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Abstract Physics explains the laws of motion that govern the time evolution of
observable properties and the dynamical response of systems to various interactions.
However, quantum theory separates the observable part of physics from the unob-
servable time evolution by introducing mathematical objects that are only loosely
connected to the actual physics by statistical concepts and cannot be explained by
any conventional sets of events. Here, I examine the relation between statistics and
dynamics in quantum theory and point out that the Hilbert space formalism can
be understood as a theory of ergodic randomization, where the deterministic laws of
motion define probabilities according to a randomization of the dynamics that occurs
in the processes of state preparation and measurement.
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1 Introduction

Quantum theory is unique in the history of science. No other theory of natural phe-
nomena has caused as much confusion about the relation between logical concepts
and experimental observations. It may therefore be necessary to take a step back and
examine the reasons for the confusion without hastily committing to one of the many
ideological camps that have sprung up in the course of the scientific discussion. To do
so, we should remind ourselves that the scientific method is to resolve controversies
by a direct appeal to shared experience in the form of experimental observations.
If quantum theory is really a scientific theory, all controversies can be decided by
focusing the discussion on the experimental evidence. Specifically, we need to take
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care that all our statements, no matter how sophisticated or abstract, can be fully
explained in terms of their relevance for possible experimental observations.

The historical problem of quantum theory is that it was developedwith aminimum
of experimental input, using extrapolations that were motivated mostly by the beauty
of the mathematical formalism [16]. However, technology has advanced to the point
where we can finally control and measure individual quantum systems. Interestingly,
the effects we can now observe are correctly described and predicted by the original
formalism, and yet we have not been able to resolve the paradoxes associated with
quantum theory. Indeed, the number of paradoxes has only increased [1–3, 6, 15,
30, 31], and many of these paradoxes have been confirmed experimentally without
providing any hint of an underlying physical reality [9, 13, 27, 33, 38, 42, 43,
47, 49]. At the heart of all of these perplexing paradoxes lies the fact that we do not
understand the quantumprocesses used tomeasure and control the physical properties
of quantum systems. It is here where a proper revision of quantummechanics should
start: how does the established formalism deal with the problem of measurement and
control?

An interesting contribution to this important question has been provided by
Ozawa, who showed that the uncertainties of quantum measurements can be much
lower than textbook formulations of the uncertainty principle suggest [37]. Most
importantly, this result was derived entirely from the algebraic structure of theHilbert
space formalism,without any speculations about the underlying realities. Experimen-
tal studies are possible and have been realized [4, 12, 39, 40, 46], but these methods
rely on indirect evaluations of the uncertainties, illustrating the fundamental problem
that it is impossible to obtain the uncertainty free value of the target observable in
conjunction with the uncertain outcome of an individual measurement. The dilemma
of quantum measurements is that one cannot go back in time and obtain the value
of a different observable for the same system. In Ozawa’s theory, the problem is
solved by using the operator formalism to define the value of a physical property
mathematically, but critics of this approach tend to insist on definitions of uncertain-
ties that are based only on the experimentally observable statistics of measurement
outcomes - a notion that is extremely restrictive in the context of quantummechanics
[7, 8, 11, 45].

It seems to me that the present discussions are missing the actual point. Clearly,
Ozawa’s theory is valid within the stage set by the formalism. The confusion arises
because the self-adjoint operators used to describe physical properties cannot be
identified with the measurement outcomes through which we experience the physi-
cal property. To solve this problem, we need to review why quantum theory seems
to introduce physical properties in two different and essentially incompatible ways
- both as qualitative measurement outcomes with possible statistical errors and as
quantitative shifts of pointer position averages associated with the external measure-
ment setup (the “meter system”). In the formalism, this dualism between quality
and quantity is represented by operators, with the measurement operators of posi-
tive valued operator measures (POVMs) describing the qualitative outcome and the
self-adjoint operators associated with observable properties of the system describ-
ing the quantity that is responsible for the pointer shift of the meter [36]. As I will
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show in the following, the problem can be addressed by considering the peculiar
role of unitary dynamics in the formalism, which leads to a new understanding of
the action in quantum statistics [25]. From the mathematical side, the close relation
between unitary transformations and self-adjoint operators established by their corre-
sponding eigenstates indicates that the eigenstate projectors represent time-averaged
orbits of the dynamics, and not just the selection of a specific subset from a set of
pre-determined realities. In the theoretical description of a quantum measurement,
the dephasing processes associated with the observation of a precise outcome cor-
respond to a dynamical randomization along the complete orbit. Importantly, it is
not possible to separate this ergodic orbit into individual phase space points. Both
the experimental evidence and the theoretical description therefore suggest that each
measurement samples the complete dynamics generated by the target observable.

In this paper, I will explain the relation between the elements of Hilbert space
algebra and the experimental processes used in the laboratory. It is then possible to
see that the algebra describes the fundamental laws of physics that govern physical
interactions at the absolute limit of control set by the fundamental constant �. In
particular, I will address the origin of probabilities and the reason why quantum
statistics is different from classical phase space statistics. The central result is that
our understanding of experiments and experimental evidence cannot be based on
preconceived notions of reality, but should instead emerge from the laws of causality
that relate phenomena to physical objects. Quantum mechanics only appears strange
and confusing because we fail to include the role of the dynamics in these causality
relations. At the order ofmagnitude defined by the constant �, Hilbert space is needed
to express the dynamical structure of physical processes, which is more fundamental
than the cruder notion of static realities commonly used in classical physics.

2 The Physics of Hilbert Space

Many introductions to quantum mechanics start from the assumption that physical
systems are described by a “state”. The problemwith such an introduction is twofold.
Firstly, real systems are usually in motion, and secondly, the word “state” has no
meaning until we explain how the “state” can describe a specific situation found in
the real world. Interestingly, the closest practical analogy to the use of the term “state”
in quantum theory is found in statistical physics, where thermal states are described
by ergodic averages of their motion, with each orbit obtaining a statistical weight
according to the energy of the orbit. In fact, we can see that the analogy works
perfectly in quantum mechanics, where the thermal state is given by the density
operator

ρ̂ =
∑

n

1

Z
exp

(
− En

kBT

)
| ψn〉〈ψn | . (1)
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The canonical partition function Z is defined as in classical physics and the projectors
on the energy eigenstates | ψn〉 take over the role of the orbits of energy En .

Thermal states are time independent by definition. In quantum theory, this is
particularly easy to see, since the energy eigenstates are also eigenstates of the unitary
transformation Û (t) that describes the time evolution of states. In fact, the similarity
between the theoretical representationof time evolution and the representationof time
independent ergodic states is a non-trivial feature of quantum theory that should not
be underestimated. I hope that the arguments I am presenting here will draw more
attention to this fact, and to the necessary consequences for our understanding of
physics. Specifically, the time evolution is represented by an operator of the form

Û (t) =
∑

n

exp

(
−i

Sn
�

)
| ψn〉〈ψn |, (2)

where the action Sn is given by the product of energy and time, Ent . Two observations
are important here. Firstly, no such operator exists in classical physics, and thismakes
it extremely difficult to identify the actual relations between classical concepts and
the Hilbert space algebra. Secondly, the action Sn is the quantity that defines the
amount of change induced by Û , and it is here that the fundamental constant �

obtains a physical meaning.
Experimentally, we can control systems by manipulating their interactions using

the available forces, very often in the form of rather strong electromagnetic fields.
Unfortunately,most systems are also experiencing awide range of completely uncon-
trolled interactions, and this often limits the quality of control to a level where quan-
tum effects cannot be seen. Note that the presence of these uncontrolled interactions
means that the mathematical structure of classical physics is not confirmed by any
experimental results, since the correspondence between experimental result and clas-
sical theory is merely an approximate fit valid at very limited resolution. Differential
equations are only successful in describing real world physics because their solutions
roughly approximate those patterns in our experience of nature that are robust to the
extra noise of real life physics. To investigate the actual laws of physics, we need to
remove these extra noise sources, and that is quite difficult. In many cases, it involves
vacuum chambers and highly specialized methods of cooling.

To “prepare” a quantum state, we usually start by isolating and cooling a physical
system, which results in an isolated ground state - the T → 0 limit of Eq. (1). We can
then obtain the desired state by applying fields, the effects of which are described
by unitary transformations defined by an action Sn as shown in Eq. (2). A quantum
state provides a mathematical summary of these processes, which should allow us
to understand the observable effects of our “preparation” in interactions with other
objects in the laboratory. This is the point where quantum theory causes the most
misunderstandings. Firstly, themathematical description is so abstract thatweusually
fail to see the relation with the actual physics of quantum state preparation. Secondly,
the description of the measurement process is also given in abstract terms, making
it impossible to identify the outcomes of measurements with “elements of reality”.
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The latter problem is well known and has led to the controversies about different
interpretations of quantum mechanics. What we can say for sure is that the quantum
state is not a conventional description of physical reality, since it does not describe
the system by assigning precise values to the observable properties of the object.
Likewise, quantum measurement theory does not provide us with a conventional
description of causality, where the measurement outcome is simply an effect caused
by a well-defined property of the object.

The standard textbook solution to the measurement problem is to assume that a
precise measurement of a physical property Â will result in an outcome given by an
eigenvalue Aa of the self-adjoint operator Â, where the probability of the outcome is
given by the projection on the eigenstate | a〉 of the operator. The problem with this
approach is that it only applies to a very narrow range of measurements, and these
kinds of measurements are not really representative of physics in general. Thus, the
measurement postulate fails to connect the description of physical properties by self-
adjoint operators with the experimental reality of physics in the laboratory. A proper
understanding of both state preparation and measurement requires a closer look at
the physics that is being summarized by the mathematical expressions. The question
is whether the Hilbert space formalism itself already gives us some clues about the
relations between the physics of state preparation and measurement on the one side,
and the mathematics of state vectors and projectors on the other. Based on recent
research, I would say that the essential insight is contained in the representation of
dynamics by unitary transformations, as represented by the relation between Eqs.
(1) and (2).

3 Quantum Ergodicity

Let us start with the problem of state preparation. The starting point is a cooling
process which involves random interactions that have no specific time dependence.
As a result, the system is left in a completely random phase of its motion, which
is why thermal statistics can be derived using the ergodic hypothesis that identifies
ensemble averageswith time averages. In quantummechanics, state preparationmost
often starts from an energetic ground state. However, the Hilbert space formalism
makes no fundamental distinction between ground states and excited states.Motion is
described by Eq. (2), and in that equation, energy eigenstates are stationary because
they represent ergodic averages over the motion described by Û (t). This fact can
be confirmed by considering an alternative method of state preparation, where an
arbitrary physical property Â is determined by a precise measurement. This requires
an interaction that conserves Â while changing all other properties according to a
random force φ that represents the back-action of the meter on the system. The effect
on an arbitrary initial state ρ(in) is given by
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ρ(out) = lim
L→∞

1

L

∫ L

0
exp

(
−i

φ

�
Â

)
ρ̂(in) exp

(
i φ

�
Â
)

=
∑

a

| a〉〈a | ρ̂(in) | a〉〈a | . (3)

Thus the pre-condition of a preparation by measurement is a randomization of the
dynamics along the trajectory represented by | a〉〈a |. The loss of coherence between
different eigenstates finds its physical meaning in the randomization of the dynamics
along a. We should therefore not think of quantum states as representations of the
physical quantity Aa given by the eigenvalue of Â, but as complete orbits of the
dynamics generated by the physical property Â. This is precisely why the action
plays such a fundamental role in quantum physics.

The important message here is that state preparation is not just “knowledge of
the property Aa .” The quantum state also contains a memory of the dynamics by
which Aa was determined. That is the fundamental reason why we cannot just add
information about a different physical property B̂ to an initial state | a〉〈a |. The
orbit | b〉〈b | is fundamentally different from the orbit | a〉〈a |, and there is no“joint
orbit” of a and b. Nevertheless, there is a kind of intersection between the two orbits,
and this intersection obtains its physical meaning when a precise measurement of B̂
is performed after the preparation of | a〉〈a |. Specifically, the measurement is just
the time reverse of a quantum state preparation, and the reason why the outcome
Bb should not be mistaken for a measurement independent “element of reality” is
that it can only be obtained after the system was driven through the complete orbit
described by | b〉〈b |. Note that this observation is closely related to the role of the
eigenvalues in the dynamics generated by an operator. The original motivation for
the formulation of Eq. (2) was that the frequencies of dipole oscillations in atomic
transitions correspond to differences between the energy levels. In other words, the
differences between energy eigenvalues En − Em correspond to periodicities T in
the dynamics of the system,

En − Em = 2π�

Tnm
. (4)

Importantly, Tnm is a property of the complete orbit generated by the operator of
energy Ĥ . Therefore, the energy eigenvalues En cannot just represent the energy of
a single point along the orbit, but need to be associatedwith the dynamics of the entire
orbit. Experimental observation of quantized values necessarily require interactions
that sample the complete orbit generated by the observable. Physical effects that do
not involve a complete orbit cannot resolve a specific eigenvalue. The emergence of
quantized eigenvalues is therefore a feature of the dynamics, and not a static reality
of the non-interacting system.

We can now get a better physical understanding of the textbook version of a
quantummeasurement by considering the relation between the initial randomization
of the dynamics represented by | a〉〈a | and the final randomization represented by
| b〉〈b |. The measurement outcome b is obtained from a because the two orbits
intersect, and the statistical weight of the intersection between the orbits, which
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corresponds to the dwell time of a in b (or equivalently, of b in a), is given by the
well known formula

P(b|a) = Tr (| b〉〈b | a〉〈a |) . (5)

This standard rule of quantum statistics therefore represents a relation between the
dynamics along a and the dynamics along b, which corresponds to the classical phase
space geometry of ergodic orbits.

In general, a quantum system will also evolve in time between the initial prepa-
ration and the final measurement, so it may be useful to take a closer look at the way
that the unitary transformation in Eq. (2) connects state preparation andmeasurement
when the operators Â, B̂ and Ĥ do not commute. In that case, the eigenstates | a〉
and | b〉 can be represented by superpositions of the eigenstates of energy, and the
time dependent probability of finding a after a time t is

P(b|a; t) = 〈b | Û (t) | a〉〈a | Û †(t) | b〉

=
∣∣∣∣∣
∑

n

exp

(
−i

Sn
�

)
〈b | ψn〉〈ψn | a〉

∣∣∣∣∣

2

. (6)

In this context, it is interesting to consider how much time it will take to get from a
to b. In quantum mechanics, this is a somewhat ambiguous question, since we can
only determine the probability of b at a time t . A meaningful answer is only obtained
if the superposition of energy eigenstates in a results in a highly localized peak in
the time dependence of this probability. It is therefore more useful to ask at what
time the probability of b is maximal for an initial state | φ(a)〉 centered around a
and an average energy of E . For such a localized state, the maximal probability of
b is reached when the time evolution of the phases in Eq. (6) cancels out the phase
differences that exist at t = 0. We can therefore conclude that the transformation
distance between a and b is given by the energy dependent quantum phases, which
can be evaluated in terms of the energy dependent action

Sn(max.) = � Arg(〈b | ψn〉〈ψn | a〉). (7)

This relation shows that the phases in the eigenstate decompositions of | a〉 and | b〉
have a clear physical meaning: they describe the transformation distance between
a and b along the orbits ψn . It is possible to connect this to the classical notion of
a transformation distance as the time t needed to get from a to b along an orbit of
specific energy E . In Eq. (6), the action of the time evolution is given by Sn = Ent .
Phases in the vicinity of En are equal when the energy gradient of Sn(max.) is
compensated by the gradient of Sn = Ent , which is given by the time t . For that
purpose, we can approximate the action Sn(max.) by a continuous function of energy
S(E), where the continuous energy E represents the expectation value of a minimum
uncertainty state centered around a and E . We can then use the energy dependence
of the quantum mechanical action phase Sn(max.) to determine the classical limit of
the time of propagation between a and b at energy E ,
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t (b, a, E) = ∂

∂E
S(b, a, E). (8)

As discussed in more detail in [25], we can use this relation to derive quantum
mechanical phases directly from the classical description of the dynamics. In fact,
the notion of transformation distance allows us to derive quantum interference effects
from the classical laws of dynamics, which provides a physical explanation of the
main differences between quantum statistics and classical phase space statistics.
Specifically, it is possible to derive a phase space analog of quantum statistics that
incorporates the transformation distance in the form of complex phases for the joint
and conditional probabilities that relate non-commuting physical properties to each
other.

4 Phase Space Analogs and Their Limitations

The identification of projection operators with orbits raises an important question
about the physics of Hilbert space. Why is it that the orbits cannot be expressed as
a sequence of points that correspond to the changing values of physical properties
along the orbit? Why is it that the intersection between two orbits does not identify a
phase space point defined by the pair of eigenvalues that characterize the two orbits?
We can actually use the concept of transformation distance to address this question.

Classical phase space points provide a compact description of all physical proper-
ties. For example, the intersection of the orbits a and b would provide a well defined
value for the energy E , and this value would be found where the transformation
distance between a and b along E was zero,

∂

∂E
S(b, a, E) = 0. (9)

In quantum mechanics, this relation can be no more than an approximation. If we
look at the definition of transformation distance in Eq. (7), we can see that this
approximation relates to a stationary phase in Hilbert space. As shown in [18], this
phase also appears inweakmeasurements of the probability of finding En conditioned
by an initial state a and a final state b,

S(b, a, En) = �Arg

( 〈b | ψn〉〈ψn | a〉
〈b | a〉

)
. (10)

It is interesting to note that coarse graining this complex weak value over an energy
interval �E will eliminate contributions with action derivatives much greater than
�/�E , leaving only results in the vicinity of the classical solution E(b, a) [18, 20,
21]. This means that weak values establish a physically meaningful link between
Hilbert space and classical phase space. What is even more astonishing is that the
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mathematics of this phase space analogy was already discovered in the early days
of quantum mechanics, when it was constructed from the operator algebra as an
alternative to the Wigner distribution [10, 29, 35]. Unfortunately, these mathemati-
cal insights were mostly forgotten by the time that Aharonov, Albert and Vaidman
introduced weak measurements and their result, the weak values [2]. It was therefore
not immediately recognized that the oddities of weak values merely describe the dif-
ferences between classical phase space concepts and their more accurate description
in the Hilbert space formalism. However, recent experimental demonstrations have
shown that weak measurements can be used to directly measure quantum states as
weak joint probabilities of twonon-commuting observables [5, 32, 34, 41, 48]. These
results show that weak values represent the quantum mechanical analog of classi-
cal phase space statistics, including the non-classical correlations between physical
properties that cannot be measured jointly. It is also worth noting that weak values
can also be observed at finite measurement strengths, indicating that the algebra of
weak values provides an experimentally relevant description of non-classical corre-
lations [17, 19, 22, 26, 28, 42, 44, 50]. In fact, many of the recent experimental
investigations of quantum paradoxes have used weak measurements to show that the
paradoxical features can be understood as a direct consequence of the negative weak
conditional probabilities associated with action phases of �π in Eq. (10) [9, 13, 24,
27, 33, 38, 42, 43, 47, 49].

With this large number of results from both experiment and theory, it is rather
surprising that so little attention has been paid to the role that the operator algebra
plays in determining the non-classical statistics that are observed by weak measure-
ments and related methods. As shown in [23], it is actually possible to argue that the
Hilbert space algebra itself defines the ordered product of the projection operators as
the only reasonable representation of joint probabilities for the possiblemeasurement
outcomes of two non-commuting observables. We can now understand this result in
terms of the identification between projectors and orbits discussed above. The joint
statistical weights of two orbits in a quantum state ρ̂ are then given by

ρ(a, b) = 〈| b〉〈b | a〉〈a |〉
= 〈b | a〉〈a | ρ̂ | b〉. (11)

It is fairly easy to see that this is a complete description of the state ρ̂ for any two basis
systems with non-zero mutual overlaps 〈b | a〉. In fact, this expression was already
introduced as a phase space analog by Dirac in 1945, and is therefore often referred
to as the Dirac distribution [10]. In the samework, Dirac also introduced weak values
as a mathematical description of operators. In terms of the operator algebra, we can
see that the weak values for all combinations of a and b give a complete description
of the operator M̂ as

M̂ =
∑

a,b

〈b | M̂ | a〉
〈b | a〉 | b〉〈b | a〉〈a | . (12)
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Thus weak values are closely associated with the idea that the product of projection
operators represents the intersection of two orbits and therefore corresponds to the
closest analogy to a phase space point that can be defined in quantum physics.

A complete description of the operator algebra associated with complex joint
probabilities has been given in [20]. For the present purpose, it is sufficient to note that
the strangeness of the statistics associatedwithweakvalues and complexprobabilities
arises from the dynamical relations between the physical properties. It is therefore
not possible to assign an eigenstate | m〉 of the operator M̂ to the combination of
orbits (a, b). Instead, the contribution of the orbit m to the intersection of the orbits
a and b is given by a complex conditional probability,

P(m|a, b) = 〈b | m〉〈m | a〉
〈b | a〉 , (13)

where the probability P(m) of finding m for a specific Dirac distribution ρ(a, b) is
given by the standard form for conditional probabilities,

P(m) =
∑

a,b

P(m|a, b)ρ(a, b). (14)

As shown in Eqs. (7) and (10), the complex conditional probability P(m|a, b)
describes transformation distances between the different orbits rather than joint
realities [18, 21]. It is therefore necessary to distinguish the reality of a precise
measurement outcome from the dynamical relations between physical properties.

5 The Relation Between Mathematics and Physical Reality

We now turn to the central question that has caused so much confusion in quan-
tum physics. How do the physical properties of a system appear in the outcomes
of an actual experiment? As mentioned at the end of Sect. 2, the concept of mea-
surement given by most textbooks of quantum mechanics is actually too narrow to
accommodate all of the possible interactions of a physical system. In a more general
description of measurements, the outcome m is represented by an operator Êm , so
that the probability of obtaining m for a quantum state | ψ〉 is given by

P(m|ψ) = 〈ψ | Êm | ψ〉. (15)

Effectively, the operator Êm describes the conditional probability of obtaining m for
arbitrary initial conditions | ψ〉. But what is the relation between the measurement
outcome m and the physical properties of the system? The specific realization of the
measurement should give a non-trivial answer, and that answer must somehow enter
into the Hilbert space description as well.
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As mentioned in the introduction above, an interesting solution to the problem
was presented by Ozawa [37] and has recently been investigated in a number of
experiments [4, 12, 39, 40, 46]. In this approach, the operator Â is used to represent
the target observable, and a quantitative estimate Ãm is associated with each mea-
surement outcomem. Themeasurement error is then given by the difference between
the operator Â and the value Ãm . Since this expression is itself an operator, it needs
to be evaluated using the operator algebra. The expression for the total measurement
error derived by Ozawa is

ε2(A) =
∑

m

〈ψ | ( Ãm − Â)Êm( Ãm − Â) | ψ〉. (16)

As we discuss in a recent paper [36], this relation makes a non-trivial statement about
the relation between quantitative properties andmeasurement outcomes. Specifically,
we show that the only possible definition of joint statistical weights for the eigen-
state outcomes a and the actual outcomes m that is consistent with the quantitative
definition of the error in Eq. (16) is given by

P(m, a|ψ) = Re(〈ψ | Êm | a〉〈a | ψ〉). (17)

Since the algebra of Hilbert space corresponds directly to the algebra of classical
probabilities, the optimal estimate is then given by the real part of the weak value
of Â, as already pointed out by Hall in [14], soon after the initial concept had been
introduced by Ozawa.

In the present context, it is important to realize that the weak values are optimal
estimates because they accurately summarize the causality relations between non-
commuting physical properties in the Hilbert space formalism. To understand the
relation between measurement outcomes and causality better, one should keep in
mind that the initial state | ψ〉 represents an orbit generated by a specific physical
property B̂, so that | ψ〉 is an eigenstate of B̂ with an eigenvalue of Bψ . We can now
add the quantity Â to the value of B̂ to obtain a new quantity M̂ , and this quantity
defines a new set of orbits | m〉. A quantitative measurement of M̂ identifies the
eigenvalue Mm of the final orbit. Since the quantity Â is defined as the difference
between M̂ and B̂, it is clear that its value should be

A(ψ,m) = Mm − Bψ. (18)

Here, the quantity A(ψ,m) does not refer to an orbit generated by Â. Instead, it
related the orbits expressed by | ψ〉 and | m〉 to each other. Specifically, Mm and Bψ

are eigenstates of | m〉 and | ψ〉 for operators M̂ and B̂, defined in such a way that
Â can be expressed as the operator sum M̂ + B̂ as shown in [36],
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A(ψ,m) = 〈m | (M̂ + B̂) | ψ〉
〈m | ψ〉 (19)

= 〈m | Â | ψ〉
〈m | ψ〉 .

Note that in the general case the values of A(ψ,m) are complex, requiring a non-
hermitian operator M̂ for the assignment of complex values mm to the measurement
outcomes m. However, such an assignment is not necessarily meaningless since the
purpose of the present analysis is to identify a precise relation between the value
A(ψ,m) of Â and the eigenvalues Mm and Bψ , where the statistical errors in the
quantitative relation are zero. Ozawa’s error relation confirms this expectation by
defining the contribution of m to the error ε2(A) as

ε(A,m) = 〈m | ( Â − Ãm) | ψ〉
=

(
A(ψ,m) − Ãm

)
〈m | ψ〉. (20)

This contibution is zerowhenever the estimate Ãm is equal to the complexweak value
conditioned byψ andm. In the example above, Ãm = A(ψ,m) is only possible when
the weak value A(ψ,m) is real, so that a measurement error of ε2(A) = 0 is only
possiblewhen all of theweak values associatedwith differentmeasurement outcomes
m are real. However, there is no logically binding reason to maintain the restriction
to real values when the untimate goal is the identification of deterministic relations
between physical properties. As discussed above, the complex weak value is a valid
quantification of the intersection of the orbits | ψ〉 and | m〉 in terms of the quantity
defined by the operator Â. By extending the estimate to complex values, it is always
possible to obtain the error free value Ãm = A(ψ,m) from a maximally precise
measurement. Since the value A(ψ,m) is error free, it can serve as a deterministic
expression of the relation between the value of A and the precisely defined conditions
ψ andm which holds for all quantum states ρ̂.We can verify that this is indeed correct
by using the joint statistics of ψ and m defined by the Dirac distribution of ρ̂,

ρ(m, ψ) = 〈ψ | ρ̂ | m〉〈m | ψ〉. (21)

Note that here, the quantum state is given by ρ̂, whereas ψ is merely a basis state
used to characterize the statistics of ρ̂. The expectation value of Â in ρ̂ can now be
explained as an average of the deterministic values A(ψ,m) of Â determined by the
combinations of ψ and m,

〈 Â〉 =
∑

m,ψ

A(ψ,m)ρ(m, ψ). (22)
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We can therefore conclude that error free relations between Â, m and ψ provide a
state independent description of deterministic relations between physical properties
[20, 21].

6 Empirical Objectivity and Non-classical Correlations

The central merit of the Hilbert space formalism is that it provides an objective
description of the quantum system. In quantum mechanics, this presents a problem
because we cannot simply neglect the role of the environment in the physical pro-
cesses used to prepare and measure the system. In popular discussions of quantum
physics, it has often been suggested that quantum physics involves some mysterious
influence of the observer on the result, implying the complete absence of objective
laws of causality. It is therefore important to stress that the Hilbert space formal-
ism does not allow any such “external” effects. Even the description of preparation
and measurement is entirely objective. The problem arises only from the possible
choice between different state preparations or measurement procedures. However,
these procedures are all defined by physical interactions with the object, and the
effects of these physical interactions can then be described objectively by using the
Hilbert space algebra.

We need to understand the algebra of Hilbert space as a description of causality
that relates a physical object to the evidence of its existence found outside of the
system. Objectivity is only possible if we can apply rules of causality to eliminate the
unavoidable contextuality introduced by external devices. Quantum physics shows
that themost fundamental elements of reality are processes, not properties. Processes
can be objectified as orbits described by Hilbert space projectors. The result is a
proper causal description of the system, where the self-adjoint operators describing
physical properties can be used to evaluate the quantitative effects observed at finite
sensitivities.

It is somewhat unfortunate that quantum physics is rarely applied properly to
systems that behave in a nearly classical fashion. It is important to remember that
the classical description of such systems is merely approximate, no matter how large
they are. In most cases, the observation of objects involves fluctuations that are much
larger than the quantum limit. Just as an extreme example,we can consider themotion
of the moon around the earth. At a distance of about 400 000Km from the center of
the earth, a single photon of visible light scattered by the surface of the moon will
change the angular momentum by about 5 × 1015�. Since no classical description
of the orbit of the moon can take into account every single photon scattered by the
moon, it is obvious that classical physics is no more than a very crude approximation
- except by relative standards, of course, where we should consider that the total
angular momentum of the moon going around the earth is about 3 × 1068�. The
motion of the moon is therefore quite robust against the disturbances caused by the
light we need to see it by. We should just avoid the misconception that the moon has
a reality independent of its interaction with light and matter. The fact that the moon
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is continuously immersed in interactions with its environment makes the moon real,
just as all other objects are only real as a source of their physical interactions.

The detailed investigations of non-classical correlations we have recently per-
formed indicate that we should take imaginary correlations seriously [26, 28]. This is
a direct consequence of the relation between unitary transformations and statistics in
the operator algebra. Specifically, the imaginary correlations of two non-commuting
operators Â and B̂ is given by the expectation value of the commutation relation,

Im
(
〈 Â B̂〉

)
= − i

2
〈[ Â, B̂]〉. (23)

Therefore, the time evolution of any physical property Â is evidence of an imaginary
correlation between Â and the energy Ĥ ,

Im
(
〈 ÂĤ〉

)
= �

2

d

dt
〈 Â〉. (24)

Importantly, it is possible to experimentally observe the imaginary correlation
between Â and Ĥ in weak measurements or in any other experimental reconstruc-
tion of the Dirac distribution ρ(A, H). Oppositely, it is not possible to observe the
change in Â without changing the energy Ĥ as a result of the necessary interactions.
Therefore, the identification of the rate of change with an imaginary correlation
does not contradict our experience. Rather, the assumption that we observe physi-
cal properties as exact real numbers is at odds with the empirical evidence. We can
quickly confirm that the limit placed by Eq. (24) on our ability to estimate both the
energy and the value of Â from the evidence is not unrealistically high. After all,
� is a very small action. For example, the imaginary correlation between position
and energy achieves its maximal possible value at the speed of light, where it is a
mere 1.58 × 10−26 Jm. The lesson we should learn from such considerations is that
the assumption that we could hypothetically control physical systems with absolute
precision is mostly a fantasy based on sloppy thinking. Quantum mechanics reveals
that we need to make corrections to the artificially precise laws of motion once we
approach the limit where small actions do matter. Nevertheless the laws of motion
remain objective and consistent. The origin of the randomness observed in quantum
experiments is explained by the limitations of control that these deterministic laws of
motion impose on the possible interactions with the system.We can understand these
limitations once we realize that the mathematical formalism describes dynamics and
causality, and not the static realities represented by the classical phase space algebra.

7 Conclusions

In quantum theory, Hilbert space is used to describe the deterministic relations
between physical properties that allow us to trace external effects of a system back
to causes within the system. Objective reality emerges as a result of the causality



Dynamics and Statistics in the Operator Algebra of Quantum Mechanics 193

relations between observations of the same object made at different times, or, in the
spirit of ergodic theory, between observations made on identically prepared objects
of the same type. Importantly, the physical properties of an object are known only
through the effects of interactions - by “touch and sight.” It is a serious mistake
to assume that reality is accessible by abstract thought. The elements of the theory
do not represent platonic realities. Each one of them needs to be justified by actual
effects observed in the laboratory. This demand may seem overly restrictive, and it
should not be taken as an attempt to reject speculations about possible observations
that have not been realized due to technical limitations - but the present discussion
of quantum mechanics suffers from unnecessary confusion because scientists cling
to concepts of reality that are clearly at odds with the observed phenomena. A more
careful distinction between the observable world and unobservable figments of the
imagination may therefore be helpful. In particular, we should be more humble in
admitting that our knowledge of reality is limited to our actual experience, and that
the extrapolations of our personal experience to possible experiences beyond our
technical capabilities may result in delusions about the real world. Science should
provide a tool by which we can reach an agreement on questions about the external
reality, and this can only be achieved if there is a shared experience of the world that
we can all relate to.

The intention of the analysis of quantum theory developed here and in a number
of related works [20, 21, 25] is to provide an empirical foundation of quantum
physics that explains how the formalism describes the observable laws of physics
that shape our experience of the world around us. At the center is the realization
that objects obtain their reality by their appearance, and the properties of the object
are the quantities that determine the possible effects of the object that determine its
appearance, both in the laboratory and in nature. The abstraction of the “state” should
really be understood in terms of this experience, where the projection on a Hilbert
space vector actually represents an interaction that randomizes the dynamics of the
system in the course of the interaction by which the object causes an observable
effect. The strangeness of quantum statistics originates from the peculiar role played
by the laws of motion that determine this dynamical randomization. Specifically, our
approximate separation between reality and dynamics - the assumption of a static
reality - breaks downwhen the interaction is sensitive to actions of � or less. This is no
different from the breakdownof the independence of time andmotionwhen velocities
approach the speed of light. It may therefore be possible to gain a better fundamental
understanding of physics by noticing that nothing in our experience indicates that the
reality of objects is static and canbe frozen in time.Quantummechanics simply shows
that this unnecessary assumption is wrong, and that dynamics forms an essential part
of objective reality in the limit of small actions.
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