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Preface

The escalating industrial magnitude of plant-based chemicals has resulted great
interest in the evolution of methods to meet their desired production. These phyto-
chemicals are widely used in cosmetics, flavor and fragrance, dyes and pigments,
food additives, and insecticide/pesticide industries as a whole or as an important
ingredient in various formulations. Out of various conventional and unconventional
strategies that have been applied for the production of these phytochemicals, the
development of Agrobacterium rhizogenes-mediated hairy root cultures (HRCs) is
considered as the most practically feasible approach. The HRCs are usually stable in
their biosynthetic potential and, thus, offer a sustainable production system for
desired metabolites. Additionally, several proof-of-principle experiments have also
revealed the practical feasibility of HRCs in plant-based remediation of environment
pollutants, biotransformation of important compounds, and production of therapeu-
tic proteins. It is pertinent to mention here that perspectives in the upscaling of hairy
root cultures also offer ceaseless opportunities in various objectives. Nevertheless,
an easy to establish and maintain, economic, renewable and above all, the sustain-
ability of HRCs justify the attention of the global scientific community.

At this juncture, where hairy root biotechnology is recognized as most sought-
after and very dynamic research area, it is relevant to get judicious update in recent
advances along with hitherto biotechnological progress of the subject. Thus, con-
sidering HRCs as a multifaceted biological tool for various applications, the present
book entitled Hairy Roots: An Effective Tool of Plant Biotechnology has been
designed. The editorial team members (Vikas Srivastava; Shakti Mehrotra;
Sonal Mishra) have been working on various aspects of hairy root research since
long time and published many articles in journals/books of international repute. The
present book provides the details of conceptual as well as pragmatic information of
HRCs-based research along with relevant case studies. Furthermore, an attempt has
also been made to investigate the loopholes in existing methodologies and chal-
lenges and to find out possible solutions through scientific discussions from various
eminent research groups working on hairy root biotechnology. The book has been
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framed on the basis of three major areas and thus presents three broad parts as
(i) Hairy Roots and Secondary Metabolism, (ii) Progressive Applications, and (iii)
Novel Approaches and Future Prospects.

The first part (Hairy Roots and Secondary Metabolism) comprised of seven
chapters that deals with comprehensive discussion about hitherto gradual progres-
sion of hairy root research from a simple biotechnological tool to mimic the natural
phenomenon of bacterial gene transfer and occurrence of disease syndrome to a most
preferred and dynamic technology for secondary metabolite production and other
value-added applications. This part deals with the discovery of nature’s own genetic
engineer A. rhizogenes, its journey since then, and its successful exploitation in
various fields of biotechnology and related prospects. Further discussion includes the
regeneration of pRi-transformed plants, various types of HRCs-mediated secondary
metabolite production, and impact of various extrinsic factors over HRCs-mediated
secondary metabolite production. This part also provides an inclusive account on
biotechnological interventions in HRCs of tropane and terpene alkaloid-bearing
plants. The part culminates with the description of the design and development of
bioreactors to achieve maximum productivity in plant cell and hairy root
cultivations.

The second part (Progressive Applications) comprised of five chapters that
provide an inclusive account on further advancement of HRCs research. This part
offers vivid account on the capacity of HRCs for the biotransformation of a variety
of substrates for value addition and its utility as a potential system for the production
of imperative biopharmaceuticals. Further the competence of HRCs for the remedi-
ation of the environment and its utilization to study signaling pathways during
nodule formation has also been incorporated. Lastly, this part also highlights the
methodologies developed to generate composite plants and the applications of
co-transformed hairy roots for studying gene function.

The third part (Novel Approaches and Future Prospects) comprised of three
chapters and includes current attention on HRCs research. Here, the exploration of
transcriptome sequencing in HRCs of medicinal plants and in silico perspective of
HRCs growth monitoring and modeling have been presented. Finally, the utility of
CRISPR/Cas9-mediated editing will offer new directions for HRCs metabolic engi-
neering. This edited book is an attempt to ensure the research and teaching commu-
nity, about the major progress in HRCs-based interventions in plant biology and
applications thereof. Besides, the emerging thrust that still needs time to grow will
also be considered to project the prospect trajectory of HRCs research. The book will
surely provide endless opportunities in the ongoing and future research in this
fascinating area.

Samba, India Vikas Srivastava
Lucknow, India Shakti Mehrotra
Jammu, India Sonal Mishra
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Chapter 1
Progress and Prospects of Hairy Root
Research

Suvi T. Häkkinen and Kirsi-Marja Oksman-Caldentey

Abstract Nature’s own genetic engineer Agrobacterium rhizogeneswas discovered
more than 40 years ago, and an increasing number of publications on the use of hairy
roots in biotechnology have been published since – with more than 85% of all the
publications during the past 15 years. Hairy roots have been successfully exploited
in various fields in biotechnology, including secondary metabolite research, recom-
binant protein production, and bioremediation, to mention a few. In the following
chapter, we will deal with the current state of the art of hairy root research starting
from evolutionary facets of hairy root generation and host-bacteria association to a
range of applications where hairy roots are efficiently exploited.

Keywords Hairy root · History · Applications · Secondary metabolites · Bioreactor

1.1 Hairy Roots: Where It All Started from?

Already as early as in the late 1950s, Dr. Armin Braun from The Rockefeller
University first demonstrated that tumor cells in plants are transformed, i.e., they
can be freed from Agrobacteria – a gram-negative soil bacteria – and grown in vitro
without the supplemental auxin and cytokinin required by normal plant cells in vitro
(Braun 1958). Later, metabolites called octopine and nopaline were discovered from
tumor cells (Petit et al. 1970). Indirect genetic evidence that Agrobacterium might
carry a virus or plasmid with tumor-inducing genes emerged from two kinds of
experiments (Hamilton and Fall 1971; Kerr 1971). It was discovered that tumor-
inducing trait is recuperated in bacteria after the loss of virulence, indicating that the
trait would be plasmid- or virus-borne. Simultaneously, existence of an extrachro-
mosomal element was indicated via experiments showing transfer of virulence by
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Kerr and co-workers (1971). The exciting journey which eventually led to gene
transfer of plants by Agrobacterium had an important step when Ti mega-plasmid
was discovered in Ghent (Zaenen et al. 1974). Virulence of the Agrobacterium was
located in vir-region (Stachel et al. 1985). The genetic engineering of plant cells was
finally simultaneously accomplished by four independent research groups (Herrera-
Estrella et al. 1983; Bevan et al. 1983; Fraley et al. 1983; Murai et al. 1983), which
eventually made history for molecular biology and plant sciences.

The term “hairy root” dates back to 1900 when it was first associated with
diseased fruit crops. Back then, hairy root syndrome, affecting mainly dicotyledon-
ous plants, caused substantial losses in vineyards, orchards, and vegetable nurseries
(Georgiev et al. 2012). Investigations revealed that causative agents for this disease
were phytopathogenic Agrobacterium rhizogenes strains carrying an Ri plasmid
(root-inducing plasmid) (reviewed by Sinkar et al. 1987), which displayed high
resemblance to Ti plasmid carried by A. tumefaciens. While the latter causes the
formation of crown gall tumor tissues in infected plants, A. rhizogenes induces the
hairy root disease (Chilton et al. 1982). All strains of A. rhizogenes are known to
produce opines of agrocinopine group and all or a few opines of the agropine group.
The strains which produce all the agropine-type opines (agropine, mannopine,
agropinic acid, and mannopinic acid) are known as the agropine-type strains,
whereas the strains which produce all agropine-type opines excluding agropine are
known as the mannopine-type strains (Petit et al. 1983) (Willmitzer et al. 1983). Ri
plasmid of the mannopine strain 8196 contains only one T-DNA (Hansen et al.
1991), while two T-DNA regions have been identified in agropine Ri plasmids,
which are separated by a 15 kb nontransferred region. The right T-DNA contains the
regions similar to Ti plasmid, including tms1 and tms2, which are responsible for the
auxin biosynthesis (Inzé et al. 1984). The left T-DNA, however, does not possess
close resemblance to any sequences with Ti plasmids (Huffman et al. 1984).
Interestingly, while virE1 and virE2 genes are important for T-DNA transfer in Ti
plasmids, they are not found in Ri plasmids (Moriguchi et al. 2001). Hairy roots
induced by agropine strains frequently contain only the TL-DNA (Jouanin et al.
1987). However, in some cases, the information carried on the TL-DNA is not
sufficient, and the presence of the TR-DNA greatly extends the host range of the
infection. Sequence analysis has identified 18 open reading frames (ORFs) on the
TL-DNA of pRiA4, and 8 of those loci were shown to affect the root formation,
denoted as rolA, rolB, rolC, and rolD (Slightom et al. 1986). While mutants induced
to rolA, rolC, and rolD resulted in attenuated growth or altered phenotype, mutants
in rolB were totally avirulent confirming the very crucial role of this gene in hairy
root formation (Spena et al. 1987). Furthermore, when rolB is introduced into the
host plant genome as a single gene, it is capable of hairy root induction (Altamura
2004). Diverse and also synergistic effects of individual rol genes were shown by
Palazón and co-workers (Palazón et al. 1997) who reported differential effects of
these genes in tobacco hairy root growth and alkaloid production. Hairy roots easily
regenerate into whole plants and transmit their Ri T-DNA into next progeny
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(Oksman-Caldentey et al. 1991). Such plants display a significantly altered pheno-
type (reviewed in Nilsson and Olsson 1997).

Initially it was thought that monocotyledonous plants are insensitive to
Agrobacterium-mediated gene transfer. Various molecular mechanisms for transfor-
mation resistance in monocotyledonous plants were suggested, including production
of antimicrobial compounds (Sahi et al. 1990), a lack of vir gene inducers (Usami
et al. 1987), inefficient T-DNA integration (Narasimhulu et al. 1996), and
programmed cell death induced by Agrobacterium (Hansen 2000). A significant
breakthrough occurred in 1993–1994, when highly regenerable explants of rice,
immature embryos, or calli derived from mature seeds were inoculated with
disarmed Agrobacterium harboring plant selectable marker genes resulting in fertile
transgenic rice plants (Chan et al. 1993; Hiei et al. 1994). Transformation frequen-
cies of monocotyledonous plants were improved by applying different selection
markers (Negrotto et al. 2000), by modification of medium components, by optimi-
zation of co-culture and resting time periods, and by addition of Agrobacterium
growth-inhibiting agent or bacteriocide such as silver nitrate (Zhao et al. 2001;
Zhang et al. 2003). Spurred on by the success of Hiei and colleagues, there was
significant interest in transforming other agronomically important crop species, such
as barley and wheat. By the use of “super-virulent” A. tumefaciens strains and/or
acetosyringone, a phenolic compound inducing expression of vir genes on the Ti
plasmid, transformation via A. tumefaciens has become a major method also in
monocots. Various factors have been identified of being important for successful
transformation of monocotyledonous plants, as reviewed by Cheng et al. (2004).
These include plant genotype, explant, Agrobacterium strain, pretreatment, and
chosen selectable marker. However, there are also very few examples of successful
hairy root transformation of monocotyledonous plants. Of monocotyledonous
plants, onion and asparagus have been reported to be susceptible to A. rhizogenes
transformation (Dommisse et al. 1990; Christey 1997). Maize hairy roots were
recently generated offering platform for studying host-parasite interactions (Runo
et al. 2012). Problems associated with difficulties of Agrobacterium (tumefaciens)
transformation in monocots are reviewed by Sood and co-workers (Sood et al. 2011).

1.2 Characteristics of Hairy Roots

A. rhizogenes infects wounded plant cells because of the production of phenolic
compounds that attract A. rhizogenes. Bacteria move to the wound site by chemo-
taxis. Subsequent infection at wound site followed by integration of Agrobacterium-
derived T-DNA into the plant genome results in development of hairy root disease.
Hairy root disease is characterized by high growth rate, a high degree of lateral
branching, profusion of root hairs, lack of geotropism, and the tissue maintaining a
highly differentiated and functional root organ (Tepfer 1984; Sevón and Oksman-
Caldentey 2002). Hairy roots offer an attractive alternative for the production of a
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range of high-value secondary compounds for various biotechnologically important
reasons. Hairy roots are able to accumulate, e.g., the same alkaloids as the parent
plant, even in higher quantities than the intact plants or undifferentiated cell cultures
(Sevón and Oksman-Caldentey 2002; Ramachandra Rao and Ravishankar 2002;
Akhgari et al. 2015).They gain biomass rather rapidly and have simple cultivation
medium requirements, being able to grow without phytohormones. They also show
high genetic stability as well as more stable metabolic production than that of
undifferentiated cell cultures (Peebles et al. 2009; Häkkinen et al. 2016). This has
largely been related to chromosomic stability displayed by the hairy roots (Weber
et al. 2008, 2010; Dehghan et al. 2012). The chromosomic number and karyotype of
hairy roots are typically the same as in the parent plant. In addition, the ability of
hairy roots to grow without additional auxins increases the stability, since when
exposed to growth regulators, even organized tissues modify their chromosomic
numbers and display somaclonal variation (Baíza and co-workers, Baíza et al. 1999).
Catharanthus roseus hairy roots displayed genetic and metabolic stability during a
5-year study (Peebles et al. 2009). Similarly Maldonado-Mendoza and co-workers
(Maldonado-Mendoza et al. 1993) analyzed the tropane alkaloid production of hairy
roots of Datura stramonium during 5 years and reported growth rates and alkaloid
contents to be stable. In our recent study, hairy roots ofHyoscyamus muticus showed
genetic and metabolic stability during continuous subculturing in the laboratory
during 16-year follow-up (Häkkinen et al. 2016). Hitherto, this is the longest time
period reported for continuous subculturing of hairy roots. Very similar results were
reported by Sun and co-workers (Sun et al. 2017), with C. roseus hairy roots
expressing anthranilate synthase. The stability was proven after 11 years of contin-
uous subculturing. On the other hand, also contradictory findings related to high
stability of hairy roots have been reported. Hairy roots of Daucus carota showed
unstable phenotype and unstable transgene expression during a 2-year follow-up
(Guivarc’h et al. 1999). Also, unstable production of tropane alkaloids in hairy roots
of Scopolia japonicawas reported, although the follow-up was rather short, 2 months
(Mano et al. 1986), and usually adaptation to culture conditions requires time. Taken
together, hairy roots have shown a great potential for viable industrial applications
due to their high genetic and metabolic stability which surpasses that of
undifferentiated cultures (Figs. 1.1 and 1.2).

1.3 Applications of Hairy Root Platform

The main applications of hairy root cultures include the biotransformation, produc-
tion of high-value plant metabolites, phytoremediation, and production of artificial
seeds (Georgiev et al. 2012; Guillon et al. 2006). Some of these examples are
discussed further below. A number of studies related to biochemical research
especially around plant secondary metabolism have been performed exploiting
hairy roots. Alkaloids are compounds which are typically highly bioactive and are
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produced approximately in 20% of all plant species. For their interesting applica-
tions, the biosynthesis research related to alkaloids has been active, with hairy roots
having an important role as research tools. Such examples are given plenty, as
comprehensively listed in review by Giri and Narasu (2000). In the following
section, examples of application of hairy root platform in the field of alkaloid
research are described in more detail.

Tropane alkaloids are a class of alkaloids many of which are pharmaceutically
interesting for their anticholinergic activities. The biosynthetic pathway of tropane
alkaloids starts from amino acids arginine and ornithine and on the other hand from
phenylalanine. The pathway leading to active pharmaceuticals hyoscyamine and
scopolamine is rather well described. Perhaps the most significant finding related to
tropane alkaloid research was reported by Hashimoto an co-workers, with isolation
and characterization of an enzyme hyoscyamine-6β-hydroxylase (H6H) which con-
verts hyoscyamine into scopolamine in a two-step process (Hashimoto and Yamada
1986) (Matsuda et al. 1991). The gene encoding for H6H has since been
overexpressed in various Solanaceae plant species (Hashimoto et al. 1993; Parr
et al. 1990; Palazón et al. 2003b; Jouhikainen et al. 1999) together with other
pathway genes resulting in high accumulation of hyoscyamine and/or scopolamine

Fig. 1.1 Hairy roots of
Catharanthus roseus
emerging from the
wound site

Fig. 1.2 Hairy roots of Hyoscyamus muticus cultivated on solid and liquid medium
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(Kang et al. 2011; Rocha et al. 2002). A remarkable yield of scopolamine (411 mg/
L) was achieved in hairy root cultures of Hyoscyamus niger, by simultaneous
overexpression of genes encoding for putrescine methyltransferase and H6H
(Zhang et al. 2004). In addition to tropane alkaloid-producing species,
overexpression of h6h was shown to catalyze the conversion of exogenously applied
hyoscyamine into scopolamine in hairy root systems (Häkkinen et al. 2005; Rocha
et al. 2002) and even in microbes (Kai et al. 2011; Cardillo et al. 2012). As other
notable examples, Robins and co-workers (Robins et al. 1990; Hagan et al. 1999)
investigated the tropane alkaloid pathway and revealed the flux regulation and
littorine rearrangement pattern in Datura hairy roots.

Tobacco alkaloids such as nicotine, nornicotine, and anabasine are synthesized in
plant roots where they are transported to plant leaves for storage and for their
biological function. These tobacco alkaloids accumulate also in hairy roots, in
much higher amounts than in undifferentiated cells (Hamill et al. 1986; Häkkinen
et al. 2004). Similar to tropane alkaloids, also tobacco alkaloid pathway is well
described except for final steps leading to nicotine and also to other nicotinic acid-
derived alkaloids. Tobacco BY-2 cell culture is a widely used plant cell culture for
various aspects of plant biochemistry and especially cell cycle research, due to its
very high multiplication rate and easy genetic transformation (Nagata et al. 1992).
Tobacco BY-2 produces alkaloids after elicitation (Goossens et al. 2003). However,
it was unclear why BY-2 cell accumulates anatabine and only small amounts of
nicotine after methyl jasmonate elicitation, before Shoji and Hashimoto showed the
reason for this to lie in the transcriptional regulation of methyl putrescine oxidase
(MPO) (Shoji and Hashimoto 2008). As BY-2 culture does not spontaneously
produce alkaloids and as a result constitutive overproduction of alkaloids via genetic
engineering might be detrimental to this culture, hairy roots offer an attractive
alternative for tobacco pathway engineering (Häkkinen et al. 2007; Lackman et al.
2011). Recently, the biosynthetic pathway of anabasine was further revealed by
using hairy root platform with 15N-labelled lysine (Bunsupa et al. 2014). It was
interesting to note that no significant labelling was detected in nicotine, anatabine,
nor anatalline, indicating that anabasine could be synthesized via nicotinic acid-
independent route.

Terpenoids are another group of important secondary compounds with a largest
diversity of compound structures and are well known for their many applications in
the pharmaceutical, fragrance, and cosmetics industries. Hairy root platform has
mainly been exploited with Catharanthus roseus for pathway engineering leading to
bioactive terpenoid indole alkaloids (TIAs) such as vincristine and vinblastine
(Peebles et al. 2011; Hughes et al. 2004). Several TIA pathway genes have been
overexpressed in hairy roots including anthranilate synthase holoenzyme (Chung
et al. 2007), tryptophan decarboxylase (Hughes et al. 2004), and deacetylvindoline
4-O-acetyltransferase (Magnotta et al. 2007). TIA pathway genes have also been
expressed in heterologous hosts. As an example, geraniol synthase gene was suc-
cessfully expressed in tobacco hairy roots resulting in accumulation of geraniol and
its glycosides (Vasilev et al. 2014). Engineered hairy roots were also cultivated in
larger scale yielding mg amounts of geraniol. Hairy roots of Cinchona officinalis
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expressing genes encoding for tryptophan decarboxylase and strictosidine synthase
yielded high amounts of both tryptamine and strictosidine, as well as quinine and
quinidine (Geerlings et al. 1999). However, many examples show that
overexpression of a single gene in a specific pathway does not lead to higher
accumulation of the desired metabolite, and feedback inhibition is often an encoun-
tered problem in metabolic engineering events (Palazón et al. 2008). One problem
associated with homologous gene expression or expression of even heterologous
genes with high sequence homology with the native genes is co-suppression. In
addition, secondary metabolism in plant systems is commonly highly compartmen-
talized between different cellular organs, and sometimes tissue-specific expression is
required, and thus the expression may not be achieved in hairy root systems.
Transcription factors (TFs) are promising metabolic engineering targets due to
their ability to regulate multiple biosynthetic pathway genes (Memelink and Gantet
2007). The transcription factors regulating TIA biosynthesis include the activators
ORCA2, ORCA3, BIS1, BPF1, MYC1, MYC2, and WRKY1 and the repressors
JAZ, ZCT1, ZCT2, ZCT3, GBF1, and GBF2 (Zhou and Memelink 2016; Rizvi et al.
2016).

1.4 Advantages and Challenges of Hairy Root Culture
Systems

As a plant-based production platform, hairy roots offer several advantages over
microbial- or mammalian-based systems (Häkkinen and Ritala 2010). Plant cells
exhibit a potential to produce a number of small molecular weight compounds,
which some are very difficult or impossible to make via chemical synthesis in an
economic way. The risk of endotoxins or oncogenes in the product is nonexisting,
while in microbial and mammalian systems, these risk factors should always be
considered. Other advantages include the high product homogeneity and easy
separation of cells and culture medium for product purification purposes. To date
there are some examples of successful production of plant-based natural compound
using microbial hosts (Paddon et al. 2013; Galanie et al. 2015), although sometimes
the yields have remained rather low. Common problems encountered when trying to
transfer the plant-based biochemical pathway to microbes are the availability of
precursors; expression and activity of enzymes in prokaryotes, e.g., difficulties
associated with expression of cytochrome P450s; and lack of S-adenosyl methio-
nine, required in many methylation steps in plant pathways (Khosla and Keasling
2003). A notable study reported by Galanie et al. (2015) showed that the complete
biosynthetic pathway of opioids could be reconstructed in yeast; however the final
yields remained very low, less than 1 μg/L. While artemisinic acid, a precursor of
important antimalarial compound, was successfully produced in yeast after several
years of extensive research efforts with very high titers (25 g/L), the final step in the
process requires a chemical conversion to reach artemisinin (Paddon et al. 2013).
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When it comes to plant-based natural products, cell and tissue cultures, such as hairy
roots, offer a viable option for large-scale production due to limitations posed by
isolating the compounds from whole plants. Cell and tissue cultures can be culti-
vated in controlled and contained environment, enabling the optimization efforts for
high productivities with possibility to apply GMP (good manufacturing practice). In
addition, in whole plants, many plant-derived compounds accumulate in certain
plant organs or in specific developmental stage making the yield optimization and
production process demanding. Cell culturing enables the use of synthetic growth
media, and usually the variation in yields or product quality is low (Häkkinen and
Ritala 2010). When it comes to hairy roots, a specific advantage is displayed by their
ability to grow relatively fast without growth hormones, reducing the costs deriving
from culture medium (Georgiev et al. 2007; Häkkinen et al. 2018). Hairy roots, as
other cell culture systems, offer also advantage via reduced costs deriving from
product isolation and purification, since unlike whole plants, cell cultures do not
possess by-products such as waxes, chlorophyll, oils, or fibers, which often are
complicating these processes. However, the choice of the production host and
platform should always be made by evaluating the properties of the final product
against the total production costs by techno-economic feasibility assessment. It was
estimated that the production of a natural product with cell and tissue culture-based
host becomes economic when the price of the final product exceeds $500–1000/kg
(Sajc et al. 2000). Therefore naturally this system is beneficial for high-value,
complex molecules. Nielsen and Keasling estimated that engineering of microbial
strains that overproduce a target compound to economically relevant levels takes
6–8 years and over US$50 million, which means much higher numbers for more
complex plant cells (Nielsen and Keasling 2016).

Biotransformation has also shown to be viable option for applications with hairy
root systems (Banerjee et al. 2012). Perhaps the most often hairy root-catalyzed
reaction has been glycosylation, including the reactions leading to digitoxigenin
glycosides (Kawaguchi et al. 1990), glycyrrhetinic acid glycosides (Asada et al.
1993), dehydroabietic acid, and phenolic acid glycosides (Fons et al. 1999;
Häkkinen et al. 2012). When it comes to high-value commercial compounds,
recently we showed that natural raspberry ketone, which is estimated to be the
most expensive natural flavor compound after vanillin, was successfully produced
in tobacco hairy roots by bioconversion strategy (Häkkinen et al. 2015). Diversity of
examples shows that hairy root cultures are entering into a new era of applied
research in generating pharmaceutical lead compounds by accomplishing chemical
transformations aided through these unique biological systems.

1.5 Bioreactor Design for Hairy Roots

Hairy root morphology sets criteria for bioreactors suitable for cultivation of hairy
roots. Tightly packed hairy roots, which are also generally considered as rather shear
sensitive, typically form clumps in bioreactors causing mass transfer limitations,
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including oxygen and nutrient availability (Georgiev et al. 2007; Eibl and Eibl
2008). Efficient ways to overcome these constraints have been shown by the use
of various immobilization techniques, e.g., meshes, cages, or polyurethane foam.
Thus, bioreactors with diverse configurations have been used for cultivating hairy
roots, including mechanically driven reactors (e.g., stirred tank, wave, and rotating
drum reactors), pneumatically driven reactors (e.g., bubble column and airlift reac-
tors), and bed reactors (e.g., trickle bed and mist reactors) (Liu et al. 2009; Georgiev
et al. 2010). Disposable bioreactors have demonstrated as promising tools for hairy
root cultivations (Lehmann et al. 2014). Major advantages with the use of disposable
bioreactors are the minimal cleaning and sterilization and reduced costs via reduced
cleaning needs, capital investments, and maintenance (Eibl et al. 2011). Hairy roots
are successfully cultivated in bioreactors with wave-induced mixing and aera-
tion (Fig. 1.3). The performance and ginsenoside production of Panax ginseng
hairy roots in wave bioreactors showed that both factors were significantly improved
in wave cultivation compared to shake flask cultivations (Palazón et al. 2003a).
Large-scale wave systems with capacities up to 600 L are now commercially
available (source: Wave Biotech AG®, Tagelswangen, Switzerland). The most
cited and largest hybrid bioreactor (bubble column-spray reactor) to grow hairy
roots (Datura stramonium) so far is the 500 L Wilson Bioreactor (Wilson 1997).

1.6 Predicting the Future

Since the discovery three decades ago, hairy roots have been a tool for studying the
molecular mechanism of a number of basic phenomena in plant behavior, biochem-
istry, and physiology. Nowadays hairy roots can be induced from practically any

Fig. 1.3 Bioreactors for hairy root cultivation. Wave bioreactor (left) and Medicel Explorer
Cultivation Unit (right)
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plants; one of the important focuses in hairy root research should be the conservation
of biodiversity and production of useful, rare, and exotic compounds from, e.g.,
endangered plant species. Plant kingdom has an enormous, still largely underutilized
potential for the discovery of natural compounds (Newman and Cragg 2016), which
may be exploited for human use. Especially for many medicinal plants, the bio-
chemical pathways leading to interesting compounds are still much unknown, and
hairy roots offer an excellent platform for pathway discovery.

The main challenge in hairy root biotechnology is still the relatively low yields of
production leading to high costs for the desired product. When it comes to large-
scale production of natural compounds, bioreactor technology plays a crucial role.
Although hairy root cultivation technology has been studied intensively (see reviews
by Mehrotra et al. 2015 and Banerjee et al. 2017), there are no flagship cases existing
in hairy root-produced commercial products. However, intensive research and
development work of both bioreactor design and novel computational tools apply-
ing, e.g., modelling, neural networks, and artificial intelligence, will definitely
improve the understanding of processes related to hairy root technology and will
lead to improved yields (Gallego et al. 2011; Mehrotra et al. 2015; Sweetlove et al.
2017).

Undoubtedly, plant metabolic engineering involving the overproduction of spe-
cialized metabolites is a technology which has resulted in great success (Farré et al.
2014). Recently, Sweetlove and co-workers showed how even primary metabolism
of plant systems can be successfully engineered using computational modelling
(Sweetlove et al. 2017). Another development that will clearly revolutionize plant
metabolic engineering is CRISPR-Cas9-mediated genome editing. This technique is
being rapidly adopted by the plant community as a robust and simple way to create
targeted mutations, and it has also resulted in successful cases with application of
hairy roots (Cai et al. 2015; Michno et al. 2015).
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Chapter 2
A Critical Review on Biotechnological
Interventions for Production and Yield
Enhancement of Secondary Metabolites
in Hairy Root Cultures

Mihir Halder, Dipasree Roychowdhury, and Sumita Jha

Abstract In the past three decades, differentiated hairy root culture-related
researches gained a great attention due to the equal or greater bio-production
capacity of low amount, high-value secondary metabolites as compared to their
parent plants with several advantages over undifferentiated cell suspension cultures
in plants. This was mainly because hairy roots are capable of auxin-independent
rapid growth and are genetically and biochemically stable, with high productivity
and suitability for adaptation to large-scale systems. Nowadays, hairy root cultures
of various plant species offer a novel promising opportunity and great prospects for
in vitro mass production of economically important bioactive metabolites. At pre-
sent, the productivity of desired compounds by hairy root cultures is generally too
low to fulfill the demands of pharmaceutical industry owing to various biological
and technological limitations. Screening and selection for high-yielding root lines
and optimization of the culture media and the culture conditions like type of nutrient
medium, salt strength, source of carbon and concentration, source of nitrogen and
the ratio of NH4

+/NO3
�, concentration of phosphate, inoculum density, hydrogen

ion concentration, temperature, and light intensity and quality have been taken as
yield enhancement strategies among others, to produce desired secondary metabo-
lites using hairy root cultures. Feasibility of commercial application of hairy root
culture in bioreactors requires several optimization steps. This review highlights
some of the recent progress and outlines future prospects for metabolite production
and yield enhancement approaches in hairy root cultures for producing bioactive
substances.
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2.1 Introduction

Hairy root culture of different plant species has been established by utilizing
different strains of Agrobacterium rhizogenes (Roychowdhury et al. 2013;
Benyammi et al. 2016; Thiruvengadam et al. 2016; Srivastava et al. 2017b; Bathoju
et al. 2017), a Gram-negative soil bacterium, which transfers its T-DNA (transfer
DNA) of root-inducing plasmid into the host genome during infection (Tepfer 2017;
Gelvin 2017; Vaghari et al. 2017). In the past three decades, differentiated hairy root
culture-related researches gained a great attention due to its rapid growth in
phytohormone-free basal culture medium, genetic and biochemical stability in
long-term culture, and the comparable or greater bio-production capacity for sec-
ondary metabolites (SMs) as compared to their parent plants with several advantages
over undifferentiated cell suspension cultures (Parr 2017; Roychowdhury et al.
2017; Vaghari et al. 2017). Hairy root cultures are well known for high productivity
and suitability for adaptation to large-scale bioreactor system (Patra and Srivastava
2015, 2017; Thakore et al. 2017). Additionally, de novo synthesis of secondary
metabolites and biotransformation can also be achieved through the hairy root
cultures (Bakkali et al. 1997; Sangwan et al. 2008; Banerjee et al. 2012; Srivastava
et al. 2017a).

Although SMs derived from field-grown plants have long been a rich source of a
wide variety of medicinal drugs that provide chemical scaffolds in the pharmaceu-
tical industry, numerous challenges are encountered such as availability of the plant
materials, low abundance, phytogeographical and seasonal variations, tissue-/organ-
specific metabolite production, variability in impurities, difficulties in purification
process, and economic costs involved in the selection and implementation of
appropriate high-throughput screening bioassays (Almagro et al. 2013; Nandagopal
et al. 2017). Due to chirality and structural complexity of the targeted SM, chemical
synthesis is usually not always possible and if possible, it is economically not viable
due to high production cost (Almagro et al. 2013). Thus, hairy root culture emerges
as an excellent, convenient, and efficient organ-based tissue culture system alterna-
tive to harvesting natural or in vitro grown plants to produce important bioactive
metabolites in less time period (Murthy et al. 2014; Srivastava et al. 2017b).
Additionally, large-scale production of different SMs is possible through scale-up
from laboratory shake culture to hairy root culture in bioreactors. Although large-
scale production of SM in bioreactors is quite difficult due to its complexity as it
requires investigations on several optimization steps, production of desired SM by
hairy root-based technologies in bioreactors has been achieved in few plant species
through recent advancements in bioreactor design and construction (Patra and
Srivastava 2014a, b, 2015, 2017; Pillai et al. 2015; Thakore et al. 2017).
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Preliminary biotechnological approach for plant SM production includes produc-
tion of hairy root culture of plant species to assess their growth and secondary
metabolite accumulation efficacy compared to field-grown or in vitro grown plants
or roots (Georgiev et al. 2010; Nourozi et al. 2014; Kumar et al. 2014). Georgiev
et al. (2010) reported betalain extracts obtained from hairy root cultures of Beta
vulgaris cv. Detroit Dark Red showed 20-fold higher total phenolic than extracts of
mature intact plant roots. Similarly, production of ~4-fold higher rosmarinic acid
(RA; 213.42 μg g�1 DW) compared to non-transformed (NT) roots (52.28 μg g�1

DW) has been achieved using hairy root cultures of Agastache foeniculum (Nourozi
et al. 2014). Hairy root culture of Helicteres isora developed by transformation with
A. rhizogenes strain ATCC-15834 using leaf explants showed ~8-fold higher
diosgenin yield than the seeds of H. isora (Kumar et al. 2014).

At present, although several reports demonstrated that established hairy root
culture produced comparable or enhanced amount of secondary metabolites com-
pared to NT plants, in most of the species, the productivity of desired compounds by
hairy root cultures is generally too low to fulfill the demands of pharmaceutical
industry owing to various biological and technological limitations (Dehghan et al.
2012; Almagro et al. 2013; Murthy et al. 2014). Productivity of any SM in hairy root
culture is controlled by two-stage events – biomass accumulation and metabolite
content and yield. Biomass accumulation represents first stage of the ultimate yield
of the desired secondary metabolite that is greatly influenced by the parameters that
control the growth and multiplication of cultured cells/organs, whereas the second
stage is represented by the content of the metabolite in cells/organ which is con-
trolled by the parameters that influence biosynthesis of secondary metabolites
(Murthy et al. 2014).

Hence, various biotechnological strategies have been developed to evaluate their
effectiveness toward improvement of the growth and productivity of secondary
metabolites utilizing hairy root culture of different plant species. This includes the
selection of high-yielding rhizoclone(s); optimization of culture medium and culture
conditions such as optimum level of salt, sugar, nitrogen, and phosphate and
physical factors such as temperature, illumination, light quality, medium pH, agita-
tion, aeration, and environmental gas (e.g., oxygen and carbon dioxide); replenish-
ment of nutrient and precursor feeding (Srivastava and Srivastava 2014; Zhu et al.
2014; Chashmi et al. 2016); elicitation (Wang and Wu 2013; Belabbassi et al. 2016;
Harfi et al. 2016; Hashemi and Naghavi 2016; Li et al. 2016; Piątczak et al. 2016);
application of phytohormones in medium and metabolic engineering (Goklany et al.
2013; Zhao et al. 2013; Shi et al. 2016; Sun and Peebles 2016); and scale-up to
bioreactors (Dehghan et al. 2012; Stiles and Liu 2013; Murthy et al. 2014). By
following stage-specific strategies, it is possible to produce large amounts of biomass
with an increase in the accumulation of secondary compounds (Murthy et al. 2014).
This review highlights some of the recent (during 2010–2017) reports on selected
biotechnological strategies adapted by different researches for optimum yield of
desired secondary metabolites in hairy root cultures.
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2.2 Screening and Selection for Fast-Growing and High-
Yielding Root Lines

The genotype, constituent of the culture medium, and surrounding environment are
the three important factors that control the growth, development, morphogenesis,
and secondary metabolite production in vitro. Species- or genotype-specific second-
ary metabolite accumulation in plants (Almagro et al. 2013; Murthy et al. 2014)
signified the necessity of proper selection of high-yielding species or genotype as
source of explants for hairy root culture induction for production of target compound
(s). As each hairy root line, initiated owing to individual transformation events, may
differ from the other showing great variability in the copy number, position, and
length of integrated T-DNA into the host plant genome that can be correlated with
the variability in morphology, growth rates, and ability to accumulate desired
phytochemical(s) in different hairy root lines (Murthy et al. 2014; Basu et al.
2015; Halder and Jha 2016). In perspective of SM productivity, generally root
lines have been selected via analysis of the growth of root lines followed by
quantification of desired product through UV-Vis (ultraviolet-visible) spectropho-
tometry, TLC (thin-layer chromatography), HPTLC (high-performance thin-layer
chromatography), HPLC (high-performance liquid chromatography), GC-MS (gas
chromatography-mass spectrometry), and NMR (nuclear magnetic resonance spec-
troscopy). Several reports (Basu et al. 2015; Gai et al. 2015a; Jiao et al. 2015;
Benyammi et al. 2016; Halder and Jha 2016) clearly demonstrated the importance of
screening and proper selection of root line(s) with high biomass and SM yielding
capacity among the induced root lines.

Two cultivars of Catharanthus roseus transformed with A. rhizogenes strains
AR15834 and A4 induced 1229 hairy root lines, among them three root lines were
selected on the basis of vigorous growth for the production of ajmalicine and
catharanthine, and other root lines were discarded as they failed to sustain vigorous
growth (Benyammi et al. 2016). Eventually, one root line was selected as high-
productive line in terms of biomass production (24.48-fold compare to control) and
alkaloid accumulation (3.8 mg g�1 DW ajmalicine and 4.3 mg g�1 DW
catharanthine) and utilized for further studies (Benyammi et al. 2016). Similarly,
A. rhizogenes-mediated transformation of Arachis hypogaea followed by meticulous
screening among 150 Ri-transformed root lines of three different A. rhizogenes
strains, namely, LBA9402, A4, and R1000, helped to achieve 19-fold higher
trans-resveratrol production compared to NT roots (Halder and Jha 2016).

The variability in growth [growth index (GI) on dry weight (DW) basis] and
plumbagin content (4.81–6.69 mg g�1 DW) was observed among ten selected highly
growing LBA9402-transformed hairy root lines of Plumbago zeylanica on solid
modified MS (Murashige and Skoog 1962) medium after 4 weeks irrespective of the
morphotype of roots (Basu et al. 2015). The identification of high plumbagin
yielding transformed root lines such as PzIX33, PzIX11, PzIX15, and PzIX28 of
P. zeylanica through the screening procedure has been reported by Basu
et al. (2015).
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Proper screening on the basis of growth parameters such as total root elongation,
lateral root density, and biomass accumulation led to the selection of two root clones,
AV1 and AV2, that accumulated substantial amount of essential oils than NT roots
among the established 92 hairy root clones of Artemisia vulgaris, developed by
A. rhizogenes-mediated genetic transformation with different strains of
A. rhizogenes (Sujatha et al. 2013). The importance of proper screening and selection
of hairy root line(s) among induced and/or established root lines also has been
reported in Astragalus membranaceus for production of total astragalosides (TAG)
(Jiao et al. 2015) and isoflavonoids (Jiao et al. 2014), in Plumbago zeylanica for
production of plumbagin (Nayak et al. 2015), and in Isatis tinctoria for production of
flavonoids and total alkaloids (Gai et al. 2015a, b).

Thus, meticulous screening and proper selection of appropriate hairy root line
(s) with fast growth rate and high productivity have been reported to be very
important factor for the future application of this biotechnological system as a
promising platform for large-scale secondary metabolite production. Primary selec-
tion of stable high-yielding root line(s) might help us to provide the best potential
root line that can be used for further yield enhancement through the application of
other strategies like optimization of culture medium and culture condition, applica-
tion of elicitors, precursor feeding, etc.

2.3 Optimization of Culture Medium for Growth
and Secondary Metabolite Production

Several chemical and physical factors such as the type of basal medium, salt strength
of the medium, types and levels of carbohydrates, nitrate, phosphate, and growth
regulator have been known to affect accumulation of biomass and secondary metab-
olites in plant cell and organ cultures (Murthy et al. 2014). Thus, optimization of
culture media is one of the key strategies for improvement of SM production in hairy
roots as discussed below.

2.3.1 Influence of Nutrient Medium and Salt Strength

Several studies demonstrated that biomass accumulation and SM production in hairy
root cultures can be improved by manipulation of nutrient medium (Murthy et al.
2014; Carlín et al. 2015; Hanafy et al. 2016). Strength of the macro- and
micronutrients in the basal medium (full or half), physical status of the medium
(solid or liquid), and individual salt strength of the medium can influence growth and
productivity of the SM in the hairy roots depending on species or genotype (Carlín
et al. 2015; Chung et al. 2016; Hanafy et al. 2016; Thiruvengadam et al. 2016;
Bathoju et al. 2017; Perassolo et al. 2017).
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In a number of plant species, MS medium had been reported to be the most
suitable medium for optimum growth and target SM production. Hairy root of
Momordica dioica cultured on MS medium (full-strength) supplemented with 3%
sucrose showed optimum biomass accumulation compared to different media tested,
namely, half-strength MS, full- and half-strength B5 (Gamborg et al. 1968), NN
(Nitsch and Nitsch 1969), and LS (Linsmaier and Skoog 1965) medium
(Thiruvengadam et al. 2016). The accumulation of biomass and phenolic com-
pounds such as flavonols (2529.53 μg g�1), hydroxycinnamic acid (1337.69 μg g
�1), and hydroxybenzoic acid (1704.61 μg g�1) was found to be significantly higher
in hairy roots cultured in full-strength MS medium as compared to roots of NT plant.
In comparison to NT roots, significantly higher total phenolic and flavonoid contents
were observed in such hairy roots (Thiruvengadam et al. 2016).

Among the different media formulations tested for species Chlorophytum
borivilianum, viz., B5, NN, MS, LS, and White (White 1963), MS medium was
found to be the most suitable for growth of the selected two transformed rhizoclones
(2364a and 2364b) with significantly high biomass accumulation (~21.89–22.52 g)
compared to NT roots (~4.52 g) (Bathoju et al. 2017). On MS medium, root line
2364b showed the highest accumulation of hecogenin (2.33-fold) and optimum
content of stigmasterol (21-fold) compared to the controls (Bathoju et al. 2017).

The optimized growth and anthraquinone production (emodin 211.32 μg g�1 DW
and physcion 353.23 μg g�1 DW) in hairy roots of Polygonum multiflorum were
achieved in liquid MS basal medium compared with other culture media evaluated
such as SH (Schenk and Hildebrandt 1972), B5, and N6 (Chu et al. 1975) media
(Thiruvengadam et al. 2014). Although qualitatively 23 types of polyphenolic
compounds were detected in both NT and hairy root cultures, hairy root of
P. multiflorum showed higher amount of total phenolic content including higher
amount of pyrogallol, hesperidin, naringenin, and formononetin, as well as signif-
icantly higher flavonoid content and antioxidant and antimicrobial activity in opti-
mized condition compared to untransformed roots (Thiruvengadam et al. 2014).
Similarly, optimum growth (i.e., up to 19.30-fold) and significantly higher accumu-
lation of anthraquinone constituents (Rhein 2.495 μg g�1; 2.55-fold than in wild-
type plant) were obtained when hairy root of P. multiflorum culture in full-strength
MS medium was compared to other half-strength MS, B5, and White media (Huang
et al. 2014a).

In MS medium, ATCC 15834-transformed root of Arnica montana (root clone
T4) showed the optimum growth and biomass accumulation (7.6-fold higher than
NT roots) with 4.72 cm average root length and 9.15 cm�1 lateral root density,
followed by growth in B5 medium [with 3.0 g FW (fresh weight), 3.87 cm average
root length, and 6.10 cm�1 lateral root density] and SH medium (with 2.21 g FW and
4.25 cm�1 lateral root density) after 40-day culture (Petrova et al. 2013). Recently,
Chung et al. (2016) showed that hairy root culture of Brassica rapa ssp. rapa shows
maximum biomass accumulation in full-strength MS medium, followed by half-
strength MS medium and NN, B5, and LS media. The full-strength MS medium was
similarly found to be most suitable for the hairy root growth and SM production in
Astragalus membranaceus (Jiao et al. 2015) and P. zeylanica (Nayak et al. 2015).
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The effect of different strengths of solid and liquid MS medium on growth and
indole-alkaloid production was well studied in hairy root cultures of C. roseus
(Hanafy et al. 2016). Growth of hairy roots increased ~46-fold and ~34-fold
(FW basis) in full- and half-strength liquid MS medium, respectively, compared to
wild type. Hanafy et al. (2016) showed 1474.3-fold higher accumulation of vincris-
tine compared to NT roots (~0.3 ng mg�1 FW) in hairy roots of C. roseus. In
addition, the hairy roots showed accumulation of catharanthine (maximum
0.7 ng mg�1 FW) which was not detected in the roots of NT grown in full- or
half-strength liquid MS medium. Vincristine, catharanthine, and vinblastine were
also secreted in the liquid culture medium of hairy root cultures (Hanafy et al. 2016).

On contrary, hairy root culture of Fagopyrum tataricum showed significantly
higher, i.e., more than twofold, biomass accumulation and rutin production in half-
strength MS liquid medium compared to full- and half-strength B5 and N6 medium
(Huang et al. 2016). Similarly, when hairy root line W16A4-1 of Vitis vinifera subsp.
sylvestris was cultured in full- and half-strength MS medium, better biomass pro-
duction was obtained in half-strength MS medium (Hosseini et al. 2017).
Saravanakumar et al. (2012) also demonstrated that half-strength MS liquid medium
was found to be superior for the biomass accumulation (attained 0.46 g per flask after
30 days) and withaferin A accumulation (72.3 mg g�1 DW) in hairy roots in
W. somnifera in comparison to full-strength MS or B5 medium and half-strength
B5 medium. Out of the four media compositions, half-strength MS medium was
reported to support better biomass production of hairy root culture of A. vulgaris
(Sujatha et al. 2013).

Carlín et al. (2015) clearly demonstrated the need of media optimization at a
species-specific manner, as growth responses differed among taxa. Twelve different
basal culture media, viz., Anderson basal media (Anderson 1978, 1980), DCR
(Douglas-fir cotyledon revised medium; Gupta and Durzan 1985), DKW (Driver
and Kuniyuki 1984), B5, Heller (Heller 1953), K&M (Kao and Michayluk 1975),
MS, N6, NN, Westvaco WV3 (Coke 1996), White, and WPM (Woody Plant
Medium; Lloyd and McCown 1981), were tested for biomass production of hairy
root culture of six cactus species, namely, Escobaria chaffeyi, Ferocactus
peninsulae, Mammillaria bocasana subsp. bocasana, Turbinicarpus
lophophoroides, T. pseudopectinatus, and T. schmiedickeanus subsp. schwarzii.
Both the hairy roots of E. chaffeyi and T. schmiedickeanus subsp. schwarzii showed
maximum threefold increase of biomass on DKW medium, whereas M. bocasana
subsp. bocasana exhibited optimum twofold increase of biomass on WPM. How-
ever, best growth of hairy root culture of F. peninsulae and T. lophophoroides was
achieved on N6 medium. T. pseudopectinatus showed optimum growth without
callus induction in Heller medium, whereas callus induction was associated with
root growth in all other basal medium which suggested that hairy root’s morphology
was also affected by the culture medium type (Carlín et al. 2015).

Both full- and half-strengths of four different basal media, viz., MS, B5, WP, and
NN, were used for optimizing the yield potential of the selected hairy root clone of
Picrorhiza kurroa, and full-strength B5 medium was found suitable for the maxi-
mum biomass yield (GI ~32.72 on the 40th day) which was 2.68 and 4.17 times
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higher as compared to root growth in half-strength MS and WP media (Verma et al.
2015). Moreover, the optimum level iridoid glycoside production (1.1- and 1.3-fold
higher kutkoside and picroside I) was observed in half-strength B5 medium instead
of the full-strength B5 medium (Verma et al. 2015). Similarly, B5 liquid medium
was found to be superior among various solid and liquid media tested as it resulted
maximum root biomass (36-fold higher) in root culture of Gentiana scabra (Huang
et al. 2014b).

Recently, the effect of medium on growth kinetics and anthraquinone
(AQ) production of hairy root cultures of Rubia tinctorum has been well evaluated
in half-strength B5 medium and WPM by Perassolo et al. (2017). Interestingly,
WPM promoted 58.6% higher growth compared to half-strength B5 medium,
whereas enhanced accumulation of intracellular AQ was observed in half-strength
B5 medium after 42-day culture (Perassolo et al. 2017). Moreover, AQ release
(maximum of �10% of total AQs) to the half-strength B5 medium was observed,
while extracellular AQs were almost undetectable in WPM (Perassolo et al. 2017).

Interestingly, diploid and tetraploid hairy root cultures of H. muticus in MS
medium supplemented with 50 g L�1 sucrose produced 27.5- and 26.5-fold
enhanced tropane accumulation than parental plants in spite of both diploid and
tetraploid hairy root clones that had higher growth and biomass production in liquid
B5 medium compared to liquid MS medium (Dehghan et al. 2012)

Hairy roots of A. acutangulus showed optimum growth and tropane alkaloid yield
(9.5 mg L�1) in N6 medium as compared to MS, B5, and White (Liu et al. 2013),
whereas hairy roots of Scutellaria baicalensis grown in full-strength SH medium
showed the highest growth and the higher levels of the flavones, baicalin, baicalein,
and wogonin in half-strength B5 than in the other basal media used in this study
(Kim et al. 2012).

Hairy root culture of Persicaria minor showed maximum 35-fold increase of GI
and production of β-caryophyllene (major sesquiterpenes) in half-strength MS basal
medium supplemented with Gamborg vitamins (1/2 MS-B5) after 8 weeks of culture
which was significantly higher than the MS, MS-B5, and 1/2 MSmedia (Ashraf et al.
2015). These results showed the crucial role of the B5 vitamins for hairy root
biomass production in P. minor (Ashraf et al. 2015). The first report of production
of reserpine in quantifiable amounts from LBA 9402-transformed root lines of
Rauvolfia serpentina was reported by Ray et al. (2014). The medium optimization
and screening among hairy root lines resulted in selection of high reserpine-
producing root line RsIX6 showing 5.65-fold increase in accumulation of reserpine
on modified MS medium as compared with non-transformed roots of in vitro
plantlets (Ray et al. 2014).

The numerous reports on different plant species discussed above emphasize on
the critical role of the type of culture medium, physical status of the medium, and the
salt strength of the medium for optimum biomass and SM yield in hairy roots and the
importance of optimization of these parameters for each species.
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2.3.2 Influence of the Carbon Source and Concentration

The nature of carbon source used in plant tissue culture medium and its concentra-
tion can influence the growth and the accumulation of secondary metabolites in hairy
root cultures. Thus, several researchers examined the effects of different types of
carbon sources and their different concentrations in optimized culture medium on the
growth and/or accumulation of SM in hairy root cultures (Shinde et al. 2010;
Praveen and Murthy 2012; Kochan et al. 2014; Verma et al. 2015; Chung et al.
2016; Weremczuk-Jeżyna et al. 2016). In plant tissue culture, usually a single simple
sugar or a combination of simple sugars such as glucose, fructose, maltose, and
sucrose is used as carbon source for unorganized cell cultures and organ cultures
(Murthy et al. 2014). Sucrose is the most significant carbon source for plant tissue
cultures, used as the chief energy source and an important constituent in secondary
metabolite biosynthesis (Praveen and Murthy 2012; Nagella et al. 2013).

Liu et al. (2013) verified the effect of different sugars including sucrose, glucose,
fructose, and galactose contained in a medium on biomass and alkaloid yield of
A. acutangulus hairy root cultures and reported the best biomass and alkaloid yield
was obtained in medium supplemented with 3% sucrose. In hairy root culture of
A. membranaceus, the effect of different carbohydrates and different concentrations
of sucrose was tested, and sucrose was found to be the ideal carbohydrate for
biomass production and astragaloside (AG) accumulation (Jiao et al. 2015). Culture
medium supplemented with ~3% sucrose favored optimum AG accumulation, but
sucrose concentration ~4% was suitable for biomass production (Jiao et al. 2015).

Different concentrations (10–50 g L�1) of sucrose, D-glucose, or D-fructose were
used in full-strength MS media to evaluate their effect on biomass growth of
transformed hairy roots of P. zeylanica. Medium containing sucrose at concentration
of 20 g L�1 favors maximum biomass accumulation of both A4- and LBA9402-
transformed hairy roots, whereas MS medium supplemented with D-glucose and
D-fructose showed negative influence on the root biomass accumulation (Nayak
et al. 2015).

For testing the effect of individual sugars, viz., glucose, fructose, sorbitol,
mannitol, ribose, lactose, rhamnose, galactose, market grade sugar, and sucrose
(used as control) as carbon source on yield potential of the hairy root clone 14-P
of P. kurroa, each was added to the half-strength B5 medium at 4% concentration
(Verma et al. 2015). The highest biomass yield and secondary metabolites (1.2-fold,
1.3-fold, and 1.4-fold higher yield of total glycoside, kutkoside, and picroside I,
respectively) were obtained when market grade sugar was used as compared to other
carbohydrates (Verma et al. 2015).

However, Vinterhalter et al. (2015) reported that the concentration than the type
of carbohydrate played a significant role on hairy root growth of G. dinarica.
Moreover, most of the root clones showed a positive correlation between the
carbohydrate concentration up to 116.8 mM in the culture medium and phenolic
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content. Higher sugar concentration (175.2 mM) showed negative impact on phe-
nolic production (Vinterhalter et al. 2015). Similarly, xanthone content increased
with sucrose concentration (up to 116.8 mM), whereas glucose- or fructose-
supplemented medium showed the highest xanthone accumulation at 175.2 mM
(Vinterhalter et al. 2015).

Of the various sucrose concentrations (10–120 g L�1) assessed in Panax
quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreac-
tor, medium containing 3–5% sucrose favored root growth, whereas 20 g L�1 or
more than 70 g L�1 sugar concentrations inhibited growth of hairy roots in shake
flasks (Kochan et al. 2014). The highest amount of ginsenosides in hairy roots was
observed in the medium with 30 g L�1 sucrose (Kochan et al. 2014). In bioreactor,
similar correlate with saponin content and the sucrose concentration in the medium
was also noticed. Lower sucrose concentrations (20 and 30 g L�1) favored accumu-
lation of protopanaxadiol derivatives, while higher sucrose concentrations (50 and
70 g L�1) stimulated accumulation of Rg group saponins (Kochan et al. 2014).

Among the different sucrose concentrations (10–50 g L�1) tested for optimization
of hairy root culture of F. tataricum, selected hairy root line showed maximal
biomass accumulation (45-fold) along with maximum rutin content (4.11-fold) in
full-strength MS liquid medium supplemented with 30 g L�1 sucrose compared to
control (Huang et al. 2016). Similarly, hairy root of M. dioica demonstrated the
highest biomass accumulation in liquid MS medium supplemented with 3% sucrose,
among the tested sucrose concentration, i.e., 1–4% (Thiruvengadam et al. 2016). Of
the various concentrations of sucrose (10–40 g L�1) tested for hairy root of Papaver
bracteatum, MS medium containing 30 g L�1 sucrose showed most stimulating
effect on growth rate and accumulation of biomass (Sharafi et al. 2013). Similar type
of result was observed in hairy root cultures of A. foeniculum (Nourozi et al. 2014).
Biomass production and phenolic accumulation in hairy roots of Dracocephalum
forrestiiwere studied in respect to changes in initial concentration of sucrose (1–7%)
using WPM (Weremczuk-Jeżyna et al. 2016). WPM supplemented with 3% sucrose
showed optimal biomass accumulation and production of phenolic compounds.

Interestingly, in B. rapa ssp. rapa, liquid MS medium supplemented with 4%
sucrose produced significantly higher hairy root biomass accumulation
(FW 97.25 g L�1 and DW 10.11 g L�1) in comparison with different concentrations
(1–5%) of sucrose (Chung et al. 2016). Hairy root culture of Psoralea corylifolia
cultured in MS medium containing 40 g L�1 sucrose produced the highest biomass
15.6 g L�1 on 28th day, whereas the growth of hairy roots was inhibited in lower
sucrose concentrations (Shinde et al. 2010). Although maximum 2.08% DW daid-
zein and 0.37% DW genistein production in hairy roots was reported in MS medium
supplemented with 40 g L�1and 20 g L�1 sucrose, respectively, prolonged isofla-
vone production, even after 35 days of cultivation, was observed in MS medium with
50 g L�1 sucrose (Shinde et al. 2010). Similarly the highest biomass accumulation
by hairy root culture of A. vulgaris was observed in medium supplemented with
40 g L�1 sucrose (Sujatha et al. 2013).

Similar type of study was performed by Praveen and Murthy (2012) using
individual or different combinations of various types of carbohydrates such as
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sucrose, glucose, fructose, maltose, glucose + fructose (1:1), fructose + sucrose
(1:1), and sucrose + glucose (1:1) in the hairy root cultures of Withania somnifera.
Sucrose-containing MS medium showed optimum withanolide A production.
Among the tested sucrose concentration (1–8%), optimum biomass accumulation
and withanolide A production were obtained in MS medium supplemented with 3%
and 4% sucrose, respectively (Praveen and Murthy 2012). Optimization of carbon
source in half-strength MS liquid medium for hairy root growth and withaferin A and
withanone production in W. somnifera was reported by Sivanandhan et al. (2012).
Medium containing 2% sucrose was found best suited for hairy root biomass
accumulation (1.41 g DW) after 40 days of culture (Sivanandhan et al. 2012).
However, the maximum withaferin A (2.21 mg g�1 DW) and withanone (2.41 mg g
�1 DW) accumulation was achieved in half-strength liquid MS medium with 4%
sucrose on the 40th day of culture, followed by sucrose + glucose (4 + 1%) as
compared to glucose, fructose, maltose, and other combinations tested (Sivanandhan
et al. 2012).

Wawrosch et al. (2014) reported 10.9-fold and 7.6-fold increased leoligin
(LG) and 5-methoxy-leoligin (MLG) production, respectively, in hairy root line
K8A of Leontopodium nivale ssp. alpinum when cultured in liquid-modified MS
medium supplemented with 6% sucrose compared to control.

Therefore, from the above reports, it is evident that effects of different carbon
source and their different concentrations should be evaluated during formulation of
the optimized culture medium as it can affect both the growth and/or accumulation of
secondary metabolites in hairy root cultures. Enhancement of both biomass accu-
mulation and SM yield can be manipulated by using these strategies.

2.3.3 Influence of Nitrogen Source and the Ratio of NH4
+/

NO3
�

Although both nitrate and ammonium serve as nitrogen sources in the most common
plant tissue culture media such as MS, LS, SH, and B5, the source of nitrogen, the
overall concentration of total nitrogen, and the ratio of ammonium (NH4

+) to nitrate
(NO3

�) of the medium have been shown to affect the growth, biomass accumulation,
and SM production in hairy root culture of few plant species (Shinde et al. 2010; Liu
et al. 2013; Praveen and Murthy 2013; Sharafi et al. 2013; Murthy et al. 2014).

Total nitrogen concentration in the medium had significant effects on growth and
alkaloid production in A. acutangulus (Liu et al. 2013). The highest biomass yield
(4.5 g L�1) and the maximum alkaloid production (9.9 mg L�1) have been achieved
in 90 mM nitrogen concentration with ratio of NH4

+/NO3
� ¼ 4:1, whereas the low

or high total nitrogen concentrations showed inhibitory effect on both biomass and
alkaloid production (Liu et al. 2013). However, NH4

+/NO3
� ratio of 20:10 mM in

liquid MS medium favored the growth of hairy root culture of P. bracteatum
compared to the tested ratios of NH4

+/NO3
�, i.e., 0:20, 10:20, 20:20, 40:20,
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60:20, 20:0, 20:10, 20:40, and 20:60 mM (Sharafi et al. 2013). Similarly, maximum
biomass accumulation (13.86 g L�1 DW) and highest isoflavone productivity of
2.05% DW of daidzein and 0.51% DW of genistein in hairy root culture of
P. corylifolia were achieved in MS medium supplemented with NH4

+ and NO3
�

at a ratio of 20:10 than higher concentrations of ammonia or nitrate in a ratio of 40:20
and 60:20 or 20:40 and 20:60 mM (Shinde et al. 2010).

The growth and withanolide A production of W. somnifera hairy root culture
were also affected by the ratio of NH4

+and NO3
�, and maximum biomass produc-

tion (148.17 g L�1 FW and 14.79 g L�1 DW) was observed at NH4
+/NO3

�

¼ 14.38:37.60 mM, while the ratio of NH4
+/NO3

� ¼ 0.00:18.80 mM favored
withanolide A production (maximum 14.68 mg g�1 DW) in MS medium (Praveen
and Murthy 2013). The hairy root culture of A. hypogaea showed maximum yields
of resveratrol, arachidin-1, and arachidin-3 in modified MS medium contain 7.7 mM
NH4

+ and 22.85 mM NO3
� compared with Gamborg’s basal medium (Condori et al.

2010).
Although hairy root growth has been reported sometimes to be retarded by high

nitrogen content in the medium, culture medium with high-salt concentrations
(DKW medium) and relatively high to medium nitrogen content (N6 medium)
stimulates higher biomass accumulation in E. chaffeyi, T. schmiedickeanus subsp.
schwarzii, F. peninsulae, and T. lophophoroides, while M. bocasana subsp.
bocasana showed the best growth on WPM, which has a medium salt concentration
and low nitrogen content. However, hairy root culture of T. pseudopectinatus
preferred low nitrogen medium such as Heller medium (Carlín et al. 2015). Similar
studies have been performed using selected hairy roots of Datura sp. that were
developed by A. rhizogenes-mediated genetic transformation of Datura tatula,
D. stramonium, D. innoxia, and D. ferox, respectively, for production of hyoscya-
mine (Harfi et al. 2011). The most effective root line, DT10, showed optimum
biomass accumulation in full-strength MS and B5 media, whereas diluted media
with lower salt content such as 1/2MS, 3/4MS, 1/2B5, and 3/4B5 favor hyoscyamine
production (Harfi et al. 2011).

The optimum growth and SM production seemed to be affected by the total
nitrogen content in medium as well as the ratio of NH4

+ and NO3
� in the culture

medium in species-specific manner. But the actual mechanism of enhancement is
still not clear and needs more systematic studies of expression of key enzymes
involved in particular metabolic pathways.

2.3.4 Influence of Phosphate Concentration

Inorganic phosphate (Pi) is a crucial element of functional molecules in plants
involved in many physiological processes (Peret et al. 2011) and generally obtained
in form of the soluble phosphate from the soil. Low phosphate content in soil or
culture medium inhibits growth and productivity thus determination of the amount
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of phosphorus required by different plants grown in natural habitat as well as culture
medium is important to maintain optimum growth and yield.

The effect of the phosphate concentration and other macroelements NH4NO3,
KNO3, CaCl2, MgSO4, and KH2PO4 at concentrations of 0, 0.5, 1.0, 1.5, and 2.0�
strengths in the MS medium on the production of biomass and withanolide A in
hairy roots of W. somnifera has been evaluated by Praveen and Murthy (2013). The
optimum biomass accumulation, i.e., 139.42 g l�1 FW and 13.11 g l�1 DW, was
observed in the medium with 2.0� concentration of KH2PO4, whereas the highest
production of withanolide A (15.27 mg g�1 DW) was recorded with 2.0� KNO3

(Praveen and Murthy 2013).
In contrary, the low concentrations of phosphate favored production of

isoflavones in hairy roots of P. corylifolia (Shinde et al. 2010) and production of
phenolic acids in Salvia miltiorrhiza (Liu et al. 2016). Liu et al. (2016) reported that
phosphate starvation increased the production of phenolic acids in hairy root culture
of S. miltiorrhiza cultured in liquid 6,7-v medium by inducing the key enzyme genes
in a positive feedback pathway that affect tyrosine-derived pathway more than the
phenylalanine pathway. Four phenolic acids, i.e., salvianolic acid B (LAB),
danshensu (DSU), RA, and caffeic acid (CA), were enhanced in 6,7-v medium by
reducing the phosphate level at 0.0124 mM in comparison to the hairy roots grown
in control phosphate concentration (1.24 mM). Even the medium containing
0.124 mM phosphate significantly inhibits LAB, DSU, and RA content by 0.19-,
0.06-, and 0.34-fold of control, respectively, except the enhancement of 3.17-fold in
CA content. Culture medium with 0.0124 mM phosphate enhanced the yield of
LAB, RA, and CA 2.33-, 1.68-, and 2.17-fold as compared to control (Liu et al.
2016). Shinde et al. (2010) also demonstrated that isoflavone production in hairy
roots of P. corylifolia was favored by low concentrations of PO4

3� as the highest
volumetric yield of daidzein (2.06% DW) and genistein (0.37% DW) was obtained
in MS medium supplemented with 0.625 mM PO4

3� in comparison to different
concentrations of phosphate (0.625–5 mM). In contrast, the biomass accumulation
enhanced with increasing concentration of phosphate in the medium.

The phosphate concentration in the basal medium used for hairy root cultures
affects optimum growth and SM production, and the optimum concentration
required appears to depend on the species. The studies on different species (Shinde
et al. 2010; Praveen and Murthy 2013; Liu et al. 2016) showed that the optimum
concentration of phosphate that favors maximum accumulation of the SM might not
be favorable for growth and optimum biomass in hairy root cultures.

2.3.5 Influence of Phytohormones

One amazing property of transformed hairy roots is that they can grow on phyto-
hormone unsupplemented basal medium, unlike the NT roots that require supply of
exogenous auxin in the medium. However, the relative influences of different types
of auxin on the growth, morphology, and SM production in hairy root cultures have
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been reported for a few plant species (Abbasi et al. 2012; Kim et al. 2012, 2017;
Cheruvathur and Thomas 2014; Huang et al. 2014b; Nayak et al. 2015).

The influence of various concentrations (0.1, 0.5, and 1 mg L�1) of different
auxins [indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and naphthalene
acetic acid (NAA)] on growth and flavone (baicalin, baicalein, and wogonin)
production in hairy root culture of S. lateriflora and S. baicalensis is reported
(Kim et al. 2012, 2017). Auxin treatments stimulate flavone production with no
significant effect on growth of S. baicalensis hairy roots. The highest level of
baicalin and baicalein accumulation was observed in hairy root culture grown in
1 mg L�1 IAA-supplemented medium; meanwhile, the highest amount of wogonin
was observed in 1 mg L�1 IBA-supplemented medium (Kim et al. 2012). Interest-
ingly, hairy root culture of S. lateriflora showed maximum 8% higher biomass
accumulation, 1.64-fold higher baicalin, and 2.92-fold higher wogonin accumulation
compared to the control in 0.1 mg L�1 IBA-supplemented half-strength MS
medium, whereas maximum baicalein content, 2.38-fold higher than of the control,
was observed in 1/2 MS medium supplemented with 0.1 mg L�1 NAA (Kim et al.
2017).

Investigation of the individual effect of different concentrations of IBA and NAA
on hairy root growth and rhinacanthin (RC) accumulation in the hairy root cultures
of Rhinacanthus nasutus exhibited enhanced biomass and RC accumulation com-
pared to control in the auxin supplement medium (Cheruvathur and Thomas 2014).
Comparatively better biomass (10.2 g flask�1 FW and 2.4 g flask�1 DW) and RC
accumulation (4.5 mg g�1 DW RC-C, 0.50 mg g�1 DW RC-D, and 0.25 mg g�1 DW
RC-N) was observed in 2.5 μM IBA-supplemented medium as compared to NAA
and control (Cheruvathur and Thomas 2014).

Hairy root culture of G. scabra was used to study the response of different plant
growth regulators on the production of SMs. Hairy root cultures showed higher
accumulation of loganic acid (6.6-fold) and gentiopicroside (1.8-fold) in medium
containing 1 mg L�1 zeatin and 1 mg L�1 NAA, respectively, as compared to the
roots of plants grown in greenhouse (Huang et al. 2014b). On the other hand, 1.4-
and 2.5-fold higher gentiopicroside and swertiamarin were obtained in the presence
of 1.0 mg L�1 NAA as compared to commercial Gentiana herb No. 2 (Huang et al.
2014b).

In the investigation on the effect of different auxins (namely, IAA, IBA, and
NAA) at different concentrations (1 and 2 mg L�1) on the biomass yield of the
selected hairy root lines of P. zeylanica that were performed in optimized basal
media (i.e., full-strength MS supplemented with 20 g L�1 sucrose), the result showed
that transformed roots were more sensitive to the presence of exogenous auxin as
compared to NT roots and application of exogenous auxin inhibits growth of hairy
roots (Nayak et al. 2015).

Abbasi et al. (2012) demonstrated that the supplementation of light-grown hairy
root cultures of Echinacea purpurea with optimized concentration of 0.025 μM
gibberellic acid (GA3) caused morphological change with enhanced biomass, SM
production (caffeic acid derivatives), as well as increased phenylalanine ammonia-
lyase (PAL) activity, cell viability, and free radical scavenging activity in hairy roots
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in shake flask cultures. Application of lower and higher levels of GA3 supplemen-
tation resulted in a decrease in all parameters tested compared to the control
suggesting that the application of optimum GA3 concentration can be used as an
excellent strategy to optimize the production of secondary metabolites from
E. purpurea hairy root cultures.

2.4 Optimization of the Culture Conditions for Growth
and Secondary Metabolite Production

2.4.1 Influence of Inoculum Density

The effect of inoculum density on the growth, biomass accumulation, and SM
production by cell suspension culture or hairy root culture in shake culture or
bioreactors has been well reported (Danphitsanuparn et al. 2012; Jiao et al. 2015).
Determination of optimum inoculum density is important for studies in optimizing
various factors including availability of nutrients and oxygen and volume of culture
flask (Jeong et al. 2009).

The influence of inoculum density on biomass accumulation and TAG content
has been well documented in A. membranaceus hairy root cultures (Jiao et al. 2015).
Biomass accumulation and TAG content increased with the increase of inoculum
density from 1% to 1.6% at a fixed sucrose concentration, but further increase in
inoculum size (1.6–2.0%) showed negative effect on both the parameters (Jiao et al.
2015).

Hairy roots of Pueraria candollei var. candollei grown in 50 ml of liquid B5
medium were used to evaluate the effects of inoculum size (IS) and temperature on
growth and production of isoflavonoids (Danphitsanuparn et al. 2012). The result
recommended that 1% IS and 32 �C culture temperature were best for optimum
growth and isoflavonoid production in hairy roots because maximum 646.2 mg flask
�1 biomass accumulation with higher GI decreased browning of hairy roots and the
highest accumulation of total isoflavonoid content (31.0 mg g�1 DW) was obtained
under the optimized culture condition (Danphitsanuparn et al. 2012).

2.4.2 Influence of Hydrogen Ion Concentration in Medium

The significant role of initial pH (the hydrogen ion concentration) of the culture
medium on biomass accumulation and SM production by hairy root culture has also
been studied in some plant species (Liu et al. 2013; Verma et al. 2015; Rahimi and
Hasanloo 2016). Medium pH can affect nutrient uptake as well as enzymatic and
hormonal activities in plant cell/organ cultures (Praveen and Murthy 2012).
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Hairy roots of Silybum marianum grown in acidic pH (pH 5) at 25 �C favor
biomass accumulation (highest 0.45 g) and silymarin production (0.26 mg g�1 DW)
in respect to other medium pH 5.7, 6, and 7 (Rahimi and Hasanloo 2016). Moreover,
the higher content of silybin (0.025 mg g�1 DW), isosilybin (0.024 mg g�1 DW),
silychristin (0.061 mg g�1 DW), and silydianin (0.095 mg g�1 DW) was obtained as
compared to those grown in higher pH (pH > 5). This could be due to strong
lipoxygenase (LOX) activity at acidic environment of medium (Rahimi and
Hasanloo 2016).

The significant roles of initial pH of the basal medium on growth and secondary
metabolite production have been well documented in the selected hairy root clone of
P. kurroa using half-strength B5 medium supplemented with 4% sucrose (Verma
et al. 2015). Hairy root cultured in basal medium having initial pH 6.0 showed
highest yields of biomass and two specific glycosides compared to the basal medium
with different initial pH such as 3.0 � 0.1, 4.0 � 0.1, 5.0 � 0.1, 7.0 � 0.1, and
8.0 � 0.1 (Verma et al. 2015).

Liu et al. (2013) reported that basal medium at pH 6.5 was optimum for
A. acutangulus hairy root growth resulting in twofold higher biomass accumulation
compared to basal medium at pH 4.5. However, roots cultured in medium at pH 4.5
showed maximum alkaloid yield, i.e., 7.2 mg L�1. In I. tinctoria among the tested
pH range 4–6.5, the culture medium with initial pH at 5.8 favored optimum biomass
production and bioactive alkaloid accumulation in hairy roots (Gai et al. 2015a).

2.4.3 Influence of Temperature

There are few studies on the effect of temperature at which cultures are maintained
on growth and SM accumulation in hairy root cultures. However, temperature of the
culture environment can influence biomass and SM production by the hairy root
culture to large extent (Jeong et al. 2009; Danphitsanuparn et al. 2012; Jiao et al.
2015; Rahimi and Hasanloo 2016).

The investigation on the effect of temperature regimes, 30 �C/25 �C, 25 �C/25 �C,
and 15 �C/20 �C, in 16 h/8 h cycle with respect to the root biomass and silymarin
production in hairy root cultures of S. marianum demonstrated that the optimum
biomass accumulation and secondary metabolite production occurred at temperature
25 �/25 �C in 16 h/8 h cycle (Rahimi and Hasanloo 2016).

A. membranaceus hairy root cultures showed increase in biomass and TAG
content with increase in temperature from 24 to 28 �C but decreased significantly
at above 28 �C temperature (Jiao et al. 2015). Under optimized conditions (inoculum
size 1.54%, culture temperature 27.8 �C, sucrose concentration 3.24%, and harvest
time 36 days), hairy root cultures produced optimal biomass (15.79 g L�1 DW) and
TAG accumulation (2.65 mg g�1 DW) which exhibited significant superiority to that
of 3-year-old field-grown roots (Jiao et al. 2015).

The hairy roots of P. candollei var. candollei grown in liquid B5 medium showed
a significantly lower percentage of browning and higher isoflavonoid production,
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promoting accumulation of the daidzein when cultured at 32 �C than at 25 �C
(Danphitsanuparn et al. 2012).

2.4.4 Influence of Light Intensity and Quality

Light irradiation and quality and intensity of light also can influence growth and
secondary metabolisms in hairy root culture (Yu et al. 2005; Mukherjee et al. 2016;
Pandey et al. 2016). Upon continuous illumination, hairy roots of Daucus carota
was turned green due to accumulation of total chlorophyll ~1.2 mg g�1 FW as
compared to negligible chlorophyll content in hairy roots cultured in darkness
(Mukherjee et al. 2016). Interestingly, a metabolic shift from phenylpropanoid/
benzenoid biosynthesis toward volatile isoprenoids was evidenced by 48% reduced
p-hydroxybenzoic acid ( p-HBA) accumulation (1.1 mg g�1 DW) along with sub-
sequent increase of monoterpene and sesquiterpene accumulation in green hairy
roots as compared to dark-grown hairy roots (Mukherjee et al. 2016). Suppression of
p-hydroxybenzaldehyde dehydrogenase (HBD) activity and lower methyl salicylate
content was noted in the green hairy roots compared to normal hairy root culture
(Mukherjee et al. 2016). Reported that light levels lower than 10 μmol m�2 s�1

induced significant changes of root pigmentation and morphology by increasing root
pigment content and root biomass.

Inhibitory effect of light on growth of four stable rhizoclones of S. rebaudiana
was observed when cultured under light compared to root grown under dark
condition with substantially higher photosynthetic pigment accumulation in only
two rhizoclones (Pandey et al. 2016). Hairy rhizoclone SRA4 showed synthesis of
diterpene steviol glycoside, stevioside (max. 1.72 mg g�1DW in the root tissues and
max. 2.12 mg L�1 in media), when grown under light, not detected in roots grown in
dark, and a direct positive correlation between stevioside content and expression
UGT85C2 gene was observed (Pandey et al. 2016).

2.5 Conclusions

Different biotechnological interventions such as meticulous screening and selection,
optimization of culture conditions and chemical constituents of culture medium,
precursor feeding, application of elicitor molecules, and metabolic engineering can
improve production and yield of secondary metabolites in hairy root cultures. In this
review, we discuss the aspects of meticulous screening and selection of high-
yielding root line and optimization of culture conditions and chemical constituents
of culture medium for improvement of secondary metabolite production. Tradition-
ally, optimization of culture conditions and chemical constituents of culture medium
was done by monitoring the influence of one-variable-at-a-time which requires a
large number of experiments to study the effect of all the variables, and there was a
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possibility to overlook the interactive affects among the variables studied (Amdoun
et al. 2010). Therefore, an effective mathematical and statistical technique called
response surface methodology (RSM) that is more effective for optimization studies
where interactive factors may be involved becomes the most popular optimization
method in recent years (Amdoun et al. 2010). Applying this model, 212.7%
enhanced hyoscyamine production was achieved in the jasmonic acid (JA)-elicited
hairy roots of Datura stramonium in optimized B5 medium (that contains 79.1 mM
NO3�, 11.4 mMCa2+, and 42.9 mg L�1 of sucrose) in comparison with elicited hairy
roots cultured in B5 medium (Amdoun et al. 2010).

Another modern approach called artificial neural network (ANN)-based predic-
tion of optimal in vitro culture parameters like inoculum density, pH and volume of
growth medium per culture vessel, and sucrose content for maximum hairy root
biomass yield of Glycyrrhiza was reported by Prakash et al. (2010). This kind of
study could be a model system in exploitation of hairy root cultures for commercial
production of pharmaceutical compounds using large bioreactors (Prakash et al.
2010). Later, ANN-based combinatorial model was proposed based on five hidden
Markov models (HMMs) derived for five test culture conditions, i.e., pH of liquid
growth medium, volume of medium per culture vessel, sucrose concentration (%
w/v) in growth medium, nitrate concentration (g L�1) in the medium, and density of
initial inoculum (g FW) per culture vessel, and their corresponding fresh weight
biomass and its efficiency were assessed for the prediction of optimal values of
different environmental factors to achieve maximum productivity in a bioprocess in
terms of high biomass in Rauwolfia serpentina (Mehrotra et al. 2013).
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Chapter 3
pRi-Transformed Plants as a Source
of Secondary Metabolites

Ewelina Piątczak, Renata Grąbkowska, and Ewa Skała

Abstract pRi-transformed plants are obtained from hairy roots by Agrobacterium
rhizogenes-mediated transformation. The hairy roots may be an attractive alternative
for obtaining material from field-cultivated plants because of their rapid growth and
often higher secondary metabolite production. Another value of the hairy roots may
be their ability to regenerate whole transgenic plants. These transgenic plants are
characterized by morphological changes known as hairy root syndrome. Addition-
ally, the transformed plants also accumulated valuable secondary metabolites at
higher levels than nontransformed plants. These alterations are associated mainly
with the co-expression of rolA, rolB, and/or rolC genes derived from A. rhizogenes
plasmids. Recent interest has grown in the application of pRi-transformed plants as a
potentially rich source of pharmaceutically valuable metabolites, especially those
which cannot be chemically synthesized. The chapter presents the recent progress
made in the production of valuable secondary metabolites by pRi-transformed plants
and the limitations associated with it.

Keywords Agrobacterium rhizogenes · Transformed plants · Secondary
metabolites

3.1 Regeneration of pRi-Transformed Plants from Hairy
Roots

The regeneration of shoots from transformed roots often occurs spontaneously
(Piątczak et al. 2015), or it can be light-dependent or induced by the growth
regulators (Xu et al. 2006; Gangopadhyay et al. 2010). Table 3.1 presents a list of
recent literature regarding the method of regenerating pRi-transformed plants from
the hairy roots of various plant species, and it is a continuation of the previous

E. Piątczak (*) · R. Grąbkowska · E. Skała
Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Łódź, Poland
e-mail: ewelina.piatczak@umed.lodz.pl

© Springer Nature Singapore Pte Ltd. 2018
V. Srivastava et al. (eds.), Hairy Roots,
https://doi.org/10.1007/978-981-13-2562-5_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2562-5_3&domain=pdf
mailto:ewelina.piatczak@umed.lodz.pl


T
ab

le
3.
1

T
ra
ns
ge
ni
c
pl
an
ts
ob

ta
in
ed

af
te
r
A
gr
ob

ac
te
ri
um

rh
iz
og

en
es
-m

ed
ia
te
d
tr
an
sf
or
m
at
io
n
(d
at
a
pu

bl
is
he
d
af
te
r
20

00
)

M
et
ho

d
of

pl
an
to

bt
ai
ne
d

P
la
nt

sp
ec
ie
s
(f
am

ily
)

A
gr
ob

ac
te
ri
um

rh
iz
og

en
es

st
ra
in

C
ul
tu
re

m
ed
iu
m

an
d
cu
ltu

re
co
nd

iti
on

s
R
ef
er
en
ce
s

S
po

nt
an
eo
us

L
ig
ht

L
iq
ui
d

m
ed
iu
m

P
lu
m
ba

go
in
di
ca

(P
lu
m
ba
gi
na
ce
ae
)

A
T
C
C
15

83
4

H
or
m
on

e-
fr
ee

M
S
,2

%
su
cr
os
e,
16

-h
ph

o-
to
pe
ri
od

,4
0
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

G
an
go

pa
dh

ya
y
et
al
.

(2
01

0)

R
au

w
ol
fi
a
se
rp
en
tin

a
(A

po
cy
na
ce
ae
)

A
4

H
or
m
on

e-
fr
ee

B
5,

2%
su
cr
os
e,
co
nt
in
uo

us
lig

ht
M
eh
ro
tr
a
et
al
.(
20

13
)

P
el
ar
go

ni
um

gr
av
eo
le
ns

cv
.H

em
an
ti

(G
er
an
ia
ce
ae
)

A
4
an
d
L
B
A

94
02

H
or
m
on

e-
fr
ee

½
M
S
,3

%
su
cr
os
e

S
ax
en
a
et
al
.(
20

07
)

S
ol
id

m
ed
iu
m

So
lid

ag
o
ne
m
or
al
is

(A
st
er
ac
ea
e)

R
10

00
H
or
m
on

e-
fr
ee

M
S
,1

%
su
cr
os
e,
12

-h
ph

o-
to
pe
ri
od

,4
5
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

G
un

ja
n
et
al
.(
20

13
)

H
yp
er
ic
um

pe
rf
or
at
um

(H
yp

er
ic
ac
ea
e)

A
4

H
or
m
on

e-
fr
ee

M
S
/B
5,

3%
su
cr
os
e,
16

-h
ph

ot
op

er
io
d,

50
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

T
us
ev
sk
i
et
al
.(
20

14
)

T
yl
op

ho
ra

in
di
ca

(A
sc
le
pi
ad
ac
ea
e)

A
4

H
or
m
on

e-
fr
ee

M
S
,3

%
su
cr
os
e,
16

-h
ph

o-
to
pe
ri
od

,4
8
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

C
ha
ud

hu
ri
et
al
.

(2
00

6)

D
ig
ita

lis
pu

rp
ur
ea

(P
la
nt
ag
in
ac
ea
e)

R
16

01
H
or
m
on

e-
fr
ee

B
5,

5%
su
cr
os
e,
16

-h
ph

ot
o-

pe
ri
od

,2
00

0–
30

00
lig

ht
in
te
ns
ity

L
io
sh
in
a
an
d
B
ul
ko

(2
01

4)

V
in
ca

m
in
or

(A
po

cy
na
ce
ae
)

R
16

01
H
or
m
on

e-
fr
ee

B
5,

5%
su
cr
os
e,
16

-h
ph

ot
o-

pe
ri
od

,2
00

0–
30

00
lig

ht
in
te
ns
ity

L
io
sh
in
a
an
d
B
ul
ko

(2
01

4)

D
ar
k

L
iq
ui
d

m
ed
iu
m

C
en
ta
ur
iu
m
er
yt
hr
ae
a

(G
en
tia
na
ce
ae
)

L
B
A
94

02
H
or
m
on

e-
fr
ee

W
P
,3

%
su
cr
os
e

P
ią
tc
za
k
et
al
.(
20

06
),

P
ią
tc
za
k
an
d

W
ys
ok

iń
sk
a
(2
01

3)

R
eh
m
an

ni
a
gl
ut
in
os
a

(O
ro
ba
nc
ha
ce
ae
)

A
4

H
or
m
on

e-
fr
ee

W
P
,3

%
su
cr
os
e

P
ią
tc
za
k
et
al
.(
20

15
)

S
ol
id

m
ed
iu
m

O
ph

io
rr
hi
za

pu
m
ila

(R
ub

ia
ce
ae
)

A
T
C
C
15

83
4

H
or
m
on

e-
fr
ee

B
5,

2%
su
cr
os
e

W
at
as
e
et
al
.(
20

04
)

C
ep
ha

el
is
ip
ec
ac
ua

nh
a

(R
ub

ia
ce
ae
)

A
T
C
C
15

83
4

H
or
m
on

e-
fr
ee

½
M
S
,3

%
su
cr
os
e

Y
os
hi
m
at
su

et
al
.

(2
00

3)

R
eh
m
an

ni
a
el
at
a

(O
ro
ba
nc
ha
ce
ae
)

R
10

00
H
or
m
on

e-
fr
ee

M
S
+
20

0
m
g
L
�1

tim
en
tin

,
3%

su
cr
os
e

K
im

et
al
.(
20

12
)

46 E. Piątczak et al.



U
nd

er
th
e
in
fl
u-

en
ce

of
pl
an
t

gr
ow

th
re
gu

la
to
rs

D
ir
ec
t

or
ga
no

ge
ne
si
s

A
pp

le
ro
ot
st
oc
k
Jo
rk

9
(R
os
ac
ea
e)

A
T
C
C
15

83
4

an
d
A
4

S
ol
id

M
S
+
1
μM

N
A
A
+
0.
1
or

1
μM

T
D
Z
,

30
g
L
�
1
so
rb
ito

l,
16

-h
ph

ot
op

er
io
d,

33
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

P
aw

lic
ki
-J
ul
lia
n
et
al
.

(2
00

2)

B
et
ul
a
pe
nd

ul
a

(B
et
ul
ac
ea
e)

R
16

00
S
ol
id

W
P
+
0.
1
μM

T
D
Z
,3

%
su
cr
os
e

P
iis
pa
ne
n
et
al
.(
20

03
)

C
ro
ta
la
ri
a
ju
nc
ea

(F
ab
ac
ea
e)

A
13

S
ol
id

B
5
+
1,

3
or

5
m
g
L
�1

B
A
,1

%
su
cr
os
e,
co
nt
in
uo

us
lig

ht
,6

0
μm

ol
m

�
2
s�

1
O
ha
ra

et
al
.(
20

00
)

C
ro
ta
la
ri
a
sp
ec
ta
bi
lis

(F
ab
ac
ea
e)

A
13

S
ol
id

B
5
+
1,

5
or

10
m
g
L
�
1
B
A
,2

%
su
cr
os
e,
co
nt
in
uo

us
lig

ht
,6

0
μm

ol
m

�
2
s�

1
O
ha
ra

et
al
.(
20

12
)

D
ra
co
ce
ph

al
um

ko
ts
ch
yi

(L
am

ia
ce
ae
)

A
T
C
C
15

83
4

S
ol
id

M
S
+
0.
1,

0.
25

,0
.5

or
1
m
g
L
�1

B
A

+
0.
1
m
g
L
�1

N
A
A
,3

%
su
cr
os
e,
16

-h
ph

ot
op

er
io
d

S
ha
ra
fi
et
al
.(
20

14
)

D
ub

oi
si
a
m
yo
po

ro
id
es

–

D
.l
ei
ch
ha

rd
tii

hy
br
id

(S
ol
an

ac
ea
e)

A
T
C
C
15

83
4

S
ol
id

½
M
S
+
5
m
g
L
�1

B
A
,3

%
su
cr
os
e,

16
-h

ph
ot
op

er
io
d,

80
μE

m
�
2
s�

1
lig

ht
in
te
ns
ity

Y
os
hi
m
at
su

et
al
.

(2
00

4)

L
yc
op

er
si
co
n
ch
ile
ns
e,

L
.p

er
uv
ia
nu

m
va
r.

hu
m
ifu

su
m
,

L
.e
sc
ul
en
tu
m

x
L
.p

er
uv
ia
nu

m
,

L
.e
sc
ul
en
tu
m

cv
.M

sK
,

L
.h

ir
su
tu
m
f.
hi
rs
ut
um

(S
ol
an
ac
ea
e)

81
96

M
S
+
1
m
g
L
�
1
ze
at
in
,2

%
su
cr
os
e,
16

-h
ph

ot
op

er
io
d,

40
–
50

μm
ol

m
�
2
s�

1
lig

ht
in
te
ns
ity

P
er
es

et
al
.(
20

01
)

P
el
ar
go

ni
um

gr
av
eo
le
ns

cv
.H

em
an
ti

(G
er
an
ia
ce
ae
)

A
4
an
d
L
B
A

94
02

S
em

i-
so
lid

an
d
liq

ui
d
½

M
S
+
0.
25

or
0.
5
m
g
L
�1

B
A
+
0.
05

or
0.
1
m
g
L
�1

N
A
A
,

1.
5%

su
cr
os
e

S
ax
en
a
et
al
.(
20

07
)

R
eh
m
an

ni
a
el
at
a

(O
ro
ba
nc
ha
ce
ae
)

R
10

00
S
ol
id

M
S
+
0.
01

,0
.0
5
an
d
0.
1
m
g
L
�1

B
A
,

ki
ne
tin

,I
A
A
,I
B
A

or
N
A
A
,3

%
su
cr
os
e,

16
-h

ph
ot
op

er
io
d,

35
μm

ol
m

�
2
s�

1
lig

ht
in
te
ns
ity

C
ha
e
et
al
.(
20

13
)

(c
on

tin
ue
d)

3 pRi-Transformed Plants as a Source of Secondary Metabolites 47



T
ab

le
3.
1

(c
on

tin
ue
d)

M
et
ho

d
of

pl
an
t
ob

ta
in
ed

P
la
nt

sp
ec
ie
s
(f
am

ily
)

A
gr
ob

ac
te
ri
um

rh
iz
og

en
es

st
ra
in

C
ul
tu
re

m
ed
iu
m

an
d
cu
ltu

re
co
nd

iti
on

s
R
ef
er
en
ce
s

So
la
nu

m
kh
as
ia
nu

m
(S
ol
an
ac
ea
e)

A
4

L
iq
ui
d
M
S
+
0.
57

,1
.1
4,

2.
85

,a
nd

5.
7
μM

IA
A

or
0.
46

,0
.9
2,

2.
32

,a
nd

4.
64

μM
ki
ne
-

tin
,3

%
su
cr
os
e,
14

h
ph

ot
op

er
io
d,

35
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

Ja
co
b
an
d
M
al
pa
th
ak

(2
00

5)

So
lid

ag
o
ne
m
or
al
is

(A
st
er
ac
ea
e)

R
10

00
S
ol
id
M
S
+
0.
1
or

1
m
g
L
�1

N
A
A
an
d
0.
1
or

1
m
g
L
�1

N
A
A
+
2
or

5
m
g
L
�1

B
A
an
d
0.
1

or
1
m
g
L
�1

N
A
A
+
2
or

5
m
g
L
�1

B
A
,1

%
su
cr
os
e,
12

-h
ph

ot
op

er
io
d,
45

μm
ol
m

�
2
s�

1

lig
ht

in
te
ns
ity

G
un

ja
n
et
al
.(
20

13
)

V
in
ca

m
in
or

(A
po

cy
na
ce
ae
)

R
16

01
S
ol
id

B
5
+
0.
1
or

1
m
g
L
�1

N
A
A
,0

.1
or

0.
5
m
g
L
�1

IB
A
,1

m
g
L
�1

B
A

or
ki
ne
tin

an
d
0.
1
m
g
L
�
1
B
A
+
1
m
g
L
�1

N
A
A
,

0.
1
m
g
L
�1

ki
ne
tin

+
1
m
g
L
�
1
N
A
A
,

0.
5
m
g
L
�
1
B
A
+
0.
4
m
g
L
�
1
IB
A
,1

m
g
L
�1

B
A
+
0.
1
m
g
L
�1

N
A
A
,5

%
su
cr
os
e,
16

-h
ph

ot
op

er
io
d,

20
00

–
30

00
lig

ht
in
te
ns
ity

L
io
sh
in
a
an
d
B
ul
ko

(2
01

4)

Z
ea

m
ay
s
(P
oa
ce
ae
)

A
T
C
C
15

83
4

an
d
A
4

M
S
+
0.
2–
0.
4
m
g
L
�1

N
A
A

+
1.
6
m
g
L
�
1

ze
at
in
,1

6-
h
ph

ot
op

er
io
d,

37
μm

ol
m

�
2
s�

1

lig
ht

in
te
ns
ity

X
u
et
al
.(
20

06
)

U
nd

er
th
e
in
fl
u-

en
ce

of
pl
an
t

gr
ow

th
re
gu

la
to
rs

V
ia
ca
llu

s
A
lh
ag

i
ps
eu
da

lh
ag

i
(F
ab
ac
ea
e)

A
4

S
ol
id

M
S
+
3
m
g
L
�1

B
A
,1

6-
h
ph

ot
op

e-
ri
od

,6
0
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

M
ei
et
al
.(
20

01
)

C
at
ha

ra
nt
hu

s
ro
se
us

(A
po

cy
na
ce
ae
)

R
10

00
S
ol
id

M
S
+
13

.3
2
or

31
.0
8
μM

B
A
an
d
5.
37

or
10

.7
4
μM

N
A
A
,3

%
su
cr
os
e,
16

-h
ph

o-
to
pe
ri
od

,3
W

m
�
2
lig

ht
in
te
ns
ity

C
ho

ie
t
al
.(
20

04
)

D
ig
ita

lis
pu

rp
ur
ea

(P
la
nt
ag
in
ac
ea
e)

A
13

S
ol
id

½
M
S
+
0.
5,
1
or

2
m
g
L
�1

ze
at
in
,B

A
or

ki
ne
tin

,3
%

su
cr
os
e,
lig

ht
60

00
lu
x
fo
r

16
h

K
og

a
et
al
.(
20

00
)

O
ri
ga

nu
m
vu
lg
ar
e

(L
am

ia
ce
ae
)

A
T
C
C
15

83
4

an
d
K
59

9
S
ol
id
M
S
+
0.
1,
0.
5,
0.
75

or
1
m
g
L
�1

2,
4-
D
,

3%
su
cr
os
e,
16

-h
ph

ot
op

er
io
d

H
ab
ib
i
et
al
.(
20

16
)

48 E. Piątczak et al.



P
og

os
te
m
on

ca
bl
in

(L
am

ia
ce
ae
)

A
T
C
C
15

83
4

S
ol
id

M
S
+
0.
1,

0.
5
or

1.
0
m
g
L
�1

B
A
+
0.
1

or
0.
2
m
g
L
�1

N
A
A
,3

%
su
cr
os
e,
12

-h
ph

ot
op

er
io
d,

40
μm

ol
m

�
2
s�

1
lig

ht
in
te
ns
ity

S
hi

et
al
.(
20

11
)

R
eh
m
an

ni
a
gl
ut
in
os
a

f.
hu

ei
ch
in
ge
ns
is

(O
ro
ba
nc
ha
ce
ae
)

A
T
C
C
15

83
4

O
lid

½
M
S
+
0.
2
m
g
L
�1

ki
ne
tin

+
3.
0
m
g
L

�
1
B
A
,3

%
su
cr
os
e,
16

-h
ph

ot
op

er
io
d,

35
μm

ol
m

�2
s�

1
lig

ht
in
te
ns
ity

Z
ho

u
et
al
.(
20

07
,

20
09
)

S
om

at
ic

em
br
yo

ge
ne
si
s

A
ra
lia

el
at
a
(A

ra
lia
ce
ae
)

A
T
C
C
15

83
4

S
ol
id

M
S
+
1.
0
m
g
L
�1

2,
4-
D
,2

%
su
cr
os
e,

da
rk

K
an
g
et
al
.(
20

06
)

C
od

on
op

si
s
la
nc
eo
la
ta

(C
am

pa
nu

la
ce
ae
)

R
10

00
S
ol
id

M
S
+
2
m
g
L
�1

2,
4-
D
,2

%
su
cr
os
e,

da
rk

K
im

et
al
.(
20

11
)

C
or
on

ill
a
va
ri
a

(F
ab
ac
ea
e)

A
T
C
C
15

83
4

M
S
+
0.
2
m
g
L
�
1
2,
4-
D
+
0.
5
m
g
L
�
1

N
A
A

+
0.
5
m
g
L
�1

ki
ne
tin

H
an

et
al
.(
20

06
)

P
an

ax
gi
ns
en
g

(A
ra
lia
ce
ae
)

A
T
C
C
15

83
4

S
ol
id

M
S
+
1
m
g
L
�1

2,
4-
D
,3

%
su
cr
os
e,

16
-h

ph
ot
op

er
io
d,

24
μm

ol
m

�
2
s�

1
lig

ht
in
te
ns
ity

Y
an
g
an
d
C
ho

i(
20

00
)

Sa
lv
ia

m
ilt
io
rr
hi
za

(L
am

ia
ce
ae
)

R
16

01
S
ol
id

M
S
+
1.
0
m
g
L
�1

2,
4-
D
+
0.
5
m
g
L
�1

B
A
,3

%
su
cr
os
e,
da
rk

W
an
g
et
al
.(
20

13
)

T
yl
op

ho
ra

in
di
ca

(A
sc
le
pi
ad
ac
ea
e)

A
4

S
ol
id

ho
rm

on
e-
fr
ee

M
S
,3

%
su
cr
os
e,
16

-h
ph

ot
op

er
io
d
of

48
μm

ol
m

�2
s�

1
ir
ra
di
an
ce

C
ha
ud

hu
ri
et
al
.

(2
00

6)

B
5
nu

tr
ie
nt

m
ed
iu
m

ac
co
rd
in
g
to

G
am

bo
rg

et
al
.(
19

68
),
B
A
6-
be
nz
yl
ad
en
in
e,
2,
4-
D
2,
4-
di
ch
lo
ro
ph

en
ox

ya
ce
tic

ac
id
,I
A
A
in
do

le
-3
-a
ce
tic

ac
id
,I
B
A
in
do

le
-3
-

bu
ty
ri
c
ac
id
,
M
S

nu
tr
ie
nt

m
ed
iu
m

ac
co
rd
in
g

to
M
ur
as
hi
ge

an
d

S
ko

og
(1
96

2)
,
½

M
S

a
ha
lf

st
re
ng

th
M
ur
as
hi
ge

an
d

S
ko

og
m
ed
iu
m

(1
96

2)
,
N
A
A

α-
na
ph

th
al
en
ea
ce
tic

ac
id
,T

D
Z
th
id
ia
zu
ro
n,

W
P
W
oo

dy
P
la
nt

nu
tr
ie
nt

m
ed
iu
m

ac
co
rd
in
g
to

L
lo
yd

an
d
M
cC

ow
n
(1
98

0)

3 pRi-Transformed Plants as a Source of Secondary Metabolites 49



studies (Christey 2001; Roychowdhury et al. 2013). The transformed plants often
demonstrate hairy root syndrome which is characterized by the multiple branching of
aerial parts and roots, increased biomass accumulation, and alterations in morphol-
ogy, with small and wrinkled leaves and changes in flower size (Christensen et al.
2008; Roychowdhury et al. 2013). These alterations are associated mainly with the
co-expression of rol and aux genes derived from the Agrobacterium rhizogenes
plasmid.

3.2 Secondary Metabolite Accumulation in pRi-
Transformed Plants

Secondary metabolites are the chemical compounds naturally present in the plants
which need protection against stress conditions (Saxena et al. 2013). These com-
pounds may also protect human health; they have been found to be able to prevent
disease and demonstrate antimicrobial, antioxidant, antiinflammatory, and antican-
cer properties, among others (Saxena et al. 2013). Plant secondary metabolites
comprise various classes of chemical compounds, for example, phenolic acids,
flavonoids, alkaloids, plant steroids, and terpenes. The transformed plants obtained
by biotechnological methods from hairy roots by A. rhizogenes-mediated transfor-
mation are known to accumulate valuable secondary metabolites, often at higher
levels than nontransformed plants or wild plants, and this approach may serve as an
alternative and complementary method for obtaining plant cultivars which produce
high levels of bioactive compounds. Chaudhuri et al. (2006) suggest that the
alterations occurring in biochemical phenotype of transformed plants may be due
to changes in polyamine metabolism and cell sensitivity to auxins and that they are
associated mainly with the co-expression of rolA, rolB, and rolC genes. The rol
genes are powerful tools which can be used to manipulate the secondary metabolism
(Roychowdhury et al. 2015). However, only a few different classes of secondary
metabolites appear to be produced in pRi-transformed plants (Table 3.2).

3.2.1 Alkaloids

The largest class of bioactive compounds is that of the alkaloids. Under natural
conditions, the level of these metabolites is low, constituting less than 1% (Thakkar
and Ray 2014). Previous studies have described a promising alternative strategy for
the production of high levels of alkaloids based on obtaining transformed plants of
various species belonging to the Solanaceae, Rubiaceae, or Apocynaceae, among
others (Sevón et al. 1997; Watase et al. 2004; Chaudhuri et al. 2006). The classifi-
cation of alkaloids is a complex one, being based not only on their structure but also
on their chemical characteristics and their biological or biogenetic origin (Kakhia
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2012), and although all members possess a heterocyclic nitrogen atom, they are a
chemically diverse group (Guirimand et al. 2010).

3.2.1.1 Indole Alkaloids

The pharmaceutically important alkaloids are the indole alkaloids, including
vincamine obtained from the Apocynaceae family, which is used in cerebral insuf-
ficiencies and in dementia (Steinhäuser 1986; Fischhof et al. 1996), and
camptothecin, a natural plant compound with anticancer properties (Ramesha et al.
2011), originally found in Camptotheca acuminata of the Nyssaceae (Watase et al.
2004). Tanaka et al. (1995) reported high levels of vincamine accumulation in
transformed plants of Vinca minor (Apocynaceae). The leaves of plants originating
from the transformed roots of the Vm-101 clone produced twice as much vincamine
as nontransformed plants after 3 months of growth in the soil, in the greenhouse. The
alkaloid content reached 0.42% of plant dry weight (Tanaka et al. 1995).

Due to difficulties in the synthesis of camptothecin, there is a need to identify
alternative methods for the production of the compound. In vitro cultures of several
plants have been studied as viable sources of camptothecin (Watase et al. 2004).
Watase et al. (2004) described an efficient protocol for the regeneration of
transformed Ophiorrhiza pumila plants from hairy roots after A. rhizogenes
(15834 strain)-mediated transformation. These plants were able to produce
camptothecin in levels of 66–111% compared with wild-grown O. pumila. It was
found that shoots obtained from Ophiorrhiza rugosa var. decumbens transformed
roots using A. rhizogenes strain LBA 9402 accumulated 0.012% dry weight of
camptothecin (Kamble et al. 2011).

3.2.1.2 Isoquinoline Alkaloids

Isoquinoline alkaloids with emetine, protoemetine, and cephaeline were found in the
families Rubiaceae, Alangiaceae, and Icacinaceae (Akinboye and Bakare 2011).
Emetine is one of the major secondary metabolite present in the roots of Cephaelis
ipecacuanha, a member of the Rubiaceae family which has shown antiparasitic,
antiviral, and anticancer activity (Akinboye and Bakare 2011). Cephaeline is also
found in C. ipecacuanha roots and, together with emetine, possesses expectorant and
vomitive properties (Garcia et al. 2005). However, the content of cephaeline,
emetine, and protoemetine cannot be enhanced in the pRi-transformed plants of
C. ipecacuanha, regenerated spontaneously from transformed roots (Yoshimatsu
et al. 2003).
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3.2.1.3 Morphinan Alkaloids

Another pharmaceutically important group of alkaloids is that of the morphinan
alkaloids, also known as benzylisoquinoline alkaloids. This group include morphine
and codeine, these being two powerful analgesics used to treat moderate to severe
and chronic pain in patients with terminal cancer; papaverine, known to be a muscle
relaxant; and noscapine, an antitussive compound (Fossati et al. 2015). Yoshimatsu
and Shimomura (1992) found the level of morphinan alkaloids to be similar in
transformed shoots of Papaver somniferum from the Papaveraceae to that observed
in the nontransformed plants (213 vs. 182 μg morphine equivalents g�1 of fresh
weight analyzed by ELISA). Furthermore, HPLC analysis showed that while mor-
phine was not detected in transformed shoots of P. somniferum, it was present at a
level of 50 μg g�1 of dry weight in nontransformed shoots. In contrast, the level of
codeine in transformed shoots was about half that of the control shoots (750 vs.
1310 μg g�1 of dry weight) (Yoshimatsu and Shimomura 1992).

3.2.1.4 Phenanthroindolizidine Alkaloids

Tylophorine, the phenanthroindolizidine alkaloid, a secondary metabolite present in
Tylophora indica, is known to demonstrate a range of biological properties, includ-
ing antiinflammatory, antileukemic, antitumor, immunosuppressive, antiamoebic,
and anticandidal effects (Roychowdhury et al. 2013). Transformed plants of
T. indica may be a valuable tool for the efficient production of tylophorine
(Chaudhuri et al. 2006; Roychowdhury et al. 2013; Roychowdhury et al. 2015).
Tylophorine was found in all parts of plants which were spontaneously regenerated
from transformed roots, but much higher amounts were found in the shoots than in
the roots (Chaudhuri et al. 2006). Additionally, the tylophorine content in the shoots
of transformed plants was 20–60% higher than in the wild plants. In addition,
transformed plants of T. indica obtained from transformed roots by somatic embryo-
genesis also showed higher levels of tylophorine than nontransformed plants
(Roychowdhury et al. 2013, 2015). In 1-year-old transformed plants, it was found
to be present in amounts ranging from 1.7 to 2.93 mg g�1 of dry weight, these being
1.4–2.3 times higher than in nontransformed plants (Roychowdhury et al. 2015).
Additionally, the transformed plants of T. indica retained the ability to synthesize
higher levels of tylophorine even after 6 years of growth in in vitro culture and
acclimatization in the field (Roychowdhury et al. 2013). The content of tylophorine
increased about twofold to 3.75 mg g�1 of dry weight in the leaves of the
transformed plants following 1 year of transfer to the field.
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3.2.1.5 Tropane Alkaloids

The tropane alkaloids, found in some species of the Solanaceae, are also very
important for medicinal purposes. Tropane alkaloids act as parasympatholytics and
have been found to competitively antagonize acetylcholine (Palazón et al. 2008).
Greater tropane alkaloid production, especially hyoscyamine and scopolamine, was
observed in transformed plants of Atropa belladonna compared to those of
nontransformed plants (Aoki et al. 1997). On the other hand, the transformed plants
of Duboisia myoporoides x D. leichhardtii (A. rhizogenes A4 strain) showed lower
scopolamine and hyoscyamine content than nontransformed controls (Celma et al.
2001). Similarly, smaller amounts of scopolamine and hyoscyamine were found in
different clones of transformed Hyoscyamus muticus plants than in controls (Sevón
et al. 1997), but the transformed plants showed a higher level of another tropane
alkaloids such as calystegines A3, B1, and B2 (Sevón et al. 1997). The Convolvulus
arvensis plants obtained after transformation by A. rhizogenes with an introduced
crypt gene also demonstrated greater calystegine content: about 35% in the roots and
42% in the shoots (Chaudhuri et al. 2009). Calystegines are a polyhydroxylated
nortropane alkaloid known to be a glycosidase inhibitor (Molyneux et al. 1993).

3.2.2 Diterpenoids

Another valuable class of secondary metabolites are the diterpenoids, composed of
four isoprene units. This class includes abietane diterpenoids, with the tanshinones,
and scopadulan diterpenoids, with scopadulcic acid B.

3.2.2.1 Abietane Diterpenoids: Tanshinones

Tanshinones are characterized by the presence of o- or p-naphthoquinone and a furan
ring, known as a chromophore system (Wu et al. 1991). These secondary metabolites
are used for the treatment of coronary heart disease, angina pectoris, and myocardial
infarction (Wang et al. 2013). Additionally, tanshinones are known to have antiox-
idant, antiinflammatory, and antibacterial effects and to provide cardio-
cerebrovascular protection (Xing et al. 2017). Tanshinones are lipophilic compounds
identified in Salvia miltiorrhiza (Lamiaceae). The major tanshinones found in this
genus are tanshinone I, tanshinone IIA, and cryptotanshinone. As tanshinones
possess a wide range of biological activities, there is a great demand for effective
biotechnological methods to enhance production. Despite the many reports describ-
ing the efficiency of the hairy root cultures as sources of tanshinones (Wang and Wu
2010; Wang et al. 2013), only one study has reported enhanced production of these
compounds by transformed plants derived from the hairy roots of S. miltiorrhiza via
somatic embryogenesis (Wang et al. 2013). The roots of 150-day-old transformed
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plants accumulated about twice the amount of tanshinones (calculated as the sum of
cryptotanshinone, tanshinone I, and tanshinone IIA) compared with wild-type
plants. The content of tanshinones reached 0.44 mg g�1 dry weight. Of the three
types of tanshinones, tanshinone I and cryptotanshinone production were enhanced
in the transformed plants (Wang et al. 2013).

3.2.2.2 Scopadulan Diterpenoids: Scopadulcic Acid B

Scopadulcic acid B, a tetracyclic, scopadulan diterpenoid, possesses antiviral and
antitumor activity (Mathew and Jayachandran 2009) and has been identified in
Scoparia dulcis, a member of Plantaginaceae family. Scopadulcic acid B was
produced in in vitro cultures of S. dulcis (Hayashi 1996) and in transformed plants
obtained spontaneously from hairy roots transformed by ATCC 15834 A. rhizogenes
strain including the bar gene (Yamazaki et al. 1996). Unfortunately, four clones of
transformed S. dulcis plants demonstrated reduced scopadulcic acid B content
(0.11–0.44% dry weight) when compared to nontransformed plants (0.74% dry
weight) (Yamazaki et al. 1996).

3.2.3 Essential Oils

An interesting group of secondary metabolites are the essential oils, a mixture of
volatile compounds with terpenes, terpenoids, and aromatic and aliphatic constitu-
ents characterized by low molecular weight (Bassolé and Juliani 2012). The essential
oils are known to possess cytotoxic, antimicrobial, antioxidant, and
antiinflammatory activities (Bakkali et al. 2008); their components demonstrate
antagonistic, additive, or synergistic effects with each other (Bassolé and Juliani
2012), and their effects are strongly influenced by the ratios of their constituents. The
chemical composition of essential oils is dependent on many factors such as climatic
conditions, geographic origin, time of the collection, or the part of the plant.
Therefore, biotechnology methods, with their greater potential for quality control,
seem to represent a promising alternative to traditionally cultivated or naturally
growing plants for obtaining essential oils. As reported by Saxena et al. (2007),
the composition of the essential oils obtained from two lines of transformed plants
(LZ-3 and 14TG) of Pelargonium graveolens cv. Hemanti (Geraniaceae) from hairy
roots transformed by A4 or LBA 9402 A. rhizogenes, differed from that of control
plants. The essential oils showed higher concentration of geraniol (9.6% and 7.9%,
respectively, vs. 1.1%), geranyl esters (9% and 14.8%, respectively, vs. 2.2%),
10-epi-γ-eudesmol (6.6% and 10.3%, respectively, vs. 3.8%), and linalool (1.6%
and 0.9%, respectively, vs. 0.5%) (Saxena et al. 2007).
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3.2.4 Iridoids

Iridoids are secondary metabolites found in numerous plant species, typically as
glycosides. Structurally they are cyclopentano[c]pyran monoterpenes represented by
iridane (cis-2-oxabicyclo[4.3.0]nonane) (Tietze 1983). The basic skeletal ring of the
compounds is a bicyclic H-5/H-9β, β-cis cyclopentanopyran ring, but different
enantiomeric iridoids are also met in nature (Boros and Stermitz 1991; Foderaro
et al. 1992; Dinda et al. 2007). Cleavage of the pyran ring leads to iridoid formation.
In plants, iridoids are derived from 9-hydroxynerol by phosphorylation, cyclization,
oxidation, or glycosidation (Cornforth 1970). It is believed that the precursor of
iridoids in plants is iridodial or 8-epi-iridodial (Dinda et al. 2007). Iridoids exhibit
cardiovascular, hypolipidemic, antitumor, and antihepatotoxic activities (Taskova
et al. 2002).

They are present in several plant families, including the Plantaginaceae,
Rubiaceae, Loganiaceae, Scrophulariaceae, and Orobanchaceae (Dinda et al.
2007). However, only two reports describe improved iridoid glycoside production
in pRi-transformed plants (Hwang 2006; Piątczak et al. 2015). The authors reported
spontaneous plant regeneration from hairy root clones of Rehmannia glutinosa, a
Chinese medicinal plant which is able to produce several valuable iridoid glycosides,
including catalpol, aucubin, catalposide, and harpagide, which exhibit antitumor,
hepatoprotective, antiinflammatory, and hypoglycemic activities (Zhang et al. 2008).

Piątczak et al. (2015) used ultrahigh-pressure liquid chromatography (UHPLC)
analysis to examine the production of six iridoid glycosides, i.e., catalpol, aucubin,
loganin, catalposide, harpagide, and harpagoside, in pRi-transformed shoots cul-
tured in vitro, as well as in leaves and roots of transformed plants grown for 6 and
12 months in pots. It was found that the shoots produced lower amounts of catalpol,
while the leaves and roots of the pRi-regenerants accumulated similar amounts of
harpagoside; higher amounts of catalposide, aucubin, and harpagide; or lower
amounts of catalpol and loganin compared to nontransformed R. glutinosa plants.
The authors also noted that the metabolite levels varied with the age of the plants and
the organ analyzed. Moreover, it was shown that the yield of all analyzed com-
pounds was higher in comparison with nontransformed plants because of increased
shoot and root biomass of the transformed plants (Piątczak et al. 2015). In contrast,
Hwang (2006) reported higher levels of catalpol in transformed plants (0.56%) of
R. glutinosa than in nontransformed ones (0.43%).

3.2.5 Secoiridoids

Secoiridoids occur following the cleavage of the cyclopentane ring of iridoids
(Dinda et al. 2007). They are usually connected with a sugar moiety to form
glycosides. These metabolites are common in the orders Cornales, Dipsacales, and
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Gentianales. They are usually used as bitter tonics in treating stomach disorders
(Ghisalberti 1998). Higher levels of compounds have been noted in transformed
plants from the Gentianaceae family (Janković et al. 2002; Piątczak et al. 2006; Wu
et al. 2011); in particular, 72.4% greater production of one secoiridoid glycoside, and
gentiopicroside was observed in the roots of regenerated transformed plants of
Gentiana macrophylla compared with the roots of nontransformed plants
(Wu et al. 2011). Similarly, Piątczak et al. (2006) reported higher secoiridoid
glycoside content (expressed as the total content of gentiopicroside, sweroside,
and swertiamarin) in the transformed shoots and whole plants of Centaurium
erythraea, often used in gastrointestinal disorders (Šiler and Mišić 2016). The
transformed shoots regenerated spontaneously from hairy roots infected by LBA
9402 strain of A. rhizogenes giving the whole transformed plants (Piątczak et al.
2006). The shoots were able to produce 280 mg g�1 dry weight of total secoiridoid
glycoside content, which was eight times higher than observed in commercially
available C. erythraea herb (Piątczak et al. 2006). Very interesting results were
reported by Janković et al. (2002) who noted that transgenic plants of C. erythraea,
regenerated spontaneously on several hairy root clones infected with strain
A4M70GUS of A. rhizogenes, produced gentiopicrin and swertiamarin (1.19%
and 1.40%, respectively), although hairy root clones did not produce the compounds
at all.

3.2.6 Phenolic Compounds

Phenolic compounds are aromatic secondary plant metabolites which naturally occur
in almost all plants (Herrmann 1989). The metabolites are a subclass of larger
secondary metabolites named as “phenolics,” which possess a phenol ring, bearing
at least one hydroxyl substituent (Croteau et al. 2000). Phenolics are divided into two
categories: simple phenols (possess one phenol subunit) and polyphenols (possess at
least two phenol subunits) (Clifford 1999).

3.2.6.1 Flavonoids

3.2.6.1.1 Flavonols

Flavonols are polyphenols which are members of the flavonoids (Hollman and Arts
2000). Flavonoids and flavonols have a 15-carbon skeleton structure, with two
phenyl rings (A and B) and a heterocyclic ring C. Chemically, flavonols have a
double bond between positions 2 and 3 and a ketone group in position 4 of the C
ring. Additionally, they have a hydroxyl group at position 3 (3-hydroxyflavone). The
3-hydroxyl group can be glycosylated and links to a sugar such as glucose, rham-
nose, or galactose (Hollman and Arts 2000). Tusevski et al. (2014) demonstrated
improved production of selected flavonols (quercetin 6-C-glucoside, quercetin 3-O-
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pentoside, quercetin, kaempferol 6-C-glucoside, hyperoside) in transformed shoots
of Hypericum perforatum. The authors found that the shoots produced significantly
higher amounts of quercetin 6-C-glucoside in comparison with controls. Moreover,
quercetin 3-O-pentoside and the flavonoid quercetin aglycone were de novo synthe-
sized in transgenic shoots. On the other hand, kaempferol 6-C-glucoside and
hyperoside were significantly decreased in transgenic shoots compared to controls.
However, the total contents of identified flavonols were almost equal in transgenic
and control shoots (Tusevski et al. 2014).

3.2.6.1.2 Flavan 3-ols

Flavan-3-ols are derivatives of flavans with a 2-phenyl-3,4-dihydro-2H-chromen-3-
ol skeleton (Yang et al. 2012). Of these metabolites, epicatechin and an unidentified
proanthocyanidin dimer were detected in transformed shoots of Hypericum
perforatum (Tusevski et al. 2014). The pRi-transformed shoots of the species
produced twice as much epicatechin and 26 times more of the unidentified
proanthocyanidin dimer than controls. In contrast, a twofold decrease of the other
proanthocyanidin dimer was found in the transgenic shoots. However, the total
amount of flavan-3-ols remained unchanged in both transgenic and control shoots
(Tusevski et al. 2014).

3.2.6.2 Phenolic Acids

Simple phenols, including phenolic acids, consist of one phenol ring and one
carboxylic acid substituent. The phenolic acids present in plants contain two carbon
frameworks, these being hydroxycinnamic and hydroxybenzoic structures (Robbins
2003); however, the considerable range of potential numbers and positions of
hydroxyl groups on the aromatic rings result in a wide variety of phenolic acids
being available (Robbins 2003). Phenolic acids play a key role in the synthesis of
lignins, lignans, flavonoids, flavonols, and a wide range of other phenolic secondary
constituents. Only one report found phenolic acid production to be improved in
transformed plants (Tusevski et al. 2014). Of four phenolic acids (quinic acid,
chlorogenic acid, 3-p-coumaroylquinic acid, 3-feruloylquinic acid) examined in
transformed shoots of Hypericum perforatum, only 3-feruloylquinic acid was
found to be produced in transformed shoots, but not in nontransformed controls.
Moreover, the authors also showed that both the level of chlorogenic acid and the
total amount of identified phenolic acids in the transformed shoots were 1.3 times
higher than in control shoots (Tusevski et al. 2014).
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3.2.6.3 Phenylpropanoids

The phenylpropanoids are a large group of phenolic compounds derived from
L-phenylalanine or L-tyrosine. They consist of a three-carbon propene chain of
cinnamic acid attached to a six-carbon, aromatic phenyl group (C6-C3 compounds).
Most phenylpropanoids are formed from cinnamic or p-coumaric acids (Seigler
1998). Phenylpropanoids are biosynthesized in many plant families, usually as
various alcohols, mono-, di- and trisaccharide esters. The metabolites are common
in the Lamiaceae, Hypericaceae, Boraginaceae, Rubiaceae, Scrophulariaceae, and
Apiaceae (Seigler 1998). Piątczak et al. (2015) noted 1.2- and 1.6-fold greater
acteoside production in the leaves and roots of Rehmannia glutinosa derived by
genetic transformation (A. rhizogenes strain LBA 9402) compared with
nontransformed plants. In contrast, a lower content of phenylpropenyl ester – an
anethole precursor – and epoxypseudoisoeugenol-2-methylbutyrate was detected in
transformed shoot cultures of Pimpinella anisum; however, the metabolite content
was higher in hairy root cultures than in nontransformed root culture (Andarwulan
and Shetty 1999).

3.2.6.4 Phloroglucinol Derivatives: Hyperforin and Adhyperforin

Hyperforin and its homologue – adhyperforin – are polyprenylated phloroglucinol
derivatives found in members ofHypericum genus. The compounds are accumulated
in oil glands, pistils, and fruits, where it acts probably as plant defense against
herbivory (Beerhues 2006). The metabolites exhibit antidepressant, anxiolytic,
antitumor, and antibacterial (against Gram-positive bacteria) properties (Beerhues
2006). Transformed shoots of H. perforatum produced twice as much hyperforin
than the control shoots. In contrast, adhyperforin was identified in trace amounts in
transgenic shoots, while in control shoots the compound was not confirmed at all
(Tusevski et al. 2014).

3.2.6.5 Quinones

3.2.6.5.1 Anthraquinones: Naphtodianthrones

Naphtodianthrones are anthraquinone derivatives. Two of the pharmaceutically
important naphtodianthrones are hypericin and pseudohypericin which are the
main active components of the plants from the Hypericum genus. They are localized
in the glandular structures on flowers, stamens, leaves, and stems (Jensen et al.
1995). The compounds are photodynamic pigments which possess antidepressant
activity, due to the inhibition of reuptake of several neurotransmitters (Butterweck
et al. 1998). Moreover, the metabolites are also considered as antiviral agent against
human immunodeficiency virus type 1 (HIV-1) (Meruelo et al. 1988). In transformed
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shoots of H. perforatum, hypericin and pseudohypericin were identified by Tusevski
et al. (2014). The authors reported that the transformed shoots produced 11- to
12-fold more hypericin and pseudohypericin than the control shoots. Moreover,
transgenic shoot cultures of H. perforatum accumulated significantly higher levels
of total naphtodianthrones than the control shoots (Tusevski et al. 2014).

3.2.6.5.2 Naphthoquinones

Naphthoquinones are phenolic compounds derived from the shikimate pathway and
usually occur as glycosides. The compounds are usually biosynthesized in the
Bignoniaceae, Plumbaginaceae, Juglandaceae, and Boraginaceae (Aldred 2009).
One plant-derived naphthoquinone is plumbagin (5-hydroxy-2-methylnaphthalene-
1,4-dione), occurring in the roots of the Plumbaginaceae (van der Vijver 1974),
which is known to have valuable antitumor, anticancer, and antimicrobial activity
(Didry et al. 1994; Kuo et al. 2006; Hazra et al. 2008). Significantly higher
naphthoquinone content was detected in transformed plants of Plumbago indica,
another traditional medicinal plant, after genetic transformation with A. rhizogenes
(strain ATCC 15834). The content of plumbagin in the transformed plants ranged
between 5.17 and 7.77 mg g �1 dry weight depending on the clone of transgenic
plants, which was 3–3.4 times higher than in nontransformed plants (Gangopadhyay
et al. 2010).

3.2.6.6 Xanthones

Xanthones (xanthen-9H-ones or dibenzo-gamma-pirone) are a class of polyphenolic
oxygenated heterocycles. Xanthones are produced in several medicinal plants,
including Centaurium erythraea. Janković et al. (2002) report that shoots of the
transgenic plants of the species produced demethyleustomin and eustomin at higher
levels than wild-growing plants (0.06–1.21% and 0.03–0.04%, respectively). Xan-
thones were also produced by transformed shoots of Hypericum perforatum
(Tusevski et al. 2014). The authors demonstrated that the production of two xan-
thone derivatives (named X3 and X8) significantly increased in transformed shoots.
On the other hand, the production of another eight xanthones decreased after
transformation. It is worth nothing that mangiferin was the major xanthone in the
transgenic shoots of H. perforatum, which accounted for 42% of the total xanthones.
The authors reported also that the transformed shoots produced seven other xan-
thones, not detectable in control shoots. However, the total content of xanthones in
transformed shoots of the species was lower than in control shoots (Tusevski et al.
2014).

62 E. Piątczak et al.



3.2.7 Steroids

3.2.7.1 Cardenolides

Cardenolides are naturally occurring cardiac-active steroids possessing a five- or
six-membered lactone ring. They are usually present as glycosides in several plant
families including the Asclepiadaceae, Apocynaceae, and Scrophulariaceae
(Yamane et al. 2010). Due to their inhibitory effects against Na+/K+-ATPase activity
(or the Na+-K+ pump), which is involved in the maintenance of ion levels in cells and
neurotransmission (Yamane et al. 2010), the compounds are typically toxic against
cardiovascular and autonomic nervous systems in humans, as well as for most
animals, including insects. Cardenolides (cardiac glycosides) were produced in
transformed Digitalis lanata shoots (clone A4/2) regenerated from hairy roots
(Pradel et al. 1997). Their production, determined by the inhibition of Na+/K+-
ATPase activity, was found to be similar in transformed shoots (2.87 μmol g�1

dry weight) and nontransformed shoots (3.08 μmol g�1 dry weight) (Pradel et al.
1997). Pradel et al. (1997) also noted that no cardenolides were detected in hairy root
clones, although they were found in roots derived from both transformed and
nontransformed plants (0.81 and 1.30 μmol g�1 dry weight, respectively). The
authors claim that these findings confirm that cardenolides are synthesized in the
leaves of the whole plants and then transported to the roots (Christmann et al. 1993;
Pradel et al. 1997). HPLC/MS analysis found the main cardenolides in the roots of
nontransformed and transformed plants of D. lanata to be digitalinum verum,
glucoverodoxin, deacetyllanatoside C, neoglucodigifucoside, and odorobioside G,
while in the leaves, the dominant cardenolides were lanatosides A and C (Pradel
et al. 1997).

3.2.7.2 Ecdysone

Another steroid which can be produced in pRi-transformed plants is
20-hydroxyecdysone (20-HE). It is a physiological inducer of molting and meta-
morphosis in arthropods (Borovsky et al. 1985) and is a naturally occurring
phytoecdysteroid hormone which can be used as a pest control agent (Kubo et al.
1983). Ecdysteroids have an anabolic effect in humans (Gallo et al. 2006). 20-HE
and its derivatives have been found to have antioxidant, antidiabetic, analgesic, and
antidepressant activity and are known to stimulate protein synthesis (Gallo et al.
2006; Thiem et al. 2017). Dinan (2001) reported the level of 20-HE in naturally
growing plant species to be low, being only 0.1% or less of dry weight. Increased
20-HE production may be obtained from plants spontaneously regenerated from
Ajuga reptans var. atropurpurea hairy roots after A. rhizogenes MAFF03-01724
transformation (Tanaka and Matsumoto 1993). Transformation resulted in approx-
imately twice the level of 20-HE being produced compared to nontransformed
plants, ranging from 0.074% to 0.102% of dry weight (Tanaka and Matsumoto
1993).
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3.2.8 Triterpenoid Saponins

Triterpenoid saponins are triterpenes which belong to the large group of the saponins
(Hao et al. 2015). They are pentacyclic molecules synthesized from isoprene through
the cytosolic mevalonate pathway, resulting in a 30-carbon compound arranged in
4 or 5 rings with several oxygens attached (Yarnell 2007). Triterpenoid saponin
production can be enhanced in transformed plants of Codonopsis lanceolata
(Campanulaceae): an Asian plant species used in traditional medicine as
antiinflammatory agent against bronchitis and coughs (Lee et al. 2002; Xu et al.
2008; Kim et al. 2011). An LC-MS/MS study by Kim et al. (2011) found the
triterpenoids lancemaside A, foetidissimoside A, and aster saponin Hb accumulated
in the leaves, stems, and roots of transformed plants regenerated via somatic
embryogenesis from hairy roots infected with A. rhizogenes (R1000 strain). The
authors found greater total content of the three triterpenoid saponins (expressed as
the sum of lancemaside A, foetidissimoside A, and aster saponin Hb) in transformed
regenerants than wild-type plants. The highest total triterpenoid accumulation was
detected in the stems of the regenerants than in their leaves and roots (Kim et al.
2011). Similarly, significantly higher levels of saponins in pRi-transformed plants
were reported in an important Indian medicinal plant, Bacopa monnieri
(Scrophulariaceae) (Majumdar et al. 2011). The authors noted that several saponins
(bacopasaponin D, bacopasaponin F, bacopaside II, and bacopaside V) were pro-
duced at higher levels in the transformed plants than in nontransformed ones.
However, the authors also observed that similar contents of other saponins, i.e.,
bacoside A3 and bacopasaponin C, were present in the transformed and wild-type
plants of B. monnieri (Majumdar et al. 2011).

3.3 Conclusions

The chapter has described the tremendous potential of transformed plants
regenerated from hairy roots obtained after A. rhizogenes-mediated transformation.
The potential is not only derived from the altered morphology of the transformed
plants (lateral branching, shortened internodes, more abundant flowering), which
can be particularly useful for ornamental plants, but also with the fact that transfor-
mation may be an alternative and complementary strategy to achieve greater
amounts of pharmaceutically important bioactive compounds, such as tanshinones,
tylophorine, or camptothecin. Despite many reports describing the efficient pro-
tocols for hairy root cultures as the source of bioactive compounds, so far, compar-
atively few studies have demonstrated that pRi-transformed plants can be used for
the production of valuable secondary metabolites. Therefore, it is very important to
continue such studies to identify new plant species whose pRi-transformed
regenerants display greater production of valuable secondary metabolites.
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Chapter 4
Biotechnological Interventions of Hairy
Roots of Tropane Alkaloid-Bearing Plants

Guoyin Kai, Weiwei Zhao, Min Shi, and Yao Wang

Abstract As one large group of plant secondary metabolites, tropane alkaloids
(TAs) can be produced by a few genera of the family Solanaceae including
Anisodus, Atropa, Datura, Hyoscyamus, and Scopolia. Due to their anti-cholinergic
activity, tropane alkaloids including hyoscyamine and scopolamine are widely used
as antispasmodics and mydriatics. Because of low contents in tropane alkaloid-
bearing plants, it is urgent to elevate the production of tropane alkaloids by means
of biotechnology approaches to meet the increasing clinical demand. Hairy roots,
with the characters of fast-growing, auxin-independent, and genetically stable, were
considered as a promising system to produce active plant-origin compounds includ-
ing tropane alkaloids. Recently, hairy root systems of some tropane alkaloid-
producing plants such as Anisodus acutangulus have been successfully established.
Meanwhile, several key enzymes involved in the TAs biosynthetic pathway have
been cloned and introduced into related genetic engineered hairy root systems,
which lay the foundation for production of tropane alkaloids in hairy roots by
large-scale bioreactors in the future. Here, the recent advances of pharmacological
activity, hairy root, biosynthesis pathway, and genetic engineering were summa-
rized, and problems along with prospects were also discussed.
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4.1 Introduction

As one group of bioactive secondary metabolites, alkaloids are generally alkaline
nitrogen-containing organic compounds in plants which play an important role in
plant growth and development, some of them act as anti-insect compounds or
phytoalexin, and some other have long been used as stimulants, narcotic sedatives,
or poisons (Wink and Roberts 1998; Huang et al. 2005). Alkaloids exhibited various
pharmacological activities, for example, anti-inflammatory, antibacterial, dilated
blood vessels, anticancer, etc. Until now, the chemical structure of more than
100,000 alkaloids is clear. Most of alkaloids are distributed in higher plants,
especially in dicotyledons, such as Solanaceae, Rutaceae, Leguminosae,
Menispermaceae, and so on. According to the nitrogen-containing skeleton at the
core, alkaloids can be divided into multiple types, namely, indole alkaloids, quino-
line alkaloids, quinazoline alkaloids, and tropane alkaloids (Li et al. 2008).

Tropane alkaloids (TAs) are a class of alkaloids containing a tropane ring in their
chemical structure which include more than structurally known 200 compounds,
such as hyoscyamine, scopolamine, anisodamine, and anisodine (Fig. 4.1). These
compounds have been among the oldest drugs in medicine because of their wide-
ranging pharmaceutical applications. Several genera including Anisodus, Datura,
Atropa, Duboisia, and Hyoscyamus which belong to plant family Solanaceae can
produce tropane alkaloids (Kai et al. 2007). Nevertheless, the content of TAs is

Fig. 4.1 The chemical structures of several common TAs. (I) Hyoscyamine (II) Anisodamine (III)
Scoploamine (IV) Anisodine
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distinguishingly distributed in different plants of Solanaceae (Table 4.1). In addi-
tion, field culture of traditional herbal plants exhibited several disadvantages such as
long period of growth and low content, leading to the production of TAs that cannot
meet the increasing demand of clinical application. Due to their anticholinergic
action on the parasympathetic nervous system and other bioactivities, especially
scopolamine which is the most valuable TAs because of its higher pharmacological
activity, fewer side effects, and relatively limited supply, it is of importance and
significance to elevate the production of TAs by multiple strategies (Häkkinen et al.
2005).

Along with the rapid progress of plant biotech methods, biosynthetic pathway of
TAs has been gradually understood. Meanwhile, genetic manipulation has been a
widely-used alternative for increasing the production of targeted metabolites. Here,
recent advances in the understanding of pharmacological activities, biosynthesis
pathway, genetic engineering with hairy root system, and various biotech
approaches for more efficient production of TAs were summarized, and problems
along with prospects were also discussed.

4.2 Pharmacological Activities of TAs

Hyoscyamine, scopolamine, anisodamine, and anisodine have been widely used in
clinical application in different forms. For example, tiotropium bromide, a quater-
nary ammonium salt of scopolamine semisynthetic analogs, was approved for the
treatment of chronic obstructive pulmonary disease (COPD) by FDA (Koumis and
Samuel 2005). Many studies have reported different pharmacological activities of
tropane alkaloids.

4.2.1 Hyoscyamine

Atropine is the racemic modification of hyoscyamine which can be used to treat the
parasympathetic nervous system disease (Pan 2006). Atropine also has a certain
toxicity, which can be used as an anticholinergic enzyme in agricultural organo-
phosphorus insecticides. However, excessive absorption of atropine may lead to
respiratory failure and death (Liu 2016). Hyoscyamine is an important antispas-
modic drug, which has analgesic antispasmodic function. It is mainly used to relieve
smooth muscle spasms, biliary tract and stomach spasm, and duodenal ulcer pain. It
can also relieve syncope caused by heart conduction, arterial spasm, and other blood
circulation diseases. In addition, hyoscyamine also has a certain role in peripheral
vascular disease, sudden deafness, and a variety of neuralgia (Ullrich et al. 2016;
Zhang 2010; Dehghan et al. 2017).
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4.2.2 Scopolamine

Compared with hyoscyamine, scopolamine has weaker side effects and stronger
pharmacological effects; therefore, there is an extraordinarily great demand for
it. Importantly, it can inhibit the central nervous system and parasympathetic nerve
block; therefore, scopolamine is mainly used for anesthesia, analgesia, Parkinson
disease, anti-motion sickness, microcirculation improvement, pesticide poisoning,
detoxification, and so on (Zhao et al. 2017; Shawwal et al. 2017).

4.2.3 Anisodamine (6β-Hydroxyhyoscyamine)

A hydroxyl group at the sixth position of the anisodamine nucleus compared with
hyoscyamine endows the molecule with increasing polarity rendering it hard to
penetrate through the blood-brain barrier (Sun et al. 2012). Compared with atropine,
anisodamine has a slightly weaker pharmacological effect; meanwhile its toxicity
and adverse reactions are relatively lower. It is mainly used for the treatment of toxic
shock, smooth muscle spasm, vascular disease, and a variety of neuralgia, vertigo,
and fundus diseases. Apart from the M muscarinic receptor blocking effect,
anisodamine also showed some non-M receptor blocking effects. Its effect of
calcium antagonists can increase the fluidity of the cell membrane and antagonize
the oxygen free radicals produced by damaged cells (Eisenkraft and Falk 2016;
Marín-Sáez et al. 2017).

4.2.4 Anisodine

Anisodine is one of the anticholinergic drugs that can block the M-cholinergic
receptor. It is effective in treatment of anti-tremor, antispasmodic, asthma, inhibiting
saliva secretion, mydriasis, acute paralysis, motion sickness, vascular headache,
against the role of organic phosphorus poisoning pesticides. Anisodine can also be
used as one kind of neuroprotective agents for the treatment of ischemic optic nerve
retinal choroidal lesions (Wang et al. 2017; Varma and Yue 1986; Liu et al. 2015). In
terms of relieving the smooth muscle spasm and inhibiting the salivary secretion, the
peripheral anticholinergic effect was inferior to hyoscyamine and scopolamine.
Otherwise, its effect on treatment of mydriasis was five times higher than
anisodamine, and its central action was similar to that of scopolamine (Zhang
2010; Kai et al. 2011).

4 Biotechnological Interventions of Hairy Roots of Tropane Alkaloid-Bearing Plants 75



4.3 Hairy Root Culture System

In the last three decades, it is considered that hairy roots are a biological matrix for
various biotechnological functions. The neoplastic manifestation or hairy roots
ensued from the transfer of Agrobacterium rhizogenes transfer DNA (T-DNA)
into the plant genome possess a potential for secondary metabolite production
(Mehrotra et al. 2015). In 1907, Smith and Townsend firstly found that
Agrobacterium rhizogenes can induce the occurrence of hairy roots of plants
(Smith and Townsend 1907). And Chilton reported the mechanism of infection of
Agrobacterium rhizoma into plants tissues (Ren 2003). Various aspects and appli-
cations in hairy root culture have been utilized, including phytoremediation, intro-
duction of desirable foreign genes, phytochemicals, molecular breeding and crop
improvement, recombinant protein production, rhizosphere physiology and bio-
chemistry, bioreactor design, metabolic engineering, and general overviews of the
system (Ono and Tian 2011). In recent years, hairy root cultures have attracted much
attention due to their attractive feature for producing valuable metabolites, such as
high genetic stability and relatively fast growth rates, auxin-independent, and no
geographical limit (Guillon et al. 2006; Wu and Shi 2008). Meanwhile, hairy root
system is able to synthesize a large number of secondary metabolites in liquid
medium without exogenous hormone, thus becoming a kind of new resource
material to facilitate the raw plants (Moyano et al. 2002). Therefore, hairy roots
system is an excellent means to improve secondary metabolites of plants.

4.4 Establishment of Hairy Root System of Tropane
Alkaloid-Bearing Plants

Several ways have been used to enhance the TAs production such as chemical
synthesis, interspecific hybridization, and cell culture; however all of them showed
some shortcomings. For instance, synthesis routes by chemical method are long
period, expensive, environment-polluting, and low-yielding because of the com-
plexity of the chemical structure (Huang et al. 2005). Conventional interspecific
hybridization exhibited disadvantages of too long breeding cycle, environmental
limitation, and lack of specific parent materials (Yun et al. 1992). Poor genetic
stability is one of the critical defects of cell culture (Huang et al. 2005; Wu et al.
2005).

Tropane alkaloids mainly accumulate in roots of Solanaceae plants, which pro-
vides theoretical basis to produce TAs in hairy roots. At present, most of the
medicinal plants of Solanaceae which produce TAs have established hairy root
induction and culture system (Lei et al. 2016) (Table 4.2). Here, we took
A. acutangulus and A. belladonna as examples to elaborate establishment of hairy
roots of tropane alkaloid-bearing plants.
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4.4.1 Hairy Roots of Anisodus acutangulus

Anisodus acutangulus is a solanaceous perennial herbal plant that is endemic to
China, and it has been used as an esthetic medicine in Yunnan Province for hundreds
of years (Kai et al. 2007). It is an important source plant of TAs which has been a
research hotspot in recent years (Kai et al. 2007, 2011). Aseptic A. acutangulus
plants were grown in a greenhouse at 25 �C with 16 h light and 8 h dark periods in
Murashige and Skoog (MS) basal medium with 3% sugar and 0.8% agar (pH 5.8).
Different explants including leaves, petioles, or stems were isolated from 4-week-old

Table 4.2 Culture conditions of hairy root and tropane alkaloid content in some Solanaceae plants

Plant species
Medium of
induction

Liquid
medium

Bacterial
strain References

Brugmansia
candida

1/2 B5 1/2 B5 LBA9402 Cardillo et al. (2013)

Datura inoxia B5 B5 1855 Dechaux and Boitel-Conti (2005),
Boitel-conti et al. (2000)

Datura
candida

MS MS 15834 Christen et al. (1989)

Scopolia
carniolica

LS LS A4 Altabella et al. (1994), Knopp et al.
(1988)

Hyoscyamus
albus

B5 B5 A4 Christen et al. (1992)

Hyoscyamus
muticus L

B50 B50 LBA9402 Jouhikainen et al. (1999)

Scopolia
japonica

White Heller 15834 Mano et al. (1986)

Duboisia
myoporoides

LS LS HRI Deno et al. (1987)

Anisodus
luridus

MS MS C58C1
(Ri)

Qin et al. (2014)

Anisodus
acutangulus

MS 1/2MS C58C1 Li et al. (2008)

Scopolia lurida – 1/2MS C58C1 Zhao et al. (2017)

Atropa bella-
donna L

MS MS 15834 Kamada et al. (1986)

MS MS A4 Yang et al. (2006)

Hyoscyamus
niger L

MS 1/2MS MAFF03–
01724

Shimomura et al. (1991)

MS + B5 1/2B5 LBA9402 Lu et al. (2005)

Datura stra-
monium Linn

MS MS A4 Maldonado-Mendoza and Loyola-
Vargas (1995)

B5 B5 TR-105 Maldonado-Mendoza et al. (1993)

B5 B5 LBA9402 Robins et al. (1991)

Anisodus
tanguticus

MS 1/2MS A4 Shimomura et al. (1991)

LS LS 15834 Meng et al. (2002)
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in vitro-grown sterile seedlings of A. acutangulus; leaves were cut into small pieces
about 1 cm and cultured in hormone-free MS medium for 48 h in darkness. Disarmed
A. tumefaciens strain C58C1 harboring both the A. rhizogenes Ri plasmid pRiA4 and
a plasmid containing a target gene were used for genetic transformation for 15 min.
C58C1 with blank vector was used as control. After coculture for 2–3 days, the
infected explants were transferred to B5 medium supplemented with 500 mg/L
cefotaxime sodium to kill the residual Agrobacterium. The concentration of
cefotaxime was lowered every 2 weeks till bacterial-free, and rapidly growing
lines were used to establish hairy root lines further (Kai et al. 2011). Specific primers
of targeted genes and rolB gene were validated in the same time (Kai et al. 2011).
Root fragments of approximately 3–4 cm in length from positive colonies were
culture in 100 mL of 1/2 MS medium on an orbital shaker with the speed of 100 r per
minute at 25 �C in darkness. The hairy roots were subcultured every 30 days and
harvested after 60 days for extraction of TAs (Fig. 4.2).

Fig. 4.2 Induction of hairy roots from explants of A. acutangulus with strain C58C1. (a) Aseptic
seedlings of A.acutangulus (b) Generated hairy roots co-cultured with seedless stem of A.
acutangulus (c) Monoclonal hairy roots of A.acutangulus (d) A liquid culture of hairy roots of A.
acutangulus in shake flask
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4.4.2 Transformation of Atropa belladonna L Hairy Roots

A.belladonna is a perennial plant belonging to the family Solanaceae and widely
distributed over Central and Southern Europe (Munir et al. 2014). A.belladonna
attracted more attention because it can produce the pharmaceutical bioactive tropane
alkaloids which are broadly used as antagonists of acetylcholine in both central
nervous system and autonomic system. Agrobacterium strains have been reported to
infect the explants in A. belladonna including Agrobacterium rhizogenes 15834 and
GV3101 including pPCV002-ABC called A. tumefaciens rol ABC (Bonhomme et al.
2000; Vervliet et al. 1975). Approximately 0.8 cm diameter leaves from 5-week-old
plantlets were infected with the strains. Then these explants were transformed onto
LS solid medium supplemented with 0.5 g/L cefotaxime to get rid of bacteria. Five
weeks later, the hairy roots can be observed at the wounded sites of explants. The
hairy roots were cut out and transferred to LS liquid medium. All the culture media
used for the hairy root cultures were hormone-free. When the hairy roots were
4 weeks old, they can be inoculated about 100 mg (fresh weight) into 30 mL liquid
LS medium supplemented with 0.5 g/L cefotaxime, in 100 ml Erlenmeyer flasks, and
maintained in the dark at 22 �C on a rotary shaker (130 rpm) (Bonhomme et al.
2000).

4.5 Biosynthesis of Tropane Alkaloids (TAs) in Plants

4.5.1 Biosynthetic Pathway of Tropane Alkaloids (TAs)

The biosynthesis of TAs is a complicated process and involves several catalytic steps
(Fig. 4.3). Some related genes have been isolated and cloned in TAs-producing
plants. L-ornithine or arginine is the biological precursor of TAs which can be
converted to polyamine putrescine by ornithine decarboxylase (OrnDC) and arginine
decarboxylase (ArgDC), respectively. Then putrescine N-methyltransferase (PMT)
which is the first rate-limiting enzyme in the pathway of nicotine and the tropane
alkaloid catalyzes the polyamine putrescine to form N-methylputrescine and after-
ward is oxidized by diamine oxidase (DAO) to 4-N-methylamino butanal (Heim
et al. 2007; Katoh et al. 2007) which rearrange spontaneously to N-methyl-Δ1-
pyrrolinium. N-methyl-Δ1-pyrrolinium is the common intermediate precursor of
cocaine, nicotine, and TAs synthesis (Jirschitzka et al. 2013). It is still unknown
how the N-methyl-Δ1-pyrrolinium turned to tropinone. TRI and TRII are two
tropinone reductases which compose a branching point in the biosynthesis routes
of tropane alkaloids (Kai et al. 2009a; Dräger 2006). TRI converts tropinone to
tropine; nevertheless tropinone was converted to pseudotropine by TRII (Kai et al.
2009a). Owing to TRI as the first putative metabolite branch specific to
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hyoscyamine, TRI has been regarded as a significant enzyme in the TAs biosynthetic
pathway. Subsequently, tropine condensed with phenyllactic acid which is derived
from phenyllactic acid results in littorine. Littorine is converted to hyoscyamine by
littorine mutase/monooxygenase (CYP80F1) and alcohol dehydrogenase (ADH)
(Li et al. 2006). Aromatic amino acid aminotransferase (ArAT) is identified in the
route that converts phenylalanine into phenyllactic acid recently (Bedewitz et al.
2014; Cui et al. 2015). Hyoscyamine 6β-hydroxylase (H6H) which was identified in
the last committed step in the scopolamine biosynthetic pathway catalyzes the
hydroxylation and epoxidation of hyoscyamine to produce scopolamine (Kai et al.
2012). The structure of anisodine is similar to scopolamine with an additional
hydroxyl, whereas it is unclear about its biosynthetic pathway by unknown enzymes.

4.5.2 Cloning and Characterization of Genes Related to TAs
Biosynthesis

With the increasing demand of TAs in recent years, considerable efforts have been
made to excavate biosynthesis pathway of TAs. Several rate-limiting enzyme genes
including PMT, TRI, TRII, CYP80F1, and H6H have been successfully isolated and
cloned from various solanaceous plants (Table 4.3).

As the first rate-limiting upstream enzyme in TAs biosynthetic pathway (Kutchan
1995; Kholodenko et al. 1998; Zhang et al. 2007), putrescine N-methyltransferase
(PMT) belongs to the S-adenosyl-methionine-dependent N-methylation transferase
family that catalyzes the methylation of putrescine to form N-methylputrescine for

Fig. 4.3 The biosynthetic pathway of tropane alkaloids (TAs) in plants
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Table 4.3 Related genes involved in biosynthetic pathway of TAs from plants of Solanaceae
family

Genes Function Plant sources
GenBank
Number References

PMT1 Catalyzing the methylation of
putrescine to form N-
methylputrescine

Atropa
belladonna

AB018570.1 Suzuki
et al. (1999)

PMT2 Atropa
belladonna

AB018571.1 Suzuki
et al. (1999)

PMT Hyoscyamus AB018572.1 Suzuki
et al. (1999)

PMT1 Datura
inoxia

AM177609.1 Teuber
et al. (2007)

PMT2 Datura
inoxia

AM177610.1 Teuber
et al. (2007)

PMT1 Anisodus
acutangulus

EU670745 Kai et al.
(2009b)

PMT2 Anisodus
acutangulus

EU670745 Kai et al.
(2009b)

PMT Anisodus
tanguticus

AY690623.1 Liu et al.
(2005)

TRII Converting tropinone to tropine/
pseudotropine

Hyoscyamus
niger

L20485.1 Nakajima
et al.
(1993a)

TRI Datura
stramonium

L20473.1 Nakajima
et al.
(1993b)

TRII Datura
stramonium

L20474.1 Nakajima
et al.
(1993b)

TRI Anisodus
acutangulus

EU424321 Kai et al.
(2009a)

TRII Anisodus
acutangulus

EU424322 Kai et al.
(2009a)

TRI Solanum
tuberosum

AJ305841.1 Kaiser et al.
(2006)

TRII Solanum
tuberosum

AJ245634.1 Kaiser et al.
(2006)

TRI Scopolia
lurida

– Zhao et al.
(2017)

CYP80F1 Catalyzing (R)-littorine to form hyo-
scyamine aldehyde

Hyoscyamus
niger

DQ387048.1 Li et al.
(2006)

H6H Catalyzing hyoscyamine to form
scopolamine

Atropa
belladonna

AB017153.1 Suzuki
et al. (1999)

H6H Anisodus
acutangulus

EF187826.1 Kai et al.
(2007)

H6H Hyoscyamus
niger

M62719.1 Matsuda
et al. (1991)

H6H Datura
arborea

KR006981 Qiang et al.
(2015)
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TAs biosynthesis. Several PMT genes have been isolated from various Solanaceae
plants (Hibi et al. 1994). For example, two AaPMT genes have been isolated from
Anisodus acutangulus, namely, AaPMT1 and AaPMT2, and showed high similarity
with other PMTs from some plants. The full-length cDNA of AaPMT1 was 1322 bp
containing a 1014 bp open reading frame (ORF) encoding a polypeptide of
338 amino acids, while AaPMT2 was 1219 bp containing a 1041 bp ORF encoding
a 347-amino acid protein. AaPMT1 and AaPMT2 presented similar tissue expression
profiles while AaPMT2 with a weaker trend, expressing strongly in roots, weakly in
stems and leaves. A full-length cDNA encoding PMT was isolated from
A. tanguticus. Nucleotide sequence analysis showed that the cDNA contained an
ORF of 1017 bp encoding 338 amino acids bearing 92% identity with both HnPMT
(Hyoscyamus niger) and AbPMT (Atropa belladonna). A. tanguticus PMT was
expressed in Escherichia coli, and recombinant AtPMT was purified which
exhibited S-adenosyl-methionine-dependent N-methyltransferase activity (Liu
et al. 2005).

Tropinone reductase (TR) catalyzes tropinone to downstream molecules. TRI
(tropinone reductase I) and TRII (tropinone reductase II) both existed in tropane
alkaloids-producing plants while function in a different way (Hashimoto et al. 1992).
TRI converts tropinone to 3a-hydroxytropane (also known as tropine), while TRII
converts tropinone to pseudotropine (also known as c-tropine or
3b-hydroxytropane). Hyoscyamine is derived from tropine and then converted into
scopolamine by H6H (hyoscyamine 6β-hydroxylase), whereas calystegines are
metabolites of pseudotropine which illustrates that metabolic regulation of these
two genes is species-specific in the biosynthesis pathway of TAs. TRI has been
considered as an important branch point in the TAs biosynthetic pathway (Kai et al.
2009a). TRI together with TRII were cloned from the solanaceous plant
A. acutangulus (designated as AaTRI, AaTRII) exhibiting high homology with
other tropinone reductases from other plants such as Hyoscyamus niger, Datura
stramonium, etc., while AaTRI and AaTRII only showed identity of 60.8%. One-step
RT-PCR showed that AaTRI and AaTRII were expressed in all tested tissues, and
both could be induced by methyl jasmonate (Kai et al. 2009a).

Littorine is an important precursor in biosynthesis pathway for production of
hyoscyamine and scopolamine (Robins et al. 1994). A cytochrome P450 enzyme
was thought to be involved in the rearrangement of (R)-littorine to (S)-hyoscyamine.
A full-length cDNA of CYP80F1 with an ORF of 1533 bp of 510 amino acids was
identified from H. niger (Li et al. 2006). Sequence alignment presented that
CYP80F1 of H. niger share generally conserved eukaryotic cytochrome P450
regions. Employing RNAi technique could reduce the expression level of
CYP80F1 and resulted in decrease of hyoscyamine production. In addition, hyoscy-
amine can be detected in CYP80F1-expressing tobacco hairy roots supplied with
(R)-littorine. Expression in yeast confirmed that CYP80F1 catalyzes the oxidation of
(R)-littorine with rearrangement to form a putative precursor of hyoscyamine (hyo-
scyamine aldehyde) or without rearrangement to form 30-hydroxylittorine (Li et al.
2006).
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H6H (hyoscyamine 6β-hydroxylase) is a bifunctional enzyme which was identi-
fied as the last rate-limiting enzyme involved in scopolamine biosynthesis. It can
catalyze the hydroxylation of hyoscyamine to 6β-hydroxyhyoscyamine and the
epoxidation of 6-hydroxyhyoscyamine to scopolamine (Kai et al. 2012; Xia et al.
2016). Full-length cDNA encoding hyoscyamine 6β-hydroxylase in A. acutangulus
(designated as AaH6H) is identified from young roots by rapid amplification of
cDNA ends (RACE). The complete ORF of AaH6H was 1035 bp encoding a
deduced protein of 344 amino acid residues. Sequence analyses showed that
AaH6H had high homology with other H6Hs isolated from some other
scopolamine-producing plants such as Atropa belladonna, Hyoscyamus niger, and
Datura metel (Kai et al. 2007). The cDNA encoding hyoscyamine 6β-hydroxylase in
Atropa belladonna (designated as AbH6H) and Hyoscyamus niger (designated as
HnH6H) has also been identified. The ORF of AbH6H was 1029 bp encoding a
deduced protein of 343 amino acid residues, and the ORF of HnH6H was 1035 bp
encoding a deduced protein of 344 amino acid residues, which is the same length
with AaH6H (Suzuki et al. 1999; Matsuda et al. 1991).

4.6 Biotechnological Approaches to Improve
the Production of TAs

TAs as well as other secondary metabolites used in traditional Chinese medicine are
mainly from the herbal plants. However, cultivation of medicinal plants is time-
consuming and exhibited low contents in plants. Application of plant biotechnology
for elevation of bioactive and desired constituents is more attractive and efficient
than conventional approaches.

4.6.1 Genetic Engineering

In recent years, genetic engineering strategy has drawn a lot of attention because it
provides an alternative way to improve the accumulation of some active compounds
in some medical plants. This strategy has been used in many sources plants, such as
Salvia miltiorrhiza, Isatis indigotica, and so on. Recently, several genes involved in
TAs biosynthetic pathway have been successfully isolated from different
TAs-producing plants such as Anisodus acutangulus, Atropa belladonna, Datura
metel, Atropa belladonna, etc. It is more effective and feasible to apply genetic
engineering for improved contents of TAs in genetic modified hairy roots.

Key enzyme genes related to TAs have been overexpressed in hairy roots derived
from different plants individually or in combination. It has been reported that
overexpression of the tobacco PMT gene under the control of CaMV 35S promoter
could enhance the production of tropane alkaloids in Hyoscyamus muticus, Datura
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metel, and Scopolia parviflora (Moyano et al. 2002). Hairy roots of A. baetica,
A. belladonna, and H. muticus harboring the H6H gene can produce higher accu-
mulation of scopolamine (Yun et al. 1992; Jouhikainen et al. 1999; Zárate et al.
2006), which illustrated that it was a viable way to increase scopolamine content by
metabolic engineering. Hairy root cultures of Scopolia lurida were established to
investigate the effect on the accumulation of tropane alkaloids by overexpressing
SlTRI. In the SlTRI overexpression hairy root cultures, the content of hyoscyamine
was 1.7- to 2.9-fold higher than those in control, while the scopolamine contents
were likewise elevated (Zhao et al. 2017). Two full-length cDNAs encoding TRI
(tropinone reductase I) and TRII (tropinone reductase II) from the solanaceous plant
Anisodus acutangulus have been isolated by rapid amplification of cDNA ends.
AaTRI-transformed hairy root lines were accompanied by a mean 1.87-fold higher
level of hyoscyamine and a mean eightfold higher level of scopolamine compared
with control roots, indicating that AaTRI is a promising target for genetic engineer-
ing to increase tropane alkaloid in A. acutangulus (Kai et al. 2009a, b).

Overexpression of single gene encoding a key enzyme may increase flux through
the pathway, but other rate-committed steps may limit its effect to some extent.
Hence, co-expression of two or several genes would be more suitable to increase the
production of bioactive products. This may be more suitable in branched pathways
in which precursors can be channeled into a variety of metabolites away from the
desired products (Kai et al. 2011). Co-introduction of genes encoding the branch-
controlling enzyme tropinone reductase I (TRI) and rate-limiting enzyme hyoscya-
mine-6β-hydroxylase gene in the downstream pathway (H6H) into hairy roots of
A. acutangulus by Agrobacterium-mediated gene transfer technology can produce
obviously higher level of TAs in contrast with the control and single gene-
transformed hairy root lines. The best transformed lines produced 4.49-fold TAs
higher than that of the control lines (Kai et al. 2012). Overexpression of putrescine
N-methyltransferase gene (PMT) which was considered as the first rate-limiting
upstream enzyme and tropinone reductase I (important branch-controlling enzyme)
in A. acutangulus hairy roots led to significantly increased production of four kinds
of TAs and showed higher antioxidant activity than control lines (Kai et al. 2011).
Simultaneous overexpression of both PMT and H6H coordinately promoted biosyn-
thesis of scopolamine and made the scopolamine content very high in transgenic
hairy root cultures of H. niger (Zhang et al. 2004). Atropa belladonna is one of the
plants that produced tropane alkaloids, and overexpressing of both PMT and H6H in
A. belladonna hairy roots can significantly improve the content of hyoscyamine and
scopolamine compared with wild-type lines (Yang et al. 2011). In addition, conse-
quent to the introduction of the two key enzyme genes, the production of the
alkaloids hyoscyamine and scopolamine was enhanced by co-expressing the two
genes PMT and H6H in Scopolia parviflora (Kang et al. 2011).
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4.6.2 Elicitation Treatment

Elicitation is one of the most common and effective strategies for stimulating
secondary metabolite production in plant tissue cultures (Zhao et al. 2005; Wang
and Wu 2013). Elicitors are some compounds which generally refer to the agents or
stimuli that can induce phytoalexin synthesis and defense responses in the host
plants. Therefore, the elicitation effect is based on the accumulation of most sec-
ondary metabolites in plants which is part of the defense responses of plants to
pathogen infection or stresses from the environment. Elicitors can be grouped into
two categories based on their source: abiotic elicitors and biotic elicitors. Biotic
elicitor is some material that formed by the plants to resist the microbial abuse. It
includes isolates of plant cell wall and various fungi, for instance, fungi, bacteria,
viruses, or yeast. Whereas, abiotic elicitor is generally some of the physicochemical
factors that are not provided by the organism such as organic compounds, methyl
jasmonate (MJ), acetylsalicylic acid (ASA), high temperature, ultraviolet, and heavy
metals (Ebel 1998).

A variety of biotic or abiotic elicitors have been used to enhance the TAs
production in hairy roots of TAs-bearing plants. For example, salicylic acid,
AgNO3, CaCl2, and CdCl2 were used to elevate the TAs contents in Brugmansia
candida hairy roots; the results showed that scopolamine and hyoscyamine were
both increased compared with the control lines (Pitta-Alvarez et al. 2000). It has
been reported that Ag+, ethanol, and methyl jasmonate could enhance the accumu-
lation of tropane alkaloids up to 1.08, 1.51, and 1.13 times as the control after 24 h
treatment, respectively, but salicylic acid reduced the average production of tropane
alkaloids in hairy root of Anisodus acutangulus (Kai et al. 2012). Different concen-
trations of iron oxide nanoparticles (FeNPs) were used to elicited hairy roots of
Hyoscyamus reticulatus L. derived from cotyledon explants inoculated with
Agrobacterium rhizogenes. Antioxidant enzyme activity was increased significantly
in induced hairy roots than non-transgenic roots. Accumulation of hyoscyamine and
scopolamine was both promoted (Moharrami et al. 2017). The methyl jasmonate
(MJ) has also been used in Datura stramonium hairy roots to observe the change of
accumulation of hyoscyamine and scopolamine, and the results showed that the
increase of scopolamine was 1.36-, 1.42-, 1.17-, and 1.12-fold higher than that of the
control after dealing with MJ on days 3, 6, 9, and 12, respectively. And the increase
of hyoscyamine was 2.28-, 1.11-, 0.63-, and 0.70-fold higher than that of the control,
respectively (Sun et al. 2013) (Table 4.4).
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4.6.3 In Combination of Genetic Engineering and Elicitation

Most previous studies focused on the production of the targeted products by the
method of genetic engineering in hairy roots; the combination of transgenic tech-
nology with elicitor treatments was also an effective method to promote secondary
metabolites. For example, transgenic S. miltiorrhiza hairy root lines co-expressing
HMGR and DXR (HD lines) with increased tanshinone production exhibited higher
tanshinone content after elicitation by yeast extract and/or Ag+ than before.
Tanshinone can be significantly enhanced to 5.858, 6.716, and 4.426 mg/g DW by
YE, Ag+, and YE-Ag+ treatment compared with non-induced HD42, respectively
(Shi et al. 2014). Methyl jasmonate (MJ) and salicylic acid (SA) were used to
investigate their effects on tanshinone accumulation in the hairy roots of
geranylgeranyl diphosphate synthase (SmGGPPS) overexpression line (G50) in
Salvia miltiorrhiza. High-performance liquid chromatography analysis showed
that total tanshinone content in G50 was obviously increased by 3.10-fold
(11.33 mg/g) with MJ and 1.63 times (5.95 mg/g) after SA treatment in contrast to
control (Hao et al. 2015).

For large-scale production of TAs, salicylic acid (SA), methyl jasmonate (MJ),
and acetylsalicylic acid (ASA) were used to induce the transgenic Atropa baetica
overexpressing the H6H gene to enhance tropane alkaloid yields. Production of
scopolamine was improved after treatment with MJ and ASA. The highest enhance-
ment of scopolamine was achieved with MJ followed by ASA dissolved in EtOH (El
Jaber-Vazdekis et al. 2008).

4.6.4 Production of TAs in Bioreactors

To successfully achieve high production of bioactive constituents by hairy root-
based biotechnology, the key procedure is the cultivation in optimal bioreactors on a
large scale (Georgiev and Weber 2014). Because of sensitivity of hairy root cultures
to shear stress, bioreactor systems suitable for the cultivation of hairy root are
different from those of suspension plant cell cultures (Mishra and Ranjan 2008). A
variety of reactor configurations have been used to cultivate hairy roots for desired
products, and the optimization of conditions for efficient cell growth and secondary
metabolite production is necessary (Stiles and Liu 2013). It has been reported that

Table 4.4 Elicitors applied for stimulation of TAs accumulation in hairy roots

Elicitor Plant source References

SA, AgNO3, CdCl2, CaCl2 Brugmansia candida Pitta-Alvarez et al. (2000)

Ag+, ethanol, MJ Anisodus acutangulus Kai et al. (2012)

MJ, Quercetin Brugmansia suaveolens Zayed et al. (2004)

MJ Datura stramonium Sun et al. (2013)

FeNPs Hyoscyamus reticulatus L Moharrami et al. (2017)
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hairy root cultures of Hyoscyamus niger were cultivated in a bubble-column biore-
actor and a hybrid bubble-column/spray bioreactor together with elicitation and
permeabilization (Jaremicz et al. 2014). Hairy root culture in a hybrid bubble-
column/spray bioreactor showed the highest anisodamine content of 0.67 mg/g
DW, and the bubble-column reactor gave the highest concentration of scopolamine,
hyoscyamine, and cuscohygrine. Besides, elicitation with methyl jasmonate
increased scopolamine productivity by 146% in roots grown in the hybrid bubble-
column/spray bioreactor, whereas their permeabilization with DMSO caused an
increase in scopolamine, hyoscyamine, anisodamine, and cuscohygrine concentra-
tions in the growth medium. In situ extraction with Amberlite XAD-2 doubled
scopolamine productivity in the hybrid reactor after 50 days culture.

4.7 Transcriptome Analyses

Metabolic engineering is a very useful tool for enhancing the accumulation of
valuable compounds in plants. In many medicinal plants, bioengineering techniques
significantly improved the production of valuable compounds with deep understand-
ing of biosynthesis pathway (O’Connor 2012). Whereas, metabolic engineering may
not achieve successful progress in some plants, due to the limited information of
biosynthesis pathways. Hence, it is imperative to deeply understand the biosynthetic
pathways of various compounds produced by the plants (Chen et al. 2013).
Transcriptome sequencing or RNA sequencing (RNA-seq) is one of the famous
high-throughput sequencing methods and can produce millions of short cDNA reads
in a parallel manner. The abundance of transcripts, sequences, and even the single-
cell level can be determined by RNA-seq (Tang et al. 2009). RNA-seq can provide a
holistic view of a transcriptome, including novel transcriptional active regions and
the precise location of transcription boundaries (Wilhelm et al. 2010).

To further understand the biosynthesis and transportation mechanism of TAs, a
de novo transcriptome assembly was developed for deadly nightshade (Atropa
belladonna) (Bedewitz et al. 2014). Excavating of the transcriptome identified a
phylogenetically distinct aromatic amino acid aminotransferase (ArAT), named as
Ab-ArAT4, co-expressed with some known tropane alkaloid biosynthesis genes in
the roots of A. belladonna. Ab-ArAT4 preferentially catalyzes the transamination of
phenylalanine (L-Phe) to phenylpyruvate, the initial step leading to formation of
littorine, a key intermediate in hyoscyamine and scopolamine biosynthesis. Cui et al.
(2015) reported that transcriptome analysis with deep RNA sequencing in
A. acutangulus roots was performed. And a series of genes related to tropane,
piperidine, and pyridine alkaloid biosynthesis, distribution of arginine to TAs
biosynthesis has been detected. Besides, potential transcription factors of WRKY,
AP2/ERF, MYB, and bHLH families that possibly link to TAs synthesis were
identified, which would be helpful to understand transcriptional regulation of sec-
ondary metabolite biosynthesis which updated the knowledge of TAs biosynthetic
mechanism at the molecular level.
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4.8 Conclusions and Prospects

Tropane alkaloids (TAs) such as anisodamine, anisodine, hyoscyamine, and scopol-
amine are extensively used in clinical practice as anticholinergic agents. All of them
are mainly extracted from root tissue in the TAs-producing plants which cannot meet
the increasing clinical demand. Although multiple genes involved in scopolamine
biosynthesis have been cloned, the biosynthetic pathway of other TAs remains
poorly understood. Large-scale culture of hairy roots has become an efficient way
to improve the accumulation of TAs. However, many problems such as root
distribution, the uniformity of oxygen supply, and weaker sheerness should be
improved. Combination of genetic engineering, elicitation treatment, and
transcriptomic and genomic analysis into hairy root culture can provide new ideas
for production of TAs.

To excavate the biosynthesis mechanism of TAs, multiple techniques including
metabolomics, transcriptome, proteomics, and genomic technologies should be
utilized together to study the transcriptional regulation and transportation mecha-
nism which can provide a new insight into the genetic manipulation of secondary
metabolites in other medicinal plants. With the increasing demand for desired
secondary products including TAs, synthetic biology has been a valid and effective
strategy. Saccharomyces cerevisiae and Escherichia coli chassis, etc. have been
utilized for production of various bioactive ingredients. The H6H enzyme from
Brugmansia candida has been produced in Saccharomyces cerevisiae to obtain a
biological catalyst for potential industrial applications. More systematic work related
to synthetic biology should be conducted in TAs production.
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Chapter 5
Hairy Root Cultures for Monoterpene
Indole Alkaloid Pathway: Investigation
and Biotechnological Production

Shakti Mehrotra, Sonal Mishra, and Vikas Srivastava

Abstract Terpene indole alkaloids (TIAs) comprise a major group of alkaloids as
more than 3000 TIAs are known with resilient and beneficial biological activities.
These TIAs exhibit varied structural intricacy with a characteristically common
tryptophan or tryptamine residue with a carbon tail of terpenoid origin derived
from the dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate
(IPP) pathways. According to the number of isoprene units, monoterpene indole
alkaloids (MIAs) comprise the major class of TIAs that have two isoprene units
originated from secologanin. MIAs have been extensively investigated for their
immense pharmaceutical importance as these compounds possess strong properties
against various types of cancers, diseases of the central nervous systems, malaria,
hypertension, and major cardiac ailments. Keeping in mind their immense pharma-
ceutical worth and ever-increasing demand from the pharmaceutical world, solici-
tous attention is needed on their biological production and scientific strategies to
abate the demand and supply ratio. Furthermore, a holistic understanding is always
required to explore intimately interconnected facts of synthesis and regulation of
these metabolites. In this context, with their reasonable competence, the hairy root
cultures (HRCs) have gained center-stage focus as an excellent in vitro system for
different scientific investigatory objectives. This chapter provides condensed infor-
mation about various MIAs, their biosynthesis in native plants, and contribution of
HRCs to investigate the operational and regulatory mechanism of their in vitro and in
planta biosynthesis.
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5.1 Introduction

Plants produce a vast variety of secondary metabolites that do not have any essential
and direct role in processes of growth and development. Rather, they do have a
certain role in defense mechanism of plants against various biotic and abiotic
challenges. Primarily on the basis of structural differences, such compounds are
grouped under terpenes, alkaloids, and phenolics. The terpenes are the most struc-
turally diverse class of secondary metabolites that are derived from the five-carbon
intermediates isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP). Alkaloids, another highly diverse group of nitrogen-containing hetero-
cyclic molecules, are mainly biosynthesized from the amino acids like phenylala-
nine, tyrosine, tryptophan, lysine, and ornithine. On the basis of nitrogen-containing
ring structure, the alkaloids are of various types such as tropane, indole, pyrrole,
pyrrolidine, steroidal, etc. Indole alkaloids (alkaloids containing an indole skeleton)
constitute the largest group of alkaloids. When indole alkaloids contain terpene
(isoprene) group in their structure, then they are known as terpene/terpenoid indole
alkaloids (TIAs). TIAs are known as major group of alkaloids as more than 3000
TIAs with rich biological activities have been identified (Singh and Singh 2018).
These TIAs reveal varied structural complexity with a characteristically common
tryptamine (tryptophan derivative) residue with a carbon tail of terpenoid origin
derived from the dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophos-
phate (IPP) pathways. According to the botanical origin as well as on the basis of the
number of isoprene units, monoterpene indole alkaloids (MIAs) comprise the major
class of TIAs that have two isoprene units or C9 and C10 carbon tail that originate
from secologanin. Thus, these are also known as secologanin tryptamine alkaloids. It
is pertinent to state here that with the number of isoprene units accumulated, the
resulting terpene is classified as hemiterpene, monoterpene, sesquiterpene,
diterpene, sesterterpene, triterpene, and tetraterpene. The MIAs constitute a large
and diverse group with more than 2000 structurally defined molecules (Buckingham
et al. 2010), thus sharing major repository. All of these molecules possess a variety
of biological activities and have been thoroughly investigated for their potential
pharmaceutical relevance. The biosynthetic pathways liable for the synthesis of these
MIAs are mostly confined to few plant families, out of which Apocynaceae,
Nyssaceae, Loganiaceae, and Rubiaceae are the dominant ones represented by
plant genus like Catharanthus, Rauwolfia, Ophiorrhiza, Camptotheca, Cinchona,
etc. (De Luca et al. 2012). Owing to the presence of these MIAs, these plants are
accepted worldwide as medicinal plants (MPs) that have been characterized to
contain bioactive substances in their aerial and/or underground parts capable of
being used for wide therapeutic purposes against the number of human health
disorders (Table 5.1). The global trade of such MPs is continuously expanding,
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Table 5.1 Major plant-based monoterpene indole alkaloids and their biological activity

Plant family Source plant
Alkaloid
(MIA) Biological activity References

Apocynaceae Catharanthus
roseus

Vincristine
(leurocristine)

Antitumor, anticancer Arora et al.
(2010), Seca
and Pinto
(2018)

Vinblastine Antitumor

Catharanthine Antitumor

Vindolinine Chemically lacks physio-
logical activity alone but
is contained as the
pentacyclic moiety in the
antineoplastic agents,
vinblastine and
vincristine

Tabersonine Antimicrobial

Eldisine Antineoplastic, antitumor

Apocynaceae C. roseus
Rauwolfia
serpentina

Serpentine Antimicrobial Mehrotra
et al. (2015a,
b)

Ajmaline Effective against ventric-
ular extrasystoles, atrial/
ventricular fibrillation,
and Brugada syndrome

Ajmalicine
(raubasine)

Central depressant with
adrenergic blocking
properties

R. serpentina Yohimbine Alpha-2-adrenergic
blocking activity

Mehrotra
et al.
(2015a, b)Reserpine Antidepressant and hypo-

tensive
Capable of inducing
activity on the central
nervous system

Apocynaceae
Apocynaceae

Chonemorpha
spp.
Ervatamia spp.

Camptothecin Topoisomerase inhibitor,
anticancer

Lorence and
Nessler
(2004),
Thomas
et al. (2004)

Nyssaceae Camptotheca
acuminata

Meliaceae Dysoxylum
binectariferum

Rubiaceae Ophiorrhiza
pumila,
O. rugosa,
O. alata, and
O. liukiuensis

Icacinaceae Merriliodendron
spp.
Pyrenacantha
spp.
Nothapodytes

(continued)

5 Hairy Root Cultures for Monoterpene Indole Alkaloid Pathway:. . . 97



and according to the International Trade Centre report, India occupies a leading
position among suppliers of MP material for worldwide pharmaceutical industries.
At present, India has about 315 of the 400 families of flowering MPs in the world
that have spectacular perspective in plant-based global pharmaceutical industries
(Kala et al. 2006). The MIAs like vincristine and vinblastine, synthesized in genera
Catharanthus and Vinca, are known for their strong anticancer properties. These
dimeric indole alkaloids have become valuable drugs in cancer chemotherapy due to
their potent antitumor activity against various leukemia and tumors (Arora et al.
2010). Furthermore, Catharanthus MIAs are also used as the major compounds in
the drugs used against Hodgkin’s disease, Wilkins’s tumor, neuroblastoma, and
reticulum-cell sarcoma (Arora et al. 2010). At present, India is among the largest
manufacturing countries of vinblastine and vincristine and also holds a strong
position to fulfill the global demand of these alkaloids (Aslam et al. 2010). More-
over, Eldisine, which is recently introduced as drug molecule for the treatment of
blood cancer, is a structural modification of vinblastine (deacetyl vinblastine amide
or vindesine) (Khazir et al. 2014). High demand and low yield of these alkaloids in
the plant have led the workers to search for alternative means for their production.
MIAs like reserpine, ajmaline, ajmalicine, etc. which possess strong antidepressant,
hypotensive properties and have the capability of inducing activity on the central
nervous system (CNS) are dominant in genus Rauwolfia. Reserpine, the most potent
alkaloid, is a strong antidepressant and is commonly used in a variety of drugs meant
for hypertension, fever, colic, insomnia, giddiness, anxiety, maniacal behavior,
psychosis, schizophrenia, dyspepsia, hyperglycemia, and hypochondria. Ajmaline
is effective against ventricular extrasystoles, atrial/ventricular fibrillation, and
Brugada syndrome. It is a class III anti-arrhythmic agent that causes the lowering
of cardiac rhythm (Mehrotra et al. 2015a, b). Ajmalicine or raubasine, on the other
hand, is a central depressant with adrenergic blocking properties. Similarly, another
important MIA, camptothecin (CPT), which is naturally accumulated in
Camptotheca, Ophiorrhiza, Nothapodytes, and various other plants, is a topoisom-
erase inhibitor, and analogues of this compound are used as anticancer agents. CPT
is thought to stabilize the topoisomerase I-DNA covalent complex which acts as
physical barriers to DNA synthesis, repair, and transcription. Furthermore, CPT
functions as inhibitor to hypoxia-inducible factor 1 (HIF1), a regulator of cancer
cell activities under low oxygen. Thus, CPT is also known to have strong anticancer

Table 5.1 (continued)

Plant family Source plant
Alkaloid
(MIA) Biological activity References

foetida and
N. nimmoniana

Loganiaceae Mostuea
brunonis

Rubiaceae Cinchona
officinalis

Cinchona
alkaloids

Antimalarial, analgesic,
and antipyretic

Kacprzak
(2013),
Gurung and
De 2017

Apocynaceae Gongronema
latifolium
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properties and is currently being used in various pharmaceutical industries world-
wide (Lorence and Nessler 2004; Thomas et al. 2004; Venditto and Simanek 2010).
Scientific studies on the potential of these plant-based MIAs in the treatment of
problems of CNS, depression, cancer, heart arrhythmias, malaria, high fever, and
other diseases are not new and have been in continuation since the past half century
(Newman and Cragg 2012). Nevertheless, solicitous attention is always needed on
the information flowing in with reference to their immense pharmaceutical worth,
biological production, and scientific strategies to abate the demand and supply ratio.
Out of several scientific methodologies that have been executed to claim the normal
and enhanced biosynthetic yield of various MIAs, biotechnological interventions
have proposed certain flawless systems and strategies like cell suspensions and hairy
root culture in vitro systems of TIA-producing plants to explore desirable biosyn-
thesis of these molecules.

Out of other in vitro systems, hairy root cultures (HRCs) are recognized as an
“easy to establish and explore” system with unpretentious maintenance for a number
of valuable biotechnological objectives (Mehrotra et al. 2015b; Srivastava et al.
2017). Not restricting the use of HRCs for secondary metabolite production in native
plant species, these days, rational utilization of HRCs for elucidation of biosynthetic
mechanism in terms of pathway, precursors and intermediates, rate-limiting steps,
enzymatic gene sequences, and ultimately the product flux has attracted the focus of
global scientific arena (Talano et al. 2012). Further, the development of genetically
modified HRCs or transgenic HRCs is observed as a bonus to the system (Mehrotra
et al. 2010). Several such genetic engineering studies have been done to improve the
production of different kinds of pharmaceutically valuable plant-based bioactive
metabolites. In this context, HRCs have proved their capabilities and competence
and subsequently emerged as an excellent in vitro system for different biotechno-
logical and metabolic engineering objectives. In this context, with their reasonable
competence, the hairy root cultures (HRCs) have gained key-stage focus as excellent
in vitro system for different scientific investigatory objectives. With these points in
mind, this chapter provides informative minutiae about various MIAs and their
biosynthesis in native plants. Further, the text also includes in brief the contribution
of HRCs to investigate production and regulatory phenomenon of these pharmaceu-
tically valuable MIAs.

5.2 An Insight on MIA Biosynthetic Pathway

On the basis of backbone structure and/or attached functional group, the MIAs are
commonly divided into major subgroups which include sarpagan, corynanthe,
aspidosperma, and iboga types. However, strictosidine is the common intermediate
for most of the MIAs. Once the strictosidine molecule is formed, it serves as starting
material for the biosynthesis of different MIAs (Fig. 5.1). The structural
rearrangement in terpene unit of strictosidine leads to the formation of different
MIA backbones/groups and subsequently the characteristic of MIA. The enzymes
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catalyzing these complex rearrangements are restricted to specific genera within
TIA-specific plant families (Salim and De Luca 2013). Therefore, concerned genera
among these families have been characterized for occurrence of specific MIAs.
Although Apocynaceae members Catharanthus and Rauwolfia share the biosynthe-
sis of ajmaline and serpentine, the corynanthe-type MIAs, they are specifically
known for strachynos/iboga, bisindole (vincristine, vinblastine), and sarpagan type
(reserpine, yohimbine), respectively. The presence of vincamine, ajmalicine, and
2 yohimbine isomers along with 20 other MIAs is also detected in Rhazya stricta
(Akhgari et al. 2015a). Similarly, accumulation of camptothecin (CPT) is
largely known in genera Ophiorrhiza and Camptotheca. However, some other
members of different families of related and unrelated orders are also known to
accumulate CPT. CPT, the potent topoisomerase inhibitor and anticancer agent, is a
well-known member of TIA family. However, since CPT molecule does not possess
basic indole structure, yet it is considered as a part of TIA family as feeding
experiments on Camptotheca plants with radiolabeled tryptamine and strictosidine
have substantiated the presence of these compounds as intermediates in CPT path-
way (Sirikantaramas et al. 2007a, b). Quinine, another quinoline-type MIA and a
highly potent antimalarial agent derived from strictosidine is normally produced by
Cinchona species. It is relevant to state that in spite of such discrete distribution of
MIAs among related and unrelated plant families, Catharanthus roseus is the only
known plant species to possess the biosynthetic enzymes involved in the formation

Fig. 5.1 Occurrence and synthesis of different monoterpene indole alkaloids in various plant
species
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of the sarpagan, corynanthe, aspidosperma, and iboga MIA backbones (O’Connor
and Maresh 2006). Thus, this trait draws the attention toward phylogenetic origin
and evolution of specific secondary metabolic pathways among stated families and
emergence of Catharanthus as a model plant to investigate synthesis of different
kinds of MIA in vitro and in vivo. Providing an ease to understand natural biosyn-
thetic machinery for the formation of complex and skeletally diverse MIAs, the
biosynthesis can be divided into three phases: (1) fragment coupling, (2) cyclization,
and (3) post-cyclization. The first stage comprises of early pathway which includes
strictosidine formation, whereas the latter two phases are also considered as late
pathway which comprises of various steps of formation of different characteristic
MIAs according to different genera (Vantourout et al. 2017).

5.2.1 Early Pathway: Synthesis of Strictosidine and the Rate-
Limiting Steps

Tryptophan is the precursor amino acid for all types of MIAs. In the presence of
tryptophan decarboxylase (TDC, EC 4.1.1.28), tryptophan (Trp) is converted to
tryptamine. Condensation (Pictet–Spengler) reaction of tryptamine with iridoid
glucoside secologanin, in the presence of strictosidine synthase (STR), produces
strictosidine. Strictosidine is the parent molecule for all classes of pharmaceutically
active MIAs. Focusing on rate-limiting steps of MIA synthesis, conversion of
tryptophan to tryptamine is important as it is the first unwavering step of MIA
biosynthesis (Glenn et al. 2011). Among MIA-producing plants, TDC was first
isolated from HRCs of C. roseus, and its relationship to tryptamine, ajmalicine,
and catharanthine accumulation was investigated (Islas et al. 1994; Islas-Flores et al.
2002). Further, several plant TDCs were cloned and characterized from the HRCs of
different MIA-producing plant species, such as Camptotheca acuminata (López-
Meyer and Nessler 1997), Ophiorrhiza pumila (Yamazaki et al. 2003), Rauvolfia
verticillata (Liu et al. 2012), Rhazya stricta (Akhgari et al. 2015b), etc. In C. roseus
TDC is encoded by a single gene (TDC) (De Luca et al. 1989), whereas in
C. acuminata, it is encoded by two autonomously regulated genes (López-Meyer
and Nessler 1997). Significant increase in TDC activity and amount of immunore-
active TDC protein has been reported in elicited hairy roots of C. roseus. This
indicates toward the requirement of TDC polypeptides during elicitor-induced
alkaloid accumulation (Islas-Flores et al. 2002). Furthermore, hairy roots of
C. roseus were also used to investigate the intracellular distribution of TDC using
immunofluorescence and immunogold techniques. The investigation revealed the
enriched presence of enzyme in cytosol and in the apoplastic region of the root
meristematic cells indicating toward the high efficiency of these tissues to pursue
those biochemical reactions which require Trp in this pathway. The enzyme channel
tryptophan from primary metabolism into the MIA pathway thus represents a
transition point from primary pathway to a secondary pathway. A constant inflow
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of Trp is required for smooth MIA pathway operation. Further, the precursor-feeding
studies have also indicated that MIA accumulation in hairy roots can be improved
through enhanced (Trp) administration. The shikimate pathway funnels compound
from erythrose 4-phosphate and phosphoenolpyruvate to chorismate. Trp is obtained
from chorismate in a five-step reaction in which the first two critical steps that
produce anthranilate are catalyzed by alpha and beta subunits of single tetramer
enzyme complex anthranilate synthase (AS, EC 4.1.3.27). This conversion is con-
sidered as rate-limiting step for further reactions including Trp synthesis and subse-
quent MIA pathway, because AS-α subunit is subjected to feedback inhibition by
Trp. Therefore this feedback inhibition of AS must be overcome to accumulate and
maintain constant influx of Trp for tryptamine production and consecutive MIA
synthesis. Experimental evidence suggests the tight regulation of consecutive MIA
synthesis steps in C. roseus HRCs having glucocorticoid-inducible promoter regu-
lating the expression of an Arabidopsis feedback-resistant AS-α subunit (Hughes
et al. 2004a). The Arabidopsis AS-α subunit was found compatible with the native β
subunit, and AS activity was observed more resistant to tryptophan feedback
inhibition. The result supported greater accumulation of Trp and tryptamine in
engineered hairy root tissues.

The other counterpart for strictosidine synthesis is secologanin (a secoiridoid
monoterpene) which combines with tryptamine to produce strictosidine. The
secologanin is synthesized from its precursor dimethylallyl pyrophosphate
(DMAPP) and isopentenyl pyrophosphate (IPP) via mevalonate pathway which
remains active in cytosol and responsible for triterpenes and sesquiterpenes produc-
tion. Moreover, these precursor molecules are also produced from mevalonate-
independent pathway (non-mevalonate pathway), viz., 1-deoxy-D-xylulose-5-phos-
phate pathway (DXP or DOXP pathway) or the 2C-methyl-D-erythritol-4-phosphate
pathway (MEP pathway). The MEP pathway remains active in plastids and leads to
the production of mono-, di-, and tetraterpenes (Oudin et al. 2007). In this multistep
synthesis of secologanin, geraniol, iridotrial, deoxyloganin, and loganin are the main
intermediate compounds (Fig. 5.1).

Conversion of geraniol to 10-hydroxygeraniol by geraniol 10-hydroxylase
(G10H) is considered as the first committed step in secologanin biosynthesis.
G10H activities have been found to be higher in native root tissues as compared to
vitro cell cultures indicating the basic difference in biosynthetic potential of two
systems. The two main enzymes geraniol 10-hydroxylase (G10H) and a cytochrome
P450 secologanin synthase (SLS) have been well documented for the conversion of
IPP to geraniol and loganin to secologanin, respectively. Therefore, regulated
expression of these two important enzymes G10H and SLS in MIA-producing plants
could potentially improve the yield of secologanin-derived alkaloids. The role of
SLS is also studied in CPT-producing HRCs of O. pumila. To identify the interme-
diates in CPT biosynthesis, expression of genes encoding tryptophan decarboxylase
(TDC) and secologanin synthase (SLS), the two enzymes catalyzing the early steps
in CPT biosynthesis, was suppressed in the hairy roots of O. pumila by RNA
interference (RNAi), and metabolite changes were investigated (Asano et al.
2013). In most TDC- and SLS-suppressed lines, accumulation of CPT and related
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alkaloids, strictosidine, strictosamide, pumiloside, and deoxypumiloside, was
reduced suggesting their possible involvement in CPT biosynthesis.

The stereoselective condensation of strictosidine, which is a product of Pictet–
Spengler condensation of tryptamine with secologanin, requires the presence of
enzyme strictosidine synthase (STR). STR has been isolated and characterized
from in vitro cultures of a number of MIA-bearing plants of Apocynaceae,
Rubiaceae, Loganiaceae, and Nyssaceae and is considered as the enzyme of prime
importance for the biosynthetic pathway of the indole alkaloids. Moreover, STR
initiates all biosynthetic pathways leading to the entire MIA family. The analysis of
crystalline structure of STR and its chemical properties have been well characterized
in R. serpentina (Ma et al. 2006). Cloning and characterization of cDNAs encoding
strictosidine synthase (OpSTR, EC 4.3.3.2) and tryptophan decarboxylase (OpTDC,
EC 4.1.1.28) have also been reported from CPT accumulating hairy roots of
O. pumila (Yamazaki et al. 2003). Suppression of OpTDC and OpSLS in HRCs of
O. pumila by RNAi resulted in reduced accumulation of CPT and related alkaloids
like strictosidine, strictosamide, pumiloside, and deoxypumiloside. Such results
suggested the crucial involvement of these enzymes in CPT biosynthesis. The
accumulation levels of secologanin exhibited a strong negative correlation with the
expression level of TDC, and that of loganin exhibited a negative correlation with the
expression level of SLS. These studies indicate an intricate regulatory mechanism
behind CPT biosynthesis.

The chemistry behind the downstream fate of strictosidine molecule and forma-
tion of different types of MIAs is though comprehensively uncovered up to a major
extent but still has loopholes. Different members of MIA-producing plant group
possess their characteristic processing of strictosidine. This processing includes ring
fragmentation in backbone moieties and cascade rearrangements in intermediate
molecules. This consequently enables an access to the large structural diversity of
this family of alkaloids including historic “type I” alkaloids (e.g., corynan,
akuammilan, strychnan, secocuran, sarpagan, and alstophyllan types), “type II”
alkaloids (e.g., aspidosperma and eburnan types), and “type III” alkaloids (e.g.,
ibogan type) (Benayad et al. 2016).

5.2.2 Late Pathway

5.2.2.1 Sarpagan Type

The genus Rauwolfia is distinguished by the presence of some important sarpagan-
ajmalan class of MIAs like reserpine, ajmaline, vomiline, yohimbine, etc. (Wu et al.
2016; Mehrotra et al. 2015a, b and reference therein). HRCs of R. serpentina have
been meticulously investigated for MIA synthesis. Ajmaline biosynthesis in Rau-
wolfia species is well characterized, and various ajmaline biosynthetic steps and their
enzymes have been purified and isolated. The glycosylation of strictosidine and
subsequent formation of 4,21-dehydrogeissoschizine are the preliminary steps of
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ajmaline biosynthesis. The 4,21-dehydrogeissoschizine is a major intermediate
product, and the reaction is catalyzed by strictosidine glucosidase (SGD), the key
early gene which plays an important role in the biosynthesis of various classes of
MIAs (Barleben et al. 2007). In R. serpentina, this enzyme is characterized by
heterologous expression of its cDNA in E. coli, and its comparison with
Catharanthus SGD was made (Gerasimenko et al. 2002). The intermediate
dehydrogeissoschizine is liable to produce sarpagan-type intermediate polyneuridine
aldehyde in ajmaline pathway of which further fate is well characterized. At least
eight enzymatic reactions are known in which a central reaction is catalyzed by
enzyme polyneuridine-aldehyde esterase (PNAE). This step is important as it yields
the immediate precursor epi-vellosimine which serves as a substrate for the next step
in the pathway which delivers the alkaloid vinorine (ajmalane backbone) in the
presence of vinorine synthase (VS). PNAE and VS, purified from of R. serpentina,
play key roles in the production of ajmalane type of MIAs at this step (Ma et al.
2004). Ensuing reactions produce subsequent intermediate products like vinorine,
vomilenine, and norajmaline. The enzyme liable for the formation of norajmaline
(acetylesterase, hydrolyzing acetylnorajmaline) has been purified, and its full-length
clone was isolated from a cDNA library prepared from R. serpentina. In the final step
of ajmaline biosynthesis, an N-methyl transferase introduces a methyl group at the
indole nitrogen of norajmaline to produce ajmaline (Fig. 5.1).

The enzymes that convert deglycosylated strictosidine (dehydrogeissoschizine) to
yohimbine have not been identified. However, a direct biosynthetic route may
involve homoallylic isomerization of the keto dehydrogeissoschizine followed by
1,4-conjugate addition. Reserpine is the most valuable MIA of Rauwolfia species
and is a 3,4,5-trimethyl benzoic acid ester of reserpic acid, an indole derivative of
18-hydroxyl yohimbine. The formation of reserpine from their precursor molecule is
still in need of scientific focus.

5.2.2.2 Corynanthe Type

The geissoschizine and 4,21-dehydrogeissoschizine that are formed by
deglycosylation of strictosidine have basic corynanthe-type backbone structure
that serves as key molecules for further biosynthetic reactions. A single-step revers-
ible conversion of 4,21-dehydrogeissoschizine in the presence of geissoschizine
dehydrogenase yields heteroyohimbine cathenamine. Further, the fate of
cathenamine depends upon the NADP reductase which produces ajmalicine and
subsequent oxidation which produces serpentine. Though these pathways have been
elucidated in C. roseus, ajmalicine and serpentine have also been isolated from
Rauwolfia species and are presumably produced by similar mechanisms.
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5.2.2.3 Strychnos, Aspidosperma, and Iboga Type

The Strychnos, Aspidosperma, and Iboga MIAs are considered as structurally more
complex than corynanthe type. As stated above, the corynanthe alkaloid
geissoschizine, an intermediate key product of deglycosylation of strictosidine,
constitutes the other key intermediates in the formation of the structurally more
complex Strychnos, Aspidosperma, and Iboga alkaloids. Catharanthus, which pos-
sesses enzymes for different MIA synthesis, is observed to accumulate corynanthe-
type MIAs early in its lifetime in comparison with Strychnos, Aspidosperma, and
Iboga types that generally accumulate in older plants. This is in agreement with the
fact that the latter (three) types are derivatives of corynanthe-type precursor mole-
cule. The 4,21-geissoschizine undergoes chemical conversions (mechanism still not
clear) and forms preakuammicine which is a Strychnos-type derivative (Benayad
et al. 2016; Fig. 5.1). Reduction of preakuammicine yields stemmadenine, a pro-
ductive intermediate in the pathway of Aspidosperma- and Iboga-type MIAs. Thus,
preakuammicine holds a crucial role in the biosynthesis of the latter two. This is why
in some literatures, the latter two are also referred as type II and type III MIAs
(Benayad et al. 2016). Major examples of Aspidosperma are tabersonine and
vindoline, whereas common Iboga alkaloids include catharanthine, ibogaine,
harmaline, tabernanthine, coronaridine, voacangine, ibogamine, etc. The hairy root
cultures of Apocynaceae members are known to produce these MIAs in detectable
amount. Conversion of tabersonine to vindoline is rather well characterized in terms
of enzymes and intermediates. In a six-step pathway, tabersonine subsequently
produces vindoline through intermediates like hydroxy- and methoxytabersonine
molecule and deacetylvindoline (Geerlings et al. 2000; Levac et al. 2008; Costa et al.
2008; Fig. 5.1).

5.2.2.4 Bisindole Type

The bisindole alkaloids (majorly vinblastine and vincristine) are derived from
dimerization of vindoline and catharanthine. This step is believed to proceed via
the formation of an intermediate anhydrovinblastine, a naturally occurring com-
pound in C. roseus plants. In support of this mechanism, anhydrovinblastine is
incorporated into vinblastine and vincristine in feeding studies with cell-free
extracts.

5.2.2.5 Quinoline Type

CPT has been found in at least 16 different plant species belonging to 3, 5, and
13 unrelated plant orders, families, and genera, respectively, across the plant king-
dom and also in endophytic fungi associated with these CPT-producing plants
(Raveendran 2015). Two well-known and much explored plant species for CPT
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production are Ophiorrhiza pumila and Camptotheca acuminata. As stated above
CPT does not possess indole structure and hence considered as modified MIA. It is
one of the most promising natural plant-derived antitumor agents, and its biosyn-
thetic pathway is not very well known. The biosynthesis is a little different from
other MIAs as in this case strictosidine is not immediately deglycosylated; rather, it
forms strictosamide (a cyclic amide). Integration of radiolabeled strictosamide into
CPT molecule confirmed that strictosamide is a productive intermediate in CPT
pathway. Although biosynthetic steps following strictosamide are not much clear
yet, the presence of 3(S)-pumiloside and 3(S)-deoxypulminoside as pathway inter-
mediates is evident, and the two have been isolated from O. pumila. The 3(S)-
pumiloside was also detected in C. acuminata.

Quinine is a highly potential antimalarial compound and naturally synthesized in
Cinchona species. Feeding studies in C. robusta and C. ledgerianawith radiolabeled
tryptophan and strictosidine indicate that the Cinchona quinoline alkaloids are
derived from strictosidine via corynanthe intermediate. Strictosidine synthase has
been purified from cell cultures of C. robusta. Two isoforms of the enzyme, involved
in the later stages of the quinine biosynthetic pathway, have been purified from cell
suspension cultures of C. ledgeriana. One isoform of this NADPH-dependent
oxidoreductase catalyzes the reduction of cinchoninone (which equilibrates with
its epimer cinchonidinone) to give a mixture of cinchonine and cinchonidine, while
second isoform catalyzes the reduction of both cinchoninone and quinidinone
(O’Connor and Maresh 2006).

5.3 Hairy Root Cultures for MIA Pathway Investigations
and Biotechnological Production

Contemporary techniques have been developed to repress hitches associated with the
production and extraction of plant-derived natural products. In this context,
advances of biotechnological methods particularly in vitro cultures have paved the
way to procure natural compounds in desired amounts in a process similar to their
production in plants. HRCs, out of other in vitro systems, have attained superiority in
metabolite production as well as proven their worth as excellent experimental system
to investigate operational and regulatory characteristics of biosynthetic pathways.
This has been evidenced by literature repositories where myriad reports are contin-
uously accruing with reference to the incisive utilization of HRCs for various
objectives. HRCs of MIA-bearing plants represent a rich source of variety of their
representative alkaloids. Since the past few decades, MIA biosynthesis, production,
and other related issues like MIA pathway elucidation and manipulation have been
meticulously investigated in HRCs of several MIA-bearing plants. Ensuing text
provides compiled information of contribution of HRCs in MIA biosynthesis inves-
tigation and various strategies opted for a better understanding of ultimately
increased alkaloid flux.
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Catharanthus HRCs are the much explored hairy root system to study the
biosynthesis of various MIAs (Guillon et al. 2008). These HRCs have been reported
to produce high level of MIAs, mainly catharanthine, serpentine, and ajmalicine. The
growth kinetic studies of C. roseus HRCs have established a linear correlation
between the kinetics of biomass growth and accumulation of alkaloids like
ajmalicine and catharanthine (Benyammi et al. 2016). However, neither vincristine
nor vinblastine is known to be reported from roots possibly due to the absence of
vindoline which is exclusively synthesized and accumulated in chloroplasts
(Ferreres et al. 2011). With the establishment of Catharanthus HRCs as a potential
system for production of alkaloids like ajmalicine, serpentine, catharanthine,
tabersonine, and vindolinine (Parr et al. 1988; Toivonen et al. 1989; Bhadra et al.
1993), gradually the research focus transited towards the optimization of yield
enhancement strategies like culture media optimization (Toivonen et al. 1991;
Bhadra and Shanks 1997; Morgan et al. 2000; Li et al. 2011), growth kinetics
(Leduc et al. 2006), precursor feeding (Morgan and Shanks 2000), elicitation with
biotic/abiotic molecules and stress (Vazquez-Flota et al. 1994; Rijhwani and Shanks
1998; Ruiz-May et al. 2009; Binder et al. 2009), and ultimately the product extrac-
tion (Sim et al. 1994; Tikhomiroff and Jolicoeur 2002; Moreno-Valenzuela et al.
2003). Various hairy root lines of C. roseus were also compared for growth and
alkaloid production in relation to their morphology and pattern of rol gene
(s) integration. The hairy root lines did not differ significantly for their total alkaloid
content which was in the range of 1.10–1.30% dry weight but showed significant
variations in relative ajmalicine content (0.007–0.08% dry weight), serpentine
(0.01–0.08% dry weight), and catharanthine (0.01–0.04% dry weight). The practical
feasibility of upscaling of Catharanthus HRCs in various types and configuration of
bioreactors and their alkaloid production potential has also been investigated (Verma
et al. 2012; Thakore et al. 2017).

Establishment of hairy root cultures of genus Rauwolfia has been attempted with
different strains of Agrobacterium for the synthesis of sarpagan-type alkaloids
(Benjamin et al. 1993; Falkenhagen et al. 1993; Sudha et al. 2003). HRCs of
Rauwolfia species have proven a rich repository of a range of MIAs (Mehrotra
et al. 2015a), and various species of the genus such as R. serpentina, R. verticillata,
R. tetraphylla, R. vomitoria, R. micrantha, etc. have been explored to produce
pharmaceutically important MIAs. Nevertheless, out of all, hairy roots of
R. serpentina have been investigated methodically for alkaloid biosynthesis. Con-
sidering the pharmaceutical importance of reserpine, at present HRCs of
R. serpentina have been developed showing a range of reserpine accumulation
(0.0064–0.088% dry weight). This is comparatively much higher than that of field-
grown plants of an improved variety (cim-sheel) of R. serpentina (Mehrotra et al.
2015a). Further, various biotechnological developments, such as scaling up in bio-
reactors and pathway engineering, have also been explored to improve metabolite
production potential of R. serpentina HRCs (Mehrotra et al. 2015a, b, 2016).

Several native plant families have been explored for in vitro production of
camptothecin (CPT). CPT was first isolated from family Nyssaceae of genus
C. acuminata, a deciduous tree species. However, later on it was isolated from
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families like Rubiaceae (Ophiorrhiza sp.), Meliaceae (Dysoxylum binectariferum),
Icacinaceae (Merriliodendron, Pyrenacantha, and Nothapodytes), Apocynaceae
(Chonemorpha and Ervatamia), and Loganiaceae (Mostuea brunonis) (Namdeo
and Sharma 2012). Out of these plant species, maximum concentration of CPT has
been reported from two species of Nothapodytes, viz., N. foetida and
N. nimmoniana. Interestingly, synthesis and accumulation of CPT are known in
various related and unrelated orders of angiosperms. The discrete occurrence of
genes in CPT biosynthesis has led to the assumption of their early evolution among
different families. However, in due course of time and gradual process of adaption,
they have lost their functionality in some plant families. Initially, suspension cultures
of N. nimmoniana were reported to secrete CPT and 9-methoxy camptothecin in its
growth medium. However, in recent years, HRCs of this plant species have been
explored for CPT production. It was observed that approximately 93% of total
alkaloid produced by HRCs was excreted into the medium (Chang et al. 2014). In
relevant reviews, challenges and status of CPT production in N. nimmoniana by
application of in vitro techniques have been reviewed (Isah and Mujib 2015).
Moreover, considering the plant as a potent natural source of CPT, such reviews
discuss conservation and production of CPT, identification of high-yielding individ-
uals and molecular profiling, and the possibility of biotechnological intervention for
higher production of CPT without destructive harvesting of natural population
(Rajasekharan et al. 2011). HRCs of Chonemorpha fragrans are also reported to
produce CPT in comparable amounts (0.024–0.030% dry weight) to that of intact
roots (0.033% dry weight) (Kedari and Malpathak 2013). Various species of genus
Ophiorrhiza, i.e., O. pumila, O. rugosa, O. alata, and O. liukiuensis, are reported to
produce CPT (Roja 2006; Ya-ut et al. 2011; Kamble et al. 2011). However, HRCs
O. pumila and O. rugosa have only been thoroughly explored for biosynthesis of
CPT and related alkaloids, like pumiloside, deoxypumilosides, and strictosamide
(Kitajima et al. 2002; Kamble et al. 2011). Although the callus cultures of O. pumila
do not produce CPT, HRCs accumulate substantial amounts of CPT in cells as well
as in culture medium. A practically and commercially feasible method was devel-
oped by the use of polystyrene resins as specific absorbents to extract the CPT from
growth medium (Sudo et al. 2004). In a comparative study of CPT production from
indigenous plants N. foetida, O. mungos, and O. rugosa, it was N. foetida which
resulted in the highest yields of CPT and 9-methoxy camptothecin. The other two
plants O. mungos and O. rugosa contained low levels of alkaloids (Roja 2006).
Likewise, HRCs of Camptotheca also produce and secrete CPT along with another
more potent and less toxic natural derivative, 10-hydroxycamptothecin (HCPT), into
the medium. These cultures were able to synthesize the alkaloids at levels equal to,
and sometimes greater than, the native intact roots.

The genus Cinchona officinalis ‘Ledgeriana,’ belonging to the family Rubiaceae,
is known for the production of Cinchona bark, the raw material for the alkaloids
quinine and quinidine. Cinchona alkaloids are in extensive uses, not only for drugs
but also for soft drink industries. Major Cinchona alkaloids include stereoisomers
cinchonine and cinchonidine, quinine and quinidine, and dihydroquinine and
dihydroquinidine. All these compounds contain strong antimalarial and antipyretic
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activities. Besides C. officinalis, another medicinally well-known milkweed
Gongronema latifolium is also known to produce cinchonidine. Attempts have
been made to produce cinchona alkaloids from in vitro systems including suspen-
sions and hairy root cultures.

5.3.1 Transgenic Hairy Roots and Biosynthesis of MIA

In planta low accumulation of valuable MIAs and the results obtained from all these
reports have laid the ground to explore the production of significant MIAs through
other unconventional strategies. Additionally, the search of precise molecular mech-
anism behind MIA synthesis and large-scale production had surfaced the need to opt
various biotechnological approaches such as overexpression and pathway engineer-
ing utilizing HRCs of MIA bearing plant species. Progressively, MIA pathway
engineering through overexpression of related genes took thoughtful scientific
attention, and numerous efforts have been made in this direction. In this regard,
Catharanthus hairy root cultures have taken center-stage position and emerged as a
model system for majority of TIA-related studies. This is not only because of the
easy development of HRCs but also due to chemotaxonomical importance of this
genus between the members of MIA-producing families. Additionally, the inconsis-
tent production coupled with high rising industrial demand of Catharanthus alka-
loids imposed the unification of various advanced molecular approaches to the
existing production technology. To sum up the hitherto studies in Catharanthus
HRCs to elucidate terpene indole alkaloid pathway genes and their regulatory
mechanism, in a recent report, terpene indole alkaloid pathway engineering has
been reviewed (Sun and Peebles 2016). Pertinent to this, various significant exper-
imentations have been performed to investigate overexpression of TDC and subse-
quent alkaloid production. TDC overexpression study in crown-gall callus of
C. roseus revealed increased tryptamine levels but not over all alkaloid level
(Goddijn et al. 1995). In another study, expression of TDC gene of C. roseus in
non-TIA-harboring plants such as tobacco was examined which resulted in increased
tryptamine (Goddijn et al. 1994). The transgenic hairy roots of C. roseus were
generated to investigate glucocorticoid-inducible TDC expression alone or in com-
bination with inducible expression of a feedback-resistant anthranilate synthase-
alpha subunit (AS-α) from Arabidopsis. Though no significant increase in trypt-
amine levels was observed in TDC lines, the root lines with TDC + AS-α resulted in
increases in tryptamine levels. Downstream effects on alkaloids were noted only in
the TDC lines with increased serpentine, and TDC + AS-α did not show any effects
on measured alkaloids (Hughes et al. 2004a, b). This report suggested the contribu-
tion of the indole pathway in terpene indole alkaloid biosynthesis. In an attempt to
more successfully engineer the indole pathway, Arabidopsis AS-β subunit cDNA
was constitutively expressed along with the inducible expression of AS-α and TDC
in C. roseus hairy roots. Transgenic hairy roots expressing both AS-α and AS-β
show a significantly greater resistance to feedback inhibition of AS activity by
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tryptophan than plants expressing only AS-α (Hong et al. 2006). Precursor-feeding
studies have also directed that enhanced tryptophan availability can lead to increased
alkaloid accumulation in HRCs. This relationship and the role of tryptophan in TIA
biosynthesis were verified with the expression of an Arabidopsis feedback-resistant
AS-α subunit under the control of glucocorticoid-inducible promoter in transgenic
HRCs of C. roseus (Hughes et al. 2004b). Showing the compatibility with native
AS-β subunit, the expressed Arabidopsis AS-α subunit resulted to more resistance to
tryptophan inhibition. This led to a very high increase in tryptophan and tryptamine
levels albeit, the large increases, the TIA levels not significantly altered, with the
exception of lochnericine. In another similar kind of study, the effects of
overexpressing the AS-α and α + β subunits in combination with feeding with the
terpenoid precursors 1-deoxy-D-xylulose, loganin, and secologanin were investi-
gated (Peebles et al. 2006). The hairy root lines expressing the AS-α subunit fed with
1-deoxy-D-xylulose showed increased accumulation of hörhammericine, whereas
those fed with loganin showed increased accumulation of catharanthine.
Catharanthine along with ajmalicine, lochnericine, and tabersonine was accumulated
in high levels in hairy root lines expressing AS-α + β subunits. These results
although ratify the pivotal role of indole pathway and tryptophan in terpenoid
alkaloid biosynthesis yet also indicate toward constricted regulation of the pathway
at various levels. Overexpression of Catharanthus TDC (CrTDC) has also been
studied in HRCs of R. serpentina (Mehrotra et al. 2013). Gene expression analysis
indicated that CrTDC was expressed in transgenic root lines, which could be
correlated with enhanced reserpine and ajmalicine accumulation in roots. A wide
array of variation in relative reserpine content was observed that could be attributed
to the number of factors including insertion site, orientation, and differential expres-
sion of inserted genes (Mehrotra et al. 2013). Possibilities of enhanced biosynthesis
of quinine and quinidine alkaloids have also been observed by overexpression of
CrTDC and STR in Cinchona officinalis hairy roots. The HRCs were initiated
containing constitutive-expression constructs of cDNAs encoding the enzymes
TDC and STR from C. roseus. The products of TDC and STR, tryptamine and
strictosidine, respectively, were found in high amounts and accordingly the quinine
and quinidine levels also (Geerlings et al. 1999). The results show that genetic
engineering with multiple genes is well possible in hairy roots of C. officinalis.

Engineering of isoprenoid pathway was also conducted to investigate its role in
terpene indole alkaloid biosynthesis in C. roseus hairy roots. In a study, hairy roots
were generated with inducible overexpression of 1-deoxy-D-xylulose synthase
(DXS) or geraniol 10-hydroxylase (G10H). Additionally, hairy root lines were
also generated with inducible expression of DXS and AS-α subunit (ASA) or DXS
and G10H. DXS overexpression resulted in a significant increase in ajmalicine,
serpentine, and lochnericine and a significant decrease in tabersonine and
hörhammericine. Co-overexpression of DXS and G10H resulted in notable increase
in ajmalicine, lochnericine, and tabersonine. Likewise, a noticeable increment in
hörhammericine, lochnericine, and tabersonine was observed due to overexpression
of DXS and AS-α. These results indicated toward the need for overexpressing
multiple genes within the pathway to increase the ultimate flux (Peebles et al. 2011).
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The role of G10H in CPT biosynthesis in O. pumila has also been investigated
(Cui et al. 2015). In HRCs of O. pumila, genes from C. roseus encoding STR and
G10H were separately and simultaneously introduced. Hairy root lines having
individual G10H have shown significantly increased CPT production as compared
to non-transgenic hairy root cultures and single STR overexpressing hairy root lines.
Furthermore, a synergistic effect of co-overexpression of G10H and STR genes was
also observed as it caused about 56% increase in the yields of CPT compared to
non-transgenic and single-gene transgenic lines. Various experiments on precursor
feeding have revealed that the biosynthesis of secologanin and possibly the conver-
sion of loganin to secologanin are the rate-limiting steps in indole alkaloid biosyn-
thesis and the production of important MIAs is partly controlled at transcriptional
stage of these enzymes. In a study of C. roseus HRCs elicited with methyl
jasmonate, regulation on MIA biosynthesis was investigated through precursor
feeding and gene expression profiling (Goklany et al. 2009). The transcript levels
of three key alkaloid pathway genes G10H, TDC, and STR were investigated along
with metabolite levels of tryptamine, loganin, secologanin, strictosidine, ajmalicine,
serpentine, and tabersonine. It was observed that elicitation improved the expression
of three genes differently and this led to the increase in strictosidine, ajmalicine, and
tabersonine levels. However, feeding of loganin and tryptamine as precursor TIA
production was not enhanced.

The biosynthesis of vindoline in HRCs of C. roseus is not clear, and possibly
these cells do not produce vindoline due to the lack of expression of the seven-step
pathway from tabersonine to vindoline. Furthermore, complex spatiotemporal devel-
opmental regulation of terpenoid alkaloid biosynthesis has restricted the use of
HRCs for the production of highly important anticancer molecules vinblastine and
vincristine. To investigate possibilities of vindoline pathway, the induced
overexpression of T16H and 16OMT was done in order to ensure tabersonine
availability (Sun et al. 2018). In this recent study, possible alteration in the pathway
was done through genetic engineering of the first two genes tabersonine
16-hydroxylase (T16H) and 16-O-methyl transferase (16OMT). The
glucocorticoid-inducible promoter was used to control the gene expression (Sun
et al. 2018). The proper availability of vindoline and its channeling towards vin-
blastine and vincristine biosynthesis was supposed in C. roseus hairy roots. In
comparison with normal hairy root lines, accumulation of two vindoline pathway
metabolites 16-hydroxytabersonine and 16-methoxytabersonine was observed in
transgenic root lines. However, the levels of other root-specific terpenoid alkaloids,
lochnericine, 19-hydroxytabersonine, and hörhammericine, significantly decreased.
Additionally, accumulation of two new metabolites in HRCs has led to conclusion
that proper channeling of tabersonine is required for vindoline pathway. Further-
more, complex transcriptional changes in terpenoid alkaloid pathway genes and
regulators indicated toward the tight regulation of the MIA pathway in response to
T16H and 16OMT engineering in C. roseus hairy roots. In a study, the O. pumila
HRCs with RNAi-mediated TDC and SLS gene suppression accumulated reduced
levels of CPT and related alkaloids, strictosidine, strictosamide, pumiloside, and
deoxypumiloside (Asano et al. 2013). Further, secologanin and loganin levels were
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negatively correlated with TDC and SLS expressions, respectively. The study pro-
posed the possibilities of combined transgenic and metabolomic approach in iden-
tification of pathway intermediates. A combined strategy was also used to analyze
transcriptome and metabolome of hairy root cultures of O. pumila to identify
potential candidate genes that are involved in biosynthesis of CPT and other related
alkaloids along with anthraquinones as well (Yamazaki et al. 2013). A hybrid
transcriptome assembly of O. pumila hairy roots was constructed using the
Illumina-derived short read sequences and Sanger-derived expressed sequence tag
clones. The study resulted in the identification of potential genes involved in CPT,
anthraquinones, and chlorogenic acid biosynthesis.

A possible role for 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in MIA
biosynthesis was concluded in C. roseus hairy roots expressing hamster (HMGR)
cDNA without membrane-binding domain that was also evaluated for terpenoid
alkaloid accumulation (Ayora et al. 2002). Significant variation in metabolite accu-
mulation was observed with transgenic hairy root lines. Hairy root lines with the
highest hybridization signal had the lowest soluble and microsomal HMGR activity
and produced more ajmalicine and catharanthine than the control but had reduced
campesterol concentration. Another line with low hybridization signal had high
soluble HMGR activity and produced high levels of campesterol and is five to
seven times more serpentine than the control but has a low level of ajmalicine and
no accumulation of catharanthine. These results suggest a potential role for HMGR
in MIA biosynthesis and a possible co-suppression of both the endogenous and
foreign HMGR genes in selected lines.

5.3.2 Regulation of MIA Pathway: Transcription Factors

Since the past few years, researchers have been meticulously trying to figure out
complete control network of terpene indole alkaloid biosynthetic pathway, and
myriad evidence indicates the involvement of transcription factors that target key
structural genes of this pathway. A tightly regulated process of MIA synthesis
involves a number of transcriptional activators and repressors. At present, seven
putative activators (ORCA2, ORCA3, CrBPF1, CrMYC1, CrMYC2, CrWRKY1,
and CrWRKY2) and five putative repressors (ZCT1, ZCT2, ZCT3, GBF1, and
GBF2) have been identified as regulators of the terpenoid alkaloid pathway (Liu
et al. 2017 and reference therein). Transcription factors ORCA2 and ORCA3 of
AP2/ERF family have been well characterized for their role in regulation of MIA
synthesis. ORCAs or octadecanoid-derivative responsive Catharanthus
AP2-domain (ORCA) proteins have their expression induced by jasmonates, the
major signaling molecules for MIA pathway. These proteins used to bind to the
42 bp region of STR promoter which is identified as necessary for jasmonates and
elicitor-responsive expression (JERE) (Li et al. 2013). To identify the role ofORCA2
and ORCA3 in regulation of MIA biosynthetic genes other than STR, transgenic
hairy roots overexpressing ORCA2 under the control of an ethanol-inducible
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promoter of C. roseus were generated. The upregulated expression of ORCA2
significantly altered the transcripts of many structural genes in MIA biosynthesis,
such as AS, TDC, G10H, LAMT, STR, T16H, PRX1, D4H, SGD, and DAT; more-
over, the induced ORCA2 also caused the changes of the expressions of several
TF-encoding genes, such as ORCA3, ZCT1, ZCT2, ZCT3, and CrMYC2. The
accumulation of catharanthine, ajmalicine, serpentine, and tabersonine was also
changed dramatically after ORCA2 induction which was correlated with the change
in activities of concerned genes. In another study, average content of catharanthine
and vindoline in C. roseus hairy root lines overexpressing ORCA2 was found to
increase in comparison with control lines (Liu et al. 2011). In a little different
scenario, JA elicitation and overexpression of ORCA3 in hairy roots induced the
expression levels of AS, DXS, SLS, and STR but decreased the expression of SGD.
However TDC, G10H, CPR, GBFs, and ORCA2 remain unaffected. In a study,
overexpression of ORCA3 alone although resulted in upregulation of many known
TIA genes but no change in total amount of TIAs is measured in C. roseus hairy
roots. However, co-overexpression of ORCA3 and SGD resulted in a significant
increase of serpentine, ajmalicine, catharanthine, tabersonine, and other TIAs (Sun
and Peebles 2016). Functional studies of the AP2/ERF transcription factors reveal
their pivotal role in CPT biosynthesis in HRCs of O. pumila also. In a recent study,
five genes (OpERF1 to OpERF5) that encode for AP2/ERF TFs have been isolated
form HRCs of O. pumila (Udomsom et al. 2016). The analyses reveal close
evolutionary relationship of OpERF1 with stress-responsive ERF factors in
Arabidopsis and of OpERF2 with ERF factors such as ORCA3 in C. roseus, NIC2
locus ERF in tobacco, and JRE4 in tomato that are known to regulate production of
terpenoid and other alkaloids. Furthermore, transgenic hairy root lines with
suppressed expression of OpERF1 and OpERF2 were also analyzed for their
transcriptome and metabolomes. The suppression of OpERF2 resulted in reduced
expression of genes in the 2-C-methyl-D-erythritol 4-phosphate and secologanin-
strictosidine pathways, which supply a precursor, strictosidine, for CPT biosynthe-
sis, but no significant change was observed in metabolites. In C. roseus HRCs,
overexpression of ORCA3 caused an increase of ajmalicine and serpentine and a
significant decrease in other alkaloids including tabersonine and lochnericine (Pee-
bles et al. 2009). In a multigene overexpression experiment when ORCA3 in
combination with G8O was overexpressed in hairy roots of C. roseus, as compared
to non-transgenic clones, the transgenic root clones revealed higher accumulation
level of catharanthine (Wang et al. 2010). On the basis of previous studies where
overexpression of G10H in HRCs improved alkaloid production alone as well as
when combined with precursors, etc., the G10H integrated with ORCA3 was
co-overexpressed. This resulted in increased accumulation of MIAs like
strictosidine, vindoline, catharanthine, etc. both in plants and hairy roots (Pan
et al. 2012). WRKY TFs are among the largest families of transcriptional regulators
in plants and are well documented for their role in various stress-induced biochem-
ical processes including terpenoid indole alkaloid biosynthesis. These WRKY TFs
identify and bind to the W-box cis-regulatory element in the promoters of the
number of terpenoid alkaloid pathway genes. The binding of WRKYs to the
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W-box elements of genes is a part of biotic and abiotic stress responses as well as
other biological processes. In Catharanthus WRKY TF has been identified and
overexpressed in hairy roots (Suttipanta et al. 2011). This overexpression of
CrWRKY upregulated a number of terpenoid alkaloid pathway genes including
TDC and transcriptional repressors like ZCT1, ZCT2, and ZCT3. The overexpression
was further repressed by ORCA2, ORCA3, and CrMYC2. TDC upregulation led to
increased TDC activity and tryptamine concentration and threefold increases in
serpentine in CrWRKY1 hairy roots. Besides ORCAs and WRKYs, the other TFs
proven to have pivotal roles in terpenoid alkaloid biosynthesis include the ZCTs
(ZCT1, ZCT2, and ZCT3; zinc-finger-binding protein family) which are known to
bind promoters of TDC and STR. In a recent study, interaction between expression of
various TFs, terpenoid alkaloid pathway genes, and accumulation of major terpenoid
alkaloids was investigated in C. roseus hairy roots elicited with methyl jasmonate
(Goklany et al. 2013). Transcript level of ORCA along with MIA biosynthetic genes
was dramatically increased even at moderate dosage of MJ. Accordingly, the MIA
production was also increased. However, with an increase in MJ dose, the alkaloid
accumulation lowers down. This was supposed to be due to elevated transcript levels
of transcriptional repressor ZCT which was about 40-fold as compared to its levels
(2- to 7-fold) at low MJ dose. Minimal induction of pathway genes and low
transcript level of ORCA were also observed at high MJ dosage. Another transcrip-
tional activator BPF1 (box P-binding factor for box P cis-element of various plant
defense-related genes) has been isolated from Catharanthus that has a significant
influence of biosynthetic gene STR. Transgenic hairy root line of C. roseus was
developed with overexpression of CrBPF1 (Li et al. 2015). Overexpression of
CrBPF1 caused not only an increase in transcript levels of indole and terpenoid as
well as MIA pathway genes but also in 11 genes that were supposed to act as
transcriptional regulators of genes of MIA and associated pathways. Furthermore,
CrBPF1 overexpression also caused increased transcript levels of MIA transcrip-
tional activators and repressors. Interestingly, the MIA levels which were expected
to be high due to an increase in transcript levels of various genes of the pathway had
minimal or no effects.

5.4 Conclusion and Future Perspective

Two differently compartmentalize and independent pathway precursors in cell are
responsible to provide five-carbon building blocks of all terpenoids, isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMAP). These two pathways are
(1) methylerythritol phosphate (MEP or non-mevalonate) pathway localized in
plastids and (2) mevalonate pathway in cytosol. Several studies related to localiza-
tion, transportation, and accumulation of end products have revealed that one
directional plastid to cytosol trafficking of precursor IPP from the two pathways
results its channeling to alkaloid biosynthesis (Sun and Peebles 2016). Large
emphasis on the cross talk between the two pathways has been given in the research
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focused on MIA biosynthesis. The simultaneous occurrence of two entirely different
pathways for isoprenoid formation in plant cells is astonishing as nowhere (such
instances are rare) else the similar situation occurs for any other metabolic route.
Besides, the better understanding of stepwise down processing of precursors for
secologanin synthesis and, likewise, synthesis of tryptamine in indole pathway is
undoubtedly a remarkable hallmark discovery of plant secondary metabolism. Fur-
thermore, application of modern biology, biochemistry, and biotechnological con-
cepts in unraveling the MIA flux in an intricate and tightly regulated pathway has
advanced the knowledge of biotechnological production of MIAs. The role of plant
hairy root cultures has definitely proven their worth in investigating all sorts of
radical and peripheral issues related to MIA secondary metabolism. Be it the
elucidation of biosynthetic pathway or the enhancement of metabolite flux through
various basic or engineering approaches, plant HRCs have emerged as flawless
biological system. Not only because of their simplicity in establishment but also
because of their rigid genetic and biochemical features. Utilizing hairy root system
for genetic manipulations in geraniol, secologanin, tryptamine, tabersonine/
vindoline, and catharanthine producing subways that ultimately focused on
enhanced MIA production has elevated the understanding of MIA metabolism up
to an anticipated level. The operational and regulatory complexities behind the MIA
pathway have been uncovered up to a great extent; nevertheless certain issues are
still in need of thoughtful scientific attention. These complexities are in terms of rigid
interplay of differential intercellular localization of MIA pathway components.
Secondly, intense understanding is also required to unravel the exact regulatory
mechanism behind the transportation of precursor and intermediates at intracellular
level. Another major point of judicious attention is the absence of expression of
seven-step pathway from tabersonine to vindoline in root tissues. Coupled with this,
the intricate spatial and temporal developmental regulation of MIA biosynthesis has
restricted the use of HRCs for the production of highly important anticancer mole-
cules vinblastine and vincristine. However, efforts for induced expression of T16H
and 16OMT genes of vindoline pathway and resultant accumulation of two impor-
tant pathway metabolites have shown the direction of induced vindoline biosynthesis
and ultimately its channeling toward vincristine and vinblastine synthesis in root
tissues. Many unresolved queries exist regarding the intracellular and intercellular
transport of MIA intermediates and end products. The molecular components that
are involved in transportation and trafficking of precursors and intermediates are in
need of serious investigation. With the use of appropriate strategies to functionally
characterize these, transporter components will significantly exemplify the dynamic
synthesis and trafficking processes in MIA-producing tissues. This may help to draw
a whole picture of subcellular and intercellular MIA biosynthesis.
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Chapter 6
Stress-Induced Metabolite Production
Utilizing Plant Hairy Roots

Kulwinder Kaur and Pratap Kumar Pati

Abstract Plant secondary metabolites comprise a diverse variety of organic com-
pounds that facilitates defense response against various biotic and abiotic factors
present in the environment. Many of these secondary metabolites are used in
pharmaceutical, food, confectionary, cosmetics, insecticide, rubber, and agrochem-
ical industries. In the last two decades, various attempts have therefore been under-
taken to increase the production and accumulation of valuable secondary metabolites
utilizing several approaches in cell, tissue, and organ culture systems. Cell and tissue
culture systems, being undifferentiated, have limited potential to increase the pro-
duction of secondary metabolites. Among different organ culture systems, hairy root
has gained considerable interest due to its high rate of growth in minimal media,
genetic and biochemical stability, non-dependence on phytohormones, and higher
accumulation of secondary metabolites in short time period. Manipulations with
hairy root culture medium and concentrations of carbon and nitrogen source have
resulted in limited success. However, as plant secondary metabolites are produced
under stress conditions, use of elicitors (elicitation) is one of the most promising
strategies to increase secondary metabolite production. The present chapter briefly
discusses the various extrinsic factors and their role in valuable secondary metabolite
production in hairy root culture system.

Keywords Hairy root · Secondary metabolites · Elicitor · Elicitation · Stress

6.1 Introduction

Secondary metabolites are a diverse group of low molecular weight organic com-
pounds produced by either cultivated or wild plants. These secondary metabolites do
not have direct role in functioning of plants, but they provide defense against various
biotic and abiotic factors and hence facilitate the adaptation of plants during its
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interaction with environment. Approximately 100,000 secondary metabolites have
been recognized (Lajayer et al. 2017). Plant secondary metabolites confer specific
tastes, odors, natural colors, and toxins in plants and thereby are widely used in food,
textile, confectionary, cosmetics, insecticide, rubber, and agrochemical industries
(Vasconsuelo and Boland 2007; Hussain et al. 2012; Ramirez-Estrada et al. 2016).
Beside these, many of plant secondary metabolites are pharmaceutically important and
contributed immensely in the success stories of various therapeutic agents: serpentine
isolated from Rauwolfia serpentina is widely used in the treatment of hypertension
(Mallick et al. 2012; Mehrotra et al. 2015a, b). Ajmalicine, atropine, caffeine, digi-
toxin, and quinine are obtained from Catharanthus roseus, Atropa belladonna,
Camellia sinensis, Digitalis purpurea, and Cinchona ledgeriana and used for circu-
latory disorders as anticholinergic, CNS stimulant, cardiotonic, and antimalaria drugs,
respectively (Fabricant and Farnsworth 2001). However, the production of these
important secondary metabolites is very low (less than 1% of the dry weight) under
cultivated or natural conditions (Verpoorte et al. 2002; Kaur et al. 2017). Their yield
and composition are easily affected by developmental and physiological state of the
plant, growing conditions, climate, light, temperature, mineral elements, heavy metals,
and genetic makeup of plant, thus creating major obstacles during standardization of
drug formulations. Furthermore, chemical synthesis of most of the secondary metab-
olites is difficult owing to multiple chiral centers in complicated stereochemical rings
(Gai et al. 2017). All these challenges present a major hindrance for large-scale
industrial use of plant secondary metabolites. Therefore, in the last two decades,
several attempts have been made to increase the production and accumulation of
plant secondary metabolites through biotechnological interventions (Singh et al.
2017; Kaur et al. 2017). Biotechnological tools such as cell and tissue culture systems
have limited potential to increase secondary metabolite production mainly due to their
undifferentiated nature. Among different organ culture systems, hairy roots have
gained much interest from researchers owing to its potential to accumulate high
amount of secondary metabolites in short time span. Furthermore, many of the plant
secondary metabolites are produced and/or accumulated in roots, and harvesting of
plant roots for medicinally important secondary metabolites is destructive for the plant;
therefore, hairy root system is an attractive option for exploiting the potential of plant
roots.

Hairy roots are produced by infection of explants with Agrobacterium rhizogenes
and subsequent transfer of T-DNA of Ti plasmid from A. rhizogenes to the explants
(Chandra 2012). Hairy roots are characterized by high branching, absence of geot-
ropism, genetic and biochemical stability, high rate of growth in minimal medium,
and non-dependence on phytohormones. Additionally, the ability of hairy roots to
produce secondary metabolites for an extended period of time presents hairy root
culture system as an excellent alternative for continuous production of pharmaceu-
tically important secondary metabolites (Shanks and Morgan 1999; Cai et al. 2012).

Secondary metabolite production in hairy root culture system can be increased by
manipulating the composition of nutrient medium, source of nitrogen, and type and
concentration of carbon source (Sivanesan and Murugesan 2008; Mehrotra et al.
2015a, b). Wealth of literature also suggests that the use of elicitors and various other
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treatments and environmental factors can affect the production of secondary metab-
olites in hairy root culture system. The present chapter discusses some of these issues
which are very critical in production of valuable secondary metabolites using hairy
root culture system.

6.2 Elicitors

Elicitor is any stress factor capable of triggering inducible defense responses in
plants, including production and accumulation of secondary metabolites that have
important roles in adaptation to the stressful conditions (Naik and Al-Khayri 2016).
The process of inducing the production of secondary metabolites by using elicitor is
known as elicitation. On the basis of their nature, elicitors are broadly classified into
two major categories, abiotic and biotic elicitors (Fig. 6.1). Abiotic elicitors have
nonbiological origin and are further divided into hormonal, physical, and chemical
factors. Biotic elicitors are the substances having biological origin such as poly-
saccharides derived from plant cell wall and microorganisms.

Plants synthesize secondary metabolites as a response to the attack of pathogens,
herbivores, insects, and other biotic and abiotic stresses. Work on induction of
phytoalexin accumulation in Glycine max by Phytophthora megasperma divulged
that just like pathogen itself, pathogen-derived small molecules can initiate the same
response in the plant (Keen 1975). With further studies on the effect of microbe-
derived oligosaccharides on plants, the role of elicitors on plant secondary metabo-
lism was evident (Vasconsuelo and Boland 2007). The elicitor-mediated secondary
metabolite production has opened new sectors of research that could have important
economical benefits for various industries. However, the selection and optimization
of different parameters like elicitor type and concentration, duration of exposure,
type and age of in vitro culture system, and composition of nutrient medium are
much needed investigations to utilize the full potential of elicitor-induced secondary
metabolite production in hairy root culture system (Namdeo 2007).

6.2.1 Abiotic Elicitors

Plant growth and development are strongly influenced by environment. Abiotic
factors such as light, temperature, pH, salt, heavy metals, and osmoticum have
been shown to induce multigene responses leading to alterations in several proteins
and accumulation of primary and secondary metabolites and hence enable the plant
to ameliorate abiotic stress in the environment (Rodziewicz et al. 2014). In cell
suspension and callus cultures of various plants, abiotic stress causes a drastic
increase in valuable secondary metabolites (Naik and Al-Khayri 2016). The current
section presents an overview of recent work directed toward abiotic elicitor-
mediated production of secondary metabolites in hairy root culture system.
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6.2.1.1 Hormonal Abiotic Elicitors

Methyl Jasmonate Jasmonic acid (JA) and its ester derivative methyl jasmonate
(MeJA) are derived from catabolism of linolenic acid (Yendo et al. 2010). It acts as
secondary messenger in several physiological processes and also triggers the defense
responses (including biosynthesis of secondary metabolites) against various

Fig. 6.1 Schematic representation of hairy root induction from leaf explant and its subsequent
proliferation. Elicitation treatment is given to hairy roots proliferating in liquid nutrient medium
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pathogens and herbivores’ attack, hence facilitating plant adaptation in challenging
environment. In a recent study, Staswick (2008) demonstrated that the active form of
JA is JA-Ile, which is actually a complex of JA with isoleucine. JA-Ile regulates the
specific proteolysis of transcription repressor JAZ that blocks the MYC2 transcrip-
tion factor which in turn activates the genes responsive to JA. JA and its ester
derivatives are most commonly used elicitors in plant tissue culture studies to
enhance the production of valuable secondary metabolites; as when applied exoge-
nously, jasmonates stimulate the production of secondary metabolites in intact plant
and also in cell suspension culture (Akula and Ravishankar 2011). In hairy root
cultures of several plants, treatment with MJ and its derivatives resulted in significant
increase in valuable secondary metabolites (Table 6.1).

In Salvia sclarea hairy root, 7-day elicitation with MeJA (100 μM) and phytotoxin
coronatine (Cor, 0.1 μM) induced transcriptional reprogramming, resulting in sig-
nificant increased accumulation of aethiopinone, a diterpene capable of arresting
human melanoma cells at G2/S phase (Vaccaro et al. 2017). MeJA was more
effective in enhancing the production of aethiopinone (25-fold; 9.72 � 0.08 mg g
�1DW) as compared to Cor (sevenfold; 2.57 � 0.15 mg g�1DW) over untreated
hairy roots (0.38 � 0.07 mg g�1DW). The elicitor-induced higher accumulation of
aethiopinone was due to transcriptional activation of several genes involved in
1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol-4-phosphate (MEP)-
derived isoprenoid pathway. In order to get insights into MeJa- and Cor-mediated
enhancement in secondary metabolite production, transcript analysis was conducted
at 0, 12, 24, and 48 h of elicitor treatment. Maximum elicitation was at 24 h of
treatment and thereafter a decline in the next 24 h. The transcript analysis revealed
approximately 60- and 20-fold upregulation in 1-deoxy-D-xylulose 5-phosphate
synthase 2 (DXS2) after treatment of hairy roots with MeJa and Cor, respectively.
Similarly, 4-(cytidine 50-diphospho)-2-C-methyl-D-erythritol kinase (CMK) and
2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (MCS) genes showed 6-
and 12-fold enhancement in the transcript abundance upon elicitation with MeJA
and Cor. Among other highly upregulated genes were 1-hydroxy-2-methyl-2-(E)-
butenyl-4-diphosphate reductase (HDR1) (30-fold and 8-fold higher transcript level
with MeJa and Cor, respectively, than control) and copalyl diphosphate synthase
(CPPS1) (60-fold higher transcript level with MeJa than that of Cor (eightfold)).
Further, treatment with MeJa was more effective than Cor in enhancing the gene
expression. Interestingly, longer elicitation treatment (28 days) with MeJA caused
significant growth inhibition of hairy roots, whereas Cor did not show any detri-
mental effects on biomass accumulation. Consequently 1 L of hairy root culture
elicited with Cor for 28 days yielded 24-fold (103.32 � 2.10 mg L�1) more
aethiopinone than control hairy roots (4.40 � 0.13 mg L�1), and this content was
16-fold higher than that produced after prolonged elicitation with MeJA (73.29 �
0.11 mg L�1).

Salicylic Acid. Salicylic acid (SA) is a small molecule that induces systemic
acquired resistance (SAR) against several pathogens and hence plays a pivotal role
in plant defense system. During the interaction of plant with pathogen, accumulation
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Table 6.1 Selected examples of elicitor-mediated secondary metabolites production in hairy root
culture system

Type of elicitors
Hairy root
system Secondary metabolite produced References

Jasmonic acid and its
derivatives

Salvia sclarea Aethiopinone Vaccaro et al.
(2017)

Withania
somnifera

Withanolides Saxena et al.
(2017)

Gentiana
dinarica

Xanthone Krstić-Milošević
et al. (2017)

Silybum
marianum

Silymarin Gabr et al. (2016)

Papaver
orientale

Thebaine morphine and
codeine

Hashmi and
Naghavi (2016)

Salvia
castanea

Cryptotanshinone,
tanshinone I, and tanshinone
IIA

Li et al. (2016)

Arachis
hypogaea

Arachidin-1, arachidin-3,
piceatannol, and resveratrol

Yang et al.
(2015)

Catharanthus
roseus

Ajmalicine Thakore et al.
(2015)

Solanum
trilobatum

Solasodine Shilpha et al.
(2015)

Artemisia
annua

Artemisinin Ahlawat et al.
(2014)

Glycine max Isoflavones Theboral et al.
(2014)

Salvia
miltiorrhiiza

Cryptotanshinone,
dihydrotanshinone I

Cheng et al.
(2013)

W. somnifera Withanolides Doma et al.
(2012)

Sivanandhan
et al. (2013)

Sinapis alba Glucosinolates Kastell et al.
(2013)

Brassica rapa Glucosinolates Kastell et al.
(2013)

S. miltiorrhiza Cryptotanshinone,
tanshinone I, tanshinone IIA,
and dihydrotanshinone I

Liang et al.
(2012)

Anisodus
acutangulus

Tropane alkaloid Kai et al. (2012)

Pueraria
candollei

Isoflavonoid Udomsuk et al.
(2011)

Salicylic acid Rehmannia
glutinosa

Acteoside Wang et al.
(2017)

Gentiana
dinarica

Xanthone Krstić-Milošević
et al. (2017)

(continued)
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Table 6.1 (continued)

Type of elicitors
Hairy root
system Secondary metabolite produced References

P. orientale Thebaine morphine and
codeine

Hashemi and
Naghavi (2016)

S. marianum Silymarin Gabr et al. (2016)

C. roseus Ajmalicine Thakore et al.
(2015)

G. max Isoflavones Theboral et al.
(2014)

W. somnifera Withanolides Doma et al.
(2012)

Sivanandhan
et al. (2013)

P. candollei Isoflavonoid Udomsuk et al.
(2011)

NO W. somnifera Withanolides Doma et al.
(2012)

S. miltiorrhiza Cryptotanshinone,
tanshinone I, tanshinone IIA,
and dihydrotanshinone I

Liang et al.
(2012)

A. annua Artemisinin Wang et al.
(2009)

Zheng et al.
(2008)

Ag+ S. castanea Cryptotanshinone,
tanshinone I, and tanshinone
IIA

Li et al. (2016)

S. miltiorrhiza Rosmarinic acid, caffeic acid,
and ferulic acid

Xing et al. (2014)

Cryptotanshinone and
dihydrotanshinone I

Cheng et al.
(2013)

Rosmarinic acid Yan et al. (2006)

Total tanshinone Zhang et al.
(2004)

Datura metel Atropine Shakeran et al.
(2015)

A. acutangulus Tropane alkaloid Kai et al. (2012)

S. marianum Silymarin Khalili et al.
(2010)

Biotic elicitors

Piriformospora indica W. somnifera Withanolides Saxena et al.
(2017)

A. annua Artemisinin Ahlawat et al.
(2014)

Linum album Lignan Kumar et al.
(2012)

D. metel Atropine

(continued)
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of SA in the infected site induces a hypersensitive response. The signal thus
triggered metastasizes to other parts of the plant and induces an array of defense
responses that involves secondary metabolite production. However, SA induces
accumulation of only some classes of secondary metabolites as it is not a global
elicitor (Ramirez-Estrada et al. 2016). At whole plant level, SA foliar spray causes
modulation of secondary metabolites (Dučaiová et al. 2013). Similar effects have

Table 6.1 (continued)

Type of elicitors
Hairy root
system Secondary metabolite produced References

Bacillus cereus, Staphy-
lococcus aureus

Shakeran et al.
(2015)

Alternaria alternata,
Curvularia limata,
Fusarium solani

A. annua Artemisinin Ahlawat et al.
(2014)

Trichoderma atroviride S. miltiorrhiza Tanshinone I, tanshinone IIA,
dihydrotanshinone I, and
cryptotanshinone

Ming et al.
(2013)

Yeast extract S. miltiorrhiza Cryptotanshinone,
dihydrotanshinone I

Cheng et al.
(2013)

Rosmarinic acid Yan et al. (2006)

G. dinarica Xanthone Krstić-Milošević
et al. (2017)

S. castanea Cryptotanshinone,
tanshinone I, and tanshinone
IIA

Li et al. (2016)

P. candollei Isoflavonoid Udomsuk et al.
(2011)

Chitosan W. somnifera Withanolides Doma et al.
(2012)

S. marianum Silymarin Gabr et al. (2016)

G. dinarica Xanthone Krstić-Milošević
et al. (2017)

P. candollei Isoflavonoid Udomsuk et al.
(2011)

A. annua Artemisinin Putalun et al.
(2007)

Miscellaneous

Cyclodextrin A. hypogaea Arachidin-1, arachidin-3,
piceatannol, and resveratrol

Yang et al.
(2015)

KCl C. roseus Ajmalicine Thakore et al.
(2015)

Tween-80 Panax ginseng Ginsenoside Liang et al.
(2015)

Ethanol A. acutangulus Tropane alkaloid Kai et al. (2012)

Agrobacterium
rhizogenes

P. candollei Isoflavonoid Udomsuk et al.
(2011)

130 K. Kaur and P. K. Pati



been demonstrated in cell suspension and hairy root culture systems of many plants
(Kang et al. 2006; Yousefzadi et al. 2010; Hashemi and Naghavi 2016).

Rehmannia glutinosa is an important herb used in traditional Chinese medicine
(Wang et al. 2017). After 10-day treatment of R. glutinosa hairy roots with SA
(25 μmol/L), 2.28-fold enhancement in the content of acteoside was recorded than
control hairy roots. As genome sequence of R. glutinosa is not available, detailed
investigation was conducted by transcriptome analysis using Illumina HiSeq 2000
platform. The samples were harvested at 0, 12, and 24 h after treatment with
SA. 3716 and 4018 differentially expressed transcripts (DETs) were identified in
0 h vs. 12 h and 0 h vs. 24 h, respectively. Further, 2715 DETs were found in
12 h vs. 24 h. The 2401 DETs were upregulated, and 1617 DETs were
downregulated at 24 h treatment with SA in comparison to 0 h. On the other hand,
1470 upregulated and 1245 downregulated DETs were present at 24 h as compared
to 12 h. In silico differential analysis was confirmed by qRT-PCR performed on ten
randomly selected transcripts. The expression analysis through qRT-PCR correlates
with DETs indentified by RNA-seq. This work has provided a platform to under-
stand the molecular basis of biosynthesis of acteoside in R. glutinosa.

In case of Papaver orientale, hairy roots were treated with 100 μM SA, and
samples were harvested after 6, 12, 24, and 48 h (Hashemi and Naghavi 2016).
HPLC analysis of morphinan alkaloids revealed that longer exposure of elicitors
(24 and 48 h) led to higher accumulation of thebaine, morphine, and codeine.
Codeine was maximum accumulated at 24 h, whereas thebaine and morphine
showed highest content at 48 h. SA elicitation for 48 h increased the content of
thebaine by 2-fold (1.66 mg g�1) and morphine by 4.22-fold (2.87 mg g�1). Further,
2.59-fold (1.61 mg g�1) increase was seen in the content of codeine after 24 h
treatment with SA. The relative expression of key genes such as salutaridine
synthase (Salsyn), salutaridine reductase (SalR), salutaridinol 7-O-acetyltransferase
(SalAT), codeine O-demethylase (CODM), thebaine 6-O-demethylase (T6ODM),
and codeinone reductase (COR) involved in biosynthesis of morphinan alkaloids
was analyzed at 6, 12, 24, and 48 h. Upon treatment with SA for 48 h, Salsyn,
T6ODM, and CODM showed 13.39, 9.6, and 2.98 times upregulation, respectively.

Nitric Oxide. Nitric oxide (NO) is a nontraditional phytohormone having wide
physiological implications in both plants and animals. It also acts as a signal
molecule in various stress responses (Zhang et al. 2012). Artificial NO donors,
viz., S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione, and sodium
nitroprusside (SNP), are added in the nutrient medium to study the effect of NO in
various culture systems. Due to its longest half-life, SNP in its crystalline form,
Na2[Fe(CN)5NO]�2H2O, is mostly used in tissue culture of medicinal plants. It is
used in the concentrations ranging from 10 μM to 100 mM; the wide range indicates
the species-specific effect of NO. Intriguingly, NO released from SNP is photosen-
sitive, and NO emission is fully inhibited in dark (Floryszak-Wieczorek et al. 2006).
At the level of plants, NO (SNP) increases the growth of plant as well as secondary
metabolite production (Wang et al. 2011). NO has been shown to cross talk with
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reactive oxygen species (ROS) and phytohormones such as SA and JA (Zhang et al.
2012; Mishra et al. 2017).

Cerebrosides are glycosphingolipids and act as potential elicitors. Cerebroside C
(CE) was isolated from Fusarium sp. NO potentiates the CE-induced production of
artemisinin in hairy root cultures of A. annua (Wang et al. 2009). NO-donor SNP
(10, 50, and 100 μM) enhanced the hairy root growth. However, it did not alter the
content of artemisinin (Zheng et al. 2008). However, 2 days of combined treatment
of hairy roots with CE (30 μg/ml) and SNP (10 μM) led to enhanced artemisinin than
hairy roots treated with CE alone. The 4-day treatment of hairy roots with CE and
SNP showed 36% higher artemisinin content than control (CE only). The potentiat-
ing effect of NO on CE-induced accumulation of artemisinin was further divulged by
expression studies of key genes (HMGR and DXS) involved in artemisinin biosyn-
thesis. Samples treated with CE alone showed 9.3 and 6.6 times higher expression of
HMGR and DXS, respectively, than control (without CE). Interestingly, SNP alone
did not enhance the expression of these genes, but a combined treatment of CE and
SNP caused significant increase in the expression of HMGR and DXS. The role of
NO in potentiating the CE-induced accumulation of artemisinin was confirmed by
using inhibitors such as Nω-nitro-L-arginine methyl ester (L-NAME) and
2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) as
NO synthase (NOS) inhibitor and NO scavenger, respectively. cPTIO- and
NOS-inhibited artemisinin production was reinitiated by supplying SNP, suggesting
that these inhibitors inhibited artemisinin production by reducing the level of NO. In
another study, Zheng et al. (2008) showed that NO can further enhance the
oligosaccharide-induced production of artemisinin in hairy root cultures of A. annua.

6.2.1.2 Physical Abiotic Elicitors

Light. Light has tremendous effect on plant growth and biosynthesis of secondary
metabolites. In addition to providing a source of energy, light is perceived as a signal
by the photoreceptors of plants and regulates plant growth, differentiation, and
metabolism. Maximum light absorption by the plant is in blue and red region of
the spectrum having wavelength from 600 to 700 nm, and the maximum reflectance
is in green and far red region having wavelength from 700 to 800 nm. Ultraviolet
(UV)-B indicates radiations of wavelength 280–315 nm. In plants, UV-B light is
absorbed by specific UV-B photoreceptors (Zu et al. 2010). UV-B radiations cause
growth reduction and also influence plant secondary metabolite production by
regulating the key genes (phenyl ammonia lyase and chalcone synthase) of
phenylpropanoid pathway.

In plants, flavonoids are produced and accumulated as protective substances against
UV-B stress. In callus and cell suspension culture, light affects the accumulation of
secondary metabolites such as flavonoids, anthocyanins, zingiberene, and gingerol
(Krewzaler and Hahlbrock 1973; Anasori and Asghari 2008). Similar studies have
also been conducted to enhance secondary metabolite production in hairy root

132 K. Kaur and P. K. Pati



cultures of various plants. Hairy roots of Fagopyrum tataricum Gaertn. were
exposed to UV light for 30 min (3 days). The UV-C light was blocked from UV
lamp by wrapping it in cellular diacetate filter. After UV treatment of hairy roots
(302 nm was the maximum radiation peak, intensity of UV-B light on the surface of
sample was 1.26 μW/cm2), the content of rutin was 5.18-fold higher (increased from
0.93 to 4.82 mg g�1) than wild-type (WT) roots (Huang et al. 2016). Following UV
treatment, the maximum level of rutin was observed in leaves (9.35-fold) followed
by hairy roots (5.18-fold), stem (3.5-fold), and non-transformed roots (2.95-fold).
The least rutin was in flowers (2.66-fold). The quercetin content was increased from
0.02 to 0.04 mg g�1 in hairy roots upon exposure to UV-B stress. To further
investigate the flavonoid biosynthetic pathway, transcript abundance of key genes,
viz., phenylalanine ammonia lyase ( ftPAL), cinnamic-4-hydroxylases (FtC4H),
4-coumaroyl-CoA-ligase (Ft4CL), chalcone synthase (FtCHS), chalcone isomerases
(FtCHI), flavanone 3-hydroxylase (FtF3H), flavonoid 30-hydroxylase (FtF3’H-1),
FtF3’H-2, flavonol synthase (FtFLS-1), FtFLS-2, dihydroflavonol reductase
(FtDFR), and anthocyanidin synthase (FtANS), was analyzed by qRT-PCR.
FtFLS-1 gene showed 30–40-fold high transcript level than WT. FtCHI and
FtCHS showed 20–30-fold high expression. Contrary to this, only slight enhance-
ment was seen in transcript level of FtF3’H-1, FtF3’H-2, FtFLS-2, FtDFR, and
FtANS genes upon exposure to UV-B light. UV-B stress-induced increased expres-
sion of flavonoid biosynthetic pathway was due to the presence of UV-B stress-
sensitive domains in the promoter region of UV-induced upregulated genes.

In Catharanthus roseus, 32-day-old hairy roots were exposed to UV-B radiations
(intensity of UV-B light on the surface of the sample was 9,000 uW/cm2) for 0, 5,
10, and 20 min and harvested at 72 h (Binder et al. 2009). The most significant
changes in the content of ajmalicine, serpentine, lochnericine, tabersonine, and
hörhammericine were observed after exposure for 20 min. During further experi-
ments, UV-B treatment of 20 min was followed by sample harvesting at 0, 6, 12, 24,
36, 48, 72, and 168 h. The level of hörhammericine decreases for the first 48 h of
UV-B exposure and returned to normal after 168 h, while lochnericine content
continuously increased for initial 48 h and then returned to normal after
168 h. However, no significant change was seen in the content of ajmalicine,
serpentine, tabersonine, and catharanthine. The analysis of transcript abundance of
geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), and strictosidine
synthase (STR) showed the maximum accumulation of transcript of G10H at 36 h,
whereas TDC and STR showed minor changes after UV-B stress.

pH. In plants, the optimum pH varies considerably in different plant species. The
pH influences the uptake of nutrients and enzymatic and hormonal activity. In most
of the plant tissue culture practices, pH 5.8 is maintained initially. However, with the
growth of cultures, pH tends to change, thereby affecting the plant growth and
development. Interestingly, in case of plant roots, pH is considered as a major
modulator of transcriptome (Lager et al. 2010). Surprisingly, as compared to other
abiotic factors, only few reports are available on attempts to enhance secondary
metabolites production by altering medium pH in hairy root culture system.
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Hairy roots (six pieces of 1 cm length of 30-day-old culture) of Silybum
marianum were allowed to grow for 30 days in nutrient medium initially set at
different pH such as pH 5, 5.7, 6, and 7 (Rahimi and Hasanloo 2016). The maximum
dry biomass (0.50 g) was favored by pH 5, whereas nutrient medium adjusted to pH
5.7, 6, and 7 led to 0.24, 0.27, and 0.21 g dry biomass, respectively. Highest
accumulation of silymarin (0.25 mg/g DW) was achieved at pH 5. On the other
hand, silymarin content at pH 5.7, 6, and 7 was 0.18, 0.15, and 0.18 mg/g DW,
respectively.

The level of silybin, isosilybin, silydianin, and silychristin was also highest at pH
5. Furthermore, antioxidant enzyme activity and lipoxygenase activity were
conducted in hairy roots exposed to different pH. The enzymatic activity of guaiacol
peroxidase (G-POD) and ascorbate peroxidase (APX) was highest at pH 5.7 as
compared to other pH. Interestingly, lipoxygenase (LOX) activity was maximum
at pH 5, indicating that LOX initiates lipid peroxidation under acidic conditions and
fatty acids were converted to corresponding hydroperoxides resulting to silymarin
accumulation.

InWithania somnifera hairy root culture system, a range of pH (4.0, 4.5, 5.0, 5.5,
5.8, 6.0, and 6.5) was tested for its effect on accumulation of biomass and pharma-
ceutically important secondary metabolite, withanolide A (Praveen and Murthy
2012). The maximum biomass accumulation (12.1 g l�1 DW) was supported by
pH 5.8, whereas optimum pH for withanolide A production (13.84 mg g�1 DW) was
6.0. A similar work that involves testing of pH range (3.0, 4.0, 5.0, 6.0, 7.0, and 8.0)
on hairy root culture of Picrorhiza kurroa revealed that accumulation of biomass and
important secondary metabolites such as kutkoside and picroside I was optimum at
pH 6.0, whereas lowest biomass and specific glycoside content was at pH 3.0
(Verma et al. 2015). The pH 4.0 and 8.0 facilitated intermediate accumulation of
hairy root biomass and secondary metabolites.

Nutrient medium having pH 2.0, 3.0, and 4.0 alters the permeability of B. vulgaris
hairy roots to different extent and resulting to 70, 15, and 10% of betalains released
into the culture medium within 30 min, respectively (Thimmaraju et al. 2003). This
strategy may be employed for cost-effective industrial production of valuable sec-
ondary metabolites.

Osmoticum. Osmotic stress is a potent elicitor for increasing the production of
secondary metabolites. Sorbitol and PEG are metabolically inert and thus frequently
used for osmoticum studies. Biosynthesis of tanshinone in hairy roots of Salvia
miltiorrhiza is induced by hyperosmotic stress (Shi et al. 2007). Culture medium
supplemented with different concentrations of sorbitol (30–100 g/l) was tested for
6 days for its potential to increase the production of tanshinone. Surprisingly, at all
the tested concentrations of sorbitol, the content of total tanshinone was higher than
control. The maximum yield of tanshinone was 4.5-fold (162.0 μg/g DW) higher
than control and was achieved at 70 g/l sorbitol. In contrary to this, the maximum
volumetric yield of total tanshinone (8.18 mg/l; 4.8-fold higher than control) was
obtained when hairy roots were cultured in medium amended with 50 g/l sorbitol.
This is due to increase in dry weight at 70 g/l sorbitol. Further, since the production
of reactive oxygen species (ROS) is one of the earliest responses of the plant cells
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against any kind of stress, hence SOD and CAT activities in sorbitol-treated hairy
roots were checked. The SOD activity in treated hairy roots reached maximum in
2–3 days, and CAT activity reached to its peak in 1–2 days. However, there was no
correlation between tanshinone accumulation and enzyme activity, suggesting that
ROS was not the signal molecule in sorbitol-induced higher accumulation of
tanshinone.

Upon PEG treatment, the content of bioactives of S. miltiorrhiza, viz.,
tanshinone I, tanshinone II A, cryptotanshinone, and dihydrotanshinone I, was 0.9-
fold (49.2 μg g�1), 1.0-fold (736.2 μg g�1), 1.4-fold (106.8 μg g�1), and 0.7-fold
(935.0 μg g�1) higher than control, respectively (Yang et al. 2012). PEG-induced
production of tanshinone was completely abolished by ibuprofen (IBU, MJ biosyn-
thesis inhibitor), providing a clue for endogenous MJ signaling in PEG-induced
production of tanshinone. It was noticed that MJ content was 1.8-fold (168 ng g�1)
higher in PEG-treated hairy roots than control. MJ content in hairy roots treated with
PEG + IBU was reduced to 27.3 ng g�1. Further gene expression studies of HMGR,
DXR, and DXS as well as protein activity of HMGR and DXS were conducted. In
PEG-treated samples, HMGR, DXR, and DXS showed 25.3-, 12.1-, and 15.7-fold
upregulation than control. The enzymatic activities of HMGR and DXS were
significantly enhanced, suggesting that both mevalonate (MVA) and MEP pathways
were stimulated by PEG treatment. However, the gene expressions and protein
activities were significantly suppressed by IBU, pointing that PEG-induced
tanshinone production is dependent on MJ signaling.

Temperature. Temperature fluctuations exert multiple effects on metabolic regu-
lations and rate of intracellular reactions in plants. Temperature has significant
effects on membrane permeability by altering the composition of membrane lipid
(Ramakrishna and Ravishankar 2011; Wang and Wu 2013). Generally, 25 �C
temperature is maintained for hairy root cultures; lowering the temperature to 19.5
�C increases the content of linolenic acid and indole alkaloids in hairy root cultures
of Catharanthus roseus (Toivonen et al. 1992). In case of Silybum marianum,
maximum silymarin production (0.18 mg/g DW) was achieved when hairy root
cultures were incubated at 25 �C/25 �C in 16 h/8 h light/dark cycle as compared to
30 �C/25 �C (0.13 mg/g DW) and 15 �C/20 �C (0.0.12 mg/g DW) (Rahimi and
Hasanloo 2016). Furthermore, the accumulation of silybin, silydianin, and taxifolin
was also highest at 25 �C/25 �C.

Secondary metabolites are sequestered in the vacuoles. Reverse sequestration of
valuable secondary metabolites into cell exterior has recently been employed to
enhance the yield of secondary metabolites and also to decrease the cost of down-
stream extraction process, thus facilitating cost-effective production of secondary
metabolites. The same strategy has been employed to efflux the pigments of Beta
vulgaris (Thimmaraju et al. 2003). Twenty-day-old hairy roots of B. vulgaris
exposed to different temperatures such as 40, 45, and 50 �C for 30 min release
approximately 5.4, 31, and 47% pigments, respectively, in the culture medium. An
exposure of 60 min resulted in 13.4, 40.2, and 47.5% efflux of pigments.
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6.2.1.3 Chemical Abiotic Elicitors

Heavy Metals. Heavy metals such as nickel (Ni), selenium (Se), and iron (Fe) are
the essential trace elements required for plant growth and development, as these
heavy metals act as cofactor for many metalloenzymes. In plant tissue culture, heavy
metals have tremendous potential to stimulate the production and accumulation of
valuable secondary metabolites (Lajayer et al. 2017).

Hairy root culture of S. miltiorrhiza supplemented with Ag+ (Ag2S2O3) for 2–3 days
showed that the content of total tanshinone was increased by twofold (after 2 weeks)
as compared to control (Zhang et al. 2004). The increase in total tanshinone content
was at the expense of root growth, which was suppressed to approximately 30%. The
increased tanshinone may correlate with stimulatory effect of Ag+ on key enzymes
(HMGR and DXS) involved in tanshinone production (Ge and Wu 2005). Moreover
Ag+ elicitation can cause exudation of valuable secondary metabolites into the
culture medium. Treatment of hairy roots of Brugmansia candida with 1.0 mM
AgNo3 for 24 h decreased the content of hyoscyamine and scopolamine in hairy
roots, but it released significant amount of scopolamine into the culture medium. The
exudated scopolamine may attribute to the cell lysis induced by osmotic stress and
toxicity of Ag+ (Pitta-Alvarez et al. 2000).

Hairy roots of Hyoscyamus reticulatus elicited with different concentrations
(0, 450, 900, 1800, and 3600 mg/L) of iron oxide nanoparticles (FeNPs) for different
time periods (24, 48, and 72 h) accumulated maximum hyoscyamine and scopol-
amine content (fivefold increase as compared to control) when nutrient medium was
supplemented with 900 and 450 mg/L FeNPs for 24 and 48 h, respectively
(Moharrami et al. 2017). The higher production of hyoscyamine and scopolamine
in FeNP-treated hairy roots is due to availability of sufficient Fe2+ required for the
enzyme hyoscyamine-6-hydroxylase catalyzing the conversion of hyoscyamine to
scopolamine through hydroxylation. However, exposure of hairy roots to FeNPs for
longer durations led to decreased production of hyoscyamine and scopolamine
mainly due to toxic effects exerted by nanoparticles on mitotic index and DNA.

Salt Stress. Plants have evolved several adaptations to survive in high salt hostile
environment that induces osmotic as well as ionic stress in plants (Naik and
Al-Khayri 2016). The adaptations here involve reconfiguration of metabolic network
to maintain metabolic homeostasis and hence mitigating the salt stress by increasing
the production and accumulation of specific metabolites (Ni et al. 2015). Plantago
ovata in hydroponic culture system exposed to NaCl led to significant increased
accumulation of proline, total saponin, and total flavonoids. The increased accumu-
lation of proline is due to its ability to act as compatible solute and thus help in
osmotic adjustments and protect the enzymes by stabilizing the structure of organ-
elles and macromolecules. On the other hand, flavonoids and saponins protect the
plant from oxidative stress induced by salt ions (Haghighi et al. 2012).

The effect of salt stress (KCl and CaCl2) was also explored in hairy roots of three
species of Datura, viz., D. tatula (LDT), D. stramonium (LDS), and D. innoxia
(LDI) (Harfi et al. 2016). Both the salts were used in varying concentrations (0.5,
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1, 2, and 3 g/l) for different elicitation time (10, 24, and 48 h). All the three species of
Datura accumulated maximum hyoscyamine at 2 g/l KCl. The highest content of
hyoscyamine recorded after 24 h elicitation with KCl was 2.32-fold (12.074 �
0.138 mg g�1 DW) and 1.85-fold (12.651 � 0.342 mg g�1 DW) for LDS and
LDI, respectively, as compared to control. However, for LDT, hyoscyamine level
reached maximum to 1.99-fold (16.289 � 0.382 mg g�1 DW) after 10 h elicitation
with KCl. In case of CaCl2, the corresponding hyoscyamine content with 24 h
elicitation with 2 g/l CaCl2 and 1 g/l CaCl2 was 2.07-fold (16.978 � 0.380 mg g
�1 DW) and 1.85-fold (12.697 � 0.242 mg g�1 DW) higher in LDT and LDI,
respectively, than control. On the other hand, 10 h elicitation with 2 g/l CaCl2
yielded 2.08-fold (10.828 � 0.261 mg g�1 DW) higher hyoscyamine for LDS.

6.2.2 Biotic Elicitors

Biotic elicitors, derived from pathogens or the plants itself, are either of defined
composition (molecular structure is known) such as chitosan, pectin, chitin, alginate,
and elicitin or of complex composition (having various different molecular classes)
like yeast extract and fungal homogenate (Vasconsuelo and Boland 2007). The
fungal elicitors used for treatment of hairy roots are mostly the crude extracts of
fungal mycelia or culture filtrates derived from pathogenic or endophytic fungi
(Wang and Wu 2013). Recently a new approach of using fungal elicitor was
developed by immobilizing the fungus in Ca-alginate gel (CAG). This strategy
was used to enhance pharmaceutically important secondary metabolites in Astrag-
alus membranaceus (Gai et al. 2017).

Astragalosides (AGs) are triterpene saponins produced by roots of
A. membranaceus. Among various AGs such as astragaloside I (AG I), astragaloside
II (AG II), isoastragaloside II (IAG II), astragaloside III (AG III), and astragaloside
IV(AG IV), AG IV has multiple pharmaceutical properties (Gai et al. 2017). AG I,
AG II, and IAG II have low bioactivity and share structural similarity with AG IV,
except that they have extra acetyl group at position C-3. Microbial transformation
has recently gained considerable interest as an alternative to conventional chemical
processes for hydrolysis of unwanted acetyl groups in the precursors to generate AG
IV. Utilizing a cocultivation system of A. membranaceus hairy root cultures
(AMHRCs) with CAG facilitated immobilized endophytic fungus Penicillium
canescens (IPC), and elevated production of AG IV was achieved. IPC-treated
AMHRCs accumulated high level of AG IV (1.585 � 0.0106 mg/g DW) as
compared to control AMHRCs (0.187 � 0.014 mg/g DW) and CAG-treated
AMHRCs (0.196 � 0.009 mg/g DW). Further, the content of acetylated precursors
(AG I, AG II, IAG II) of AG IV in IPC-treated AMHRCs was significantly low when
compared to untreated AMHRCs, pointing toward deacetylation potential of IPC
(due to the secretion of acetyl esterase) and thereby enhancing the content of AG
IV. The expression analysis of 11 key genes of AG IV biosynthetic pathway was
analyzed at 24, 48, 60, and 96 h after cocultivation with IPC. All the tested genes,
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viz., acetoacetyl-coenzyme A thiolase (AACT), 3-hydroxy-3-methylglutaryl coen-
zyme A (HMG-CoA) synthase (HMGS), HMG-CoA reductase (HMGR),
mevalonate kinase (MK), phosphomevalonate kinase (PMK), squalene synthase
(SS), squalene epoxidase (SE), and cycloartenol synthase (CAS), showed
upregulation from 24 to 60 h posttreatment suggesting transcriptional activation by
IPC. However, expression level of some of the genes such as mevalonate diphos-
phate decarboxylase (MVD), farnesyl diphosphate synthase (FPS), SE, and CAS was
decreased at 96 h as compared to control. The decline was due to prolonged
cocultivation that could lead to metabolic damage or death of hairy roots in extreme
cases.

Hairy roots of Withania somnifera were treated with different concentrations
(1%, 3%, and 5%) of cell homogenates of Piriformospora indica (CHP) for varying
time periods (24, 48, and 72 h) (Saxena et al. 2017). P. indica is a root endophytic
fungus which is used as biofertilizer, bioregulator, and bioprotector against stress
conditions. It stimulates secondary metabolite production in various medicinal
plants. For preparing cell homogenate of CHP, the fungus was grown at 30 �
1 �C on Hill and Kafer medium solidified with agar. After 8 days of incubation,
fully grown fungus was inoculated in 100 ml Hill medium (liquid). At the mid-log
phase (5 days), the fungus culture was subjected to autoclave at 121 �C, 15 lb. in�2

for 15 min. Following filtration, cell residue was washed and homogenized with
sterile water, and finally the volume was maintained to 50 ml with autoclaved
double-distilled water. The cell homogenate thus prepared was used to treat hairy
roots of W. somnifera. CHP (3%) for 48 h led to 1.15-fold (34.04 � 0.17 g FW)
higher biomass accumulation than control hairy roots. The content of withanolide A,
withaferin A, withanoside IV, and withanoside V increased by 2.7-fold (6.37 �
0.116 mg/g DW), 2.5-fold (3.28 � 0.07 mg/g DW), 2.34-fold (0.171 � 0.006 mg/g
DW), and 2.9-fold (0.147 � 0.003 mg/g DW), respectively, than control hairy roots.
Further, gene expression studies revealed the upregulation of genes involved in
MVA, MEP, and the key genes of sterol biosynthetic pathway. Treatment of
W. somnifera hairy roots for 48 h with 3% CHP upregulated the expression of
HMGR, FPPS, SS, SE, CAS, obtusifoliol-14-demethylase (ODM), sterol
methyltransferase 1 (SMT-1), and sterol-22-desaturase (SDS) genes by 3.2-, 3.49-,
2.87-, 3.25-, 3.08-, 4.42-, 4.81-, and 5.024-fold, respectively, than untreated hairy
roots. Genes associated with MEP pathway such as 1-deoxy-D-xylulose-5-phos-
phate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR) were
also upregulated (6.5-fold) by CHP.

Chitosan is acetylated β-1, 4-linked D-glucosamine polymer and is a structural
component of many fungal pathogens such as Fusarium sp. Chitosan has been
exploited as an important elicitor to enhance secondary metabolite production in
plants. The effect of different concentrations of chitosan (50, 100, and 150 mg/l) was
studied on artemisinin production potential of 21-day-old hairy root cultures of
A. annua (Putalun et al. 2007). The samples were harvested at different time periods
from 2 to 6 days. After 6 days of incubation, artemisinin content was sixfold higher
(1.84 � 0.02 μg mg�1 DW) than control hairy roots. Further, there was a direct
correlation between incubation period (2–6 days) and artemisinin yield.
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6.3 Mechanism of Action of Elicitors

Elicitors belong to several classes of compounds that do not share a common
chemical structure. A compound that can act as elicitor by eliciting plant secondary
metabolite production in one species may be inactive in another plant species. In
contrast, different plant species/genus may respond to same elicitor. The molecular
basis of elicitation is the ability of plants to recognize an array of structurally diverse
molecules as signals due to the presence of elicitor-specific receptors in the cell
membrane (Vasconsuelo and Boland 2007).

Elicitation starts with signal perception. Elicitors act as signal, and it is perceived
by the receptor on the plant cell membrane followed by initiation of signal trans-
duction cascade (Fig. 6.2) (Zhao et al. 2005; Kurosaki 2012; Mishra et al. 2012).
Several elicitor-binding sites are recognized as potential receptors. The transmem-
brane receptor-like kinases (RLKs) are the most studied category of the receptors
capable of receiving wide range of stimuli. Flagellin receptors of leucine-rich repeats
(LRR) class are the best characterized RLKs. Plant R-proteins are another class of
receptor that respond to elicitor produced by Avr genes. The specificity of R-protein
is due to the presence of nucleotide-binding site as well as leucine-rich repeat
domain (NBS-LRR). The high specificity between plant R-protein and Avr product
can explain the species-specific nature of some elicitors.

Elicitor perception is associated with activation of heterotrimeric guanine
nucleotide-binding proteins (G-proteins). Studies involving activators and inhibitors
of G-proteins implicated its undisputable role in transmitting the signals to phos-
pholipases, ion channels, NADPH oxidase, molecules such as GTPase, and signal-
ing pathways activated in response to biotic and abiotic stresses (Goel et al. 2011).
Inhibitor of G-proteins such as suramin inhibits the activation of receptor-coupled
G-proteins, and subsequently the production of phytoalexin suggested an important
role of G-proteins in signal transduction within the cell. NADPH oxidase along with
apoplastic peroxidases led to generation of reactive oxygen species, primarily
superoxide anion and hydrogen peroxide leading to oxidative burst, an earliest
response of plant cells against elicitor treatment or pathogen attack (Zhao et al.
2005).

Another earliest response of plant cells after recognition of elicitors is rapid ion
fluxes such as Ca2+ influx, K+/H+ exchange, and Cl� effluxes (Zhao et al. 2005).
Among these, Ca2+ influx is most relevant due to its participation as key second
messenger in various physiological processes. After elicitor recognition, within
2–5 min, the level of Ca2+ increases from 50–100 nM to 1–5 μM. In response to
most of elicitors, two [Ca2+]cyt peaks were produced. First [Ca

2+]cyt peak is due to
the influx of extracellular Ca2+, while the second [Ca2+]cyt peak is attributed to
activation of phospholipase C (PLC) that causes hydrolysis of membrane phos-
pholipids such as phosphatidylinositol 4,5-diphosphate (PIP2) into 1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG). IP3 leads to Ca2+ release from
inner Ca2+ stores like Golgi apparatus, vacuole, and endoplasmic reticulum. The
[Ca2+]cyt spiking either directly or by Ca

2+ sensors such as calmodulin can activate
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several cellular processes. Ca2+ and Ca2+/calmodulin subsequently activate protein
phosphatase and Ca2+/calmodulin-dependent protein kinases. It also causes differ-
ential activation of transcription factors (TFs) that transfer the elicitor signal to
downstream reactions leading to production of secondary metabolites. Further-
more, phospholipases such as phospholipase A (PLA), phospholipase C (PLC),
and phospholipase D (PLD) responsible for biosynthesis of other messengers, viz.,
phosphatidic acid (PA), IP3, and DAG, are also regulated by Ca2+.

PLA hydrolyzes phosphatidylcholine (PC) to lysophosphatidylcholine (lysoPC)
that activates H+-ATPase in the tonoplast and causes acidification of cytoplasm

Fig. 6.2 A schematic illustration of molecular mechanism of elicitor-induced biosynthesis of
secondary metabolites using lipid messengers derived from plasma membrane hydrolysis. Plasma
membrane itself and the receptors present in the plasma membrane can perceive the signal.
Phospholipase gets activated by several biotic and abiotic stresses and hydrolyzes the phospholipids
such as phosphatidylcholine (PC) and phosphatidylinositol 4,5-diphosphate (PIP2) and results in
production of signal molecules. Lysophosphatidylcholine (lysoPC) released from the hydrolysis of
PC by phospholipase A (PLA) activates proton pumping in the tonoplast and expels H+ to the
cytoplasm. The resulted cytoplasmic acidification induced biosynthesis of secondary metabolites.
Phospholipase C (PLC) causes hydrolysis of PIP2 and yield diacylglycerol (DAG) and 1,4,5-
trisphosphate (IP3). IP3 mobilizes Ca2+ from intracellular Ca2+ reservoirs. The released Ca2+

activates Ca2+/calmodulin-dependent protein kinases (CaDPKs), which in turn differentially acti-
vates the transcription factors involved in biosynthesis of secondary metabolites. Phospholipase C
(PLD) hydrolyzes phospholipids to phosphatidic acid (PA). PA and DAG are interconvertible
through PA phosphatase (PAP) and DAG kinase (DAGK). Along with Ca2+, PA is an emerging
messenger and either directly or indirectly induced secondary metabolite production

140 K. Kaur and P. K. Pati



(Zhao et al. 2005). Cytoplasmic acidification is necessary for signal transduction
resulting to oxidative burst and synthesis of secondary metabolites. PLD causes
hydrolysis of PC into choline and PA. PA is a messenger molecule involved in
several cellular processes (including secondary metabolite biosynthesis) through
activation of protein kinase cascade.

6.4 Conclusions

In recent years, the production of secondary metabolites from plants has gained
momentum. Various chemical and biotechnological approaches were used to iden-
tify and understand biosynthesis of important secondary metabolites and their
modulation. Production of secondary metabolites using hairy roots is an exciting
prospect owing to its safe, continuous, and higher production of metabolites. In
recent years, various biotechnological interventions to enhance the accumulation of
secondary metabolites have been tried by researchers across the world. Inputs from
these works suggest that regulation of production of valuable secondary metabolites
in hairy roots vis-á-vis normal roots still needs to be properly understood. However,
it provides a promising option for production of important secondary metabolites for
pharmaceutical, cosmetics, food, textile, rubber, insecticide, and agrochemical
industries. In the future, efforts for screening of small molecules and their role in
triggering valuable secondary metabolites production in hairy roots need to be
addressed.
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Chapter 7
Bioreactor Design and Analysis for Large-
Scale Plant Cell and Hairy Root Cultivation

Chitra Srikantan and Smita Srivastava

Abstract Over the years, plant cells and hairy roots have been established as a
successful and viable alternative for production of bioactive secondary metabolites
and recombinant proteins, replacing the use of whole plants. Bioreactors are used for
continuous and consistent in vitro production of these low-volume high-value
bioactive/therapeutic molecules from plant cells and hairy roots at large scale. The
design and operation of bioreactors for plant cell and hairy root cultivation differs
from well-established microbial cultivation due to their size, aggregation, sensitivity
to hydrodynamic stress, and viscous nature of the culture broth. The choice of
bioreactor and nutrient feeding strategies to overcome substrate limitation and
inhibition can be instrumental in enhancing the biomass and product productivity
in plant cell and hairy root cultivations at large scale. Hence, this chapter deals
briefly with the design and development of bioreactors to achieve maximum pro-
ductivity in plant cell and hairy root cultivations. The overview of reactor operating
parameters considered while designing bioreactors for plant cells and hairy roots are
discussed. The chapter also includes application of mathematical modeling to
optimize the design of bioreactors and in silico prediction of nutrient feeding
strategies during fed-batch and continuous mode of bioreactor cultivation.
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7.1 Introduction

The last 60 years have seen a steep increase in demand for production of biologically
active molecules from cellular sources (Georgiev 2014). Living cells are capable of
synthesizing the biomolecules in their most effective and stereo- and regiospecific
form, giving an edge over the chemical synthesis (where the products are produced
as racemic mixtures). The capacity to produce such biomolecules has been exploited
in both prokaryotic (microorganisms) and eukaryotic (yeast, plant, and animal cells)
systems. While microorganisms are most efficient in production of primary metab-
olites (e.g., ethanol, acetic acid, lactic acid, etc.) and less-structurally complex
biomolecules, eukaryotic systems are required for production of specialized and
chemically complex molecules as they have the cellular mechanism for posttransla-
tional modifications (Huang and McDonald 2012).

Plants are known sources for secondary metabolites which are used for pharma-
ceuticals, flavors, fragrances, coloring agents, food additives, and agrochemicals
(Wang et al. 2017). They are the major sources of medicinally active compounds,
which have been used since ancient times and new ones being discovered for
growing diseases and ailments. These plants have specific secondary metabolites
(low volume, high value) which are produced mostly as defense-related compounds
for survival of the plants against insects, pests and predators, etc. (Wink 2015).
These are also non-growth associated and are not produced in large amounts, and
their yield not only varies in different plants but also in different tissues of the same
plant (Atanasov et al. 2015). These specific plants and trees are poached for
extraction of very less amount of these biomolecules, making most of these plants
endangered (Joe et al. 2015). As most of these biomolecules of interest in plants are
defense-related compounds and with the development of plant cell and organ culture
as successful alternative, it has led to the development of bioreactors for plant cell
and organ cultures. Plant cells can also be engineered for recombinant protein
production (they provide adequate posttranslational modification, being a eukaryotic
system) and are advantageous over animal cell-based production systems due to
lower production costs, easy scalability, and the absence of human pathogens
(Kaldis et al. 2013).

Plant in vitro cultures are emerging as alternatives to replace whole plants, as a
production platform for various biomolecules due to:

• Shorter production cycles (days or weeks) compared to months/years in natural
and transgenic whole plants

• Consistency in product yield and quality and free of contamination
• Safer production platform in a closed bioreactor system, avoiding gene flow in the

environment and contamination of the food chains
• Ease of compliance with cGMP (current good manufacturing practices) require-

ments, product registration process, etc.
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As in vitro plant culture has been established as an efficient platform for biolog-
ically active molecule production, process optimization and engineering consider-
ations for the factors affecting plant cells are needed for scaling it up to large
bioreactor volumes (Fulzele 2000; De Muynck et al. 2010; Lienard et al. 2007;
Franconi et al. 2010; Huang and McDonald 2012).

The bioreactors are suitably modified for cultivation of plant cell and hairy root
cultures with low shear stress, adequate mixing, support system for organ cultures,
and ease in scale-up (Honda et al. 2001). Plant cell suspensions grown in sterile
bioreactors having guaranteed batch consistency in biomass and product productiv-
ity, and are more likely to proceed successfully and quickly through the regulatory
approval system (Fischer et al. 2012). The enzyme taliglucerase alfa (for treatment of
type I Gaucher’s disease), produced as the drug Elelyso, became the first biological
drug approved by the US Food and Drug Administration for human use that is
manufactured in a genetically modified carrot cell suspension culture by the com-
pany Protalix (Fox 2012; Grabowski et al. 2014).

The goal of a plant cell/tissue-based bioprocess is to achieve high productivity
(g product/l/day), high product yield (g product/g substrate), and high product
concentration (g product/l) by selecting cell lines, optimum media, and bioreactor
operating conditions (Srivastava and Srivastava 2007). This chapter describes the
different factors influencing the bioreactor operating strategies and various types of
bioreactors for plant cell and hairy root cultivation which can be chosen to commer-
cialize the plant cell-based bioprocess.

7.2 Factors Influencing Plant Cells and Hairy Root
Cultivation in Bioreactors

Bioreactors for plant cell and hairy roots have operating conditions similar to
microbial bioreactors with modifications/features to aid in efficient growth of plant
cell and hairy roots, owing to its characteristics (Table 7.1) (Chattopadhyay et al.
2002a, b, c). Plant cell cultures require aerobic bioreactors with low shear and good
mixing. As plant cells are bigger than microbial cultures and form aggregates (cell
suspension cultures) or organs (hairy root cultures), this makes the sampling of
biomass from the bioreactor at constant intervals difficult. Measurement of the
medium conductivity is an indirect way of estimating the biomass growth in the
bioreactor (Hahlbrock et al. 1974; Madhusudhan et al. 1995, Maschke et al. 2015).
Plant cell culture medium conductivity decreases continuously with the growth of
plant cells inside the bioreactor as the growing cells take up the salts from the
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medium (Eibl and Eibl 2002). Bioreactor operating parameters to be considered for
designing of bioreactor for plant cell and hairy roots are as described briefly.

7.2.1 Aggregation and Adhesion

The plant cells and hairy roots are bigger in size compared to microbes (Table 7.1)
and tend to grow in clumps (aggregates) as new cells need support to grow and are
unable to separate after cell division. Aggregation is also due to the production of
extracellular polysaccharides by the plant cells which help in the cell-cell adhesion
(Sims and Bacic 1995). These polysaccharides also store the signaling molecules
and other metabolites which are required for cell-to-cell communication. The cell-
cell adhesion is also linked with secondary metabolite biosynthesis (Chattopadhyay
et al. 2002a, b, c). Aggregated growth results in insufficient oxygen transfer,
inefficient mixing, and sedimentation of cells in the bioreactor. Aggregates of
large size (2–10 mm) make it difficult for oxygen to reach till the innermost cell
and as a result cause death of cells in the core (Doran 1993). Aggregation maybe
caused due to adhesion of cells on the bioreactor walls. At higher agitation speed,
cells get deposited on the bioreactor walls when the biomass increases (Eibl and Eibl
2009). Bubbles coalescing on the walls are also responsible for cell adhesion to
walls. Aggregation cannot be admonished completely as it leads to loss of viability
(plant cells are unable to survive as single cell, like microbes) and product formation
is related to aggregation of cells (Chattopadhyay et al. 2002a, b, c).

Table 7.1 Characteristics of plant, animal, and microbial cells for bioreactors

Characteristics Microbial cells Plant cells Animal cells

Size 1–10 μm 40–200 μm 10–100 μm
Growth pattern Individual cells/small

aggregates
Small/large
aggregates

Support required for growth

Doubling time Hours (2–4 h) Days (2–
5 days)

Hours (12–20 h)

Shear sensitivity Low High Very high

Product
accumulation

Extracellular Intracellular Intracellular/extracellular

Posttranslational
modifications

No Yes Yes

Contamination Other microbes Bacterial and
fungal

Bacterial, fungal, and viral
(human pathogens)

Culture medium
components

Complex/synthetic,
defined

Synthetic,
defined

Complex (animal sources), not
defined

Inoculum size Low (1–2%) High (5–10%) High (5–10%)

Aeration rate High Low Very low

Damage by aeration Very less Less High

Cultivation time Days Weeks Weeks

Oxygen demand Very high Low Low
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The high-value biologically important compounds produced by plant cells are
generally defense related and in response to stress to the cells; which are produced,
transported, and communicated among other cells in the aggregate (Gaurav and
Roberts 2011). The product content and cell viability decreases when the culture is
made to exist as single cells or smaller aggregates. Hence control of cell aggregation
is an important parameter while designing large-scale plant cell/tissue culture sys-
tems (Chattopadhyay et al. 2005). To prevent the cells from sedimentation, the
aggregate size should not exceed 1–2 mm having specific gravity of range
1.002–1.02. When the specific gravity increases above 1.03 and aggregate size is
0.5–1 cm, the plant cells sediment in the bioreactor (Takayama 2014). Aggregation
can be reduced by addition of pectinase (enzyme) and polyvinylpyrrolidone with
some loss in biomass (as the cells are more viable as aggregates due to adherence and
cell-cell communication, separating them causes loss in cell viability), but overall
increase in volumetric productivity of the product (Chattopadhyay et al. 2002a, b, c).
Reduction in CaCl2.2H2O concentration was found to decrease wall adhesion and
retain the plant cells in bioreactor (Takayama 1991).

The aggregate sizes were correlated with paclitaxel production by Kolewe et al.
(2011) and observed that smaller aggregates contained higher content of paclitaxel
compared to bigger clumps. A population balance model was proposed, and the
model was simulated to find an optimal breakage rate with minimal biomass loss to
increase the paclitaxel concentration in cell suspension cultures of Taxus sp. in
bioreactors.

Kolewe et al. (2012) developed a population balance equation to predict the
aggregate formation in Taxus suspension cultures:

∂n v; tð Þ
∂t

þ ∂ g v; S0ð Þn v; tð Þ½ �
∂v

þ Γ vð Þn v; tð Þ ¼ 2 1� bð Þ
Z 1

v
p v; v0ð ÞΓ v0ð Þn v0; tð Þdv0

where n(v,t) is the continuous number density function, n(v,t)dv is the number of
aggregates in size range v to v + dv at time t, g(v, S0) is the growth rate for aggregates
of size v and effective intracellular concentration of total sugar S0, Γ(v) is the
breakage frequency for aggregates of size v, and p(v,v’) is the partitioning function
describing the distribution of daughter aggregates of size v resulting from the
breakage of mother aggregates of size v’, assuming each breakage event results in
two daughter aggregates b, representing the fraction of biomass which does not
partition into daughter particles upon a breakage event.

The above equation was combined with the following equations which accounted
for substrate depletion upon cell growth:

dS

dt
¼ �

Z 1

0

g v; S0ð Þ
Y

n v; tð Þdv
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dS0

dt
¼ �α S� S0ð Þ

where S is the total extracellular sugar concentration, S0 is the intracellular sugar
concentration, Y is a constant yield coefficient, and α is the rate constant for these
lumped processes and describes how quickly cells respond to environmental
changes. These equations were then used to predict the aggregate sizes to paclitaxel
production by the authors.

7.2.2 Mixing and Viscosity

Mixing is required for effective transfer of nutrients and oxygen from liquid and
gaseous phase to the cells without biochemical limitations. Mixing is achieved in a
bioreactor, with either mechanically moving parts (shafts and impellers in an STR)
or by sparging air at a high flow rate (airlift bioreactors). Agitation speed used for
plant cell and hairy root cultivations (100–150 rpm) is lesser than microbial culti-
vation (>200 rpm) and is a major limiting factor for plant cell cultures (Doran 1999).
Although plant cells have higher tensile strength in comparison to microbial cells,
their large size, rigid cellulosic wall, extensive vacuole, and organ structure make
them sensitive to shear stress, restricting the use of high agitation for efficient mixing
(Bhojwani and Razdan 1996). Plant cells are, therefore, often grown in modified
stirred-tank bioreactors at low agitation speeds due to their shear sensitivity to
hydrodynamic stress (Meijer et al. 1993; Bronnenmeier and Märkl 1982).

Plant cell cultures tend to follow non-Newtonian rheological pattern, the change
in viscosity, which affects the homogeneity in the culture (Raposo et al. 2010). Plant
cells occupy 40–60% of the bioreactor volume under no limiting nutrient condition
(Takayama 1991). At these high cell concentrations, rheological properties change
as viscosity increases, and the plant cell culture starts to behave like non-Newtonian
fluids (Jolicoeur et al. 1992). This behavior of culture affects effective heat and mass
transfer in the bioreactor resulting in nonuniform maintenance of parameters (tem-
perature, pH, and oxygen concentration in the bioreactor) and formation of dead
pockets (no mixing/no air zone) (Bhojwani and Razdan 1996). Polysaccharide
secretion (for aggregation) by the plant cells at the later stages of cultivation period
also increases the viscosity rapidly. The apparent viscosity was observed to rise
steeply after 10 g/l concentration of biomass (Tanaka 1982). By modifying the
impeller design, adequate mixing can be achieved without the loss of viability in
biomass.

Doran (1993) reviewed about the relationship between mixing time and circula-
tion time in bioreactors for plant cells. Mixing in an STR can be expressed as a
function of circulation time as follows (Tm is the mixing time, and Tc is the
circulation time, i.e., time required for liquid to complete one full circulation in the
bioreactor):
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Tm ¼ 4Tc

Time taken for mixing in airlift bioreactor is as follows:

Internal loop Tm ¼ 3:5Tc
Ad

Ar

� �0:5

External loop Tm ¼ 5:2Tc
Ad

Ar

� �0:5

where Ad is the downcomer cross-sectional area and Ar is the riser cross-sectional
area in the airlift bioreactor.

For pneumatically driven bioreactors (bubble column bioreactor, airlift bioreac-
tor, etc.), mixing is achieved by passing sterile air at a high flow rates (4–10 vvm)
(Doran 2013). This air flow is responsible for providing oxygen to the cells and at the
same time provides mixing due to the higher air flow rate.

7.2.3 Aeration Effects and Shear

Plant cells and hairy root cultivation require oxygen for growth, and if the culture is
mixotrophic (uses energy from light and carbon source for growth)/phototrophic
(uses only light as a source for energy), they also require CO2 for photosynthesis
(Bhojwani and Razdan 1996). Plant cell and hairy roots require oxygen (1–3 mmol
O2 g

�1 h�1) lesser than microorganisms (10–100 mmol O2 g
�1 h�1) because of their

slow metabolism (Bhojwani and Razdan 1996).
Plant cells are not damaged by aeration or air bubbles (unlike mammalian cells),

so the bioreactor system for the plant cells is selected based on effective oxygen
transfer characteristics and can be effectively grown in pneumatically driven bio-
reactors (Table 7.2) (Kieran et al. 2000; Takayama 2014). Effect of aeration and
agitation is directly seen on the mass transfer coefficient, kLa (oxygen transfer

Table 7.2 Bioreactor configurations for plant cell cultures

Mechanically
driven bioreactors

Hydraulically
driven bioreactors

Pneumatically
driven bioreactors

Immobilized
bioreactors

Perfusion
bioreactors

Stirred tank Radial flow
bioreactor

Bubble column
bioreactor

Fluidized bed
bioreactor

Filtration stirred
tank bioreactor

Rotating drum Jet-loop
bioreactor

Airlift bioreactor Trickle bed
bioreactor

Spin filter
bioreactor

Vibromixer
bioreactor

Membrane
bioreactor

Balloon-type bub-
ble bioreactor

Mist
bioreactor

Filtration bubble
column

Adapted from Eibl and Eibl (2002), Eibl and Eibl (2009), Su (1995)
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coefficient) values. It is a direct measure of effective oxygenation in the bioreactor to
the plant cell cultures (Baldi et al. 2008a). To achieve a balance in good biomass and
product yield, the kLa value has to be optimized for the cultures in the bioreactor.
Initial kLa value was a key factor in cell suspension cultures of Panax notoginseng
for production of ginseng saponin and polysaccharides in a 3 l STR with centrifugal
impeller. At a kLa value of 30.2 h�1, highest productivity of ginseng saponin,
polysaccharide, and biomass dry weight (DW) was obtained. Increase in kLa
increased the biomass yield, but caused a decrease in the ginseng saponin and
polysaccharide yield (Zhang and Zhong 2004).

The oxygen transfer rate in a bioreactor can be estimated as:

OTR ¼ kLa C∗ � CLð Þ

where OTR is oxygen transfer rate, kg m�3 s�1; kL is liquid-film mass transfer
coefficient, m s�1; a is interfacial area per unit volume of unaerated liquid, m�1; C*
is equilibrium concentration of oxygen in the liquid, kg m�3; and CL is actual
oxygen concentration in the liquid, kg m�3.

Higher air flow rates in bubble column/airlift bioreactor can lead to foaming in the
bioreactor, which affects oxygen transfer, reduces homogeneity of culture, and
reduces biomass (as cells carried by the foam bubbles settle on the walls). Foaming
was reduced successfully by modifying a bubble column bioreactor to a balloon type
(Paek et al. 2005). Addition of antifoam is effective, but frequent and higher use
reduces the oxygen transfer efficiency (Kawase and Moo-Young 1990).

Aeration and agitation in the mechanically driven bioreactor also cause hydro-
dynamic stress to the plant cell cultures. The cells experience the stress and shear due
to their bigger size, thick cell wall, and large vacuoles (Chattopadhyay et al. 2005).
Impact of shear on cells can be observed by cell damage, loss of productivity, and
change in cell morphology (Zhong et al. 1994; Kieran et al. 2000). Bioreactors
operating without moving parts are favorable for shear-sensitive cultures as only the
air bubbles cause the mixing. Shear for STR having flat blade turbine impeller is
generalized as:

γav ¼ kNi Metzner and Otto (1957)

where γav is the average shear, Ni is the number of impellers, and k is the propor-
tionality constant. Many other empirical equations have been devised and used for
calculating shear in a STR.

γ ¼ 4:2N di
dT

� �0:3
di
W

Bowen (1986)

γ ¼ ki 4n
3nþ1

� �n n�1N= Calderbank and Moo-young (1959)

γ ¼ 0:367
μ

P
V

V
VsNp

� �0:42
� �0:55 Hoffmann et al. (1995)

γ ¼ p
Vμs

� �0:5 Henzler and Kauling (1985)
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γmax ¼ 9:7N di
dT

� �0:3
di
W

Bowen (1986)

γmax ¼ 3:3N1:5di
ρ
μ

� �0:5 Robertson and Ulbrecht (1987)

γmax ¼ N 1þ 5:3nð Þ1=n N2�nd2i ρ

K

� �1= 1þnð Þ Robertson and Ulbrecht (1987)

The empirical correlations used in literature to relate shear with bioreactor design
parameters in a bubble column bioreactor are given below:

γ ¼ 1
KgρUg

� �1= nþ1ð Þ Sánchez Pérez et al. (2006)

γ ¼ ρε
K

� � 1
nþ1 whereε ¼ ρUg

Henzler and Kauling (1985)

where γav is the average shear; Ni is the number of impellers; k is the proportionality
constant; a, gas-liquid interfacial area per unit volume of liquid in bubble column (m
�1); di, diameter of the impeller (m); dT, diameter of tank (m); H, height of fluid in
tank (m); ki, impeller constant; K, consistency index (Pa sn);M, torque (N m); n, flow
index; N, agitation speed (s�1); Np, power number; P, power input (W); Re, impeller
Reynolds number; V, volume of fluid (m3); Vs, volume swept by the impeller (m3);
W, width of impeller blade (m); ε, energy input per unit mass (W kg�1); γ, average
shear rate (s�1); γmax, maximum shear rate (s�1); μ, viscosity (Pa s); μa, apparent
viscosity (Pa s); and ρ, density of fluid (kg m�3). Many other empirical equations
have been devised and used for calculating shear in a STR.

Varying the aeration rate also enhanced production in STR with setric impeller
with DO at 30%, and 176.3 mg/l of lignan were produced in a 5 l bioreactor for cell
culture of Linum album (Baldi et al. 2008a).

7.2.4 Impellers

To achieve high density in plant cell cultivations, STRs are the most commonly used
bioreactors due to their efficient nutrient mixing and aeration. Impellers are used in
bioreactor cultivations to sustain mass homogeneity and oxygen dispersion (Doran
2013). The bioreactors used for microorganisms use high agitation speed and flat
blade impellers for cultivation (Lawford and Rousseau 1991). Impellers used in
microbial cultures have higher power input with great impeller tip speed to prevent
formation of dead pockets in the bioreactor (Doran 2010). However, higher power
input to impeller causes hydrodynamic shear on the cells. Microbial cultures due to
their small size can withstand the high shear and grow, while the bigger sized, shear-
sensitive plant cells experience stress under high hydrodynamic shear (Baldi et al.
2008b). The high-powered impellers used in microbial cultures are not suitable for
the shear-sensitive plant cell cultures. Impellers for plant cell cultivations should
have the following characteristics: (i) to transfer power over a large volume in the
bioreactor, (ii) low impeller tip speed, and (iii) large surface area (Eibl and Eibl

7 Bioreactor Design and Analysis for Large-Scale Plant Cell and Hairy. . . 155



2002). Doran (1999) has deduced by analyzing various impellers for plant cell
cultures that upward-pumping axial-flow turbine design of impellers is efficient in
gas transfer and offers low shear to the plant cells.

Low-shear impellers have been developed by modifying an existing impeller
used for microbial cell cultures or by designing a completely new one. Various
impellers used for plant cell cultivations are shown in Fig. 7.1.

A low-shear helical impeller was designed and used for cell suspension cultures
of Catharanthus roseus in a 100 l STR resulting in a very high accumulation of
biomass (320 g/l of biomass in 16 days from an initial inoculum of 42.6 g/l cells)
(Fulzele 2000). A novel low-shear setric impeller was used for cell suspension
cultures of Podophyllum hexandrum and hairy root cultures of Azadirachta indica
in STR successfully with no cell death (Chattopadhyay et al. 2002a, b, c; Srivastava
and Srivastava 2012a). Cell suspension culture of Harpagophytum procumbens was
cultivated in 3 l STR for production of anti-inflammatory phenylethanoid glycosides
with a low-shear propeller impeller yielding highest biomass accumulation of 18.4 g/l
(Georgiev et al. 2012).

7.2.5 Support System

Hairy root and organ cultures require a support system to be attached to while
cultivated in a STR as the damage done by the impeller is high on hairy roots and
organs than cell suspension cultures. Stainless steel attachment has been provided to
retain the roots in a nutrient spray bioreactor and to reduce the liquid holdup by the
hairy roots (Srivastava and Srivastava 2012b). The hairy root cultures can also be

Fig. 7.1 Impellers used for plant cell cultivation: (a) marine propeller, (b) paddle, (c) anchor, (d)
bladed, (e) rushton turbine, (f) spin, (g) helical, (h) helical screw
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separated by polyurethane foam in a STR to prevent shear from the impeller
(Steingroewer et al. 2013). Autoclavable nylon mesh and baskets have also been
used to separate the roots from the impellers and also to support the roots (Angelini
et al. 2011; Gangopadhyay et al. 2011). A plastic nylon mesh was placed around the
baffles in a zigzag fashion to provide more surface for the hairy roots of Brugmansia
candida to grow in a 1.5 l STR for production of tropane alkaloids (Cardillo et al.
2010). Phytoremediation studies using Brassica napus hairy roots for removal of
2,4-dichlorophenol was studied in a 3 l STR by covering the hairy roots by an
autoclavable nylon mesh covering the rushton turbine impeller (Angelini et al.
2011). Plumbago indica hairy roots were used for enhanced production of
plumbagin in a 3 l STR, modified by addition of an autoclavable perforated basket
4 cm above the sparger (Gangopadhyay et al. 2011).

7.3 Mass Cultivation of Plant Cells and Hairy Roots
in Bioreactors

Bioreactors were developed for cultivation of living cells under controlled condi-
tions for production of biomass/biomolecules when supplied with required nutrients.
Each system (microorganisms, plant, and animal) has varying characteristics which
are to be considered while designing a bioreactor for production (Table 7.1). Char-
acteristics of plant cells like larger cell size and shape, shear sensitivity, aggregation,
slow growth rates, less oxygen requirement, increased mass transfer limitation, and
product formation are to be considered while designing the bioreactor (Panda et al.
1989; Bisaria and Panda 1991). The following factors have to be considered while
developing bioreactors for plant cells (Scragg 1995; Kieran et al. 1997):

• Homogeneous mixing for efficient nutrient transport, air-bubble dispersion, and
optimum shear maintenance

• Aeration optimized for efficient oxygen uptake
• Maintenance of aseptic conditions for longer time (days/weeks)
• Light supply for phototrophic and mixotrophic cultures
• Control of physical parameters like temperature, pH, nutrients, and cell aggregate

size
• Efficient mass transfers as the rheological characteristics tend to follow

non-Newtonian pattern at high density.

7.3.1 Classification of Bioreactors

Since the demand for biotechnological products increased due to its low cost and
high specificity, bioreactor technology has also emerged as a most sought after field
for large-scale production of these products (Doran 2013). Various configurations of
bioreactors have been developed to assist the biological system with efficient growth
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and better product yield (Sharma and Shahzad 2013). For the cultivation of orga-
nized plant structures like hairy roots, somatic embryos, and micropropagation of
plantlets, the bioreactors are modified (e.g., addition of mist spray, temporary
immersion, mesh/basket) (Paek et al. 2005; Srivastava and Srivastava 2012a).
Based on the energy input, plant cell bioreactors are operated as mechanically
driven, hydraulically driven, and pneumatically driven bioreactors (Eibl and Eibl
2009). Few other configurations include the bed bioreactors and perfusion bioreac-
tors (Table 7.2).

7.3.1.1 Mechanically Driven Bioreactors

Mechanically driven bioreactors (Fig. 7.2) use moving parts (impellers) inside the
bioreactors which help in effective mixing and oxygen transfer. These bioreactors
provide better control of temperature, pH, dissolved oxygen, and dissolved nutrients
compared to other types of bioreactors (Choi et al. 2000). STR is the most used
bioreactor (around 90%) in industries as its design, scale-up, and operation are well
established. Though plant cells are sensitive to hydrodynamic stress due to powerful
mixing, STR with modified impellers and low agitation speed have been success-
fully used for plant cell cultures to enhance biomass and product productivity
(Fulzele 2000; Sharma and Shahzad 2013).

Rotating drum bioreactors vary in their oxygen supply mechanism and use a
rotating vessel. Air is sent through the headspace of the bioreactor compared to
sending it through the liquid medium in STR (Mitchell et al. 2006). The bioreactor is
fitted with baffles in addition to impellers which can enhance the mixing process
(Chattopadhyay et al. 2002a, b, c; Mitchell et al. 2006). Compared to other types of
bioreactors, surface area to volume ratios are significantly higher in rotary drum
bioreactors (Paek et al. 2005). The moving mechanical parts consist of rollers inside
the bioreactor vessel, parallel to the rotating surface of the bioreactor vessel, which
cause less shear stress to the plant cells. This bioreactor, owing to its low-shear, high-
oxygen transfer characteristic, was suitable for high density and highly viscous cell
suspension cultures of C. roseus (Tanaka et al. 1983). Kondo et al. (1989) were able

Fig. 7.2 Mechanically driven bioreactors: (a) stirred tank bioreactor, (b) rotating drum bioreactor
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to achieve a maximum growth rate of 0.61 gl�1 d�1 after 30 days of cultivation of
hairy roots of carrot in a glass vessel-based rotating drum bioreactor. The rotating
drum bioreactors are not suitable for all types of plant cell/organ cultures and are
difficult to scale up to higher volumes due to their vertical design and rotation. It also
consumes much higher power than other bioreactors, due to which its use has
reduced over the course of years (Sambamurthy and Kar 2006).

7.3.1.2 Pneumatically Driven Bioreactors

Pneumatically driven bioreactors (Fig. 7.3) use pressurized gas through a distributor
(like nozzles, perforated plates, diffuser rings, injectors, etc.) to aid in mixing and
aeration (Paek et al. 2005). Variation is observed for fluid mixing and dynamics in
these bioreactors due to density differences between viscous liquid medium, bubble
size and gas holdup (Eibl and Eibl 2009).

The design and operation are optimized for efficient gas holdup, which is the
main criterion for designing and using pneumatically driven bioreactors. Gas holdup
helps in understanding both mixing and mass transfer in these bioreactors
(Takayama and Akita 1998). Variations in biomass, viscosity, and surface tension
lead to foaming, floatation, and coalescence in the pneumatically driven bioreactors
(Eibl and Eibl 2002).

Bubble column bioreactor has a simple design with a bioreactor vessel, gas
sparger, and no moving parts (Kim et al. 2001). Gas sparging provides the necessary
mixing and oxygen transfer to the plant cell/organs (Georgiev et al. 2012). The
capital cost is lesser and can maintain better aseptic conditions than STR (Doran

Fig. 7.3 Pneumatically driven bioreactors: (a) bubble column bioreactor, (b) airlift bioreactor
(inner loop), (c) airlift bioreactor (outer loop), (d) balloon-type bubble bioreactor
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2013). Airlift bioreactor is a modification of bubble column bioreactor with an
addition of draught tube which aids in better mixing (Doran 2013). The flow gets
divided in riser and downcomer in the draught tube, the density difference of which
causes better mixing (Chattopadhyay et al. 2002a, b, c). Internal loop airlift bio-
reactors have the draught tube inside the system where the culture medium rises and
falls inside. In an external loop airlift bioreactor, the downcomer is physically
separated as an attachment to the main bioreactor vessel (Doran 2013). Mixing is
achieved better in external loop bioreactors as the raiser and downcomer are sepa-
rated physically, but the power consumed is more than the internal loop bioreactor.
Production of betalain, a natural food dye and antioxidant from hairy roots of Beta
vulgaris, was found to be 2.6 times higher in a bubble column bioreactor than
produced in a STR. Additionally the doubling time of the hairy root cultures was
also lower in bubble column bioreactor compared to STR (Georgiev et al. 2012).
Balloon-type bubble bioreactors are a modification of bubble column bioreactor to
reduce foaming and cell wall growth observed in bubble column bioreactors. Unlike
bubble column bioreactor (where the diameter of vessel and top of the bioreactor are
same), the sparger opens up to a balloon-type vessel (which reduces the foaming and
cell wall growth) where the plant cell cultures are grown (Paek et al. 2005). These
have been extensively used for large-scale plant micropropagation in a bioreactor
(Paek et al. 2005; Cui et al. 2014).

7.3.1.3 Immobilized Bioreactors

Immobilized bed bioreactors (Fig. 7.4) are designed for the use of immobilized plant
cells or organ cultures (like hairy roots). They are designed for passage of continuous
or intermittent fluid flow which is responsible for transfer of nutrients and oxygen to
the cells (Eibl and Eibl 2002). The bed is filled with immobilized particles and the
fluid with nutrients and gas flows from the top of the bioreactor. These bioreactors
face channeling problem. Channeling is a phenomenon when the fluid does not
spend the designed residence time in the bioreactor but escapes through the channel
formed between the particles (Shuler et al. 1986). This results in insufficient nutrient
transfer and failure of the process. Channeling should be reduced to the minimum by
efficient packing or sending the fluid at a very less flow rate to ensure it coats all the
particles (Doran 2013).

Trickle bed bioreactors are the most used packed bed bioreactor for plant cells.
Headspace of the column is integrated with various nozzles which spray nutrient
solution on top of the packed cells, and air is introduced from base for aeration.
When the nutrient is sprayed as a mist from the injector or ultrasonic nozzles in the
headspace, trickle bed bioreactor gets modified to mist bioreactor. Mist bioreactors
were developed to overcome the mass transfer limitations in growing organ cultures
in submerged bioreactors (cells suspended in liquid medium and air passed through)
(Eibl and Eibl 2008). Submergence increases the hyperhydricity of these cultures
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(hydricity is the amount of moisture stored inside the cell). Rather than supplying
oxygen (gas phase) via medium (liquid medium), mist bioreactors expose these
organ cultures to continuous gas phase, and the nutrient medium is sprayed as a mist
inside the bioreactor. Higher biomass (9.8 g/l) of Azadirachta indica hairy roots was
obtained in a nutrient mist bioreactor for the production of biopesticide azadirachtin
(volumetric productivity of 1.09 mg/l per day) compared to STR (no growth) and
nutrient spray bioreactor (4.8 g/l biomass) (Srivastava and Srivastava 2012b).Sim-
ilarly, a nutrient mist bioreactor was found to be better for production of mouse
interleukin-12 (mIL-12) from transgenic tobacco hairy root line (5.3 μg/g fresh
weight (FW) mIL-12), which was 49.5% more than the production in airlift biore-
actor (Liu et al. 2009).

7.3.1.4 Perfusion Bioreactors

Perfusion bioreactors (Fig. 7.5) are used when there is a need to separate the cells
from the medium continuously. It is used for continuous mode of production where
the product is extracellular and leaches out in the medium. A porous membrane (pore
size <50 μm) is used to segregate the cells from liquid medium. It can also be used
for cultivation of immobilized cells which have to be retained inside the bioreactor
(pore size is chosen based on the aggregate/organ size). Perfusion bioreactors are
used when a certain nutrient or product (which is harmful for the cells) has to be
removed continuously from the bioreactor. Membranes are incorporated in the

Fig. 7.4 Immobilized bioreactors: (a) trickle bed bioreactor, (b) mist bioreactor
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bioreactor where they can be inside the bioreactor, outside, or with medium recycle.
The main advantage of using membrane is to prevent the deactivation of the
immobilized particle by causing any shear stress and retaining the cells/particles.

Continuous cell/medium separation is a difficulty in perfusion culture. Continu-
ous centrifugation or in situ filtration by membrane or steel mesh can lead to filter
clogging when cell density is high (Kawahara et al. 1994). Gravitational sedimen-
tation is considered the most effective way to separate cells from medium in the
perfusion culture of plant cells. Su and Arias (2003) obtained complete cell retention
and packed cell volume (PCV) of 60% by using a perfusion bioreactor based on cell
sedimentation. Su et al. (1996) also reached maximum cell retention efficiency of
100 percent using an airlift bioreactor, which incorporated a cell sedimentation zone
delimited by a rectangular baffle in the lower downcomer.

Spin filter bioreactors have a filter separating the medium and cells, which is
coupled to a magnet and stirring plate. The filter also acts as an agitator and imparts
low shear. The cells can be retained in such bioreactors for longer duration and is
best suited for continuous culture of plant cells. However, such bioreactors with
built-in cell-settling devices tend to have numerous cells accumulating at the bottom
of the reaction tank, causing difficulties with liquid mixing and mass transfer. De
Dobbeleer et al. (2006) developed a perfusion STR with four sedimentation columns
fixed vertically on the lid of the reaction tank, but failed to find a suitable position for
the gas sparger they used. Combining a high perfusion rate with high cell concen-
tration for perfusion bioreactors with built-in cell-settling devices is thus highly
challenging. Wang et al. (2010) grew suspension culture of Glycyrrhiza inflata in an
STR with continuous filtration by gravimetric settling. This was done to remove the
spent medium containing certain metabolites which are toxic for cell growth.

Fig. 7.5 Perfusion bioreactors: (a) spin filter bioreactor, (b) filtration stirred tank bioreactor
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7.3.2 Cultivation Strategies

Plant cell systems can be grown based on product accumulation and cell growth.
There are three relations for cell growth and product accumulation as follows:

• Growth associated
• Non-growth associated
• Mixed growth associated

When the biomass accumulation is directly proportional to the production of bioac-
tive molecule, the product formation is growth associated. The product accumulates
during the exponential growth phase of cells and stops when the cells enter the
stationary growth phase (e.g., primary metabolites from microorganisms). In non-
growth-associated product formation, the bioactive molecule gets accumulated in the
stationary phase of the cell growth. The product of interest is generally a defense
molecule produced by the cells, which are produced after cells have reached their
maximum growth (e.g., secondary metabolites from microorganisms and plants).
When the product is accumulated in the cells during both exponential and stationary
phase, it is mixed growth associated (e.g., biomolecules from plant cell/organ
cultures in flasks or bioreactor level) (Luedeking and Piret 1959). Based on the
relation of cells and product, one of the following cultivation modes can be used.

7.3.2.1 Batch Cultivation

It is a mode of bioreactor operation in which there is no new addition to the system
after initial inoculation of cells in the culture medium. It is a closed system where
once the fixed volume of medium is inoculated with live cells; it is operated until a
certain period of time determined by the shake flask kinetics (Doran 2013). The
environment is dynamic with constant change of nutrient consumption and cell
growth. The cells follow a sigmoidal pattern of growth. Its best suited for system
where there is no substrate or product inhibition. It is suitable for any type of growth-
product relation (Eibl and Eibl 2009). Scale-up of bioreactors is easy when the plant
cell cultures are cultivated as batch. Batch culture data can be used for modeling the
system to further configurations.

7.3.2.2 Fed-Batch Cultivation

It is variation of batch system, where the one or more nutrients are added slowly over
a period of time, as high concentration will inhibit either growth or product forma-
tion. It is also suited for growth-associated product, where the cells have to be
maintained at exponential phase. Production of mono-glucosylated stilbene from
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cell suspension cultures of Vitis vinifera increased when the medium was
replenished (fed) in the 1 l bioreactor after 14 days of growth and harvested after
the next 14 days. Stilbene production increased from 0.63 μg/g FW in batch
cultivation to 6 μg/g FW in fed-batch cultivation (Ferri et al. 2011). The production
of recombinant human alpha-1-antitrypsin (rAAT) in semicontinuous batch mode
from transgenic Nicotiana tabacum cells in a 2 l STR was 25-fold (603 μg/l) over
batch culture (Huang et al. 2001).

7.3.2.3 Continuous Cultivation

It’s an open system, where there is continuous exchange of medium. Fresh medium
is added continuously, and the same volume is removed from it at the same time. Its
main drawback is the maintenance of aseptic conditions in bioreactor for long term
(Doran 2013). Contamination may cease every process initiated. Repeated batch
(draw and fill) mode can be used for retaining the cells for a longer duration and
increasing productivity.

Cultivation mode can be modified to enhance the production. In systems where
product is non-growth associated, a two-stage cultivation strategy is used. The cells
are grown in one bioreactor and transferred to another bioreactor for product
accumulation (Chattopadhyay et al. 2002a, b, c). The medium composition will
differ in both, as in the first bioreactor, it will mostly aid rapid growth and the
medium in second bioreactor will favor product formation and not much cell growth.
Multistage batch culture systems are used for production at large scale.

7.3.3 Bioreactors for Hairy Root Cultivation

Hairy root cultures are the most used organ cultures for development and production
of plant-based products. Hairy roots are generated from dicotyledonous plant parts
on interaction with gram-negative soil bacterium Agrobacterium rhizogenes. They
are phenotypically and genotypically very stable. Hairy roots have been found to
have stable production of biologically active compounds and have growth rates
greater than normal roots. Hairy roots are more sensitive to physical damage
(wounding) and shear stress than callus, due to which low-shear impellers and
external support (stainless steel plate or styrofoam mesh) are used during cultivation
in bioreactors. Excessive branching of hairy roots causes its self-immobilization in
the bioreactor and reduces its own biochemical mass transfer of nutrients and
oxygen.

Puerarin (an isoflavonoid) production from hairy roots of Pueraria phaseoloides
was enhanced by 200-fold in a 2.5 l disposable airlift bioreactor with yield of
5570 μg/g DW compared to the yield from shake flask study (Kintzios et al.
2004). The yield of a recombinant protein, human tissue plasminogen activator
(t-PA) produced from genetically modified oriental melon (Cucumis melo) in 18 l
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bioreactors, was 33 times higher than the production of t-PA in transgenic tobacco
plants, suggesting that the mass cultivation of hairy roots in bioreactor is better than
production from transgenic plants (Kim et al. 2012). Various bioreactors used for
hairy root cultivation are presented in Table 7.3.

7.3.4 Bioreactors for Plant Cell Suspension Cultures

Large-scale bioreactors for production of plant cell-based products have been
employed for plant cell suspension cultures (Taxol, shikonin, taliglucerase alfa,
etc.). The cells can be homogeneous in suspension for cultivation in a bioreactor
with a modified impeller for the hydrodynamic stress. Various configurations of

Table 7.3 Bioreactors used for plant hairy root cultivations

Species Product
Bioreactor
type, volume Yield References

Astragalus
membranaceus

Astragalosides Airlift, 2 l 711 mg/l Ionkava
et al. (2010)

Artemisia annua Artemisinin Bubble column
bioreactor

0.14 μg/g
FW

Souret et al.
(2003)

Nutrient mist
bioreactor

0.29 μg/g
FW

Panax ginseng Flavonoids Airlift balloon-
type bioreactor,
5 l

4.8 mg/g
FW

Ali et al.
(2007)

Silybum
marianum

Silymarin Stirred tank
bioreactor, 2.7 l

0.168 mg/
g DW

Rahimi
et al. (2012)

Stizolobium
hassjoo

L-DOPA
(3,4-dihydroxyphenylalanine)

Nutrient mist
bioreactor, 3 l

0.644 g/l Huang et al.
(2004)

Echinacea
purpurea

Cichoric acid Balloon-type
bubble bioreac-
tor, 5 l

26.64 mg/
g DW

Jeong et al.
(2009)

Salvia sclarea Diterpenoids Nutrient sprin-
kle bioreactor,
10 l

67.5 mg/g
DW

Kuźma
et al. (2009)

Brugmansia
candida

Anisodamine Stirred tank
bioreactor, 1.5 l

10 mg/g
DW

Cardillo
et al. (2010)

Hypericum
perforatum

Hypericin Balloon-type
bubble bioreac-
tor, 3 l

1.4 mg/g
DW

Cui et al.
(2010)

Harpagophytum
procumbens

Iridoid glycosides Bubble column
bioreactor, 3 l

Ludwig-
Müller et al.
(2008)

Eleutherococcus
koreanum

Eleutherosides Bulb type bub-
ble bioreactor,
3 l

246.41 μg/
g DW

Lee and
Paek (2012)
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bioreactors, stirred tank bioreactor (STR), airlift, and bubble column with minor
modifications have been successfully used for plant cell suspension cultures. Cell
aggregation, foaming, and cell deposition are the common troubles faced with plant
cell suspension cultures, which can be overcome with suitable low-shear impeller
(less shear but effective in breaking the aggregates) and efficient aeration. Table 7.4
shows different bioreactors used for plant cell suspension cultures.

7.3.5 Bioreactors for Micropropagation and Embryogenic
Suspension Cultures

Micropropagation is the cloning of a parent plant from any of its tissue to generate
large number of progeny in nutrient medium under controlled physical and chemical
conditions (Steingroewer et al. 2013). Micropropagation in a bioreactor can generate

Table 7.4 Bioreactors used for plant cell suspension cultures

Species Product
Bioreactor type,
volume

Mode of
cultivation Yield References

Azadirachta
indica

Azadirachtin Stirred tank bioreac-
tor, 3 l

Batch 51 mg/l Srivastava
and
Srivastava
(2010)

Anchusa
officinalis

Acid
phosphatase

Perfusion stirred
tank bioreactor, 3.3 l

Continuous 300 units/
l/day

Su and
Arias
(2003)

Linum album Lignan Stirred tank bioreac-
tor, 5 l

Batch 176.3 mg/
l

Baldi et al.
(2008a)

Taxus
chinensis
(cocultivated
with Fusar-
ium mairei)

Paclitaxel Stirred tank
co-bioreactor, 20 l
(divided into two
parts of 10 l by
membrane)

Batch 25.63 mg/
l

Li et al.
(2009)

Curcuma
zedoaria
Roscoe

Essential oil
and curcumin

Stirred tank bioreac-
tor, 5 l

Batch 9.69%
dry cell
weight

Loc et al.
(2008)

Commiphora
wightii

Guggulsterone Stirred tank bioreac-
tor, 2 l

Batch 36 μg/l Mathur
and
Ramawat
(2007)

Nicotiana
tabacum

Scopolamine Stirred tank bioreac-
tor, 5 l

Batch 35.5 mg/l Moyano
et al.
(2007)

Pueraria
lobata

Puerarin Stirred tank bioreac-
tor, 5 l

Batch 257 mg/l Chen and
Li (2007)
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up to 10000 progenies with same characteristics in a single batch, which is consistent
and efficient than conventional micropropagation, which has led to a less number of
progenies in a single batch, and the clones may vary in each batch (Ducos et al.
2009). Some of the biologically active chemicals were found to be produced better in
shoot/embryogenic cultivation than in cell suspension/hairy root cultivation.
Shikimic acid was produced in a 2 l airlift bioreactor from sandalwood (Santalum
album) from embryogenic suspension, yielding 0.08% (w/w) shikimic acid in
2–3 weeks (Misra and Dey 2013). Siberian ginseng somatic embryos were produced
in a 500 l balloon-type bubble bioreactor (BTBB), where by inoculating 3.5 kg of
Siberian ginseng IEDC – induced embryogenic determined cells – 60 kg of mature
embryos were harvested after 30 days of culture (Paek et al. 2005). For naturally
slow-growing Stevia rebaudiana leaf explants, direct shoot bud generation was done
in a 1.75 l bubble column bioreactor, and high biomass of about 590 micro cuttings
was achieved after 3-week cultivation. The regenerated shoots were then transferred
to rooting medium and maintained under controlled conditions (Sreedhar et al.
2008). Sweet pepper (Capsicum annuum), a recalcitrant species, was successfully
micropropagated in 1 l RITA® airlift bioreactors (Vitropic, France) in 60 days
(Grozeva et al. 2009). Various bioreactors used for micropropagation and embryo
cultures are in Tables 7.5 and 7.6.

Table 7.5 Bioreactors for micropropagation

Species Bioreactor type, volume
Cultivation
period References

Vaccinium angustifolium Temporary immersion bioreactor
(RITA®)

4 weeks Debnath
(2011)

Vitis vinifera Airlift, 2 l 6 weeks Tapia et al.
(2009)

Lessertia (Sutherlandia)
frutescens

Balloon-type bubble bioreactor,
5 l

6 weeks Shaik et al.
(2010)

Daucus carota Airlift bioreactor 30 days Ziv (2010)

Table 7.6 Bioreactors used in embryogenic cultures

Species Product Bioreactor type, volume Yield References

Eleutherococcus
sessiliflorus

Eleutherosides Balloon-type bubble
bioreactor, 3 l

0.1484 mg/
g DW

Shohael
et al. (2005)

Artemisia judaica Flavonoids Bubble column, 0.6 l 60 μg/l Liu et al.
(2004)Temporary immersion

bioreactor, 0.6 l
100 μg/l

Eleutherococcus
senticosus

Eleutherosides Balloon-type bubble
bioreactor, 3 l

120 μg/g
DW

Shohael
et al. (2006)

Eleutherococcus
senticosus

E. coli Entero-
toxin B subunit

Airlift bioreactor, 130 l 0.36% TSP Kang et al.
(2006)
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7.4 Application of First Principle-Based Mathematical
Modeling for Designing Nutrient Feeding Strategies
in Bioreactors

A mathematical model is a real-time representation of the complex bioprocess
occurring in the cellular state. The mathematical description of the bioprocess is
developed to describe the complex intracellular reactions occurring during the
metabolism of the cell which is converting the substrate to products in the fermen-
tation reactions (iitd.vlab.co.in 2013) (Fig. 7.6).

First principle-based mathematical models can be used to simulate different
process operating strategies to ensure the major nutrients are at non-limiting and
non-inhibitory concentrations in the bioreactor throughout the fermentation process.
These optimized cultivation strategies can be implemented in the bioreactor (exper-
imentally) to achieve maximum productivity, thereby reducing the number of
experiments required to enhance the efficiency of a particular fermentation process
in minimum time without any trial and error fermentation process (Srivastava and
Srivastava 2006). Bioprocess kinetic modeling could therefore serve as a biologi-
cally logical, yet simple, engineering approach in designing the fresh nutrient
feeding strategies in order to obtain high productivity (Kaur et al. 2012).

Fig. 7.6 Scheme of mathematical model development and validation (Adapted fromMaschke et al.
(2015))
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7.4.1 Types of Models

During the course of growth, the heterogeneous mixture of young and old cells is
continuously changing and adapting itself in the medium environment which is also
continuously changing physically and chemically. As a result, accurate mathemat-
ical modeling of growth kinetics is impossible to achieve. Even with such a realistic
model, this approach is usually useless because the model may contain many
parameters which are impossible to determine. Therefore, assumptions are made to
arrive at simple models which are useful for fermenter design and performance
predictions. Various models can be developed based on the assumptions concerning
cell components and population as shown in Table 7.7.

The simplest model is the unstructured, distributed model which is based on the
following two assumptions:

1. Cells can be represented by a single component, such as biomass during balanced
growth (as the biomass doubles, so does other cell components).

2. The population of cellular mass is distributed uniformly throughout the culture.
The cell suspension is regarded as a homogeneous solution, and the medium is
formulated so that only one component may be limiting the reaction rate. All
other components are present at sufficiently high concentrations, so that minor
changes do not significantly affect the reaction rate. Bioreactors are also con-
trolled so that environmental parameters such as pH, temperature, and dissolved
oxygen concentration are maintained at a constant level (Lee 2001).

For correlating growth rate of cells with substrate concentration in the bioreactor,
Monod’s model is widely used:

μ ¼ μmS

KS þ S

where μ is the specific growth rate, μm is the maximum specific growth rate, S is the
limiting substrate, and KS is the Monod’s saturation constant based on substrate
affinity.

Table 7.7 Types of cell kinetic models

Types of cell kinetic models

Unstructured, distributed Cells represented by a single component

Homogeneous system

Unstructured, segregated Cells represented by a single component

Heterogeneous system

Structured, distributed Multiple cell components interact with each other

Homogeneous system

Structured, segregated Cells composed of multiple components

Heterogeneous mixture

Adapted from (Lee 2001)

7 Bioreactor Design and Analysis for Large-Scale Plant Cell and Hairy. . . 169



The limiting substrate may also inhibit the cell growth at very high concentration.
The effect of inhibition on growth rate can be taken into account by fitting of
experimental data into various models demonstrating inhibition kinetics. Few of
the growth kinetic models which take into account substrate inhibition are as
follows:

μ ¼ μm
KI

KIþS

h i
Prakash and Srivastava (2006)

μ ¼ μm
S

KSþS

h i
e
�S
KI

Gumel et al. (2014)

μ ¼ μm

1þKS
Sð Þ 1þ S

KI

� � Gumel et al. (2014)

μi
μm

h i
¼ 1� si

smi

� �ni
� 	

Srivastava and Srivastava (2006)

where KI is the inhibition constant.
Similarly, the product formation can be classified into three types, depending on

the relation to the primary metabolism: direct, indirect, or not related (Maschke et al.
2015). In the Luedeking-Piret approach, the product formation rate can be divided
into growth and a non-growth-associated component (Luedeking and Piret 1959):

dP

dt
¼/ dX

dt
þ βX

where α and β represent the growth-associated and non-growth-associated product
formation constants, respectively (Prakash and Srivastava 2006). Depending on the
value of these parameters, product formation kinetics can be demonstrated as growth
associated, non-growth associated, or mixed growth associated.

7.4.2 Modeling for Plant Cell and Hairy Root Cultivation

The use of modeling and simulation to study plant growth and developmental
processes has increased tremendously over the past few years. By formulating a
system of interacting mathematical equations, it becomes feasible for biologists to
gain a mechanistic understanding of the complex behavior of biological systems
(De Vos et al. 2012).

Mathematical models used for describing hairy root cultivations are highly
complex, and yet a lot of potential exists for the identification of more reliable
mathematical models (Patra and Srivastava 2015). As it is impossible to determine
directly hairy root weight during a run, different techniques have been developed to
estimate biomass growth. One of the most used is based on medium conductivity
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measurement, which is dependent of the ionic concentrations. As a constant biomass
yield from nutrients has been observed, online conductivity measurement has given
accurate biomass estimation if there is no nutrient limitation (Mairet et al. 2010)

Few models have been proposed to describe hairy root growth. Different
approaches can be discerned (Mairet et al. 2010):

1. Branching model: the increase of biomass is described by several rules
concerning the branching kinetics (elongation of branch and formation of new
branches). These rules are combined with a population balance approach: the
model accounts for the difference between cells in different states.

2. Metabolic model: this approach is based on the metabolic network of the roots.
The model uses intracellular nutrients as well as energy shuttles to describe
metabolic regulation.

3. Oxygen limited growth kinetic model: this approach is based on fact that oxygen
limitation plays a role in growth of hairy roots in shake flasks, considering its
branching nature and oxygen limitation observed when scaled up to bioreactor
(Palavalli et al. 2012).

These mathematical model-based strategies have been successfully used to enhance
the product yield in plant cell and hairy root cultivation (Table 7.8).

7.5 Emerging New Designs of Bioreactors

Bioreactors for plant cell cultures are designed for increasing biomass and produc-
tivity. But varying characteristics of plant cells have generated a need to design even
better bioreactors. These new bioreactors (Fig. 7.7) are designed to overcome the
biochemical limitations, enhance mixing, and reduce the cost and ease of operation.

Table 7.8 Use of mathematical model to enhance product productivity

Species Product Culture type
Yield
enhancement References

Azadirachta
indica

Azadirachtin Cell
suspension

1.8 fold Prakash and Srivastava
(2006)

Artemisia annua Artemisinin Hairy roots 3.7 fold Patra and Srivastava
(2015)

Azadirachta
indica

Azadirachtin Cell
suspension

3.8 fold Prakash and Srivastava
(2011)

Catharanthus
roseus

Ajmalicine Hairy roots 2.5 fold Thakore et al. (2015)

Ajuga reptans 20-
hydroxyecdysone

Hairy roots Threefold Uozumi et al. (1995)
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7.5.1 Hydraulically Driven Bioreactors

Hydraulically driven bioreactors use the energy generated by pumping the fluids for
mixing and aeration. The pumps ensure circulation of fluid through the loops. Their
design is simple and work without moving mechanical parts inside the bioreactor.
They cause low shear stress to the cells, and operation is easy. Wave-mixed
bioreactor is a hydraulically driven bioreactor designed for shear-sensitive plant
cell cultures, which can be grown in a sterile disposable bag made of non-gas
permeable plastic. The mixing is provided by the rocking of the bag, to which all

Fig. 7.7 Emerging new design of bioreactors for plant cell and organ cultures: (a) Ebb-and-flow
regime bioreactor, (b) wave and undertow bioreactor, (c) temporary immersion bioreactor, (d) slug
bubble bioreactor
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the controllers are attached. They have the advantages of low cost and low shear
stress. The mixing, mass, and heat transfer in the wave-mixed bioreactor are
characterized by rocking rate, rocking angle, bag type and its geometry, and culture
working volume (Huang and McDonald 2012). Oxygen is supplied from the air or
gas mixture continuously through headspace aeration. While the wave-mixed bio-
reactor is rocking, the liquid surface of the medium in the bag is continuously
renewed, and bubble-free surface aeration takes place resulting in oxygenation and
bulk mixing with less shear stress to cultivated cells (Terrier et al. 2007).

7.5.2 Immersion Bioreactors

The temporary immersion bioreactor (TIB), consisting of two vessels (one for
holding the plant tissue cultures and another for the liquid medium), was developed
to allow cycling of the culture medium by using air pressure or a pump to push the
medium from one vessel to the other to immerse the plant tissues and using gravity to
withdraw the medium; thus the plant tissues or immobilized plant cells are exposed
to the medium intermittently rather than continuously. A separate air or gas mixture
is introduced through a sparger to aerate the plant cell or tissue cultures. TIB
provides attractive advantages including adequate oxygen transfer and low shear
stress to plant tissues (such as hairy root culture) due to the lack of mechanical
agitation, although some limitations need to be addressed including vessel size at
commercial scale, disposability, and insufficient mixing leading to the accumulation
of inhibitory metabolites that can affect cell growth (Ducos et al. 2009). In addition,
a modified TIB, consisting of a rigid box placed inside a transparent plastic bag,
called a box-in-bag TIB, provides culture headspace between the immersion periods
and allows horizontal distribution of biomass for better oxygenation and illumina-
tion than that in TIB or other types of immersion bioreactor (Ducos et al. 2009).

7.5.3 Microbioreactors

The microbioreactor is designed as a high-throughput platform for cell line selection
and evaluation, bioprocess characterization (design space determination), media
design and optimization (Betts and Baganz 2006; Diao et al. 2008), and as a
scaled-down model to represent the production bioreactor for bioprocess scaling-
up purposes (Micheletti et al. 2006). Microbioreactor platforms including microtiter
plates (6, 12, 24, 96, with up to 384 wells with a few microliter to milliliter volumes),
spin tubes (5–50 ml), shake flasks (25–1000 ml), and parallel miniature stirred and
bubble column bioreactor systems (Betts and Baganz 2006) have been implemented
for cultivation of many different host cell lines. Feeding, sampling, and harvesting
can be automated by using a liquid handling system with an automation control
system that can be programmed. Recently the optical sensing systems based on
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noninvasive process analytical technology have been used for online measurements
of pH, dissolved oxygen, and optical density in a microbioreactor (Zhang et al.
2007). Though microbioreactors are suitable for growing plant cells, there is no
literature available on plant cells. Considering its effectiveness on animal cell culture
studies, minibioreactor can prove to be successful with plant cells.

7.5.4 Ebb-and-Flow Regime Bioreactor

The ebb-and-flow bioreactor (EFBR) derives its name from the process behavior of
its liquid medium which is characterized by its repetitive ebbing and flowing or
periodic filling and draining. This bioreactor configuration is a mix between the two
bioreactor configurations of the predominantly liquid-phase bioreactor (STR) and
the predominantly gas-phase bioreactor (Mist bioreactor). The ebb-and-flow biore-
actor has four characteristic operational phases which recur sequentially and inter-
mittently as the liquid medium moves back and forth between the bioreactor vessel
and its reservoir. These include the liquid dwell time (LDT), the drain time (DT), the
gas dwell time (GDT), and the fill time (FT). The LDT is the phase where the whole
reaction volume of the EFBR is completely submerged in liquid and where the bulk
of the liquid medium is neither flowing upward nor downward. The GDT is that
operational phase where the EFBR reaction volume is predominantly in the gas
phase and where mass flow of the bulk liquid medium is not occurring. The
operational phases where the bulk flow of the liquid medium takes place are the
FT, when the bulk flow direction is upward, and the DT, when the bulk flow
direction is downward (Cuello and Yue 2008).

Cuello et al. (2003) were able to successfully cultivate hairy roots of Hyoscyamus
niger in a 2.5 l ebb-and-flow bioreactor which gave same productivity as in 250 ml
Erlenmeyer flasks. It was cultivated in 2.5 l STR and 2.5 l EFBR for scaling up from
Erlenmeyer flasks, and EFBR proved to be more efficient. EFBR has been observed
to be successful for hairy root cultures, which tend to form clumps and are self-
immobilizing.

7.5.5 Slug Bubble Bioreactor

The slug bubble (SB) bioreactor produces artificial slug bubbles and was developed
to increase mixing of non-Newtonian fluid in the plant cell bioreactor. Bubble
column bioreactors tend to form slug bubbles (based on column diameter and gas
velocity) when gas is sparged at high velocity and the bioreactor is filled with fully
grown plant cells and highly viscous media. Slug bubble generates significant
changes in the hydrodynamic behavior of the system. There exists an onset of
upward liquid circulation in the column center and downward liquid circulation
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near the column wall. As a result more gas entry takes place in the center, leading to
buildup of transverse holdup profile that enhances liquid circulation (Kantarci et al.
2005).

It consists of a vertical flexible plastic cylinder filled with medium up to 80% of
its height. Agitation and aeration are achieved through the intermittent generation of
large cylindrical single bubbles at the bottom of the system that rise to the top of the
cylinder. The bubble size can be controlled by controlling the inlet pressure to form
the bubbles. These bubbles are the slug bubbles, and the two-phase flow of
gas-liquid formed is known as slug flow (Davies and Taylor 1950; Sousa et al.
2005). Slug bubbles can be described as long bullet-shaped bubbles, which nearly
occupy the entire cross section of a pipe. Between the bubble and the pipe walls
flows a thin film of liquid; the bubble moves upward at nearly constant speed, while
the liquid flows downward as a falling film. The nose of the slug is a very stable
region; on the contrary, the rear of the bubble is a region characterized by strong
mixing, where all transfer processes are enhanced. Mixing and oxygen transfer are
therefore achieved at the same time (Terrier et al. 2007). Terrier et al. (2007) were
successful in using 24 l and 64 l of slug bubble bioreactor for production of
isoflavones and monoclonal antibodies from suspension cultures of Glycine max
and Nicotiana tabacum BY-2 (bright yellow-2), respectively. Nearly, twofold
increase in the isoflavone content (in G. max cell line) was observed in slug bubble
bioreactor compared to STR with pitched blade turbine impeller.

7.6 Conclusion

Plant cell and hairy root cultivation has proven to be efficient biofactories for
production of medicinally/commercially important bioactive metabolites and recom-
binant protein. Large-scale production of these low-volume high-value compounds
has led to modification of the existing bioreactors to suit the requirement of these
cultures. Bioreactors have been succesfully developed for commercialization of few
plant-based products (Taxol, shikonin, taliglucerase alfa, etc.). The successful use of
disposable bag bioreactor vessels as a STR operated at batch mode for production of
taliglucerase alfa with recombinant carrot cell suspension cultures is a good example
of how far the bioreactor operating process and strategies have come along in the
past few years. The overall cost and time required for cleaning of the bioreactor and
harvesting of the culture reduces due to the disposable bags, and any chances
whatsoever of contamination from the previous batch become negligible. Newer
design approaches for better control of the bioreactors and real-time monitoring
using artificial intelligence are being used for microbial cultivations. These can be
applied to enhance productivity in plant cell bioreactors at a commercial scale. In
application of computational tools of modeling and simulation, omic approaches for
online monitoring of plant cell constituents also help in evolution of new bioreactors.
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Chapter 8
Hairy Root-Mediated Biotransformation:
Recent Advances and Exciting Prospects

Peyman Habibi, Carlos Ricardo Soccol, and Maria Fatima Grossi-de-Sa

Abstract For 35 years, hairy roots have been explored as a promising platform for
the production of a variety of compounds in different plant systems. Genetic/bio-
chemical stability, the large-scale production of desiredmetabolites, low-cost cultural
requirements and hormone-independent growth made hairy root as an efficient
system for synthesis of new molecules required in pharmaceuticals industry. More-
over, these characteristics make hairy root as an ideal biotransformation system to
convert administered organic compounds into useful analogs. Since, the synthesis of
many natural products is significantly limited by regioselective and stereospecific
properties, which subsequently complicates their chemical synthesis, biotransforma-
tion via hairy root systems is an alternative for creation of new therapeutic products
because of its ability to perform regioselective and stereospecific reactions. Addi-
tionally, the hairy root system contained inherent enzymes, which tackle the occur-
ring of biotransformation reactions, including methylation, oxidation, hydroxylation,
glycosylation, reduction, isomerization, and esterification. Hence, the hairy root
platform can be considered as an efficient and convenient biotransformation system
for the production of new agents with desired physico-chemical properties, sufficient
solubility, and low toxicity. The present review recapitulates overall reported pro-
gress in hairy root-mediated biotransformation, biotransformation strategies, reaction
types involved in hairy root biotransformation, the application of hairy root biotrans-
formation, and strategies involved in end product recovery.

P. Habibi (*)
Department of Bioprocess Engineering and Biotechnology, UFPR, Curitiba, Brazil

Embrapa Genetic Resources and Biotechnology, CP, Brasília, Brazil

C. R. Soccol
Department of Bioprocess Engineering and Biotechnology, UFPR, Curitiba, Brazil

M. F. Grossi-de-Sa (*)
Embrapa Genetic Resources and Biotechnology, CP, Brasília, Brazil

Catholic University of Brasília, Brasília, Brazil

Post Graduation Program in Biotechnology, University Potiguar, Natal, Brazil
e-mail: fatima.grossi@embrapa.br

© Springer Nature Singapore Pte Ltd. 2018
V. Srivastava et al. (eds.), Hairy Roots,
https://doi.org/10.1007/978-981-13-2562-5_8

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2562-5_8&domain=pdf
mailto:fatima.grossi@embrapa.br


Keywords Hairy root · Biotransformation · Metabolites · Therapeutic products

8.1 Introduction

Plants have evolved a wide range of chemical compounds to protect themselves in
response to external invaders such as insect, pests, and microbial pathogens. These
valuable compounds can be extracted from different parts of plant such as leaf,
shoot, root, and flowers and be investigated for their pharmaceutical properties. In
this context, many plant-derived compounds have been used as drugs (codeine,
dopamine, paclitaxel, morphine) (Habibi et al. 2017a; Newman and Cragg 2012),
food additives and coloring agents (spermidine, anthocyanin, saffron) (Ambati et al.
2014; Delgado-Vargas et al. 2000), pesticides (nicotine, strychnine and azadirachtin)
(Maramoroch 1997; Miresmailli and Isman 2014), vitamins, and enzymes. Nearly
300,000 types of secondary metabolites are identified from 1500 plant species
(Moon et al. 2015).

Natural products are metabolites that are considered structurally and biologically
attractive. Natural compounds constitute more than 2/3 of the antibiotics that are
widely used in the pharmaceutical industry (Schmitz et al. 2013). The generation of
many natural products is significantly limited by regioselective and stereospecific
properties that complicate their chemical synthesis (Wu and Chappell 2008). In this
context, biotransformation is an ideal tool to create new therapeutic products because
of its ability to perform regioselective and stereospecific reactions (Banerjee et al.
2012). Biotransformation is defined as the specific modification of a given com-
pound to a distinct and structurally similar product by a biological system, which
could be microbes, animals, or higher plants. Biotransformation reactions may
consist of different events including the generation of stable intermediates that
may lack toxic or pharmacological activity. Sometimes, short-lived reactants may
also be created. Furthermore, biotransformation reactions can result in chemically
stable products with desired pharmacological activities (Fura 2006).

In comparison with semisynthetic routes, which remain costly and have toxic
by-products, biotransformation is a well-established technology that provides new
compounds with modified molecular structure with high stereo- and regioselectivity
and often offers a simpler and easier process, lower costs, and a more eco-friendly
result (Liu and Yu 2010). This technology has been used on a wide range of natural
products to generate a new library of natural compound analogs. Hence, the emer-
gence of new biotransformed analogs can notably offers new avenues in the area of
phytomolecules that are not accessible by chemical semi-synthesis (Srivastava et al.
2013). The capacity of the new generation of modified natural products to improve
the toxicity, solubility, and pharmacokinetics of pharmaceutical products could
present new opportunities in the pharmaceutical industry. To achieve a successful
biotransformation process, some prerequisites should be considered. The sys-
tem should synthesize the needed enzymes, the substrate or precursors should be
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neither toxic to biological system nor useful as a nutrient for system, the compart-
ment cell should take up the substrate easily, and importantly, the rate of product
synthesis should be faster than its rate of metabolism (Smetanska 2008). In this
context, the system’s enzyme biocatalysts may be considered to contribute to the
accumulation of totally new pharmaceuticals and may also be applied to transform
existing pharmaceuticals by altering their bioactivity spectrum. The biological
availability and therapeutic function of drugs, which are demonstrably their most
important characteristics, can be enhanced by the establishment of hydrophilic
moieties in the substrate and the introduction of protecting groups, respectively.
Moreover, the reduction of side effects and boosting the enhancement of drug
stability can be achieved by the conversion of parent drug molecules (Pras et al.
1995).

The plant cultured cells have abilities of the regio- and stereoselective hydroxyl-
ation, oxido-reduction, hydrogenation, glycosylation, and hydrolysis for various
organic compounds as well as microorganisms (Ishihara et al. 2003). However,
the generation of natural products in plant systems has encountered some challenges
including long doubling time for undifferentiated plant cells as well as the produc-
tion of a limited range of desired enzymes by plant cells (Giri et al. 2001). These
drawbacks can contribute to the complexity and synthesis cost of natural products.
Nonetheless, biotransformation using hairy root cultures has tremendous capacity
for the synthesis of pharmaceuticals, notwithstanding the disadvantages of plant
cells. Scientifically, the application of biotransformation by Agrobacterium
rhizogenes mediated hairy root is attractive due to its potential to creat new
biotransformed compounds in a sustainable manner which unhindered by seasonal
variation and pathological restrictions (Veena and Taylor 2007; Banerjee et al.
2012). In hairy root biotransformation system, different exogenous substrates and
chemical reactions have been demonstrated. Hence, in this review, we first focus on
the substrates and reactions involved in biotransformation, and then summarize
biotransformation strategies, as well as its application and finally recapitulate tech-
niques used in boosting the product recovery in biotransformation.

8.2 Hairy Root Biotransformation

Hairy roots are a type of plant tissue that arises at or near wound sites in plants
infected by A. rhizogenes (Willmitzer et al. 1982). The mechanism of disease begins
with the transfer of T-DNA from Ri (i.e., root-inducing) plasmid (200 kb) (White
and Nester 1980) into the nuclear genome of the plant. The export of T-DNA from
the bacterium to the plant genome activates virulence (vir) genes (rolA, rolB, and
rolC) that, individually or in combination, induce root formation and the synthesis of
secondary metabolites (Habibi et al. 2017a). The functions of rol genes were
reviewed by Bulgakov (2008) and Bulgakov et al. (2013). In comparison with the
whole plant, hairy root culture offers more advantages such as rapid growth, genetic
stability, and ease of establishment in petri dishes, Erlenmeyer flasks, or glass
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bioreactors in growth regulator-free media (Zhao et al. 2013; Habibi et al. 2016).
Initially, the use of hairy root as a production platform for secondary metabolites was
limited, but over the last 20 years, hairy root system has become a potential biological
matrix for various biotechnological applications (Habibi et al. 2017a). An outlook
demonstrates that efforts have been given to those strategies that are useful to make
this system more practical in term of high productivity at the low cost. However, a
sequential analysis of literature indicates that this technique is upgarded to a biotech-
nology platform where different intra- and interdisciplinary work areas were devel-
oped, progressed, and diverged to offer scientific benefits of hairy root-based
application such as phytoremediation, molecular farming, biotransformation, etc
(Mehrotra et al. 2015).

Moreover, the hairy root system has gained increased attention over other plant
cell cultures in terms of biocatalysts due to its genetic and biochemical stability,
capacity for multienzyme biosynthesis, and rapid growth (Banerjee et al. 2012). Most
of all, various substrate specificities, stereo- and regiospecific modifications, and the
continuous secretion of the end product into the culturemedia for recovery can help to
diminish toxicity and feedback inhibition effects, making the hairy root system a
potential biotransformation tool for the creation of new and valuable phytomolecules
(Fig. 8.1). For instance, the biotransformation of betuligenol (1) into raspberry ketone
(2) and betuloside (3) using hairy root culture ofAtropa belladonna has been reported
by Srivastava et al. (2016). Raspberry ketone can be used in flavor and fragrance
formulations and in the pharmaceutical and cosmetic sectors and as a dietary supple-
ment, as it can boost the burning of subcutaneous fat. Biotransformation by hairy root
cultures has been conceptualized as the structural modification of chemical molecules
by the enzymatic activity of root cells (Chandra and Chandra 2011; Banerjee et al.
2012).

Fig. 8.1 Potential of hairy root biotransformation for the creation of bioactive phytomolecules. In
this picture, bioconversion of t-resveratrol into t-piceatannol or t-pterostilbene by hairy root of
tobacco (Hidalgo et al. 2017) is demonstrated
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8.3 Biotransformation Strategies

The low production of secondary metabolites in plants has led researchers to utilize
plant cell and tissue cultures as an alternative system of production. In metabolic
investigations, the elucidation of metabolite structures and biosynthetic pathways
contributes not only to the improvement of metabolite production but also to the
discovery of new secondary metabolites. The hairy root system approach has
become a powerful tool to increase the yield of secondray metabolites prodution
as well as unravel the biochemical pathways of secondary metabolites. In a biosyn-
thetic pathway, precursors and intermediates are key factors that are formed by
enzymatic activation. In some cell suspension cultures, for example, precursors can
be a limiting or promoting factor in biosynthetic pathways.

8.3.1 Biotransformation Using Precursor Feeding

Precursor feeding investigation is a suitable strategy to determine limiting factor in
secondary metabolite pathways. The feeding of precursors from the terpenoid and
tryptophan branches into Catharanthus roseus hairy root culture revealed that the
terpenoid pathway appears to be rate-limiting (Morgan and Shanks 2000). In this
context, Srivastava et al. (2016) demonstrated that the scarcity of near or distant
precursors might contribute to the unsatisfactory production of secondary metabo-
lites. The biotransformation of hyoscyamine to scopolamine via hyoscyamine feed-
ing in Hyoscyamus niger hairy root revealed that the scopolamine content increased
significantly via an enzymatic epoxidation reaction. In this study, differences in the
age or the stage of development of hairy root culture were shown to be factors, which
could help to increase the yield of scopolamine from hyoscyamine biotransforma-
tion. In a precursor feeding investigation, monitoring the degradation of the precur-
sor added to the medium can also help to determine the content of metabolites of
interest, as added precursors can be used as nutrients by the hairy roots, resulting in
lower levels of the metabolite than expected (Hashimoto and Yamada 1983).

Hairy root biotransformation using precursor feeding can be improved by adding
elicitors to culture medium. Feeding experiments in a large-scale culture system with
elicitation showed a significant improvement in biotransformation. For instance, the
addition of abscisic acid to the medium ofGenista tinctoria hairy root cultures grown
in a basket-bubble bioreactor increased the production of isoliquiritigenin, an isofla-
vone (Łuczkiewicz and Kokotkiewicz 2005b). Tropaeolum majus L. hairy root
cultures showed the stimulated biotransformation of two precursor amino acids
(phenylalanine and cysteine) and acetylsalicylic acid, leading to increased
glucotropaeolin production and suggesting that amino acid precursor availability
may limit the stimulation of glucotropaeolin production in T. majus hairy root
cultures (Wielanek and Urbanek 2006). The results of this study indicated that adding
elicitor to the medium could increase the demand for precursors of the defensive
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metabolite during elicitation. Another strategy to increase the hairy root biotransfor-
mation performance is the overexpression of genes involved in bioconversion of
exogenously supplied substrate in other plant systems. In this case, the
overexpression of the hyoscyamine-6β-hydroxylase gene in hairy roots of Nicotiana
tabacum resulted in the bioconversion of exogenously supplied hyoscyamine to the
more scopolamine (Häkkinen et al. 2005).

The duration of adding feeding precursor is another important factor in stimulating
the biotransformation, and values from 24 h to 25 days have been reported thus far.
For example, Wielanek and Urbanek (2006) showed that 24-h treatment of hairy root
cultures with Phe and Cys (precursors) and with or without PheP (PAL inhibitor), that
is, Phe + Cys or PheP + Phe + Cys, increased the content of glucotropaeolin. This
content was further enhanced when the precursors were combined with elicitors,
whereupon a stimulating effect on biotransformation was observed on the 3rd day
after treatment and maintained until the 6th day of culture. While prolonged exposure
to elicitors was reported to be detrimental to hairy root growth, as it decreased
biomass and caused blackening or browning (Pitta–Alvarez et al. 2000; Bais et al.
2003), some reports indicated that the combination of precursor feeding and elicita-
tion could be an efficient strategy for avoiding growth inhibition (Qian et al. 2005;
Wang et al. 2005; Wielanek and Urbanek 2006).

8.3.2 Biotransformation Using Co-culture Techniques

Co-culture techniques have long been used to investigate cell populations in terms of
natural and synthetic interactions. Such systems are of great interest to synthetic
biologists for assessing and engineering complex multicellular synthetic systems.
Generally, a co-culture is a cultivation setup in which two or more complementary
systems (tissues/cells) are cultured together with some degree of contact between
them (Goers et al. 2014). The use of co-culture systems to produce valuable
secondary metabolites from plant tissue culture has attracted increasing interest, as
it is an effective tool for enhancing tissue-specific secondary metabolite production.
In a plant co-culture system, the metabolite synthesized by one system translocates
to the other to be metabolized as substrate in a further bioconversion process
(Subroto et al. 1996).

The culture medium acts as a translocation tool between two systems. The
optimization of the culture medium for two systems makes the process complicated,
as the medium requirements (such as exogenous hormones) for one system could
interfere with the differentiation and metabolism of the other. In this case, the
establishment of a transgenic system such as hairy roots can make co-culture
feasible, as engineered hairy roots share consistent medium requirements and do
not need exogenous regulators. A co-culture of A. belladonna shooty teratomas and
hairy roots in the same hormone-free medium was established for the conversion of
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hyoscyamine to scopolamine (Subroto et al. 1996). The biotransformation results
from the root–shoot co-culture studies on A. belladonna indicated that in comparison
to the individual root and shoot cultures, the co-culture system caused a significant
increase in scopolamine production. The reason behind this biotransformation pro-
cess is that in the root-shoot co-culture technique, the hyoscyamine produced by the
hairy roots could be “translocated” via the culture medium along with vascular
translocation in the plants, taken up by the shooty teratomas, and finally converted
to scopolamine.

Another example of co-culturing shoots and hairy roots has been reported for the
production of two secondary metabolites, daidzin and daidzein, in Genista tinctoria
L. (Łuczkiewicz and Kokotkiewicz 2005a). The result of their investigation showed
that in response to exogenous abscisic acid (ABA), hairy roots ofG. tinctoria released
isoliquiritigenin into the medium, from which it was further utilized by shoots to
convert this substrate into daidzin and daidzein. Further analysis indicated that using
a bioreactor for the separation of tissues with otherwise similar co-culture conditions
in shake flask can improve the growth parameters for the large-scale production of
secondary metabolites in G. tinctorial and also removed difficulties related to the
growth measurements and phytochemical analyses in shake flask. In this context, the
type of bioreactor has been proved to play a significant role in the level of synthesized
compounds (Zobayed et al. 2004). The significant production of podophyllotoxin by
the cross-species co-culture of Linum flavum hairy roots and Podophyllum
hexandrum cell suspensions in a dual-bioreactor co-culture system is another relevant
example (Lin et al. 2003). Although the total level of podophyllotoxin produced by
co-culture in the dual bioreactors was approximately 63% greater than that accumu-
lated by P. hexandrum cultured alone, the volumetric efficiency of total
podophyllotoxin was not improved by co-culture in the dual-flask and dual-bioreac-
tor systems compared with that in single cultures.

Similar to bioreactor condition as a physical parameter the light condition can
also affect biotransformation yield. In this context, Sidwa–Gorycka et al. (2003)
investigated the effect of light in a root–shoot system for improving the production
of secondary metabolites. Their results strongly supported the idea that
umbelliferone synthesized by Ammi majus hairy roots was used as a substrate for
furanocoumarin metabolism by the Ruta graveolens shoots. These data demon-
strated the impact of light on secondary metabolite production in co-culture. For
example, the production of xanthotoxin was increased under light conditions, while
its isomer bergapten showed different results. The co-culture system exhibited a
slight increase in the free form of bergapten under light and a decrease in the bound
form in darkness. The xanthotoxin:bergapten biotransformation ratio was also
affected by light conditions in the co-culture system. This ratio was approximately
1.0 in a cell culture of R. graveolens alone and increased to 2.2 and 2.9 in the
co-culture system under light and in the dark, respectively, suggesting the effect of
light as a physical parameter on the biotransformation rate.
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As the production of many secondary metabolites is a defensive reaction in
response to microbial contact, the use of growth-promoting microorganisms could
be an alternative way to stimulate biotransformation. Bacillus cereus is well known
as one of the growth-promoting rhizobacterial species that have been shown to boost
plant resistance to bacterial and fungal pathogens. As a pioneer in studying a novel
and potent tool for improving the accumulation of secondary metabolite from plant
hairy root cultures, Wu et al. (2007) proposed a hairy root-B. cereus system. Their
co-culture system showed an increase in tanshinone synthesis from Salvia
miltiorrhiza hairy roots. The most probable reason for the increased tanshinone
content in the hairy root–bacteria co-culture is the elicitor activity of components
released into the medium by B. cereus. In this context, compare to chemical elicitors,
living components may have different and more complex interactions with the roots,
such as protein–protein, gene–gene, and cell–cell interactions. Moreover, it is
indicated that the pH drop after bacterial inoculation could be accounted as a stress
condition, which might further stimulate secondary metabolite production by hairy
roots. Recently, the in vitro co-culture of Solanum tuberosum hairy roots with
Meloidogyne chitwoodi, the Columbia root-knot nematode (CRKN), has been
reported (Faria et al. 2014). In that study, the co-culture system enhanced the
production of volatiles, suggesting that S. tuberosum HR/CRKN co-cultures could
be considered as a biotechnological tool to investigate the effect of RKN
nematotoxic components on the biotransformation capacity of the host plant. How-
ever, contamination issue, in which the presence of microbial cells in culture can
inhibit the growth of plant tissue or cells, is one of the limiting factors in the use of
live microbial cells to stimulate the production of secondary metabolites in plant
tissue cultures. Moreover, different medium requirements for live microbial cells
could result in the suppression of their growth in plant medium culture demonstrat-
ing the need for thoughtful attention regarding their utilization in hairy root culture-
based biotransformation. In the latter case, the use of exogenous compounds could
produce synergetic effects. For example, (Wu et al. 2007) reported that bacterial
growth or survival in hairy root culture relied heavily on casein hydrolysate.
Therefore, these systems must be considered more scientifically in terms of media
with optimized physical factors for both partners. Additionally, understanding the
physiological behavior of the partners and the degree and time of their contact in the
medium as well as contact time are further considerations that contribute to improv-
ing the biotransformation rate in co-culture systems.

8.3.3 Biotransformation Using Nonspecific/Exogenous
Molecules

The substrate specificity and regio-, stereo-, and enantioselectivity make biotrans-
formation systems as a prominent technology for the biosynthesis of secondary
metabolites. The regioselective and stereospecific abilities of hairy root cells, the
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types of secreted enzymes, and the functional groups in the substrate are among the
important keys related to the biotransformation of exogenous substrates. In addition
to their characteristically strong and consistent growth/enzymatic backgrounds,
stability and low cost, the ability of hairy root cultures to assimilate Ri T-DNA-
mediated insertional mutagenesis, as well as adaptability to wide range of substrate,
rendered hairy roots as a prominent biotransformation system (Kawauchi et al. 2010;
Pandey et al. 2014). The application of hairy root culture for the biotransformation of
exogenous substrates into valuable metabolites has been reported (Srivastava et al.
2016). The exogenous substrate for the biotransformation process can be of synthetic
or natural origin. Recently, a diversified effort has been focused on generating novel
derivatives from nonspecific exogenous artemisinin (Pandey et al. 2015). Accord-
ingly, the modification of the functional groups of the exogenous substrate
artemisinin has led to the biosynthesis of novel targets that could not only contribute
to combatting drug-resistant malaria but also offer notable tumor necrosis factor
(TNF)-lowering ability.

The biotransformation of exogenous substrates has been exploited with and
without the transfer of a biosynthetic pathway from one organism to another.
Transfer of the human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) gene or
the Vitis vinifera resveratrol O-methyltransferase(VvROMT) to tobacco hairy roots
led to the bioconversion of exogenous t-resveratrol into piceatannol or pterostilbene,
respectively. These two resveratrol-derived stilbenes are promising metabolites in
the treatment of carcinogenic, cardiovascular, and neurodegenerative diseases
(Hidalgo et al. 2017). The introduction and expression of lysine decarboxylase
(ldc) from the bacterium Hafnia alvei to Nicotiana hairy roots resulted in a tenfold
increase in cadaverine production and a threefold increase in anabasine (Fecker et al.
1993).

Metabolic engineering is under consideration as an alternative for the enhanced
production of plant secondary metabolites. The design of expression cassettes har-
boring suitable and strong promotors for the overexpression of the principle genes
involved in a biosynthetic pathway bottleneck has been considered as a prominent
strategy to improve the production of secondary metabolites (Habibi et al.
2017b; Capell and Christou 2004). Although there are few reports on the metabolic
engineering of hairy roots for the bioconversion of exogenous substrates, Häkkinen
et al. (2005) reported scopolamine production by transferring the hyoscyamine-
6β-hydroxylase gene from Hyoscyamus muticus to tobacco hairy roots. The root
cultures did not biosynthesize scopolamine but provided the in vitro capacity to
bioconvert exogenous hyoscyamine into its epoxide scopolamine in the culture
medium. A further upscale to 5 L was achieved by the development of a turbine-
stirred tank reactor for the biotransformation of hyoscyamine into scopolamine by
using transgenic hairy roots of tobacco (Moyano et al. 2007). Similarly, the heterol-
ogous expression of tryptophan decarboxylase from C. roseus in Peganum harmala
hairy roots resulted in the high production of serotonin from an exogenous substrate
(Karuppusamy 2009). Moreover, the expression of the p-hydroxycinnamoyl-CoA
hydratase/lyase (HCHL) gene from Pesudomonas fluorescens by hairy roots of Beta
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vulgaris led to increase the vanillin level when ferulic acid was added as an exoge-
nous substrate (Singh et al. 2015).

The biotransformation of exogenous substrates with no dependence on metabolic
engineering has also been reported for some plant families, such as Brassicaceae,
Asteraceae, Campanulaceae, and Lamiaceae. The effective bioconversion of butyl-
ated hydroxytoluene (BHT) and the consequent production of quinone derivatives
such as stilbenequinone by hairy roots of Asteraceae and non-Asteraceae families
clearly showed the unique potential of the enzymatic profile of hairy roots (Banerjee
et al. 2012). The hairy roots of Datura tatula L. showed striking biotransformation
ability toward exogenous p-hydroxybenzyl alcohol, resulting in p-hydroxymethyl-
phenol-β-D-glucoside (gastrodin) production (Peng et al. 2008). Gastrodin is used
for its anti-inflammatory, anticonvulsive, analgesic, and antianoxemic properties. It
plays a unique role in immunity boosting and blood vessel expansion and is effective
as a scavenger of free radicals (Zhou et al. 1979). The production of these molecules
by chemical synthesis is very difficult and also expensive and then the production of
these compounds by hairy root culture represent the potential of hairy roots to carry
out the cost-effective bioconversion of exogenous substrates into valuable products
for the pharmaceutical industry.

8.4 Reaction Types

Generally, biotransformation can be categorized into phase I and phase II reactions.
Phase I reactions involve the introduction of polar chemical moieties via the creation
of polar functional groups or the exchange or modification of existing functional
groups by oxidation, hydrolytic, and reduction reactions. This phase can be regu-
lated by enzymes including CYP, FMO, amidase, and esterases. In this context, CYP
enzymes are considered key enzymes in drug activation.

8.4.1 Glycosylation

Glycosylation is the most important reaction in the field of glycochemistry and
involves one of the most empirically interpreted mechanisms in the science of
organic chemistry. Glycosylation is the enzymatic process by which a carbohydrate,
i.e., a glycosyl donor, is linked to a hydroxyl or other functional group of another
molecule such as a protein, lipid, or other organic molecules. Glycosylation reac-
tions are of interest due to their ability to convert water-insoluble molecules into
more water-soluble compounds (Giri et al. 2001). Plant cell cultures or hairy root
cultures could be considered as an alternative platform for glycosylation studies
since such reactions by microbial transformations or by chemical means are very
complicated (Giri et al. 2001). Compared to chemical glycosylation, which requires
tedious steps such as the protection and deprotection of the hydroxyl groups of sugar
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moieties, one-step enzymatic glycosylation using plant cell cultures is advantageous
for glycoside preparation (Shimoda et al. 2002). Moreover, the capability of plant
cell cultures, specifically hairy root cultures to glycosylate exogenous substrates and
convert it into useful compounds has been successfully reported, as shown in
Table 8.1.

Biotransformation involving the glycosylation of gentiobiose and sophorose was
performed by ginseng hairy root cultures for the first time in 1990 (Kawaguchi et al.
1990). 3-Epidigitoxigenin beta-D-gentiobioside and digitoxigenin beta-D-
sophoroside were obtained as biotransformation products of digitoxigenin by hairy
root cultures of ginseng. Digitoxigenin is known as a precursor of cardiac glyco-
sides, which are used as heart ailment remedies to treat congestive heart failure and
cardiac arrhythmias by acting on the cellular sodium–potassium ATPase pump
(Patel 2016). P. ginseng cell and hairy root cultures are being widely investigated
as interesting biotransformation tools. The enzymatic biotransformation of phenolics
(Furuya et al. 1989; Li et al. 2005; Ushiyama et al. 1989; Ushiyama and Furuya
1989; Yoshikawa et al. 1993), coumarin (Li et al. 2002), and 18-glycyrrhetinic acid
(Asada et al. 1993) to their corresponding glycosides by such cultures has been
carried out.

8.4.2 Hydroxylation

The regio- and stereoselective hydroxylation of target compounds is an interesting
topic regarding the biotransformation of exogenous substrates since it can
result in production of valuable substances. Stereospecific hydroxylation is domi-
nant in plant cell culture, as the hydroxylation at C-4 of -terpineol and its acetate
provided only trans-isomers (28 and 32, respectively), the hydroxylation of the
endocyclic linkage of -terpinyl acetate caused the predominant production of a
trans-diol, and the hydroxylation of -terpinyl acetate predominantly resulted in a
diol with the hydroxyl group trans to the 1-acetoxyl group. Thus, plant cell cultures
have shown the potential to hydroxylate the C–C double bond stereospecifically.
Also, regioselective hydroxylation by plant cell cultures has been reported (Suga
et al. 1980; Suga et al. 1988; Suga and Hirata 1990). It has been reported that hairy
root cultures of Fragaria x ananassa, Lobelia sessilifolia, Campanula medium, and
Lobelia cardinalis have the ability to hydroxylate trans-cinnamic acid and convert it
into p-coumaric acid (Ishimaru et al. 1996).

8.4.3 Reduction

The hairy root culture of several plants have shown an ability to perform biotrans-
formation via reduction reactions. The enantioselective reduction of prochiral
ketones into non-racemic chiral secondary alcohols by Daucus carota hairy root
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cultures has been reported (Caron et al. 2005). Because chiral alcohols are important
compounds for the formation of pharmaceuticals, flavoring agents, pesticides, pher-
omones, fragrances, and advanced materials such as liquid crystals, the
stereoselective reduction of prochiral ketones into non-racemic chiral secondary
alcohols is essential for the synthesis of many products (Caron et al. 2005). In other
research, the biotransformation of benzaldehyde- and acetophenone-type derivatives
by hairy roots of Pharbitis nil was investigated (Kanho et al. 2005). In the case of
3,4-dihydroxybenzaldehyde, 3,4,5-trimethoxybenzaldehyde, and salicylaldehyde,
the formyl groups were reduced. Moreover, P. nil hairy root cultures exhibited
other biotransformative capabilities such as the glucosylation of phenolic and ben-
zylic hydroxyl groups and phenol dimerization by oxidation.

In a similar way, the biotransformation of four 4-hydroxybenzene derivatives by a
hairy root culture ofP. multiflorumwas reported. The results showed thatP.multiflorum
hairy roots not only were able to stereoselectively and regioselectively glucosylate
phenolic hydroxyl groups of compounds but also reduce 4-hydroxybenzaldehyde to
its corresponding alcohol. Additionally, the conversion of prochiral diketones into the
corresponding (S)-1 -hydroxy compound via stereo- and regioselective bioreduction by
hairy roots of B. napus has been demonstrated (Orden et al. 2006). In addition to the
enantioselective bioreduction of natural prochiral diketones, B. napus hairy roots were
able to glycosylate and hydrolyze the acetate derivative 4-(acetyl-2-(3-methylbut-2-
enoyl)-phenylacetate). The natural acetophenone derivatives showed anti-inflammatory
activity (Favier et al. 1998). Likewise, hairy root cultures of Raphanus sativa (Orden
et al. 2009),Cyanotis arachnoidea (Zhou et al. 1998), andRheumpalmatum (Lixin et al.
2002) indicated the potential to carry out bioreduction reactions in biotransformation
processes.

8.4.4 Oxidation

The oxidation reactions in biotransformation processes are mainly restricted to alde-
hyde and alcohol substrates. Previously, an oxidation process using the enzymatic
systems of 15 different whole plants has been reported (Andrade et al. 2006). In this
study, the authors evaluated the catalytic potential by performing the alcohol oxidation
of a racemic mixture to produce ketones or to achieve the enantiomeric enrichment of
the alcohol. In comparison to microbe biotransformation, aldehyde oxidation is a
rare process in hairy root biotransformation. However, the oxidation of the formyl
group of 3,4,5-trimethoxy benzaldehydeto produce 3,4,5-trimethoxy benzoic acid has
been reported in A.belladonna hairy roots. Moreover, the biotransformation of
4-(p-hydroxyphenyl) butan-2-ol or betuligenol into 4-(p-hydroxyphenyl)-2-butanone
or raspberry ketone by oxidative processing hairy root cultures of A. belladonna,
C. roseus, and N. tabacum has been reported (Häkkinen et al. 2015; Srivastava et al.
2013). Additionally, hairy root cultures of Anisodus tanguticus were used in a bio-
transformation process to modify the structure of dehydroepiandrosterone (DHEA) via
an oxidative reaction into five DHEA-related compounds (Liu et al. 2004).
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Oxidative biotransformation reactions of phenol-like compounds also have
been performed by hairy root culture. Phenols, as aromatic compounds, are consid-
ered a major class of hazardous pollutants because of their carcinogenicity, recalci-
trance to degradation, high toxicity, and presence in industrial wastewaters.
2,4-Dichlorophenol has been found to cause lethargy, tremors, and convulsions in
mice (Borzelleca et al. 1985). 2,4-dichlorophenol is highly toxic because it is readily
captured by the skin, resulting in poisoning (causing hepatic and renal failure,
pulmonary edema, and hemolytic anemia) or in teratogenic and carcinogenic effects.

Hairy root cultures of B. napus have demonstrated the capability to remove
2,4-dichlorophenol (Agostini et al. 2003). The data indicated that hairy root cultures
were able to eliminate 2,4-DCP from aqueous solutions in the presence of H2O2 via
oxidation catalyzed by the peroxidases of the hairy roots. Recently, a report on
whether hairy root cultures of tobacco are useful and efficient for the removal of the
halogenated derivative2,4-dichlorophenol was published by (Talano et al. 2010).
This study showed the remarkable efficiency of tobacco hairy roots for eliminating
high concentrations of 2,4-dichlorophenol by an oxidative process in the presence of
the lignin-type products formed during 2,4-dichlorophenol transformation and its
compartmentalization in hairy root cell walls.

Similarly, the transformation of phenol and chlorophenols by hairy root cultures
of D. carota, Ipomoea batatas, and Solanum aviculare via oxidative processes
(de Araujo et al. 2006) indicated the significant role of biotransformation in the
process of phytoremediation by hairy root systems. In this context, hairy root
approaches could be considered as an alternative way to enhance the removal
process as well as to protect the enzymes involved, thereby reducing the costs and
improving the process at an industrial scale (Habibi et al. 2017a).

8.4.5 Other Reaction Types

Hairy root cultures have also shown the ability to perform other kinds of biotrans-
formation reactions, such as esterification and acetylation. Biotransformations
including the esterification of stearic acid, palmitic acid, myristic acid, and lauric
acid with digitoxigenin have been reported (Kawaguchi et al. 1990).

Acetylation is another kind of biotransformation reaction that has been demon-
strated in hairy root cultures of Anethum graveolens (Faria et al. 2009). In this
context, to investigate the influence of the biotransformation capacity on growth and
on the production of volatile compounds, two oxygen-containing monoterpene
substrates, geraniol and menthol, were added to hairy root cultures of
A. graveolens. The results showed that the added geraniol was converted into ten
new products including the alcohols linalool, citronellol, and a-terpineol; the alde-
hydes neral and geranial; the esters citronellyl, neryl, and geranyl acetate; and
linalool and nerol oxides, while a substantial amount of the added menthol was
transformed into menthyl acetate. In the same way, the biotransformation ability of
hairy roots of L. officinale was investigated by the addition of menthol or geraniol as
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a substrate (Nunes et al. 2009). In contrast to the hairy root cultures of A. graveolens,
no new volatiles were elucidated after the addition of menthol to the hairy roots of
L. officinale; however, the addition of geraniol resulted in the production of geranyl
acetate, α-terpineol, nerol/citronellol/neral, and linalool.

8.5 Biotransformation for Phytoremediation Applications

Phytoremediation is known as an eco-friendly approach for the remediation of
contaminated soil and water by using plant systems. Plants are autotrophic systems
that exploit sunlight and carbon dioxide as sources of energy and carbon. A
successful microbe-based phytoremediation system must meet various conditions,
including the ability of microbes with the desired metabolic activity to survive in an
environment containing the bioavailable chemical as well as inducers to activate the
expression of necessary enzymes. These requirements make this system inappropri-
ate and costly. In terms of bioremediation, plant cell cultures are an alternative
system that can be employed for phytoremediation to abolish or decrease the
concentration of toxic organic and inorganic pollutants in soil, air, wastewater,
groundwater, and biowaste (Habibi et al. 2017a). The process of phytoremediation
consists of a range of detoxification phases including transformation (phase I),
conjugation (phase II), and compartmentation (phase III). Each phase involves its
own reactions and processes to detoxify contaminants. In this context, the biotrans-
formation phase can be considered a critical step in the detoxification process.

However, unlike bacteria and mammals, plant-based systems involved in
phytoremediation research are usually impoverished in the catabolic enzymes nec-
essary to perform the full metabolism of recalcitrant organic compounds, potentially
resulting in slow and incomplete treatment (Eapen et al. 2007). The incomplete
transformation of contaminants in plants causes the release of toxic compounds from
plant tissues, potentially leading to the presence of contamination in the food chain
(Yoon et al. 2006).

The use of genetically engineered systems with enhanced degradative capabili-
ties, such as hairy root cultures, has made phytoremediation the most promising,
cost-effective, and resource-conserving tool for environmental remediation
(Oller et al. 2005). Hairy root cultures have been considered for use as a superior
model system to investigate phytoremediation processes such as the rhizofiltration,
phytostabilization, and phytoextraction of organic and inorganic pollutants because
of their biochemical and genetic stability (Majumder and Jha 2012) and their easy
maintenance (De Araujo et al. 2002). Physiologically, they follow a prolific root
growth template like that of a real root, which is a prerequisite for increasing the
effectiveness of phytoremediation processes, and therefore provide reliable and
stable biomass throughout the whole year without environmental effects (Doran
2009).

In this context, the phytoremediation of 2,4-dichlorophenol by B. napus hairy root
cultures in an oxidative reaction has been reported (Agostini et al. 2003).
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2,4-Dichlorophenol (2,4-DCP) is a commercially produced substituted phenol used in
the manufacturing of germicides, herbicides (especially 2,4-dichlorophenoxyacetic
acid), pesticides, germicides, resins, and antiseptics (Buchanan and Nicell 1997).
Many efforts have been developed to establish strong methods to eliminate this
compound because of its toxicity not only to humans but also to aquatic life, since it
has been found to be as much as 50 times more toxic than phenol to some organisms
(Edwards and Santillo 1996). Significant removal of 2,4-DCP was accomplished in
short reaction times, within the first 5–15 min of incubation with B. napus hairy roots.
The main mechanism involved in the elimination of this phenolic compound was the
peroxidase-catalyzed oxidative coupling of phenolic compounds. One of the interest-
ing advantages of the hairy root system in phytoremediation is the possibility of
re-using the radical biomass for large-scale applications, as hairy root cultures have
been successfully re-used six times, according to the determination of their peroxidase
activity in phytoremediation processes (Agostini et al. 2003).

The phytoremediation of explosive compounds, leading to the amelioration of
great environmental risks, is another area of remarkable interest. The
phytoremediation of trinitrotoluene (TNT) by plant systems has attracted attention
to research on the potential of plants for the biotransformation of this compound. In
this regard, knowledge of the plant metabolism of nitroaromatic compounds is one
of the most significant topics for understanding natural attenuation processes and
phytoremediation applications. Hence, hairy root cultures have contributed to the
understanding of the transformation pathways of trinitrotoluene. Based on the
structure of trinitrotoluene, two initial transformation processes occur: (1) the reduc-
tion of one or more nitro groups, yielding hydroxylamino or amino groups, and
(2) the oxidation of either the methyl group or the ring itself. In this context, hairy
roots act as a “green-liver” model to provide complementary information about the
conjugation of trinitrotoluene monoamine derivatives during the plant metabolism of
trinitrotoluene and allow us to determine the contributions of both plants and
microbes to the removal of TNT (Bhadra et al. 1999; Wayment et al. 1999). With
recent advances in gene and pathway identification, hairy root cultures have pro-
vided information on the TNT transformation pathway and identified specific
enzymes that are responsible for oxidative transformations. Cytochrome P-450 is
one of the most plausible enzyme candidates for the oxidative metabolism of TNT.
Banerjee et al. (2002) showed that hairy root cultures of A. belladonna can produce
cytochrome P-450 and illuminate the basic mechanisms involved in trinitrotoluene
degradation by this enzyme. These findings not only introduce the possibility of new
genetic and biochemical approaches to study TNT transformation pathways but also
provide good information on the toxicity of the final products and their effects on the
ecosystem. In the analysis of toxicity, most TNT studies with hairy root cultures
have been performed on stationary phase cultures (cultures that are metabolically
active but not undergoing growth) (Lauritzen III 1998).
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8.6 Product Recovery

Triggering plant tissue culture to produce the highest possible level of secondary
metabolites is an advantage for large-scale production. However, efficient methods
of product recovery are important for the commercial success of such processes. In
this context, enhancing product release or exudation from plant cell tissues into the
culture medium could be of substantial interest in terms of recovery and cost. For
instance, the accessibility of metabolic enzymes in the biotransformation process as
well as the facility of membrane transport could be influenced by targeted transport
of the formed product into a second phase, which is introduced into the aqueous
medium or two-phase system. This process enables the rapid removal of the product
from the plant cells, thereby inhibiting its further interaction with cellular and
medium components. This process is beneficial for the production of secondary
metabolites that are unstable, toxic, or thermodynamically unfavorable (Woodley
et al. 2008). Santamaria et al. (2011) demonstrated that rather than a lack of key
biosynthetic enzymes involved in product degradation, the volatility of the sub-
stances synthesized as well as enzymatic and nonenzymatic degradation can boost
the low production of secondary metabolites. The creation of an artificial compart-
ment for the product can substantially affect the biosynthetic pathways in plant cell
culture. In this case, the introduction of a second liquid or solid phase into the
aqueous medium could enhance product recovery. In this context, Lee and Shuler
(2000) showed that the presence of Amberlite XAD-7 resin increased the yields of
ajmalicine and serpentine synthesized by C. roseus. Therefore, the removal and
sequestering of product in a non-biological location may improve total production
and recovery. Avoiding any type of feedback inhibition, initiating the release of
secondary metabolites stored in the cells, and inhibition of metabolite degradation by
excreted catabolic enzymes and acids are considered advantages of two-stage sys-
tems (Smetanska 2008). Immobilization, elicitors, and membrane permeabilization
are other suitable techniques that have been reported for exudation processes (Cai
et al. 2012).

Immobilization techniques may help to overcome some barriers and limitations
related to plant cell suspensions, including low and variable product yields, high
susceptibility to shear and slow growth rates (Wilson and Roberts 2012). Immobi-
lization is a fruitful technique in the exudation process because it allows high cell
concentrations as well as continuing product recovery (Brodelius 1985). Immobili-
zation is a tool that confines a catalytically active enzyme or cell and inhibits its entry
into the mobile phase, which contains the substrate and product (Knorr et al. 1985).
Immobilized plant cells are very interesting for use in single- and multi-step bio-
transformations of precursors to target compounds as well as for the de novo
production of secondary metabolites.

Immobilized plant cells can be used as biocatalysts for use in biotransformation.
In comparison with the use of freely suspended cells, immobilized plant cells could
act as reusable catalysts and allow the easy separation of the formed product from the
biomass (Smetanska 2008). Immobilization can exert a dramatic effect on cellular
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physiology and secondary product synthesis. Various immobilization techniques
have been established, including adsorption, covalent coupling, and entrapment.
The most widely used method is the entrapment of cells in a gel or combination of
gels that can polymerize surrounding them. The immobilization of plant cells in
biotransformation processes by applicable matrixes such as alginate (Digitalis
lanata) (Alfermann and Petersen 1995), agarose (C. roseus) (Asada and Shuler
1989), and the polyurethane foam (Papaver somniferum) (DiCosmo and Misawa
1995) has been previously reported to increase production of the secondary metab-
olites ajmalicine, digoxin, and codeine, respectively, from their substrates or pre-
cursors. Simplicity and the maintenance of cell viability are two important
characteristics for matrix selection.

Products synthesized by plants are stored in the vacuole compartments. Improv-
ing the transfer of compounds from vacuoles to the culture medium could be
advantageous in terms of cost and product recovery. Cell permeabilization is
based on the formation of pores in plant cell membranes and has been reported to
facilitate the transport of substrates into the cell and the secretion of formed
compounds from the cell (Brodelius and Pedersen 1993). Basically, maintaining
cell viability and promoting the transfer of high amounts of substrates and metab-
olites into and out of the plant cells are two prominent advantages of cell
permeabilization. There are various techniques for cell permeabilization to initiate
the release of products from plant cell cultures, including both chemical treatments
(e.g., high ionic solution, external pH changes, dimethyl sulfoxide (DMSO), Tween
20, chitosan) and physical treatments (e.g., ultrasonics, ultra-high pressure, high
electric field pulses) (Dornenburg and Knorr 1997; Knorr et al. 1985). In the case of
chemical treatment, the permeabilization agent must not inhibit cell growth and
should be able to increase the pore size of the cell reversibly (Prakash and Srivastava
2011). The application of physical and chemical treatments to cell permeabilization
was well reviewed by Cai et al. (2012).

The separation of target molecules from multiple other substances, which is
considered as a downstream process, is an integral part of the biosynthesis of a
desired product, and the final cost of the produced compound significantly depends
on the cost of downstream processing during product recovery. More broadly, the
formulation and packing of the desired product are considered as downstream
processes (de Carvalho et al. 2017). The improvement of overall productivity has
been demonstrated to be a significant goal for established biotechnology.
Bioseparation is a critical step in the production of highly valuable biomolecules,
as it ensures the standardization of the product. The bioseparation process should
achieve the recovery of desired molecules with high purity. Therefore, the estab-
lishment of improved separation processes as early as possible is essential for
economic success (Basaran and Rodriguez-Cerezo 2008). In a biotransformation
process that results in a mixture of the precursor, product, and by-products, the
bioseparation of the target molecule should result in high purity of the desired
molecule. The method used for separation depends on the nature of the molecule
and affects its purity, yield, and most importantly the characterization of its activity.
The separation of several compounds has been carried out in small-scale processes
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including column salt/solvent-induced precipitation, chromatography, and electro-
phoresis techniques, while the development of large-scale separation processes
involving these units has encountered some problems in terms of low product
recovery and high operation costs.

8.7 Conclusion

In comparison with semisynthetic routes, which remain costly and result in toxic
by-products, biotransformation is a well-established technology that provides new
compounds with modified molecular structures via high stereo- and regioselectivity
and often also offers a simpler, easier, and more eco-friendly process with lower
costs. In recent years, hairy root systems have gained increasing attention over other
plant cell cultures in terms of biocatalysts due to its genetic and biochemical
stability, capacity for multienzyme biosynthesis, and rapid growth. Most of all,
various substrate specificities, stereo- and regiospecific modifications, and the con-
tinuous secretion and recovery of the end product into the culture media can help to
diminish toxicity and inhibitory feedback effects, making hairy root systems a
potential biotransformation tool for the creation of valuable new phytomolecules.
Biotransformation by hairy root cultures has been conceptualized as the structural
modification of chemical molecules by the enzymatic activity of root cells. The
process of biotransformation by hairy root systems involves diverse strategies such
as precursor feeding, co-culture systems, and exogenous molecule supplementation.
Due to the ease of using this system as a transgenic system, and given the great
progress in functional genomics and epigenetic studies, it is necessary to establish
new hairy root lines with the ability to more efficiently express and accumulate
enzymes involved in bioconversion as well as in the biotransformation of contam-
inants in phytoremediation under in vitro or field conditions or in the environment.
Moreover, wide ranges of substrates can be subjected to hairy root-based biotrans-
formation to create valuable new compounds for the pharmaceutical industry.
Additionally, the optimization of internal factors (upstream elements involved in
gene expression) and external factors (growth medium, elicitors, bioreactor design,
product recovery, selection of hairy root lines with strong enzymatic pools) could
greatly influence hairy root-based biotransformation. This hairy system platform will
continue to advance and help scientists to decipher many interesting phenomena in
various fields of plant science - biotechnology and their applications.
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Chapter 9
Hairy Roots as Bioreactors
for the Production of Biopharmaceuticals

Marcello Donini and Carla Marusic

Abstract Production of heterologous proteins in plant systems has become a
valuable biotechnological approach as demonstrated by the recent approval of the
first plant-made pharmaceutical for the treatment of the rare genetic disorder known
as Gaucher’s disease in carrot cell cultures. The main advantages of plants compared
to classical expression systems such as bacteria, yeasts or animal cell cultures are the
intrinsic safety (e.g. absence of human pathogens), cost-effectiveness and the pos-
sibility to manipulate protein post-translational modifications such as glycosylation.
Among plant-based production systems, hairy root cultures offer further advantages
represented by the possibility of using defined cultivation conditions under
contained environment which are attractive for an industrial scale production, the
maintenance of product homogeneity and the ease of purification and recovery of the
biopharmaceutical product secreted in the culture medium. Several biopharmaceu-
tical products have been successfully produced in hairy root cultures such as vaccine
components, enzymes and monoclonal antibodies. In this context, we recently
described the production of a tumour-targeting monoclonal antibody with a
human-compatible glycosylation pattern in glyco-engineered hairy root cultures. In
this chapter we will describe the recent advances in the generation of hairy root
cultures expressing heterologous proteins and the strategies adopted to produce
biopharmaceuticals, with particular focus on antibodies, and to increase their stabil-
ity and secretion into the culture medium. Overall, hairy root cultures represent an
innovative and promising biotechnological system for the production of plant-made
biopharmaceuticals.
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9.1 Introduction

Plant tissues and plant cell-based platforms represent a valid system for the produc-
tion of secondary metabolites but also heterologous proteins (Doran 2000). Since
20 years, the use of plant cells or tissues as production platforms of heterologous
proteins is growing thanks to several advantages such as the possibility of producing
the molecules in sterile contained conditions and the final quality of recombinant
products. In addition, plant cells and tissues allow post-translational modifications,
have low production costs and are safer due to the lower risk of contamination by
viruses, pathogens and toxins dangerous to humans. Furthermore, the ability of plant
cells to propagate indefinitely without the need for sexual reproduction offers a
solution to other problems relating to gene segregation and long-term transgene
stability in agricultural crops. Alongside, the protein of interest can be secreted into
the culture medium easing the downstream product recovery and purification pro-
cess (Doran 2013). A successful example of the use of plant cells to produce human
biopharmaceuticals is represented by the drug ELELYSO® for the treatment of the
rare metabolic disorder called Gaucher’s disease commercialized by Pfizer, which is
composed of the recombinant enzyme α-glucocerebrosidase produced in carrot cell
suspensions (Grabowski et al. 2014). Among cultured plant tissues used for the
production of heterologous proteins, hairy roots (HRs) have been widely used and
will be described in detail in the next paragraphs. Hairy roots are neoplastic tissues
resulting upon infection of monocot and eudicot plants with Agrobacterium
rhizogenes (recently revised as Rhizobium rhizogenes) a gram-negative soil bacte-
rium of the family Rhizobiaceae. In nature, the pathogen enters into the plant cell
after a wound, introducing into the genome of the infected plant, a T-DNA segment
from its root-inducing (Ri) plasmid (White et al. 1985).This T-DNA carries a set of
oncogenes that act by disturbing the phytohormone auxin control inducing a new
hormonal balance allowing the formation of proliferating roots, called HRs, which
emerge at the wounded site. An important feature of these root systems is that they
can be easily maintained in culture indefinitely. Hairy roots have been used for a
variety of purposes over the last 30 years, ranging from metabolic engineering of
bioactive substances to the production of recombinant proteins (Ono and Tian 2011;
Srivastava et al. 2016). HR-based production systems offer several advantages such
as the possibility to be cultured under contained conditions, fast biomass accumu-
lation, their genetic stability and their ease and rapidity of production (Hu and Du
2006; Mehrotra et al. 2015). Another important peculiarity of HR cultures is the
possibility to secrete the heterologous proteins in the culture medium greatly facil-
itating and decreasing the costs of downstream processes. Among the disadvantages
there is the low yield of heterologous protein generally secreted in the culture
medium and the challenges of setting up large-scale production in bioreactors.
Major advantages and challenges of HRs are reported in Table 9.1. For these
reasons, a wide range of different heterologous proteins have been produced in
HRs ranging from vaccines to antibodies.
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9.2 Production of Hairy Root Cultures Expressing
Heterologous Proteins

Transgenic HR cultures can be generated using two different approaches: (i) by
infecting transgenic plants expressing the protein of interest with wild-type
A. rhizogenes which represents the most ‘classical’ approach and (ii) by infecting
wild-type plants with A. rhizogenes transformed with a plant expression vector
carrying the gene(s) of interest.

(i) In the case of HRs generated from transgenic plants already expressing the
protein of interest, plant leaf discs, after sterilization, are inoculated with a culture of
non-transformed A. rhizogenes. The leaf discs are then incubated in plates containing
antibiotics such as kanamycin for the selection of the transgene and cefotaxime
generally used to eradicate any residual contamination by A. rhizogenes in the
emerging roots. Approximately after 20 days, the first hairy roots emerge each
representing a different clonal line, and these are screened for heterologous protein
expression. The single clones expressing the protein of interest can be cultured on
plates with solid medium or grown in shake flasks in liquid medium. An example of
HRs derived from Nicotiana benthamiana (a close relative of tobacco), expressing
the red fluorescent protein (RFP) obtained in our laboratory, is shown in Fig. 9.1. A
disadvantage of this strategy is represented by the fact that it is time-consuming since
it requires the generation of transgenic lines expressing the protein of interest.
Moreover, the maximum expression levels that can be obtained are generally those
of the original transgenic plant.

(ii) An alternative strategy for the generation of HRs is represented by the
co-infection of wild-type plant tissues with a mix of recombinant A. rhizogenes
strains bearing one or more genes of interest. These genes are typically cloned in
T-DNA cassettes of standard plant expression binary vectors, using strong constitu-
tive promoters such as the cauliflower mosaic virus 35S promoter (Odell et al. 1985)
and viral translational enhancers such as the omega (Ω) 50 leader sequence of
tobacco mosaic virus (TMV) (Gallie and Kado 1989). This approach usually

Table 9.1 Advantages/challenges of the production of heterologous proteins in hairy roots

Advantages
The final product can be secreted in the medium and is more homogeneous than a product

extracted from plant tissues

Efficient downstream processing when the protein is secreted in the culture medium

Absence of human pathogens

Production in sterile contained bioreactors

Long-term genetic stability compared to cell suspension cultures

Fast growth and large biomass accumulation

Challenges
Low protein yield in the culture medium

Culture scale-up

Plant-type glycosylation of proteins
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generates a lower percentage of clones expressing the recombinant protein compared
to the ‘classical’ transformation strategy but is very rapid and suitable for the
expression of complex multimeric proteins such as monoclonal antibodies (mAbs)
which require the assembly of two heavy chains (HC) and two light chains (LC) to
form the functional molecule. For instance, Lonoce and colleagues showed the
successful expression of a tumour-targeting mAb in N. benthamiana HRs, even if
the expression efficiency obtained using the co-transformation strategy was lower
compared to that observed in HRs derived from transgenic N. tabacum (only 20% of
the emerging roots expressed the protein compared to the 60% in N. tabacum),
although it must be noted that the overall expression levels between the two systems
were equivalent (30–40 μg/g of fresh weight) (Lonoce et al. 2016). This result
demonstrated that co-infection of leaf discs with a mix of A. rhizogenes carrying
antibody heavy chain (HC) and light chain (LC) coding sequences can be used for
the rapid establishment (approx. 2 month) of stable HR clones expressing functional
mAbs. Moreover, a previous study showed that the same multiple gene
co-transformation strategies successfully led to the co-expression of
β-glucuronidase (GUS) and green fluorescent protein (GFP) in N. tabacum HRs
(Huang et al. 2013). Several studies demonstrated that transgene expression in HRs
is strongly influenced by positional effects (genes are randomly inserted in different
regions of the genomic DNA) affecting not only protein expression but also hairy
root growth and morphology (Kim and Veena 2007; Huang et al. 2013). This
accounts for the strong variation in protein expression and growth that we and
other groups observed among individual transgenic HRs expressing heterologous
proteins in different plant species (Wongsamuth and Doran 1997; Häkkinen et al.
2014; Lonoce et al. 2016). For this reason, the screening of a large number of clones

Fig. 9.1 Hairy roots of N. benthamiana expressing the red fluorescent protein (RFP). RFP was
visualized using a mercury vapour lamp. (a) Hairy roots on solid medium; (b) hairy roots grown in a
shake flask with liquid medium
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generally permits the selection of hairy root lines with high accumulation levels of
the heterologous protein.

In addition to the stable integration into the plant cells, the gene of interest can be
transiently expressed in HRs using recombinant plant viral vectors. Transient or
epichromosomal transformation differs from stable transformation as the exogenous
sequence does not integrate into the genome of the plant/tissue and the transgene is
not inherited by the progeny. Viral transient expression systems are based on the
ability of plant viruses to infect plant tissues and spread from cell to cell. An
important advantage is the speed of production, but the main limitations are
represented by the possible loss of the foreign gene during viral replication and the
size constraints of the gene that can be accommodated by the viral genome. The
different strategies published in literature exploit the ability of plant viruses, such as
tobacco mosaic virus (TMV), to infect root tissues and spread from cell to cell. For
example, a work aimed at determining the feasibility of using transient viral infection
of HR cultures for propagating wild-type and recombinant plant viruses was based
on TMV (Shadwick and Doran 2007a). Hairy root cultures obtained by infecting
seedlings of Nicotiana tabacum and N. benthamiana with A. tumefaciens were first
infected with wild-type TMV to evaluate the kinetics of root growth and virus
accumulation and the correlation between HR biomass and viral accumulation
levels. The results revealed that virus infection did not affect the HR proliferation
and biomass increase. Then HRs were infected with TMV-GFP expression vector
(TMV-30B). The infectivity of virus was high initially but declined as the culture
progressed, and no GFP expression was revealed, probably due to the loss of GFP
gene during viral replication as already observed in leaf infection (Shadwick and
Doran 2007b). A different strategy was used by Skarjinskaia and colleagues to
express GFP and human growth hormone (hGH) in HRs (Skarjinskaia et al. 2008).
In this work HR cultures were generated from N. benthamiana leaves systemically
infected with two TMV 30-derived expression vectors, carrying GFP- or
hGH-encoding sequences. The results showed that about 70% of HR clones
expressed the heterologous proteins and that the GFP and hGH accumulation levels
were maintained stable through 3 years of HR propagation (Skarjinskaia et al. 2008).

To address the potential instability of the plant viral expression vector that may
limit the range of their application in HR cultures, a new strategy based on the pBID4
hybrid vector also known as ‘launch vector’ was described (Musiychuk et al. 2007).
The hybrid vector was derived from an Agrobacterium binary vector (pBI121) and
contained the TMV genome expression cassette, in which the CP gene was replaced
with the gene of interest. N. benthamiana HR cultures, obtained by infection with
recombinant A. rhizogenes carrying different launch vectors for several vaccine
targets such as the human papilloma virus (HPV) E7 oncogene and a fusion protein
containing the Bacillus anthracis protective antigen toxin (PA), showed the feasi-
bility of long-term foreign protein production in HRs using this system (Skarjinskaia
et al. 2013).
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9.3 Enhancing the Production of Heterologous Proteins
in Hairy Roots

One of the main advantages of using the HR expression system is the possibility to
secrete correctly folded and functional recombinant proteins into the culture medium
easing the downstream purification process. Several approaches have been applied to
trigger the secretion of the heterologous proteins in the medium such as the use of
hormones (auxins) that have been demonstrated to increase heterologous protein
accumulation (Häkkinen et al. 2014). Indeed, it was shown that auxins play a role in
root development by increasing lateral and adventitious root formation that may
provide increased surface area for the production and secretion of recombinant
antibodies (Drake et al. 2009). Another interesting observation was made in roots
of tobacco plants grown in hydroponic culture medium induced with auxins.
Authors identified mRNAs encoding several cell wall remodelling genes, including
a subtilisin-like protease and expansins that indicate a possible role of auxins in cell
wall remodelling (Madeira et al. 2016). Recently, several studies demonstrated that
the addition of the synthetic auxin 1-naphthaleneacetic acid (NAA) into the culture
medium greatly increased the accumulation of recombinant antibodies (Lonoce et al.
2016). In addition to the use of auxins, some strategies were aimed to increase
protein synthesis by adding potassium nitrate (KNO3) as a nitrogen source. It was
shown that the use of KNO3 could enhance the accumulation of the mAb M12
antibody in tobacco HRs by almost two times (Häkkinen et al. 2014). Once secreted,
heterologous proteins could be attacked by proteases; the addition of protein stabi-
lizers was shown to be a valid strategy to protract the half-life of secreted proteins.
The most widely used are polyvinylpyrrolidone (PVP) and bovine gelatin which in
some cases are demonstrated to significantly increase the accumulation of monoclo-
nal antibodies in HR medium (Wongsamuth and Doran 1997; Häkkinen et al. 2014).
Another approach to enhance heterologous protein expression was the fusion of the
E7 oncoprotein of HPV with stabilizing molecules such as the LickM carrier from
Clostridium thermocellum. This fusion protein antigen was transiently expressed in
roots of N. benthamiana using the launch vector and successfully evaluated as
prophylactic and therapeutic vaccine in mouse models (Massa et al. 2007).

HRs expressing recombinant proteins have been established from numerous
species of dicotyledonous plants such as Brassica rapa, Solanum lycopersicum,
Lotus corniculatus, N. tabacum and N. benthamiana showing consistency in target
gene expression over an extended period of time (Georgiev et al. 2012). Among the
successfully produced heterologous proteins, we can find antibodies (Lonoce et al.
2016), vaccine antigens (Skarjinskaia et al. 2013), the human enzyme alkaline
phosphatase (Gaume et al. 2003), the tissue plasminogen activator (t-PA) (Kim
et al. 2012) and the murine cytokine interleukin-12 (Liu et al. 2009). In particular,
most of them were secreted in the culture medium easing the downstream purifica-
tion processes. Among these, the highest yields were obtained in N. tabacum hairy
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roots expressing the murine mAb Guy’s 13 against the cariogenic dental pathogen
Streptococcus mutans (Wongsamuth and Doran 1997) and the tumour-targeting
human IgG M12 (5.9 mg/L) (Häkkinen et al. 2014) (Table 9.2).

9.4 Production of Antibodies in HR Cultures

Monoclonal antibodies (mAbs) are useful tools in medicine, biology and biochem-
istry because of their binding specificity and stability both in vitro and in vivo.
Antibodies generated by hybridoma technology or from phage display libraries are
widely used in medical research and disease diagnosis (Geyer et al. 2012), while
mammalian cell cultures are still the favoured systems for the production of com-
mercial mAbs, even if the increasing demand and the high costs are encouraging the
development of alternative expression platforms. Among alternative expression
systems, plants represent ideal bioreactors for the production of antibodies. In fact,
plants offer a cost-effective expression platform that can assemble such complex
multimeric molecules with high quality (Yusibov et al. 2016). Another advantage of
the production of antibodies in plants is represented by the possibility to direct the

Table 9.2 Different approaches used to increase the yield of antibody molecules in hairy root
cultures

Medium
additive Expression host Antibody

Yield of
secreted
antibody Culture type References

NAA 19 mg/
L PVP 1.5 g/
L KNO3

14 g/L

Tobacco Anti-
vitronectin
tumour-
targeting mAb
M12

5.9 mg/L Shake flask/
aeration/
mixing
Medicel
bioreactor

Häkkinen
et al. (2014)

NAA 19 mg/
L PVP 1.5 g/
L KNO3

14 g/L

Tobacco and
N. benthamiana

Anti-tenascin
C tumour-
targeting mAb
H10

2.70 mg/L
and
2.24 mg/L

Shake flask Lonoce et al.
(2016)

PVP 1.5 g/L Tobacco Anti-Strepto-
coccus mutans
mAb Guy’s 13

1.4 mg/L Shake flask Sharp and
Doran
(2001a, b)

KNO3 0.1%
PVP 1.0 g/L
Gelatin
9.0 g/L

Tobacco Anti-Strepto-
coccus mutans
mAb Guy’s 13

10.8 mg/L Shake flask/
air-lift
bioreactor

Wongsamuth
and Doran
(1997)

PVP 1.0 g/L
Gelatin
5.0 g/L

Tobacco Catalytic mAb
14D9

625 μg/L Shake flask Martínez
et al. (2005)

PVP polyvinylpyrrolidone, NAA 1-naphtaleneacetic acid, KNO3 potassium nitrate

9 Hairy Roots as Bioreactors for the Production of Biopharmaceuticals 219



protein expression in specific cell compartments or to specific cell storage compart-
ments such as seeds. Both transgenic plants and transient expression systems based
on whole plants have proved to be valuable platforms for the production of recom-
binant immunoglobulins. Nevertheless, expression of antibodies in plants still pre-
sents several drawbacks related to the extraction procedures, purification steps,
quality of the final product and regulatory issues (Sabalza et al. 2014). Extraction
procedures represent an important step, since these can influence the quality of the
final product even after purification (Platis et al. 2008). In fact, recombinant protein
extraction is often conducted in the presence of unwanted plant proteins and
compounds such as proteolytic enzymes, pigments, alkaloids, phenolics, polysac-
charides and DNA that can reduce the efficiency of protein extraction and the final
quality. Moreover, strict parameters are imposed by regulatory bodies that control
the introduction of plant-derived immunoglobulins in the market (Ma et al. 2015).
For all these reasons, HRs have several advantages over whole plants, mainly due to
the possibility of producing antibodies in sterile contained conditions and secreting
the recombinant proteins in the culture medium which greatly facilitates the down-
stream processes. The first example of a protein of pharmaceutical interest in HRs
was reported by Wongsamuth and colleagues in 1997, expressing the anti-Strepto-
coccus mutans mAb Guy’s 13 (Wongsamuth and Doran 1997). Since then there
have been several examples of mAbs expressed in HRs (Table 9.2) and in particular
two tumour-targeting antibodies, the anti-tenascin C mAb H10 and the anti-
vitronectin mAb M12 (Häkkinen et al. 2014; Lonoce et al. 2016). In the latter
work, authors optimized an induction protocol for the cultivation of tobacco HRs
secreting the mAb M12 in the culture medium. The addition of a nitrate source
(KNO3), a synthetic auxin (NAA) and a stabilizing agent (PVP) enhanced mAbM12
yield by 30-fold, and about 57% of the antibody produced was secreted in the
medium. Characterization of the purified antibody showed that it possessed a typical
plant glycosylation pattern, which still represents a major issue for plant-derived
antibodies to be used in human therapy. In another approach, the expression of the
catalytic murine IgG1 14D9 in N. tabacumHR cultures was studied. Antibody 14D9
catalyzes the stereo-selective transformation of achiral enol ethers having a potential
practical application in organic synthesis. Authors demonstrated that the addition of
PVP (at 1.5 g/L) and gelatin (at 5.0 g/L) increased the total 14D9 amounts in the
culture medium reaching levels of about 625 μg/L (Martínez et al. 2005). Antibody
purification from HR culture medium demonstrated to be particularly facilitated
requiring a simple two-step procedure constituted by, first, clarification of the
medium by centrifugation or filtration and, second, affinity chromatography step
using protein A resin. In the case of the mAb H10 antibody, Lonoce and colleagues
reported a 60% recovery of the total antibody from the culture medium compared to
the 30% obtained from the root extracts, with final yields of 1.5 mg/L of purified
antibody (Lonoce et al. 2016).
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9.4.1 Production of Glyco-optimized Antibodies in Plants
and HR Cultures

Post-translational modifications occurring in antibodies have been extensively stud-
ied, and it has been demonstrated that glycosylation is crucial for many fundamental
biological processes, including antibody-dependent cellular cytotoxicity (ADCC),
complement activation and Fcγ receptor-binding ability (Gomord et al. 2005). These
modifications are often essential for the stability and biological activity of a protein
especially in the case of antibodies (Gomord et al. 2010). In fact, it has been
evaluated that in these molecules, different glycosylation patterns could affect
protein half-life in blood and, in some cases, the capability to interact with the
components responsible for the stimulation of the immune system (Jefferis 2009). In
eukaryotes, oligosaccharides are added on specific sequences of secreted proteins in
the endoplasmic reticulum (ER) in a process called N-glycosylation. Biosynthesis of
N-glycans can be divided into two steps, which occur sequentially in the ER and
downstream in the Golgi. In the ER, glycosylation between mammals and plants is
highly similar showing minimal differences in N-glycans found on mature glyco-
proteins (Gomord et al. 2010) (Fig. 9.2). The major differences are found in the
Golgi apparatus where plant-specific complex-type glycans are added by the
enzymes β-1,2-xylosyltransferase (XylT) and α-1,3-fucosyltransferase (FucT)
absent in mammalian cells (Lerouge et al. 2000) (Fig. 9.2). Furthermore, plant
glycoproteins differ from their mammalian counterpart for the lack of
β-1,4-galactose, sialic acid complex-type glycans, core α-1,6-fucose and the

Fig. 9.2 Different glycosylation patterns among plants and mammals. Silencing of the plant
endogenous α-1,3 fucosyltransferase (FucT) and β-1,2 xylosyltransferase (XylT) genes was used
to obtain heterologous proteins with human-compatible glycans. The main glycan structure found in
these recombinant proteins is circled
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homologous of the mammalian N-acetylglucosaminyltransferases involved in fur-
ther branching of the bi-antennary N-glycans. As described in literature, proteins
harbouring plant sugars could induce adverse side effects when used in human
therapy. In fact, the immunogenicity of these N-glycan epitopes is well documented,
and their role in allergy has not yet been clarified (van Ree et al. 2000; Bardor et al.
2003; Altmann 2007). Based on this concern, new strategies have been adopted to
engineer antibody glycosylation profiles in order to reduce problems related to the
presence of typical plant sugars. Modulation of the N-glycosylation profile of plant-
produced antibodies is largely described in literature and known as ‘glyco-engineer-
ing’. Several strategies have been exploited until now to modulate the glycan
structure such as retention of immunoglobulins in the ER using C-terminal KDEL
tags (Sainsbury et al. 2010; Loos et al. 2011a, b; Lombardi et al. 2012), production of
aglycosylated antibodies through mutation of the HC-specific N-glycosylation site
(Lombardi et al. 2012), co-expression of antibodies with mammalian glyco-enzymes
(Vézina et al. 2009) and expression of antibodies in plants in which genes coding for
glycosyltransferases are inactivated or silenced by expression of siRNA (Strasser
et al. 2008). In these ΔXTFT N. benthamiana plants, RNA interference strategy was
used to obtain a targeted downregulation of the expression of endogenous α-1,3
fucosyltransferase (FucT) and β-1,2 xylosyltransferase (XylT) genes. The absence of
β-1,2-xylose and α-1,3-fucose in the final purified antibodies was confirmed by mass
spectrometry (MS) analysis and immunoblotting, demonstrating the possibility to
use these engineered plants as an efficient expression platform for the production of
human mAbs without detectable plant-specific N-glycan residues (Strasser et al.
2014). This strategy showed the possibility to obtain plant-derived immunoglobulins
harbouring a human-compatible N-glycosylation pattern representing an ideal pro-
duction platform of immunotherapeutic proteins. In a recent work, Lonoce and
colleague generated HRs starting from glyco-engineered ΔXTFT N. benthamiana
plants (Lonoce et al. 2016). The tumour-targeting monoclonal antibody mAb H10
was expressed by co-infecting leaf discs of the glyco-engineered plant with recom-
binant A. rhizogenes carrying mAb H10 heavy and light chain cDNAs. Selected HR
clones accumulated mAb H10 in the culture medium with yields of 2–3 mg/L.
N-Glycosylation profiles of antibodies purified from HR supernatant revealed glycan
structures lacking xylose and fucose residues. This represents a step forward towards
the exploitation of root cultures for the production of human therapeutic antibodies,
demonstrating that the co-infection of glyco-engineered plants with recombinant
A. rhizogenes is an efficient strategy for the generation of HRs expressing mAbs with
a human-compatible glycan profile.

9.5 Conclusions

We have shown that HR cultures are an advantageous system for the production of
different recombinant proteins that span from vaccine antigens and enzymes to
therapeutic monoclonal antibodies. Although HRs offer several advantages, there
are still many challenges to be faced in order to compete with traditional production
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systems such as yeasts and animal cell cultures. Among these the most important one
is related to the low accumulation yield of recombinant protein that is generally
achieved in the culture medium. In the case of mAbs, the highest accumulation levels
reported were in the range of 20 mg/L, a value which is still far from those (several
grams per litre) obtained in Chinese hamster ovary (CHO) cell cultures. For this
reason current and future efforts should be focused on enhancing the secretion of
recombinant proteins from HRs as well as in minimizing the proteolytic degradation
occurring in the culture medium. Several studies suggest that the optimization of
expression constructs, the use of different inducers of secretion, such as synthetic
auxins, as well as novel stabilizing agents could effectively increase the accumula-
tion levels of recombinant proteins making HRs a more competitive commercial
production platform. Another aspect that could increase the impact of HRs is also the
possibility of producing therapeutic proteins with tailored glyco-modified profiles.
Indeed, glycosylation was demonstrated to exert a profound impact in the biological
function of several proteins and particularly in the case of antibodies. Monoclonal
antibodies lacking fucose residues are currently evaluated in clinical studies for their
enhanced therapeutic efficacy and are considered as novel drugs showing improved
characteristics over the original molecules (‘biobetters’). In conclusion, HRs show
great potential as a novel production platform of biopharmaceuticals endowed with
enhanced functionality.
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Chapter 10
Phytoremediation of Persistent Organic
Pollutants (POPs) Utilizing Transgenic
Hairy Root Cultures: Past and Future
Perspectives

Yoshihiko Nanasato and Yutaka Tabei

Abstract Persistent organic pollutants (POPs) are halogenated compounds that
were once widely used. Common properties of POPs are persistence in the environ-
ment, high toxicity to s and wildlife, bioaccumulation in biological tissues,
biomagnification through food chains, and long-range transport. Although they are
now banned or restricted in many countries owing to their persistence in the
environment, POPs are of particular concern for continuing potentially adverse
effects on human health and the environment. Therefore, urgent action is required
to address the global elimination, remediation, cleanup, and safe disposal of POPs.
Phytoremediation has received attention for mitigating POPs pollution and is appro-
priate for in situ degradation of pollutants over a large area, which contributes to its
cost-effectiveness. However, ordinary plant species are unable to take up POPs from
soil. Furthermore, there is no specific enzyme that degrades or detoxifies POPs in
plants. Some plant species, for example, Cucurbita species, possess the unique
ability for uptake of significant amounts of POPs and are considered
hyperaccumulators of POPs. Genes encoding POPs-degrading enzymes have been
isolated from POPs-degrading microorganisms. Generating transgenic
hyperaccumulator plants expressing POPs-degrading enzymes might have promise
as a practical means of phytoremediation of POPs. However, production of trans-
genic plants is laborious and time-consuming. The hairy root culture system has
several advantages compared to other tissue culture systems. In addition, we discuss
the utility of “composite plants,” chimeras containing wild-type shoots with trans-
genic hairy roots, from the perspective of biosafety and rapid evaluation of
phytoremediation ability in a POPs-contaminated field.
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10.1 Introduction

A number of man-made halogenated organic compounds have been manufactured
and used for many purposes such as pesticides, herbicides, refrigerants, fire retar-
dants, electrical insulation oil, paints, and solvents. Of great concern, some of these
compounds are highly detrimental to the health of organisms through
bioaccumulation in their tissues and biomagnification in food chains. These com-
pounds are highly resistant to natural degradation and are capable of long-range
transport even to regions where these compounds have never been used. These
compounds are now called persistent organic pollutants (POPs) (the Stockholm
Convention, UNEP, http://chm.pops.int). Under the Stockholm Convention, POPs
are categorized as those subject to elimination, restriction, and unintentional pro-
duction, and there has been an increase in the number of compounds listed as POPs
(Table 10.1). Despite the restriction and banning of these compounds, contamination
of breast milk, water, and soil by POPs has been reported over all regions in the
world. Recently, a research group reported detection of some POPs in fauna from the
deepest ocean trenches (>10,000 meters) (Jamieson et al. 2017). General information
on POPs is available on the website of the Stockholm Convention. This review
focuses on previous research and future perspective on phytoremediation of POPs
using hairy root cultures.

1. Phytoremediation of POPs
2. Transgenic approach for degradation of POPs
3. Test system for phytoremediation of POPs using hairy root cultures
4. New application of composite plants for safer genetically modified organisms
5. Conclusions and future perspective

10.2 Phytoremediation of POPs

“Phytoremediation” was coined in the 1990s to describe the use of plants for
removal of toxic metals (Raskin et al. 1994; Salt et al. 1995), and this technology
has been used to remove various organic and inorganic pollutants (Pilon-Smits
2005). Since phytoremediation is ultimately driven by solar energy, it is more
economical than methods such as excavating, washing, and burning soil or pump-
and-treat systems (Schnoor 1997). Another advantage of phytoremediation is that
the original soil remains after treatment because there is no need to remove the soil.
Compared to other chemical treatments, phytoremediation is appropriate for in situ
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degradation of pollutants in a large area, which contributes to its cost-effectiveness.
Mechanisms for transport of contaminants to land plants are divided into sorption of
contaminants by the roots and distribution within the shoots through xylem and phloem
transport. The flow of organic pollutants from the soil to plants is expressed by the root
concentration factor and the transpiration stream concentration factor (Briggs et al. 1982).

Obviously, bioavailability of a pollutant is important for its remediation. The bioavail-
ability depends on the chemical properties of the pollutant, soil properties, environmental
conditions, and biological activity. One important chemical property of a pollutant that
affects its movement in soils is its hydrophobicity. Hydrophobicity is usually expressed as
the octanol-water partition coefficient, or log Kow. A high log Kowvalue corresponds to
high hydrophobicity. POPs are extremely hydrophobic molecules (log Kow > 3) that are
tightly bound to soil organic matter and do not dissolve in soil pore water (Briggs et al.
1982). This lack of bioavailability limits their ability to be phytoremediated, leading to
their classification as recalcitrant pollutants. Volatility of pollutants, expressed as their
Henry’s law constant (Hi), is another important chemical property (Davis et al. 2002).
POPs are often recognized as semi-volatile compounds.

Phytoremediation is categorized into types reflecting the specific mechanism
involved in the removal of the pollutant: (i) phytoextraction, removing pollutants
from soils by concentrating them in aerial parts of plants; (ii) phytovolatilization,
releasing pollutants into the atmosphere through plant transpiration; (iii)
phytostabilization, reduction of the mobility of pollutants in soil;
(iv) phytostimulation, enhancing microbial activity for degradation of pollutants in
the rhizosphere by plants; and (v) phytodegradation, breakdown of pollutants within
plant tissues. These technologies are not mutually exclusive because accumulation,
stabilization, and volatilization can occur simultaneously.

For efficient removal of a pollutant in the soil, the ability to take up large concentrations
of pollutants is essential. Plant species that accumulate high levels of inorganic elements
are so-called hyperaccumulators (Brooks et al. 1977; Peer et al. 2005). For heavy metals,
many hyperaccumulator or metallophyte species have been investigated such as Elsholtzia
splendens, Silene vulgaris, Thlaspi caerulescens, Alyssum species, Arabidopsis halleri,
Sedum alfredii, Brassica juncea, and Pteris vittata for Cu, Zn, Ni, Cd, Pb, Se, and As
(Ma et al. 2001; Song et al. 2004; Weng et al. 2005; Liu et al. 2007; Singer et al. 2007;
Milner and Kochian 2008; Ueno et al. 2008). Some plant species have been investigated
for remediation of toxic organic pollutants such as polycyclic aromatic hydrocarbons
(PAHs) and explosives (Hannink et al. 2001; Harms et al. 2002; Tang and Mo 2007). As
well as ordinary organic pollutants, there are reports on uptake of or tolerance to POPs
such as DDT, PCBs, and HCHs in various plant species (Table 10.2) (Calvelo Pereira
et al. 2006; Mo et al. 2008; Mikes et al. 2009; Abhilash and Singh 2010; Abhilash et al.
2013; Dubey et al. 2014; Rissato et al. 2015).

One major factor making phytoremediation of POPs difficult is the poor uptake of
POPs by plants. Because of their extremely hydrophobic properties (log Kow > 3),
they are recalcitrant to uptake by plant species from soil. Although there is no clear
benchmark for a hyperaccumulator of organic pollutants, Cucurbita species are
generally considered as hyperaccumulators of POPs. The species has been exten-
sively studied for uptake and translocation of POPs, such as DDT, PCBs, dieldrin,

10 Phytoremediation of Persistent Organic Pollutants (POPs) Utilizing. . . 231



Table 10.2 Examples of studies on phytoremediation of POPs

Species POPs References

Withania somnifera
Dunal

Lindane (γ-hexachlorocyclohexane) Abhilash and
Singh (2010)

Jatropha curcas L. Lindane (γ-hexachlorocyclohexane) Abhilash et al.
(2013)

Spinacia oleracea L. Lindane (γ-hexachlorocyclohexane) Dubey et al.
(2014)

Raphanus sativus HCHs, DDT, HCB, and PCBs Mikes et al.
(2009)

Zea mays DDT Mo et al.
(2008)

Ricinus communis L. HCHs, chlordane, DDT, aldrin, dieldrin, endrin, hep-
tachlor, and other organochloride pesticides

Rissato et al.
(2015)

Avena sativa L.
Chenopodium spp.
Solanum nigrum L.
Cytisus striatus
(Hill) Roth.
Vicia sativa L.

HCHs Calvelo
Pereira et al.
(2006)

2 cultivars of
Cucurbita pepo L.
Cucumis sativus L. cv.

PCDD/PCDF Hülster et al.
(1994)

2 cultivars of
Cucurbita pepo L.
Spinacia oleracea cv.

p,p’-DDE (a metabolite of DDT) White (2001)

2 cultivars of
Cucurbita pepo L.
Festuca arundinacea
cv.
Lolium multiflorum
cv.
Medicago sativa cv.

DDT Lunney et al.
(2004)

Cucurbita pepo L. cv.
Cucurbita pepo �
C. texana cv.
Cucumis sativus L. cv.

DDTs, chlordane Mattina et al.
(2006)

32 plant species
34 cultivars of
Cucurbita sp.

Dieldrin, endrin Otani et al.
(2007)

3 cultivars of
Cucurbita pepo L.

PCDD/PCDF, PCBs Inui et al.
(2008)

Cucurbita pepo L.
Cucurbita
maxima Duch.
Cucurbita
moschata Duch.
Cucurbita sativus L.
Brassica oleracea var.
Glycine max Merrill

HCHs, dieldrin, endrin, heptachlor, and DDT Namiki et al.
(2013)

(continued)
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endrin, and dioxins (Table 10.2) (Hülster et al. 1994; White 2001; Lunney et al.
2004; Mattina et al. 2006; Otani et al. 2007; Inui et al. 2008; Namiki et al. 2013;
Sugiyama et al. 2013). Although the molecular mechanisms for uptake of extremely
hydrophobic organic pollutants are not fully understood, candidate key factors have
been reported for uptake and solubilization of POPs (Murano et al. 2010; Inui et al.
2013, 2015).

10.3 Transgenic Approach for Degradation of POPs

Another factor making it difficult for phytoremediation of POPs is the difficulty in
breaking them down into nontoxic compounds. Moreover, some of them are toxic to
plant cells. In other words, rapid degradation of POPs after uptake is required for
efficient phytoremediation. Some POPs can be degraded in plant cells via endoge-
nous enzymatic activities. Wilken et al. (1995) determined the metabolism of
10 PCB congeners in cell cultures from 13 plant species. However, metabolites
can be as persistent and toxic as the parent POPs (Machala et al. 2004; Grimm et al.
2015). One effective solution is utilization of a set of catabolic enzymes isolated
from POPs-degrading bacterial strains (Chakraborty and Das 2016). There are
several examples of candidate genes. The genes encoding the terminal oxygenase
components (dbfA1A2) of dibenzofuran 4,4a-dioxygenase (DFDO) isolated from
Terrabacter sp. and the genes encoding carbazole 1,9a-dioxygenase (CARDO)
isolated from Pseudomonas sp., respectively, degrade polychlorinated dibenzofu-
rans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) (Habe et al. 2001).
The genes encoding biphenyl dioxygenase (bph genes) isolated from Rhodococcus
sp. can degrade PCBs (Masai et al. 1995). The bph genes are also involved in
degradation of DDE, a primary decomposition product of DDT (Nguyen et al. 2013).
The lin genes encoding dehalogenases isolated from Sphingobium sp. are involved
in degradation of γ-HCH (Nagata et al. 2007) and β-HCH (Ito et al. 2007). Extensive
studies have identified and characterized the degradation pathway and genes
involved in these bacterial strains. Therefore, utilization of the entire set of genes,
rather than a single gene, is desired for complete detoxification. Direct application of
these bacteria into contaminated soil, often called bioaugmentation (Singer et al.
2005), is also an attractive approach. But many factors such as temperature,

Table 10.2 (continued)

Species POPs References

Solanum
lycopersicum Mill.
Zea mays L.

10 cultivars of
Cucurbita
maxima Duch.

Heptachlor Sugiyama
et al. (2013)
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moisture, pH, and organic matter content affect the viability of bacteria introduced
into soil, and it has been observed that the number of exogenous microorganisms
decreases shortly after soil inoculation (Mrozik and Piotrowska-Seget 2010). We
believe a strategy using transgenic plants expressing one or more POPs-degrading
enzymes offers a shortcut to produce plants for phytoremediation of POPs. Uptake
and detoxification of organic pollutants, for example, explosives and herbicides,
have been reported using transgenic plants (Kawahigashi et al. 2005; Uchida et al.
2005; Abhilash et al. 2009; Shimazu et al. 2011; Vail et al. 2014).

10.4 Test System for Phytoremediation of POPs Using
Hairy Root Cultures

From the view point of practical applications, it is crucial to use hyperaccumulator
plants as hosts for introduction of POPs-degrading enzymes. However, to our
knowledge, there are only reports with non-hyperaccumulator plants such as
Arabidopsis thaliana or Nicotiana tabacum. One of the major bottlenecks is the
lack of tissue culture and transformation systems for POPs hyperaccumulators.
Although transformation systems have been reported for Cucurbita species (Tricoli
et al. 1995; Shah et al. 2008; Nanasato et al. 2011, 2013), it is still laborious and
time-consuming to produce transgenic Cucurbita compared with model plant spe-
cies. It is also difficult to identify other candidate plant species for development of
tissue culture and transformation systems. Moreover, it takes a long time to evaluate
whether an introduced heterologous enzyme will be stable and work well in plant
cells. Characterization of metabolites of POPs generated by introduced transgenes in
the plants is also required. From this perspective, in vitro plant cell culture systems
such as callus and cell suspension cultures are suitable biotechnological tools for
rapid analysis of transgenic plant cells and fundamental studies of the interactions
between plants and pollutants. In particular, hairy root cultures produced by infec-
tion with Agrobacterium rhizogenes (Rhizobium rhizogenes) are an ideal tool with
several specific advantages: (i) genetic and biochemical stability, (ii) rapid growth in
standard media without phytohormones, (iii) low costs of implementation and easy
maintenance of a lot of transgenic lines, and (iv) possibility of development in
industrial bioreactor models (Veena and Taylor 2007; Agostini et al. 2013; Adrián
et al. 2017). Moreover, hairy root cultures have an organized structure and secondary
cell walls, so they can bridge the gap between in vitro culture systems and in vivo
whole plants. In addition, plant roots are in direct contact with soil or water, and
hence the pollutants present therein, so a hairy root culture system is much more
suitable for phytoremediation studies than other cell culture systems. More than
450 species of plants are susceptible to infection by A. rhizogenes (Porter 1991).
There are reports on development of hairy root cultures for Cucurbita species
(Katavic et al. 1991; Ramírez-Ortega et al. 2015) and other candidates for
hyperaccumulating or tolerant plant species such as Jatropha curcas and Withania
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somnifera (Kajikawa et al. 2012; Thilip et al. 2015). Accumulation of and tolerance
to heavy metals such as Cu, Cd, Ni, U, and Zn have been investigated using hairy
root cultures of hyperaccumulators (Nedelkoska and Doran 2000a, b; Eapen et al.
2003; Subroto et al. 2007; Vinterhalter et al. 2008). In an example for organic
pollutants, Wevar Oller et al. (2005) demonstrated the utility of transgenic hairy
root cultures for degradation of phenol. In contrast, only a few reports have described
phytoremediation of POPs using hairy root cultures (Table 10.3). Suresh et al.
(2005) reported uptake and degradation of DDT by hairy root cultures of Cichorium
intybus and Brassica juncea. Metabolites of degradation (DDD, DDE, DDMU, and
some unidentified products) ranged from 10% to 20% of the applied DDT in the
hairy root cells after 10 days of incubation. A hairy root culture of Solanum nigrum
was used to determine metabolites of various PCB congeners (Kučerová et al. 2000;
Rezek et al. 2007). Transgenic hairy root cultures were generated to evaluate the
function of linA, a gene encoding γ-HCH dehydrochlorinase isolated from a
γ-HCH-degrading microorganism (Imai et al. 1991) in Cucurbita moschata
(Nanasato et al. 2016). The LinA protein, targeted to the apoplast, accumulated in
the hairy root cultures, which degraded more than 90% of the applied γ-HCH
(1 ppm) in overnight incubation. These results indicate that linA has high potential
for phytoremediation of environmental γ-HCH.

10.5 New Application of Composite Plants for Safer
Genetically Modified Organisms

As described above, a transgenic approach is critical for phytoremediation of POPs
in practice. However, it introduces another problem: gene flow from transgenic
plants, especially through transgenic pollen. Several techniques to produce plants
that do not produce pollen have been reported, such as genetically engineered male
sterility (Zhan et al. 1996; Beals and Goldberg 1997; Konagaya et al. 2008) and
plastid transformation (Ruf et al. 2007; Svab and Maliga 2007). These techniques
have been applied to A. thaliana, N. tabacum, and some crop plants. It is however
unclear whether these techniques are efficient for other plant species. A composite

Table 10.3 Hairy root cultures for phytoremediation of POPs

Species POPs
Introduced
genes Reference

Cichorium intybus
Brassica juncea

DDT – Suresh et al. (2005)

Solanum nigrum PCBs – Kučerová et al.
(2000)

– Rezek et al. (2007)

Cucurbita
moschata Duch.

Lindane
(γ-hexachlorocyclohexane)

linA Nanasato et al.
(2016)
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plant system is an alternative to tissue culture-derived transgenic studies. A com-
posite plant is a chimera containing wild-type shoots with transgenic roots
established by A. rhizogenes transformation, first reported using Lotus corniculatus
(Hansen et al. 1989). Collier et al. (2005) applied the system to make composite
plants with roots containing transgenes. The system has been applied in various plant
species such as Brassica oleracea, Coffea arabica, Nicotiana benthamiana, and
Cucurbita pepo (Collier et al. 2005; Alpizar et al. 2006; Li et al. 2010; Ilina et al.
2012). Because composite plants have wild-type shoots, they could be used in field
trials for phytoremediation of POPs even though they have transgenic roots. PCR
using primers to amplify rol, vir, and HrcA genes can confirm that the roots have
been transformed and the hairy root-inducing bacteria have been eliminated
(Nanasato et al. 2016). One of the important advantages of the system is that with
composite plants, there is no need for a tissue culture step. In addition, the plants can
be grown in soil. A flaw of hairy root culture systems is that they can be cultured
only in liquid media. A composite plant system can overcome this flaw. Composite
hyperaccumulators with transgenic roots containing POPs-degrading enzymes may
help to screen plants and transgenes for production of POPs-phytoremediating
plants.

10.6 Conclusions and Future Perspective

POPs have been widely manufactured and released into the environment. After the
1962 publication of Silent Spring by Rachel Carson, unwitting use of POPs was
reconsidered, and later their manufacture and use were restricted by the Stockholm
Convention. Nevertheless, environmental pollution by POPs remains, and their
spread has been global. Phytoremediation is a promising technology for in situ
remediation of many areas contaminated with POPs, but problems remain for
practical application. First, the underlying aspects of plant physiology including
the molecular mechanisms for uptake and translocation of POPs bound to the soil
into plant shoots are not fully understood. This study could help enhance the
accumulation of POPs in plants. Not only understanding the plant physiology but
also the rhizosphere biology is likely required, because synergetic action of
phytoremediation and plant-assisted bioremediation would be an attractive option
for enhancement of remediation in the environment. Second, there is a need for
exploring genes encoding POPs-degrading or POPs-detoxifying enzymes. Develop-
ment of metagenomics and whole-genome sequencing technology may help to
discover novel genes encoding POPs-degrading enzymes. In any event, evaluation
of the genes in POPs-hyperaccumulator plant cells is required. Hairy root culture
systems are ideal for rapid evaluation. We previously demonstrated the potential of a
transgenic hairy root culture for evaluation of a phytoremediation system (Nanasato
et al. 2016). Further exploration using transgenic composite plants containing other
POPs-degrading enzymes could help phytoremediation of POPs become more
widely applicable.
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Chapter 11
Use of Hairy Root System to Study
Signaling Pathways During Nodule
Formation

Swarup Roy Choudhury and Sona Pandey

Abstract Nodule formation by a specialized group of plants is one of the most
beneficial plant-environment interactions, where atmospheric nitrogen is biologi-
cally fixed into ammonia, which is subsequently converted to nitrates and amino
acids. The molecular basis of nodule formation has been studied in detail, and work
done in the past few years has led to seminal discoveries, connecting the initial signal
perception by the root hairs to the downstream signaling events and finally to cellular
and developmental changes that result in organogenesis and nodule formation.
Although the physiology of biological nitrogen fixation has been well known for
many years, the exquisite molecular details of nodule formation have been made
possible, mostly, by using the transgenic hairy roots on composite plants. Develop-
ment of hairy roots by Agrobacterium rhizogenes (A. rhizogenes) infection provides
an excellent experimental system to rapidly and efficiently evaluate the effect of
changes in the expression of specific genes or gene families on a range of root
phenotypes. By using this system, the Nod factor receptor-mediated signaling has
been linked to the infection thread formation and nodule organogenesis, two critical
events of nodulation. The use of hairy root system has made it possible to uncover
the details of signaling and developmental events using molecular genetics, geno-
mics, proteomics, and cell biological approaches, making the nodulation signaling
pathway one of the best understood in leguminous plants. This article provides an
overview of multiple rhizobium-legume interaction studies that utilized the hairy
root system to uncover the signaling pathways and offers perspectives on its future
uses in the context of the development of novel gene-editing capabilities in plants.
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11.1 Biological Nitrogen Fixation

Nitrogen is an essential element for plant survival. It is a key constituent of amino
acids, the building blocks of proteins, as well as of chlorophyll, a pigment required
for photosynthesis. Increasing nitrogen content biologically in the soil is an effective
strategy to produce higher crop yields while reducing chemical nitrogen fertilization
and, subsequently, environmental pollution. Among plants, legumes (family
Fabaceae) and few nonlegumes (some member of Cannabaceae) are able to fix
atmospheric nitrogen in soil through symbiotic association with rhizobia, by a
process known as biological nitrogen fixation (BNF). In agricultural systems, BNF
is an environmentally sound alternative to chemical fertilizers and economically
beneficial for crop production.

Only a subset of bacteria can convert atmospheric nitrogen to ammonia for BNF
in the host plants, due to the catalytic activity of nitrogenase. These important
nitrogen-fixing bacteria are called diazotrophs which include gram-negative
Rhizobia sp. and gram-positive Frankia sp. Rhizobia are responsible for the most
efficient nitrogen fixation processes by the formation of root nodules on legumes and
few nonlegumes (Oldroyd and Downie 2008; Desbrosses and Stougaard 2011).
Different genera of rhizobia including Azorhizobium, Bradyrhizobium,
Mesorhizobium, Rhizobium, and Sinorhizobium are capable to form a symbiotic
association with different legumes depending on their genetic compatibility. Sym-
biotic interaction between diazotrophs and legumes is responsible for the majority of
BNF, although minor contribution from certain actinomycete members such as
Frankia sp. which can form symbiotic relationship either by root hair infection or
intercellularly with a broad spectrum of plant families belonging to Betulaceae,
Casuarinaceae, Myricaceae, Rosaceae, Elaeagnaceae, Rhamnaceae, Datiscaceae,
and Coriariaceae also exists. In addition, some diazotrophs including Azospirillum
sp. and Azoarcus sp. form endophytic relationships with a wide variety of cereal
roots. Finally, certain cyanobacteria, mainly Nostoc sp., can fix atmospheric nitrogen
to colonize different plant organs (Santi et al. 2013; Pawlowski and Bisseling 1996).

11.2 Nodule Formation in Legumes

In this chapter, our main focus is on the underlying signaling mechanisms of root
nodule symbiosis in legumes via rhizobia and how the use of hairy roots has helped
uncover the exquisite details of these pathways (Fig. 11.1). The legume family is the
third largest family of flowering plants and includes plants varying from annual
herbs to large trees with many agronomically and economically important crops.
Research on legumes is driven, to a large extent, by their biological nitrogen-fixing
capacity. The formation of nodules leading to nitrogen fixation is quite complex and
tightly regulated but also inadequately understood at the molecular level. However,
recent advances in genome sequencing and development of hairy root
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Fig. 11.1 Schematics of nodulation signaling as established using hairy root transformation
system. Infection starts by secretion of flavonoids from roots, which trigger the production of
bacterial Nod factors (NF). NF perception involves plant receptor-like kinases comprising lysin
motifs NFR1 and NFR5 and a leucine-rich repeat SYMRK receptor. Receptors propagate signal
from the plasma membrane to cytosol via heterotrimeric and monomeric (ROP6, RabA2)
G-proteins, MAP kinase pathway (SIP2), HMGR1-dependent mevalonate (MVA) pathway,
ubiquitination (PUB1, SINA4, SIE3), and other proteins (SYMREM1, SIP1) to generate
unidentified secondary messengers, which are essential for calcium flux and calcium spiking in
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transformation methods of different legumes have helped tremendously our under-
standing of the signaling mechanisms during nodulation.

Generally, two major types of nodules are formed on legumes: (a) determinate
nodules that are characterized by a spherical shape and the lack of a persistent nodule
meristem, producing ureide products, e.g., in Lotus japonicus and Glycine max, and
(b) indeterminate nodules that are characterized by a cylindrical shape and the
presence of a persistent nodule meristem, producing amide products, e.g., in
Medicago truncatula and Pisum sativum (Sprent 2007). While determinate nodule
initials arise from the outer or mid-cortical cells of the root, indeterminate nodule
initials arise from the inner cortical cells. Two essential steps are needed for both
types of nodule development: one an early infection phase and two a late develop-
mental phase or organogenesis. The infection phase is started by the secretion of
flavonoids from the legume roots, which trigger the production of lipochitin oligo-
saccharide known as Nod factors (NFs) from bacteria. NFs are sensed by Nod factor
receptors (NFRs) present in the roots, and a number of morphological, biochemical,
and cellular changes begin which allow the rhizobia to invade the host root cells. The
most common entry strategy for rhizobia is by epidermal root hair curling and
infection thread (IT) formation, observed in L. japonicus, M. truncatula, G. max,
and Phaseolus vulgaris (Oldroyd and Downie 2008). Another nonclassical rhizobial
invasion strategy is known as crack invasion. In this case, the rhizobia access the
cortical cells through epidermal cracks, a point of epidermal damage, which is
generally caused by the emergence of lateral roots. This is commonly observed in
the Aeschynomeneae tribe of legumes, e.g., Arachis hypogea and Sesbania rostrata
(Sprent 2007; Oldroyd and Downie 2008). After access to the host cell, most
rhizobia invade the cytoplasmic space of the host cells via an endocytosis-like
process and stimulate the root cells to proliferate by cortical cell division. Subse-
quently, the rhizobia in the infected plant cells are enclosed within membrane-
bounded structures that develop into symbiosomes, where they differentiate into a
nitrogen-fixing form called bacteroids. This symbiosome membrane maintains the
exchange of substrate and signal molecules between host plant cell and the bacte-
roids (Verma and Hong 1996). Finally, the cortical cells of symbiosomes continue to
divide and fuse together to form the nodule (Oldroyd and Downie 2008; Desbrosses
and Stougaard 2011).

The progress in understanding the molecular details of nodulation signaling has
been greatly improved by the use of two model plant species, M. truncatula and

⁄�

Fig. 11.1 (continued) the nucleus. Several potassium and calcium channels, calcium pump, and
nucleoporins modulate the calcium flux at the nuclear membrane that may activate the calcium/
calmodulin-dependent protein kinase (CCaMK) by triggering the calcium spiking inside the
nucleus. CCaMK, the master regulator, interacts with other proteins and transcription factors to
activate transcriptional programs, leading to stimulation of multiple downstream genes. Dotted
arrows indicate proposed signaling routes, whereas solid arrows indicate established signaling
pathway. Inside the nucleus arrowheads and blunt heads represent positive and negative regulators,
respectively
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L. japonicus, although the studies in soybean, peas, peanuts, and few other legumi-
nous species have also been helpful. Both these model species are diploid, have
sequenced genome with modest genome sizes, are important representatives of
indeterminate and determinate nodules, respectively, and are amenable to genetic
manipulation by hairy root transformation as well as by tissue culture-based trans-
genic plant development (Boisson-Dernier et al. 2001; Limpens et al. 2004; Stiller
et al. 1997). Besides, the availability of genetic variants of these two plants from
different resources makes it easier for further studies (https://medicago-mutant.
noble.org/mutant) (Sandal et al. 2006; Cheng et al. 2014). In addition, the
genome-wide synteny between these two plants and other legumes suggests that
the study of these model legumes will provide important insight into the important
biological questions related to nodulation in other plants as well.

11.3 Hairy Root Transformation: A Strategy for Functional
Analysis of Genes

Efficient plant transformation by Agrobacterium tumefaciens has been described
only in few model legumes (Iantcheva et al. 2013). This procedure is plagued by
lengthy shoot regeneration period to analyze the transgenic constructs, and the
transformation frequency is relatively poor. To avoid these complications encoun-
tered with A. tumefaciens transformation techniques, it was important to find a
convenient way to allow more rapid evaluation of gene function in the model and
other legumes. To address this problem, Agrobacterium rhizogenes-mediated hairy
root transformation technique was developed. It is a versatile and adaptable model
system for a wide variety of plants. Recently, hairy root transformation system has
been extensively used to rapidly generate transgenic roots for genetic and molecular
analysis.

Hairy roots originate from plants due to the A. rhizogenes-mediated transforma-
tion. The genetic determinant of hairy root infection is a rol gene cluster located on
the A. rhizogenes root-inducing Ri plasmid (White et al. 1985). This powerful and
simple transformation tool facilitates the integration of novel genes into the infected
host plant. During this transformation process, the infection occurs within a host
plant with a compatible A. rhizogenes strain which results in the formation of
chimeric transgenic plants, consisting of untransformed shoots with multiple trans-
genic hairy roots (Lin et al. 2011). In addition to its speed and efficiency, this system
offers multiple advantages: (i) the transgenic roots are stably transformed in contrast
to transient transformations achieved by biolistic methods, so the results obtained
from such studies are more physiologically relevant; (ii) the vectors typically have a
GFP marker that allows easy identification of transgenic roots; (iii) the roots remain
responsive to various biological treatments, so the effects of transgenes on root
biology and physiology can be easily evaluated in an approximately natural envi-
ronment; (iv) the system provides an efficient way of evaluating multiple constructs
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for expression and functionality in a relevant genetic background; (v) the constructs
used with A. rhizogenes can be used with A. tumefaciens without the need for any
alteration, so the same constructs can be used for the generation of stable transgenic
plants. The system therefore becomes useful for the evaluation of plant-microbe
interactions, plant-fungus interactions, plant-nematode interaction, secondary
metabolite production, host-parasitic plant interaction, etc. (Boisson-Dernier et al.
2001; Limpens et al. 2004; Chandra and Chandra 2011).

The root nodule (RN) symbiosis has been actively studied for the last three
decades using hairy root transformation. The first hairy root transformation by
A. rhizogenes was reported for Lotus corniculatus (Jensen et al. 1986). Subsequently
it has been extended to other legumes for nodulation studies (Table 11.1), for
example, Trifolium repens (Diaz et al. 1989), Vigna aconitifolia (Lee et al. 1993),
G. max (Cheon et al. 1993), Vicia hirsuta (Quandt et al. 1993), L. japonicus (Stiller
et al. 1997; Kumagai and Kouchi 2003), Trifolium pratense (Diaz et al. 2000),
M. truncatula (Boisson-Dernier et al. 2001), P. sativum (Clemow et al. 2011),
A. hypogea (Sinharoy et al. 2009), S. rostrata, and Phaseolus spp. (Estrada-Navarrete
et al. 2007). In the following sections, we will the signaling circuit of nodulation,
which has been uncovered based on research using hairy root transformation.

11.4 Role of Hairy Roots in Establishing Flavonoids
as a Host-Derived Early Signal for Activation
of Bacterial Nod Factors

Flavonoids are one of the largest classes of phenylpropanoid-derived plant second-
ary metabolites with different functions in plants. More than 10,000 different
flavonoids have been identified and are classified into two major groups:
2-phenylchromans (flavonoids) and 3-phenylchromans (isoflavonoids). These sec-
ondary metabolites are involved in multiple physiological processes including plant
structural integrity, protection against ultraviolet (UV) radiation and phytopatho-
gens, auxin transport, coloration of flowers, and importantly nodulation signaling
process (Ferreyra et al. 2012). During nodulation, legume roots release specific
flavonoids into the surrounding soil to attract the rhizobia. Flavonoids also act as
auxin transport inhibitors inside the plant roots to change its direction and accumu-
late auxin at specific sites to allow cortical cell division for nodule formation. To
assess the functional role of flavonoids during nodulation genetically, hairy root
transformation was used in M. truncatula. RNAi-mediated knockdown of chalcone
synthase gene, which catalyzes the first committed step in the flavonoid biosynthesis
pathway, significantly inhibited flavonoid production in transgenic hairy roots.
These flavonoid-deficient transgenic roots were unable to initiate nodules, although
the auxin transport remains unaffected in this root (Wasson et al. 2006). To inves-
tigate further details of the role of individual flavonoids, different biosynthetic
enzymes of the flavonoid pathway including isoflavone synthase, chalcone
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Table 11.1 Examples of successful hairy root transformation in different legumes

Plant
common
name

Scientific
name Family

Agrobacterium
rhizogenes
strain Rhizobia species Protocol

Barrel
clover

Medicago
truncatula

Fabaceae Agrobacterium
rhizogenes
ARqua1

Sinorhizobium meliloti
strain RCR2011

Boisson-
Dernier
et al.
(2001)

Bird’s-
foot
trefoil

Lotus
japonicus

Fabaceae Agrobacterium
rhizogenes
LBA1334

Mesorhizobium loti
Tono

Kumagai
and
Kouchi
(2003)

Soybean Glycine
max

Fabaceae Agrobacterium
rhizogenes
K599

Bradyrhizobium
japonicum
(61A76)

Cheon
et al.
(1993)

Common
bean

Phaseolus
vulgaris

Fabaceae Agrobacterium
rhizogenes
K599

Rhizobium tropici
strain CIAT899

Estrada-
Navarrete
et al.
(2007)

Pea Pisum
sativum

Fabaceae Agrobacterium
rhizogenes
AR12 and
AR1193

Rhizobium
leguminosarum
bv. viciae 128C53K

Clemow
et al.
(2011)

Peanut Arachis
hypogea

Fabaceae Agrobacterium
rhizogenes
R1000

Bradyrhizobium
sp. (Arachis) NC92

Sinharoy
et al.
(2009)

Moth
bean or
Turkish
gram

Vigna
aconitifolia

Fabaceae Agrobacterium
rhizogenes
A4

Bradyrhizobium sp.
cowpea strain 3456

Lee et al.
(1993)

Hairy tare
or tiny
vetch

Vicia
hirsuta

Fabaceae Agrobacterium
rhizogenes
15834, C58C1,
AR12, R1000,
ARqua1,
ARqua2

Rhizobium
leguminosarum
bv. viciae

Quandt
et al.
(1993)

White
clover

Trifolium
repens

Fabaceae Agrobacterium
rhizogenes
LBA9402

Rhizobium
leguminosarum
bv. viciae

Diaz et al.
(1989)

Red
clover

Trifolium
pratense

Fabaceae Agrobacterium
rhizogenes
LBA 1334

Rhizobium
leguminosarum
bv. trifolii ANU843, Rhi-
zobium leguminosarum
bv. viciae
248, Mesorhizobium loti
E1R, M. loti E1R,
Sinorhizobium meliloti
2011 pMP604

Diaz et al.
(2000)
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reductase, flavone synthase, and chalcone synthase were silenced by hairy root
transformation in M. truncatula. These experiments revealed that the activation of
rhizobial Nod operon and sustained induction of NF biosynthesis during infection
thread development were indeed facilitated by flavone, whereas auxin transport was
modulated by flavonols. Conversely, no significant role was assigned to
isoflavonoids during nodulation signaling (Zhang et al. 2009). Overall, these data
confirmed that legumes use different flavonoid compounds to activate the rhizobial
nod operon and auxin transport modulation in roots during nodulation, underpinning
a link between RN symbioses and auxin signaling through flavonoids.

11.5 The Plasma Membrane-Localized Components
of Nodulation Signaling and Role of Hairy Roots
in Their Discovery

Flavonoids stimulate the transcription of bacterial nodulation genes leading to the
production of a lipochitin oligosaccharide signal, the Nod factors (NFs). NFs are
perceived by a pair of membrane-bound LysM receptors which lead to multiple
cellular responses including deformation and curling of root hairs for eventual
invasion of rhizobia and cortical and pericycle cell divisions (Oldroyd and Downie
2008; Oldroyd et al. 2011; Wais et al. 2002). LjNFR1 and LjNFR5 in L. japonicus,
MtLYK3 and MtNFP in M. truncatula, and GmNFR1α and GmNFR1β and
GmNFR5α and GmNFR5β in G. max are the LysM-RLKs (LysM-receptor-like
kinases) crucial for NF perception and activation of symbiotic signaling (Oldroyd
et al. 2011). Both LysM receptors (NFR1 and NFR5) interact with each other to form
a heterodimer, which can initiate downstream signaling. NFR1 contains an active
kinase domain, whereas NFR5 lacks several conserved kinase subdomains and acts
as a co-receptor. Mutants of these genes show complete impairment of nodule
formation due to the lack of NF perception (Radutoiu et al. 2003; Limpens et al.
2003; Madsen et al. 2003;Smit et al. 2007). Functional roles of these receptors were
established by the use of transgenic hairy roots. For example, overexpression or
complementation of NFR1 in nfr1 mutant (nod49) or NFR5 in nfr5 mutant (nod133)
background by strong constitutive or native promoter results in nodule formation
after rhizobial infection in soybean (Indrasumunar et al. 2011; Indrasumunar et al.
2010; Lin et al. 2011; Roy Choudhury and Pandey 2015). Similarly, functional
complementation of nfr mutants using the A. rhizogenes hairy root transformation
revealed that NFR1 kinase activity is essential for the in vivo function of NFR1, and
NFR1 can activate the NFR5 by phosphorylation (Madsen et al. 2011). These data
led to an important question: How does the signal perception by membrane-bound
NFRs connect with the downstream signaling in the nucleus? Again, hairy root
transformation-based research helped elucidate many nuclear and cytoplasmic com-
ponents of this signaling pathway.
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In addition to the LysM receptors, another leucine-rich repeat receptor-like kinase
(LRR-RLK) proteins play a significant role in nodulation by infection initiation as
well as for the internalization of bacteria in cortex cells during symbiosome forma-
tion (Endre et al. 2002). This LRR-RLK commonly known as symbiosis receptor
kinase (SymRK) in L. japonicus, DOES NOT MAKE INFECTIONS 2 (DMI2) in
M. truncatula, NORK (nodulation receptor kinase) in G. max, and SYM19 (Sym-
biosis 19) in P. sativum contains three LRR domains, a transmembrane domain, and
an intracellular kinase domain. Several studies revealed that SymRK interacts with
and functions downstream of the NFR1/LYK3 and NFR5/NFP receptors (Endre
et al. 2002; Stracke et al. 2002; Markmann et al. 2008; Oldroyd and Downie 2008).
Although the activation mechanisms of SymRK are unclear, it is proposed that these
receptor-like proteins form a complex with NFR proteins. It is also possible that
SymRK accepts yet unknown extracellular signals by its LRR domain (Stracke et al.
2002). Recently the autophosphorylation of a tyrosine residue of SymRK was
determined to be important for regulating its symbiotic activity (Saha et al. 2016).
RNAi-mediated knockdown of SymRK by hairy root transformation inM. truncatula
and S. rostrata established that the protein is crucial not only for early infection stage
but also for symbiosome formation during nodule development (Capoen et al. 2005;
Limpens et al. 2005).

11.6 The Cytosolic Components of Nodulation Signaling
and Role of Transgenic Hairy Roots in Their
Identification and Characterization

Relatively few cytoplasmic components involved in regulation of nodule formation
immediately following the NF perception are known to date. To identify potential
interacting proteins of the receptors, a yeast two-hybrid-based cDNA library screen
was performed using LYK3 of M. truncatula (Andriankaja et al. 2007). This study
identified PUB1, a UND-PUB-ARM protein or U-box (PUB) E3 ubiquitin ligase
protein, as an interactor of LYK3. PUB1 is strongly induced by NFs, specifically in
the roots during nodulation. Additionally, PUB1 is phosphorylated by LYK3
in vitro. To address the question of the physiological role of PUB1, both knockdown
and overexpression approaches were used in hairy root transformation system. A
strong increase in the number of nodules was observed by suppressing PUB1 levels,
whereas its overexpression caused a delay in nodulation. This study established that
a possible receptor-mediated, phosphorylation-based mechanism modulates PUB1
(or E3 ubiquitin ligases in general) in controlling plant-rhizobial interactions by
functioning as a negative regulator of LYK3 signaling pathway (Mbengue et al.
2010).

A similar yeast-based library screening was performed by using kinase domain of
NFR5 in L. japonicus. This screen identified Rho-like GTPase (ROP6) protein,
which interacts with NFR5 in a GTP-binding-dependent manner. Again, to establish
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the role of ROP6 in regulating nodulation, transgenic hairy roots were generated by
RNAi-mediated silencing of ROP6. A detailed study of transgenic hairy roots at
different developmental stages confirmed that rhizobium entry was not influenced by
ROP6, but ROP6 is most likely responsible for the establishment of infection thread
(IT) growth through the root cortex. Suppression of ROP6 resulted in fewer nodules,
whereas its overexpression or expression of a constitutively active version of ROP6
(ROP6-CA) using hairy root transformation exhibited extensive root hair deforma-
tion after rhizobium (Mesorhizobium loti) infection, resulting in an increase of
infection threads and nodule number (Yuan et al. 2012). Further study on ROP6
has led to a model of clathrin-mediated endocytosis by clathrin triskelion (CHC1), as
an interactor of ROP6. The potential role of CHC1 was also ascertained by reduction
of nodule number in transgenic hairy roots after overexpression of inactive domain
of CHC1 or silencing of CHC1 during hairy root transformation (Wang et al. 2015).
Taken together these data suggest a possibility of endocytosis of NFRs by the
potential link between NFR5 and clathrin via ROP6 GTPase during nodulation.

A suppressive subtractive approach in response to infection with Rhizobium etli
strains in P. vulgaris found a GTPases of the Rab subfamily, RabA2, which is
responsible for the polar growth of root hair. Interestingly, nodulation was impaired
in RabA2 RNAi-silenced hairy roots indicating nodulation in RabA2 RNAi plants is
most likely the consequence of a compromised vesicle trafficking, which is required
for deposition of cell wall material for the infection thread formation (Blanco et al.
2009). These data suggest the involvement of GTPases in signaling during
nodulation.

One of the most well-defined membrane-bound signaling systems present in all
eukaryotes is the heterotrimeric G-protein complex, consisting of Gα, Gβ, and Gγ
proteins. Earlier pharmacological evidences provided the evidence for the involve-
ment of heterotrimeric G-proteins in atmospheric nitrogen-fixing nodulation process
in leguminous plants (Kelly and Irving 2003; Sun et al. 2007). Different downstream
components of the heterotrimeric G-protein signaling, including phospholipase C
and D, phosphatidic acid, diacylglycerol pyrophosphate, monomeric G-proteins, and
MAP kinases, have been proved to involve in the regulation of nodulation (Pingret
et al. 1998; Sun et al. 2007; Kelly and Irving 2003; Peleg-Grossman et al. 2007;
Oldroyd et al. 2011; Tirichine et al. 2006). To directly establish the involvement of
heterotrimeric G-protein during nodulation signaling, specific subunits of this sig-
naling complex were knocked down or overexpressed in soybean hairy root system.
Detailed analyses of the transgenic root phenotypes revealed that the Gβ and Gγ
subunits act as positive regulators of nodule development, whereas the Gα subunits
act as a negative regulator (Roy Choudhury and Pandey 2013). To establish the
direct role of G-protein signaling per se in regulation of nodulation process in
soybean, additional members of the G-protein complex were evaluated. A regulator
of G-protein signaling, a GTPase activity-accelerating protein (GAP), which deac-
tivates the G-protein cycle, positively regulated nodule development as revealed by
gene silencing and overexpression approaches using hairy root transformation (Roy
Choudhury and Pandey 2015). To probe if the heterotrimeric G-proteins are directly
interacting with the NFRs, an interaction screen was performed. Both the Gα
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proteins and RGS proteins interacted with the NFR1 protein of soybean. Further-
more, NFR1 was able to phosphorylate the RGS proteins, and the phosphorylation
led to an increase in its activity. This model suggested that at least one of the
functions of the NFRs after activation is to phosphorylate the RGS proteins, which
deactivates the Gα protein. Because the Gα protein is a negative regulator of nodule
formation, its deactivation led to successful nodulation. To further validate this
model, it was hypothesized that if one of the roles of the NFRs is to phosphorylate
RGS proteins, then introduction of a phosphomimic mutant of RGS protein in a
mutant lacking the receptor should be able to restore nodulation, at least partially. To
confirm this hypothesis, a phosphomimic version of RGS protein was introduced in
the nod49 (NFR1) mutant of soybean by hairy root transformation. Partial restora-
tion of nodule formation was observed, validating the hypothesis that the
heterotrimeric G-protein cycle is acting directly downstream of the NFRs to control
nodule formation in plants (Roy Choudhury and Pandey 2015, 2016).

The proteins functioning downstream of the SymRK complex and the signaling
pathways that follow are also beginning to be explored (Stracke et al. 2002). In
search of the potential interacting partner of SymRK, a yeast-based library screening
was performed by using intracellular kinase domain of L. japonicus SymRK as bait.
An AT-rich interaction domain (ARID) containing SymRK-interacting protein
1 (SIP1) was identified as an interacting partner of SymRK (Zhu et al. 2008).
Silencing or overexpression of SIP1 using transgenic hairy roots led to reduced or
increased nodule numbers, respectively, suggesting a positive role of SIP1 during
nodulation (Wang et al. 2013). Yeast-based library screening also identified
SymRK-interacting protein 2 (SIP2) as another potential interacting partner of
SymRK in L. japonicus. SIP2 belongs to the plant MAPKK family, and in vitro
analysis revealed that SymRK has a specific inhibitory effect on the kinase activity
of SIP2 toward its substrate MPK6 (Chen et al. 2012). To establish the functional
role of SIP2, hairy root transformation was used to knock down its expression.
Suppression of SIP2 reduced infection thread formation and nodule organogenesis,
indicating a positive role of SIP2 in nodulation similar to SIP1. Overall, these data
suggest that the route of signal transmission from SymRK to downstream compo-
nents is likely via the MAPK-based signaling module.

Several E3 ubiquitin ligases were also identified as potential interactors of
SymRK in yeast-based screening. Similar to NFR1, SymRK can interact with and
phosphorylate PUB1, an E3 ubiquitin ligase in M. truncatula (Vernie et al. 2016;
Mbengue et al. 2010). Additional genetic analysis revealed that PUB1, via its
ubiquitination activity, is essential for rhizobial infection and nodulation. Another
E3 ubiquitin ligase, SEVEN IN ABSENTIA (SINA4), interacts with the kinase
domain of SymRK in L. japonicus. Ectopic expression of SINA4 negatively
influenced SymRK protein levels for its ubiquitination activity resulting in the
impairment of infection thread formation and a strong reduction in bacteroid abun-
dance. Additionally, promoter analysis of SymRK and SINA4 after hairy root trans-
formation has shown partially overlapping expression patterns of these genes during
rhizobial infection and early nodule development (Den Herder et al. 2012). Further-
more, another SymRK-interacting E3 ubiquitin ligase, SIE3, has been shown to bind
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with and use SymRK as a substrate for ubiquitination in L. japonicus. Silencing of
SIE3 transcripts via RNAi in hairy roots inhibited infection thread development and
nodule organogenesis, whereas overexpression resulted in increased nodule numbers
(Yuan et al. 2012). Overall, these data imply that the modulation of protein turnover
of membrane-bound receptors like NFR and SymRK by ubiquitination is a key
regulatory strategy during RN symbiosis.

In addition to the ubiquitin ligases, yeast-based library screening also identified
3-hydroxy-3-methylglutaryl-CoA reductase1 (HMGR1), a key enzyme regulating
the mevalonate (MVA) pathway, as a specific interactor of the SymRK or DMI2
kinase domain in M. truncatula (Kevei et al. 2007). The N-terminal of HMGR1
catalytic region is sufficient and specific for binding to DMI2. RNAi silencing of
HMGR1 by hairy root transformation indicated a requirement of HMGR1 activity in
the infection process during nodulation. It was also predicted that the active DMI2-
HMGR1 complex at early root hair infection induced an invagination of the plasma
membrane to initiate infection thread growth when rhizobia were entrapped in a root
hair curls. These data also revealed that the Nod factor signaling recruits specific
isoprenoid biosynthesis pathways via DMI2-HMGR1 for the production of cytoki-
nins and steroids to modulate the cell division, which is essential for nodule
organogenesis. In addition, an analysis of epidermal cells of HMGR1-RNAi trans-
genic hairy roots after application of NFs exhibits altered Ca2+ spiking and ENOD11
(a key transcription factor of nodulation) expression in M. truncatula, indicating a
role for the mevalonate pathway in early RN symbiotic signaling (Venkateshwaran
et al. 2015).

Another example of a potential interactor in M. truncatula is the symbiotic
remorin 1 (SYMREM1) protein, which is usually required for plant-bacteria inter-
actions. This SYMREM1 can specifically interact with the symbiotic RLKs includ-
ing LYK3/NFR1, NFR5/NFP, and DMI2/SymRK. The study of hairy roots in
transgenic RNAi lines suggested that SYMREM1 functions as a scaffolding protein,
and it might be required at the preinfection stage through the regulation of receptor
proteins for the perception of bacterial signaling molecules (Lefebvre et al. 2010).

11.7 The Nuclear Components of Nod Factor Signaling
and Their Identification via Hairy Root
Transformation

11.7.1 Ion Channels and Nucleoporins

Calcium ions are key secondary intracellular messengers for a multitude of pro-
cesses, relaying precise information by their ability to produce a wide variety of
molecular signatures in both animal and plant cell signaling. Calcium signals are
generated by a number of channels and pumps. In response to NFs, two different
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calcium responses have been observed in legume roots, calcium flux and calcium
oscillations. Calcium influx arises rapidly after receiving bacterial NFs, and subse-
quently a wave of calcium influx begins at the root hair tips and moves along the
length of the root hair cell toward the nuclear membrane for membrane depolariza-
tion. Calcium oscillations or calcium spiking is observed approximately 10 minutes
after the initial signal within the nucleus (Wais et al. 2002).

The mechanisms underlying calcium spiking during RN symbioses in the nucleus
of root cells, which function downstream of the receptor and the cytosolic signaling,
were enigmatic. A major breakthrough was attained by the characterization of
genetic mutants, providing crucial information for understanding the nodulation
signaling pathways. The two mutants of L. japonicus, castor and pollux genes,
retained Ca2+ influx at the root hair tip but were impaired in the perinuclear Ca2+

spiking, which was required for establishing symbiotic relationships. The electro-
physiological, yeast complementation and localization studies suggested that CAS-
TOR and POLLUX are potassium-permeable cation channels. Homologs of these
genes were identified in M. truncatula where DMI1 (DOES NOT MAKE INFEC-
TIONS1) was characterized as a putative ortholog of POLLUX and in P. sativum
where SYM8 (SYMBIOSIS8) was characterized as a putative paralogs of CASTOR
(Edwards et al. 2007; Matzke et al. 2009). CASTOR and POLLUX share similarity
with the NAD-binding TrkA domain of bacterial K+ channels (Ane et al. 2004;
Imaizumi-Anraku et al. 2005; Chen et al. 2009). Although CASTOR and POLLUX
were reported to be localized in plastids, later investigation unveiled that DMI1
(POLLUX ortholog inM. truncatula) is restricted to the nucleus periphery and has a
direct role in conducting ions in the nuclear compartment (Riely et al. 2007). In order
to test the biological function of CASTOR and POLLUX, hairy root transformation
was performed by complementing two mutants, namely, castor-12 and pollux-5,
respectively, with native genes expressed with a constitutive promoter. The results
confirmed a positive role of CASTOR and POLLUX in mediating perinuclear Ca2+

spiking by the release of calcium from the nuclear envelope to modulate the
nodulation signaling (Charpentier et al. 2008). A series of cross-species comple-
mentation experiments by transgenic hairy root transformation revealed that both
DMI1 in M. truncatula and SYM8 in pea also have the capacity to compensate for
the loss of CASTOR and POLLUX in L. japonicus, uncovering an unexpected twist
in the evolution of ancestral and essential symbiotic proteins. An additional com-
plementation assays using hairy roots revealed that a single amino acid change in
DMI1 (serine to alanine substitution in the filter) is responsible for the improvement
of DMI1 by enhancing the Ca2+-induced Ca2+ release and reducing potassium
conductance (Venkateshwaran et al. 2012). These data provide novel insights into
the mechanism of DMI1 or CASTOR and POLLUX as calcium ion channels and
underline its importance during rhizobial infection.

Considering that calcium changes also occur in the cytoplasm, an additional
component, preferably a calcium pump, would be required at the nuclear membrane
for efficient reuptake of the nuclear calcium. In an attempt to elucidate such
components, MCA8, a nuclear-localized SERCA-type calcium ATPase, was
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identified in M. truncatula. MCA8 localization was confirmed in transgenic hairy
root cells by immunogold labeling. Unlike DMI1, MCA8 is present on both inner
and outer nuclear membranes and at the ER to modulate the nuclear calcium
oscillations by capturing the released calcium into the nuclear-associated cytoplasm.
Furthermore, silencing of MCA8 by hairy root transformation diminished
NF-induced calcium oscillations, confirming its role as a calcium pump (Capoen
et al. 2011).

Recently, for the identification of additional calcium channel proteins, hairy root
transformation-based gene silencing approaches were used to assess the roles of
different members of the cyclic nucleotide-gated channel (CNGC) gene family.
RNAi-mediated silencing of CNGC15a, CNGC15b, and/or CNGC15c correlated
with the defects in symbiotic associations. Localization studies confirmed that
CNGC15 proteins are present in the nuclear envelope and are permeable to Ca2+.
Moreover, hairy root transformation revealed that variants of CNGC15 members
complemented their respective mutant phenotypes establishing their roles in nuclear
Ca2+ oscillations and in the symbiotic signaling pathway (Charpentier et al. 2016).

Characterization of another nodulation-deficient mutant nup133 in L. japonicus
by genetic and physical mapping, followed by sequencing of the mutant alleles,
identified nucleoporins as regulators of nodulation signaling, especially by working
at the junction of nuclear and intracellular plastid organelle membranes. To ascertain
functionality of NUP133, in planta complementation of mutant alleles was
performed using the hairy root transformation. NUP133 gene successfully restored
the mutant phenotype confirming its role in a rapid nuclear-cytoplasmic communi-
cation after host-plant recognition of symbiotic microbes (Kanamori et al. 2006).
Later, another putative nucleoporin gene, NUP85, was identified through positional
cloning and phenotypic analysis of a mutant from L. japonicus. Complementation of
the nup85 mutant with the putative nucleoporin-like gene demonstrated that NUP85
is a prerequisite for nodule formation (Saito et al. 2007). Overall, multiple biochem-
ical and genetic results suggest that nucleoporins such as NUP133 and NUP85 likely
modulate the permeability of the nuclear pores to calcium ions, thereby facilitating
the calcium spiking. Alternatively, nucleoporins might facilitate transport of POL-
LUX or CASTOR through the nuclear pore to the inner nuclear membrane (Matzke
et al. 2009).

Major components of the nodulation signaling pathway including DMI2/
SYMRK/Sym19, DMI1/POLLUX, NUP85, NUP133, and CASTOR are responsible
for the establishment of both nodulation and mycorrhization. All these proteins are
directly or indirectly involved to facilitate the calcium spiking for following a
common symbiotic pathway. A genetic screen of a mutant related to arbuscular
mycorrhizal (AM) symbiosis identified a WD40 repeat protein related to the
nucleoporins, known as NENA. To test the functionality and localization of
NENA during nodulation, hairy root transformation-based assays were performed.
Complementation of nena-1 mutant with the corresponding gene under native or
constitutive promoter restored the nodule formation capacity. Interestingly NENA is
localized at the nuclear rim by its interaction with NUP85 (Groth et al. 2010),
implying an additional role of a nucleoporin in the control of symbiotic associations.
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11.7.2 The CCaMK Complex

The LysM receptor kinase mutants (nfr1 and nfr5) lacked both calcium influx and
calcium spiking, whereas five other mutants including SymRK (LRR receptor
kinase), castor, pollux (cation channels), nup133, and nup85 (nucleoporins) were
defective for calcium spiking but retained a calcium flux suggesting that these two
steps can be delineated (Shaw and Long 2003; Miwa et al. 2006).

In M. truncatula, dmi1 (pollux) and dmi2 (SymRK) mutants were defective for
calcium spiking, whereas dmi3 mutants showed steady calcium spiking in response
to NFs, suggesting that calcium spiking acts downstream of both DMI1 and DMI2
but upstream of DMI3. DMI3 codes for CCaMK, a calcium/calmodulin-dependent
serine-threonine protein kinase. dmi3 mutants form no nodules, but this phenotype
can be fully complemented by the introduction of the wild-type genomic sequence of
DMI3 gene by hairy root transformation (Levy et al. 2004). Furthermore, hairy root
transformation of snf1 (spontaneous nodule formation) mutant of L. japonicuswith a
candidate CCaMK gene resulted in the formation of spontaneous nodules, indepen-
dent of the NFs, suggesting a central regulatory position of CCaMK upstream of all
components required for cell cycle activation (Tirichine et al. 2006). Hairy root-
based complementation analysis of another CCaMK mutant in L. japonicus (ccamk-
3) by wild-type and gain-of-function variant of CCaMK (CCaMKT265D) revealed
that the protein is specific for nodule development (Shimoda et al. 2012) and works
downstream of the common symbiotic pathway which is shared by nodulation and
mycorrhization. This is different from DMI1 and DMI2 proteins, which are a part of
the common symbiotic pathway.

Given the central importance of CCaMK, several methodologies have been used
to identify its interacting partners in the last few years. A yeast-based approach
identified a novel protein named IPD3 (interacting protein of DMI3) from
M. truncatula as an interacting partner of CCaMK. Localization studies and pro-
moter analysis by hairy root transformation revealed that IPD3 expresses primarily
in the root vasculature and co-localizes with DMI3 to the nucleus (Messinese et al.
2007). Further characterization of ipd3 mutants in M. truncatula confirmed that
IPD3 function is partially redundant, i.e., nodulation (and mycorrhization) was
initiated but then aborted (Horvath et al. 2011). PsSYM33 is an ortholog of IPD3
in P. sativum (Ovchinnikova et al. 2011), which also has a role in nodule develop-
ment in pea. The IPD3 homolog in L. japonicus turned out to be the CYCLOPS
gene. CYCLOPS is a phosphorylation target of CCaMK. The involvement
CYCLOPS in rhizobial infection during symbiotic signaling was further confirmed
after hairy root transformation-based complementation of cyclops mutant by the
corresponding gene. Since cyclopsmutants retained the ability to initiate cortical cell
division during nodule organogenesis, it suggests that CYCLOPS is dispensable for
nodule organogenesis (Yano et al. 2008; Limpens and Bisseling 2014). Moreover,
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cyclopsmutants cannot be complemented by either CCaMK gain-of-function mutant
(CCaMKT265D) or wild-type CCaMK indicating that CYCLOPS is positioned down-
stream of CCaMK in the symbiotic pathway (Hayashi et al. 2010). Later, hairy root
transformations in different mutants of L. japonicus confirmed that CYCLOPS, a
DNA-binding transcriptional activator, activates the NODULE INCEPTION (NIN)
genes in a phosphorylation-dependent manner to regulate the symbiotic signaling
(Singh et al. 2014).

Similar to CYCLOPS, CIP73, which belongs to the large ubiquitin superfamily,
has been found to be a direct interacting partner and phosphorylation target of
CCaMK. RNAi-mediated silencing of CIP73 in L. japonicus hairy roots resulted
in fewer nodules, suggesting that CIP73 is a positive regulator of nodulation (Kang
et al. 2011). Further yeast-based experimental analysis recognized a cochaperone
protein, HIP (HSC/HSP70 interacting protein), as an interacting partner of CIP73.
Unlike CIP73, the suppression of HIP expression in hairy roots led to increased
nodule numbers, indicating that HIP is a negative regulator of nodulation (Kang
et al. 2015).

CCaMK-CYCLOPS complex initiates nodule organogenesis following calcium
oscillations in the host nucleus. Further investigation of downstream signaling
identified DELLA protein in M. truncatula, which are the central regulators of
gibberellic acid (GA) signaling. These DELLAs increased the phosphorylation of
CYCLOPS by forming a complex with CCaMK-CYCLOPS. To assess whether
DELLA proteins have a role during symbiosis, hairy root transformation was used
to decrease the expression of DELLAs by RNAi approaches. Knocking down
DELLAs caused a decrease in nodule number in the hairy roots demonstrating
their positive regulatory roles in RN symbiosis (Jin et al. 2016). Furthermore,
DELLAs can form a protein complex with transcription factors NSP1-NSP2 (nod-
ulation signaling pathway 1 and 2) and are able to form a connection between
CYCLOPS and NSP2 (Jin et al. 2016) indicating their role in GA-mediated RN
symbiosis.

11.7.3 Transcription Factors Involved in RN Symbiosis

Both NSP1 and NSP2 of M. truncatula encode genes with similarity to members of
the GRAS family of putative transcriptional regulators or transcription factors. SYM7
of P. sativum is a possible ortholog of NSP2. In addition to the classical genetic
analysis, hairy root transformation was used to decipher the function of NSP1 and
NSP2 by complementation and subcellular localization. Complementation of nsp1
and nsp2 mutants by native genes and subcellular localization using native
promoter-driven NSP1/2-GFP established that both these proteins co-localize with
CCaMK in the nucleus, and CCaMK acts directly upstream of NSP1 and NSP2
(Catoira et al. 2000; Kalo et al. 2005; Smit et al. 2005). NSP1-NSP2
heteropolymerization is essential for nodulation signaling (Hirsch et al. 2009).
NSP1 binds to the promoter of the NF-inducible genes, namely, ENOD11, ERN1,
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and NIN. To assess the functional role of NSPs, nsp2 mutants were complemented
with the wild-type gene as well as the domain-swapped NSP2 or variant NSP2 which
can no longer dimerize with NSP1. Termination of nodule formation in domain-
swapped NSP2 and a decreased nitrogen fixation activity in variant NSP2 transgenic
hairy roots confirmed their role as functional heterodimers.

To identify additional regulatory components of nodulation, a transposon-tagged
L. japonicus mutant nin (nodule inception) was identified, which produces no
nodules (Schauser et al. 1999). NIN is an essential transcription factor responsible
for initiating nodulation-specific symbiotic processes, and it acts downstream of the
NSP genes. Sym35 gene required for root nodule development in P. sativum is an
ortholog of NIN (Borisov et al. 2003). Hairy root transformation confirmed the
functional complementation of nin-1 mutants by NIN1. Additionally, the
overexpression of NIN in M. truncatula induced cortical cell divisions leading to
spontaneous nodule development in the transgenic roots in the absence of rhizobia,
suggesting that NIN functions downstream of CCaMK (Soyano et al. 2013; Marsh
et al. 2007). Transcriptional profiling and promoter analysis revealed that NIN
restricts the ENOD11 expression through competitive inhibition of ERN1 (Vernie
et al. 2015).

To investigate the downstream targets of NIN, two transcriptional targets,
namely, NF-YA1 and NF-YB1, were identified by a screen for suppressors of the
L. japonicus har1-1 hypernodulation phenotype. These NF-Ys (A, B, C subunits)
are heterotrimeric CCAAT box-binding transcription factors. HAP2 and HAP3 in
M. truncatula are the possible orthologs of LjNF-YA1 and LjNF-YB1. Interestingly,
RNAi-mediated silencing of NF-YA1 in L. japonicus hairy roots did not inhibit the
epidermal responses and led infection thread formation and growth but prevented
cortical cell division required for the development of nodules. Similar response was
exhibited by the loss of function of NIN. Conversely, overexpression of NIN and
NF-Y genes in L. japonicus enhanced cell division during nodule formation, imply-
ing that NIN is a key player in root nodule organogenesis and NF-Y subunits
function downstream of NIN (Soyano et al. 2013; Combier et al. 2006). Addition-
ally, gene expression analysis in the hairy roots of NF-YA RNAi lines suggested that
NF-YA1/2 acts upstream of ERN1 and ENOD11 in the nodulation signaling pathway
(Laloum et al. 2014). Recently, three more members of SHI/STY (SHORT INTER-
NODES/STYLISH) transcription factor gene families, namely, STY1, STY2, and
STY3, have been identified as direct targets of NF-YA1 (Hossain et al. 2016). A
cytokinin receptor CRE1 (cytokinin response element 1) is essential for nodule
organogenesis (Plet et al. 2011; Gonzalez-Rizzo et al. 2006), and CRE1 promoter-
driven expression of GUS in M. truncatula hairy roots was significantly reduced in
the nin-1 mutant compared to the wild type. This suggests that NIN binds to the
CRE1 promoter and activates CRE1 expression in the root cortex (Vernie et al. 2015;
Soyano et al. 2014).

A genetic screen in a population of fast neutron-mutagenizedM. truncatula plants
identified a gene, BIT1 (branching infection threads 1), necessary for the infection
thread formation. Overexpression of auto-activated CCaMK in bit1-1 mutants by
hairy root transformation did not produce any spontaneous nodules, demonstrating
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that BIT1 functions downstream of CCaMK for the activation of nodule organogen-
esis. Overexpression of ENOD11-GUS in bit1-1 mutants showed severely reduced
ENOD11-GUS induction after NFs application, confirming BIT1’s role in nodula-
tion pathway. Furthermore, an ethylene response factor (ERF) required for nodula-
tion, ERN (ERF required for nodulation), complemented the bit1-1 mutant
phenotype and confirmed that ERN is necessary for NF signaling and functions by
activation of ENOD11 (Middleton et al. 2007; Andriankaja et al. 2007). Silencing
and overexpression of EFD (ethylene response factor required for nodule differen-
tiation), another ERF transcription factor, by hairy root transformation affected the
nodule development by regulation of the cytokinin pathway genes (Vernie et al.
2008). These data provide a new connection between ethylene and cytokinin path-
way transcription factors during nodulation signaling.

RNAi-mediated silencing and overexpression studies in hairy root system also
demonstrated the role of KNOX transcription factors in nodule development in
M. truncatula (Di Giacomo et al. 2017). Similarly, gene silencing also revealed
that a Myb transcription factor, control of nodule development (CND), is also
involved in regulation of soybean nodulation (Libault et al. 2009).

11.7.4 Downstream Regulatory Genes Involved in Nodule
Development

Genetic studies and transcriptome analysis have identified a number of downstream
genes essential in NF signaling. To understand the molecular mechanisms of these
genes, hairy root transformation became a suitable tool to assess them by comple-
mentation analysis, RNAi-mediated gene silencing, overexpression, and promoter
analysis. Table 11.2 lists a number of genes, which were identified as potential
regulators of nodule formation by using hairy root approaches. Further targeted
analysis will pinpoint how these genes are connected to the established modules of
nodulation signaling.

11.8 Long-Distance Control of Nodulation

Nodulation is an extremely energy-requiring process, and plants control both the
timing and number of nodules formed by a shoot-derived protein which encodes a
putative leucine-rich, serine-threonine receptor kinase with homology to
Arabidopsis CLAVATA1 (CLV1). This receptor-like kinase is activated from
root-derived CLE peptides. The lack of CLV1 protein due to gene disruption causes
hyper- or supernodulation in legume roots due to a defect in the systemic negative
feedback mechanism called autoregulation of nodulation (AON). AON is initiated
during nodule development by the synthesis of a root-derived signal named “Q” or
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Table 11.2 Examples of downstream genes responsible for nodule formation as confirmed by
hairy root transformation

Gene name

Scientific
name
(Plant)

Gene
silencing
(RNAi)

Gene
silencing
(Micro
RNA)

Over-
expression References

ENOD40 (ENOD40-1
and ENOD40-2)

Medicago
truncatula

+ – – Kumagai et al.
(2006),
Wan et al.
(2007)

CDC16 (CELL DIVI-
SION CYCLE16)

Medicago
truncatula

+ – – Kuppusamy
et al. (2009)

RbohA (NADPH
oxidase)

Medicago
truncatula

+ – – Marino et al.
(2011)

nsRING (an RING-H2
finger domain protein)

Lotus
japonicus

+ – – Shimomura
et al. (2006)

GS52, an ecto-apyrases Glycine
max

+ – – Govindarajulu
et al. (2009)

FWL1 (FW2-2-like1) Glycine
max

+ – – Libault et al.
(2010)

EXPB2, an expansin
gene

Glycine
max

+ – + Li et al. (2015)

SGF14c/SGF14l, an
G-box factor

Glycine
max

+ – – Radwan et al.
(2012)

PT5, a phosphate
transporter

Glycine
max

+ – + Qin et al.
(2012)

UPS1 (ureide permease
1)

Glycine
max

+ – – Collier and
Tegeder
(2012)

ACP, an acyl carrier
protein

Glycine
max

+ – – Wang et al.
(2014)

S6 kinase 1 Glycine
max

+ – – Um et al.
(2013)

GH3, GRETCHEN
HAGEN 3

Glycine
max

– + – Damodaran
et al. (2017)

NMHC5, a sucrose regu-
latory MADS-box tran-
scription factor

Glycine
max

– – + Liu et al.
(2015)

Early nodulin 93
(ENOD93)

Glycine
max

– + – Yan et al.
(2015)

Mannosyl-oligosaccha-
ride 1, 2-alpha-
mannosidase (MNS)

Glycine
max

– + – Yan et al.
(2016)

Rhizobium-induced per-
oxidase 1(RIP1)

Glycine
max

– + – Yan et al.
(2016)

Rbohb (NADPH
oxidase)

Phaseolus
vulgaris

+ – – Montiel et al.
(2012)

IFR1, an isoflavone
reductase gene family

Phaseolus
vulgaris

+ – – Ripodas et al.
(2013)

(continued)
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CLE peptide. CLE peptides move from the roots to shoots through xylem after
inoculation with rhizobia and are perceived by CLV1. In L. japonicus, CLE Root
Signal 1 (CLE-RS1) and CLE Root Signal 2 (CLE-RS2) are representative members
of CLV3-like peptides and are strong candidates for the root-derived signal, which
modulate nodulation by following CLV signaling pathway. CLE12 and CLE13 are
two representative CLE peptide genes in M. truncatula, which potentially bind to
CLV1. A hairy root transformation study in M. truncatula showed that
overexpressing both these peptide genes inhibited nodulation systemically, and
knockdown of CLE12 and CLE13 resulted in an increase in nodule number
(Okamoto et al. 2009; Mortier et al. 2012). Additionally, the CLE-RS1/2 of
L. japonicus can directly bind to CLV1 or HAR1, and the suppression of nodule
numbers due to the overexpression of CLE-RS1/2 depends on CLV1/HAR1
(Okamoto et al. 2013). Similarly, three candidates of CLE peptide-encoding genes,
RIC1, RIC2, and NIC1, have been identified in soybean. Overexpression of these
peptides in wild-type plants inhibits nodulation, whereas their overexpression in clv1
or nark mutants had no effect on the nodule number, confirming that nodule number
inhibition by CLE peptide is CLV1/NARK1 (nodulation autoregulation receptor
kinase) dependent (Reid et al. 2011; Lim et al. 2011).

A screen for supernodulating mutants, defective in AON, identified loss-of-
function alleles of several genes. For example, the rdn1 mutant of M. truncatula
and a nod3 mutant of pea exhibit increased nodulation and reduced root growth. In
M. truncatula, this mutant phenotype was rescued by expressing RDN1 (ROOT
DETERMINED NODULATION1) by hairy root transformation (Schnabel et al.
2011) suggesting that it may have a role in the production or transport of CLE
peptides (Li et al. 2009).

These CLE peptides activated CLAVATA1 leucine-rich serine-threonine recep-
tor kinase protein which is essential for shoot-controlled regulation of root growth,
nodule number, and nitrate sensitivity of symbiotic development. The
supernodulation phenotype is caused due to a mutation in a CLV1gene known as

Table 11.2 (continued)

Gene name

Scientific
name
(Plant)

Gene
silencing
(RNAi)

Gene
silencing
(Micro
RNA)

Over-
expression References

RACK1, a receptor for
activated C kinase

Phaseolus
vulgaris

+ – – Islas-Flores
et al. (2011)

TOR, a protein kinase
gene, rapamycin

Phaseolus
vulgaris

+ – – Nanjareddy
et al. (2016)

TPS9, a class II treha-
lose-6-phosphate
synthase

Phaseolus
vulgaris

+ – – Barraza et al.
(2016)

HK1, a cytokinin recep-
tor histidine kinase

Arachis
hypogaea

+ – – Kundu and
DasGupta
(2017)
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SUNN1 (super numeric nodules) in M. truncatula and HAR1 in L. japonicus
(Nishimura et al. 2002; Schnabel et al. 2005). In pea and soybean, the orthologs of
this gene are named SYM29 and NARK, respectively (Krusell et al. 2002; Searle et al.
2003). Additional proteins, corresponding to CLAVATA2, which is known to work
together with CLV1, have also been identified in L. japonicus (CLV2) and P. sativum
(sym28) (Krusell et al. 2011). Another LRR-RLK kinase, KLAVIER (KLV), iden-
tified from L. japonicus is also involved in shoot regulation of nodulation (Miyazawa
et al. 2010). Some of the phenotypes of klavier mutants are similar to the clv1/har1
mutant phenotype suggesting that KLAVIER is likely involved in the CLV signaling
pathway.

Two kinase-associated protein phosphatases (KAPP1 and KAPP2) interact with
the phosphorylated kinase domains of NARK or CLV1. Both KAPP1 and KAPP2
are transphosphorylated by NARK, and, in turn, the PP2C domain of the KAPP1 and
KAPP2 dephosphorylates NARK receptor to relay the signal generated by the
formation of shoot-derived inhibitor (SDI). The SDIs enter the phloem and move
down to the roots to prevent further nodule development (Miyahara et al. 2008; Lin
et al. 2010).

TML (TOO MUCH LOVE) encodes a kelch repeat-containing F-box protein,
which has a role in AON signaling. Gene silencing and overexpression approaches
by hairy root transformation revealed that TML, HAR1, and CLE-RS1/RS2 nega-
tively regulate nodule organogenesis in the same genetic pathway. Furthermore,
TML might suppress the nodulation signaling downstream of the HAR1 and CLE
peptides and might function in the long-distance regulation of the legume-rhizobium
symbiosis (Takahara et al. 2013).

11.9 Conclusions and Future Work

As is evident from the examples listed in the previous sections, the use of hairy roots
has been transformative in studying and deciphering almost every aspect of nodu-
lation signaling. It was especially useful as early on, most legumes were considered
recalcitrant to tissue culture-based transformation and regeneration. Recent advances
in the genome-editing technologies are going to make it even more useful, as
constructs can be evaluated using the hairy root system before investing in stable
transformation and genetic manipulation of important leguminous crops. There are
already studies demonstrating its feasibility (Wang et al. 2017). This could be
especially useful in case of polyploid legumes where multiple genes can be edited
simultaneously to achieve desired phenotypes and potentially improved nitrogen use
efficiency in crops.
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Chapter 12
Hairy Roots as a Tool for the Functional
Analysis of Plant Genes

Chonglu Zhong, Mathish Nambiar-Veetil, Didier Bogusz,
and Claudine Franche

Abstract With its root-inducing (Ri) plasmid, Agrobacterium rhizogenes is a
valuable alternative to transfer gene constructs into the genome of plant species
which are difficult to stably transform with disarmed strains of Agrobacterium
tumefaciens. Composite plants consisting of transformed hairy roots induced on a
non-transgenic shoot have been reported in an increasing number of legume and
nonlegume plant species. They were first used in the model legumes Medicago
truncatula and Lotus japonicus to study the symbiotic interaction with rhizobia.
Since then, composite plants have been shown to be effective to investigate the
function of genes involved in mycorrhizal symbiosis, root-nematode and root-
pathogen interactions, resistance response of plant roots to parasitic weeds, root
development and branching, and the formation of wood. The different methodolo-
gies developed to generate composite plants and the applications of co-transformed
hairy roots for studying gene function are discussed in this chapter, together with
recent opportunities offered by genome editing technologies in hairy roots.

Keywords Agrobacterium rhizogenes · Composite plant · Gene functional
analysis · Genome editing · Hairy root
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12.1 Introduction

Once a gene has been isolated, the exploration of its function begins with DNA
sequence analysis together with a search of public databases for characterized genes
with similar sequences. However, such a comparison involves certain risks since
similarity at the nucleotide level does not always mean the gene product will have a
similar structure and function. Additional information can be obtained by analyzing
the spatiotemporal expression of the studied gene and its response to several biotic
and abiotic factors. Nevertheless, one of the most significant steps in the functional
analysis usually involves the study of transgenic plants in which the gene has been
knocked out by mutagenesis, overexpressed, or downregulated (Rhee and Mutwil
2014). With the alterations observed in the plant phenotype, important conclusions
can be drawn concerning the function of the corresponding gene.

Agrobacterium tumefaciens-mediated transformation is the most popular tech-
nique to generate transgenic plants. However, a major problem linked to the use of
this bacterium is the need for efficient organ regeneration and transformation in
plants (Anami et al. 2013). To study genes expressed in plant roots, Agrobacterium
rhizogenes offers a valuable alternative to disarmed strains of A. tumefaciens. This
gram-negative soil bacterium is responsible for the development of hairy root
disease in many dicotyledonous plants as well as in some gymnosperms and
monocotyledonous plants (Tepfer 1990). In a process similar to that described for
A. tumefaciens, A. rhizogenes transfer into the genome of the infected host plant a
T-DNA fragment from the bacterial root-inducing (Ri) plasmid carrying oncogenes
that encode enzymes which control auxin and cytokinin biosynthesis (Koplow et al.
1984; Britton et al. 2008). The resulting modifications in the hormonal balance
induce the formation of roots at the wounding site which are morphologically
different from normal roots. The so-called hairy roots are characterized by rapid
hormone-independent growth, are much more branched, have numerous root hairs,
and exhibit plagiotropic root development. A. rhizogenes has proven to be a valuable
tool for generating transgenic roots which are easy to grow and can be used for a
range of biological applications including metabolic engineering and
phytoremediation, as well as for the production of valuable secondary metabolites
and recombinant proteins (Guillon et al. 2006; Talano et al. 2012; Mehrotra et al.
2015).

A. rhizogenes hairy roots have other valuable applications in many areas of basic
plant research. This pathogenic bacterium can be used to generate composite plants
consisting of transformed hairy roots induced on a non-transgenic shoot (Beach and
Gresshoff 1988; Hansen et al. 1989; Collier et al. 2005). Binary vectors carrying
appropriate gene constructs can be introduced into oncogenic strains of
A. rhizogenes; the resulting bacteria can then be used to obtain co-transformed
hairy roots which integrate both the T-DNA from the Ri plasmid and the T-DNA
from the genetically engineered binary vector. The co-transformation procedure
enables more rapid analysis of transformed roots than the methods used to generate
plants which are stably transformed by disarmed A. tumefaciens or by direct gene
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transfer techniques, such as biolistic or protoplast electroporation. Composite plants
have now been reported in at least 18 plant families including about 40 species
(Table 12.1), and the utility of the co-transformed hairy roots for investigating the
function of genes involved in different aspects of root development and biotic
interactions is now well established.

Table 12.1 Composite plant-
inducible families and species

Family Genus/species

Apiaceae Daucus carota

Brassicaceae Arabidopsis thaliana
Brassica oleracea

Casuarinaceae Allocasuarina verticillata
Casuarina glauca

Chenopodiaceae Beta vulgaris

Convolvulaceae Ipomoea batatas

Cucurbitaceae Cucurbita pepo

Datiscaceae Datisca glomerata

Fabaceae Aeschynomene indica
Arachis hypogaea
Glycine max
Lotus corniculatus
Lotus japonicus
Lupinus albus
Medicago truncatula
Phaseolus vulgaris
Pisum sativum
Sesbania rostrata
Trifolium pratense
Trifolium rubens
Vicia hirsuta
Vigna aconitifolia
Vigna unguiculata

Lauraceae Persea americana

Malvaceae Hibiscus esculenta

Myrtaceae Eucalyptus camaldulensis
Eucalyptus grandis

Poaceae Zea mays

Rhamnaceae Discaria trinervis

Rosaceae Prunus spp.

Rubiaceae Coffea arabica

Salicaceae Populus sp.

Solanaceae Lycopersicon esculentum
Nicotiana benthamiana
Nicotiana tabacum
Petunia x hybrida
Solanum tuberosum

Theaceae Camellia sinensis

Adapted from Collier et al. (2005) and completed with recent
references
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Different methods to generate composite plants using A. rhizogenes are described
in this chapter, and their contribution to the functional analysis of candidate genes
involved in different physiological processes is illustrated. In addition to promoter
studies and downregulation of gene expression resulting from RNA interference
(RNAi) experiments, the recent development of genomic mutations induced by the
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-
associated protein 9) system in composite plants is presented.

12.2 Agrobacterium Rhizogenes-Mediated Transformation:
Technical Aspects

12.2.1 Factors Involved in a Successful T-DNA Transfer by
A. rhizogenes

A successful transfer of a T-DNA into a plant species involves many factors that
need to be optimized, especially when the host is poorly susceptible to agrobacterial
infection. Fortunately, knowledge of the molecular mechanisms underlying the
interaction between plants and agrobacteria has progressed remarkably in recent
years, making it possible to genetically transform an increasing number of plant
species (Lacroix and Citovsky 2013). One of the first factors to consider is the choice
of the A. rhizogenes strain. Several strains need to be tested to identify the bacteria
capable of inducing hairy roots with a phenotype that is as close as possible to the
one of the non-transformed roots. A very pronounced hairy root phenotype can
profoundly alter root architecture and biotic interactions, thus affecting conclusions
drawn concerning the function of the candidate genes (Dolatabadian et al. 2013). In
the actinorhizal shrub Discaria trinervis, for example, both A4RS and ARqua1
strains induced transgenic roots at the site of infection, but they differed in their
phenotype (Imanishi et al. 2011). Since the hypervirulent strain A4RS had a strong
impact on root architecture, further experiments with composite plants ofD. trinervis
were conducted with Arqua1. The second factor involved in a successful gene
transfer is indeed linked to the host, which needs to provide the appropriate signaling
molecules to activate the virulence genes of A. rhizogenes. The addition of exoge-
nous phenolic compounds such as acetosyringone can sometimes improve the
dialogue between the host and the agrobacterium (Lacroix and Citovsky 2013).

The co-cultivation phase, during which the host and the bacteria are usually in
contact for 1–6 days, is another critical step in the interaction. It has been shown that
the T-DNA transfer and integration can be affected by bacterial density, plant age
and growth conditions, light, gas exchange, nutrient medium, growth regulators, pH,
and humidity, among other factors (Karami 2008). Unfortunately, optimal condi-
tions for the genetic transformation have to be studied empirically, requiring inten-
sive work to combine the different factors.
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12.2.2 In Vitro and Ex Vitro Transformation Procedures

Both in vitro and ex vitro techniques have been successfully used to generate
composite plants. In the in vitro process, plants have to be germinated, grown, and
manipulated in aseptic conditions. When young seedlings are used, inoculations with
A. rhizogenes can be achieved by wounding the hypocotyls with a needle dipped in a
fresh colony (or culture in exponential growth) of the chosen A. rhizogenes strain
(i.e., Diouf et al. 1995). It has also been reported that the agrobacterium culture can
be injected directly into the stem (Markmann et al. 2008). An alternative procedure
consists in sectioning the radicle of the seedlings with a scalpel and then coating the
sectioned surface with A. rhizogenes (Boisson-Dernier et al. 2001). The rate of
development of hairy roots varies considerably depending on the method of infec-
tion. For instance, in the tropical tree Casuarina glauca, hairy roots developed in less
than 30% of the plants with a sectioned hypocotyl, whereas when hypocotyls were
inoculated with a needle, hairy roots developed on 95% of the plants (Svistoonoff
et al. 2010). To obtain the composite plants, the normal non-transformed root system
is removed about 3 weeks after inoculation with A. rhizogenes, and when possible,
co-transformed roots containing the newly introduced genes from the appropriate
binary vector are selected. It should be noted that, even though the shoot is not
transgenic, composite plants sometimes exhibit an altered aerial part with shorter
internodes. This alteration of phenotype is probably linked to the modification of the
hormonal balance in the transgenic root system displaying the hairy root phenotype.

Ex vitro procedures may be preferred to avoid the constraints and costs linked to
tissue culture and aseptic conditions. This technique was first reported in 2005 with
the introduction and expression of the reporter gene gfp in hairy roots induced in
14 different plant species belonging to five different orders including nine plant
families (Collier et al. 2005). Apical stems from young plants were directly inserted
into rockwool cubes containing the A. rhizogenes inoculum. After 3 weeks to
2 months, hairy roots were observed on 56–100% of the inoculated stems, depending
on the plant species. The major challenge of this simple procedure is preventing the
dispersal of the transgenic pathogenic rhizobacteria in the environment, thus requir-
ing an appropriate confined growth chamber or glasshouse.

12.2.3 Selection of Co-transformed Hairy Roots

One advantage of A. rhizogenes-mediated transformation is that transgenic roots can
be obtained without using a selection agent. Hairy root morphology is used for the
primary selection of transgenic roots. However, when performing co-transformation
with an A. rhizogenes strain harboring a genetically engineered gene construct in a
binary vector, a selection procedure with either a reporter gene or an antibiotic
resistance gene is usually required to detect the co-transformed roots and to facilitate
molecular and phenotypic analyses of the composite plants.
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Based on experience gained with the actinorhizal tree C. glauca, and the analysis
of several hundred composite plants, the rate of co-transformed hairy roots can vary
from 20% to 65%. In order to identify the co-transformed roots, a constitutively
expressed reporter gene such as ß-glucuronidase (GUS) (Jefferson et al. 1987),
DsRED1, or green fluorescent protein (GFP) gene (Haseloff and Siemering 2006)
was included in the T-DNA of the binary vector. Reporter genes encoding fluores-
cent proteins appeared to be the best candidates since their gene products could be
visualized in roots under UV light without affecting the viability of plant tissues.
Interestingly, the intensity of fluorescence was generally correlated with the level of
expression of the other genes stacked on the T-DNA of the binary vector. In RNAi
experiments designed to downregulate symbiotic genes in C. glauca, hairy roots
displaying a high level of fluorescence also exhibited a strong extinction of the
candidate symbiotic gene, as determined by q-RTPCR (Gherbi et al. 2008a).

Kanamycin selection of co-transformed roots has occasionally been performed
using the nptII gene in the transferred T-DNA. A range of kanamycin concentrations
has to be tested to inhibit the growth of non-co-transformed hairy roots on the agar
plates. After 2 or 3 weeks of incubation with kanamycin, the non-co-transformed
roots stop growing, turn brown, and do not penetrate the agar nutrient medium,
whereas the co-transformed roots continue to grow rapidly on the agar. Once the
hairy roots have developed, the antibiotic has to be rapidly removed to avoid a
negative impact on the growth of the non-transformed aerial part of the composite
plants.

12.3 Functional Analyses of Plant Genes in Composite
Plants

In recent years, a wide diversity of composite plants have been used to improve the
functional analysis of plant genes expressed in roots, the largest number of publica-
tions being in the area of plant-microbe interactions (Table 12.2). As illustrated
below, the use of A. rhizogenes together with that of RNA interference (RNAi) has
proven to be very useful to study gene function using reverse genetics.

12.3.1 Study of Interactions Between the Host Plant
and Nitrogen-Fixing Microorganisms

Due to the difficulty in obtaining transgenic legumes using A. tumefaciens, compos-
ite plants were rapidly used to characterize the plant genes involved in the symbiotic
process with nitrogen-fixing rhizobia. A. rhizogenes transformation was first
described for Lotus corniculatus (Jensen et al. 1986) and subsequently used in the
two model plants Medicago truncatula (Boisson-Dernier et al. 2001) and Lotus
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Table 12.2 Examples of gene function analysis using composite plants obtained after genetic
transformation using Agrobacterium rhizogenes

Plant Gene Function References

Aeschynomene
indica

gus Reporter gene Bonaldi et al. (2010)

Allocasuarina
verticillata

gus Reporter gene Gherbi et al. (2008b)

Arabidopsis
thaliana

KOJAK
gfp

Root hair development
Reporter gene

Limpens et al. (2004)
Collier et al. (2005)

Arachis
hypogaea

gfp, gus
Cry8Ea1
AdEXLB8
EXLB

Reporter genes
Toxicity against white grubs
Nematode resistance
Stress-responsive expansin gene

Sinharoy et al. (2009)
Geng et al. (2013)
Guimaraes et al. (2017a)
Guimaraes et al. (2017b)

Camellia
sinensis

gus Reporter gene Alagarsamy et al. (2018)

Casuarina
glauca

gus
SYMRK
CHS
CCaMK

Reporter gene
Root nodulation
Flavonoid pathway
Root nodulation

Diouf et al. (1995)
Gherbi et al. (2008a)
Abdel-Lateif et al. (2013)
Svistoonoff et al. (2013)

Coffea arabica gus Reporter gene Alpizar et al. (2006)

Cucurbita pepo DR5-gus,
DR5-gfp

Reporter genes driven by an auxin-
responsive promoter

Ilina et al. (2012)

Discaria
trinervis

ENOD11-
gus

Marker of Frankia infection Imanishi et al. (2011)

Eucalyptus
camaldulensis

gfp Reporter gene Balasubramanian et al.
(2011)

Eucalyptus
grandis

CCR1 Lignin biosynthesis Plasencia et al. (2016)

Glycine max IFS
TIP1
EXPB2
SPX3
Fib-1
Y25C1A.5

Isoflavone synthase
Salt tolerance
Cell wall ß-expansin
Phosphorous signaling pathway
Nematode reproduction and fitness

Subramanian et al. (2004,
2006), White et al. (2015)
An et al. (2017)
Guo et al. (2011), Li et al.
(2015)
Yao et al. (2014)
Li et al. (2010)

Lotus
japonicus

gus, luc Reporter genes Stiller et al. (1997)

Lupinus albus LaMATE Phosphorous stress Uhde-Stone et al. (2005)

Lycopersicon
esculentum

gfp Reporter gene Collier et al. (2005)

Medicago
truncatula

ENOD11
ENOD8
ROP9
RbohE
ABCG10
RDN

Root infection by Rhizobium
Root nodulation
Oomycete colonization
Role in arbuscule development
ABC transporter of the G subfamily
Root nodulation

Boisson-Dernier et al.
(2001, 2005)
Coque et al. (2008)
Kiirika et al. (2012)
Belmondo et al. (2016)
Banasiak et al. (2013)
Kassaw et al. (2017)

Populus spp. YFP Reporter gene Neb et al. (2017)

(continued)
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japonicus (Stiller et al. 1997). Composite plants have also been reported in Glycine
max (Kereszt et al. 2007; Cao et al. 2009), Vicia hirsuta (Quandt et al. 1993), Vigna
aconitifolia (Lee et al. 1993), Phaseolus vulgaris (Estrada-Navarrete et al. 2006;
Colpaert et al. 2008), Trifolium rubens (Diaz et al. 1989), and T. pratense (Diaz et al.
2000).

Composite plants have largely contributed to a better understanding of the
symbiotic dialogue established between the host and nitrogen-fixing rhizobial
strains, in legumes which develop determinate or indeterminate nodules, and
which undergo either an intracellular or intercellular infection process. Whereas
mutants in the model plants M. truncatula and L. japonicus led to the identification
of the so-called common symbiotic pathway (CSP) (Gueurts et al. 2016), RNAi
experiments in composite plants confirmed that the CSP was also involved in the
nodulation process of legumes in which the infection process does not proceed via
root hair infection, such as Sesbania rostrata (Van de Velde et al. 2003), Arachis
hypogea (Sinharoy et al. 2009), and Aeschynomene indica (Bonaldi et al. 2010).

Major advances have also been made in actinorhizal plants which develop
nitrogen-fixing nodules following interaction with the gram-positive actinobacteria

Table 12.2 (continued)

Plant Gene Function References

Persea
americana

gus, gfp Reporter genes Prabhu et al. (2017)

Phaseolus
vulgaris

NIN
gus, gfp

Root nodulation
Reporter genes

Nanjareddy et al. (2017)
Colpaert et al. (2008)

Pisum sativum LYK9 Control of plant immunity Leppyanen et al. (2017)

Prunus
cerasifera

Ma Nematode resistance Claverie et al. (2011)

Prunus spp. Egfp Reporter gene Bosselut et al. (2011)

Solanum
tuberosum

gus Reporter gene Horn et al. (2014)

Vicia hirsuta gus Reporter gene Quandt et al. (1993)

Vigna
unguiculata

RSG3-
301

Resistance to Striga gesnerioides Mellor et al. (2012)

Zea mays gfp Reporter gene Runo et al. (2012)

In this table, functional analyses include promoter studies, overexpression of the candidate genes, or
RNAi experiments to downregulate the genes studied. Reporter genes were usually used to establish
the proof of concept of the technology.
ABCG, ATP-binding cassette transporter of the G family; ABC transporter; CCaMK, calcium/
calmodulin-dependent kinase; CCR1, cinnamoyl-CoA reductase 1; CHS, chalcone synthase;
CRY8Ea1, CRY protein from Bacillus thuringiensis; DR5, auxin-responsive promoter; ENOD8,
nodule-specific esterase; ENOD11, early nodulin; EXL, expansin-like protein; EXP, expansin gene;
gfp, green fluorescent protein gene; gus, ß-glucuronidase gene; IFS, isoflavone synthase gene;
KOJAK, cellulose synthase-like protein; LaMATE, Lupinus albus multidrug and toxin efflux; luc,
luciferase; LYK9, Lys-M-receptor like kinase; Ma, R protein; NIN, nodule inception gene; RbohE,
NADPH oxidase; RDN, root-determined nodulation protein; ROP9, GTPase; SPX, protein related
to phosphate homeostasis and signaling; SYMRK, symbiosis receptor kinase; TIP, tonoplast
intrinsic protein; Yfp, yellow fluorescent protein gene
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Frankia. Since it takes about 12 months to obtain transgenic nodulated plants of
C. glauca resulting from a T-DNA transfer by A. tumefaciens (Smouni et al. 2002),
composite plants were used to generate data on a large number of co-transformed
hairy roots more rapidly. This method was first used in 1995 (Diouf et al. 1995) to
demonstrate that a promoter from a legume hemoglobin gene kept its spatiotemporal
pattern of expression in an actinorhizal nodule, thus suggesting the conservation of
molecular mechanisms underlying the nodulation process between actinorhizal
plants and legumes. With the development of the RNAi technology, downregulation
of two genes isolated from C. glauca and sharing homology with the receptor-like
kinase SYMRK and the calcium- and calmodulin-dependent kinase CCaMK genes
from the CSP in legumes revealed that this pathway was also required by Frankia for
root infection and nodulation (Gherbi et al. 2008a; Svistoonoff et al. 2013). Addi-
tional data obtained in composite plants of two other actinorhizal plants D. trinervis
(Imanishi et al. 2011) and Datisca glomerata (Markmann et al. 2008), which cannot
be transformed by A. tumefaciens, have also considerably enriched our knowledge of
the original nodulation process resulting from Frankia intercellular infection.

12.3.2 Plant Mycorrhizal Interactions

Arbuscular mycorrhiza is a major widespread mutualistic association that concerns
80% of land plants and involves fungi of the phylum Glomeromycota. The plant
provides carbohydrates to the fungus which, in return, supplies the host with mineral
nutrients, especially phosphate, and improves water absorption and disease resis-
tance (Lanfranco et al. 2016).

In M. truncatula, together with the possibility to obtain nitrogen-fixing nodules
on composite plants, it has been shown that these roots can be colonized by
endomycorrhizal fungi, even when the hairy roots are excised from the composite
plants and propagated as independent organs (Boisson-Dernier et al. 2001, 2005;
Mrosk et al. 2009). With the actinorhizal plant C. glauca, it was not possible to grow
hairy roots independently, but mycorrhization by Rhizophagus irregularis occurred
on the hairy roots of composite plants (Gherbi et al. 2008a). Composite legume and
actinorhizal plants were further used to compare gene expression during the symbi-
otic process with rhizobium and/or Frankia and in endomycorrhizal associations.
These experiments, together with the study of legume mutants, have provided
evidence that the common signaling pathway involved in the nodulation process is
necessary for all root endosymbioses involving rhizobium, Frankia, and AM fungi
(Gherbi et al. 2008a; Markmann et al. 2008).

Composite plants have also been used to characterize some candidate genes
potentially involved in specific stages of the endomycorrhization process. For
example, co-transformed hairy roots of M. truncatula highlighted the role of a
NADPH oxidase encoded by the gene RbohE during arbuscule accommodation
within cortical root cells (Belmondo et al. 2016).
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12.3.3 Plant Nematode Interaction

Meloidogyne species of root-knot nematodes (RKN) attack the roots of most
vegetable, fruit, and ornamental crops under Mediterranean and tropical climates.
Infested roots become distorted and develop rounded or irregular galls which alter
water and nutrient uptake, thereby reducing plant growth and yield (Fosu-Nyarko
and Jones 2016). Composite plants for studying nematode resistance have been
documented in Lycopersicon esculentum cv. (Collier et al. 2005), Glycine max
(Li et al. 2010), Prunus spp. (Claverie et al. 2011), Arachis hypogaea (Guimaraes
et al. 2017a), and Persea americana (Prabhu et al. 2017).

In Prunus species, composite plants have been used to validate the function of the
candidate gene Ma isolated in Prunus cerasifera (Claverie et al. 2011). When
co-transformed roots expressed the Ma genomic sequence under the control of its
native promoter, a high level of resistance was obtained to the three major RKNs
Meloidogyne incognita, M. arenaria, and M. javanica.

Several RKN species are pathogenic on A. hypogaea and cause considerable yield
losses in Africa every year. In wild-type Arachis species which are resistant to a
number of pests and diseases, transcriptomic studies have identified candidate genes
that could contribute to resistance to M. arenaria. Since peanut is recalcitrant to
genetic transformation, A. rhizogenes was tested as an alternative to develop the
functional analysis of plant genes. Using the A. rhizogenes strain K599, the candi-
date gene for nematode resistance AdEXLB8 was overexpressed in hairy roots
induced on the peanut cultivar “Runner.” Two months after M. arenaria infection,
a reduction of 98% in the number of galls and egg masses was observed compared to
the control hairy roots (Guimaraes et al. 2017b).

12.3.4 Interactions of Hairy Roots with Parasitic Plants

Striga is one of the most important genera of parasitic plants and causes devastating
losses in cereal yields in sub-Saharan Africa. It is an obligate hemiparasitic parasite
that attaches to host roots, forms a haustorium, and penetrates the root cortex of
potential hosts. It then damages cereal crops by draining off water and nutrients,
impairing photosynthesis, and having a phytotoxic effect (Yoshida et al. 2016). The
combination of these factors severely reduces the growth of the crops and causes the
subsequent failure to set seeds. Understanding the molecular mechanisms underly-
ing the plant-parasitic weed interaction is essential for the identification of genes that
could improve crop yield via biotechnological or marker-assisted breeding
strategies.

The possibility for Striga to parasite hairy roots of composite plants has been
demonstrated. Striga gesnerioides (L.) is a major parasite of the grain legume
cowpea (Vigna unguiculata) in Africa. Following infection with the A. rhizogenes
strain R1000, composite plants of V. unguiculata were obtained using an ex vitro
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protocol, and co-transformed roots were selected using gfp as biomarker (Mellor
et al. 2012). Up to 80% of the inoculated plants developed at least one transgenic
root. When subjected to Striga, hairy roots of composite plants responded similarly
to wild-type roots of the susceptible cowpea cultivar, allowing the formation and
growth of parasite tubercles on the legume transformed roots. When the gene RSG3-
301 encoding a resistance (R) gene to Striga was co-transformed in the hairy roots of
a susceptible cowpea genotype, its expression resulted in the acquisition of a
resistant phenotype. These data demonstrate that the expression of the oncogenes
from A. rhizogenes has no impact on the cowpea-Striga interaction.

Runo et al. (2012) reported a similar approach using Zea mays. Using the strain
K599, composite maize plants with co-transformed roots were obtained in vitro on
85.3% of the inoculated seedlings. Two weeks after inoculation with Striga
hermonthica, the number and size of S. hermonthica individuals infecting
transformed or wild-type roots of maize were identical. Microscopic examination
of the infected roots further confirmed that the timing and characteristics of the
infection process were not altered in the hairy roots. These data confirm that
composite plants will be suitable for the characterization of plant genes which play
a critical role in parasitism or host defense.

12.3.5 Hairy Roots for the Study of Wood Formation

Since the regeneration of transgenic forest trees is limited to a small number of
species due to poor regeneration ability and difficulty to achieve T-DNA transfer by
A. tumefaciens, A. rhizogenes appeared to be a viable alternative. Composite plants
have now been reported in several forest trees including Eucalyptus camaldulensis
(Balasubramanian et al. 2011) and E. grandis (Plasencia et al. 2016) and recently in
poplar (Neb et al. 2017).

Whereas poplar has been the main forest tree used to advance our knowledge of
the lignification process in forest trees, other trees such as eucalyptus are of major
economic value. With the release of the Eucalyptus grandis genome sequence, many
candidate genes involved in wood formation have been identified, paving the way
for functional analysis. Due to the recalcitrance of E. grandis to Agrobacterium, the
hypervirulent A4RS strain had to be used to obtain efficient transformation (62% on
average) (Plasencia et al. 2016). Microscopic examination showed that xylem
development was similar in both hairy and wild-type roots. A proof of concept of
the composite plant approach was obtained with the downregulation of the
cinnamoyl-CoA reductase1 gene (EgCCR1) in E. grandis, encoding a key enzyme
from the lignin biosynthetic pathway. As expected, the expression of an EgCCR1
antisense construct led to a decrease in lignin content. The authors also demonstrated
that composite plants were suitable for the analysis of the expression pattern
conferred by promoters from genes involved in the lignin biosynthetic pathway.
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12.4 Genome Editing in Transgenic Roots of Composite
Plants

The first reports of CRISPR/Cas9 editing in plants appeared in 2013, with successful
application for both transient expression and recovery of stable transgenic lines. In
addition to demonstration of efficacy in the model plants Arabidopsis thaliana and
Nicotiana benthamiana (Li et al. 2014), there have also been many reports on
different crop species including rice (Miao et al. 2013), maize (Liang et al. 2014),
and wheat (Wang et al. 2014). Because of the ease of use and low cost, CRISPR/
Cas9 has rapidly become the tool of choice for gene editing and creating knockout
mutants in plants (Belhaj et al. 2015; Liu et al. 2016; Nogué et al. 2016). However, a
prerequisite for the application of the technology is the ability to deliver guide RNAs
(gRNAs) and the CRISPR-associated protein 9 to the target cells either stably or
transiently. When it is not possible to regenerate edited plants after transient expres-
sion of the gRNA and Cas9 in protoplasts and a genetic transformation procedure
with A. tumefaciens is not available either, composite plants offer an alternative for
creating mutations in root-expressed genes (Table 12.3).

The potential of the CRISPR/Cas9 system to induce gene mutations using hairy
root transformation was first tested in tomato and targeted the SHORT-ROOT (SHR)

Table 12.3 Use of genome editing for gene function analysis in composite plants

Plant Gene Function References

Brassica carinata FLA1 Adhesion molecule Kirchner et al.
(2017)

Glycine max FEI1, FEI2
SHR
GS1
CHI
PDS
Rfg1

Plant signaling
Seed coat development
Nitrogen metabolism
Flavonoid pathway
Carotenoid biosynthesis path-
way
Resistance to nodulation

Cai et al. (2015)
Jacobs et al. (2015)
Du et al. (2016)
Fan et al. (2017)

Lotus japonicus SYMRK Symbiotic nitrogen fixation Wang et al. (2016)

Medicago truncatula gus Proof of concept Michno et al. (2015)

Salvia miltiorrhiza CPS1
RAS

Diterpenoid biosynthesis
Phenolic acid biosynthetic
pathway

Li et al. (2017)
Zhou et al. (2018)

Solanum
lycopersicum

SHORT-
ROOT,
SCARECROW

Root development Ron et al. (2014)

Taraxacum kok-
saghyz

1-FFT Inulin biosynthesis Iaffaldano et al.
(2016)

1-FFT, fructan 1-fructosyltransferase; CHI, chalcone-flavone isomerase; CPS1, diterpene synthase;
FEI1 and FEI2, leucine-rich receptor kinase; FLA1, fasciclin-like arabinogalactan protein 1; GS,
glutamine synthase; gus, ß-glucuronidase; PDS, phytoene desaturase; RAS, rosmarinic acid
synthase; Rfg1, plant resistance protein; SCARECROW and SHORT-ROOT, Gras transcription
factors regulating root patterning; SHR, seed coat wrinkling; SYMK, symbiosis receptor kinase
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sequence expressed in root vascular tissue and encoding a transcription factor (Ron
et al. 2014). Several hairy roots genetically transformed with a gRNA targeting the
coding sequence of SHR were obtained and characterized by a short meristem.
Sequence analysis of the targeted gene in putatively edited roots confirmed that
the SHR coding region contained a variety of insertion and deletion (indel) muta-
tions. The alterations in the root phenotype were the result of defects in stem cell
division and cell patterning and were consistent with the phenotype of Arabidopsis
shr mutants. From these data, it was concluded that SHR function was conserved
between tomato and Arabidopsis.

Similar experiments were performed on the nitrogen-fixing legumes
M. truncatula (Michno et al. 2015), G. max (Cai et al. 2015; Du et al. 2016; Jacobs
et al. 2015; Michno et al. 2015; Sun et al. 2015), and L. japonicus (Wang et al. 2016).
Previously reported ex vitro or in vitro composite plant transformation assays were
used to introduce T-DNA gene constructs with the designed gRNA and codon-
optimized gene encoding the Cas9 protein. Sequencing of the targeted genes
revealed mutations induced by the CRISPR/Cas9 system. Following the analysis
of 11 targeted loci in soybean, DNA mutations mainly consisting of small deletions
were detected in 95% of the hairy roots (Jacobs et al. 2015). One limitation of the
CRISPR/Cas9 system is possible off-target mutations that may alter the expression
of genes that were not originally targeted. Experiments on soybean composite plants
indicate that off-target mutations do occur, although at low rates (Jacobs et al. 2015).

The CRISPR/Cas9 system is also effective for the study of biosynthetic path-
ways. Two genes isolated in the Chinese medicinal plant Salvia miltiorrhiza coding
for water-soluble phenolic acids have been successfully targeted (Zhou et al. 2018).
When the diterpene synthase gene SmCPS1 from the tanshinone biosynthetic path-
way was edited, a mutation rate of 42.3% was obtained in the hairy roots, and
tanshinone was absent in the homozygous plants (Li et al. 2017). The second gene
targeted was rosmarinic acid synthase (SmRAS). The level of RAS expression was
reduced in successfully edited plant roots, revealing a promising potential method to
regulate plant metabolic networks and improve the quality of medicinal herbs.

From these recent studies, it can be concluded that CRISPR/Cas9 and related
genome editing methods will facilitate a wide range of functional analyses in roots of
composite plants, since specific mutations and knockout mutants can be easily
obtained, even in non-model plants (Wang et al. 2017).

12.5 Conclusions

The first composite plant obtained after T-DNA transfer with A. rhizogenes was
reported more than 20 years ago in the legume L. corniculatus, the aim being to
study genes involved in nodulation with rhizobia. The feasibility and potential of this
simple low-cost approach have now been demonstrated in numerous legume and
nonlegume plant species. Experiments show that A. rhizogenes is a useful tool to
rapidly test gene expression and function in the context of root development and in
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response to the biotic and abiotic environment. Furthermore, recent findings dem-
onstrate that the CRISPR/Cas9 technology can also be used to induce targeted indel
mutations in the root system of composite plants.

While studies on hairy roots advance the speed of the investigations in plants
which are also amenable to genetic transformation by A. tumefaciens, sometimes
they are the only way to obtain gene transfer in plant species that remain recalcitrant
to in vitro regeneration and/or T-DNA transfer by A. tumefaciens or direct gene
techniques. In the future, this system will thus certainly continue to be a valuable
way to advance functional genomic research and to improve our knowledge of the
molecular mechanisms underlying a wide range of processes in root-microbe and
root-parasitic interactions, root development, and root adaptation to abiotic stress.
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Chapter 13
An Update on Transcriptome Sequencing
of Hairy Root Cultures of Medicinally
Important Plants

Deepak Ganjewala, Gurminder Kaur, and Praveen C. Verma

Abstract Hairy root cultures induced by Agrobacterium rhizogenes infection have
been recognized as promising and attractive alternative source of secondary metab-
olites owing to several advantageous features like genetic stability, comparable
biosynthetic capabilities to the native plant root, and sizable biomass production.
Hairy root cultures are reported to produce all major classes of secondary metabo-
lites, such as isoprenoids/or terpenoids, alkaloids, phenolics, and flavonoids. So far,
hairy root cultures have been established from a variety of plants providing com-
mercially valuable products, such as artemisinin (Artemisia annua), astragalosides
(Astragalus membranaceus), acteoside (Rehmannia glutinosa), centellosides
(Centella asiatica), resveratrol (Arachis hypogaea), camptothecin (Camptotheca
acuminata), vinblastine, vincristine (Catharanthus roseus), and kutkin, iridoid gly-
cosides (Picrorhiza kurroa). In hairy root cultures, these specialized metabolites are
produced via complex network of several distinctive biochemical pathways operat-
ing in an integrated manner. However, biochemical pathways and genes involved in
production of many phytochemicals have not been completely elucidated.
Transcriptome sequencing of hairy root cultures by next-generation sequencing
techniques has been proven to be an excellent approach in elucidation of biosyn-
thetic pathways and genes of phytochemical production. Newly emerged next-
generation sequencing techniques like Roche/454 and Illumina/Solexa have greatly
facilitated sequencing of transcriptome of hairy root cultures. At present,
transcriptome sequence datasets of hairy root cultures of only a limited numbers of
plants, viz., C. roseus, P. ginseng, A. membranaceus, R. glutinosa, C. asiatica, etc.,
are available. Thorough analyses of transcriptome sequence datasets of hairy root
cultures have unraveled many biosynthetic pathways and genes responsible for the
biosynthesis of commercially important phytochemicals. The present chapter
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provides an up-to-date information of transcriptome sequencing of hairy root cul-
tures of important plants performed by next-generation sequencing techniques.

Keywords Agrobacterium rhizogenes · Elicitors · Hairy root cultures · Methyl
jasmonate · Next-generation sequencing · Secondary metabolites · Transcriptome

13.1 Introduction

Transcriptome sequencing has emerged as an excellent method to provide genome
data, large expressed sequence tag (EST) sequences, and molecular markers. Cur-
rently, genome sequences of more than 180 plants are available (http://www.plabipd.
de/portal/sequence-timeline). Emerging next-generation sequencing technologies
(NGS) have triggered an explosion of available genomic and transcriptomic
resources in plant sciences (Bolger et al. 2014). NGS technologies provide cutting-
edge approaches for high-throughput sequence generation (Egan et al. 2012) and
allow rapid and comprehensive analyses of plant genomes and cost-effective means
of analyzing transcripts (Wei et al. 2015; Wen et al. 2015). Most important NGS
techniques like Roche/454 pyrosequencing, SOLiD/ABI (supported oligonucleotide
ligation and detection/Applied Biosystems), and Illumina/Solexa have led to tre-
mendous advancements in genomics by providing cheaper and faster delivery of
sequencing information (Morozova and Marta 2008). Now, more powerful third-
generation sequencers have arrived, such as Helicos from Heliscope, PacBio from
Pacific Biosciences, and Nanopore from Oxford Nanopore Technologies (ONT),
which can sequence single-molecule templates directly with no PCR (polymerase
chain reaction) amplification. For details on NGS and its applications in
transcriptome sequencing, refer to the article by Chen and Luo (2014). Initially,
Roche/454 sequencer has been successfully used for transcriptome sequencing of
Brassica napus (Trick et al. 2009), Artemisia annua (Wang et al. 2009), Eucalyptus
grandis (Novaes et al. 2008), Olea europaea (Alagna et al. 2009), Arabidopsis
thaliana (Jones-Rhoades et al. 2007; Weber et al. 2007; Zhou et al. 2012),Medicago
truncatula (Hsiao et al. 2008), and other plant species (Varshney et al. 2009).
Currently, Illumina/Solexa RNA-sequencer is the most widely used platform for
transcriptome sequencing with higher read depth and prediction accuracy capabili-
ties (Yu et al. 2014; Song et al. 2017). The Illumina/Solexa RNA-seq is a highly
sensitive, powerful, and cost-efficient technique for discovering gene expression,
novel genes, and differentially expressed genes, as well as the detection of
low-abundance transcripts. Due to its higher accuracy and dynamic range, it has
replaced other methods for quantifying gene expressions. Further, RNA-seq has
been useful in non-model plants that lack a reference genome, such as olive (Alagna
et al. 2009), chestnut (Barakat et al. 2009), and tea (Shi et al. 2011) because here the
aim of sequencing is to focus on the coding regions. It has also been used for model
agriculture crops, such as Zea mays and Glycine max (Tuan et al. 2015).
Transcriptome sequencing using NGS techniques has been proven to be a very
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useful tool to investigate biochemical pathways and search genes related to novel
bioactive phytochemicals in a number of medicinal plants. In all studies of
transcriptome sequencing by NGS techniques aimed to elucidate secondary metab-
olite biosynthetic pathways and genes, the developmental stages of the concerned
plant, plant parts, and tissue types (roots, hairy roots, leaves, stems, etc.) have been
taken into account as they significantly influence levels of secondary metabolites in
plants. Hairy roots are manifestation of a disease caused by Agrobacterium
rhizogenes and characterized by a proliferation of excessively branching roots
(Mehrotra et al. 2010; Georgiev et al. 2012). Literature survey revealed that HRCs
have been established in more than 400 plant species and are continually being
induced from new plants (Porter and Flores 1991; Ono and Tian 2011). Hairy root
cultures established for many plants have been used for production of secondary
metabolites, such as alkaloids, terpenoids, flavonoids, saponins, and other novel
metabolites (Srivastava and Srivastava 2007; Mehrotra et al. 2010; Sharma et al.
2013). Also hairy root cultures have been developed as biotechnological factories
with potential for the production of valuable phytochemicals through chemical
transformations aided by its inherent enzyme resources (Banerjee et al. 2012).
Production of secondary metabolites in HRCs can be enhanced through metabolic
engineering of the concerned pathways (Mehrotra et al. 2010). In view of the rapidly
increasing use of HRCs for production of valuable phytochemicals, sequencing of
the transcriptome of HRCs has become highly desirable to gain deeper insight into
biochemical pathways and putative genes involved in the biosynthesis of phyto-
chemicals. Most of the studies on transcriptome sequencing of HRCs have revealed
an important fact that HRCs have been treated with hormonal elicitors, methyl
jasmonate (MeJA), and/or salicylic acid (SA) for better and comprehensive under-
standing of the gene expression profiles. Till date, transcriptome sequencing of
HRCs of only limited plants, namely, Ophiorrhiza pumila (Yamazaki et al. 2013),
Centella asiatica (Kim et al. 2014), Salvia miltiorrhiza (Gao et al. 2014; Xu et al.
(2015)), Panax ginseng (Cao et al. 2015), Astragalus membranaceus (Tuan et al.
2015), Catharanthus roseus (Sun et al. 2016), and Rehmannia glutinosa (Wang et al.
2017), have been performed. In the future, numbers of transcriptomics dataset of
HRCs will increase as HRCs for new commercially important plants are currently
being established. In this chapter, we have discussed the progress made on
transcriptome sequencing of HRCs of medicinal plants. Also, we have discussed
in the nutshell about HRCs and elicitors, methyl jasmonate (MJ), and salicylic acid
(SA) emphasizing their effects on production of phytochemical in HRCs.

13.2 Hairy Roots

The name “hairy root” was first introduced by Stewart et al. (1900). Hairy roots are
disease manifestations developed by plants that are wounded and infected by
A. rhizogenes. When a large number of small, fine, hairy roots covered with root
hairs originate directly from the explant in response to A. rhizogenes infection, it is
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called “hairy root.” The main advantage of hairy roots is that they often exhibit about
the same or greater biosynthetic capacity for phytochemical production as compared
to their mother plants (Kim et al. 2002). Agrobacterium rhizogenes has root-
inducing plasmid (Ri) harboring root loci (rol) genes, which get inserted into the
nuclear genome of the host plant eventually causing neoplastic root and root hair
proliferation. It is believed that Rol genes affect the growth and development of the
transformed roots and trigger secondary metabolite synthesis by turning on the
transcription of defense genes. The transformed root cells produce low-molecular-
weight molecules known as opines, such as agropine, mannopine, and cucumopine,
which are metabolized by A. rhizogenes. Hairy roots are highly differentiated and
can proliferate on phytohormone-free media, which distinguishes them from
undifferentiated plant cell cultures. It is reported that plants of a number of families,
such as Balsaminaceae, Chenopodiaceae, Compositae, Juglandaceae, Labiatae,
Moraceae, Ranunculaceae, Solanaceae, Asteraceae, Cucurbitaceae,
Plumbaginaceae, Apocynaceae, Asclepiadaceae, and Umbelliferae, induce hairy
root disease symptoms on infection with A. rhizogenes (Porter and Flores 1991;
Giri and Narasu 2000; Ono and Tian 2011).

The mechanism of diseases caused by hairy root proliferation by A. rhizogenes
has been exploited to develop HRCs in plants for large-scale production of valuable
phytochemicals. HRCs have already been established in more than 400 plant species
and are continually being induced from new plants (Porter and Flores 1991; Ono and
Tian 2011). Hairy root cultures of Artemisia annua (artemisinin), Arachis hypogaea
(resveratrol), Catharanthus roseus (indole alkaloids), and Camptotheca acuminata
(camptothecin) are occupying increasing significance due to their valuable phyto-
chemicals (Shivkumar 2006; McCoy and O’Connor 2008). Because of their genetic
stability, comparable biosynthetic capacity to the native plant root, and sizable
biomass production, HRCs offer promising alternative source of phytochemicals.
Furthermore, HRCs often accumulate phytochemicals at a higher level than cell/
callus cultures that contain undifferentiated cells. Till date, many research papers,
reviews, books, and chapters have been published covering every aspects of HRCs,
including its applications and future prospects (Srivastava and Srivastava 2007;
Mehrotra et al. 2010, 2015; Ono and Tian 2011, Georgiev et al. 2012; Srivastava
et al. 2012, 2013; Mehrotra et al. 2015). Biotechnological applications of HRCs,
such as production of recombinant proteins, phytoremediation, molecular breeding,
rhizosphere physiology, biochemistry, and metabolic engineering, have been
discussed in detail (Srivastava and Srivastava 2007; Mehrotra et al. 2010; Ono and
Tian 2011, Georgiev et al. 2012). Production of important secondary metabolites in
HRCs can also be enhanced through metabolic pathway engineering (Mehrotra et al.
2010). Besides, because of the potential of HRCs for production of phytochemicals,
they have been used as a tool for studying functional genomics and unravelling
biochemical pathways (Ono and Tian 2011; Sharma et al. 2013). Banerjee et al.
(2012) have highlighted biotransformation capabilities of HRCs, which have been
exploited for generating novel pharmaceutical compounds by chemical transforma-
tions of parent skeleton through its inherent enzyme resources. The potential of
Atropa belladonna hairy roots in the production of industrially important
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cosmeceutical and pharmaceutical derivatives of betuligenol and to transform car-
bonyl compounds through oxidation and reduction reactions have also been reported
(Srivastava et al. 2012, 2013).

13.2.1 Roles of Elicitors

Elicitors are the most effective substances, which can enhance the production of
secondary metabolite by several folds when added to HRCs. Elicitors have been
categorized into abiotic and biotic types on the basis of their origin (Table 13.1).
Elicitors if added even in a very small concentration to the HRCs may trigger
chemical defense system to stimulate physiological and morphological responses
resulting in increased biosynthesis and accumulation of secondary metabolites. In
view of elicitor’s stimulating effects on production of secondary metabolites, they
have tremendous significance in biotechnological production of commercially valu-
able secondary metabolites. Despite the fact that HRCs are a promising source of
valuable secondary metabolite accumulation, HRCs developed for many plants do
not produce significant levels of secondary metabolites. Thus, addition of elicitors to
such HRCs may significantly enhance production of secondary metabolites. A
number of reports and reviews have been published on elicitors (biotic and abiotic)
and their applications to enhance phytochemical production from HRCs (Dicosmo
and Misawa 1985; Ebel and Casio 1994; Namdev 2007; Goel et al. 2011;
Ramirez_estrada et al. 2016; Wang and Wu 2013; Naik and Alkhayri 2016). Here,
we have discussed mainly MeJA and SA because they were used in most of the
studies on transcriptome sequencing of HRCs. The rationale behind the treatment of
HRCs with MeJA is that the treated HRCs are ideal models to learn the complex
biochemical variation in secondary metabolism and discover novel genes related to
secondary metabolite biosynthesis (Yan et al. 2014). Elicitation studies in combina-
tion of in silico approaches could be a more useful practice for a better understanding
and identification of the rate-limiting steps of biosynthetic pathways existing in HRs
(Goel et al. 2011). Jasmonates are plant-specific signaling molecules that regulate
various physiological and developmental processes (Pauwels et al. 2009). Salicylic
acid is a small molecule, which has a vital role in plant defense regulatory system. It

Table 13.1 Classification of elicitors

Elicitors

Abiotic Biotic

Physical Chemical Hormonal

Salinity Heavy metals Methyl jasmonate Polysaccharides

UV radiation Mineral salts Salicylic acid Yeast extracts

Osmotic stress Gaseous toxins Gibberellic acid Fungal

Thermal stress Brassinosteroids Bacterial

Drought
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induces systemic-acquired resistance against many pathogens. Salicylic acid has
been reported as an effective elicitor of secondary metabolite in several plant species.
Derivatives and analogs of salicylic acid such as 2,6-dichloroisonicotinic acid and
benzothiadiazole have also been used as chemical inducers of systemic-acquired
resistance (Hayat et al. 2010; Pieterse and van Loon 1999; Durrant and Dong 2004).
Other biotic and abiotic elicitors (Table 13.1) have also been reported to increase
production of secondary metabolites in HRCs (Guillon et al. 2006). Wu and Shi
(2008) have reported the use of sorbitol in conjunction with yeast extract as an
elicitor on production of a diterpenoid, tanshinone in S. miltiorrhiza HRCs. Produc-
tion of tanshinone has been enhanced by 100fold in fed-batch cultures as compared
to the controls. In C. asiatica, MeJA markedly influence the biosynthesis of a
triterpene, saponin, by upregulation of the terpenoid pathway. Additionally, MeJA
treatment increases the transcript levels of squalene synthase and dammarenediol
synthase genes, which are associated with the triterpenoid pathway in C. asiatica
(Kim et al. 2005a, b; Kim et al. 2009). In S. sclarea and S. miltiorrhiza HRCs,
addition of MeJA elicits defense responses resulting in elevated production of useful
secondary metabolites (Kuzma et al. 2009). Methyl jasmonate has also been used as
a tool for identification and characterization of novel genes involved in
phenylpropanoid biosynthesis in S. miltiorrhiza (Hou et al. 2013). It suppresses
cell growth and decreases the biomass yield in S. miltiorrhiza cell cultures (Zhao
et al. 2010). In recent times, high-throughput sequencing has facilitated
transcriptome sequencing of S. sclarea (Legrand et al. 2010) and S. miltiorrhiza
(Li et al. 2010; Wenping et al. 2011) and also made it possible to perform
transcriptome-wide investigation of MeJA-induced plant responses. In Hyoscyamus
albus, treatment of HRCs with combination of copper sulfate and MeJA has
dramatically altered the phytochemical profiles of four new sesquiterpene phyto-
alexins (Kawauchi et al. 2010). The use of elicitors, such as SA,MeJA, AgNO3 (Ag+),
and putrescine, in HRCs of R. glutinosa significantly affected the biosynthesis of
acteoside, which is attributed for several bioactive properties, such as antioxidant,
antinephritic, anti-inflammatory, hepatoprotective, immunomodulatory, and neuro-
protective (Wang et al. 2017). Among these elicitors, SA (25 μmol/L) has been found
to enhance the synthesis of acteoside in hairy roots.

13.3 Transcriptome Sequencing of Hairy Roots

Advancements in the molecular biology techniques mainly the NGS techniques have
contributed tremendously in understanding secondary metabolism pathways and
genes involved therein. Several review articles have discussed technical aspects of
NGS techniques and its biotechnological applications in genome/transcriptome
sequencing (Egan et al. 2012; Chaudhary and Sharma 2016). Undoubtedly, NGS
techniques have revolutionized our understanding about the secondary metabolism
by generating genome/transcriptome sequence databases (Chaudhary and Sharma
2016). Transcriptome is defined as a set of RNA molecules in one cell or a
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population of cells, whereas transcriptomics is the study of the expression of RNA
level in a population of a cell. The total set of RNA sequences in a cell determines
why and how the gene will turn on or off in the cells and tissues of an organisms. In
principle, any high- throughput sequencing technology can be used for RNA-seq,
and the Illumina IG (Nagalakshmi et al. 2008; Wilhem et al. 2008; Mortazavi et al.
2008; Lister et al. 2008; Marioni et al. 2008; Morin et al. 2008), A Biosystems
SoliD22, and Roche 454 Life science systems have already been applied for this
purpose. Following sequencing, the resulting reads are either aligned to a reference
genome or reference transcripts or assembled de novo without the genomic sequence
to produce a genome-scale transcription map that consists of both the transcriptional
structure and level of expression for each gene (Ku et al. 2012).

In early 2010, Illumina launched HiSeq 2000, which uses solid-phase bridge
amplification in which 50 and 30 adapters are ligated to each end of a DNA template
(http://www.illumina.com). The library with fixed adapters is denatured to single
strands and grafted to the flowell, followed by bridge amplification to form clusters,
which contains clone, DNA fragments. Before sequencing, the library splices into
single strands with the help of linearization enzyme (Madris 2008) and then four
kinds of nucleotides (ddATP,ddGTP, ddCTP, ddTTP), which contain different
cleavable fluorescent dyes, and a removable blocking group would complement
the template one base at a time, and the signal could be captured by a (charge-
coupled device) CCD.

So far, transcriptome sequence databases have been constructed and annotated for
a number of plants, namely, Taxus mairei (Hao et al. 2011), Glycyrrhiza uralensis
(Ramilowski et al. 2013), Lycium chinense (Zhao et al. 2013), Litsea cubeba (Han
et al. 2013), Opium Poppy (Gurkok et al. 2014), Panax notoginseng (Liu et al.
2015), and Gastrodia elata (Tsai et al. 2016). Researchers exploit these
transcriptome sequence dataset to unravel the biochemical pathways of secondary
metabolites on a transcriptome-wide scale in non-model plant species, particularly
medicinal plants, for which the complete genome sequences and annotation are not
yet available. In the past few years, transcriptome sequencing of HRCs of several
plant species, viz., O. pumila (Yamazaki et al. 2013), C. asiatica (Kim et al. 2014),
S. miltiorrhiza (Gao et al. 2014; Xu et al. 2015), P. ginseng (Cao et al. 2015),
A. membranaceus (Tuan et al. 2015), C. roseus (Sun et al. 2016), and R. glutinosa
(Wang et al. 2017), have been carried out using Roche454 and Illumina/Solexa NGS
techniques. Information of their transcriptome sequence dataset has been summa-
rized in Table 13.2. For the first time, Illumina platform was used for sequencing of
transcriptome of hairy roots and cell suspension cultures of O. pumila, which
generated 2 Gb of sequences (Yamazaki et al. 2013). Transcriptome sequence data
provided detail insight into the genes involved in the biosynthetic pathway for the
camptothecin, anthraquinones, and chlorogenic acid as well as genes involved in
post-strictosamide biosynthetic events. Thus, combined transcriptome and
metabolome datasets have facilitated the identification of genes and intermediates
involved in the biosynthesis of camptothecin in O. pumila. Few studies have used
combination of transcriptome sequencing and metabolic profiling to gain deeper
insight into biosynthesis and regulation of phytochemicals in HRCs. In I. indigotica,
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transcriptome sequencing coupled with metabolic profiling has successfully revealed
genes involved in the biosynthesis of the active compounds (Chen et al. 2013).
Combination of transcriptome and metabolite profiling has identified IiPLR1 gene
that plays important role in lariciresinol accumulation in I. indigotica (Xiao et al.
2015). Another similar study with I. indigotica has provided detail insights into the
biosynthetic pathway and regulation of lignin (Zhang et al. 2016). There are total
17 major genes involved in the biosynthesis of lignan, but only 4CL3 has greater
impact on lignin biosynthesis. These results have been used for improving produc-
tion of lignan-like compounds in I. indigotica. Application of the MeJA in HRCs
facilitated the discovery of the potential key catalytic steps and metabolic/transcrip-
tional changes and candidate genes that might be playing key roles in lignan
biosynthesis. Previously, Chen et al. (2013) have also demonstrated the beneficial
effect of MeJA on lignan biosynthesis in I. indigoticaHRCs. Gao et al. (2014) used a
combination of metabolomics and transcriptomics to investigate the inducible bio-
synthesis of the bioactive diterpenoid, namely, tanshinones in S. miltiorrhiza
(Danshen), a Chinese medicinal herb. S. miltiorrhiza produces and accumulates
tanshinone pigments in the root periderm. A combination of NGS and single-
molecule real-time (SMRT) sequencing technique was applied to various root
tissues, mainly the periderm, which was found more efficient providing a complete
view of the S. miltiorrhiza transcriptome, with deeper insight into tanshinone
biosynthesis (Xu et al. 2015). Also, the use of SMRT long-read sequencing has
the ability to examine alternative splicing, which was found to occur in approxi-
mately 40% of the detected gene loci, including several genes involved in isopren-
oid/terpenoid metabolism.

Analysis of expressed sequence tags from C. asiatica urban hairy roots elicited by
MeJA has led to the discovery of genes related to cytochrome P450s and
glucosyltransferases involved in the biosynthesis of the centellosides (Kim et al.
2014). C. asiatica is a perennial plant, which is used in wound-healing due to its
strong anti-inflammatory properties. The sequencing revealed that asiatic and
madecassic acids are biosynthesized from α-amyrin by cytochrome P450 hydroxy-
lase and carboxylase (P450). Asiatic and madecassic acids are used as precursors for
the biosynthesis of asiaticoside and madecassoside. The UDP-glucosyltransferases
catalyze synthesis of two centellosides from asiatic acid and madecassic acid.

Cao et al. (2015) have studied the transcriptome of P. ginseng adventitious roots
following treatment with MeJA. The P. ginseng is an elite member of family
Araliaceae, which produces ginsenoside used in many herbal formulations.
Transcriptome sequencing of P. ginseng hairy roots revealed that putative genes
involved in the biosynthesis and transport of ginsenoside showed a wide range of
expression levels. Sequencing analyses provided information about 749 ginsenoside
biosynthetic genes and 12 promising pleiotropic drug resistance (PDR) genes related
to ginsenoside transport. Transcriptome sequencing of (roots, hairy roots, and stems)
of another species of ginseng P. vietnamensis var. fuscidiscus has been carried out
using Illumina HiSeq™ 2000 sequencing platform (Zhang et al. 2015).
Transcriptome sequence analyses have revealed 15 candidate cytochrome P450
genes and 17 candidate UDP-glycosyltransferase genes most likely to be involved
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in triterpenoid saponin biosynthesis pathway. Further, it provided information on
SSR markers, which may be utilized to facilitate the marker-assisted breeding in
Panax species. P. vietnamensis var. fuscidiscus has been considered as a suitable
medicinal herbal plant to study biosynthesis of ocotillol-type saponins as no geno-
mic information is available about this important herbal plant. P. vietnamensis var.
fuscidiscus is reported to contain high percentage of ocotillol-type saponin,
majonoside R2. The transcriptome of Astragalus membranaceus hairy roots treated
with MeJA has been sequenced by Illumina/Solexa HiSeq 2000 platform (Tuan et al.
2015). The study of transcriptome sequence data led to the identification of most of
the genes related to biosynthesis and regulation of astragaloside, calycosin, and
calycosin-7-O-β-D-glucoside. Treatment of HRCs with MeJA caused upregulation
of 2127 genes and downregulation of 1247 genes. The study also identified 17 novel
astragaloside biosynthetic genes and seven novel calycosin and calycosin-7-O-β-D-
glucoside biosynthetic genes. Transcriptome analyses findings may be exploited for
molecular characterization of astragaloside, calycosin, and calycosin-7-O-β-D-glu-
coside biosynthetic pathways leading to new approaches to enhance their production
and biomass productivity in the hairy roots of A. membranaceus (Tuan et al. 2015).

Sun et al. (2016) have investigated transcriptional response of overexpressing
anthranilate synthase in the hairy roots of an important medicinal plant C. roseus by
Illumina sequencing and RT-qPCR. C. roseus is an important medicinal plant, which
provides two well known anticancer compounds, vinblastine and vincristine. In
C. roseus, vinblastine and vincristine are biosynthesized via the terpenoid indole
alkaloid pathway. An enzyme anthranilate synthase identified as a regulatory
enzyme of this pathway controls and regulates the overall production of terpenoid
indole alkaloids. Also, it stimulates overall stress response and affects the metabolic
networks in C. roseus hairy roots. A study in C. roseus that has been engineered with
anthranilate synthase (αβ-subunit) revealed that jasmonic acid signal transduction is
involved in the upregulation of endogenous jasmonate biosynthesis (Sun et al.
2016).

Chakrabarty et al. (2015) have performed transcriptome sequence analyses in two
strategically selected and contrasting morphotypes of vetiver, one representing the
North Indian type having thick, smooth, and fast growing roots, and the other the
South Indian type having thin, hairy, and more roots. They used Illumina paired-end
sequencing technology to characterize the root transcriptome of vetiver and devel-
oped SSR markers. This was the first study in vetiver providing comparative
molecular analysis of root transcriptome from two distinct morphotypes of vetiver.
The vetiver root transcriptome may serve as a public information platform for further
studies of gene expression, genomics, and functional genomics in vetiver. This study
also provided an important starting point for further discovery of genes related to
root oil quality in different ecotypes of vetiver (Chakrabarty et al. 2015). Wang et al.
(2017) have performed transcriptome sequencing of R. glutinosa hairy roots treated
with SA. R. glutinosa is a valuable medicinal plant, which accumulates high amount
of acteoside responsible for several bioactive properties, such as antioxidant,
antinephritic, anti-inflammatory, hepatoprotective, immunomodulatory, and
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neuroprotective. Analyses of the hairy root transcriptome indicated 219 putative
unigenes involved in acteoside biosynthesis of which 54 are upregulated.

13.3.1 Advantages and Limitations of NGS

The main advantage of the genome/transcriptome sequence datasets is that these
datasets can be used to characterize genes and biochemical pathways involved in the
biosynthesis of valuable bioactive phytochemicals. Moreover, it provides deeper
insight into gene expression profiles and molecular regulatory mechanisms under-
lying biochemical pathways, which control and regulate biosynthesis and accumu-
lation of secondary metabolites (Hao et al. 2011). This information can be exploited
for metabolic engineering of biochemical pathways in HRCs to enhance production
of the phytochemicals of interest. Transcriptome sequencing of HRCs of medicinal
plants may also underpin some breakthroughs for the discovery of
new phytomedicines and development of pharmacological and biological resources.
Transcriptome sequencing could also be useful in identification of novel transcript
involved in the metabolism of bioactive compounds and finding alternate splice form
of genes (Wang et al. 2009). Most importantly, NGS techniques have overcome the
drawbacks of EST sequencing, such as low-throughput data generation, high cost,
lack of quantification of gene expression, bias in cDNA library composition, and
inadequate representation of un-clonable transcripts (Mortazavi et al. 2008;
Morozova et al. 2009; Shi et al. 2011). Despite, numerous advantages of NGS
techniques, limitations in sequencing and assembling of complex genomes are major
challenges need to be overcome in the future.

13.4 Conclusion

Hairy root culture is a diverse technique with a wide breadth of applications that
continue to multiply with the development of novel gene manipulation techniques.
So far, HRCs have been established for a number of plants serving as biotechno-
logical factories for the production of valuable phytochemicals. Establishment of
HRCs involves optimization of several factors, each of which varies greatly between
species. Seeking out the best of conditions based on projected uses and goals is the
key maximizing the functionality of this approach. Besides, a better understanding of
biosynthetic genes and biochemical pathways is a prerequisite for metabolic engi-
neering to enhance production of valuable phytochemical in HRCs. Sequencing of
transcriptome of HRCs by NGS techniques has greatly facilitated our understanding
of biochemical pathways in plants. Some researchers have also used transcriptomics
in combination with metabolomics thus squeezing more detailed information about
metabolic pathways and gene expression profiles in plants. In the present chapter, we
have discussed progress on transcriptome sequencing of HRCs of important
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medicinal plants. Transcriptome sequence datasets have proven to be a valuable
source of information, thus facilitating elucidation of biochemical pathways and
identification of candidate/putative genes in HRCs of plants. The knowledge of
biochemical pathways and their genes is crucial for metabolic pathway engineering
in HRCs in order to enhance production of valuable metabolites. A number of
studies undertaken for transcriptome sequencing have demonstrated potential of
Illumina/Solexa platforms as a fast, reliable, simple experimental design and cost-
effective approach for transcriptome characterization and gene discovery in HRCs.
In the future, transcriptome sequencing studies will extend to HRCs of a large
number of important medicinal plants and accelerate the progress of novel gene
discovery program. In this chapter, for the first time we have provided an in-depth
information on contribution of NGS techniques for sequencing of transcriptome of
HRCs of important medicinal plants, which will be highly useful for researchers
working in areas of metabolomics and transcriptomics researches.
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Chapter 14
Strategies for Monitoring and Modeling
the Growth of Hairy Root Cultures: An In
Silico Perspective

Mandavi Goswami, Salman Akhtar, and Khwaja Osama

Abstract Hairy roots have been identified as a good source of secondary metabo-
lites in plants. These secondary metabolites in the genera of phytochemicals have
been used by humans since long in the form of drugs, flavors, colors, and others.
Thereby, large-scale culture of hairy roots, its management, and production have
been conferred as most important and critical steps at industrial scale. Conversely,
culture of hairy roots in bioreactors at industrial scale has proven to be a tedious job
and requires continuous monitoring and precise control of the system. These chal-
lenges for hairy roots owe to their heterogeneous nature. Conventional methods for
monitoring of such cultures have failed to work well within this system. So, indirect
methods are being used for continuous monitoring of growth and metabolite content
in hairy roots. Efficiency and efficacy of these indirect methods depend largely upon
models of hairy root growth, product synthesis, and substrate utilization. Several
mathematical and computational models have been developed to explain hairy root
growth. Some of these models are complex mathematical equations which are based
on physical principles, while others are computational models derived from empir-
ical data. This chapter intends to outline and explain some of the prominent models
for hairy root growth and their mode and mechanism of action in large-scale
bioreactors.
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14.1 Introduction

Hairy roots are plant disease syndrome caused by the infection of soil-borne
bacterium Agrobacterium rhizogenes to the higher plants. Upon infection
A. rhizogenes transfers a DNA segment (T-DNA) from its root-inducing
(Ri) plasmid into the genome of the host plant. Set of genes, carried by T-DNA
segment, codes for the enzymes which interfere into the auxin and cytokine in the
biosynthesis of the host (Chandra 2012; Mehrotra et al. 2015; Srivastava et al. 2016).
Due to this reason, the hormonal imbalance at the wounded site occurs that causes
the rapid growth of hairy rootlike mass at the wounded sites. These are called hairy
roots and are prominent disease syndrome of higher plants (Georgiev et al. 2012).
The hairy roots are characterized by high growth rate, genetic stability, and growth in
hormone-free media. These roots are very much similar to the native roots of the host
plant in terms of their capacity to produce similar or much higher amount of
secondary metabolites that are normally produced by the plant (Pistelli et al.
2010). In laboratories, hairy roots are cultured to explore secondary metabolite
synthesis both in terms of their production for commercial purposes and to investi-
gate their biochemical and molecular aspects. Hairy root cultures have proven their
worth for the production of commercially valuable secondary metabolites. This
property of hairy roots is of particular interest for researchers who strive for large-
scale production of these metabolites. Secondary metabolites are the chemicals
produced by plants for which no role has been found in growth, photosynthesis,
reproduction, or other primary functions. Humans use some of these compounds as
medicines, flavorings, fragrance, recreational drugs, biopesticides, nutrients, cos-
metic additives, etc. The procurement of these phytochemicals at large scale from
plants requires vast agricultural land, time and labour. Further, their chemical
synthesis is a costly and labor-intensive affair. Therefore, the constant use, ever-
increasing demand, and less availability of these important phytochemicals from
natural sources are the driving efforts to develop new ways to optimize their
alternative production. In this reference, hairy root-based production of plant-
derived metabolites needs scientific consideration. Another commercially important
aspect of hairy root is their ability to produce proteins. Although there are some
problems associated with production of foreign proteins by hairy roots like low
accumulation levels, instability of proteins, etc., hairy roots have great potential for
large-scale production of proteins (Doran 2006). Furthermore, hairy root cultures are
known for their use in value-added applications like phyto-/rhizoremediation of
toxic compounds, biotransformation of exo-/endogenously supplemented substrates
into commercially more valuable compounds, etc. (Mehrotra and Srivastava 2017;
Srivastava et al. 2017).

To sum up, hairy root cultures have gained popularity as one of the most suitable
biological systems to fulfill various biotechnological objectives. For this purpose,
the establishment and maintenance of the culture system is a prerequisite. Further,
before using any hairy root culture system, sometimes there is a need to know about
their biological behavior and their responses to various environmental factors as
these factors determine their overall growth and productivity. Practically, in
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biological systems it is troublesome and tedious to optimize all the factors every time
before using a system for any purpose as biological behaviors are nonlinear and
nondeterministic. For this question, the use of modeling of biological systems to
investigate their growth patterns, responses to their physical and chemical environ-
ment, production potential, etc. can provide an answer. The upcoming text provides
condensed information about modeling of biological system and their applications
with particular reference to hairy root cultures.

14.2 Modeling of Biological Systems

Advances in various fields of biology and information technology have produced
huge amounts of data. Accumulation of this data is day to day increasing and is in
continuous need of interpretation and investigation in order to understand the
behavior of biological systems. These advances are changing the way biological
research, development, and applications are conducted. Modeling is the human
activity which includes representation, manipulation, and communication with
real-world life objects. A model can be defined as a portrayal of a system (comprised
of many integral parts) in terms of its constitutive parts and their association/
interactions, where the portrayal itself is decodable or interpretable by humans.
Biological processes are nonlinear and complex because of their collective behavior
and changes in various phases of development. They depend upon different external
and internal factors (Gago et al. 2009). The challenge in modeling any biological
process is to find a model which is accurate and able to provide deep insight of the
process. Because of the complexity of biological data, simple algorithms or math-
ematical equations cannot be used to describe the process (Osama et al. 2015).
Deterministic models of biological process have been developed based on physical
interactions. These models are helpful in providing underlying information of the
process. However, due to complexity of biological systems, these models are
difficult to develop and are very complex to interpret and solve. Modeling the
biological processes requires accounting for action and feedback involving a wide
range of spatial and temporal scale. The upcoming text provides an informative
description upon various approaches for modeling in hairy root cultures to explore
their growth and production phenomenon. Some models of hairy root growth in
bioreactors have been summarized in Table 14.1.

14.3 Statistical and Mathematical Models for Hairy Root
Growth

Statistical designs can be used to model relationships of different factors on hairy
root growth. These designs are simple and easy but require some prior data. Bhadra
and Shanks (1995) used statistical design to model the effect of inoculum conditions
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Table 14.1 Summary of reported models for the hairy root growth

S. no. Model Hairy roots Effects of model References

1. Box-Behnken
design (BBD)

Isatis tinctoria Secondary metabolites
(rutin, neohesperidin,
buddleoside, liquiritigenin,
quercetin, isorhamnetin,
kaempferol, and
isoliquiritigenin)

Gai et al.
(2015)

2. Agent-based
modeling (ABM)
approaches

Beta vulgaris Total root length,
branching point distribu-
tion, segment distribution,
and
secondary metabolite
accumulation

Lenk et al.
(2014)

3. Artificial neural
network in combi-
nation with hidden
Markov model

Rauwolfia serpentina Overall productivity of a
bioprocess

Mehrotra
et al.
(2013)

4. Artificial neural
network-based
model

Artemisia annua Effect of different reactor
parameters on hairy root
biomass

Osama
et al.
(2013)

5. Artificial neural
network (ANN)

Glycyrrhiza glabra Prediction of optimal cul-
ture conditions for maxi-
mum hairy root biomass
yield

Prakash
et al.
(2010)

6. Mathematical
model

Artemisia annua On and off cycle in a nutri-
ent mist reactor

Ranjan
et al.
(2009)

7. Multi-scale mathe-
matical model

Ophiorrhiza
mungos Linn.

Temporal evolution of bio-
mass increase and nutrient
uptake

Bastian
et al.
(2008)

8. Structured nutri-
tional model

Catharanthus roseus,
Daucus carota

Secondary metabolites
(nitrogenous compounds
and storage carbohydrates,
recombinant protein)

Cloutier
et al.
(2008)

9. Feed-forward back
propagation neural
network-based
model

Glycyrrhiza glabra Optimum culture condition
on biomass growth

Mehrotra
et al.
(2008)

10. Population-based
model

Helianthus annuus Biomass increase based on
age distribution of cells and
branching

Han et al.
(2004)

11. Kinetic model for
pigment associated
with root growth

Beta vulgaris Kinetic behavior of root
and pigmentation based on
hairy root growth

Kino-oka
et al.
(1995)

12. Aerosol model Artemisia annua Deposition of mist droplets
on root hairs in a nutrient
mist reactor

Wyslouzil
et al.
(1997)

13. Branching number
and age

Tagetes erecta Kim et al.
(1995)

(continued)
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on growth of hairy roots of Catharanthus roseus. In this study, a two-level factorial
design was used to study the effect of a number of root tips inoculated, the length of
inoculated root tips, and the initial volume of media. Experimental and statistical
analysis demonstrated that hairy root growth is highly influenced by the inoculum
conditions particularly with the length of root tips which were the dominant variable
without any clonal variability. Statistical designs have also been extensively used in
media optimization. Growth media composition plays most an important role for
both growth and productivity in any culture practice. Thus, during initiation and
maintenance of culture, variables of chemical and physical conditions as well play a
dominant role. Additionally, the biological condition of culture initiating material
(explant) also plays a definite role in growth, development, and productivity.
Therefore, optimization of these culture conditions is a prerequisite. Traditionally,
optimization of media in biological analyses has been carried out by monitoring the
influence of one factor at a time. This technique is called one-variable-at-a-time.
However, the main disadvantage of this method is that it does not include any
interactive effects among the variables studied. Further, it requires a large number
of experimental set, labor and cost inputs, and finally time consumption (Bezerra
et al. 2008). To avoid all these limitations, statistical methods for optimization of
various culture conditions have been introduced in various culture systems including
hairy root cultures (Toivonen et al. 1991; Srivastava and Srivastava 2012). Among
initial studies, the effect of sucrose, phosphate, nitrate, and ammonia concentrations
on growth and indole alkaloid production of C. roseus hairy root cultures was
investigated with the help of statistical experimental designs and linear regression
analysis (Toivonen et al. 1991). Interestingly, a contradictory effect of these nutri-
ents on growth and indole alkaloid production in Catharanthus hairy roots was
found. Statistical medium optimization for enhanced azadirachtin production from

Table 14.1 (continued)

S. no. Model Hairy roots Effects of model References

distribution-based
model

Specific growth rate of
hairy root based on
branching dynamics

14. Image analysis Brassica napus,
Brassica campestris

Assessment of phenotypic
effects of expressing for-
eign genes in plant
root systems

Coles et al.
(1991)

15. Comprehensive
model based on
conductivity

Coffea arabica, Nico-
tiana tabacum,
Withania somnifera,
Catharanthus roseus

Dry weight of hairy root
based on conductivity

Taya et al.
(1989a)

16. Kinetic model for
branching

Daucus carota
Armoracia
lapathifolia
Cassia torosa
Ipomoea aquatica

Increase in hairy root
biomass

Taya et al.
(1989b)
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the hairy root cultures of Azadirachta is one of the most cited examples of the use of
statistical methods in media optimization (Srivastava and Srivastava 2012). Plackett-
Burman experimental design protocol was used to identify dominating medium
components and their concentrations to support high root biomass production and
azadirachtin accumulation in hairy roots. The overall exercise has resulted in
increased azadirachtin production by 68% in Azadirachta indica hairy roots. RSM
are efficient tools for optimization, and an increase in productivity by more than
200% can be achieved. In another study, medium optimization for hairy root cultures
of Stizolobium hassjoo producing secondary metabolites was studied through sta-
tistical experimental design (Sung and Huang 2000). The increased production of
L-DOPA from hairy roots by 280% was obtained by optimizing medium compo-
nents using steepest ascent method with central composite design. Also, the study
reported 18% increase in the biomass of Stizolobium hassjoo hairy roots from the
basal media.

Response surface methodology (RSM) has evolved as the most popular optimi-
zation method having versatile applicability in various disciplines. RSM is a well-
known, dynamic, and efficient mathematical approach which comprises of statistical
experimental designs and multiple regression analysis which are the best combina-
tion for the formulation of constrained equations (Bezerra et al. 2008). RSM has
often applied for the optimization of the fermentation as well as hairy root cultivation
(Amdoun et al. 2010; Latha et al. 2017; Singh et al. 2017; Adebo et al. 2018).

RSM is a combination of mathematical and statistical techniques used for model-
ing of process based on empirical parameters. This method optimizes the response
(output variable) which is dependent upon several independent variables (input
variable). RSM requires a careful design of experiment; most commonly central
composite design or Box-Behnken design is used. In this technique a second-order
mathematical model is developed to relate response and independent variables. The
model is then differentiated to find the global maxima or minima in order to optimize
response (Amdoun et al. 2010). RSM allows the researcher to study the interactive
effect between the independent variables. RSM has also been used to optimize the
culture medium composition for the growth of elicited Datura stramonium L. hairy
roots to improve the production of hyoscyamine (Amdoun et al. 2010). In B5
medium the content of nitrate, calcium, and sucrose was optimized to get the best
hyoscyamine production. In continuation of the study, the use of the RSM was also
made in biological factors, like plant material, to establish a predictive model with
the planning of experiments, analysis of the model, and interpretation of the accu-
racy of the model. Also, the effect of nitrogen, phosphorus, potassium, calcium, and
magnesium ions on production of tropane alkaloids from Datura stramonium hairy
roots was investigated with the help of RSM. The model was developed to study the
effect of ions on production of hyoscyamine from Datura stramonium hairy roots
with elicitation and without elicitation (Amdoun et al. 2009, 2010).

In a recent study, A. rhizogenes-mediated hairy root cultures of Portulaca
oleracea were established for which Box-Behnken model of response surface
methodology (RSM) was employed to optimize B5 medium for the growth and
noradrenaline production. Upon experimental validation, the optimal conditions for
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growth and metabolite production predicted by RSM were confirmed as appropriate
for the enhancement of overall productivity (Ghorbani et al. 2015). Further, in a
similar study, one-factor model of RSM was utilized to formulate L-arginine amino
acid levels along with bacterial strains (ATCC 15834, C58C1, and R1000), type of
explant (leaf and stem), and co-cultivation medium (B5 and MS) as three different
variables for hairy root induction in Rubia tinctorum (Ghorbani et al. 2014).
According to the results, L-arginine concentration of 1.00 mM, bacterial strain
C58C1, leaf explant, and B5 medium were found optimal for best results. These
optimal conditions predicted by RAS were validated and confirmed experimentally
to enhance hairy root induction and its implementation for increased metabolite
production.

In this context, growth monitoring of hairy roots in liquid medium is a major
point of concern. Basically, the growth monitoring in liquid medium is required
during large-scale cultures of hairy roots in bioreactors for various purposes. In a
culture vessel, during running culture one can visually observe the growth and
distribution of hairy root tissue throughout the vessel. However, it is not possible
to measure the biomass accurately like this. Several mathematical models have been
developed for the estimation of biomass and related metabolite accumulation in
hairy root cultures keeping in mind the bioreactor type and culture vessel configu-
ration. The complex interplay of variables like dissolved O2, temperature, aeration
and agitation rates, pH, etc. is monitored, and values are inserted to mathematical
models. These models interpret the values and predict the results very near to
accuracy in a very short time. The synergistic and individual roles of various vari-
ables are thus defined, and in this way growth of subjected root is monitored and
maintained throughout culture duration. This ultimately leads to desired productiv-
ity. An online monitoring of growth characteristics of hairy root cultures was done
by the measurement of conductivity in the bioreactor system (Taya et al. 1989a). A
comprehensive model was developed based on conductivity measurements to assess
the biomass concentration of hairy root cultures of Coffea arabica, Nicotiana
tabacum, Withania somnifera, and Catharanthus roseus. A linear relationship
between dry cell mass and conductivity for all the root cultures was observed.
This method provided an effective means of in situ monitoring of hairy growth in
the culture. Later this method was used to determine the biomass concentration of
horseradish and carrot in stirred tank and airlift loop bioreactors (Taya et al. 1989c).
During the cultivation of high-density biomass, the volume of liquid media reduces
with the growth. This change in media volume was considered as a parameter for
estimation of biomass growth. Jung et al. (1998) used this method for estimation of
biomass of Catharanthus roseus hairy root in a 2 liter bubble column bioreactor. It
was observed that this method was more accurate in biomass prediction than the
conventional method using electrical conductivity as the only parameter. However,
in another study, electrical conductivity (EC) in the media along with kinetics of
changes in ion concentrations and sugar was monitored to understand the relation-
ship between growth, ginsenoside production, and nutrient partitioning with the help
of gaseous composition gradient in terms of O2, CO2, and ethylene content (Jeong
et al. 2006). In another study, a 3 L nutrient trickling reactor was operated on the
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basis of online monitoring of conductivity, pH, and dissolved oxygen. An enhanced
production of L-DOPA was observed from hairy root culture of Stizolobium hassjoo
(Huang et al. 2004). In an earlier study, Wyslouzil et al. (1997) developed an aerosol
model for deposition of mist droplets on root hairs in nutrient mist reactor. The
Artemisia annua hairy root bed was assumed as a fibrous filters, and a model was
prepared for mist deposition on the single root fiber. In this study, the deposition of
mist across a packed bed of roots was modelled as a function of droplet size, bed
length, and gas flow rate. The predictions of the aerosol deposition model were
validated with experimental measurements which were found similar.

In nutrient mist reactor, the time of mist on and off cycle is very important. If on
cycle is long, it results in accumulation of media on hairy roots causing a gas-phase
nutrient deficiency. While during long off cycle, roots can be starved of liquid-phase
nutrients. A mathematical model for the mist on and off cycle was prepared by
Ranjan et al. (2009), for maximum root density and root growth in nutrient mist
reactor. If the mist flow rate in the on cycle is low and the rate of drainage of the
media from the bed is equal to the rate of mist deposition, then the reactor could be
run in a continuous on cycle. In nutrient mist reactors, to study the kinetic growth of
hairy roots, a discrete model was developed (Ranjan et al. 2015). The elongation rate
is modeled as exponential growth with the growth coefficient being dependent on
mass transfer coefficient, nutrient concentration difference, and distribution of
nutrients in growth and sustenance requirements. The experimentally validated
results have shown that the primary root growth is reduced by one-fifth of its initial
growth rate due to the branching process, and the growth of new branches is
significantly faster than its primary root growth due to internal transport of nutrients.
Bastian et al. (2008) used a multi-scale approach to simulate hairy root growth. They
treated root bulk as a macroscopic porous filter of varying porosity, and all processes
were defined in its continuum. The growth was assumed to depend upon nutrient
concentration in the medium and inside the root. On microscopic scale the structure
of root affects the flow and transport process of nutrients around the root network.

Attempts have been made to model the branching pattern in hairy roots. Hairy
roots generally grow by elongation of nodes. New nodes develop and on elongation
they form new branches. A kinetic model of branching in hairy roots was developed
and simulated for different root cultures in shake flask (Taya et al. 1989b). The
model was found to fit the experimental results and was used to estimate different
kinetic parameters of hairy roots. Kim et al. (1995) developed a mathematical model
for describing branching patterns in hairy roots. This model was then combined with
age distribution balance to give a model of age distribution in root culture. Similarly,
Han et al. (2004) modeled hairy root growth based on population balance approach.
The model proposed that growth of hairy roots depends on formation of new
branches and elongation of existing branches. Although probability of formation
of new branch is high at a certain age, some lateral branches can develop over
distribution of ages of the parent branch.

The growth of hairy roots can also be monitored by the pigment production. A
kinetic model was developed for pigment production associated with growth of red
beet hairy roots (Kino-oka et al. 1995). The model was based on concept of
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distribution of age of cells in hairy roots. The model was able to describe the kinetic
behaviors of growth and pigmentation during hairy root growth.

Mass and oxygen transfer rates have a crucial role in the growth of hairy roots in
liquid medium. Different workers have proposed methods to investigate and opti-
mize this event for desired productivity. In a study, a mathematical model is
developed that defines the oxygen transfer kinetics in the cultured Azadirachta
indica hairy root matrix as a case study for offline simulation of process control
strategies ensuring non-limiting concentrations of oxygen in the medium throughout
the hairy root cultivation period. The unstructured model simulates the effect of
oxygen transfer limitation in terms of efficiency factor on specific growth rate of the
hairy root biomass. The model is able to predict effectively the onset of oxygen
transfer limitation in the inner core of the growing hairy root matrix such that the
bulk oxygen concentration can be increased so as to prevent the subsequent inhibi-
tion in growth of the hairy root biomass due to oxygen transfer (diffusional)
limitation (Palavalli et al. 2012).

14.4 Image Analysis

Image analysis is the procurement of meaningful information from images particu-
larly from digital images with the help of digital image processing techniques. In
recent years, many image analysis softwares have been designed for more detailed
root morphological and architectural measurements. One example of such software
is WinRHIZO root-scanning software (Regent Instruments Inc., Ottawa, ON
Canada). This software has the ability of rapid measurement of multiple root
parameters such as root length, volume, surface area, diameter, tips, and crossings
and has been widely used in research related to plant root growth and responses
(Aryal et al. 2015; Kadam et al. 2017). WinRHIZO, however, is a costly software,
and several freeware like ROOTEDGE are also available which are highly efficient
(Kaspar and Ewing 1997). Image analysis provides an efficient way for noninvasive
and nondestructive monitoring of hairy root growth kinetics on the basis of their
morphological characteristics (Coles et al. 1991). A manual imaging method
“PetriCam” along with an image processing algorithm was initially proposed by
Lenk et al. (2012, 2014) to assess the growth performance and secondary metabolite
production in Beta vulgaris hairy root cultures growing in petri plates. The unique-
ness of the method is its ability to take images from the closed petri plates without
destroying the culture. However, as the image consists of planner 2D growth pattern,
the major limitation of this method is that it does not provide any information
regarding the distribution of hairy roots in z-axis. Considering the fact that different
HR morphologies result in dissimilar levels of secondary metabolite production, the
effect of morphological features on growth and production potential needs proper
attention. As two HR clones with a similar biomass but different root architectures
could have completely different product yields, it becomes important to investigate
their differential production. Image analysis has been successfully adapted by many
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researchers for measurement of root length, diameter, and other morphological
characteristics (Cai et al. 2015). These workers demonstrate a near to perfect
numerical scheme for accurate, detailed, and high-throughput image analysis of
plant roots. Involvement of image analysis methods provides better results in
terms of accuracy, robustness, and the ability to process root images under high-
throughput conditions (Flavel et al. 2017). In context of hairy roots, Berzin et al. in
1997 developed a morphological structured model of Symphytum officinale hairy
roots using a desktop scanner for image analysis and NIH image program which is a
public image processing and analysis program developed by the National Institutes
of Health. In another study, nondestructive measurement of the chlorophyll pigment
based on color image analysis was done for the assessment of herbal toxicity in
photoautotrophic hairy roots of Ipomoea aquatic (Ninomiya et al. 2003a). Further-
more, the elongating behavior of Ipomoea aquatica hairy roots exposed to external
herbicidal stimuli was evaluated by automatic tracing of the root tip point employing
computer-aided image analysis (Ninomiya et al. 2003b). Such results advocated that
the system developed could be a useful tool for the assessment of herbicidal toxicity
in the hairy roots.

Once the images are taken, they are needed to be processed to procure numerical
information such as segment length, branching point distribution, metabolite accu-
mulation patterns, etc. In recent years, several efficient open-source and commercial
solutions have been reported by several researchers for image processing purposes
(Lobet et al. 2011; Clark et al. 2013).

Image analysis can also be used for estimation of secondary metabolite in hairy
root cultures (Lenk et al. 2012). Due to accumulation of secondary metabolites, the
morphological characteristics of hairy roots change. This change can be analyzed by
image analysis to predict secondary metabolite concentration. For the estimation of
secondary metabolite, color image analysis is used. Smith et al. (1995) introduced
hue-saturation-intensity (HSI) color coordinate system and developed equations for
converting the red-blue-green color coordinate system to HSI. They proposed that
HSI color coordinate is better for image analysis of hairy roots. Berzin et al. (1999)
developed a nondestructive method, based on the analysis of scanned images in HIS
color space, for determining local and overall levels of secondary pigment metabo-
lites in hairy root cultures of Beta vulgaris. Modified saturation values (saturation
divided by dimensionless root diameter) were found to be proportional to pigment
concentration. The analysis was carried out manually for each local point of the root,
and morphological measurements were performed separately. RHIZOSCAN is
semiautomated software for root image analysis. It provides typical measurement
analysis, such as root axis length (primary, secondary, total) and comparative plots.
It measures root thickness, volume, length, etc. of each lateral of hairy roots and also
can be used for estimation of secondary metabolite from scanned images. Berzin
et al. (1999) tested this software for characterization of morphology of hairy roots of
Beta vulgaris and estimation of secondary metabolite concentration. They concluded
that RHIZOSCAN is a reliable tool for analysis of root architecture and determina-
tion of secondary metabolite in hairy roots.
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14.5 Genetic Algorithm (GA)

Economic viability of secondary metabolite production in hairy root cultures
depends largely on the kinetic growth model and efficient scale-up in bioreactor
designs. A population-based model as genetic algorithm has seen its significant
implications in modeling of specifically hairy root cultures owing to its capacity to
search solutions in large hyperspace applying schemata theorem and optimizing to
its nearest best solutions in the best possible time (Han et al. 2004; Arab et al. 2016).
Based on the nature’s natural process of evolution, GAs involve a class of compu-
tational models lying on the principle of natural selection and survival of the fittest
phenomenon (Fogel et al. 1975). GAs have been prominently used as a suitable
function in the determination of the optimum concentration of the medium compo-
nents in hairy root bioreactor design.

Conceptually, genetic algorithms begin with a set of solutions encoded like genes
on the chromosomes called population. Motivated by a hope that the new population
will be better than the old solutions, individuals from one population are selected on
the basis of fitness functions (given more chances to reproduce) and are used to form
a new population by the application of natural selection operators. Natural selection
is usually applied through stochastic or remainder stochastic sampling techniques.
This is followed by the F2 generation (offspring) by the application of recombination
operator using one-point or two-point crossover to introduce the genetic diversity in
the solutions to the current population. Mutation operation is often implied involving
a single flip of bit in binary encoding of individual fitness values which tends to
introduce novel solution to the current population (Fig. 14.1). This is repeated to
several generations until we move toward to better population of individuals with
improved solutions than parent populations (Fogel et al. 1975; Davis 1991). GAs
have been continuously applied to solve many search and optimization problems
involving non-differentiable, discontinuous, stochastic, or highly nonlinear objec-
tive functions, which are normally not well suited for standard optimization
algorithms.

GAs in hairy root cultures are based on the fact that age distribution of cell in cell
cultures is not uniform and evolves with time, and thus the dependent variable in this
population-based model tends to be the biomass at a time t or the number of cells at
the time t. A variable X is defined to denote the biomass weight distribution function
for hairy roots of age A at culture time. The age of the oldest cell from a branch is
taken as the age of the specific branch. The total biomass of hairy root at any time t
tends to be a function of X(t, A) where Amax is the greatest possible age of hairy root
culture during harvesting time. As branching rather than root lengthening accounts
for the maximum production of biomass in hairy root cultures, GA model has been
specifically designed for branching studies as a function of time and age (Han et al.
2004; Arab et al. 2016). One of the most critical advantages of GA seen is its
capacity in handling a large number of data including previous data assumed at each
generation in the direction of producing the optimized result.
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14.6 Artificial Neural Network

An artificial neural network (ANN) is a mathematical or computational model that
mimics the structural and functional behavior of biological neural network.
Consisting of a set of precisely designed artificial neurons, ANN works in unison
to solve a specific problem. ANNs have been broadly applied with great success for
system designing, modeling, optimization, and control mainly due to its capacity to
learn noise filter signals and generalize information through a systematic training
procedure (Singh et al. 2009). ANN appeared to be a feasible method for modeling
hairy root growth and culture conditions. Neural networks are typically implemented
in the estimation and multistep prediction problems even with unknown solutions
but can also be used as controllers directly or as an adjuster of any process parameter
for a traditional controller. In ANN artificial neurons are arranged in input, hidden,
and output layers (Fig. 14.2). Almost all the computations are done in the hidden
layer.

Neural networks are “trained” using a data set and then used to foretell new data
points. The prior knowledge is not essential for this training as the network and
system remain as a black box to the user and provide the result through its own
artificial intelligence. Notable characteristics of ANNs are that they can work
steadily with large amounts of data which outshine at complex pattern recognition,
involve real-time operations, possess fault tolerance potential, and require no

Fig. 14.1 Working of genetic algorithm
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mechanistic description of the system. ANN is well suited for media design, as it
generates a large amount of data that contains the hidden model. The “learning
conditions” of neural networks are categorized into three combinations as follows:

1. Administered (associative), where the neural network is trained by providing it
with input and output experimental data,

2. Self-organization in which output unit is trained to respond against clusters of
pattern within the input. Different from the organized, there is no previous set of
groups in which the patterns are to be classified and then the system must develop
its representation of the input stimuli.

3. Support where training may consider as an ordinary form of the above two classes
of learning.

ANN has been found to be well suited for hairy root growth in nutrient mist
reactor as reported by Osama et al. (2013). Combination of ANN and genetic
algorithm (GA) has also been found to be very effective for maximizing the native
concentration and shelf life of secondary metabolites (Khan and Tripathi 2011). The
ANN can perform well on nonlinear program problems and can continue working
without any difficulty by their parallel nature even when an element of the neural
network fails (Vaidya et al. 2003). ANNs can be implemented in a wide range of
problems and do not need to be reprogrammed at every step of solution providing.

The major limitation of artificial neural networks is that they require prior data of
the process. The data set used for training is very important; it decides the quality of
network prediction. If the training data set is incomplete or contains wrong values,
the training will be incomplete. The network will give faulty outputs.

The growth pattern in biological system is complex, nonlinear, and difficult to
predict and cannot be controlled by our will. These processes are controlled by

Fig. 14.2 Architecture of feed-forward artificial neural network
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genetic and environmental factors which are highly inconsistent (Mehrotra et al.
2008). Hairy roots are considered to be an alternate source of secondary metabolite
production. In large-scale culture and production of hairy roots, the cost and the
culture duration for production are very important. The conventional modeling
techniques often become ineffective in monitoring and predicting the growth pattern
of hairy roots. Hairy roots form heterogeneous clumps, and therefore direct moni-
toring of growth parameters is difficult. There is a need for indirect strategies of
monitoring their growth. These may include development of models of the devel-
opmental pattern of hairy roots which can then be used for monitoring of growth.
Mehrotra et al. (2008) used a feed-forward back propagation neural network to
predict in vitro culture conditions for optimum biomass growth of Glycyrrhiza
glabra plant. In other study regression and back propagation neural network was
used to predict the culture parameters for maximum biomass yield for hairy root of
G. glabra (Prakash et al. 2010). They used inoculum density, pH, and volume of
growth medium per culture vessel and sucrose content of the growth medium as
parameters to predict hairy root biomass. The neural network model was very
efficient and was able to explain over 98% of the variations in the kinetic data.
This approach was also used for modeling growth of hairy root of Artemisia annua
in a nutrient mist reactor (Osama et al. 2013). Different architectures of ANN were
compared to model reactor and several reactor parameters. All the network models
were found to be efficient in modeling the nutrient mist reactor.

Artificial neural networks have also been used in combination with hidden
Markov model for predicting optimum conditions for maximum biomass of hairy
roots (Mehrotra et al. 2013). Five culture conditions were taken as input parameters
to predict hairy root biomass. The input parameters were fed to the neural network
through five HMM models. The combinatorial model proved to be efficient in
predicting hairy root biomass.

14.7 Conclusion

Hairy roots cultures are fast growing and have high capacity of production of
secondary metabolites. They possess several qualities due to which they are very
promising candidate for large-scale production of phytochemicals. For large-scale
production of hairy roots, constant monitoring of growth and phytochemical pro-
duction is essential. Direct monitoring of hairy root growth in the reactor system is
difficult, time taking, and labor intensive. Several indirect techniques have been
proposed for monitoring hairy root growth in bioreactors. Most of these techniques
require good understanding of the biological processes and effect of environmental
conditions on hairy root growth. Apart from this, a good understanding of the effect
of hairy root growth on their environment is also essential. Several mathematical
models and machine learning-based models have been proposed for this. Machine
learning techniques prove to be a promising tool for modeling complex biological
process.
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Chapter 15
Engineering in Hairy Roots Using CRISPR/
Cas9-Mediated Editing

Anshu Alok, Jitesh Kumar, and Santosh Kumar Upadhyay

Abstract Agrobacterium rhizogenes is a well characterized bacterium for “hairy
root induction” due to presence of Ri plasmid. Ri plasmid has been modified and
engineered with required foreign genes and used as a binary vector for plant genetic
transformation. A. rhizogenes-mediated hairy root induction and cultures of recalci-
trant plant species are useful in genetic and metabolic engineering for secondary
metabolite and recombinant protein production. With the advancement of CRISPR/
Cas9 genome editing tools, plant genome can be easily manipulated for metabolic
engineering. However, CRISPR/Cas9-mediated genome editing requires efficient
A. rhizogenes-mediated genetic transformation and selection. In this chapter, we
discussed the different essential component of CRISPR/Cas9 editing tools. Different
types of CRISPR/Cas9 vectors are now available for various purposes such as
disruption, replacement, transcriptional activators, and inhibitors of desired gene.
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15.1 Introduction

Genetic engineering in whole plants or any of its organs has become a very
interesting approach for functional genomics and metabolic engineering. Various
tools related to knock-in and knock-out of genes within a plant genome are available
and repeatedly used for multiple plant species. These tools have been applied in
numerous important crop and medicinal plants to increase nutritional and pharma-
ceutical values, respectively (Newell-McGloughlin 2008; Hefferon 2015). These
plant engineering tools can be applied in specific organs such as leaves, roots, tubers,
etc. in addition to whole plant for the targeted production of important metabolites.
Numerous binary vectors and genetic transformation methods, for example, electro-
poration, PEG mediated, bombardment, and nanoparticle mediated have been used
for plant genetic engineering. However, it becomes easier and efficient to use
Agrobacterium-mediated gene transfer, which is “nature’s genetic engineer” (Nester
2011, 2015). Naturally, Agrobacterium species infect wounded plants that results in
the formation and outgrowth of tissue which is commonly known as “crown gall
disease” or “hairy root disease.” A. rhizogenes, also known as Rhizobium rhizogenes
(Young et al. 2001; Ron et al. 2014), is a gram-negative soil-borne bacterium. It
transfers a part of its extrachromosomal DNA, known as root-inducing (Ri) plasmid,
which integrates into the plant genome as transfer DNA (T-DNA) (Chilton et al.
1982; Kumar and Mitra 2017). T-DNA consists of rol gene that is responsible for
formation of root like structures well known as hairy roots, on the site of infection of
host tissues. The recombinant DNA engineering within the wild-type Ri plasmid has
done for proficient transformation of different plant species. In case of
A. tumefaciens-mediated genome modification, it needs a fast and reproducible
protocol for recalcitrant plant species to explore gene function. Due to this,
A. rhizogenes-mediated “hairy root induction and culture” has become a very useful
model system for studying the gene function and valuable secondary metabolite
production (Mehrotra et al. 2015; Srivastava et al. 2016).

Various approaches of plant genetic engineering such as overexpression,
RNA-mediated interference (RNAi), virus-induced gene silencing (VIGS), T-DNA
insertion mutagenesis, and genome editing tools requires genetic transformation and
simultaneously regeneration of transformed tissues of plant species. A. rhizogenes-
mediated overexpression and RNAi constructs have been successfully applied in
different lines of hairy roots of Coleus blumei (Hücherig and Petersen 2013).
The modification of soybean genome with zinc-finger nucleases (ZFNs) to knock
out dicer-like genes and other genes involved in RNA silencing has been done. The
targeted transgene in addition to nine endogenous soybean genes by preparing zinc-
finger arrays (Curtin et al. 2011). On the other hand clustered regularly interspaced
short palindromic repeats/(CRISPR)-associated nuclease 9(CRISPR/Cas9)-
mediated editing has gained tremendous attention for genome modification
(Upadhyay et al. 2013; Cong et al. 2013). This tool is more precise and easy to
design as compared to ZFNs and transcription activator-like effector nucleases
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(TALENs) (Gaj et al. 2013). CRISPR/Cas9 editing tool was initially demonstrated in
protoplast, which was further applied to germline cells, callus, and leaf tissues in
various plant species. Genome modifications were efficiently demonstrated within
hairy roots of tomato using A. rhizogenes carrying CRISPR/Cas9 vector (Ron et al.
2014).

15.2 Agrobacterium rhizogenes Strains and Its Specificity
Toward Different Plant Species

A. rhizogenes are mainly grouped into four categories: agropine, mannopine,
cucumopine, and mikimopine types. The structural arrangement of genes within Ri
plasmid may vary with the different bacterial strains. The T-DNA which consists of
few genes transfers from bacterium into plant cells and then integrates into the host
genome. The T-DNA consists of three regions, namely, right, left, and central
T-DNA regions commonly denoted as TR-, TL-, and TC-DNA, respectively
(Offringa et al. 1986). Left and right borders having a size of 25 bp nucleotide
sequences are similar in both Ri plasmid and Ti plasmid of A. rhizogenes and
A. tumefaciens, respectively (Slightom et al. 1986). TL-DNA consists of rol gene
with different open reading frames (orf), whereas TR-DNA consists of mas, aux, and
ags genes (Slightom et al. 1986; Camilleri 1991). The rol gene of Ri plasmid is
mainly responsible for hairy root induction (Mehrotra et al. 2015). For example,
strains A4 and HRI are agropine-type A. rhizogenes which consist of 18 orf in their
Ri plasmid (Slightom et al. 1986). Various strains have been identified and charac-
terized for inducing hairy roots in plants species such as R1000, A4, LBA9340,
ATCC15834, etc. (Table 15.1).

Table 15.1 A. rhizogenes strains being used for hairy root induction

Bacterial
strain

Chromosomal
background

Ri
plasmid

Opine
classification

Antibiotic
resistance References

A4 NA pRiA4 Agro Neo, Rif Tiwari et al. (2008),
and Hosokawa et al.
(1997)

LBA9402 NA NA Agro Neo, Rif Tiwari et al. (2008)

R1000 C58 pRiA4b NA Neo, Rif Tiwari et al. (2008)

K599 or
NCPPB2659

Biovar 1 pRi2659 Cucumopine NA Mankin et al. (2007)

ARqua1 Smr derivative
of A4T strain

NA NA NA Plasencia et al. (2016)

A4RS A4 derivative NA NA Rif, Spec Plasencia et al. (2016)

Agro agropine, Rif rifampicin, Neo neomycin, Spec spectinomycin, NA not available
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15.3 CRISPR/Cas9 Components

CRISPR/Cas9 plant transformation vectors consists of mainly two components, i.e.,
Cas9 and guide RNA (gRNA), along with essential component of binary vectors
such as selectable marker, origin of replication, and T-DNA border. A schematic
map of CRISPR/Cas9 plant genome editing vector is depicted in Fig. 15.1. In this
section we have mentioned different types of Cas9, gRNA, and transformant selec-
tion genes which are available in various vectors.

15.3.1 Cas9 Nucleases and Its Variants

Cas9 gene is located within the genome of few bacteria, which encode Cas9
endonuclease. This nuclease recognizes the target sequence with the help of
gRNA and cut both strands of the DNA (Esvelt et al. 2013). Plant cells have their
own DNA repair mechanism correct the break either by inserting or deleting few
nucleotides, which subsequently leads to mutation. The size of Cas9 varies between
the bacteria and has been reported to be of 3.1 kb and 4.3 kb. Cas9 has been reported
from Streptococcus pyogenes and Staphylococcus aureus, respectively (Fonfara
et al. 2014). Using mutagenesis technique different kinds of changes have been
done in the Cas9, which altered its properties. The mutation within RuvC domain

Fig. 15.1 Schematic map of CRISPR/Cas9 plant editing vector
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with D10A and D31A in S. pyogenes and Streptococcus thermophilus Cas9, respec-
tively, leads to cleavage of only sense strand (non-complementary) of DNA. There-
fore this type of Cas9 variants is called as “nickase Cas9” (Jinek et al. 2012; Xu et al.
2014). Similarly, mutation within HNH domain of Cas9 with H840A and N891A of
S. pyogenes and S. thermophilus resulted into variant that cleaves only antisense
strand of DNA (Xu et al. 2014). Mutation in both RuvC and HNH domains forms a
dead Cas9 (dCas9), which only recognizes and binds to the gRNA, but cannot cut
any strand of the target DNA. The fusion of desired molecule with dCas9 can also be
used for different applications, for instance, transcriptional activator, suppressor and
base editor, etc.

S. pyogenes Cas9 nucleotide sequences were altered to substitute specific amino
acid instead of its naturally existing amino acids without changing Cas9 activity.
These types of Cas9 were designated as high-fidelity eSpCas9 (1.0) and eSpCas9
(1.1), which are very efficient and have less off-target effect shown in plant (Zhang
et al. 2017).

15.3.2 Guide RNA (gRNA)

It is a chimera sequence of naturally existing crRNA and trans-activating crRNA
(tracrRNA) of bacteria, which provide binding ability to Cas9 endonuclease at the
target site within the genome (Hsu et al. 2013). The synthetic gRNA does not exist in
nature, but it mimics the natural crRNA-tracrRNA hybrid where Cas9 acts and leads
to DNA break. The gRNA consist of 20 bp nucleotide target sequence which is
complementary to the sequence of the target gene. The target sequence within DNA
essentially consists of 5’-NGG-30 which is also known as protospacer adjacent motif
(PAM) for S. pyogenes Cas9 activity. The 5’-NGG-30 requirement of the PAM limits
the target sites within plant genome by SpCas9. The PAM recognition site varies
according to Cas9 of different bacteria.

15.3.3 Plant Selectable Marker

Plant selectable markers are very important criteria for the CRISPR/Cas9 vector
selection. Dose of selection agent within the media may cause different kinds of
lethality for plant cells which diminish plant cell’s ability to grow into whole plants.
Different markers have been explored and used to generate whole plants from
transformed tissue on selective media (Breyer et al. 2014). Most of the available
CRISPR/Cas9 vectors consist of NptII,HptII, and Bar gene as selectable marker. For
instance, pRGEB31 and pRGEB32 have HptII, while pBUN411 consists of
Bar gene.
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15.4 Types of CRISPR/Cas9 Vectors

Various modifications have been done in basic CRISPR/Cas9 vectors according to
the need of researcher and the applications in plants. In this section we will focus on
these available vectors and their applicability.

15.4.1 Knockout CRISPR/Cas9 Vectors

These vectors mainly consist of wild-type Cas9 gene of bacteria and synthetic gRNA
within the T-DNA border. The main function of this vector is to create double-strand
break which leads to mutation within target sequence and finally “knock out the gene
function.” Therefore they are called as knockout CRISPR/Cas9 vectors, for example,
pRGEB32, pHSE401, and pBUN411.

15.4.2 Knock-In CRISPR/Cas9 Vectors

In this system, the basic component of CRISPR/Cas9 is along with donor construct
which has homologous arm similar to the sequence where it has to be incorporated
within the genome. This “donor construct” or “donor vector” consists of gene of
interest flanked with upstream (left homology arm) and downstream sequence (right
homology arms) of the target sequence where this has to be inserted. The donor
construct may reside onto the same T-DNA along with essential editing components
or onto additional vectors. These are generally used for either gene correction or
“knock-in” of gene of interest within the genome. For example, pTC217 carry
essential components which target to create double-strand break within ANT1
locus, whereas donor construct carries Pnos:NptII as 50 homology arm and 35S:
ANT1 as 30 homology arm (Čermák et al. 2015).

15.4.3 CRISPRa and CRISPRi Vectors

Here the dCas9 is fused with transcriptional activator or repressor and therefore
termed as CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi)
vectors. These fused Cas9 along with transcriptional activators, for example, VP64
and p65AD, target the upstream region (promoter) of desired gene and enhance the
transcription. These vectors such as pYPQ152, pHSN6A01, pBUN6A11, pdCas9
(GB1079), and pD10AH840AhCas9 (GB1041) are available with multiple types of
activators. Krüppel-associated box (KRAB) is used as repressor along with dCas9.
This fusion recruits heterochromatin-forming complex, and due to this histone
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methylation as well as deacetylation occurs and finally the silencing of targeted gene
(Thakore et al. 2015).

15.4.4 CRISPR/Cas9 Vectors for Visualization
and Purification

The fluorescent proteins are generally fused to dCas9 and further used to locate the
target location within chromosome or whole genome (Chen et al. 2013). Similarly,
specific tags are also fused to dCas9 to purify the desired DNA fragments (Fujita
et al. 2016).

15.4.5 CRISPR/Cas9 Base Editor

Cytidine deaminases are known to be responsible for conversion of cytosine (C) to
uracil (U) residues by removing the amino group within pyrimidine ring of cytidine
(Betts et al. 1994). These cytidine deaminases as well as uracil DNA glycosylase
inhibitor, upon fusion with dCas9, act as base editor. This base editor can change
DNA bases without creating break (Liang et al. 2017). The base editor can deaminate
C to U without any break within DNA and consequently occur in the target DNA as
C to T (or G to A) conversion sequence. Recently, proficient base editing in
Arabidopsis has been reported (Chen et al. 2017). These base editor vectors are
available with different selectable markers such as pHSE901, pnCas9-PBE, and
pH-nCas9-PBE.

15.5 CRISPR/Cas9-Mediated Genome Editing
in Hairy Root

The genome alteration using this technique within hairy root genome of plants
requires an efficient protocol for A. rhizogenes-meditated genetic transformation of
desired plant species. Selections of bacterial strain, CRISPR/Cas9 vector, and
selection medium are important parameters to produce mutated hairy root lines.
The detailed steps required for CRISPR/Cas9-mediated genome editing in hairy root
is mentioned below and also being given in Fig. 15.2.

1. Select target region within the genome of interested plant.

• This 20 bp sequence followed by 5’-NGG-30 (PAM region) within gene to be
modified/deleted.

• Online off-target prediction tools should be used to minimize the off-target.
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Fig. 15.2 Schematic representation of CRISPR/Cas9-mediated editing in hairy roots. (a) Target
identification within genome, (b) construction of vector, (c) Agrobacterium rhizogenes carrying
construct, (d) editing mechanism within the transformed explants, and (e) hairy root induction
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2. Designing of single or multiple gRNAs.

• The gRNA is generally regulated by small RNA promoter, such as U6 or U3
promoters.

• The multiple gRNA targeting various sites can be assembled using glycine
tRNA-processing system or cys4 spacers.

3. Choose the desired CRISPR/Cas9 plant genome editing vector.

• Carefully choose the plant selectable marker gene present in vector.
• Promoter used to regulate Cas9 depends upon the plant of interest.

4. A. rhizogenes-mediated genetic transformation.

• Strain of bacterium and different parameters are important for this step.

5. Generation and confirmation of transgenic hairy root lines on selection medium.

• Genomic DNA isolation from different lines
• PCR-based screening of transgenic lines

6. Detect the mutation at target site within genome.
The mutation can be detected by the following approaches:

• Loss of restriction site near target sequence
• Surveyor assay
• Next-generation sequencing

7. Sequencing analysis and calculation of indel and mutation frequencies.

The mutation frequencies are extremely unpredictable according to plant species
and type of bacterial strain used for transformation. For example, soybean transgenic
hairy roots generated with strain K599 have shown that 54% of 170 roots were
mutated with indel frequencies varying between 0.6% and 95.0% (Cai et al. 2015).

15.6 Editing in Hairy Root Genome for Functional
Genomics

Functional genomics in plants to explore the function of unknown gene requires
genetic transformation and successively regeneration of transformants. This genome
editing tool has greatly excited the researcher with its various properties and ease to
apply in contrast to other available tools. This CRISPR/Cas9 tool was successfully
applied in hairy roots produced by A. rhizogenes to know the function of transcrip-
tion factors SHORTROOT (SHR) and SCARECROW (SCR) in tomato and other
plants species (Table 15.2). This targeted editing showed mutations with diverse
types of insertion or deletion in the SHR gene of tomato. In tomato, this targeted
editing causes alterations in hairy root phenotype which was similar to Arabidopsis
shr mutants (Ron et al. 2014).
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Hairy roots of recalcitrant plant species has become a good platform for the func-
tional validation of genes. Cai et al. (2015) used A. rhizogenes rather than
A. tumefaciens for soybean genetic transformation due to less transformation effi-
ciency. In vitro regeneration of soybean is a long, labor-intensive procedure and
requires expert skills. Therefore, they used A. rhizogenes and the CRISPR/Cas9
vector to generate genome-edited hairy roots. In this study, they efficiently edited the
targeted soybean FEI2 and SHR endogenous gene as well as exogenous bar gene for
editing in hairy roots.

CRISPR/Cas9-mediated genome editing is very useful as compared to other loss
of function approach tools in case of polyploid plant species, where most genes have
homoeologs. Most of homoeologous genes have similar nucleotide sequences with
very less variation, and therefore targeting by RNAi is difficult to knock down these
genes. CRISPR/Cas9 editing tools might be efficiently used to target a single or
multiple homoeologous genes at the same time (Jacobs et al. 2015). In soybean hairy
roots, individual gRNA were designed to target DDM1 gene which was located on
chr1 and chr11 and edited with 21% and 8.9% mutation frequency, respectively.
Another gRNA which was targeting both homoeologous of DDM1 gene at a time
were also demonstrated to edit with less mutation frequency (Jacobs et al. 2015).
A. rhizogenes and CRISPR/Cas9 tools offer a fast and proficient means to explore
the role of gene of interest within hairy root of various plant species.

15.7 Conclusions

The CRISPR/Cas9 editing tool may well assist the development of homology-
directed repair using dsDNA donor templates. This approach can be used for gene
or nucleotide insertions, disruption, and replacements within hairy root. Addition-
ally, this system has been also used for transcriptional activation and inhibition in
plants. Hairy roots can easily and rapidly grow from recalcitrant plant species, which
mimic natural root systems. Therefore, important metabolic pathways can be altered
in hairy root for production of important metabolites.
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