
Chapter 1
Progress and Prospects of Hairy Root
Research

Suvi T. Häkkinen and Kirsi-Marja Oksman-Caldentey

Abstract Nature’s own genetic engineer Agrobacterium rhizogeneswas discovered
more than 40 years ago, and an increasing number of publications on the use of hairy
roots in biotechnology have been published since – with more than 85% of all the
publications during the past 15 years. Hairy roots have been successfully exploited
in various fields in biotechnology, including secondary metabolite research, recom-
binant protein production, and bioremediation, to mention a few. In the following
chapter, we will deal with the current state of the art of hairy root research starting
from evolutionary facets of hairy root generation and host-bacteria association to a
range of applications where hairy roots are efficiently exploited.
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1.1 Hairy Roots: Where It All Started from?

Already as early as in the late 1950s, Dr. Armin Braun from The Rockefeller
University first demonstrated that tumor cells in plants are transformed, i.e., they
can be freed from Agrobacteria – a gram-negative soil bacteria – and grown in vitro
without the supplemental auxin and cytokinin required by normal plant cells in vitro
(Braun 1958). Later, metabolites called octopine and nopaline were discovered from
tumor cells (Petit et al. 1970). Indirect genetic evidence that Agrobacterium might
carry a virus or plasmid with tumor-inducing genes emerged from two kinds of
experiments (Hamilton and Fall 1971; Kerr 1971). It was discovered that tumor-
inducing trait is recuperated in bacteria after the loss of virulence, indicating that the
trait would be plasmid- or virus-borne. Simultaneously, existence of an extrachro-
mosomal element was indicated via experiments showing transfer of virulence by
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Kerr and co-workers (1971). The exciting journey which eventually led to gene
transfer of plants by Agrobacterium had an important step when Ti mega-plasmid
was discovered in Ghent (Zaenen et al. 1974). Virulence of the Agrobacterium was
located in vir-region (Stachel et al. 1985). The genetic engineering of plant cells was
finally simultaneously accomplished by four independent research groups (Herrera-
Estrella et al. 1983; Bevan et al. 1983; Fraley et al. 1983; Murai et al. 1983), which
eventually made history for molecular biology and plant sciences.

The term “hairy root” dates back to 1900 when it was first associated with
diseased fruit crops. Back then, hairy root syndrome, affecting mainly dicotyledon-
ous plants, caused substantial losses in vineyards, orchards, and vegetable nurseries
(Georgiev et al. 2012). Investigations revealed that causative agents for this disease
were phytopathogenic Agrobacterium rhizogenes strains carrying an Ri plasmid
(root-inducing plasmid) (reviewed by Sinkar et al. 1987), which displayed high
resemblance to Ti plasmid carried by A. tumefaciens. While the latter causes the
formation of crown gall tumor tissues in infected plants, A. rhizogenes induces the
hairy root disease (Chilton et al. 1982). All strains of A. rhizogenes are known to
produce opines of agrocinopine group and all or a few opines of the agropine group.
The strains which produce all the agropine-type opines (agropine, mannopine,
agropinic acid, and mannopinic acid) are known as the agropine-type strains,
whereas the strains which produce all agropine-type opines excluding agropine are
known as the mannopine-type strains (Petit et al. 1983) (Willmitzer et al. 1983). Ri
plasmid of the mannopine strain 8196 contains only one T-DNA (Hansen et al.
1991), while two T-DNA regions have been identified in agropine Ri plasmids,
which are separated by a 15 kb nontransferred region. The right T-DNA contains the
regions similar to Ti plasmid, including tms1 and tms2, which are responsible for the
auxin biosynthesis (Inzé et al. 1984). The left T-DNA, however, does not possess
close resemblance to any sequences with Ti plasmids (Huffman et al. 1984).
Interestingly, while virE1 and virE2 genes are important for T-DNA transfer in Ti
plasmids, they are not found in Ri plasmids (Moriguchi et al. 2001). Hairy roots
induced by agropine strains frequently contain only the TL-DNA (Jouanin et al.
1987). However, in some cases, the information carried on the TL-DNA is not
sufficient, and the presence of the TR-DNA greatly extends the host range of the
infection. Sequence analysis has identified 18 open reading frames (ORFs) on the
TL-DNA of pRiA4, and 8 of those loci were shown to affect the root formation,
denoted as rolA, rolB, rolC, and rolD (Slightom et al. 1986). While mutants induced
to rolA, rolC, and rolD resulted in attenuated growth or altered phenotype, mutants
in rolB were totally avirulent confirming the very crucial role of this gene in hairy
root formation (Spena et al. 1987). Furthermore, when rolB is introduced into the
host plant genome as a single gene, it is capable of hairy root induction (Altamura
2004). Diverse and also synergistic effects of individual rol genes were shown by
Palazón and co-workers (Palazón et al. 1997) who reported differential effects of
these genes in tobacco hairy root growth and alkaloid production. Hairy roots easily
regenerate into whole plants and transmit their Ri T-DNA into next progeny
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(Oksman-Caldentey et al. 1991). Such plants display a significantly altered pheno-
type (reviewed in Nilsson and Olsson 1997).

Initially it was thought that monocotyledonous plants are insensitive to
Agrobacterium-mediated gene transfer. Various molecular mechanisms for transfor-
mation resistance in monocotyledonous plants were suggested, including production
of antimicrobial compounds (Sahi et al. 1990), a lack of vir gene inducers (Usami
et al. 1987), inefficient T-DNA integration (Narasimhulu et al. 1996), and
programmed cell death induced by Agrobacterium (Hansen 2000). A significant
breakthrough occurred in 1993–1994, when highly regenerable explants of rice,
immature embryos, or calli derived from mature seeds were inoculated with
disarmed Agrobacterium harboring plant selectable marker genes resulting in fertile
transgenic rice plants (Chan et al. 1993; Hiei et al. 1994). Transformation frequen-
cies of monocotyledonous plants were improved by applying different selection
markers (Negrotto et al. 2000), by modification of medium components, by optimi-
zation of co-culture and resting time periods, and by addition of Agrobacterium
growth-inhibiting agent or bacteriocide such as silver nitrate (Zhao et al. 2001;
Zhang et al. 2003). Spurred on by the success of Hiei and colleagues, there was
significant interest in transforming other agronomically important crop species, such
as barley and wheat. By the use of “super-virulent” A. tumefaciens strains and/or
acetosyringone, a phenolic compound inducing expression of vir genes on the Ti
plasmid, transformation via A. tumefaciens has become a major method also in
monocots. Various factors have been identified of being important for successful
transformation of monocotyledonous plants, as reviewed by Cheng et al. (2004).
These include plant genotype, explant, Agrobacterium strain, pretreatment, and
chosen selectable marker. However, there are also very few examples of successful
hairy root transformation of monocotyledonous plants. Of monocotyledonous
plants, onion and asparagus have been reported to be susceptible to A. rhizogenes
transformation (Dommisse et al. 1990; Christey 1997). Maize hairy roots were
recently generated offering platform for studying host-parasite interactions (Runo
et al. 2012). Problems associated with difficulties of Agrobacterium (tumefaciens)
transformation in monocots are reviewed by Sood and co-workers (Sood et al. 2011).

1.2 Characteristics of Hairy Roots

A. rhizogenes infects wounded plant cells because of the production of phenolic
compounds that attract A. rhizogenes. Bacteria move to the wound site by chemo-
taxis. Subsequent infection at wound site followed by integration of Agrobacterium-
derived T-DNA into the plant genome results in development of hairy root disease.
Hairy root disease is characterized by high growth rate, a high degree of lateral
branching, profusion of root hairs, lack of geotropism, and the tissue maintaining a
highly differentiated and functional root organ (Tepfer 1984; Sevón and Oksman-
Caldentey 2002). Hairy roots offer an attractive alternative for the production of a
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range of high-value secondary compounds for various biotechnologically important
reasons. Hairy roots are able to accumulate, e.g., the same alkaloids as the parent
plant, even in higher quantities than the intact plants or undifferentiated cell cultures
(Sevón and Oksman-Caldentey 2002; Ramachandra Rao and Ravishankar 2002;
Akhgari et al. 2015).They gain biomass rather rapidly and have simple cultivation
medium requirements, being able to grow without phytohormones. They also show
high genetic stability as well as more stable metabolic production than that of
undifferentiated cell cultures (Peebles et al. 2009; Häkkinen et al. 2016). This has
largely been related to chromosomic stability displayed by the hairy roots (Weber
et al. 2008, 2010; Dehghan et al. 2012). The chromosomic number and karyotype of
hairy roots are typically the same as in the parent plant. In addition, the ability of
hairy roots to grow without additional auxins increases the stability, since when
exposed to growth regulators, even organized tissues modify their chromosomic
numbers and display somaclonal variation (Baíza and co-workers, Baíza et al. 1999).
Catharanthus roseus hairy roots displayed genetic and metabolic stability during a
5-year study (Peebles et al. 2009). Similarly Maldonado-Mendoza and co-workers
(Maldonado-Mendoza et al. 1993) analyzed the tropane alkaloid production of hairy
roots of Datura stramonium during 5 years and reported growth rates and alkaloid
contents to be stable. In our recent study, hairy roots ofHyoscyamus muticus showed
genetic and metabolic stability during continuous subculturing in the laboratory
during 16-year follow-up (Häkkinen et al. 2016). Hitherto, this is the longest time
period reported for continuous subculturing of hairy roots. Very similar results were
reported by Sun and co-workers (Sun et al. 2017), with C. roseus hairy roots
expressing anthranilate synthase. The stability was proven after 11 years of contin-
uous subculturing. On the other hand, also contradictory findings related to high
stability of hairy roots have been reported. Hairy roots of Daucus carota showed
unstable phenotype and unstable transgene expression during a 2-year follow-up
(Guivarc’h et al. 1999). Also, unstable production of tropane alkaloids in hairy roots
of Scopolia japonicawas reported, although the follow-up was rather short, 2 months
(Mano et al. 1986), and usually adaptation to culture conditions requires time. Taken
together, hairy roots have shown a great potential for viable industrial applications
due to their high genetic and metabolic stability which surpasses that of
undifferentiated cultures (Figs. 1.1 and 1.2).

1.3 Applications of Hairy Root Platform

The main applications of hairy root cultures include the biotransformation, produc-
tion of high-value plant metabolites, phytoremediation, and production of artificial
seeds (Georgiev et al. 2012; Guillon et al. 2006). Some of these examples are
discussed further below. A number of studies related to biochemical research
especially around plant secondary metabolism have been performed exploiting
hairy roots. Alkaloids are compounds which are typically highly bioactive and are
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produced approximately in 20% of all plant species. For their interesting applica-
tions, the biosynthesis research related to alkaloids has been active, with hairy roots
having an important role as research tools. Such examples are given plenty, as
comprehensively listed in review by Giri and Narasu (2000). In the following
section, examples of application of hairy root platform in the field of alkaloid
research are described in more detail.

Tropane alkaloids are a class of alkaloids many of which are pharmaceutically
interesting for their anticholinergic activities. The biosynthetic pathway of tropane
alkaloids starts from amino acids arginine and ornithine and on the other hand from
phenylalanine. The pathway leading to active pharmaceuticals hyoscyamine and
scopolamine is rather well described. Perhaps the most significant finding related to
tropane alkaloid research was reported by Hashimoto an co-workers, with isolation
and characterization of an enzyme hyoscyamine-6β-hydroxylase (H6H) which con-
verts hyoscyamine into scopolamine in a two-step process (Hashimoto and Yamada
1986) (Matsuda et al. 1991). The gene encoding for H6H has since been
overexpressed in various Solanaceae plant species (Hashimoto et al. 1993; Parr
et al. 1990; Palazón et al. 2003b; Jouhikainen et al. 1999) together with other
pathway genes resulting in high accumulation of hyoscyamine and/or scopolamine

Fig. 1.1 Hairy roots of
Catharanthus roseus
emerging from the
wound site

Fig. 1.2 Hairy roots of Hyoscyamus muticus cultivated on solid and liquid medium
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(Kang et al. 2011; Rocha et al. 2002). A remarkable yield of scopolamine (411 mg/
L) was achieved in hairy root cultures of Hyoscyamus niger, by simultaneous
overexpression of genes encoding for putrescine methyltransferase and H6H
(Zhang et al. 2004). In addition to tropane alkaloid-producing species,
overexpression of h6h was shown to catalyze the conversion of exogenously applied
hyoscyamine into scopolamine in hairy root systems (Häkkinen et al. 2005; Rocha
et al. 2002) and even in microbes (Kai et al. 2011; Cardillo et al. 2012). As other
notable examples, Robins and co-workers (Robins et al. 1990; Hagan et al. 1999)
investigated the tropane alkaloid pathway and revealed the flux regulation and
littorine rearrangement pattern in Datura hairy roots.

Tobacco alkaloids such as nicotine, nornicotine, and anabasine are synthesized in
plant roots where they are transported to plant leaves for storage and for their
biological function. These tobacco alkaloids accumulate also in hairy roots, in
much higher amounts than in undifferentiated cells (Hamill et al. 1986; Häkkinen
et al. 2004). Similar to tropane alkaloids, also tobacco alkaloid pathway is well
described except for final steps leading to nicotine and also to other nicotinic acid-
derived alkaloids. Tobacco BY-2 cell culture is a widely used plant cell culture for
various aspects of plant biochemistry and especially cell cycle research, due to its
very high multiplication rate and easy genetic transformation (Nagata et al. 1992).
Tobacco BY-2 produces alkaloids after elicitation (Goossens et al. 2003). However,
it was unclear why BY-2 cell accumulates anatabine and only small amounts of
nicotine after methyl jasmonate elicitation, before Shoji and Hashimoto showed the
reason for this to lie in the transcriptional regulation of methyl putrescine oxidase
(MPO) (Shoji and Hashimoto 2008). As BY-2 culture does not spontaneously
produce alkaloids and as a result constitutive overproduction of alkaloids via genetic
engineering might be detrimental to this culture, hairy roots offer an attractive
alternative for tobacco pathway engineering (Häkkinen et al. 2007; Lackman et al.
2011). Recently, the biosynthetic pathway of anabasine was further revealed by
using hairy root platform with 15N-labelled lysine (Bunsupa et al. 2014). It was
interesting to note that no significant labelling was detected in nicotine, anatabine,
nor anatalline, indicating that anabasine could be synthesized via nicotinic acid-
independent route.

Terpenoids are another group of important secondary compounds with a largest
diversity of compound structures and are well known for their many applications in
the pharmaceutical, fragrance, and cosmetics industries. Hairy root platform has
mainly been exploited with Catharanthus roseus for pathway engineering leading to
bioactive terpenoid indole alkaloids (TIAs) such as vincristine and vinblastine
(Peebles et al. 2011; Hughes et al. 2004). Several TIA pathway genes have been
overexpressed in hairy roots including anthranilate synthase holoenzyme (Chung
et al. 2007), tryptophan decarboxylase (Hughes et al. 2004), and deacetylvindoline
4-O-acetyltransferase (Magnotta et al. 2007). TIA pathway genes have also been
expressed in heterologous hosts. As an example, geraniol synthase gene was suc-
cessfully expressed in tobacco hairy roots resulting in accumulation of geraniol and
its glycosides (Vasilev et al. 2014). Engineered hairy roots were also cultivated in
larger scale yielding mg amounts of geraniol. Hairy roots of Cinchona officinalis
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expressing genes encoding for tryptophan decarboxylase and strictosidine synthase
yielded high amounts of both tryptamine and strictosidine, as well as quinine and
quinidine (Geerlings et al. 1999). However, many examples show that
overexpression of a single gene in a specific pathway does not lead to higher
accumulation of the desired metabolite, and feedback inhibition is often an encoun-
tered problem in metabolic engineering events (Palazón et al. 2008). One problem
associated with homologous gene expression or expression of even heterologous
genes with high sequence homology with the native genes is co-suppression. In
addition, secondary metabolism in plant systems is commonly highly compartmen-
talized between different cellular organs, and sometimes tissue-specific expression is
required, and thus the expression may not be achieved in hairy root systems.
Transcription factors (TFs) are promising metabolic engineering targets due to
their ability to regulate multiple biosynthetic pathway genes (Memelink and Gantet
2007). The transcription factors regulating TIA biosynthesis include the activators
ORCA2, ORCA3, BIS1, BPF1, MYC1, MYC2, and WRKY1 and the repressors
JAZ, ZCT1, ZCT2, ZCT3, GBF1, and GBF2 (Zhou and Memelink 2016; Rizvi et al.
2016).

1.4 Advantages and Challenges of Hairy Root Culture
Systems

As a plant-based production platform, hairy roots offer several advantages over
microbial- or mammalian-based systems (Häkkinen and Ritala 2010). Plant cells
exhibit a potential to produce a number of small molecular weight compounds,
which some are very difficult or impossible to make via chemical synthesis in an
economic way. The risk of endotoxins or oncogenes in the product is nonexisting,
while in microbial and mammalian systems, these risk factors should always be
considered. Other advantages include the high product homogeneity and easy
separation of cells and culture medium for product purification purposes. To date
there are some examples of successful production of plant-based natural compound
using microbial hosts (Paddon et al. 2013; Galanie et al. 2015), although sometimes
the yields have remained rather low. Common problems encountered when trying to
transfer the plant-based biochemical pathway to microbes are the availability of
precursors; expression and activity of enzymes in prokaryotes, e.g., difficulties
associated with expression of cytochrome P450s; and lack of S-adenosyl methio-
nine, required in many methylation steps in plant pathways (Khosla and Keasling
2003). A notable study reported by Galanie et al. (2015) showed that the complete
biosynthetic pathway of opioids could be reconstructed in yeast; however the final
yields remained very low, less than 1 μg/L. While artemisinic acid, a precursor of
important antimalarial compound, was successfully produced in yeast after several
years of extensive research efforts with very high titers (25 g/L), the final step in the
process requires a chemical conversion to reach artemisinin (Paddon et al. 2013).
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When it comes to plant-based natural products, cell and tissue cultures, such as hairy
roots, offer a viable option for large-scale production due to limitations posed by
isolating the compounds from whole plants. Cell and tissue cultures can be culti-
vated in controlled and contained environment, enabling the optimization efforts for
high productivities with possibility to apply GMP (good manufacturing practice). In
addition, in whole plants, many plant-derived compounds accumulate in certain
plant organs or in specific developmental stage making the yield optimization and
production process demanding. Cell culturing enables the use of synthetic growth
media, and usually the variation in yields or product quality is low (Häkkinen and
Ritala 2010). When it comes to hairy roots, a specific advantage is displayed by their
ability to grow relatively fast without growth hormones, reducing the costs deriving
from culture medium (Georgiev et al. 2007; Häkkinen et al. 2018). Hairy roots, as
other cell culture systems, offer also advantage via reduced costs deriving from
product isolation and purification, since unlike whole plants, cell cultures do not
possess by-products such as waxes, chlorophyll, oils, or fibers, which often are
complicating these processes. However, the choice of the production host and
platform should always be made by evaluating the properties of the final product
against the total production costs by techno-economic feasibility assessment. It was
estimated that the production of a natural product with cell and tissue culture-based
host becomes economic when the price of the final product exceeds $500–1000/kg
(Sajc et al. 2000). Therefore naturally this system is beneficial for high-value,
complex molecules. Nielsen and Keasling estimated that engineering of microbial
strains that overproduce a target compound to economically relevant levels takes
6–8 years and over US$50 million, which means much higher numbers for more
complex plant cells (Nielsen and Keasling 2016).

Biotransformation has also shown to be viable option for applications with hairy
root systems (Banerjee et al. 2012). Perhaps the most often hairy root-catalyzed
reaction has been glycosylation, including the reactions leading to digitoxigenin
glycosides (Kawaguchi et al. 1990), glycyrrhetinic acid glycosides (Asada et al.
1993), dehydroabietic acid, and phenolic acid glycosides (Fons et al. 1999;
Häkkinen et al. 2012). When it comes to high-value commercial compounds,
recently we showed that natural raspberry ketone, which is estimated to be the
most expensive natural flavor compound after vanillin, was successfully produced
in tobacco hairy roots by bioconversion strategy (Häkkinen et al. 2015). Diversity of
examples shows that hairy root cultures are entering into a new era of applied
research in generating pharmaceutical lead compounds by accomplishing chemical
transformations aided through these unique biological systems.

1.5 Bioreactor Design for Hairy Roots

Hairy root morphology sets criteria for bioreactors suitable for cultivation of hairy
roots. Tightly packed hairy roots, which are also generally considered as rather shear
sensitive, typically form clumps in bioreactors causing mass transfer limitations,
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including oxygen and nutrient availability (Georgiev et al. 2007; Eibl and Eibl
2008). Efficient ways to overcome these constraints have been shown by the use
of various immobilization techniques, e.g., meshes, cages, or polyurethane foam.
Thus, bioreactors with diverse configurations have been used for cultivating hairy
roots, including mechanically driven reactors (e.g., stirred tank, wave, and rotating
drum reactors), pneumatically driven reactors (e.g., bubble column and airlift reac-
tors), and bed reactors (e.g., trickle bed and mist reactors) (Liu et al. 2009; Georgiev
et al. 2010). Disposable bioreactors have demonstrated as promising tools for hairy
root cultivations (Lehmann et al. 2014). Major advantages with the use of disposable
bioreactors are the minimal cleaning and sterilization and reduced costs via reduced
cleaning needs, capital investments, and maintenance (Eibl et al. 2011). Hairy roots
are successfully cultivated in bioreactors with wave-induced mixing and aera-
tion (Fig. 1.3). The performance and ginsenoside production of Panax ginseng
hairy roots in wave bioreactors showed that both factors were significantly improved
in wave cultivation compared to shake flask cultivations (Palazón et al. 2003a).
Large-scale wave systems with capacities up to 600 L are now commercially
available (source: Wave Biotech AG®, Tagelswangen, Switzerland). The most
cited and largest hybrid bioreactor (bubble column-spray reactor) to grow hairy
roots (Datura stramonium) so far is the 500 L Wilson Bioreactor (Wilson 1997).

1.6 Predicting the Future

Since the discovery three decades ago, hairy roots have been a tool for studying the
molecular mechanism of a number of basic phenomena in plant behavior, biochem-
istry, and physiology. Nowadays hairy roots can be induced from practically any

Fig. 1.3 Bioreactors for hairy root cultivation. Wave bioreactor (left) and Medicel Explorer
Cultivation Unit (right)
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plants; one of the important focuses in hairy root research should be the conservation
of biodiversity and production of useful, rare, and exotic compounds from, e.g.,
endangered plant species. Plant kingdom has an enormous, still largely underutilized
potential for the discovery of natural compounds (Newman and Cragg 2016), which
may be exploited for human use. Especially for many medicinal plants, the bio-
chemical pathways leading to interesting compounds are still much unknown, and
hairy roots offer an excellent platform for pathway discovery.

The main challenge in hairy root biotechnology is still the relatively low yields of
production leading to high costs for the desired product. When it comes to large-
scale production of natural compounds, bioreactor technology plays a crucial role.
Although hairy root cultivation technology has been studied intensively (see reviews
by Mehrotra et al. 2015 and Banerjee et al. 2017), there are no flagship cases existing
in hairy root-produced commercial products. However, intensive research and
development work of both bioreactor design and novel computational tools apply-
ing, e.g., modelling, neural networks, and artificial intelligence, will definitely
improve the understanding of processes related to hairy root technology and will
lead to improved yields (Gallego et al. 2011; Mehrotra et al. 2015; Sweetlove et al.
2017).

Undoubtedly, plant metabolic engineering involving the overproduction of spe-
cialized metabolites is a technology which has resulted in great success (Farré et al.
2014). Recently, Sweetlove and co-workers showed how even primary metabolism
of plant systems can be successfully engineered using computational modelling
(Sweetlove et al. 2017). Another development that will clearly revolutionize plant
metabolic engineering is CRISPR-Cas9-mediated genome editing. This technique is
being rapidly adopted by the plant community as a robust and simple way to create
targeted mutations, and it has also resulted in successful cases with application of
hairy roots (Cai et al. 2015; Michno et al. 2015).
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