity in
photoautotrophic hairy roots of Ipomoea aquatic (Ninomiya et al. 2003a). Further-
more, the elongating behavior of Ipomoea aquatica hairy roots exposed to external
herbicidal stimuli was evaluated by automatic tracing of the root tip point employing
computer-aided image analysis (Ninomiya et al. 2003b). Such results advocated that
the system developed could be a useful tool for the assessment of herbicidal toxicity
in the hairy roots.

Once the images are taken, they are needed to be processed to procure numerical
information such as segment length, branching point distribution, metabolite accu-
mulation patterns, etc. In recent years, several efficient open-source and commercial
solutions have been reported by several researchers for image processing purposes
(Lobet et al. 2011; Clark et al. 2013).

Image analysis can also be used for estimation of secondary metabolite in hairy
root cultures (Lenk et al. 2012). Due to accumulation of secondary metabolites, the
morphological characteristics of hairy roots change. This change can be analyzed by
image analysis to predict secondary metabolite concentration. For the estimation of
secondary metabolite, color image analysis is used. Smith et al. (1995) introduced
hue-saturation-intensity (HSI) color coordinate system and developed equations for
converting the red-blue-green color coordinate system to HSI. They proposed that
HSI color coordinate is better for image analysis of hairy roots. Berzin et al. (1999)
developed a nondestructive method, based on the analysis of scanned images in HIS
color space, for determining local and overall levels of secondary pigment metabo-
lites in hairy root cultures of Beta vulgaris. Modified saturation values (saturation
divided by dimensionless root diameter) were found to be proportional to pigment
concentration. The analysis was carried out manually for each local point of the root,
and morphological measurements were performed separately. RHIZOSCAN is
semiautomated software for root image analysis. It provides typical measurement
analysis, such as root axis length (primary, secondary, total) and comparative plots.
It measures root thickness, volume, length, etc. of each lateral of hairy roots and also
can be used for estimation of secondary metabolite from scanned images. Berzin
et al. (1999) tested this software for characterization of morphology of hairy roots of
Beta vulgaris and estimation of secondary metabolite concentration. They concluded
that RHIZOSCAN is a reliable tool for analysis of root architecture and determina-
tion of secondary metabolite in hairy roots.
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14.5 Genetic Algorithm (GA)

Economic viability of secondary metabolite production in hairy root cultures
depends largely on the kinetic growth model and efficient scale-up in bioreactor
designs. A population-based model as genetic algorithm has seen its significant
implications in modeling of specifically hairy root cultures owing to its capacity to
search solutions in large hyperspace applying schemata theorem and optimizing to
its nearest best solutions in the best possible time (Han et al. 2004; Arab et al. 2016).
Based on the nature’s natural process of evolution, GAs involve a class of compu-
tational models lying on the principle of natural selection and survival of the fittest
phenomenon (Fogel et al. 1975). GAs have been prominently used as a suitable
function in the determination of the optimum concentration of the medium compo-
nents in hairy root bioreactor design.

Conceptually, genetic algorithms begin with a set of solutions encoded like genes
on the chromosomes called population. Motivated by a hope that the new population
will be better than the old solutions, individuals from one population are selected on
the basis of fitness functions (given more chances to reproduce) and are used to form
a new population by the application of natural selection operators. Natural selection
is usually applied through stochastic or remainder stochastic sampling techniques.
This is followed by the F2 generation (offspring) by the application of recombination
operator using one-point or two-point crossover to introduce the genetic diversity in
the solutions to the current population. Mutation operation is often implied involving
a single flip of bit in binary encoding of individual fitness values which tends to
introduce novel solution to the current population (Fig. 14.1). This is repeated to
several generations until we move toward to better population of individuals with
improved solutions than parent populations (Fogel et al. 1975; Davis 1991). GAs
have been continuously applied to solve many search and optimization problems
involving non-differentiable, discontinuous, stochastic, or highly nonlinear objec-
tive functions, which are normally not well suited for standard optimization
algorithms.

GAs in hairy root cultures are based on the fact that age distribution of cell in cell
cultures is not uniform and evolves with time, and thus the dependent variable in this
population-based model tends to be the biomass at a time t or the number of cells at
the time t. A variable X is defined to denote the biomass weight distribution function
for hairy roots of age A at culture time. The age of the oldest cell from a branch is
taken as the age of the specific branch. The total biomass of hairy root at any time t
tends to be a function of X(t, A) where Amax is the greatest possible age of hairy root
culture during harvesting time. As branching rather than root lengthening accounts
for the maximum production of biomass in hairy root cultures, GA model has been
specifically designed for branching studies as a function of time and age (Han et al.
2004; Arab et al. 2016). One of the most critical advantages of GA seen is its
capacity in handling a large number of data including previous data assumed at each
generation in the direction of producing the optimized result.
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14.6 Artificial Neural Network

An artificial neural network (ANN) is a mathematical or computational model that
mimics the structural and functional behavior of biological neural network.
Consisting of a set of precisely designed artificial neurons, ANN works in unison
to solve a specific problem. ANNs have been broadly applied with great success for
system designing, modeling, optimization, and control mainly due to its capacity to
learn noise filter signals and generalize information through a systematic training
procedure (Singh et al. 2009). ANN appeared to be a feasible method for modeling
hairy root growth and culture conditions. Neural networks are typically implemented
in the estimation and multistep prediction problems even with unknown solutions
but can also be used as controllers directly or as an adjuster of any process parameter
for a traditional controller. In ANN artificial neurons are arranged in input, hidden,
and output layers (Fig. 14.2). Almost all the computations are done in the hidden
layer.

Neural networks are “trained” using a data set and then used to foretell new data
points. The prior knowledge is not essential for this training as the network and
system remain as a black box to the user and provide the result through its own
artificial intelligence. Notable characteristics of ANNs are that they can work
steadily with large amounts of data which outshine at complex pattern recognition,
involve real-time operations, possess fault tolerance potential, and require no

Fig. 14.1 Working of genetic algorithm
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mechanistic description of the system. ANN is well suited for media design, as it
generates a large amount of data that contains the hidden model. The “learning
conditions” of neural networks are categorized into three combinations as follows:

1. Administered (associative), where the neural network is trained by providing it
with input and output experimental data,

2. Self-organization in which output unit is trained to respond against clusters of
pattern within the input. Different from the organized, there is no previous set of
groups in which the patterns are to be classified and then the system must develop
its representation of the input stimuli.

3. Support where training may consider as an ordinary form of the above two classes
of learning.

ANN has been found to be well suited for hairy root growth in nutrient mist
reactor as reported by Osama et al. (2013). Combination of ANN and genetic
algorithm (GA) has also been found to be very effective for maximizing the native
concentration and shelf life of secondary metabolites (Khan and Tripathi 2011). The
ANN can perform well on nonlinear program problems and can continue working
without any difficulty by their parallel nature even when an element of the neural
network fails (Vaidya et al. 2003). ANNs can be implemented in a wide range of
problems and do not need to be reprogrammed at every step of solution providing.

The major limitation of artificial neural networks is that they require prior data of
the process. The data set used for training is very important; it decides the quality of
network prediction. If the training data set is incomplete or contains wrong values,
the training will be incomplete. The network will give faulty outputs.

The growth pattern in biological system is complex, nonlinear, and difficult to
predict and cannot be controlled by our will. These processes are controlled by

Fig. 14.2 Architecture of feed-forward artificial neural network
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genetic and environmental factors which are highly inconsistent (Mehrotra et al.
2008). Hairy roots are considered to be an alternate source of secondary metabolite
production. In large-scale culture and production of hairy roots, the cost and the
culture duration for production are very important. The conventional modeling
techniques often become ineffective in monitoring and predicting the growth pattern
of hairy roots. Hairy roots form heterogeneous clumps, and therefore direct moni-
toring of growth parameters is difficult. There is a need for indirect strategies of
monitoring their growth. These may include development of models of the devel-
opmental pattern of hairy roots which can then be used for monitoring of growth.
Mehrotra et al. (2008) used a feed-forward back propagation neural network to
predict in vitro culture conditions for optimum biomass growth of Glycyrrhiza
glabra plant. In other study regression and back propagation neural network was
used to predict the culture parameters for maximum biomass yield for hairy root of
G. glabra (Prakash et al. 2010). They used inoculum density, pH, and volume of
growth medium per culture vessel and sucrose content of the growth medium as
parameters to predict hairy root biomass. The neural network model was very
efficient and was able to explain over 98% of the variations in the kinetic data.
This approach was also used for modeling growth of hairy root of Artemisia annua
in a nutrient mist reactor (Osama et al. 2013). Different architectures of ANN were
compared to model reactor and several reactor parameters. All the network models
were found to be efficient in modeling the nutrient mist reactor.

Artificial neural networks have also been used in combination with hidden
Markov model for predicting optimum conditions for maximum biomass of hairy
roots (Mehrotra et al. 2013). Five culture conditions were taken as input parameters
to predict hairy root biomass. The input parameters were fed to the neural network
through five HMM models. The combinatorial model proved to be efficient in
predicting hairy root biomass.

14.7 Conclusion

Hairy roots cultures are fast growing and have high capacity of production of
secondary metabolites. They possess several qualities due to which they are very
promising candidate for large-scale production of phytochemicals. For large-scale
production of hairy roots, constant monitoring of growth and phytochemical pro-
duction is essential. Direct monitoring of hairy root growth in the reactor system is
difficult, time taking, and labor intensive. Several indirect techniques have been
proposed for monitoring hairy root growth in bioreactors. Most of these techniques
require good understanding of the biological processes and effect of environmental
conditions on hairy root growth. Apart from this, a good understanding of the effect
of hairy root growth on their environment is also essential. Several mathematical
models and machine learning-based models have been proposed for this. Machine
learning techniques prove to be a promising tool for modeling complex biological
process.

324 M. Goswami et al.



References

Adebo OA, Njobeh PB, Mulaba-Bafubiandi AF et al (2018) Optimization of fermentation condi-
tions for ting production using response surface methodology. J Food Process Preserv 42:
e13381

Amdoun R, Khelifi L, Khelifi-Slaoui M et al (2009) Influence of minerals and elicitation on Datura
stramonium L. tropane alkaloid production: modelization of the in vitro biochemical response.
Plant Sci 177:81–87

Amdoun R, Khelifi L, Khelifi-Slaoui M et al (2010) Optimization of the culture medium compo-
sition to improve the production of hyoscyamine in elicited Datura stramonium L. hairy roots
using the response surface methodology (RSM). Int J Mol Sci 11:4726–4740

Arab MM, Yadollahi A, Shojaeiyan A, Ahmadi H (2016) Artificial neural network genetic
algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for
G� N15 rootstock. Front Plant Sci 7:1526

Aryal SK, Crow WT, McSorley R et al (2015) Effects of infection by Belonolaimus longicaudatus
on rooting dynamics among St. Augustinegrass and Bermudagrass Genotypes. J Nematol
47:322

Bastian P, Chavarría-Krauser A, Engwer C et al (2008) Modelling in vitro growth of dense root
networks. J Theor Biol 254:99–109

Berzin I, Mills D, Merchuk JC (1997) Morphological structured model for hairy root cultures. In:
Biology of root formation and development. Springer, Boston, pp 327–334

Berzin I, Mills D, Merchuk JC (1999) A non-destructive method for secondary metabolite deter-
mination in hairy root cultures. J Chem Eng Jpn 32:229–234

Bezerra MA, Santelli RE, Oliveira EP et al (2008) Response surface methodology (RSM) as a tool
for optimization in analytical chemistry. Talanta 76:965–977

Bhadra R, Shanks JV (1995) Statistical design of the effect of inoculum conditions on growth of
hairy root cultures of Catharanthus roseus. Biotechnol Tech 9:681–686

Cai J, Zeng Z, Connor JN et al (2015) Genetic control of plasticity in root morphology and anatomy
of rice in response to water-deficit. Plant Physiol 12:588–594. https://doi.org/10.1007/s00449-
013-1088-y

Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant
secondary metabolism. Biotechnol Lett 34:407–415

Clark RT, Famoso AN, Zhao K et al (2013) High-throughput two-dimensional root system
phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell
Environ 36:454–466

Cloutier M, Bouchard-Marchand É, Perrier M, Jolicoeur M (2008) A predictive nutritional model
for plant cells and hairy roots. Biotechnol Bioeng 99:189–200

Coles GD, Abernethy DJ, Christey MC et al (1991) Monitoring hairy-root growth by image
analysis. Plant Mol Biol Report 9:13–20

Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York
Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures.

Trends Biotechnol 24:426–432
Flavel RJ, Guppy CN, Rabbi SMR, Young IM (2017) An image processing and analysis tool for

identifying and analysing complex plant root systems in 3D soil using non-destructive analysis:
Root1. PLoS One 12:e0176433

Fogel LJ, Owens AJ, Walsh MJ (1975) Adaptation in natural and artificial systems.
Gago J, Martínez-Núñez L, Molist P, Gallego PP (2009) Effect of three auxins on in vitro rooting in

soil and acclimatization of. Vitis vinifera. 359–364
Gai Q-Y, Jiao J, Luo M et al (2015) Establishment of hairy root cultures by Agrobacterium

rhizogenes mediated transformation of Isatis tinctoria L. for the efficient production of flavo-
noids and evaluation of antioxidant activities. PLoS One 10:e0119022

Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant
disease to biotechnological resource. Trends Biotechnol 30:528–537

14 Strategies for Monitoring and Modeling the Growth of Hairy Root. . . 325

https://doi.org/10.1007/s00449-013-1088-y
https://doi.org/10.1007/s00449-013-1088-y


Ghorbani M, Omidi M, Peighambari SA (2014) L-Arginine optimization medium for hairy root
induction of madder (Rubia tinctorum L.) based on one factor model of response surface
methodology. Sci J Biol Sci 3:117–125

Ghorbani M, Ghorbani A, Omidi M, Hashemi SM (2015) Response surface modelling of noradren-
aline production in hairy root culture of purslane (Portulaca oleracea L.). Turk J Agric Sci
Technol 3:349–443

Han B, Linden JC, Gujarathi NP, Wickramasinghe SR (2004) Population balance approach to
modeling hairy root growth. Biotechnol Prog 20:872–879

Huang SY, Hung CH, Chou SN (2004) Innovative strategies for operation of mist trickling reactors
for enhanced hairy root proliferation and secondary metabolite productivity. Enzym Microb
Technol 35:22–32. https://doi.org/10.1016/j.enzmictec.2004.03.011

Jeong C-S, Chakrabarty D, Hahn E-J et al (2006) Effects of oxygen, carbon dioxide and ethylene on
growth and bioactive compound production in bioreactor culture of ginseng adventitious roots.
Biochem Eng J 27:252–263

Jung K-H, Kwak S-S, Liu JR (1998) Procedure for biomass estimation considering the change in
biomass volume during high density culture of hairy roots. J Ferment Bioeng 85:454–457

Kadam N, Tamilselvan A, Lawas LMF et al (2017) Genetic control of plasticity in root morphology
and anatomy of rice in response to water-deficit. Plant Physiol:00500

Kaspar TC, Ewing RP (1997) ROOTEDGE: software for measuring root length from desktop
scanner images. Agron J 89:932–940

Khan M, Tripathi CKM (2011) Optimization of fermentation parameters for maximization of
actinomycin D production. J Chem Pharm Res 3:281–289

Kim S, Hopper E, Yjortso M (1995) Hairy root growth models: effect of different branching
patterns. Biotechnol Prog 11:178–186

Kino-oka M, Taya M, Tone S (1995) Kinetic expression for pigment production in culture of red
beet hairy roots. J Chem Eng Jpn 28:772–778

Latha S, Sivaranjani G, Dhanasekaran D (2017) Response surface methodology: a
non-conventional statistical tool to maximize the throughput of Streptomyces species biomass
and their bioactive metabolites. Crit Rev Microbiol 43:567–582

Lenk F, Vogel M, Bley T, Steingroewer J (2012) Automatic image recognition to determine
morphological development and secondary metabolite accumulation in hairy root networks.
Eng Life Sci 12:588–594

Lenk F, Sürmann A, Oberthür P et al (2014) Modeling hairy root tissue growth in in vitro
environments using an agent-based, structured growth model. Bioprocess Biosyst Eng
37:1173–1184. https://doi.org/10.1007/s00449-013-1088-y

Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of
root system architecture. Plant Physiol 157:29–39

Mehrotra S, Srivastava V (2017) Hairy root in vitro systems: a suitable biological matrix for plant
based remediation of environmental pollutants. In: Anjum AN (ed) Chemical pollution control
with microorganisms. Nova Science Publishers, Hauppauge, pp 245–274

Mehrotra S, Prakash O, Mishra BN, Dwevedi B (2008) Efficiency of neural networks for prediction
of in vitro culture conditions and inoculum properties for optimum productivity. Plant Cell
Tissue Organ Cult 95:29–35. https://doi.org/10.1007/s11240-008-9410-0

Mehrotra S, Prakash O, Khan F, Kukreja AK (2013) Efficiency of neural network-based combina-
torial model predicting optimal culture conditions for maximum biomass yields in hairy root
cultures. Plant Cell Rep 32:309–317

Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015) Hairy root biotechnology – indicative
timeline to understand missing links and future outlook. Protoplasma 252:1189–1201

Ninomiya K, Oogami Y, Kino-Oka M, Taya M (2003a) Assessment of herbicidal toxicity based on
non-destructive measurement of local chlorophyll content in photoautotrophic hairy roots. J
Biosci Bioeng 95:264–270

326 M. Goswami et al.

https://doi.org/10.1016/j.enzmictec.2004.03.011
https://doi.org/10.1007/s00449-013-1088-y
https://doi.org/10.1007/s11240-008-9410-0


Ninomiya K, Tsushima Y, King-Oka M, Taya M (2003b) An automatic image analyzing system for
evaluation of elongating behavior of plant hairy roots exposed to herbicidal stimuli. J Biosci
Bioeng 96:98–101

Osama K, Pallavi S, Pandey AK, Mishra BN (2013) Modelling of nutrient mist reactor for hairy root
growth using artificial neural network. Eur J Sci Res 97:516–526

Osama K, Somvanshi P, Mishra BN (2015) Machine learning techniques in plant biology. In:
Barh D, Khan MS, Davies E (eds) PlantOmics: the omics of plant science. Springer, New Delhi,
pp 731–754

Palavalli RR, Srivastava S, Srivastava AK (2012) Development of a mathematical model for growth
and oxygen transfer in in vitro plant hairy root cultivations. Appl Biochem Biotechnol
167:1831–1844

Pistelli L, Giovannini A, Ruffoni B et al (2010) Hairy root cultures for secondary metabolites
production. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals. Springer, Boston,
pp 167–184

Prakash O, Mehrotra S, Krishna A, Mishra BN (2010) A neural network approach for the prediction
of in vitro culture parameters for maximum biomass yields in hairy root cultures. J Theor Biol
265:579–585. https://doi.org/10.1016/j.jtbi.2010.05.020

Ranjan R, Ahmed N, Khanna R, Mishra BN (2009) Design of an ON/OFF mist duty cycle in mist
bioreactors for the growth of hairy roots. Biotechnol Bioprocess Eng 14:38–45

Ranjan R, Katuri SR, Khanna R (2015) Discrete modeling of growth of hairy roots in a mist
bioreactor. Chem Eng Technol 38:391–398

Singh V, Khan M, Khan S, Tripathi CKM (2009) Optimization of actinomycin V production by
Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl Microbiol
Biotechnol 82:379–385

Singh V, Haque S, Niwas R et al (2017) Strategies for fermentation medium optimization: an
in-depth review. Front Microbiol 7:2087

Smith MAL, Reid JF, Hansen AC et al (1995) Non-destructive machine vision analysis of pigment-
producing cell cultures. J Biotechnol 40:1–11

Srivastava S, Srivastava AK (2012) Statistical medium optimization for enhanced azadirachtin
production in hairy root culture of Azadirachta indica. Vitro Cell Dev Biol 48:73–84

Srivastava V, Mehrotra S, Verma PK (2016) Biotechnological interventions for production of
therapeutic secondary metabolites using hairy root cultures of medicinal plants. In: Dubey
SK, Pandey A, Sangwan RS (eds) Current developments in biotechnology and bioengineering.
Elsevier, Amsterdam, pp 259–282

Srivastava V, Mehrotra S, Mishra S (2017) Biotransformation through hairy roots: perspectives,
outcomes, and major challenges. In: Jha S (ed) Transgenesis and secondary metabolism.
Springer, Cham, pp 347–370

Sung L, Huang S (2000) Medium optimization of transformed root cultures of Stizolobiumhassjoo
producing L� DOPA with response surface methodology. Biotechnol Prog 16:1135–1140

Taya M, Hegglin M, Prenosil JE, Bourne JR (1989a) On-line monitoring of cell growth in plant
tissue cultures by conductometry. Enzym Microb Technol 11:170–176

Taya M, Kino-oka M, Tone S, Kobayashi T (1989b) A kinetic model of branching growth of plant
hairy root. J Chem Eng Jpn 22:698–700

Taya M, Yoyama A, Kondo O et al (1989c) Growth characteristics of plant hairy roots and their
cultures in bioreactors. J Chem Eng Jpn 22:84–89

Toivonen L, Ojala M, Kauppinen V (1991) Studies on the optimization of growth and indole
alkaloid production by hairy root cultures of Catharanthus roseus. Biotechnol Bioeng
37:673–680

Vaidya R, Vyas P, Chhatpar HS (2003) Statistical optimization of medium components for the
production of chitinase by Alcaligenes xylosoxydans. Enzym Microb Technol 33:92–96

Wyslouzil BE, Whipple M, Chatterjee C et al (1997) Mist deposition onto hairy root cultures:
aerosol modeling and experiments. Biotechnol Prog 13:185–194

14 Strategies for Monitoring and Modeling the Growth of Hairy Root. . . 327

https://doi.org/10.1016/j.jtbi.2010.05.020

	Chapter 14: Strategies for Monitoring and Modeling the Growth of Hairy Root Cultures: An In Silico Perspective
	14.1 Introduction
	14.2 Modeling of Biological Systems
	14.3 Statistical and Mathematical Models for Hairy Root Growth
	14.4 Image Analysis
	14.5 Genetic Algorithm (GA)
	14.6 Artificial Neural Network
	14.7 Conclusion
	References


