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Abstract

Cardiac MRI has experienced a crescent relevance in
clinical investigations. The segmentation of myocardial
walls is a prerequisite for assessment of cardiac viability.
Manual or semi-automatic segmentation of all the images
of a subject is tedious, as well as consuming much time
from cardiologists. In this study, we selected 23 slices of
simulated cardiac MR by MRXCAT and 30 real slices of
CINE-MR from 15 patients with Chagas Disease. The
proposed pipeline of the fully automatic segmentation
consists of three steps: 1. Preprocessing; 2. Automatic
Seeds Definition; and 3. Segmentation by Geodesic
Active Contour. An experienced cardiologist provided
the gold standard annotations of apical, mid-ventricular
and basal LV myocardium. We use the following three
metrics to validate the proposed pipeline with different
signal to noise ratio: Dice similarity (DS), Precision
(Pr) and Volumetric Similarity (VS). DS show good
agreement between manual segmentation and the auto-
matic segmentation in simulated images with SNR 200,
25, 15 and 5, i.e., 0.98, 0.93, 0.9 and 0.72, respectively.
We found moderate agreements between manual seg-
mentation and Snake segmentation in simulated images
with SNR 200, 25, 15 and 5, i.e., 0.38, 0.42, 0.34 and
0.39, respectively. The DS, VS, and Pr obtained suggest
substantial agreements between the manual and our
proposed method segmentation in images of Chagas’s
Disease, i.e., 0.8 [0.69-0.87], 0.89 [0.72-0.99] and 0.9
[0.76-0.98] (mean [min-max]), respectively. Our find-
ings suggest that one can use the proposed method in the
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automatic myocardium segmentation with reliability
similar to manual tracing, although completely free of
human interaction.
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1 Introduction

Cardiovascular diseases are the leading cause of death in
the world. The cardiovascular magnetic resonance (CMR)
imaging is the best technique is ionizing radiation free and
can provide a good and clear structural anatomy of the heart
[1]. Cardiac cine-MRI is considered the standard MR tech-
nique mainly used for global function measurements and can
achieve high-resolution images concerning the cardiac
borders.

Segmentation consists in dividing an image or object into
multiple segments, extracting regions of interest. The seg-
mentation of myocardial walls is a prerequisite for assess-
ment of cardiac viability and development of clinical
applications. Manual segmentation of all the images of a
subject is tedious, as well as consuming much time from
cardiologists [2]. Epicardial delineation is more difficult than
endocardial delineation due to the similarity of the gray level
of the outer tissues and the heart and poor contrast. How-
ever, endocardial delineation is more accessible due to the
high contrast between the blood and the myocardium in all
the modalities [1]. Usually, apical slices are more difficult to
the segment in all the modalities due to less information,
unpredictable end of the left ventricle (LV) and right ven-
tricle (RV) cavities, vicinity of the diaphragm and more
variable shape. Basal slices are also more cumbersome to
segment due to highly variable shape and motion of the LV
and RV walls.
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In the last few years, numerous methods were developed
for segmenting the cardiac ventricle. Recent studies [3—11]
have shown the importance of automatic segmentation
methods to assess of cardiac function. The automatic seg-
mentation algorithms provide a better assessment of vol-
umes, ejection fraction, and thickening analysis. Thus, the
challenges in segmenting myocardium in cardiac MR are
multiple. In this article, we present a workflow for fully
automatic LV myocardial segmentation in cardiac MR.

2 Methods

In our study, we selected 23 consecutive slices of simulated
cardiac MR image by MRXCAT. The MRXCAT is a sim-
ulation framework that allows for realistic simulation of
CMR including optional cardiac and respiratory motion [12].
Also, we selected representative apical, mid-ventricular and
basal CINE-MR slices from 15 patients with Chagas’s
Disease. All images were acquired, anonymized and stored
in DICOM format, by ethical standards.

CINE MRI was performed using a 1.5 T magnetic reso-
nance scanner (Philips Achieva) at the University Hospital
of the Ribeirdo Preto Medical School, University of Sao
Paulo. MRI imaging parameters were: resolution 0.8 pixels
per mm, pixel size 1.25 x 1.25, image matrix 256 x 256,
flip angle 60°, slice thickness 8 mm with 10 mm spacing
between slices.

The Research Ethics Committee of the Sdo Paulo Univer-
sity Hospital approved the study. We conducted the study in
accordance with the precepts of the Declaration of Helsinki.
All patients gave written informed consent to participate.

2.1 Processing and Analysis

We processed the acquired images using an extension
developed in our laboratory, i.e., 3D Slicer, Insight Toolkit
(ITK) and Visualization Toolkit (VTK) [13, 14]. The pro-
posed pipeline of automatic segmentation methods (Fig. 1)
consists of three steps: 1. Pre-processing; 2. Seeds Defini-
tion; and 3. Segmentation by Geodesic Active Contour.

Image Preprocessing
In the segmentation process, MR imaging artifacts may

impair the quantitative delineation of a tissue. To reduce the
noise and artifacts, we used pre-processing steps.
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Initially, we used the Anisotropic diffusion filter to pre-
process image to reduce noise reference. Anisotropic diffu-
sion includes a variable conductance term depends on the
differential structure of the image. Thus, the variable con-
ductance can be formulated to limit the smoothing at con-
tours in images, as measured by high gradient magnitude
[15]. Previous works have shown anisotropic diffusion offers
quantifiable advantages for edge detection in medical images
[16].

After anisotropic diffusion filtering, we applied Mor-
phological Gradient and Sigmoidal filters to obtain the image
contours. The difference between the dilation and the erosion
of an image gives morphological Gradient is useful for edge
detection. The sigmoidal filter is widely used as a mecha-
nism for focusing attention on a particular set of values,
commonly used as an intensity transform [14].

LV Myocardium Detection

It was necessary to automate LV localization as well to make
the whole segmentation procedure automatic. The Hough
transform is a widely used technique for detection of geo-
metrical features in images. It is based on mapping the image
into a parametric space in which it may be easier to identify
if particular geometrical features are present in the image.

A circle Hough transform is used to detect the potential
circle approximating the endocardium of the left ventricle [17].
It is based on mapping the image into a parametric space in
which it may be easier to identify if particular geometrical
features are present in the image. We used The center of circle
detected by Hough transform as the origin point of a method
that automatically identifies coordinates of seed parameters for
Geodesic Active Contour.

Automatic seeds definition

The binary myocardium image defines the myocardial region
between epicardium and endocardium. The center of the
cavity is represented by O (black color), representing a hole
in left ventricle short-axis. Seeds should be inserted into the
myocardial region. Our method of automatic searching of
the myocardium starts in the center of the internal cavity,
obtained by Hough Transform. The algorithm runs in four
different directions (corresponding the anterior, septal,
inferior and lateral segments of myocardium) to find an
object of the binarized image, i.e., the endocardial border.
We applied morphological filters (fill holes) to eliminate the
“holes” referring to the papillary muscles.
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Fig. 1 Automatic myocardial segmentation. The process is divided into 1. Pre-processing (Anisotropic diffusion filter), Morphological filter and
sigmoidal filter, 2. Automatic seeds definition (Hough transform, Otsu thresholding, and fill holes), 3. Geodesic active contour

The following procedure then fills the region:
Xy = (X1 ®B)NAS k=1,2,3,...

where X,. = p, and B is the symmetric structuring element.
The algorithm terminates at iteration step k if X; = X;_ . The
set union of X, and A contains the filled set and its boundary.

Geodesic Active Contour

After the automatic definition of the seeds in the myocardial
region, the parameters of the obtained coordinates executed
the geodesic active contour.

Snakes or Active contours have often been used for
processing of medical images. These deformable models,
described by Kass [18], are physically inspired by para-
metric curves and surfaces, which deform under internal and
external forces. The contour is controlled by internal energy,
while the external energy forces the contour to move toward
the image. The curve of a traditional snake moves through
the spatial domain of image to minimize the energy func-
tional [19].
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The energy is composed of a first-order term controlled
by a(s) and a second-order term controlled by PB(s). The
classical snake approach [18] associates a parametrized
planar curve C with an energy

(A () + B (5) ] + Eeas(x(s)) s

N —
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The first two terms control the smoothness (internal
energy), while the third term attracts the contour towards the
object in the image (external energy). A geodesic curve is a
(local) minimal distance path between given points. The
following partial differential equation governs the volution
of a geodesic active contour [20]:

4 _

prie —0A(p)VY — BP(p)|VY| +9Z(p)x|V|

where A is an advection vector function, P is a propagation
(speed) term, and Z is a spatial modifier term for the mean
curvature k. The scalar constants o,  and y weight the
relative influence of each of the terms on the movement of
the interface.

2.2 Statistical Analysis and Evaluation

Statistical were performed using Medcalc Statistical Soft-
ware (version 18.2.1) and R (version 3.2.3).

Experienced imaging cardiologist provided Gold standard
annotations of the LV myocardium, i.e., simulated and real
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cardiac cine MR. We obtained apical, mid-ventricular and
basal segmented slices.

For validation of pipeline segmentation, we use three
methods: Dice, Precision and Volumetric Similarity. The
automatic segmentation of images is evaluated by compar-
ison with their respective manual segmentation (gold stan-
dard) by a cardiologist. Also, for the simulated slices, we
evaluated the classic active contour (Snake), using the same
seeds obtained by our proposed automatic segmentation
method. One can see examples of images along with manual
and automatic segmentation in Fig. 2.

The distribution of similarity coefficients obtained by our
proposed method and by snake segmentation was displayed
in box-and-whisker plots, showing median, first and third
quartiles and maximum and minimum. The non-parametric

Fig. 2 Definition of the
epicardial and endocardial edges
obtained in the manual
segmentation of the specialist
(GS), by the proposed method
(GAC) and by the traditional
active contour (Snake). Each line
represents the result of
segmentation in images with
different signal to noise ratio. The
endocardial and epicardial edges
obtained by the classical active
contour were undesirable for all
levels of signal to noise ratio. For
Snake, we used the same seeds
obtained by our proposed
automatic segmentation method

SNR 200

SNR 25

SNR 15

SNR 5
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Mann-Whitney test analyzed the differences in the similarity
coefficients obtained in simulated images.
3 Results and Discussion

3.1 Simulated Images

Example of images along with manual and automatic seg-
mentation can be seen in Fig. 2. One can see an excellent
delineation of epicardial and endocardial borders obtained
by our automatic segmentation (GAC) for all levels of signal
to noise ratio. These delimitations obtained are visually close
to the epicardial and endocardial edges obtained in manual
segmentation.
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Table 1 Results of the automatic segmentation (Geodesic active
contour and snake) compared to manual segmentation using dice,
volumetric similarity and precision for different signal to noise ratio.
The values express mean values (standard deviations)

Dice Vol. similarity Precision
SNR 200
Gac 0.98 (0.01) 0.98 (0.01) 0.99 (0)
Snake 0.38 (0.08) 0.40 (0.08) 0.24 (0.06)
SNR 25
Gac 0.93 (0.04) 0.94 (0.05) 0.98 (0.01)
Snake 0.42 (0.04) 0.43 (0.03) 0.27 (0.03)
SNR 15
Gac 0.9 (0.06) 0.92 (0.07) 0.97 (0.02)
Snake 0.34 (0.16) 0.35 (0.16) 0.22 (0.13)
SNR 5
Gac 0.72 (0.16) 0.76 (0.17) 0.82 (0.16)
Snake 0.39 (0.25) 0.54 (0.28) 0.32 (0.27)

Figure 4 and Table 1 shows the comparison of similarity
coefficients obtained in simulated images.

Dice show good agreements between manual segmenta-
tion and the automatic segmentation (by geodesic active
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contour) in simulated images with SNR 200, 25, 15 and 5,
i.e., 0.98, 0.93, 0.9 and 0.72, respectively. We found mod-
erate agreements between manual segmentation and Snake
segmentation in simulated images with SNR 200, 25, 15 and
5, i.e., 0.38, 0.42, 0.34 and 0.39, respectively.

The similarity coefficients Dice and Precision obtained by
proposed method were significantly larger than similarity
coefficients obtained by Snake in all SNR levels
(p < 0.0001). The Volumetric Similarity obtained by pro-
posed method was significantly larger than similarity coef-
ficients obtained by Snake in SNR 200, 25 and 15
(p < 0.0001) and SNR 5 (p < 0.01). The similarity coeffi-
cients obtained suggest substantial agreements between the
manual and our proposed method segmentation when com-
pared with Snake segmentation.

3.2 Real Images (Chagas Disease)

Figure 3 shows an example of images along with manual
and automatic segmentation. One can see a real excellent
delineation of epicardial and endocardial borders obtained
by our automatic segmentation (GAC) for all consecutive
slices (apical, mid-ventricular and basal) obtained by

Fig. 3 Delineation of myocardial borders by the proposed method on representative CINE-MR myocardial slices of a patient with the Chagas
disease. The figure shows typical apical (A), mid-ventricular (M) and basal (B) slices
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Fig. 4 Comparison of similarity coefficients obtained in simulated and
real images. [Dice; Volumetric Similarity; Precision]: coefficients
obtained by proposed method and snake in simulated images for

CINE-MR. These delimitations allow a better assessment of
volumes, ejection fraction, and thickening analysis.

Figure 4 show comparisons of similarity coefficients
obtained in real images. The Dice, Volumetric Similarity,
and Precision obtained suggest substantial agreements
between the manual and our proposed method segmentation
in images of Chagas’s Disease, i.e., 0.8 [0.69-0.87], 0.89
[0.72-0.99] and 0.9 [0.76-0.98] (mean [min—max]),
respectively.

Volumetric
Similarity

Precision

different signal to noise ratio. [Real Patients (Chagas disease)]:
coefficients obtained (Dice, volumetric similarity, and precision) in real
images of patients with the Chagas disease

4 Conclusion

Automatic segmentation algorithms are alternative approa-
ches to decrease the time necessary to segment the
myocardial area. Our findings suggest that one can use the
proposed method in the automatic myocardium segmenta-
tion with reliability similar to manual tracing, although
entirely free of human interaction. Our proposed method of
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fully automatic segmentation provides a better evaluation
when compared to solely active contour segmentation.
Reliable extraction of measures obtained by automatic
myocardium segmentation allows a better assessment of
cardiac viability and development of clinical applications.
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