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Abstract Einstein introduced the locality principle which states that all physical
effect in some finite space-time region does not influence its space-like separated
finite region. Recently, in algebraic quantum field theory, Rédei captured the idea
of the locality principle by the notion of operational separability. The operation
in operational separability is performed in some finite space-time region, and leaves
unchanged the state in its space-like separatedfinite space-time region. This operation
is defined with a completely positive map. In the present paper, we justify using a
completely positive map as a local operation in algebraic quantum field theory, and
show that this local operation can be approximately written with Kraus operators
under the funnel property.
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1 Introduction

Einstein [3] introduced the separability principle and the locality principle to show
incompleteness of quantum mechanics. The separability principle says that ‘any two
spatially separated systems possess their own separate real states’ [7, p. 173]. Einstein
writes:

[I]t is characteristic of these physical things that they are conceived of as being arranged in
a space-time continuum. Further, it appears to be essential for this arrangement of the things
introduced in physics that, at a specific time, these things claim an existence independent of
one another, insofar as the these things ‘lie in different parts of space’. ([3, p. 321]; Howard’s
translation [7, p. 187])
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Einstein introduced the locality principle in addition to the separability principle.
Einstein writes:

For the relative independence of spatially distant things (A and B), this idea is characteristic:
an external influence on A has no immediate effect on B; this is known as the ‘principle of
local action’, which is applied consistently only in field theory. The complete suspension
of this basic principle would make impossible the idea of the existence of (quasi-) closed
systems and, thereby, the establishment of empirically testable laws in the sense familiar to
us. ([3, p. 322]; Howard’s translation [7, p. 188])

This principle states that any physical effect in some finite space-time region does
not influence its space-like separated finite region. Einstein [3] argued for the incom-
pleteness of quantum mechanics under the locality principle and the separability
principle.

According to Howard [7], the Bell inequality is a consequence of the separability
and locality principle. Since the Bell inequality does not hold in algebraic quantum
field theory and in quantum mechanics [5, 9, 11, 23–26], we must give up either
separability or locality. Howard [7] argued that the separability principle must be
abandoned, and that the locality principle holds in quantum theory. In the present
paper we concentrate on the locality principle because it can be compatible with the
violation of Bell inequalities.

Recently, in algebraic quantumfield theory, Rédei [15, 17] captured the idea of the
locality principle by the notion of operational separability (Definition 6), which had
been introduced by Rédei and Valente [19]. The reason why he adopts the formalism
of algebraic quantum field theory is that Einstein [3] says that physical things are
conceived of as being arranged in a space-time continuum, and that observables in
algebraic quantum field theory are ‘explicitly regarded as localized in regions of the
space-time continuum’ [15, p. 1045].

The operation in operational separability is performed in some finite space-time
region, and leaves unchanged the state in its space-like separated finite region. It
is defined with a completely positive map. Valente [28] called such an operation a
relatively local operation (Definition 7). On the other hand, there is another local
operation. It is called an absolutely local operation, which is written with some
operators in a local algebra which is associated with some open bounded region
(Definition 7). This operation in some finite space-time region has no effects on the
entire causal complement of this region. A difference between these two types of
operations is that a relatively local operation is not necessarily written in terms of
local operators while an absolutely local operation is given by local operators by
definition. Valente [28] argued that the concept of absolutely local operation is too
strong to express Einstein’s locality principle because this principle simply demands
that an operation performed in a system A leaves unchanged the state of another
space-like separated system B.

There are two tasks here. One is to justify using a completely positive map as a
local operation in algebraic quantum field theory. Another is to clarify the relation
between these local operations. In the present paper, we show that a local operation
in algebraic quantum field theory should be a completely positive map, and that a
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relatively local operation can be approximately written with some operators as well
as an absolutely local operation.

The structure of the paper is as follows. We begin in Sect. 2 by reviewing the for-
malism of algebraic quantum field theory and notions of independence. In Sect. 3 we
examine a definition of an operation. Usually a completely positive map is regarded
as an operation. Although this assumption is natural in the case of nonrelativistic
quantum mechanics, it is not transparent in the case of algebraic quantum field the-
ory.Wewill justify using a completely positive map as a local operation in the case of
algebraic quantum field theory (Theorem 1). We conclude, in Sect. 4, by examining
a similarity between an absolutely local operation and a relatively local operation.
An absolutely local operation is written with some operators. This representation is
called the Kraus representation. On the other hand, a relatively local operation does
not necessarily admit such a representation. By establishing a slightly generalized
Kraus representation theorem (Theorem 4), it is shown that a relatively local oper-
ation can be approximately written with Kraus operators under the funnel property
(Corollary 1).

2 Algebraic Quantum Field Theory

Algebraic quantum field theory exists in two versions: the Haag-Araki theory which
uses von Neumann algebras on a Hilbert space, and the Haag-Kastler theory which
uses abstract C*-algebras. Here we adopt the Haag-Araki theory. In this theory, each
bounded open region O in the Minkowski space is associated with a von Neumann
algebra N(O) on a Hilbert space H . Such a von Neumann algebra is called a local
algebra.

In the present paper we use the following notation. For a subspaceK of a Hilbert
space H , {K }− stands for the closure of K . B(H ) is the set of all bounded
operators on a Hilbert spaceH . I stands for an identity operator on a Hilbert space.
For a von Neumann algebraN on a Hilbert spaceH ,N′ stands for the commutant of
N in B(H ). For von Neumann algebrasN1 andN2 on a Hilbert spaceH ,N1 ∨ N2

stands for the von Neumann algebra generated by N1 and N2.
For an open bounded region O in the Minkowski space, O ′ stands for the causal

complement of O and Ō the closure of O . A double cone in Minkowski space is the
intersection of the causal future of a point x with the causal past of a point y to the
future of x . Two double cones O1, O2 are said to be strictly space-like separated if
there is a neighborhoodN of zero such thatO1 + x is space-like separated fromO2

for all x ∈ N .
In the present paper, we assume the following axioms.

Definition 1 (Microcausality) [1, p. 10] Let O1 and O2 be bounded open regions
in the Minkowski space. If O1 ⊆ O ′

2, thenN(O1) ⊆ N(O2)
′. This property is called

microcausality.
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Definition 2 (The funnel property) [21, Definition 6.14] For any pair (O, Õ) of
double cones in the Minkowski space such that the closure of Ō ⊂ Õ , there exists
a type I factor N such that N(O) ⊂ N ⊂ N(Õ). This property is called the funnel
property.

The following property is derived from usual axioms of algebraic quantum field
theory [1, Corollary 1.5.6].

Definition 3 Let O be a bounded open region in the Minkowski space. N(O) is
properly infinite.

Although there are some different notions of independence [6, 21], we use only
two notions.

Definition 4 Let N1 and N2 be von Neumann algebras on a Hilbert space H .

• N1 andN2 are called Schlieder independent if A1A2 �= 0 whenever 0 �= A1 ∈ N1

and 0 �= A2 ∈ N2.
• N1 andN2 are called split if there exists a type I factorN such thatN1 ⊂ N ⊂ N′

2.

If two double cones O1 and O2 are strictly space-like separated, then N(O1) and
N(O2) are split by Axioms Definitions 1 and 2. The following lemma shows that the
split property is stronger than the Schlieder property.

Lemma 1 ([8, Theorem 5.5.4]) Let N be a factor on a Hilbert space H . Then
AA′ �= 0 for any nonzero operators A ∈ N and A′ ∈ N′.

Lemma 1 shows that von Neumann algebras N1 and N2 are Schlieder indepen-
dent if they are split. The following proposition is a characterization of Schlieder
independence.

Proposition 1 ([4, Theorem 1 and Proposition 2] [6, Theorem 11.2.5 and Theorem
11.2.17]) LetA1 andA2 be mutually commuting C*-subalgebras of a C*-algebraA.
The following conditions are equivalent.

1. A1 and A2 are Schlieder independent.
2. ‖A1A2‖ = ‖A1‖‖A2‖ for any A1 ∈ A1 and A2 ∈ A2.

3 Completely Positive Maps

In this section, we examine the reason why local operations are assumed to be com-
pletely positive in algebraic quantum field theory.

Definition 5 Let N be a von Neumann algebra and let T be a linear map of N.

• T is called positive if A ≥ 0 entails T (A) ≥ 0.
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• Let [A jk] be n × n-matrix with entries A jk in N. T is called completely positive
if [A jk] ≥ 0 entails [T (A jk)] ≥ 0 for any n ∈ N.

It is natural to assume that an operation is a positive map because the proba-
bility after the process represented by the map T must be positive. Moreover, if
we introduce an environmental system which is represented by a set Mn(C) of all
n × n matrices with complex entries, then (T ⊗ Id)(A) must be also positive for
any positive operator A on B(H ) ⊗ Mn(C), where Id denotes the identity map on
Mn(C). This is equivalent to the condition that T is completely positive. Therefore
it is reasonable to assume that an operation is completely positive in the case of
nonrelativistic quantum mechanics.

A completely positive map plays an important role in quantum measurements
[13, 14]. It is also used as a local operation in algebraic quantum field theory [12,
15, 16, 18, 19, 28]. For example, a new concept of local states is defined in terms
of a completely positive map [12]. But it is not transparent to use a completely
positive map as an operation in algebraic quantum field theory because any local
algebrawhich is associatedwith two space-like separated regions is not isomorphic to
B(H ) ⊗ Mn(C). Therefore, we examine how we can justify it in algebraic quantum
field theory in Theorem 1.

We introduce a positive map T of N1 such that it has an extension to N1 ∨ N2

which is the identity map onN2 to capture an idea that this operation is performed in
the systemN1 and it does not influence the systemN2. To examine such an operation,
we use the following lemma.

Lemma 2 ([29, Lemma] [21, Lemma 3.12]) LetN1 andN2 be mutually commuting
von Neumann algebras on a Hilbert space H , and let T ′ be a positive map of
N1 ∨ N2 such that T ′(A2) = A2 for all A2 ∈ N2. Then T ′(A1A2) = T ′(A1)A2 for
any A1 ∈ N1 and A2 ∈ N2.

By using this lemma, we can show the following fact.

Theorem 1 Let N1 and N2 be mutually commuting von Neumann algebras which
are Schlieder independent, let N2 have either type I I1 direct summand or properly
infinite one, and let T be a positive map of N1. If there is a positive map T ′ of
N1 ∨ N2 such that

T ′(A1) = T (A1), T ′(A2) = A2

for any A1 ∈ N1 and A2 ∈ N2, then T is completely positive.

Proof Since N2 has have either type I I1 direct summand or properly infinite one,
for any natural number n ∈ N, there is a set {E1, . . . , En} of mutually orthogonal
and equivalent projections in N2 [27, Proposition V.1.35 and Proposition V.1.36].
Thus there is a set {V1, . . . , Vn} of partial isometries inN2 such that V ∗

i Vi = E1 and
ViV ∗

i = Ei for any i ∈ {1, . . . , n}.
Let E jk := VjV ∗

k , let Mn(N1) be the set of all n × n-matrices [A jk] with entries
A jk in N1, and let
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C :=
{ n∑

j,k=1

C jk E jk

∣∣∣C jk ∈ N1, 1 ≤ j, k ≤ n

}
.

C is a linear subspace ofN1 ∨ N2, and is self-adjoint because (C jk E jk)
∗ = E∗

jkC
∗
jk =

C∗
jk Ek j ∈ C for any C jk ∈ N1. Furthermore, if C jk,Clm ∈ N1, then (C jk E jk)

(ClmElm) = δklC jkClm E jm ∈ C, where δkl equals 1 if k = l, and 0 if k �= l. By
linearity C is closed under multiplication. Hence C is a *-subalgebra of N1 ∨ N2.

Let Mn(N1) be the set of all n × n-matrices [Ai j ] with entries Ai j in N1, and let
α be a map of Mn(N1) to C such that

α
([A jk]

) :=
n∑

j,k=1

A jk E jk (1)

for any [A jk] ∈ Mn(N1). Clearly α is surjective. Given S(s) and S(t) in C, say

S(s) =
n∑

j,k=1

A(s)
jk E jk, S(t) =

n∑
j,k=1

A(t)
jk E jk,

we have
α([A(s)

jk ]∗) = α([A(s)
jk ])∗, (2)

α([A(s)
jk ][A(t)

lm]) = α([A(s)
jk ])α([A(t)

lm]), (3)

‖A(s)
jk − A(t)

jk‖ = ‖A(s)
jk − A(t)

jk‖‖E jk‖
= ‖(A(s)

jk − A(t)
jk )E jk‖

= ‖E j j (S
(s) − S(t))Ekk‖

≤ ‖S(s) − S(t)‖

(4)

because ‖E jk‖2 = ‖E∗
jk E jk‖ = ‖VkV ∗

j Vj V ∗
k ‖ = ‖Ek‖ = 1 and ‖A(s)

jk − A(t)
jk

‖‖E jk‖ = ‖(A(s)
jk − A(t)

jk )E jk‖byProposition1.Thusα is a faithful *-homomorphism
of Mn(N1) to C, which entails that C is a C*-algebra [27, p. 192].

Let T be a positive map of N1, let T ′ be a positive map of N1 ∨ N2 such
that T ′(A1) = T (A1) and T ′(A2) = A2 for any A1 ∈ N1 and A2 ∈ N2, and let
[A jk] be a positive operator in Mn(N1). Then there is [Bjk] ∈ Mn(N1) such
that [A jk] = [Bjk]∗[Bjk], so that

∑n
j,k=1 A jk E jk = α

([A jk]
) = α

([Bjk]∗[Bjk]
) =

α
([Bjk]

)∗
α

([Bjk]
) ≥ 0 by Equations (2) and (3). Since T ′ is positive onN1 ∨ N2,

T ′(
∑n

j,k=1 A jk E jk) ≥ 0. By Lemma 2,
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n∑
j,k=1

T (A jk)E jk =
n∑

j,k=1

T ′(A jk)E jk =
n∑

j,k=1

T ′(A jk E jk) = T ′
⎛
⎝ n∑

j,k=1

A jk E jk

⎞
⎠ ≥ 0.

(5)

SinceC is a C*-algebra, there is an operator D ∈ C such that
∑n

j,k=1 T (A jk)E jk =
D∗D [8, Theorem 4.2.6]. Therefore

[T (A jk)] = α−1

⎛
⎝ n∑

j,k=1

T (A jk)E jk

⎞
⎠ = α−1(D∗D) = α−1(D)∗α−1(D) ≥ 0. (6)

Because n is an arbitrary natural number, T is completely positive onN1. 
�
Let O1 and O2 be double cones such that O1 ⊂ O ′

2 and let T be a positive map
of N(O1). When T has an extension to N(O1) ∨ N(O2) which is the identity map
on N(O2), T can be regarded as an operation performed in O1 which does not
influence a state in O2. Since N(O1) and N(O2) are split by Definitions 1 and 2,
they are Schlieder independent by Lemma 1. By Definition 3, any local algebra is
properly infinite. Thus, Theorem 1 entails that T is completely positive. Therefore
it is reasonable to assume that a local operation performed in some region which
does not influence its space-like separated region is completely positive in algebraic
quantum field theory.

4 Relatively Local Operations

Rédei and Valente [19] introduced the notion of operational W*-separability to cap-
ture the idea that a causally well behaved operation exists.

Definition 6 (Operational W*-separability) [19, Definition 6] Let N1 and N2 be
von Neumann subalgebras of a von Neumann algebra N. N1 and N2 are called
operationally W*-separable inN if the following two conditions are true:

1. If T is a normal completely positive map of N such that T (A1) ∈ N1 for any
A1 ∈ N1, there exists a normal completely positive map T ′ such that T ′(A1) =
T (A1) and T ′(A2) = A2 for any A1 ∈ N1 and A2 ∈ N2.

2. If T is a normal completely positive map of N such that T (A2) ∈ N2 for any
A2 ∈ N2, there exists a normal completely positive map T ′ such that T ′(A2) =
T (A2) and T ′(A1) = A1 for any A2 ∈ N2 and A1 ∈ N1.

The normal completely positivemap T ′ in Definition 6 is performed in some finite
space-time region, and leaves unchanged the state in its space-like separated finite
region. Thus, this definition requires that there exists such a causally well behaved
operation. The following proposition shows that operational W*-separability holds
in algebraic quantum field theory.
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Proposition 2 ([16, Proposition 2]; [18, Section5]; [22, Theorem 5.2]) Let assume
microcausality (Definition 1) and the funnel property (Definition 2), letO1 andO2 be
strictly space-like separated double cones. ThenN(O1) andN(O2) are operationally
W*-separable in N(O1) ∨ N(O2).

In this section, we examine the normal completely positive map T ′ in Definition
6. Valente [28] called it a relatively local operation. There is another local operation.
It is called an absolutely local operation. Thus there are two types of local operations.

Definition 7 ([28, Section3]) LetN1 andN2 be mutually commuting von Neumann
algebras on a Hilbert space H .

• A normal completely positive map T of B(H ) is called an absolutely local oper-
ation in N1 if there are operators Ki in N1 such that

T (A) =
∑
j∈J

K ∗
j AK j , T (I ) = I

for any A ∈ B(H ).
• A normal completely positive map T ofN1 ∨ N2 is called a relatively local oper-
ation in N1 with respect to N2 if T (A1) ∈ N1 and T (A2) = A2 for any A1 ∈ N1

and A2 ∈ N2.

An absolutely local operation T in Definition 7 does not influence the systemN′
1

which includesN2 while a relatively local operation inDefinition 7 does not influence
only the system N2. In the case of algebraic quantum field theory, an absolutely
local operation in some region has no effect on the entire causal complement of this
region. Although Clifton andHalvorson [2] discussed local disentanglement in terms
of absolutely local operations, Valente [28] argued that an absolutely local operation
is too strong because Einstein’s locality principle simply demands that an operation
performed in a system A leaves unchanged the state of another space-like separated
system B.

There are two classical theorems characterizing a completely positive map. One
is Stinespring representation theorem, and another Kraus representation theorem.

Theorem 2 (Stinespring representation theorem) [20] LetA be a unital C*-algebra,
let H be a Hilbert space, and let T be a completely positive map from A to
B(H ). Then there exists a Hilbert space K , a representation π : A → B(K ),
and a bounded operator W : H → K such that

T (A) = W ∗π(A)W

for any A ∈ A.

Kraus representation theorem follows Stinespring representation theorem.
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Theorem 3 (Kraus representation theorem) [10] LetH be a Hilbert space and let
T be a normal completely positive map of B(H ) such that 0 < T (I ) ≤ I . Then
there are bounded operators K j in B(H ) such that

T (A) =
∑
j∈J

K ∗
j AK j , 0 <

∑
j∈J

K ∗
j K j ≤ I

for any A ∈ B(H ).

The operators Ki in Theorem 3 are called Kraus operators. If a normal completely
positivemap is defined on a proper subalgebra ofB(H ), it does not necessarily admit
a decomposition with Kraus operators.

Here we examine a normal completely positive map T from a type I factorN on
a Hilbert space H to B(H ). Note that if T (A) ∈ N for any A ∈ N, we can apply
Kraus representation theorem because there is a Hilbert space K such that N is
isomorphic toB(K ). However, T (N) is not necessarily included inN, so we cannot
use the original Kraus representation theorem. Yet, we show below (Theorem 4) that
a representation theorem similar to Kraus representation theorem holds if the von
Neumann algebra N is a type I factor.

Theorem 4 Let N be a type I factor on a Hilbert space H , and let T be a normal
completely positive map of N to B(H ) such that 0 < T (I ) ≤ I . Then there are
bounded operators K j in B(H ) such that

T (A) =
∑
j∈J

K ∗
j AK j , 0 <

∑
j∈J

K ∗
j K j ≤ I

for any A ∈ N.

Proof By Theorem 2, there is a representation π of N on a Hilbert space K and
a bounded operator W : H → K such that T (A) = W ∗π(A)W for any A ∈ N.
Since T is normal, so is π . Since π(I ) > 0 and N is a type I factor, there exists
a minimal projection P0 ∈ N such that π(P0) �= 0. Let x0 ∈ H be a unit vector
such that P0x0 = x0, let y0 ∈ K be a unit vector such that π(P0)y0 = y0, and let E0

and Q0 be projections whose ranges are {π(N)y0}− and {Nx0}−, respectively. Then
E0 ∈ π(N)′. For any A ∈ N, P0AP0 = 〈x0, Ax0〉P0 since P0 is aminimal projection.
Thus 〈y0, π(A)y0〉 = 〈y0, π(P0AP0)y0〉 = 〈x0, Ax0〉 for any A ∈ N. Therefore there
exists a unitary operatorU0 from {π(N)y0}− to {Nx0}− such that π(A)E0 = U ∗

0 AU0

for any A ∈ N by [8, Proposition 4.5.3]. Let V0 := Q0U0E0. Then V0 is an isometry
fromK toH such that π(A)E0 = V ∗

0 AV0 for any A ∈ N.
By Zorn’s lemma, it can be shown that there are a maximal family {E j ∈

π(N)′| j ∈ J } of mutually orthogonal projections in π(N)′ and a family {Vj | j ∈ J }
of isometries fromK toH such that the range of E j is {π(N)y j }− for some unit vec-
tor y j ∈ K , and π(A)E j = V ∗

j AVj for any A ∈ N. Suppose that
∑

j∈J E j < I . Let
F0 := I − ∑

j∈J E j . Then there is a unit vector y′ ∈ F0K . Since π(I )y′ = y′ �= 0



92 Y. Kitajima

andN is a type I factor, there is a minimal projection P0 ∈ N such that π(P0)y′ �= 0.
Thus π(P0)F0 �= 0. Let x0 be a unit vector such that P0x0 = x0, let y0 be a unit vec-
tor such thatπ(P0)F0y0 = y0, and let E0 be a projectionwhose range is {π(N)y0}−.
Then E0 ∈ π(N)′. Since π(P0)y0 = y0 and F0y0 = y0,

〈π(A)y j , π(B)y0〉 = 〈π(B∗A)y j , y
0〉 = 〈E jπ(B∗A)y j , F

0y0〉 = 0, (7)

and
〈y0, π(A)y0〉 = 〈y0, π(P0AP0)y0〉 = 〈x0, Ax0〉 (8)

for any j ∈ J and A, B ∈ N. Therefore E j E0 = 0 for any j ∈ J , and there exists
an isometry V 0 from K to H such that π(A)E0 = V 0∗AV 0 for any A ∈ N. This
contradicts the maximality of {E j | j ∈ J }. Therefore, ∑ j∈J E j = I .

Let K j := VjW for any j ∈ J . Then

T (A) = W ∗π(A)W =
∑
j∈J

W ∗π(A)E jW =
∑
j∈J

W ∗V ∗
j AVjW =

∑
j∈J

K ∗
j AK j (9)

for any A ∈ N. Since 0 < T (I ) ≤ I and T (I ) = ∑
j∈J K

∗
j K j , 0 <

∑
j∈J K

∗
j K j ≤

I . 
�
Under the funnel property (Definition 2), type I factors existwhich are interpolated

between local algebras of regions strictly contained in each other. By using Theorem
4, we show that a relatively local operation can be approximately written with Kraus
operators in algebraic quantum field theory.

Corollary 1 Let’s assume microcausality (Definition 1) and the funnel property
(Definition 2), let Õ1 and Õ2 be double cones such that Õ1 ⊂ Õ ′

2, and let T be a
relatively local operation inN(Õ1) with respect toN(Õ2). For any double cones O1

andO2 such that Ō1 ⊂ Õ1 and Ō2 ⊂ Õ2, there are bounded operators K j inN(O2)
′

such that
T (A) =

∑
j∈J

K ∗
j AK j ,

∑
j∈J

K ∗
j K j = I

for any A ∈ N(O1) ∨ N(O2).

Proof Let O1 and O2 be double cones such that Ō1 ⊂ Õ1 and Ō2 ⊂ Õ2. By Axiom
2, there are type I factorsN1 andN2 such thatN(O1) ⊂ N1 ⊂ N(Õ1) andN(O2) ⊂
N2 ⊂ N(Õ2). ThenN(O1) ∨ N(O2) ⊂ N1 ∨ N2 ⊂ N(Õ1) ∨ N(Õ2), andN1 ∨ N2

is a type I factor. By Theorem 4, there exists a set {K j | j ∈ J } of operators in B(H )

such that
T (A) =

∑
j∈J

K ∗
j AK j

for any A ∈ N1 ∨ N2. T (I ) = I entails
∑

j∈J K
∗
j K j = I .
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Since T (A2) = A2 for any A2 ∈ N(O2) and T (I ) = I ,
∑

j∈J [K j ,

A2]∗[K j , A2] = 0 [2, p. 13]. Thus K j ∈ N(O2)
′ for any j ∈ J . 
�

In Corollary 1, double conesO1 andO2 can approximate Õ1 and Õ2, respectively,
as closely as possible. So we can say that T can be approximately written with
operators inN(O2)

′.

5 Conclusion

Einstein [3] introduced the locality principle which states that physical effects in
some finite space-time region do not influence its space-like separated finite region.
In algebraic quantum field theory, Rédei [15] captured the idea of the locality prin-
ciple by the notion of operational W*-separability (Definition 6), which had been
introduced by Rédei and Valente [19]. Valente [28] called such an operation a rela-
tively local operation to distinguish it from an absolutely local operation which can
be written with Kraus operators (Definition 7).

In the present paper, we examined two questions;

• Can we justify using a completely positive map as a local operation in algebraic
quantum field theory?

• Can we write a relatively local operation with some operators?

Roughly speaking, complete positiveness of an operation T in a system A is
equivalent to the condition that T performed in the system A does not influence a
space-like separated system B which is represented by a set Mn(C) of all n × n
matrices with complex entries in the case of nonrelativistic quantum mechanics. But
it is not obvious why a completely positive map is used as an operation in the case of
algebraic quantumfield theory because any local algebrawhich is associatedwith two
space-like separated regions is not isomorphic toB(H ) ⊗ Mn(C). In Theorem 1, we
showed that an operation is completely positive in algebraic quantum field theory if
it is performed in some region and does not influence its space-like separated region.
Thus, it is reasonable to assume that a local operation is completely positive.

Valente [28] distinguished between absolutely local operations and relatively local
operations. A difference between these operations is that a relatively local operation
is not necessarily written with Kraus operators while an absolutely local operation
is written with Kraus operators by definition (Definition 7). In the present paper, by
generalizing slightly Kraus representation theorem (Theorem 4), it was shown that a
relatively local operation can be approximately written with Kraus operators under
the funnel property (Corollary 1).
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