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Abstract Drawing on an analogy with the second law of thermodynamics for adi-
abatically isolated systems, Cover argued that data-processing inequalities may be
seen as second laws for “computationally isolated systems,” namely, systems evolv-
ing without an external memory. Here we develop Cover’s idea in two ways: on the
one hand, we clarify its meaning and formulate it in a general framework able to
describe both classical and quantum systems. On the other hand, we prove that also
the reverse holds: the validity of data-processing inequalities is not only necessary,
but also sufficient to conclude that a system is computationally isolated. This consti-
tutes an information-theoretic analogue of Lieb’s and Yngvason’s entropy principle.
We finally speculate about the possibility of employing Maxwell’s demon to show
that adiabaticity andmemorylessness are in fact connected in a deeper way than what
the formal analogy proposed here prima facie seems to suggest.

Keywords Second law · Statistical comparison theory · Blackwell theorem
Degradability ordering

1 Introduction

Cover, in the attempt to set the second law of thermodynamics in a computational
framework, concludes his work with the following suggestive observations [1]:

The second lawof thermodynamics says that uncertainty increases in closed physical systems
and that the availability of useful energy decreases. If one can make the concept of “physical
information” meaningful, it should be possible to augment the statement of the second
law of thermodynamics with the statement,“useful information becomes less available.”
Thus the ability of a physical system to act as a computer should slowly degenerate as the
system becomes more amorphous and closer to equilibrium. A perpetual computer should
be impossible [emphasis added].
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Cover’s analysis can be summarized as follows. He first argues, more or less implic-
itly, that the computational analogue of an adiabatically isolated system should be
taken to be a system evolving—i.e., computing—without an external memory. (For
this reason, in what followswe use the term “computationally isolated” as a synonym
for“memoryless.”) This observation leads him to consider stochastic memoryless
processes, in particular discrete-time Markov chains. Cover then shows that, while
entropy can increase or decrease in this setting, thus violating the thermodynamical
second law, relative entropy instead never increases. We refer to this statement as
Cover’s “computational second law.1” On a technical side, what Cover proves in [1]
is an expression of themonotonicity of the relative entropy under the action of a noisy
channel. ThusCover’s second law is in fact a particular data-processing inequality [2,
3], and we can imagine that there are as many computational second laws as there
are data-processing inequalities, all formalizing the idea that the information content
of a system cannot increase without the presence of an external memory.2

Cover hence shows that the condition of being memoryless is sufficient for a
system to obey data-processing inequalities, i.e., computational second laws. The
question we address in this paper concerns the other direction: is it possible to show
that the memoryless condition is also necessary for the validity of all data-processing
inequalities? Equivalently stated: is it true that a system, if it is not computationally
isolated, will necessarily violate some data-processing inequality? It is important
to address these questions, if we want to understand how far the analogy between
memorylessness and adiabaticity can be pushed. Here, in particular, we have in
mind Lieb’s and Yngvason’s formulation of the second law of thermodynamics [7],
according to which a non-decreasing entropy is not only necessary but also sufficient
for the existence of an adiabatic process connecting two thermodynamical states.3

The aim of this paper is to provide a comprehensive framework that is able to
answer the above questions. More specifically, we prove here a family of reverse
data-processing theorems, showing that as soon as a system is not computationally
isolated, it must necessarily violate a data-processing inequality. The framework we
construct is quite general and it can be applied to classical, quantum, and hybrid
classical/quantum systems. In fact, it may even be extended in principle to gener-
alized operational theories as it involves only basic notions like states, effects, and
operations; this development is however beyond the scope of the present work.

Thus we are able to strengthen Cover’s computational second law in two ways:
on the one hand, we give it a converse, in a way that is analogous to what Lieb and
Yngvason did the second law of thermodynamics. On the other hand, we include in
the analysis the possibility of dealing with quantum systems and quantummemories.

1Since the entropy of a distribution p is the negative of the relative entropy of p with respect to
the uniform distribution, it is clear that Cover’s computational second law formally constitutes a
relaxation of the second lawof thermodynamics. Indeed, the former is satisfied in situations violating
the latter. We will say more about the relation between thermodynamical and computational second
laws in Sect. 6.
2Relations between data-processing inequalities, the second law of thermodynamics, and statistical
mechanics have been studied also by Merhav in [4–6].
3More on this point can be found in Sect. 6.
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The paper is organized as follows. We being in Sect. 2 with reviewing the data-
processing inequality for a classical Markov chain. This is the encoding–channel–
decoding model considered by Shannon to describe the simplest communication
scenario. In this scenario we prove our first reverse data-processing theorem. We
also show how this relates with the theory of comparison of noisy channels, as intro-
duced by Shannon [8] and later developed by Körner and Marton [9]. In Sect. 3 we
state and prove a lemma that allows us to extend our considerations to the quantum
case, and discuss the notion of quantum statistical morphisms. In Sect. 4 we study
the case of a system, processing quantum information but outputting only classi-
cal data, and prove the corresponding reverse data-processing theorem. Section5
presents the general case of a fully quantum computer, i.e., a process with quantum
inputs and quantum outputs. Finally, in Sect. 6, we briefly discuss about analogies
and differences between thermodynamical and computational second laws. In partic-
ular, we speculate about the possibility that Maxwell’s paradox (his “demon”) may
enable a deeper relation between adiabatic processes and memoryless processes,
going beyond the formal analogy considered in this work. At the end of the paper,
three appendices are available: the first, reviewing conventions, notations, and termi-
nology used in this work; the second, containing a version of the minimax theorem;
and the third, presenting (just for the sake of completeness) an elementary proof of
the separation theorem for convex sets.

This work contains ideas that were presented during the Sixth Nagoya Winter
Workshop (NWW2015) held in Nagoya on 9–13 March 2015. Part of the technical
results presented here were first introduced in previous papers by the author [10–15],
building upon works of Shmaya [16] and Chefles [17].

2 A Reverse-Data Processing Theorem for Classical
Channels

A data-processing inequality is amathematical statement formalizing the fact that the
information content of a signal cannot be increased by post-processing. As there are
manyways to quantify information, so there aremany corresponding data-processing
inequalities. Such inequalities, however, despite formalizing the same intuitive con-
cept, are not all logically equivalent: some may be stronger than (i.e., imply) others,
some may be easier to prove, some may be better suited for a particular problem
at hand. Data-processing inequalities usually find application in information theory
when proving that a given approach (coding strategy) is optimal: if a better cod-
ing were possible, that would result in the violation of one or more data-processing
inequalities, thus leading to an absurd. In this sense, data-processing inequalities
provide a sort of “sanity check” of the result.

One of the simplest scenarios in which a data-processing inequality can be for-
mulated is the following [2, 3]. Given are two noisy channels w1 : X → Y and
w2 : Y → Z . Then, for any set U and any initial joint distribution p(x, u), the
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Fig. 1 Shannon’s basic communication scheme: a message U is encoded on the signal X (i.e.,
a joint distribution (U, X) is given), which is transmitted to the receiver via the communication
channel w1. The receiver obtains the output Y and processes it according to the decoding function
(another channel w2) to obtain the recovered message Z

joint distribution
∑

x w2(z|y)w1(y|x)p(x, u) satisfies the following inequalities:

I (U ; Y ) ≥ I (U ; Z) .

[Notations and definitions used here and in what follows are given for completeness
in Appendix 1.] Referring to the situation depicted in Fig. 1 and interpretingU as the
message, X as the signal, w1 as the communication channel, Y as the output signal,
w2 as the decoding, and Z as the recovered message, the above inequality formalizes
the fact that the information content carried by the signal about the message cannot
be increased by any decoding performed locally at the receiver. Of course, this does
not mean that decoding should be avoided (actually, in most cases a decoding is
necessary to make the signal readable to the receiver), but that no decoding is able
to add a posteriori more information to what is already carried by the signal.

Data-processing inequalities hence provide necessary conditions for the “locality”
of the information-processing device. Namely, data-processing inequalities must be
obeyed whenever the physical process carrying the message from the sender to the
receiver is composed by computationally isolated parts (encoding, transmission,
decoding, etc.). Any information that is communicated must be transmitted via a
physical signal: as such, in the absence of an external memory, information can only
decrease, never increase, along the transmission. Hence,“locality” in this sense can
be understood as the condition that the process U → X → Y → Z forms a Markov
chain. For this reason, we refer to such locality as “Markov locality,” in order to
avoid confusion with other connotations of the word.4

In this paper we aim to derive statements that provide sufficient conditions for
Markov locality, in the form of a set of information-theoretic inequalities. We refer
to such statements as reverse data-processing theorems. For example, a first attempt
in this direction would be to prove the following:

4In this work, memoryless process, Markov local process, and computationally isolated process are
all synonyms. We prefer however to maintain all three terms because they in fact highlight different
aspects of the same information-theoretic concept.
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Given are two noisy channels w : X → Y and w′ : X → Z . Suppose that, for any set U
and for any initial joint distribution p(x, u), the resulting distributions

∑
x w(y|x)p(x, u)

and
∑

x w′(z|x)p(x, u) always satisfy the inequality I (U ; Y ) ≥ I (U ; Z). Then there exists
a noisy channel ϕ : Y → Z such that w′(z|x) = ∑

y ϕ(z|y)w(y|x).

Notice that, in the above statement, the two given channels w and w′ are assumed
to have the same input alphabet: this is a consequence of the fact that we are now
formulating a reverse data-processing theorem, so that the existence of a Markov-
local decoding (the channel ϕ) is something to be proved, rather than being a datum.
Interpreting the four random variables (U, X, Y, Z) as before, if the reverse data-
processing theorem holds, thenwe can conclude that any violation of Markov locality
is detectable, in the precise sense that the data-processing inequality has to be violated
at some point along the communication process.

2.1 Comparison of Noisy Channels

A reverse data-processing theorem can be understood as a statement about the com-
parisonof twonoisy channels.Hencewewant to introduce ordering relations between
noisy channels, capturing the idea that one channel is able to transmit “more infor-
mation” than another. This problem, first considered by Shannon [8], is intimately
related to the theory of statistical comparisons [18–21], even though this connec-
tion was not made until recently [22]. The theory of comparison of noisy channels
received a thorough treatment by Körner and Marton, who in Ref. [9] introduce the
following definitions (the notation used here follows [23]):

Definition 1 Given are two noisy channels, w : X → Y and w′ : X → Z .

(i) the channel w is said to be less noisy than w′ if and only if, for any set U and
any joint distribution p(x, u), the resulting distributions

∑
x w(y|x)p(x, u) and∑

x w′(z|x)p(x, u) always satisfy the inequality

H(U |Y ) ≤ H(U |Z) ; (1)

(ii) the channel w is said to be degradable into w′ if and only if there exists another
channel ϕ : Y → Z such that

w′(z|x) =
∑

y

ϕ(z|y)w(y|x) . (2)

�
Since I (U ; Y ) ≥ I (U ; Z) if and only if H(U |Y ) ≤ H(U |Z), we immediately

notice that the reverse data-processing theorem, as tentatively formulated above, is
equivalent to the implication (i) =⇒ (ii): indeed, the reverse implication, (ii) =⇒
(i), is the usual data-processing inequality. Körner and Marton provide an explicit
counterexample showing that
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degradable =⇒�⇐= less noisy . (3)

This means that, if a reverse data-processing theorem holds, it must be formulated
differently.

2.2 Replacing H with Hmin

Even though we know that “less noisy” does not imply“degradable,” in what follows
we show that just a slight formal modification in the definition of “less noisy, ”
Eq. (1), is enough to obtain the sought-after reverse data-processing theorem. Such
a slight modification consists in replacing, in point (i) of Definition 1, the Shannon
conditional entropy H(·|·) with the conditional min-entropy Hmin(·|·).

Theorem 1 Given are two noisy channels w : X → Y and w′ : X → Z .
The following are equivalent:

(i) for any set U and for any initial joint distribution p(x, u), the resulting
distributions

∑
x w(y|x)p(x, u) and

∑
x w′(z|x)p(x, u) always satisfy the

inequality
Hmin(U |Y ) ≤ Hmin(U |Z) ; (4)

(ii) w is degradable into w′, namely, there exists another channel ϕ : Y → Z
such that w′(z|x) = ∑

y ϕ(z|y)w(y|x) .

Proof (ii) =⇒ (i) is a direct consequence of the data-processing inequality for Hmin.
Suppose that there exists another conditional probability distribution ϕ(z|y) such
that w′(z|x) = ∑

y ϕ(z|y)w(y|x). This means that the random variable Z is obtained
locally from Y , i.e., the four random variables (U, X, Y, Z) form a Markov chain
U → X → Y → Z . This implies that (4) holds.

In order to prove (i) =⇒ (ii), let us assume that the inequality in (4) holds for any
initial joint distribution p(x, u). Exponentiating both sides, and using Eq. (59), this
is equivalent to

Pguess(U |Y ) ≥ Pguess(U |Z) , (5)

namely,

max
ϕ

∑

u,y,x

ϕ(u|y)w(y|x)p(x, u) ≥ max
ϕ′

∑

u,z,x

ϕ′(u|z)w′(z|x)p(x, u) , (6)
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for all choices of p(x, u). In the above equation, the noisy channelsϕ andϕ′ represent
the decision functions that the statistician designs in order to optimally guess the value
of U .

Let us choose U such that its support coincides with that of Z , i.e., U ≡ Z .
We can therefore denote its states by z′. Let us also fix the guessing strategy on the
right-hand side of (6) to be ϕ′(z′|z) ≡ δz′,z , i.e., 1 if z′ = z and 0 otherwise. Then,
we know that there exists a decision function ϕ(z′|y) such that

0 ≥
∑

z′,z,x

δz′,zw
′(z|x)p(x, z′) −

∑

z′,y,x

ϕ(z′|y)w(y|x)p(x, z′) (7)

=
∑

z′,x

w′(z′|x)p(x, z′) −
∑

z′,y,x

ϕ(z′|y)w(y|x)p(x, z′) (8)

=
∑

z′,x

[

w′(z′|x)p(x, z′) −
∑

y

ϕ(z′|y)w(y|x)p(x, z′)

]

(9)

=
∑

z′,x

[

w′(z′|x) −
∑

y

ϕ(z′|y)w(y|x)

]

p(x, z′) . (10)

In other words, for any p(x, z′), there exists a ϕ(z′|y) such that the above inequality
holds. This is equivalent to say that

max
p

min
ϕ

∑

z′,x

[

w′(z′|x) −
∑

y

ϕ(z′|y)w(y|x)

]

p(x, z′) ≤ 0 . (11)

Wenow invoke theminimax theorem (in the form reported inAppendix 2, Theorem4)
and exchange the order of the two optimizations:

min
ϕ

max
p

∑

z′,x

[

w′(z′|x) −
∑

y

ϕ(z′|y)w(y|x)

]

p(x, z′) ≤ 0 . (12)

Let us now introduce the quantity

Δϕ(z′, x) � w′(z′|x) −
∑

y

ϕ(z′|y)w(y|x) . (13)

First of all, we notice that the maximum in Eq. (12) is reached when the distribution
p(x, z′) is entirely concentrated on an entry where Δϕ(z′, x) is maximum, that is,
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0 ≥ min
ϕ

max
p

∑

z′,x

[

w′(z′|x) −
∑

y

ϕ(z′|y)w(y|x)

]

p(x, z′) (14)

= min
ϕ

max
z′,x

Δϕ(z′x) . (15)

In general, Δϕ(z′, x) does not have a definite sign, however, since
∑

z′,x Δϕ(z′, x) =
0 (as a consequence of the normalization of probabilities), it must be that
maxz′,x Δϕ(z′, x) ≥ 0 (otherwise, of course, one would have

∑
z′,x Δϕ(z′, x) < 0).

The above inequality hence implies that minϕ maxz′,x Δϕ(z′, x) = 0. In turns this
implies, again because

∑
z′,x Δϕ(z′, x) = 0, that Δϕ(z′, x) = 0 for all z′ and x . In

other words, we showed that there exists a ϕ(z′|y) such that

w′(z′|x) =
∑

y

ϕ(z′|y)w(y|x), (16)

for all z′, x , which coincides with the definition of degradability. �

Remark 1 From the proof we see that in point (ii) of Theorem 1 it is possible to
restrict, without loss of generality, the random variable U to be supported on the set
Z , i.e., the same supporting the output of w′. �

3 The Fundamental Lemma for Quantum Channels

The following lemma plays a crucial role in the derivation of reverse data-processing
theorems valid in the quantum case.

Lemma 1 Let ΦA : L(HA) → L(HB) and Φ ′
A : L(HA) → L(HB ′) be two

quantum channels. For any set U = {u}, the following are equivalent:

(i) for all ensembles {p(u);ωu
A} ,

Pguess{p(u);ΦA(ωu
A)} ≥ Pguess{p(u);Φ ′

A(ωu
A)} ; (17)

(ii) for any POVM {Qu
B ′ }, there exists a POVM {Pu

B} such that

Tr
[
Φ ′

A(ωA) Qu
B ′

] = Tr
[
ΦA(ωA) Pu

B

]
, (18)

for all u ∈ U and all ωA ∈ D(HA).

Proof The fact that (ii) implies (i) follows by definition of guessing probability. We
therefore prove the converse, namely, that (i) implies (ii).
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Let us rewrite condition (17) explicitly as follows: for all ensembles {p(u);ωu
A} ,

max
P

∑

u

p(u)Tr
[
ΦA(ωu

A) Pu
B

] ≥ max
Q

∑

u

p(u)Tr
[
Φ ′

A(ωu
A) Qu

B ′
]

, (19)

where the maxima are taken over all possible POVMs. Introduce now an auxiliary
Hilbert spaceHR

∼= HA, and denote byφ+
R A afixedmaximally entangled inD(HR ⊗

HA). Construct then theChoi operators corresponding to channelsΦ andΦ ′, namely,

χRB � (idR ⊗ΦA)φ+
R A and χ ′

RB ′ � (idR ⊗Φ ′
A)φ+

R A . (20)

Noticing that, for any ensemble {p(u);ωu
A} with

∑
u p(u)ωu

A = IA/dA, there
exists a POVM {Eu

R} such that p(u)ωu
A = TrR

[
φ+

R A (Eu
R ⊗ IA)

]
, we immediately

see that, if condition (19) above holds, then, for any POVM {Eu
R},

max
P

∑

u

Tr
[
χRB (Eu

R ⊗ Pu
B)

] ≥ max
Q

∑

u

Tr
[
χ ′

RB ′ (Eu
R ⊗ Qu

B ′)
]

. (21)

We now prove that condition (21) above in turns implies that, for any collection
of Hermitian operators {Ou

R},

max
P

∑

u

Tr
[
χRB (Ou

R ⊗ Pu
B)

] ≥ max
Q

∑

u

Tr
[
χ ′

RB ′ (Ou
R ⊗ Qu

B ′)
]

. (22)

The crucial observation here is that, given a collection of Hermitian operators {Ou
R} ,

we can always derive from it a POVM {Eu
R} given by

Eu
R � 1

α|U |
{

Ou
R + α IR − 1

|U |ΣR

}

, (23)

with ΣR �
∑

u Ou
R and α > 0 sufficiently large so that Ou

R + α IR − |U |−1ΣR is
nonnegative for all u. Therefore, assuming that inequality (21) holds for any POVM
{Eu

R}, we have that

max
P

∑

u

Tr
[
χRB (Ou

R ⊗ Pu
B)

]

= α|U |max
P

∑

u

Tr
[
χRB (Eu

R ⊗ Pu
B)

] − αTr[χRB] + 1

|U |Tr[χRB (ΣR ⊗ IB)]

= α|U |max
P

∑

u

Tr
[
χRB (Eu

R ⊗ Pu
B)

] − α + 1

|U |Tr[TrB[χRB] ΣR]

≥ α|U |max
Q

∑

u

Tr
[
χ ′

RB ′ (Eu
R ⊗ Qu

B ′)
] − α + 1

|U |Tr
[
TrB ′

[
χ ′

RB ′
]

ΣR
]

(24)

= max
Q

∑

u

Tr
[
χ ′

RB ′ (Ou
R ⊗ Qu

B ′)
]
,
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for any collection of Hermitian operators {Ou
R} . Inequality (24) above is a conse-

quence of condition (21) togetherwith the identityTrB[χRB] = TrB ′
[
χ ′

RB ′
] = IR/dR .

Hence we showed that condition (22) holds if condition (21) holds, even though the
former looks at first sight more general than the latter. The vice versa is true simply
because any POVM is, in particular, a family of Hermitian operators.

Let us now denote by L (U ) the set of operator tuples

a ≡ (
au : u ∈ U

)
, au ∈ LH (HR) , (25)

with inner product

a · b �
∑

u

Tr
[
aubu

]
. (26)

We then define C (χ;U ) as the convex subset of L (U ) containing tuples b such
that bu � TrB

[
χRB (IR ⊗ Pu

B)
]
, for varying POVM {Pu

B}. [The fact that C (χ;U ) is
convex is a direct consequence of the fact that the set of POVMs supported on U is
convex.] In the same way, we also define C ′(χ ′;U ). For the sake of simplicity of
notation, when no confusion arises, we simply denoteC (χ;U ) asC andC ′(χ ′;U )

as C ′. Using this notation, condition (22) becomes

max
b∈C

a · b ≥ max
b′∈C ′

a · b′ , (27)

for all a ∈ L (U ). [Here au = Ou
R .]

Hence, we turned the initial conditions involving guessing probabilities into a
family of linear constraints on two convex sets, C and C ′. Then, a direct application
of the separation theorem for convex sets (see Corollary 2 in Appendix 3), leads us
to conclude that

C (χ;U ) ⊇ C ′(χ ′;U ) . (28)

In other words, condition (17) in the statement of the lemma implies that, for any
POVM {Qu

B ′ }, there exists a POVM {Pu
B} such that

TrB
[
χRB (IR ⊗ Pu

B)
] = TrB ′

[
χ ′

RB ′ (IR ⊗ Qu
B ′)

]
, (29)

for all u ∈ U .
The final step consists in noticing that any state ωA can be written as

TrR
[
φ+

R A (ER ⊗ IA)
]
for some ER ∈ L+(HR). Therefore, multiplying both sides

of (29) by ER and taking the trace, we obtain

Tr
[
ΦA(ωA) Pu

B

] = Tr
[
χRB (ER ⊗ Pu

B)
]

(30)

= Tr
[
χ ′

RB ′ (ER ⊗ Qu
B ′)

]
(31)

= Tr
[
Φ ′

A(ωA) Qu
B ′

]
, (32)



Reverse Data-Processing Theorems and Computational Second Laws 145

which of course holds for any choice of ER , that is, ωA, as claimed. �

Remark 2 As explained in the paragraph following Eq. (20), the above proof shows
that, in particular, the ensembles {p(u);ωu

A} in point (i) can be restricted, without loss
of generality, to ensembles with maximally mixed average, i.e.,

∑
u p(u)ωu

A ∝ IA.
�

Remark 3 We notice that point (ii) can be alternatively formulated as follows: for
any POVM {Qu

B ′ }, there exists a POVM {Pu
B} such that

(
Φ ′)† (

Qu
B ′

) = Φ†
(
Pu

B

)
, (33)

for all u ∈ U , where Φ† denotes the trace-dual defined in Eq. (55). �

3.1 Quantum Statistical Morphisms

Let us now choose the setU in Lemma 1 so that its size |U | is equal to (dimHB ′)2.
Assuming that channels Φ and Φ ′ actually satisfy either (17) or (18), let us set the
POVM {Qu

B ′ } to be informationally complete, that is, span{Qy
B ′ } = L(HB ′). Then,

if {Pu
B} is any POVM satisfying the equality (33) in Remark 3, the relation

Qy
B ′ �−→ P y

B , y ∈ Y , (34)

can be used to define a linear map Γ : L(HB) → L(HB ′) with the following prop-
erties:

1. let {Ξ y
B ′ } be the unique dual of {Qy

B ′ }, in the sense that X B ′ =∑
y Tr

[
Qy

B ′ X B ′
]
Ξ

y
B ′ , for all X B ′ ∈ L(HB ′) ; then the action of Γ is given by

Γ (·) = ∑
y Tr

[
P y

B ·] Ξ
y
B ′ ;

2. Γ is Hermiticity-preserving, i.e., X = X† implies that Γ (X) = [Γ (X)]† ;
3. Γ is trace-preserving;
4. Φ ′ = Γ ◦ Φ .

In particular, the map Γ , as defined above, is positive and trace-preserving on
the output (meant as the whole linear range) of Φ. In order to prove this, let
X A ∈ L(HA) be any operator such that ΦA(X A) ≥ 0. (Notice that X A need not be
positive itself.) Then ΓB(ΦA(X A)) ≥ 0. This is because Γ ◦ Φ = Φ ′ and we know,
from Eq. (18), that for any positive operator Q B ′ there exists a positive operator
PB such that Tr[Q B ′ ΓB(ΦA(X A))] = Tr

[
Q B ′ Φ ′

A(X A)
] = Tr[PB ΦA(X A)]. Hence,

we know that for any positive operator Q B ′ , Tr[Q B ′ ΓB(ΦA(X A))] ≥ 0 whenever
ΦA(X A) ≥ 0, which is the definition of positivity.

Following the terminology of [24, 25], the following definition was introduced
in [10]:
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Definition 2 Given a channel Φ : L(HA) → L(HB), a linear map Γ : L(HB) →
L(HC) is said to be a quantum statistical morphism of Φ if and only if, for any state
ωA and any POVM {Qy

C}, there exists a POVM {P y
B} such that

Tr
[
(ΓB ◦ ΦA)(ωA) Qy

C

] = Tr
[
ΦA(ωA) P y

B

]
, (35)

for all y. �

It is easy to verify that an everywhere positive trace-preserving linear map is
always a statistical morphisms for any channel, as long as the composition between
the two is well defined. Then, the natural question is whether a linear map defined as
Γ above can always be extended to becomepositive and trace-preserving everywhere,
not only on the range ofΦ. The questionwas answered in the negative byMatsumoto,
who gave an explicit counterexample in Ref. [26].

Vice versa, one may ask whether any linear map that is positive and trace-
preserving on the range of Φ is a well-defined statistical morphism of Φ or not.
Also in this case, the answer is in the negative: the fact that condition (35) must hold
for any POVM (in particular, for any number of outcomes) is strictly stronger than
just positivity, for which is enough if condition (35) holds only for two-outcome
POVMs.

Statistical morphisms hence lie somewhere in between linear maps that are posi-
tive and trace-preserving (PTP) everywhere, and those that are so only on the range
of Φ:

PTP everywhere =⇒�⇐= stat. morph. of Φ =⇒�⇐= PTP on range(Φ) . (36)

We summarize the contents of this section in one definition and one corollary.

Definition 3 Given are two quantum channels Φ : L(HA) → L(HB) and Φ ′ :
L(HA) → L(HB ′). For a given set U , we say that Φ is U -sufficient for Φ ′, in
formula,

Φ �U Φ ′ , (37)

if and only if either of the conditions in Lemma 1 hold. �

Corollary 1 Given are two quantum channelsΦ : L(HA) → L(HB)andΦ ′ :
L(HA) → L(HB ′). The following are equivalent:

(i) Φ �U Φ ′, for any set U ;
(ii) there exists a quantum statistical morphism Γ : L(HB) → L(HB ′) of Φ

such that Φ ′ = Γ ◦ Φ .
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Remark 4 Using the correspondence between ensembles and bipartite states,
together with the relation between guessing probability and conditional min-entropy,
given in Appendix 1 in Eqs. (54) and (60), we notice that the condition Φ �U Φ ′
can be equivalently written as

Hmin(U |B) ≤ Hmin(U |B ′), (38)

where the entropies are computed with respect to states (idU ⊗ΦA)(ωU A) and
(idU ⊗Φ ′

A)(ωU A), respectively. This is equivalent to the formulation used in
Theorem 1. �

4 A Semiclassical (Semiquantum) Reverse-Data Processing
Theorem

We consider in this section the case in which the output of a quantum channel is
classical, in the precise sense that the range is supported on a commutative subalgebra.

Theorem 2 Given are two quantum channels Φ : L(HA) → L(HB) and Φ ′ :
L(HA) → L(HB ′). Assuming that the output of Φ ′ is classical, i.e.,

[Φ ′(X),Φ ′(Y )] = 0, ∀X, Y ∈ L(HA) , (39)

the following are equivalent:

(i) Φ �U Φ ′, for any set U ;
(ii) Φ �U Φ ′, for a set U such that |U | = dimHB ′ ;

(iii) there exists a quantum channel Ψ : L(HB) → L(HB ′) such that Φ ′ =
Ψ ◦ Φ .

Proof Since the implications (iii) =⇒ (i) =⇒ (ii) are either trivial of direct conse-
quence of the data-processing inequality for the guessing probability, we only prove
the implication (ii) =⇒ (iii).

Since |U | = dimHB ′ , we can use the elements u ∈ U to label an orthonormal
basis {|u〉 : u ∈ U } ofHB ′ . Assuming (ii), we know from Lemma 1 that (18) holds,
so, in particular, we know that there exists a POVM {Pu

B} such that

Tr
[
Φ ′

A(ωA) |u〉〈u|B ′
] = Tr

[
Φ(ωA) Pu

B

]
, (40)

for all u and all ωA ∈ D(HA).
We now use the fact that the output ofΦ ′ is classical and assume that any operator

in the range of Φ ′ can be diagonalized on the basis {|u〉}. This means that
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Φ ′
A(·) =

∑

u∈U
Tr

[
Φ ′

A(·) |u〉〈u|B ′
] |u〉〈u|B ′ . (41)

Using Eq. (40), and defining a measure-and-prepare channel Ψ : L(HB) → L(HB ′)

by the relation
Ψ (·) �

∑

u

Tr
[· Pu

B

] |u〉〈u|B ′ , (42)

we finally have that Φ ′ = Ψ ◦ Φ. �

Remark 5 In order to highlight the perfect analogywith Theorem1,we recall that the
relation between guessing probability and conditional min-entropy (see Appendix 1)
allows us to rewrite points (i) and (ii) of Theorem 2 as:

Hmin(U |B) ≤ Hmin(U |B ′) . (43)

See also Remark 4 above. �

Remark 6 It is possible to show that Theorem 1 becomes a corollary of Theorem 2.
Consider in fact the situation in which both Φ and Φ ′ are classical-quantum chan-
nels, namely,Φ : X → L(HB) andΦ ′ : X → L(HB ′),withΦ(x) � ρx

B ∈ D(HB)

andΦ ′(x) � σ x
B ′ ∈ D(HB ′). Assumemoreover that [ρx , ρx ′ ] = 0 and [σ x , σ x ′ ] = 0,

for all x, x ′ ∈ X . We are hence in a scenario much more restricted than that of
Theorem 2: in fact, by identifying commuting states with the probability distribu-
tions of their eigenvalues, we recover the classical framework and the statement of
Theorem 1. �

Remark 7 Theorem 1, the classical reverse data-processing inequality, has thus two
different proofs: one using theminimax theoremand another using the separation the-
orem for convex sets. Despite the fact that minimax theorem and separation theorem
are ultimately equivalent [27], the minimax theorem allows for an easier treatment
of the approximate case, which is a very relevant point but goes beyond the scope of
the present contribution. The interested reader may refer to Refs. [15, 28]. �

5 A Fully Quantum Reverse Data-Processing Theorem

We consider in this section the case of two completely general quantum channels,
with the only restriction that the input space is the same for both.

Theorem 3 Given are two quantum channels,Φ : L(HA) → L(HB) and Φ ′ :
L(HA) → L(HB ′), and an auxiliary Hilbert spaceHB ′′ ∼= HB ′ . The following
are equivalent:
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(i) idB ′′ ⊗ΦA �U idB ′′ ⊗Φ ′
A, for any set U ;

(ii) idB ′′ ⊗ΦA �U idB ′′ ⊗Φ ′
A, for a setU such that |U | = dim(HB ′′ ⊗ HB ′) =

(dimHB ′)2 ;
(iii) there exists a quantum channel Ψ : L(HB) → L(HB ′) such that Φ ′ =

Ψ ◦ Φ .

Remark 8 In terms of the conditional min-entropy, points (i) and (ii) above can be
written as

Hmin(U |B ′′ B) ≤ Hmin(U |B ′′ B ′) , (44)

with obvious meaning of symbols. See also Remarks 4 and 5 above. �

Proof Since the implication (iii) =⇒ (i) =⇒ (ii) is straightforward, we prove here
only that (ii) =⇒ (iii).

Let HB ′′′ be a further auxiliary Hilbert space such that HB ′′′ ∼= HB ′′ ∼= HB ′ . We
begin by showing that, if idB ′′ ⊗ΦA �U idB ′′ ⊗Φ ′

A, then, for any POVM {Qu
B ′′ B ′ } ,

there exists a POVM {Pu
B ′′ B} such that

TrB ′′ B ′
[
(φ+

B ′′′ B ′′ ⊗ Φ ′
A(·)) (IB ′′′ ⊗ Qu

B ′′ B ′)
]

= TrB ′′ B
[
(φ+

B ′′′ B ′′ ⊗ ΦA(·)) (IB ′′′ ⊗ Pu
B ′′ B)

]
,

(45)

where φ+
B ′′′ B ′′ is a maximally entangled state inHB ′′′ ⊗ HB ′′ . In fact, Lemma 1 states

that, for any POVM {Qu
B ′′ B ′ }, there exists a POVM {Pu

B ′′ B} such that

Tr
[
(idB ′′ ⊗Φ ′

A)(·B ′′ A) Qu
B ′′ B ′

] = Tr
[
(idB ′′ ⊗ΦA)(·B ′′ A) Pu

B ′′ B
]

, (46)

for all u ∈ U . In particular, for any family of states {ξ x
B ′′ }x onHB ′′ , we have

Tr
[
(idB ′′ ⊗Φ ′

A)(ξ x
B ′′ ⊗ ·A) Qu

B ′′ B ′
] = Tr

[
(idB ′′ ⊗ΦA)(ξ x

B ′′ ⊗ ·A) Pu
B ′′ B

]
, (47)

for all u and all x . Let us choose ξ x
B ′′ = TrB ′′′

[
φ+

B ′′′ B ′′ (Ξ x
B ′′′ ⊗ IB ′′)

]
for some complete

set of positive operators {Ξ x
B ′′′ }x . Hence Eq. (47) becomes

Tr
[
(idB ′′′ ⊗ idB ′′ ⊗Φ ′

A)(φ+
B ′′′ B ′′ ⊗ ·A) (Ξ x

B ′′′ ⊗ Qu
B ′′ B ′)

]
(48)

= Tr
[
(idB ′′′ ⊗ idB ′′ ⊗ΦA)(φ+

B ′′′ B ′′ ⊗ ·A) (Ξ x
B ′′′ ⊗ Pu

B ′′ B)
]

, (49)

for all u and all x . But since the family {Ξ x
B ′′′ }x has been chosen to be complete, the

above equality implies the equality of the operators in Eq. (45).
Now, we can use generalized teleportation and show that

Φ ′
A(·) =

∑

u

W u
B ′′′

{
TrB ′′ B ′

[
(φ+

B ′′′ B ′′ ⊗ Φ ′
A(·)) (IB ′′′ ⊗ βu

B ′′ B ′)
]}

(W u
B ′′′)

† , (50)
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where {βu
B ′′ B ′′′ : u ∈ U } are the (dimHB ′)2 projectors onto theBell states, and {W u

B ′′′ :
u ∈ U } are suitable isometries from HB ′′′ to HB ′ . But then, using Eq. (45) with
Qu

B ′′ B ′ = βu
B ′′ B ′ , we obtain

Φ ′
A(·) =

∑

u

W u
B ′′′

{
TrB ′′ B

[
(φ+

B ′′′ B ′′ ⊗ ΦA(·)) (IB ′′′ ⊗ Pu
B ′′ B)

]}
(W u

B ′′′)
† . (51)

Hence, defining a quantum channel Ψ : L(HB) → L(HB ′) as

Ψ (·) �
∑

u

W u
B ′′′

{
TrB ′′ B

[
(φ+

B ′′′ B ′′ ⊗ ·) (IB ′′′ ⊗ Pu
B ′′ B)

]}
(W u

B ′′′)
† , (52)

we finally have that Φ ′ = Ψ ◦ Φ, as claimed. �

Remark 9 Theorem3 holds also if the identity channel idB ′′ is replaced by a complete
channel, namely, a channel ϒ : L(HB ′′) → L(HB ′′) that is bijective (in the sense of
the linearmap): linearly independent inputs are transformed into linearly independent
outputs. This is so because linearly independent states ξ x

B ′′ in Eq. (47) remain linearly
independent after the action of ϒ . In this way, the proof can continue along the same
lines.

Wenotice, in particular, that a channel can be complete despite being entanglement
breaking or measure-and-prepare. This implies that the ensembles used to probe
channels idB ′′ ⊗ΦA and idB ′′ ⊗Φ ′

A can always be chosen, without loss of generality,
to comprise separable states only. �

6 The Computational Second Law: An Analogy

The aim of this section is to construct an analogy, clarifying and somehow strength-
ening that given by Cover [1], between data-processing theorems and the second
law of thermodynamics. In what follows we abandon a formally rigorous language,
preferring instead a generic language better suited to highlight the similarities and
differences between thermodynamics and information theory.

Theorems 1, 2, and 3, a part from the formal complications necessary to describe
classical and quantum systems together, have all the same simple interpretation that
we summarize in two statements (A) and (B):

Direct statement: the information that the signal carries about
the message (any message) cannot increase along a Markov
local process;

(A)
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Fig. 2 Suppose that a system, prepared at time t0, undergoes a process, and that we observe it
at two later times t1 ≥ t0 and t2 ≥ t1. Thermodynamical case: Clausius’ principle and Lieb’s
and Yngvason’s entropy principle state that ΔH = H(S2) − H(S1) ≥ 0 if and only if the process
bringing the system from t1 to t2 can be realized adiabatically (i.e., exchanging only work and no
heat). This is equivalent to say that: (i) a decrease in entropy can only be achieved by exchanging heat
with an external reservoir; (ii) if the process cannot be realized adiabatically then there is some initial
configuration S0 for which a decrease in entropy occurs. Information-theoretic case: the data-
processing inequality and the reverse data-processing theorems state that ΔHmin = Hmin(U |S2) −
Hmin(U |S1) ≥ 0 for all U , if and only if the process bringing the system from t1 to t2 is Markov
local (i.e., there exists a memoryless channel Ψ such that S2 = Ψ (S1)). This is equivalent to say
that: (i) a decrease in the conditional min-entropy can only be achieved in the presence of an external
memory storing information about the message and feeding it back into the system at later times;
(ii) if the process is not Markov local, then there exists some initial message-signal joint distribution
for which a decrease of Hmin occurs

and

Reverse statement: if the information that the signal carries
never increases along a given process, then such a process
admits a Markov local realization.

(B)

The direct statement corresponds to Cover’s law, as formulated in [1] (see the quo-
tation at the beginning of this paper). Here “useful information” is precisely the
information that the signal carries about the message, and it is measured by the
conditional min-entropy, which is directly related to the guessing probability. The
reverse statement, which is consequence of the reverse data-processing theorems that
we proved, corresponds to Lieb’s and Yngvason’s entropy principle [7].

In order to make our discussion more concrete, let us consider a thermodynamical
system prepared at time t0 and evolving through successive times t1 ≥ t0 and t2 ≥ t1,
as depicted in Fig. 2. The second law of thermodynamics, in the formulation usually
attributed to Clausius, states that the following inequality is necessarily obeyed:

ΔH ≥ ΔQ

T
, (53)
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where ΔH = H(S2) − H(S1) is the change in thermodynamical entropy of the sys-
tem and ΔQ is the heat absorbed by the system.5 The above equation basically
says that the only way to decrease the entropy of a system is to extract heat from
the system. This implies that, if a system is adiabatically isolated (i.e., no heat is
exchanged, only mechanical work), then its entropy cannot decrease. Equivalently
stated: a decrease in entropy represents a definite witness of the fact that the system
is not adiabatically isolated and is dumping heat in the environment.

This part of the second law can be seen as the analogue of statement (A) above,
that is, the usual data-processing inequality. Suppose now that the system S is an
information signal. As before, it is prepared at time t0 and then it undergoes a process
that is information-theoretic, rather than thermodynamical. If we observe the signal
at two times t1 ≥ t0 and t2 ≥ t1, then we know that if the process is Markov local,
then the data-processing inequality holds, namely, the information carried by the
signal cannot increase going from t1 to t2. Therefore, any increase in the information
carried by the signal is a definite witness of the fact that the process is not Markov
local, namely, that an external memory was used as a side resource at some point
along the process.

We now come to the reverse statement (B), arguing that it is the analogue of Lieb’s
and Yngvason’s entropy principle. The latter states that, assuming the validity of a
set of axioms about simple thermodynamical systems,6 a non-decreasing entropy
between t1 and t2 is not only necessary (Clausius’ principle) but also sufficient for
the existence of an adiabatic process between the two times. It is clear that the analogy
works in this case too: the reverse data-processing theorems we proved constitute
the information-theoretic analogue of Lieb’s and Yngvason’s entropy principle. An
overview of the analogy is summarized in the table below.

Despite the tantalizing analogies, there are however two points (at least) that we
should keep in mind before jumping to rash conclusions. The first one is that, while
in thermodynamics a process is usually given by an initial state and a final state, in
information theory a process is a channel, which acts upon any input it receives.

The second point is that the relation presented here between adiabaticity and
Markov locality (or memorylessness) has been discussed only on a formal level,
but no claim has been made about any quantitative relation between the two con-
cepts. However, we would like to conclude this paper speculating about the possi-
bility to envisage a deeper relation between adiabaticity and Markov locality, going
beyond the formal analogy presented above. An adiabatically isolated system cannot
exchange heat, but can interact with a mechanical device and exchange work with it.
Since it is possible to imagine a purely mechanical memory (at least of finite size),
it seems that the presence of a memory, in itself, should not violate adiabaticity. But
then, a scenario similar to that of Maxwell’s demon immediately comes to mind.
Indeed, Maxwell’s demon violates the second law using nothing but its memory:

5In the precise sense that ΔQ is positive if heat is injected into the system and negative if heat is
extracted from the system; see, e.g., Ref. [29].
6The most important and debated of which is the comparability hypothesis: the interested reader
may refer to Uffink [30].
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Table 1 Summary of the analogies between the second law of thermodynamics and its computa-
tional analogue discussed here

Thermodynamical setting Information-theoretic setting

Thermodynamical system S Message U encoded on signal S

Entropy H(S) Conditional min-entropy Hmin(U |S)

Clausius’ principle Data-processing inequality

Lieb–Yngvason entropy principle Reverse data-processing theorem

Adiabatically isolated system Computationally isolated system

Adiabatic process Markov local (memoryless) process

Heat sink/reservoir External memory

its actions, included the measurements it performs, are assumed to be otherwise
perfectly adiabatic.7 Hence, it seems that adiabaticity does not play well with the
presence of an external memory, even if this is taken to be perfectly mechanical. This
fact suggests that adiabaticity and Markov locality may be even closer than what the
analogies in Table1 prima facie seem to suggest. This and other questions are left
open for future investigations.
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Appendix 1: Definitions and Notations

Here we review some basic notions and clarify the notation that is used in the paper.
The reader familiar with the standard toolbox used in quantum information theory
(see, e.g., Ref. [31]) can safely skip to the next section.

All set and spaces considered here are finite or finite dimensional. We denote sets
as X ,Y ,Z ,U , . . . and their elements as x, y, z, u, . . . . Sets support probability
distributions, for example, p(x). When we speak of a random variable, for example,
X , we mean that it is supported by the setX , in the sense that its states are labeled
by x ∈ X , and that each state can occur with probability p(x) = Pr{X = x}. When
a pair (or a triple etc) of random variables are considered, we write (X, Y ) to mean a
bipartite randomvariable supportedon the cartesianproductX × Y = {(x, y) : x ∈
X , y ∈ Y } and distributed with joint probability p(x, y). Classical noisy channels
are represented by conditional input–output probability distributions w(y|x): in this

7Thus the demon can be imagined as a “perfect clockwork.”
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case we understand that the channel w has input alphabetX and output alphabet Y
and write w : X → Y .

Quantum systems are labeled by A, B, C, . . . and their corresponding finite
dimensional Hilbert spaces are denoted asHA,HB,HC , . . . . The set of linear oper-
ators on a Hilbert space H is denoted as L(H ), the set of Hermitian operators as
LH (H ), the set of positive semidefinite operators as L+(H ), and the set of density
operators (or states), i.e., positive semidefinite with unit trace, asD(H ). Vectors are
denoted as kets |φ〉, while if we write φ we mean the corresponding state, that is,
the projector |φ〉〈φ|. Given an orthonormal basis {|x〉 : x ∈ X } for a Hilbert space,
we sometime call the set of orthogonal projectors |x〉〈x | “flags,” since these can be
used to model a classical random variable with distinguishable states. For example,
given a random variable X with states x ∈ X and distribution p(x), we will often
think of it as“embedded” in a Hilbert spaceHX , with dimHX = |X |, and described
by the state

∑
x p(x) |x〉〈x |. This is a convention commonly used in quantum infor-

mation theory as it significantly simplifies the analysis of hybrid classical-quantum
scenarios.

A family {Px
A : x ∈ X } of operators Px

A ∈ L+(HA) such that
∑

x Px
A = IA is

called a POVM on HA. An ensemble is given by giving a set X , a probability
distribution p(x) and a family of states ρx

A ∈ L(HA): we denote it for brevity as
{p(x); ρx

A}, where the set X is usually understood from the context. Extending the
idea mentioned in the preceding paragraph of embedding classical random variables
in orthogonal states of a suitable Hilbert space, it is also common to interpret an
ensemble as a bipartite state as follows:

{p(x); ρx
A}x∈X ⇐⇒ ρX A �

∑

x∈X
p(x) |x〉〈x |X ⊗ ρx

A . (54)

A linear map Φ : L(HA) → L(HB) is said to be a quantum channel if and only
if it is completely positive and trace-preserving. Given a linear map Φ : L(HA) →
L(HB), its trace-dual Φ† : L(HB) → L(HA) is the linear map defined by the rela-
tion

Tr
[
X Φ†(Y )

]
� Tr[Φ(X) Y ] , (55)

for all X ∈ L(HA) and all Y ∈ L(HB).Φ is a channel if and only ifΦ† is completely
positive and unit-preserving, i.e., Φ†

B(IB) = IA.
Given a pair of random variables (X, U ), the guessing probability of U given X

is

Pguess(U |X) � max
ϕ

∑

u

ϕ(u|x)p(x, u) (56)

=
∑

x

max
u

p(u, x) , (57)



Reverse Data-Processing Theorems and Computational Second Laws 155

where the optimization is done over all channels (decoding strategies) ϕ : X → U .
In other words, it is the probability of correctly guessing U using the ideal observer
decoding strategy on X .

The quantum analogue of this is the problem of correctly guessing U given an
ensemble of quantum states {p(u); ρu

A} . In this case, the role of datum X is played
by the quantum system A and the guessing probability is

Pguess(U |A) � max
P

∑

u

Tr
[
Pu

A ρu
A

]
, (58)

where the optimization is done over all POVMs {Pu
A : u ∈ U }. Notice that in this

paper we only consider the case of guessing a classical random variable given a
quantum system, so in the expression Pguess(U |A) the roles of U (random variable)
and A (quantum system) should always be clearly understandable from the context.

Entropies

The letter H is used to denote the entropy. More precisely, in the case of classical
random variables H(X) � −∑

x p(x) log2 p(x); in the case of a quantum state ρA,
H(A) � −∑

i λi log2 λi , where the λ’s are the eigenvalues of ρA. Following com-
mon terminology, the entropy of a classical variable is called the Shannon entropy,
while the entropy of a state is called the von Neumann entropy.

Given a pair of random variables (X, Y ), the conditional entropy is H(X |Y ) =
H(XY ) − H(Y ) and the mutual information is I (X; Y ) = H(X) + H(Y ) −
H(XY ) = H(X) − H(X |Y ). Given a bipartite state ρAB ∈ D(HA ⊗ HB), all the
definitions are extended by analogy, for example, H(A|B) = H(AB) − H(B),
where H(AB) is the von Neumann entropy of ρAB and H(B) is the von Neumann
entropy of the reduced state ρB = TrA[ρAB].

von Neumann and Shannon entropies are not the only entropies that are relevant
in information theory. Lately, in particular, alternative entropies have been found to
play a central role in various information-theoretic scenarios. Such entropies, whose
classification is beyond the scope of this work, include for example Rényi entropies
and, in particular, min- andmax-entropies, see, e.g., Ref. [32]. The one that is relevant
for this work is the so-called conditional min-entropy which is given by

Hmin(U |X) = − log2 Pguess(U |X) (59)

in the case of two classical random variables, and

Hmin(U |A) = − log2 Pguess(U |A) (60)

in the case of an ensembles of quantum states. In fact, Hmin(U |A) is the conditional
min-entropy of the classical-quantum state ρX A defined in Eq. (54).
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Appendix 2: The Minimax Theorem

Here we state a form of the Minimax Theorem as needed in the proof of Theorem 1,
see, e.g., Lemma 4.13 in Ref. [21]:

Theorem 4 Let S ⊂ R
s be a closed convex set and L ⊂ R

d be a polytope. If
f : S × L → R is continuous and satisfies

f [αy1 + (1 − α)y2, z] = α f (y1, z) + (1 − α) f (y2, z) (61)

f [y, αz1 + (1 − α)z2] = α f (y, z1) + (1 − α) f (y, z2) , (62)

for all α ∈ [0, 1], y, y1, y2 ∈ S , and z, z1, z2 ∈ L , then

max
z∈L

min
y∈S

f (y, z) = min
y∈S

max
z∈L

f (y, z) . (63)

In proving Theorem 1 we specialize the above statement to the case in which S is
the set of classical channels ϕ : Y → Z (indeed convex and closed) and L is the
set of joint probability distributions on X × Z (indeed a polytope). Last thing to
check is that conditions (61) and (62) hold: this is a consequence of the fact that the
function in the case considered is actually linear in both its variables.

Appendix 3: The Separation Theorem

Here we give an elementary geometrical proof of the Hahn-Banach separation theo-
rem in its simplest case, i.e. where the sets considered are closed and bounded. For
a more general treatment the interested reader may refer to, e.g., Ref. [33].

Theorem 5 Let C ∈ R
n be a closed and bounded convex set, and let y ∈ R

n be a
vector that does not belong to C, i.e. y /∈ C. Then, there exists a vector k ∈ R

n and a
constant α ∈ R such that k · x < α < k · y, for all x ∈ C. We say that the hyperplane
L := {z ∈ R

n : z · k = α} separates C and y strictly.

Proof Let x0 ∈ C be a point such that

||x0 − y|| = min
x∈C

||x − y|| > 0. (64)

Its existence is guaranteed by the Weierstrass’ extreme value theorem. The strict
inequality comes from the fact that y /∈ C , by assumption.

Let us now define
k := y − x0 (65)

and
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α := 1

2
(k · x0 + k · y) = 1

2
(y · y − x0 · x0). (66)

We note now that

k · y = (y − x0) · y

= 1

2
{(y − x0) · y + (y − x0) · y}

= 1

2
{(y − x0) · (y − x0 + x0) + (y − x0) · y}

= 1

2
{(y − x0)x0 + (y − x0) · y} + 1

2
(y − x0) · (y − x0)

> α,

(67)

and that

k · x0 = (y − x0) · x0

= 1

2
{(y − x0) · x0 + (y − x0) · x0}

= 1

2
{(y − x0) · (x0 + y − y) + (y − x0) · x0}

= 1

2
{(y − x0)x0 + (y − x0) · y} + 1

2
(y − x0) · (x0 − y)

= 1

2
{(y − x0)x0 + (y − x0) · y} − 1

2
(y − x0) · (y − x0)

< α,

(68)

Now, let us consider any x ∈ C . By convexity, (1 − p)x0 + px ∈ C , for any
p ∈ [0, 1]. Then, we have that

||x0 − y||2 = min
x∈C

||x − y||2

≤ ||(1 − p)x0 + px − y||2
= ||(1 − p)(x0 − y) + p(x − y)||2
= (1 − p)2 ||x0 − y||2 + 2p(1 − p)(x0 − y) · (x − y) + p2 ||x − y||2 ,

(69)
where we used the formula ||w0 + w1||2 = ||w0||2 + ||w1||2 + 2w0 · w1, valid for all
w0, w1 ∈ R

n . Therefore,

0 ≤ p(p − 2) ||x0 − y||2 + 2p(1 − p)(x0 − y) · (x − y) + p2 ||x − y||2 . (70)

Let us now consider the case p �= 0. Then,

0 ≤ (p − 2) ||x0 − y||2 + 2(1 − p)(x0 − y) · (x − y) + p ||x − y||2 , (71)
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and, taking the limit for p → 0, we finally obtain

0 ≤ −2 ||x0 − y||2 + 2(x0 − y) · (x − y)

≤ 2 {(x0 − y) · (x − y) − (x0 − y) · (x0 − y)}
= 2 {(x0 − y) · x − (x0 − y) · x0}
= 2 {−k · x + k · x0} ,

(72)

which implies that k · x ≤ k · x0 < α < k · y, for any x ∈ C , as claimed. �

For our purpose the following reformulation of Theorem 5 is particularly useful:

Corollary 2 Let C1 and C2 be two closed and bounded convex sets in R
n. Then,

C1 ⊇ C2 if and only, for every vector k ∈ R
n,

max
x∈C1

k · x ≥ max
y∈C2

k · y. (73)
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