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Abstract With each orthomodular lattice L we associate a spectral presheaf Σ L ,
generalising the Stone space of a Boolean algebra, and show that (a) the assignment
L �→ Σ L is contravariantly functorial, (b) Σ L is a complete invariant of L , and (c)
for complete orthomodular lattices there is a generalisation of Stone representation
in the sense that L is mapped into the clopen subobjects of the spectral presheaf Σ L .
The clopen subobjects form a complete bi-Heyting algebra, and by taking suitable
equivalence classes of clopen subobjects, one can regain a complete orthomodular
lattice isomorphic to L . We interpret our results in the light of quantum logic and in
the light of the topos approach to quantum theory.

Keywords Orthomodular lattice · Stone space · Stone duality · Invariant ·
Spectrum · Functor · Bi-Heyting algebra

1 Introduction

Classical dualities and the lack of dualities for nondistributive/ noncommutative
algebras. Stone duality [1] is one of the classical dualities. It relates a kind of
algebras (Boolean algebras) to a kind of topological spaces (Stone spaces). There
are many variants and generalisations of Stone duality [2], which are all similar in
spirit. Another important classical duality is Gelfand duality, relating C∗-algebras
and locally compact Hausdorff spaces. (Again, there are a number of variants.) The
classical dualities always have on one side some kind of distributive or commutative
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algebras, organised into a category, and on the other side a corresponding kind of
topological spaces, forming another category, related by a dual equivalence.

Yet, in quantum theory and in a vast number of mathematical situations, non-
distributive and noncommutative algebras are of interest. For these, there mostly are
no general functorial correspondences or dualities with suitable (generalised) spaces
known. In fact, much of the difficulty consists in determining what kind of dual
spaceswould be suitable. These generalised spaceswould have to be noncommutative
spaces, in a sense to be made precise. Of course, the vast field of noncommutative
geometry has as one of its starting points the assumption that there should be spaces
corresponding to noncommutative algebras, and that there is much to be gained
from using geometric methods when dealing with noncommutative algebras. This is
doubtlessly true and has led to many deep and beautiful results, but since concrete
noncommutative spaces are often lacking, noncommutative geometry is mostly done
as algebra and only implicitly deals with spaces and geometric objects.

The spectral presheaf of an orthomodular lattice as a dual space. In this article,
we will go another route: we will provide a new, concrete kind of dual space for any
orthomodular lattice L . Here, orthomodular lattices (OMLs) are seen as a natural,
generally nondistributive generalisation of Boolean algebras.

The dual space that we will assign to an OMLwill be a presheaf, whichmeans it is
not a single set (equippedwith a topology), but a ‘diagram’ of sets (in fact, topological
spaces), canonically linked together by continuous functions. More specifically, the
spectral presheaf Σ L of an orthomodular lattice L consists of the Stone spaces of all
the Boolean subalgebras of L , organised into a presheaf over the partially ordered set
of these Boolean subalgebras. This seemingly simple-minded construction raises the
question whether one does not lose too much information: is it possible to encode
an orthomodular lattice, as a nondistributive structure, by considering the (Stone
spaces of) its Boolean, distributive parts only? Maybe surprisingly, the answer is
in the affirmative. One of our main results shows that two orthomodular lattices
L and M are isomorphic if and only if their spectral presheaves Σ L and ΣM are
isomorphic (Theorem 3.18). In order to show this, we first have to develop the
necessary categorical background in some detail, including the notion of morphisms
between presheaves over different base categories, and a dual notion of copresheaves
and their morphisms. Among other things, we show that the assignment L → Σ L is
contravariantly functorial.

We also provide a certain generalisation of Stone representation to complete ortho-
modular lattices. Recall that every Boolean algebra B is isomorphic to the concrete
Boolean algebra of clopen subsets of the Stone space ΣB of B. In a similar fashion,
every complete orthomodular lattice L can be represented within the clopen sub-
objects of its spectral presheaf Σ L . The representing map is called daseinisation.
The clopen subobjects of Σ L form a complete bi-Heyting algebra, and by using the
adjoint of daseinisation, we can form suitable equivalence classes such that the set
of equivalence classes becomes a complete OML that is canonically isomorphic to
L . This is the content of our second main result (Theorem 4.19).
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The topos approach and physical interpretation. Thiswork is of course inspired
by the so-called topos approach to quantum theory [3–8]. A spectral presheaf was
first defined by Isham, Hamilton, and Butterfield for the noncommutative von Neu-
mann algebra B(H ) of all bounded operators on a Hilbert space H [9] and was
later generalised to arbitrary von Neumann algebras [10]. In the topos approach, the
spectral presheaf plays the role of a generalised state space for a quantum system,
providing a topological-geometric perspective that is not available ordinarily. Just as
in classical physics, propositions about the values of physical quantities are repre-
sented by (clopen) sub‘sets’ of the quantum state space. This led to the development
of a new form of logic for quantum systems, based upon the internal logic of the
topos of presheaves in which the spectral presheaf lies [4, 11, 12]. In [13, 14], the
second author considered the question if the spectral presheaf determines a von Neu-
mann algebra up to isomorphism (it does not, but it determines the algebra up to
Jordan-∗-isomorphism).

Orthomodular lattices are key structures in quantum logic [15, 16], where they
represent algebras of propositions about a quantum system. The lattice operations
are interpreted logically as conjunction and disjunction, while the orthocomplement
is interpreted as negation. We provide a topological-geometric underpinning of this
kind of quantum logic by providing a concrete dual space for every orthomodular
lattice. Moreover, we represent the elements of a complete OML by clopen subsets
(technically, subobjects) of this dual space. The fact that the clopen subsets form a
complete bi-Heyting algebra and not a complete OMLmay seem to be a disadvantage
at first sight, but in fact it is a great improvement over standard quantum logic, since
many conceptual problems are avoided. For example, there is a material implication.
Moreover, one can use the adjoint of daseinisation tomap back to the complete OML.
We will briefly discuss some of the interpretational advantages of the bi-Heyting
algebra representation in Sect. 4.4.

Overview and organisation. This article is largely self-contained. Section2 pro-
vides some mathematical background on orthomodular lattices, Stone duality etc.
and some preliminary results, in particular concerning the Boolean substructure of
an orthomodular lattice. In Sect. 3, we introduce the spectral presheaf of an ortho-
modular lattice (Sect. 3.1) and considermaps between spectral presheaves (Sect. 3.2).
There is some detailed discussion of categories of presheaves over varying base cat-
egories and with values in another categoryD (Sect. 3.3), as well as of copresheaves
with values in C (Sect. 3.4). A dual equivalence between C and D lifts to a dual
equivalence between Copresh(C ) and Presh(D), and we apply this to Stone duality
in particular (Sect. 3.5). These results are then employed to show that two orthomod-
ular lattices are isomorphic if and only if their spectral presheaves are isomorphic,
and the isomorphisms can be constructed explicitly from each other (Sects. 3.6, 3.7;
Theorem 3.18).We provide some interpretation, including physical interpretation, of
this result in (Sect. 3.8) and also show the analogous result for complete orthomodular
lattices (Sect. 3.9; Theorem3.29). In Sect. 4,we are concernedwith the representation
of complete OMLs. We define clopen subobjects of the spectral presheaf (Sect. 4.1),
show that they form a complete bi-Heyting algebra Subcl Σ L (Sect. 4.2), and then
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introduce the map called daseinisation that takes elements of a complete OML L to
clopen subobjects of its spectral presheaf Σ L . We interpret this as a representation
of L within Subcl Σ L (Sect. 4.3) and give some physical interpretation in (Sect. 4.4).
The adjoint of daseinisation is introduced and some of its properties are discussed in
(Sect. 4.5). We then show that using this adjoint, one can form equivalence classes
of clopen subobjects such that the set E of equivalence classes becomes a complete
OML isomorphic to L in a natural way, which means that we have a generalisation
of Stone representation to complete orthomodular lattices (Sect. 4.6; Theorem 4.19).
Section5 concludes with a list of some open problems.

2 Background and Preliminary Results

We assume familiarity with some basics of order and lattice theory such as the defi-
nitions of partially ordered sets (posets), meets (greatest lower bounds), joins (least
upper bounds), lattices, and complete lattices [17, 18]. Additionally, some familiarity
with category theory is assumed, including the definitions (but no advanced proper-
ties) of presheaves, copresheaves, dual equivalences, and topoi; see, e.g., [19–24].

Throughout, we will denote the category of posets and monotone maps between
them asPos, the category of sets and functions between them as Set, and the category
of Boolean algebras and Boolean algebra homomorphisms as BA.

2.1 Ortholattices and Orthomodular Lattices

Our results focus on orthomodular lattices, which we now define. Good references
are [16, 25].

Definition 2.1 An orthocomplementation function on a lattice L is a map a �→ a′
for each lattice element a, satisfying

1. a′ ∨ a = 1, a′ ∧ a = 0 (Complement Law),
2. a′′ = a (Involution Law),
3. If a ≤ b, then b′ ≤ a′ (Order-Reversing).

Definition 2.2 An orthocomplemented lattice, also called an ortholattice, is a
bounded lattice with an orthocomplementation function.

Definition 2.3 An orthomodular lattice (OML) L is an ortholattice such that for
any x, y ∈ L with x ≤ y, it holds that x ∨ (x ′ ∧ y) = y. This is the orthomodularity
property.

Figure1 depicts four small ortholattices. Ortholattices (i), (iii), and (iv) have a
unique orthocomplementation function, as shown. The second has three valid ortho-
complementation functions; the orthocomplement of a could be any of b, c, or d.
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Fig. 1 Four valid ortholattices. An arrow a → b means a ≤ b

Of these ortholattices, (i), (ii), and (iv) are orthomodular lattices. In (iii), elements b′
and a satisfy b′ ≤ a, but

b′ ∨ (b ∧ a) = b′ ∨ 0 = b′ 
= a. (1)

Another example of an OML is the lattice of subspaces of any inner product
space, with the orthogonal complement operation on these subspaces as the ortho-
complementation function. The closed subspaces of a separable Hilbert space form
a complete orthomodular lattice; such lattices are at the heart of Birkhoff-von Neu-
mann style quantum logic [26], where the closed subspaces represent propositions
about the values of physical quantities of a quantum system. More generally, the
projections in any von Neumann algebra N form a complete OML P(N ).

We will refer to an orthocomplement-preserving lattice homomorphism between
two OMLs as an orthomodular lattice homomorphism. Orthomodular lattices and
orthomodular lattice homomorphisms form a category OML. It will be useful to
note that De Morgan’s laws, which are an important property of Boolean algebras,
hold in the more general case for all ortholattices (and thus all orthomodular lattices).

2.2 Distributive Substructure of an Orthomodular Lattice

We will consider Boolean sublattices of orthomodular lattices (OMLs).

Definition 2.4 A Boolean sublattice, also called a Boolean subalgebra, of an ortho-
modular lattice L is a complemented distributive sublattice with complements given
by the orthocomplementation function of L .

Lemma 2.5 Every element a of an orthomodular lattice L is in some Boolean sub-
algebra of L.

For a 
= 0, 1, one Boolean subalgebra containing a is the four-element sublattice
{0, a, a′, 1}.
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Fig. 2 Boolean sublattices
of an orthomodular lattice L
containing (i) element a, and
(ii) elements a and b with
a ≤ b
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b′

b a∨b′a′

1

a a′ ∧b

0

a′

1

(i)

a

(ii)

Proposition 2.6 Let L be an ortholattice. L is orthomodular if and only if for all
elements a, b ∈ L with a ≤ b there is a Boolean subalgebra of L containing both a
and b.

Proof The forward implication can be found in [17]; concretely, for a, b 
= 0, 1, a
Boolean sublattice of L containing a and b is displayed in Fig. 2. For the converse,
assume that for all a ≤ b in L there is some Boolean subalgebra of L containing
both a and b. Then elements a and b and their complements satisfy distributivity,
meaning

a ∨ (a′ ∧ b) = (a ∨ a′) ∧ (a ∨ b) = 1 ∧ b = b. (2)

This is the orthomodularity condition, so as it holds for all a ≤ b then L is ortho-
modular.

This is the reason we consider orthomodular lattices instead of ortholattices, as
Proposition 2.6 plays a key role in the proofs of Lemma 2.12 and Proposition 2.13
and subsequently in Theorem 3.17, which is the main result of Sect. 3.

2.2.1 The Context Category B(L)

Definition 2.7 For an orthomodular lattice L , letB(L) denote the poset of Boolean
sublattices of L , where the partial order onB(L) is given by inclusion.B(L) is also
called the context category of L .
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Seen as a category, the posetB(L) has a unique arrow from Boolean subalgebra
B ′ to Boolean subalgebra B whenever B ′ ⊆ B. This arrow will be denoted iB ′,B , and
simply indicates that B ′ ⊆ B.

Additionally,whenever B ′ ⊆ B, one candefine an inclusionmapbetweenBoolean
subalgebras incB ′,B : B ′ → B given by incB ′,B(b) = b for all b ∈ B ′. As B ′ is closed
undermeets, joins, and orthocomplements, it follows that incB ′,B is aBoolean algebra
homomorphism, that is, a morphism in category BA.

Let ϕ : L → M be an orthomodular lattice homomorphism. If B is a Boolean
subalgebra of L , then

ϕ|B : B −→ ϕ[B]

is a morphism of Boolean (sub)algebras, since the image ϕ[B] clearly is a Boolean
subalgebra of M . Hence, every morphism ϕ : L �→ M of OMLs induces a morphism
between their context categories:

ϕ̃ : B(L) −→ B(M) (3)

B �−→ ϕ[B]. (4)

If ϕ : L → M is an isomorphism of OMLs, then clearly ϕ|B : B → ϕ[B] is an
isomorphism of Boolean algebras. Summing up,

Proposition 2.8 There is a functor fromB : OML → Pos sending each orthomod-
ular lattice L to its context categoryB(L) and each homomorphism ϕ : L → M of
OMLs to the corresponding morphism ϕ̃ : B(L) → B(M).

Since functors preserve isomorphisms, we have

Lemma 2.9 If ϕ : L → M is an isomorphism of orthomodular lattices, then ϕ̃ :
B(L) → B(M) is an order isomorphism in Pos.

2.2.2 The Partial Orthomodular Lattice Lpar t

The Boolean sublattices of an OML can also be used to generate a second structure,
called the partial orthomodular lattice associated with L .

Definition 2.10 Let L be an OML. The partial orthomodular lattice L part associ-
ated with L has the same elements and orthocomplements as L , as well as lattice
operations ∨ and ∧ inherited from L but only defined for finite families of elements
(ai )i∈I in L such that there is some B ∈ B(L) that contains ai for all i ∈ I . Such
families of elements are called compatible families.

Definition 2.11 A morphism of partial orthomodular lattices is a function p :
L part → Mpart that preserves orthocomplements and existing finite meets and joins.

The following lemma depends critically on orthomodularity:
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Lemma 2.12 If a ≤ b in orthomodular lattice L and p : L part → Mpart is a partial
orthomodular lattice homomorphism, then p(a) ≤ p(b).

Proof Suppose a, b ∈ L and a ≤ b. By Proposition 2.6, there is some Boolean sub-
algebra of L that contains both a and b. Thismeans that themeet a ∧ b = a is defined
in L part , and thus is preserved by any partial orthomodular lattice homomorphism
p:

p(a) = p(a ∧ b) = p(a) ∧ p(b). (5)

From this it follows that p(a) ≤ p(b).

Partial orthomodular lattices associated with OMLs and partial orthomodular
lattice homomorphisms form a category POML. The motivation for considering
partial OMLs comes from the ‘Bohrification’ construction that can be applied to an
orthomodular lattice, as will be explained in Sect. 3; L part can be seen as a topos-
external description of the Bohrification L of L , which is an object in the topos
SetB (L) of (covariant) functors from the context category B(L) to Set.

Proposition 2.13 Let L and M be OMLs, and L part and Mpart their associated
partial OMLs. There is a bijective correspondence between isomorphisms L → M
in OML and isomorphisms L part → Mpart in POML.

Proof Let ϕ : L → M be an isomorphism in OML. As a homomorphism between
orthomodular lattices, it preserves orthocomplements and finite meets and joins. In
particular, it preserves all meets and joins that are defined in L part , meaning that it
induces a homomorphism ϕ : L part → Mpart . As ϕ : L → M is an isomorphism,
so is ϕ : L part → Mpart .

Conversely, let p : L part → Mpart be an isomorphism of partial ortholattices in
POML. Let (ai )i∈I be any finite family of elements in L; our goal is to show that

p

(∨
i∈I

ai

)
=

∨
i∈I

p(ai ), (6)

which implies that p preserves all joins, not just those joins that are defined in L part .
The same result for meets then follows by taking orthocomplements.

First, suppose that there is some Boolean subalgebra B of L such that ai ∈ B
for all i ∈ I . Thus

∨
i∈I ai is defined in L part , and as partial orthomodular lattice

isomorphism p preserves all joins that are defined in L part ,

p

(∨
i∈I

ai

)
=

∨
i∈I

p(ai ). (7)

Now, assume there is no B ∈ B(L) such that ai ∈ B for all i ∈ I . Consider the
element

∨
i∈I ai of L . Note that for each i , ai ≤ ∨

i∈I ai , meaning that by Lemma
2.12, p(ai ) ≤ p

(∨
i∈I ai

)
. As this is true for all i , it follows that
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∨
i∈I

p(ai ) ≤ p

(∨
i∈I

ai

)
. (8)

Now, let p−1 : Mpart → L part be the inverse of partial orthomodular lattice iso-
morphism p, which is also a partial orthomodular lattice isomorphism. For all i ,
p(ai ) ≤ ∨

i∈I p(ai ).Again by Lemma 2.12, p−1 preserves inequalities, so this equa-
tion becomes

ai = p−1(p(ai )) ≤ p−1

(∨
i∈I

p(ai )

)
. (9)

As this is true for all i ∈ I , it follows that

∨
i∈I

ai ≤ p−1

(∨
i∈I

p(ai )

)
. (10)

Applying p to the above equation and again invoking Lemma 2.12, this becomes

p

(∨
i∈I

ai

)
≤ p

(
p−1

(∨
i∈I

p(ai )

))
=

∨
i∈I

p(ai ) (11)

Equations8 and 11 together imply

p

(∨
i∈I

ai

)
=

∨
i∈I

p(ai ), (12)

showing that p preserves all joins in L , not only those joins which are defined in
L part .

Showing that p preserves all meets in L follows easily. Let (ai )i∈I be any family
of elements in L . Then (a′

i )i∈I is also a family of elements in L , and we know

p

(∨
i∈I

a′
i

)
=

∨
i∈I

p(a′
i ). (13)

Recall that orthocomplementation is preserved by p and satisfies De Morgan’s laws.
Then,

p

(∧
i∈I

ai

)
= p

([∨
i∈I

a′
i

]′)
=

[
p

(∨
i∈I

a′
i

)]′
=

[∨
i∈I

p(a′
i )

]′
(14)

=
∧
i∈I

[
p(a′

i )
]′ =

∧
i∈I

p(a′′
i ) =

∧
i∈I

p(ai ). (15)
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Thus, as p preserves all meets and joins in L , as well as all orthocomplements, p is
in fact an isomorphism of OMLs, p : L → M .

As p : L part → Mpart and p : L → M are the same on every element of L , and
ϕ : L → M and the induced ϕ : L part → Mpart are the same on every element of
L , then there is a bijective correspondence between isomorphisms ϕ : L → M and
isomorphisms p : L part → Mpart .

Note it is in the construction of an isomorphism of OMLs from an isomorphism
of partial OMLs that the orthomodularity condition (in the form of Lemma 2.12) is
essential. This result does not hold for arbitrary ortholattices, and is the reason we
consider orthomodular lattices instead.

2.2.3 Example

We now consider a small OML L∗, and examine B(L∗) and L∗
part . Let L

∗ be as
in Fig. 3. Consider the Boolean sublattices of L∗. The two-element Boolean lattice
B0 = {0, 1} is a sublattice of L∗. The four element Boolean lattice (Fig. 1i) appears
as a sublattice of L five times, as Ba , Bb, Bc, Bd , and Be. The eight element Boolean
lattice (Fig. 1iv) appears twice, as Ba,b,c and Bc,d,e. This yields the context category
shown in Fig. 3.

The partial orthomodular lattice L∗
part has the same elements as L∗ but meets and

joins only defined for compatible elements. Table1 lists all pairs of elements in L∗
that do not have a well-defined meet or join. For L∗, larger families of elements are
compatible precisely when they contain none of the pairs in Table1, though this is
not the case in general. To see this, consider L∗ with additional elements f and f ′
such that Be, f,a is a Boolean sublattice. Then, for elements a, c, and e, all pairwise
meets and joins are defined but not the meet or join of all three elements.

c′

b

a′ b′

a c

0

1

d

d′ e′

e

Ba,b,c Bc,d,e

Ba Bb Bc Bd Be

B0

L∗ (L∗)

Fig. 3 An orthomodular lattice L∗ with twelve elements and its context category B(L∗)
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Table 1 Pairs of elements that are not compatible in L∗; that is, pairwise meets and joins between
these elements are not defined in L∗

part

a, d a′, d b, d b′, d
a, d ′ a′, d ′ b, d ′ b′, d ′

a, e a′, e b, e b′, e
a, e′ a′, e′ b, e′ b′, e′

2.3 Stone Duality

There is a well-known duality between Boolean algebras and Stone spaces.We recall
the main definitions and fix the notation for later use, see also, e.g., [27].

Definition 2.14 A Stone space is a compact totally disconnected Hausdorff space.

There is a category Stone whose objects are Stones spaces and whose arrows are
continuous functions between these topological spaces. Let {0, 1} denote the two
element Boolean algebra consisting of only a bottom element 0 and a top element 1.

Definition 2.15 The Stone space of a Boolean algebra B is the topological space
ΣB with set of elements

ΣB = {λ : B → {0, 1} | λ is a Boolean algebra homomorphism, (16)

also called a state or an ultrafilter in B} (17)

and topology generated by a basis of, for all b ∈ B, the sets

Ub := {λ ∈ ΣB : λ(b) = 1}. (18)

We use the notation ΣB instead of the more common ΩB (or just Ω), since we
will generalise the Stone space ΣB to the spectral presheaf Σ L of an orthomodular
lattice L , and the notation Σ (or ΣN ) for the spectral presheaf of a von Neumann
algebra N is already established. Moreover, the spectral presheaf is an object in a
topos, and the subobject classifier in a topos is traditionally denoted Ω , which could
lead to confusion.

Each λ ∈ ΣB is also called a state of B, and states correspond bijectively to
ultrafilters: given λ, the set

Fλ := {a ∈ B | λ(a) = 1}

is an ultrafilter in B.
We can construct a contravariant functor Σ : BA → Stone from the category of

Boolean algebras and Boolean algebra homomorphisms to the category of Stone
spaces and continuous functions, given
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(i) on objects: for each B ∈ Ob(BA), let Σ(B) := ΣB , the Stone space of B,
(ii) on arrows: for each morphism (φ : B ′ → B) ∈ Arr(BA) of Boolean algebras,

let

Σ(φ) : Σ(B) −→ Σ(B ′) (19)

λ �−→ λ ◦ φ. (20)

Furthermore, to each Stone space X we can associate a canonical Boolean algebra.
Let clX denote the set of subsets of X that are simultaneously closed and open, i.e.
clopen.Withmeets given by intersections and joins given by unions, this is a Boolean
algebra. Additionally consideringmorphisms, we obtain a functor cl : Stone → BA,
given

(i) on objects: for all X ∈ Ob(Stone), let cl(X) := clX ,
(ii) on arrows: for all ( f : X → X ′) ∈ Arr(Stone), let

cl( f ) : clX ′ −→ clX (21)

S �−→ f (−1)(S), (22)

where f (−1) denotes the inverse image function of f .

Throughout, we will use the notation f −1 to denote function inverses and f (−1) to
denote inverse image functions.

If we replace each clopen subset S ⊆ X by its characteristic function χS : X →
{0, 1}, we can write cl( f )(χS) = χS ◦ f , which makes the morphism part of the
functor cl : Stone → BA formally identical to the morphism part of Σ : BA →
Stone.

The two functors give rise to a dual equivalence between the categories BA and
Stone:

BA Stoneop

Σ

cl

⊥

That is, there are natural isomorphisms Bo : I dBA → cl ◦ Σ in BA and
St : I dStone → Σ ◦ cl in Stone. In particular, the components of these isomorphisms
are given as follows:

BoB : B → cl(ΣB) (23)

b �→ Ub = {λ ∈ ΣB | λ(b) = 1} (24)

StX : X → Σ(cl(X)) (25)

x �→ λx (26)



A Generalisation of Stone Duality to Orthomodular Lattices 15

where λx : cl(X) → {0, 1} is given by

λx(S) =
{
1 : x ∈ S
0 : x /∈ S

(27)

Later, it will be of use to know the explicit components of Bo−1 : cl ◦ Σ → I dBA.
Each component Bo−1

B is a map from cl(ΣB) to B. Let S be any clopen subset in
cl(ΣB). As S is closed and the subset of a compact space ΣB , S is compact. As
S is open, it can be written as the union of basic open sets. Compactness implies
that this open cover has a finite subcover of basic open sets, which are of the form
Ub = {λ ∈ ΣB | λ(b) = 1}. That is, for some finite index set J ⊆ B,

S =
⋃
b∈J

Ub.

Let

s∗ =
∨
b∈J

b ∈ B. (28)

Then, the action of Bo−1
B is as follows.

Bo−1
B : cl(ΣB) −→ B (29)

S �−→ s∗. (30)

2.4 Complete Orthomodular Lattices and Their Boolean
Substructure

All of the concepts defined above for orthomodular lattices also hold for complete
orthomodular lattices (cOMLs). Let cOML denote the category of complete ortho-
modular lattices, and cBA the subcategory of complete Boolean algebras.Morphisms
in both categories preserve all meets, all joins, and orthocomplements.

The following two results are immediate, and the Boolean algebras stated to exist
are the same as in Fig. 2:

Proposition 2.16 Every element a of complete orthomodular lattice L is in some
complete Boolean subalgebra of L.

Proposition 2.17 In a complete orthomodular lattice L, for any elements a, b ∈
L satisfying a ≤ b there is complete Boolean subalgebra of L containing both
a and b.

We define the complete analogue of the context category B(L):
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Definition 2.18 The complete context category of a complete orthomodular lattice
L , denoted Bc(L), is the poset of complete Boolean subalgebras of L , ordered by
inclusion.

As before,whenwe consider the posetBc(L) as a category, arrowswill be denoted
in the form iB ′,B : B ′ ↪→ B. We will usually drop the ‘complete’ and just callBc(L)

the context category of L .
Any morphism ϕ : L → M of cOMLs induces an order-preserving map ϕ̃ :

Bc(L) → Bc(M) between the context categories, where on each complete Boolean
subalgebra B of L ,

ϕ̃(B) := ϕ[B].

Clearly, ϕ|B : B → ϕ[B] is a morphism of complete Boolean algebras.
Summing up, there is a functor cB : cOML → Pos, given

(i) on objects: for each L ∈ cOML, let cBL := Bc(L), the (complete) context
category of L ,

(ii) on arrows: for each morphism ϕ : L → M of cOMLs, let

cB(ϕ) := ϕ̃ : Bc(L) −→ Bc(M) (31)

B �−→ ϕ[B]. (32)

There is also a complete version of the partial Boolean algebra L part associated
with an orthomodular lattice L:

Definition 2.19 Let L be a complete orthomodular lattice. The partial complete
orthomodular algebra Lc

part associated with L has the same elements and ortho-
complements as L , and has lattice operations

∨
and

∧
inherited from L but only

defined for (possibly infinite) families of elements (ai )i∈I in L such that there is
a B ∈ Bc(L) that contains ai for all i ∈ I . Such families of elements are called
compatible families.

Definition 2.20 A morphism of partial complete orthomodular algebras is a func-
tion p : Lc

part → Mc
part that preserves orthocomplements and existing meets and

joins.

There is a category pcOML of partial cOMLs and morphisms of partial cOMLs
between them. The complete versions of Lemma 2.12 and Proposition 2.13 are

Lemma 2.21 If a ≤ b in complete orthomodular lattice L and p : L part → Mpart

is a morphism of partial cOMLs, then p(a) ≤ p(b).

Proposition 2.22 Let L and M be complete orthomodular lattices, and L part and
Mpart their associated partial complete orthomodular lattices. There is a bijec-
tive correspondence between isomorphisms L → M in cOML and isomorphisms
L part → Mpart in pcOML.

As before, Lemmas 2.21 and 2.22 depend on orthomodularity and do not hold for
arbitrary complete ortholattices.
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2.5 Stonean Spaces and Stone Duality for Complete Boolean
Algebras

Just as there is a duality betweenBoolean algebras and Stone spaces, there is a duality
between complete Boolean algebras and Stonean spaces.

Definition 2.23 A Stonean space is an extremely disconnected compact Hausdorff
space.

In an extremely disconnected topological space, the closure of every open sub-
space is open and the interior of every closed subspace is closed. Recall that a Stone
space is a totally disconnected compact Hausdorff space. As ‘extremely discon-
nected’ is a stronger condition than ‘totally disconnected,’ all Stonean spaces are
also Stone spaces but not vice versa. The following lemmas characterise the relation
between Stonean spaces and complete Boolean algebras.

Proposition 2.24 ([2]) A Boolean algebra is complete if and only if its Stone space
is Stonean.

Proposition 2.25 ([28]) The clopen subsets of a Stonean space form a complete
Boolean algebra. Complementation is given by set-theoretic complementation, and
meets and joins for a family of clopen subsets {Si | i ∈ I } are given by:

∨
i∈I

Si = cls(
⋃
i∈I

Si ) (33)

∧
i∈I

Si = int(
⋂
i∈I

Si ) (34)

Here cls denotes the closure and int the interior of a subset with respect to the Stone
topology.

The correspondence between complete Boolean algebras and Stonean spaces can
be extended to a dual equivalence of categories. There is a category Stonean, whose
objects are Stonean spaces and whose morphisms are continuous open maps.

Proposition 2.26 ([29]) There is a dual equivalence of categories between cBA and
Stonean:

cBA Stoneanop

Σ

cl

⊥

This duality is witnessed by the natural isomorphisms Bo : I dcBA → cl ◦ Σ and
St : I dStonean → Σ ◦ cl (where we use the same notation as in Stone duality for
OMLs and BAs). Propositions 2.24 and 2.25, above, are consequences of this dual
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equivalence, but the references listed above provide explicit proofs that give more
intuition as to why such results are true.

As corollaries of Proposition 2.26, we also have the following facts that will
later be essential for extending the isomorphism result of Theorem 3.18 to complete
orthomodular lattices.

Fact 2.27 For every B ∈ Ob(cBA), the component BoB of the natural isomorphism
Bo is an isomorphism of cBAs.

Proof BoB : B → cl(ΣB) is an arrow in cBA.

Fact 2.28 If η : X → Y is any continuous open map between Stonean spaces, then
cl(η) is a morphism of cBAs.

Proof cl(η) : cl(Y ) → cl(X) is an arrow in cBA.

2.6 Galois Connections and the Adjoint Functor Theorem for
Posets

We briefly recall the definition of Galois connections and the adjoint functor theorem
for posets (in fact, for complete lattices) for later use, see also, e.g., [18].

Definition 2.29 Let P and Q be posets. A pair of monotone maps f : P → Q and
g : Q → P is aGalois connection between P and Q if, for all p ∈ P and all q ∈ Q,

f (p) ≤ q iff p ≤ g(q). (35)

A Galois connection is written ( f, g), where f is called the lower adjoint (or left
adjoint) of g, and g is called the upper adjoint (or right adjoint) of f .

Proposition 2.30 (Adjoint functor theorem for posets) Let P and Q be complete
lattices and f : P → Q a monotone map. Then,

1. f preserves arbitrary joins if and only if f has an upper adjoint g, meaning
( f, g) is a Galois connection. For all q ∈ Q, this map g is given by

g(q) =
∨

{p ∈ P | f (p) ≤ q}. (36)

2. f preserves arbitrary meets if and only if f has a lower adjoint h, meaning (h, f )
is a Galois connection. For all q ∈ Q, this map h is given by

h(q) =
∧

{p ∈ P | q ≤ f (p)}. (37)

There are more general versions of this theorem, but the above form is what we will
need.

Galois connections have several interesting properties that will be of use to us.
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Proposition 2.31 Let P and Q becomplete lattices and f : P → Q and g : Q → P
such that ( f, q) is a Galois connection. The following hold:

1. f preserves arbitrary joins,
2. g preserves arbitrary meets,
3. For all p ∈ P, p ≤ (g ◦ f )(p),
4. For all q ∈ Q, ( f ◦ g)(q) ≤ q,
5. For all p ∈ P, ( f ◦ g ◦ f )(p) = f (p),
6. For all q ∈ Q, (g ◦ f ◦ g)(q) = g(q).

3 The Spectral Presheaf of an Orthomodular Lattice

We now define and examine the spectral presheaf of an orthomodular lattice, the
main focus of this work.

3.1 Definition

A spectral presheaf was originally defined for von Neumann algebras as part of an
alternate topos-based formulation of quantum mechanics. However, one can also
define the spectral presheaf of an orthomodular lattice as follows.

Definition 3.1 Let L be an orthomodular lattice with context category B(L). The
spectral presheaf Σ L of L is the contravariant, Set-valued functor with domain
B(L) given

(i) on objects: for all B ∈ Ob(B(L)), let Σ L
B := ΣB , the Stone space of B. Here,

Σ L
B denotes the component of Σ L at B.

(ii) on arrows: for all (iB ′B : B ′ ↪→ B) ∈ Arr(B(L)), let

Σ L(iB ′B) : Σ L
B −→ Σ L

B ′ (38)

λ �−→ λ|B ′ . (39)

Here, λ|B ′ denotes the restriction of λ to the subalgebra B ′.

The spectral presheaf Σ L of an OML L is an object in the functor category
SetB (L)op of contravariant, Set-valued functors with domain B(L). The category
SetB (L)op is a topos. In fact, we will shortly also consider another category in which
Σ L is an object, namely the category of Stone-valued presheaves. The advantage
of considering Σ L as a Stone-valued presheaf is that the components of Σ L are
explicitly seen as topological spaces in Stone rather than simply as sets, and the
restriction maps Σ L(iB ′B) are continuous functions (in fact, surjective, continuous
and open functions).
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3.1.1 Example

Consider the orthomodular lattice L∗ from Sect. 2.2.3. This lattice and its context
category appear in Fig. 3. The spectral presheaf of L∗ is a functor fromB(L) to Set.
Each Boolean subalgebra B of L∗ is mapped to its Stone space ΣB .

We now consider the action of the spectral presheaf on an inclusion map inB(L).
We know that Ba ⊆ Ba,b,c, meaning there is an arrow iBa ,Ba,b,c corresponding to
this in B(L). Note the Stone space of Ba has two elements, called λa and λa′ ,
where λa(a) = 1 and λa′(a) = 0. Additionally, the Stone space of Ba,b,c has three
elements λa,b, λa,c, and λb,c, where the subscripts denote the two elements out of
a, b, and c that are mapped to 1, while the third is mapped to 0; this completely
determines the functions’ values on all of Ba,b,c. Then, Σ(L∗)(iBa ,Ba,b,c) is a map r
from ΣBa,b,c to ΣBa whose action on elements of ΣBa,b,c simply restricts the domains
of the homomorphisms to Ba:

r(λa,b) = λa (40)

r(λa,c) = λa (41)

r(λb,c) = λa′ (42)

Note that as the inverse image of any open set of ΣBa is open in ΣBa,b,c , then this
map r is in fact a continuous map whenΣBa andΣBa,b,c are considered as topological
spaces rather than simply as sets. The images of other inclusion arrows under the
spectral presheaf of L∗ can be determined similarly and are also continuous maps
between topological spaces.

3.2 Maps Between Spectral Presheaves

The next obvious step is to consider maps between spectral presheaves of ortho-
modular lattices. Specifically, if L and M are orthomodular lattices and ϕ : L → M
is a morphism of OMLs, then we want to define some map 
, determined by ϕ,
from ΣM to Σ L . This is done in two steps, below. The first step transforms ΣM

into a contravariant functor from B(L) to Set, while the second step then gives a
natural transformation within SetB (L)op from this new functor to Σ L . In particular,
such a map will be used to show that L ∼= M if and only if Σ L ∼= ΣM , the goal
of this section. This result implies that the spectral presheaf Σ L determines up to
isomorphism the orthomodular lattice L it comes from.

Step 1. Let ϕ : L → M be a morphism of OMLs. Recall from Sect. 2.2 that
ϕ : L → M induces a monotone map ϕ̃ : B(L) → B(M) between the context
categories. This map ϕ̃ then induces a map between functor categories (topoi)
ϕ̃∗ : SetB (M)op → SetB (L)op , given by ‘pullback’, that is, precomposition: for each
P ∈ Ob(SetB (M)op), let

ϕ̃∗(P) := P ◦ ϕ̃,
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which is the presheaf over B(L) with components

∀B ∈ B(L) : (ϕ̃∗(P))B = P ϕ̃(B).

Those familiar with topos theory [20, 21, 23] will recognise themap ϕ̃∗ as the inverse
image part the essential geometric morphism induced by the functor ϕ̃ : B(L) →
B(M) between the base categories of the topoi SetB (L)op and SetB (M)op .

Thus, ϕ̃∗ maps ΣM to some functor from B(L) to Set, which is not necessarily
Σ L . However, since a map fromΣM to Σ L is desired, it is now necessary to define a
way to transform ϕ̃∗(ΣM) to Σ L within the functor category SetB (L)op . This is done
via a natural transformation as follows.

Step 2. Let B ∈ B(L). A morphism ϕ : L → M of OMLs induces a Boolean
algebra homomorphism ϕ|B : B → ϕ̃(B). By Stone duality, this corresponds to a
unique morphism Σϕ̃(B) → ΣB of Stone spaces, sending λ to λ ◦ ϕ|B . Note that
Σϕ̃(B) is the component of ϕ̃∗(ΣM) at B ∈ B(L), and ΣB is the component of Σ L

at B. Hence, for each B ∈ B(L) we have a map

ζϕ,B : ϕ̃∗(ΣM)B = ΣM
ϕ̃(B) −→ Σ L

B = ΣB (43)

λ �−→ λ ◦ ϕ|B . (44)

Lemma 3.2 The maps ζϕ,B, where B ∈ B(L), are the components of a natural
transformation between functors in SetB (L)op:

ζϕ : ϕ̃∗(ΣM) −→ Σ L . (45)

Proof Recall

ϕ̃∗(ΣM)B = ΣM
ϕ̃(B) = Σϕ̃(B) (46)

ϕ̃∗(ΣM)(iB ′,B) = ΣM(iϕ̃(B ′),ϕ̃(B)) = rϕ̃(B),ϕ̃(B ′) (47)

For B ′, B ∈ B(L), where iB ′,B is an inclusion arrow, to show ζϕ is a natural trans-
formation it is necessary to show that the following diagram commutes:

ΣM
ϕ̃(B ′) ΣM

ϕ̃(B)

Σ L
B ′ Σ L

B

ΣM(iϕ̃(B ′),ϕ̃(B))

Σ L(iB ′,B)

ζϕ,B ′ ζϕ,B
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Let λ : ϕ̃(B) → {0, 1} be any element of ΣM
ϕ̃(B). Then,[

ζϕ,B ′ ◦ ΣM(iϕ̃(B ′),ϕ̃(B))
]
(λ) = ζϕ,B ′(λ|ϕ̃(B ′)) (48)

= λ|ϕ̃(B ′) ◦ ϕ|B ′ (49)

= (λ ◦ ϕ)|B ′ , (50)[
Σ L(iB ′,B) ◦ ζϕ,B

]
(λ) = Σ L(iB ′,B)(λ ◦ ϕ|B) (51)

= (λ ◦ ϕ|B)|B ′ (52)

= (λ ◦ ϕ)|B ′ . (53)

Thus, the diagram commutes and ζϕ is a natural transformation.

The twomaps ϕ̃∗ and ζϕ defined above can be combined to give, for any homomor-
phismϕ : L → M , amap fromΣM toΣ L , written
 = 〈ϕ̃∗, ζϕ〉. As ϕ̃∗ is completely
determined by ϕ̃ (as is ζϕ), this can also equivalently be written 
 = 〈ϕ̃, ζϕ〉. Note
that the process described above is not a standard composition ζϕ ◦ ϕ̃∗, as these two
maps are not within the same category; ϕ̃∗ is a map between topoi SetB (M)op and
SetB (L)op , while ζϕ is a natural transformation within SetB (L)op .

So far, we have shown that every morphism ϕ : L → M of OMLs induces a
morphism 〈ϕ̃, ζϕ〉 : ΣM → Σ L in the ‘opposite’ direction between their spectral
presheaves. In order to understand this properly as a contravariant functor, we will
show this is an example of a more general construction and define a suitable category
of presheaves over varying base categories and their morphisms.

3.3 The Category of D-Valued Presheaves

The rather unintuitive definition of a map between spectral presheaves, above, can
in fact be understood best as an arrow in a suitable category Presh(Stone). We now
define and explore such presheaf categories. This subsection and the next consider-
ably expand some work done by the second author in [13].

First, we develop some general theory of presheaf categories over varying base
categories with values in a categoryD . Since the base categories of such presheaves
are not the same in general, themorphisms between the presheaves are not just natural
transformations.

Let H : K → J be a functor between small categories. For clarity, the action
of H on an object K ofK will be written as H(K ) rather than HK . For any category
L , H induces a “pullback” map H∗, analogous to ϕ̃∗, above, from LJ to LK

which acts by precomposing by H . That is, on objects R ∈ LJ ,

H∗R = R ◦ H : K → L . (54)

Specifically, for any K ∈ K ,

(H∗R)K = (R ◦ H)K = RH(K ). (55)
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This is captured by the following commutative diagram for each R ∈ LJ :
J

K

L

R

H∗R

H H∗

Wecan additionally show H∗ satisfies the even stronger property of being a functor
from LJ to LK by defining its action on arrows of LJ as well. An arrow in
LJ is a natural transformation τ : R → R′, for R, R′ : J → L . Applying H∗
produces a natural transformation H∗τ : H∗R → H∗R′ in LK , where for each
K ∈ K ,

(H∗τ)K = τH(K ). (56)

Checking the necessary diagram shows that H∗τ is a valid natural transformation
precisely because τ is.

Proposition 3.3 H∗ : LJ → LK is a functor.

Proof One can verify, using the definition of H∗, that it preserves identity arrows
and composition.

The following elementary facts about H∗ follow from the definition of H∗ and
will be useful in later proofs.

Fact 3.4 For H : J ′ → J and induced functor H∗ : LJ → LJ ′
, H̃ : J ′′ →

J ′ and induced functor H̃∗ : LJ ′ → LJ ′′
,

(H ◦ H̃)∗ = H̃∗ ◦ H∗. (57)

Fact 3.5 Suppose H : K → J , R : J → L , and S : L → M . Then

H∗(S ◦ R) = S ◦ (H∗R). (58)

That is, the following diagram commutes:

J

K

L M
R

H∗RH

S

H∗(S ◦ R)
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Fact 3.6 Let I d : J → J be the identity functor on category J . Let R, R′ ∈
LJ , and let η : R → R′ be a natural transformation. Then Id∗R = R and Id∗η =
η : R → R′.

We now proceed to use the functor H∗ to define a presheaf category.
Definition 3.7 The category Presh(D) of D-valued presheaves has as its objects
functors (presheaves) of the form P : J → Dop, where J is a small category.
Arrows are pairs

〈H, η〉 : (P ′ : J ′ → Dop) → (P : J → Dop), (59)

where H : J → J ′ is a functor and η : H∗P ′ → P is a natural transformation in
(Dop)J :

J ′

J

Dop

η

P ′

H∗P ′

P

H

Let Pi : Ji → Dop, for i = 1, 2, 3, be functors. Given two arrows 〈H̃ , η̃〉 :
P3 → P2 and 〈H, η〉 : P2 → P1, the composition 〈H, η〉 ◦ 〈H̃ , η̃〉 : P3 → P1 is
given by

〈H, η〉 ◦ 〈H̃ , η̃〉 = 〈H̃ ◦ H, η ◦ H∗η̃〉, (60)

where η ◦ H∗η̃ denotes vertical composition of natural transformations. The intuition
behind this definition of composition can be seen in the following diagram.

J3

J2

J1

Dopη̃

η

H̃

H

P3

H̃∗P3

P2

H∗P2

P1
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Lemma 3.8 Presh(D) is a category.

Proof First, it is necessary to show that composition as given above is well-defined,
that is, that 〈H, η〉 ◦ 〈H̃ , η̃〉 is a valid arrow from P3 to P1. Consider the diagram
above. Clearly H̃ ◦ H is a functor from J1 to J3, as required. Then, the nat-
ural transformation η ◦ H∗η̃ is from H∗(H̃∗P3) to H∗P2 to P1 in (Dop)J1 . As
H∗ ◦ H̃∗ = (H̃ ◦ H)∗ by Fact 3.4, it follows that η ◦ H∗η̃ : (H̃ ◦ H)∗P3 → P1, as
required.

It is also necessary to show that this composition is associative, whichwill be done
algebraically. Suppose P4 : J4 → Dop is a presheaf and Ĥ : J3 → J4 is a func-
tor, and that 〈Ĥ , η̂〉 is an arrow from P4 to P3. Then, by the definition of composition,
the functoriality of H∗, the associativity of functors and natural transformations, and
Fact 3.4,(

〈H, η〉 ◦ 〈H̃ , η̃〉
)

◦ 〈Ĥ , η̂〉 = 〈H̃ ◦ H, η ◦ H∗η̃〉 ◦ 〈Ĥ , η̂〉 (61)

= 〈Ĥ ◦
(
H̃ ◦ H

)
,
(
η ◦ H∗η̃

) ◦ (H̃ ◦ H)∗η̂〉 (62)

= 〈Ĥ ◦
(
H̃ ◦ H

)
, η ◦

(
H∗η̃ ◦ (H∗ ◦ H̃∗)η̂

)
〉 (63)

= 〈
(
Ĥ ◦ H̃

)
◦ H, η ◦ H∗

(
η̃ ◦ H̃∗η̂

)
〉 (64)

= 〈H, η〉 ◦ 〈Ĥ ◦ H̃ , η̃ ◦ H̃∗η̂〉 (65)

= 〈H, η〉 ◦
(
〈H̃ , η̃〉 ◦ 〈Ĥ , η̂〉

)
(66)

Finally, it remains only to show that every object P : J → Dop ofPresh(D) has
an identity arrow. If I dJ : J → J is the identity functor on J and idP : P → P is
the identity natural transformation on P , then 〈I dJ , idP〉 is the appropriate identity
arrow on P , which can be easily verified using the definitions above. Thus,Presh(D)

is a valid category.

It is possible to view spectral presheaves and spectral presheaf maps as defined
in the previous subsection as a subcategory of Presh(Set). Specifically, it is the
subcategory with objects and arrows determined as follows.

Objects: {Σ L : B(L) → Set | L is an orthomodular lattice.} (67)

Morphisms: {〈ϕ̃, ζϕ〉 | ϕ is an orthomodular lattice homomorphism.} (68)

The latter is an arrow in Presh(Set), depicted here:
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B(M)

B(L)

Set

ζϕ

ΣM

ϕ̃∗ΣM

Σ L

ϕ̃

In fact, this subcategory is the image of a functor; there is a contravariant functor
SP : OML → Presh(Set)which acts as follows for all orthomodular lattices L and
all orthomodular lattice homomorphisms ϕ : L → M :

SP(L) = Σ L (69)

SP(ϕ) = 〈ϕ̃, ζϕ〉 : ΣM → Σ L . (70)

Proposition 3.9 SP is a functor.

Proof First, we must check that SP preserves identities. Suppose i : L → L is the
identity orthomodular lattice homomorphism on L . Then, ĩ : B(L) → B(L) is also
clearly the identity functor on categoryB(L). Furthermore, ζi has components given
by

ζi,B : Σ L
B → Σ L

B (71)

λ �→ λ ◦ i = λ (72)

Thus, as each ζi,B is just the identity map on Σ L
B in Set, it follows that ζi is the

identity natural transformation on Σ L . Thus, 〈ĩ, ζi 〉 is the identity arrow of Σ L in
category Presh(Set).

Next, it is necessary to show that SP preserves composition. Suppose ϕ : L → M
and ρ : M → N are orthomodular lattice homomorphisms. Recalling that SP is
contravariant, we wish to show that SP(ρ ◦ ϕ) = SP(ϕ) ◦ SP(ρ). Consider the
following diagram, which depicts arrows SP(ϕ) : ΣM → Σ L and SP(ρ) : ΣN →
ΣM in Presh(Set):
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B(N )

B(M)

B(L)

Setζρ

ζϕ

ρ̃

ϕ̃

ΣN

ρ̃∗ΣN

ΣM

ϕ̃∗ΣM

Σ L

Recall the definition of composition in Presh(Set):

SP(ϕ) ◦ SP(ρ) = 〈ϕ̃, ζϕ〉 ◦ 〈ρ̃, ζρ〉 = 〈ρ̃ ◦ ϕ̃, ζϕ ◦ ϕ̃∗ζρ〉 (73)

Note also that the map from B(L) to B(N ) induced by the composition ρ ◦ ϕ is
precisely ρ̃ ◦ ϕ̃, which follows from the definition in Sect. 2.2 of such induced maps.
Thus,

SP(ρ ◦ ϕ) = 〈ρ̃ ◦ ϕ̃, ζρ◦ϕ〉

It simply remains to show that the natural transformations ζϕ ◦ ϕ̃∗ζρ and ζρ◦ϕ from
presheaf ϕ̃∗ρ̃∗ΣN to presheaf Σ L in SetB (L)op are equal. Consider any element
B ∈ B(L). Recall, from Fact 3.4 and previous definitions, that

(ϕ̃∗ρ̃∗ΣN )B = ((ρ̃ ◦ ϕ̃)∗ΣN )B = ΣN
(ρ̃◦ϕ̃)(B) = Σ(ρ̃◦ϕ̃)(B). (74)

The action of the component at B of natural transformation ζρ◦ϕ is, by the definition
of ζ ,

ζρ◦ϕ : Σ(ρ̃◦ϕ̃)(B) → ΣB (75)

λ �→ λ ◦ (ρ ◦ ϕ)|B (76)

Now consider natural transformation ζϕ ◦ ϕ̃∗ζρ .(
ζϕ ◦ ϕ̃∗ζρ

)
B = ζϕ,B ◦ (ϕ̃∗ζρ)B = ζϕ,B ◦ ζρ,ϕ̃(B)
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The action of this composition is given as follows.

ζϕ,B ◦ ζρ,ϕ̃(B) : ΣN
(ρ̃◦ϕ̃)(B) → ΣM

ϕ̃(B) →Σ L
B (77)

λ �→ λ ◦ ρ|ϕ̃(B) �→λ ◦ ρ|ϕ̃(B) ◦ ϕ|B (78)

= λ ◦ (ρ ◦ ϕ)|B (79)

As the two natural transformations we are considering have the same component for
every B ∈ B(L), then they must be the same natural transformation, implying SP
preserves composition and is a functor.

Thus, the image inPresh(Set) of functor SP , consisting of the spectral presheaves
of orthomodular lattices and the spectral presheaf maps between them, is a category.
Of note, the functor SP is neither full nor faithful.

3.4 The Category of C -Valued Copresheaves

Dual to the notion of a presheaf is that of a copresheaf. This definition yields another
category Copresh(C ) as follows.

Definition 3.10 Let C be a category. The category Copresh(C ) of C -valued
copresheaves has as its objects functors (copresheaves) of the form Q : J → C ,
where J is a small category. Arrows are pairs

〈I, θ〉 : (Q : J → C ) → (Q
′ : J ′ → C ), (80)

where I : J → J ′ is a functor and θ : Q → I ∗Q′
is a natural transformation in

CJ :

J ′

J

C

θ

Q
′

I ∗Q′

Q

I

Let Qi : Ji → C , for i = 1, 2, 3, be functors. Given two arrows 〈I, θ〉 : Q1 →
Q2 and 〈 Ĩ , θ̃〉 : Q2 → Q3, the composition 〈 Ĩ , θ̃〉 ◦ 〈I, θ〉 : Q1 → Q3 is given by

〈 Ĩ , θ̃〉 ◦ 〈I, θ〉 = 〈 Ĩ ◦ I, (I ∗θ̃ ) ◦ θ〉, (81)
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where (I ∗θ̃ ) ◦ θ denotes vertical composition of natural transformations within func-
tor category CJ1 . The intuition behind this definition of composition can be seen in
the following diagram.

J3

J2

J1

Cθ̃

θ

Ĩ

I

Q3

Ĩ ∗Q3

Q2

I ∗Q2

Q1

Just as with category Presh(D), it follows that Copresh(C ) is a well-defined
category, though this proof is omitted due to its similarities to the proof above.

3.5 Dual Equivalences and Stone Duality

3.5.1 Lifting Dual Equivalences to Presheaf and Copresheaf Categories

Having defined the categories of D-valued presheaves and D-valued copresheaves
and their morphisms, we now turn to the question of how such categories relate if C
and D are dually equivalent. In [13], the following result was proven:

Lemma 3.11 Let C , D be two categories that are dually equivalent,

C Dop

f

g

⊥

Then there is a dual equivalence

Copresh(C ) Presh(D)op

F

G

⊥
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The actions of the functors F andG are defined in the proof of the above theorem in
the following way. First, considerG : Presh(D) → Copresh(C ). If P : J → Dop

is an object ofPresh(D), thenG(P) : J → C is the (covariant) functor g ◦ P . That
is, for all objects J and arrows a : J ′ → J inJ ,

G(P)J = (g ◦ P)J = g(P J ) ∈ Ob(C ) (82)

G(P)(a) = (g ◦ P)(a) ∈ Morph(C ) (83)

It is now time to consider the action of G on morphisms on Presh(D). Let

〈H, η〉 : (P ′ : J ′ → Dop) → (P : J → Dop) (84)

be an arrow in Presh(D). Then, as G is contravariant, G(〈H, η〉) is an arrow in
Copresh(C ) from G(P) = g ◦ P to G(P ′) = g ◦ P ′. Specifically,

G(〈H, η〉) = 〈H, g(η)〉, (85)

where g(η) : g ◦ P → H∗(g ◦ P ′) is a natural transformation with components

(g(η))J = g(ηJ ) : (g ◦ P)J → (g ◦ H∗P ′)J . (86)

Because g is a contravariant functor, components g(η)J are arrows in the opposite
direction of components ηJ . The following diagram is not a commutative diagram,
but is intended to give some visual intuition behind the definitions above and why
〈H, g(η)〉 : G(P) → G(P ′) is in fact a morphism in Copresh(C ).

J ′ Dop

CJ

η

g(η)

g
H

g ◦ P

H∗(g ◦ P ′)

P ′

H∗P ′

P

In [13], the action of contravariant functor F : Copresh(C ) → Presh(D) is
defined as follows. On an object Q : J → C of Copresh(C ), F acts as post-
composition by f : C → Dop. That is,

F(Q) = f ◦ Q : J → C → Dop. (87)
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Onmorphisms 〈I, θ〉 : (Q : J → C ) → (Q
′ : J ′ → C ) inCopresh(C ), con-

travariant functor F acts as follows:

F(〈I, θ〉) = 〈I, f (θ)〉, (88)

where f (θ) : I ∗(F(Q
′
)) → F(Q) is a natural transformation with components, for

each J ∈ J , given by

f (θ)J = f (θJ ) : ( f ◦ I ∗Q′
)J → ( f ◦ Q)J (89)

As the functor f : C → Dop is contravariant, the natural transformations f (θ) and
θ are in opposite directions. The following is again not a commutative diagram, but
captures the intuition behind this definition of F .

J ′ C

DopJ f (θ)

θ f
I

f ◦ Q

I ∗( f ◦ Q
′
)

Q
′

I ∗Q′

Q

3.5.2 Stone Duality, the Spectral Presheaf, and the Bohrification of an
OML

Recall there is a dual equivalence between the category BA of Boolean algebras
and the category Stone of Stone spaces, given by functors Σ : BA → Stoneop and
cl : Stoneop → BA. By Lemma 3.11, there is then a duality

Copresh(BA) Presh(Stone)op

ΣΣ

CL

⊥

Wenowdefine the actions ofCL andΣΣ on so-calledBohrifications in the category
Copresh(BA) and spectral presheaves in the category Presh(Stone). The Bohrifi-
cation of a unital C∗-algebra was introduced by Heunen, Landsman, and Spitters
in [8]. Our construction for orthomodular lattices is analogous, it is the tautological
inclusion copresheaf:
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Definition 3.12 For an orthomodular lattice L , the Bohrification L of L is the
copresheaf fromB(L) to BA given by:

On objects: L B = B (90)

On morphisms: L (iB ′,B) = incB ′,B , the inclusion homomorphism (91)

Recall iB ′,B denotes the arrow in poset B(L) from B ′ to B which signifies that
B ′ ⊆ B, while incB ′,B denotes the Boolean algebra homomorphism B ′ ↪−→ B that
maps each element in B ′ to the same element of B.

Functor ΣΣ : We are interested in the action of the functor ΣΣ on Bohrifications of
orthomodular lattices and maps between them. First consider the action of ΣΣ on the
Bohrification L of an orthomodular lattice L , which is an object in Copresh(BA).
ΣΣ acts by postcomposition with Σ , that is,

ΣΣ(L ) = Σ ◦ L : B(L) → BA → Stone (92)

Specifically, on objects B of B(L), the functor ΣΣ(L ) in Presh(Stone) acts as
follows: for all B ∈ B(L),

ΣΣ(L )B = (Σ ◦ L )B = Σ(L B) = ΣB . (93)

On arrows iB ′,B inB(L), this functor ΣΣ(L ) has the following action:

ΣΣ(L )(iB ′,B) = (Σ ◦ L )(iB ′,B) = Σ(incB ′,B) = rB,B ′ , (94)

where r denotes the restriction map, that is, precomposition with the inclusion map.
Note that as Σ ◦ L is a presheaf fromB(L) to Stone with the same action on both
objects and arrows of B(L) as Σ L , then in fact Σ ◦ L = Σ L . That is,

ΣΣ(L ) = Σ L . (95)

Now consider the action of functorΣΣ on morphisms between Bohrifications, that
is, on arrows 〈I, θ〉 : L → M in Copresh(BA). By Eq.88,

ΣΣ(〈I, θ〉) = 〈I,Σ(θ)〉, (96)

where Σ(θ) is the natural transformation with components Σ(θ)B = Σ(θB) for all
B ∈ B(L).

Functor CL: We are interested in the action of the functor CL on a spectral
presheaf Σ L ∈ Presh(Stone), for some orthomodular lattice L . CL acts on Σ L as
postcomposition with cl : Stone → BA, yielding cl ◦ Σ L , a functor with domain
B(L) in Copresh(BA). The functor CL(Σ L) acts on objects B ∈ B(L) by



A Generalisation of Stone Duality to Orthomodular Lattices 33

CL(Σ L)B = (cl ◦ Σ L)B = cl(Σ L
B) = cl(ΣB), (97)

where cl(ΣB) is the Boolean algebra of clopen subsets of ΣB . On arrows iB,B ′ :
B ′ → B inB(L),

CL(Σ L)(iB ′,B) = (cl ◦ Σ L)(iB ′,B) = cl(rB,B ′) : cl(ΣB ′) → cl(ΣB). (98)

Recall functor cl maps a morphism to its inverse image morphism, denoted by expo-
nent (−1). For any clopen subset S of ΣB ′ , the map cl(rB,B ′) acts as

cl(rB,B ′)(S) = r (−1)
B,B ′ (S) = {λ ∈ ΣB : λ|B ′ ∈ S}, (99)

which is a clopen subset of ΣB .
Now, consider how the map CL acts on spectral presheaf morphisms 〈ϕ̃, ζϕ〉 :

ΣM → Σ L in Presh(Stone). From Eq.85,

CL(〈ϕ̃, ζϕ〉) = 〈ϕ̃, cl(ζϕ)〉 (100)

where cl(ζϕ) is a natural transformation between functors in BAB (L), from functor
CL(Σ L) = cl ◦ Σ L to functor cl ◦ ϕ̃∗(ΣM). Map cl(ζϕ) has components for each
B ∈ B(L) that map from cl(Σ L

B) = cl(ΣB) to cl((ϕ̃∗ΣM)B) = cl(Σϕ̃(B)), given by:

cl(ζϕ)B = cl(ζϕ,B) = ζ
(−1)
ϕ,B : cl(ΣB) → cl(Σϕ̃(B)). (101)

Again, here the exponent denotes inverse image, rather than inverse. Specifically, the
action of cl(ζϕ)B on a clopen subset S of Σ L

B is given by

cl(ζϕ)B(S) = ζ
(−1)
ϕ,B (S) = {λ ∈ Σϕ̃(B) : ζϕ,B(λ) ∈ S} = {λ ∈ Σϕ̃(B) : λ ◦ ϕ|B ∈ S}.

(102)

3.6 Concrete Isomorphisms Between Spectral Presheaves
and Bohrifications

Now that the action of the functors ΣΣ and CL has been defined, we explore the
relationship between spectral presheaves in Presh(Stone) and Bohrifications in
Copresh(BA) further. From Lemma 3.11 and Stone duality, it is not hard to see
that if L and M are orthomodular lattices, with spectral presheaves Σ L and ΣM and
BohrificationsL andM , then there is an isomorphismΣM → Σ L inPresh(Stone)
if and only if there is an isomorphism L → M in Copresh(BA). Our goal in this
subsection is to construct such isomorphisms from each other explicitly. This is done
inTheorem3.15 below. The concrete formwill be useful later in the proof of Theorem
3.18, one of the main results.
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We first showL and CL(Σ L) = cl ◦ Σ L are naturally isomorphic in the functor
category BAB (L). For each B ∈ B(L), this requires an isomorphism from L B to
(cl ◦ Σ L)B . Recall

L B = B and (cl ◦ Σ L)B = cl(Σ L
B) = cl(ΣB). (103)

The dual equivalence betweenBA and Stone given in Sect. 2.3 is witnessed by a natu-
ral isomorphism Bo : I dBA → cl ◦ Σ with components BoB : B → cl(ΣB). Using
those components of Bo corresponding to B ∈ B(L) gives a map {BoB}B∈B (L) :
L → cl ◦ Σ L , which we now show comprise a natural isomorphism as desired.

Lemma 3.13 The map {BoB}B∈B (L) : L → cl ◦ Σ L is a natural isomorphism.
That is, these two functors are naturally isomorphic in the functor category BAB (L).

Proof First it is necessary to show that this map is a natural transformation, that is,
that the following diagram commutes for every B ′, B ∈ B(L) such that B ′ ⊆ B:

(cl ◦ Σ L)B(cl ◦ Σ L)B ′

L BL B ′

(cl ◦ Σ L)(iB ′,B)

BoB ′ BoB

L (iB ′,B)

Recall that

(cl ◦ Σ L)B = cl(Σ L
B) = cl(ΣB) = (cl ◦ Σ)B . (104)

Additionally, note that

(cl ◦ Σ L)(iB′,B) = cl(Σ L(iB′,B)) = cl(rB,B′) = cl(Σ(incB′,B)) = (cl ◦ Σ)(incB′,B).

(105)

Thus, also applying the definition of L , the above diagram can be rewritten as

(cl ◦ Σ)B(cl ◦ Σ)B ′

BB ′

(cl ◦ Σ)(incB ′,B)

BoB ′ BoB

incB ′,B
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The above diagram commutes because incB ′,B : B ′ → B is a morphism in cat-
egory BA and because Bo : I dBA → cl ◦ Σ is a natural transformation. Thus, the
collection {BoB}B∈B (L) : L → cl ◦ Σ L is a valid natural transformation. As each
arrow BoB is an isomorphism then it is in fact a natural isomorphism.

Natural isomorphism {BoB}B∈B (L) will now simply be written in a slight abuse
of notation as Bo, and we will remember it only has components for all B ∈ B(L).

While the above lemma presents an interesting result, it will be more useful
to know that the functors L and CL(Σ L) = cl ◦ Σ L are isomorphic in category
Copresh(BA) rather than just naturally isomorphic in BAB (L).

Lemma 3.14 The morphism 〈I dB (L), Bo〉 : L → cl ◦ Σ L is an isomorphism in
Copresh(BA).

Proof For natural isomorphism Bo = {BoB}B∈B (L) there exists some inverse nat-
ural isomorphism which we denote by Bo−1 : cl ◦ Σ → L . We now use Fact 3.6
to show that morphism 〈I dB (L), Bo−1〉 : cl ◦ Σ L → L is an inverse to morphism
〈I dB (L), Bo〉 in Copresh(BA):

〈I dB (L), Bo〉 ◦ 〈I dB (L), Bo
−1〉 = 〈I dB (L) ◦ I dB (L), (I d

∗
B (L)Bo) ◦ Bo−1〉 (106)

= 〈I dB (L), Bo ◦ Bo−1〉 (107)

= 〈I dB (L), I dcl◦Σ L 〉 (108)

〈I dB (L), Bo
−1〉 ◦ 〈I dB (L), Bo〉 = 〈I dB (L) ◦ I dB (L), (I d

∗
B (L)Bo

−1) ◦ Bo〉 (109)

= 〈I dB (L), Bo
−1 ◦ Bo〉 (110)

= 〈I dB (L), I dL 〉 (111)

Thus, 〈I dB (L), Bo〉 is an isomorphism in Copresh(BA), meaning L and cl ◦ Σ L

are isomorphic in this category of copresheaves.

Theorem 3.15 Let L and M be orthomodular lattices, Σ L and ΣM their spectral
presheaves, andL andM their Bohrifications. There is an isomorphismΣM → Σ L

in the category Presh(Stone) if and only if there is an isomorphismL → M in the
category Copresh(BA), and these isomorphisms can be explicitly constructed from
each other.

Proof Suppose there is an isomorphism 〈H, η〉 : ΣM → Σ L inPresh(Stone). Then,
as functors preserve isomorphisms, there is an isomorphism in Copresh(BA) given
by

CL(〈H, η〉) : CL(Σ L) → CL(ΣM), (112)

or equivalently,
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〈H, cl(η)〉 : cl ◦ Σ L → cl ◦ ΣM , (113)

where cl(η) is the natural transformation with components, for all B ∈ B(L), given
by cl(η)B = cl(ηB) = η

(−1)
B , where the exponent (−1) denotes the inverse image

function. By the previous lemma, there are isomorphisms in Copresh(BA)

〈I dB (L), Bo〉 : L → cl ◦ Σ L (114)

〈I dB (M), Bo
−1〉 : cl ◦ ΣM → M (115)

Composing these two isomorphisms on either side of isomorphism 〈H, cl(η)〉 gives
an isomorphism from L to M , as desired. Specifically, this composition evaluates
as follows:

〈I dB (M), Bo
−1〉 ◦ 〈H , cl(η)〉 ◦ 〈I dB (L), Bo〉 (116)

= 〈I dB (M), Bo
−1〉 ◦ 〈H ◦ I dB (L), (I d

∗
B (L)cl(η)) ◦ Bo〉

(117)

= 〈I dB (M) ◦ H ◦ I dB (L), (H
∗Bo−1) ◦ (I d∗

B (L)cl(η)) ◦ Bo〉
(118)

= 〈H, (H∗Bo−1) ◦ cl(η) ◦ Bo〉 (119)

Some visual intuition is provided below:

B(M)

B(L) BA

Bo−1

cl(η)

H

M

cl ◦ ΣM

H∗(cl ◦ ΣM )

L

Bo
cl ◦ Σ L

We conclude whenever there is an isomorphism 〈H, η〉 : ΣM → Σ L in
Presh(Stone), then 〈H, (H∗Bo−1) ◦ cl(η) ◦ Bo〉 : L → M is an isomorphism in
Copresh(BA), completing the first half of this proof.
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Now, suppose that there is an isomorphism 〈I, θ〉 : L → M in Copresh(BA).
Recall ΣΣ : Copresh(BA) → Presh(Stone) that is dual to CL . As functors preserve
isomorphisms, there is an isomorphism in Presh(Stone) from ΣΣ(M ) to ΣΣ(L ),
given by

ΣΣ(〈I, θ〉) = 〈I,Σ(θ)〉, (120)

where Σ(θ) is the natural transformation with components Σ(θ)B = Σ(θB) for all
B inB(L). Recalling from (95) that

ΣΣ(M ) = Σ ◦ M = ΣM and ΣΣ(L ) = Σ ◦ L = Σ L , (121)

it follows that 〈I,Σ(θ)〉 is an isomorphism in Presh(Stone) from ΣM to Σ L , as
desired.

3.7 The Spectral Presheaf of an OML Is a Complete
Invariant

We now prove our first main result: two orthomodular lattices are isomorphic if and
only if their spectral presheaves are isomorphic, hence the spectral presheaf is a
complete invariant of an OML.

The proof is separated into the following two theorems.

Theorem 3.16 Let L and M be orthomodular lattices. If ϕ : L → M is an isomor-
phism in OML, then there is an isomorphism 〈ϕ̃, ζϕ〉 : ΣM → Σ L in Presh(Stone),
where the natural transformation ζϕ has components ζϕ,B = Σ(ϕ|B) for all B in
B(L).

Proof Suppose ϕ : L → M is an isomorphism of orthomodular lattices, with inverse
ψ = ϕ−1 : M → L . Then, by Lemma 2.9, ϕ̃ : B(L) → B(M) is an order isomor-
phism of posets, with inverse ψ̃ . Additionally, for each B ∈ B(L), ϕ|B : B → ϕ[B]
is an isomorphism of Boolean algebras, with inverse ψ |ϕ̃(B).

By Stone duality, applying functor Σ to Boolean algebra isomorphism ϕ|B :
B → ϕ̃(B) yields a continuous isomorphism Σ(ϕ|B) : Σϕ̃(B) → ΣB in Stone. As
ϕ̃(B) ∈ B(M), then

Σϕ̃(B) = ΣM
ϕ̃(B) = (ΣM ◦ ϕ̃)B = (ϕ̃∗ΣM)B . (122)

Additionally, as B ∈ B(L), then ΣB = Σ L
B . Thus, Σ(ϕ|B) is in fact a Stone space

isomorphism from (ϕ̃∗ΣM)B to Σ L
B . Let isomorphism Σ(ϕ|B) be denoted

Σ(ϕ|B) := ζϕ,B : (ϕ̃∗ΣM)B → Σ L
B . (123)
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Note this coincides exactly with the definition of ζϕ,B given in Step 2 of Sect. 3.2,
where the action of isomorphism ζϕ,B on a homomorphism λ : ϕ̃(B) → {0, 1} is
given by precomposition with ϕ|B . The components (ζϕ,B)B∈B (L) thus form a natural
isomorphism from ϕ̃∗ΣM to Σ L , because as we proved in Lemma 3.2, for every
B ′ ⊆ B inB(L) the following diagram commutes:

ΣM
ϕ̃(B ′) ΣM

ϕ̃(B)

Σ L
B ′ Σ L

B

ΣM(iϕ̃(B ′),ϕ̃(B))

= rϕ̃(B),ϕ̃(B ′)

Σ L(iB ′,B)

= rB ′,B

ζϕ,B ′ ζϕ,B

Since ϕ̃ : B(L) → B(M) is an isomorphism and ζϕ : ϕ̃∗ΣM → Σ L is a natural
isomorphism, then the composite

〈ϕ̃, ζϕ〉 : ΣM → Σ L (124)

is an arrow in Presh(Stone), depicted here:

B(M)

B(L)

Stone

ζϕ

ΣM

ϕ̃∗ΣM

Σ L

ϕ̃

It only remains to show that this arrow has an inverse, that is, that it is an iso-
morphism in Presh(Stone). Recall that ψ̃ : B(M) → B(L) is the inverse of ϕ̃, and
consider the arrow

〈ψ̃, ψ̃∗(ζ−1
ϕ )〉 : Σ L → ΣM . (125)

This arrow is depicted in the following diagram:
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B(M)

B(L)

Stone

ψ̃∗(ζ−1
ϕ )

ζ−1
ϕ

ΣM

ψ̃∗Σ L

ϕ̃∗ΣM

Σ L

ϕ̃ ψ̃

That both compositions of arrow 〈ϕ̃, ζϕ〉with its inverse give the identitymorphism
is now checked algebraically.

〈ψ̃, ψ̃∗(ζ−1
ϕ )〉 ◦ 〈ϕ̃, ζϕ〉 = 〈ϕ̃ ◦ ψ̃, ψ̃∗(ζ−1

ϕ ) ◦ ψ̃∗ζϕ〉 (126)

= 〈I dB (M), ψ̃
∗(I dϕ̃∗ΣM )〉 (127)

= 〈I dB (M), I dψ̃∗ϕ̃∗ΣM 〉 (128)

= 〈I dB (M), I dΣM 〉. (129)

〈ϕ̃, ζϕ〉 ◦ 〈ψ̃, ψ̃∗(ζ−1
ϕ )〉 = 〈ψ̃ ◦ ϕ̃, ζϕ ◦ ϕ̃∗(ψ̃∗(ζ−1

ϕ ))〉 (130)

= 〈I dB (L), ζϕ ◦ (ψ̃ ◦ ϕ̃)∗(ζ−1
ϕ ))〉 (131)

= 〈I dB (L), ζϕ ◦ (I dB (L))
∗(ζ−1

ϕ )〉 (132)

= 〈I dB (L), ζϕ ◦ ζ−1
ϕ 〉 (133)

= 〈I dB (L), I dΣ L 〉. (134)

Thus, 〈ϕ̃, ζϕ〉 : ΣM → Σ L is an isomorphism in Presh(Stone), as desired.

In order to prove the next result, recall from Sect. 2.2.2 the definition of a par-
tial orthomodular lattice, which captures all aspects of lattice structure within each
boolean subalgebra of L , as well as capturing inclusion relations between Boolean
subalgebras.

Theorem 3.17 Let L and M be orthomodular lattices. If there is an isomorphism
〈H, η〉 : ΣM → Σ L in Presh(Stone), then there is an isomorphism from L to M in
OML that can be explicitly constructed from 〈H, η〉.
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Proof Let 〈H, η〉 : ΣM → Σ L be an isomorphism between spectral presheaves of
orthomodular lattices. Note H : B(L) → B(M) is necessarily an isomorphismwith
inverse H−1 : B(M) → B(L). By Theorem 3.15, there exists a isomorphism from
L toM in Copresh(BA), specifically,

〈H, (H∗Bo−1) ◦ cl(η) ◦ Bo〉 : L → M . (135)

For simplicity, define

ρ := (H∗Bo−1) ◦ cl(η) ◦ Bo : L → H∗M . (136)

This natural transformation ρ has components for each B ∈ B(L) that map from
L B = B to (H∗M )B = M H(B) = H(B), where H(B) is an element of B(M),
that is, a Boolean subalgebra of M :

ρB : B → H(B). (137)

By the construction of ρ in the proof of Theorem 3.15, each component ρB is a
Boolean algebra isomorphism.

Suppose that B ′, B ∈ B(L) with B ′ ⊆ B, that is, iB ′,B is an arrow in B(L).
Recall thatL (iB ′,B) = incB ′,B , the inclusion Boolean algebra homomorphism from
B ′ to B. Additionally, H(iB ′,B) is an arrow inB(M) from H(B ′) to H(B); as poset
categories have at most one arrow with a given domain and codomain, it must be
that H(iB ′,B) = iH(B ′),H(B). Then,

(M ◦ H)(iB ′,B) = incH(B ′),H(B). (138)

The naturality of ρ then means that the following diagram commutes:

B ′ H(B ′)

B H(B)

ρB ′

incB ′,B incH(B ′),H(B)

ρB

Let a ∈ L such that a ∈ B, B ′. Then

ρB(a) = (ρB ◦ incB ′,B)(a) = (incH(B ′),H(B) ◦ ρB ′)(a) = ρB ′(a). (139)

From this, it follows that if element a is in any two Boolean subalgebras B1, B2 of
L (not necessarily related by containment), then
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ρB1(a) = ρB1∩B2(a) = ρB2(a). (140)

As every element of L is in at least one Boolean subalgebra, this yields a well-defined
map as follows:

ϕ : L part → Mpart (141)

a �→ ρB(a), where B ∈ B(L) is any Boolean subalgebra containinga
(142)

This map ϕ is a partial orthomodular lattice homomorphism because it preserves
all defined meets and joins, i.e. those within some Boolean subalgebra, as well
as orthocomplementation. It remains to check that ϕ is an isomorphism of partial
orthomodular lattices.

As ρ is a natural isomorphism, each component ρB is an isomorphism of Boolean
algebras and has an inverse ρ−1

B : H(B) → B; note the subscript in ρ−1
B reflects its

codomain. Just as above, for any m ∈ M and any B1, B2 ∈ B(M) that contain m, it
can be shown that ρ−1

H−1(B1)
(m) = ρ−1

H−1(B2)
(m). Thus, as any m ∈ M is in at least one

B ∈ B(M), it is possible to define a partial orthomodular lattice homomorphism

ψ : Mpart → L part (143)

m �→ ρ−1
H−1(B)

(m), where B ∈ B(M) is any Boolean subalgebra containing m

(144)

One can now verify that ψ is an inverse to ϕ. Let a ∈ L , and let B ∈ B(L) contain
a. Then,

(ψ ◦ ϕ)(a) = (ρ−1
B ◦ ρB)(a) = I dB(a) = a (145)

Similarly, for any m ∈ M contained in some Boolean algebra B ∈ B(M),

(ϕ ◦ ψ)(m) = (ρH−1(B) ◦ ρ−1
H−1(B)

)(m) = I dB(m) = m (146)

Thus ψ is an inverse to ϕ, meaning ϕ is a partial orthomodular lattice isomorphism.
By Proposition 2.13, ϕ preserves all meets and joins, not just those within Boolean
subalgebras, and as it also already preserves orthocomplementation this means that
ϕ : L → M is an isomorphism of orthomodular lattices.

Specifically, for any element a ∈ L , the action ofϕ on a as constructed in the proof
above is given as follows. Let B ∈ B(L) be any Boolean subalgebra containing a.
Then,

ϕ(a) = ρB(a) = ((H∗Bo−1) ◦ cl(η) ◦ Bo)B(a) = ((H∗Bo−1
B ) ◦ cl(η)B ◦ BoB)(a)

(147)
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= (Bo−1
H(B) ◦ cl(ηB) ◦ BoB)(a). (148)

Recall that BoB : B → cl(Σ(B)) is the component at B of the natural transformation
that witnesses Stone duality; Bo−1

H(B) is the component at H(B) ∈ B(M) of the
inverse of this same natural transformation; and cl : Stone → BA is one functor
of the dual equivalence between BA and Stone. Specific actions of these maps are
given in Sect. 2.3. In practice, to calculate ϕ(a) = ρB(a) it is simplest to choose
B = Ba = {0, a, a′, 1}, the Boolean algebra with four elements, as we will do in the
later proofs of Theorems 3.19 and 3.20.

Theorem 3.18 Two orthomodular lattices L and M are isomorphic in OML if and
only if their spectral preserves Σ L and ΣM are isomorphic in Presh(Stone).

Proof Theorems 3.16 and 3.17.

We give some interpretation of this result in Sect. 3.8, but first we present an
even stronger result. For an orthomodular lattice isomorphism ϕ : L → M , denote
the spectral presheaf isomorphism constructed in the proof of Theorem 3.16 by
SP(ϕ) : ΣM → Σ L . For a spectral presheaf isomorphism 〈H, η〉 : ΣM → Σ L ,
denote the orthomodular lattice isomorphism constructed in the proof of Theorem
3.17 by OML(〈H, η〉) : L → M .

Theorem 3.19 For all orthomodular lattice isomorphisms ϕ : L → M,

OML(SP(ϕ)) = ϕ. (149)

Proof Consider an orthomodular lattice isomorphism ϕ : L → M . Then, 〈ϕ̃, ζϕ〉 is
an isomorphism in Presh(Stone), where ζϕ is a natural isomorphism with compo-
nents given by

ζϕ,B : Σϕ̃(B) → ΣB (150)

λ �→ λ ◦ ϕ|B (151)

Each component ζϕ,B is an isomorphismofStone spaces.To constructOML(〈ϕ̃, ζϕ〉),
consider the natural isomorphism in Copresh(BA)

ρ = (ϕ̃∗Bo−1) ◦ cl(ζϕ) ◦ Bo : L → ϕ̃∗M . (152)

Each component of this natural isomorphism is a Boolean algebra isomorphism from
B to ϕ̃(B) given by

ρB = (
(ϕ̃∗Bo−1) ◦ cl(ζϕ) ◦ Bo

)
B

(153)

= (ϕ̃∗Bo−1)B ◦ cl(ζϕ)B ◦ BoB (154)

= Bo−1
ϕ̃(B)

◦ ζ
(−1)
ϕ,B ◦ BoB (155)
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Let a ∈ L , and consider the Boolean algebra Ba ⊆ L with elements {0, a, a′, 1}.
OML(〈ϕ̃, ζϕ〉) is the homomorphism from L to M whose action on element a is
ρBa (a), which we will now calculate. The Stone space of Ba has two elements λa

and λa′ , where λa(a) = 1, λa(a′) = 0, and λa′(a) = 0, λa′(a) = 0. Thus,

BoBa (a) = {λ ∈ ΣBa | λ(a) = 1} = {λa}. (156)

As ϕ|B is a Boolean algebra isomorphism, then ϕ̃(B) is the four-element Boolean
algebra with elements {0, ϕ(a), ϕ(a)′, 1}, which we will denote Bϕ(a). The Stone
space ΣBa has two elements, which we denote λϕ(a) and λϕ(a)′ , where λϕ(a)(ϕ(a)) =
1, λϕ(a)(ϕ(a′)) = 0 and λϕ(a)′(ϕ(a)) = 0, λϕ(a′)(ϕ(a)) = 0. Then,

ζ
(−1)
ϕ,B (BoB(a)) = ζ

(−1)
ϕ,B ({λa}) (157)

= {λ ∈ Σϕ̃(Ba) | (λ ◦ ϕ|Ba )(a) = 1} (158)

= {λϕ(a)}. (159)

In order to calculate ρBa (a) = Bo−1
ϕ̃(B)

({λϕ(a)}), recall the definition for the compo-
nents of Bo−1 given at the end of Sect. 2.3: write S = ⋃

b∈J Ub as a finite union of
basic open sets for some index set J , then Bo−1(S) = ∨

b∈J b. As {λϕ(a)} = Uϕ(a) is
itself a basic open set, then Bo−1

ϕ̃(B)
({λϕ(a)}) = ϕ(a). Thus,

ρBa (a) =
(
Bo−1

ϕ̃(B)
◦ ζ

(−1)
ϕ,B ◦ BoB

)
(a) = Bo−1

ϕ̃(B)
({λϕ(a)}) = ϕ(a) (160)

Thus, OML(〈ϕ̃, ζϕ〉) is the orthomodular lattice homomorphism from L to M map-
ping a to ρBa (a) = ϕ(a), meaning that ϕ = OML(〈ϕ̃, ζϕ〉) = (OML ◦ SP)(ϕ).

Theorem 3.20 Let 〈H, η〉 : ΣM → Σ L be an isomorphism in Presh(Stone)
between the spectral presheaves of two orthomodular lattices M and L. Then

SP(OML(〈H, η〉)) = 〈H, η〉. (161)

Proof Consider an isomorphism 〈H, η〉 : ΣM → Σ L in Presh(Stone). To construct
OML(〈H, η〉) : L → M , consider natural isomorphism in Copresh(BA):

ρ = (H∗Bo−1) ◦ cl(η) ◦ Bo : L → H∗M . (162)

Each component of this natural isomorphism is a Boolean algebra isomorphism from
B to H(B) given by

ρB = Bo−1
H(B) ◦ η

(−1)
B ◦ BoB : B → H(B). (163)

Let a ∈ L; the four-element Boolean Ba contains a. We first want to calculate
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OML(〈H, η〉)(a) = ρBa (a). (164)

Note that H(Ba) is also a four-element Boolean algebra because H is an order
isomorphism of posets; as there is no B ∈ B(L) such that {0, 1} ⊂ B ⊂ Ba , then this
also holds true for H(Ba) inB(M). We name its elements {0, h(a), h(a)′, 1}. Note
that we are not defining some function h : L → M , but rather simply using function
notation to indicate that the elements of H(Ba) depend on the chosen element a. We
now calculate

(η
(−1)
Ba

◦ BoBa )(a) = η
(−1)
Ba

({λa}) (165)

= {λ ∈ ΣH(Ba) | ηBa (λ) = λa} (166)

= {λ ∈ ΣH(Ba) | ηBa (λ)(a) = 1} (167)

As ηBa : ΣH(Ba) → ΣBa is an isomorphism of Stone spaces, it must be that exactly
one of the two elements σ = λh(a) or σ = λh(a)′ of ΣH(Ba) satisfies ηBa (σ )(a) = 1.
If (η(−1)

Ba
◦ BoBa )(a) = {λh(a)} = Uh(a), then applying Bo−1

H(Ba)
yields h(a), while the

other case yields h(a)′. Thus,

ρBa (a) =
{
h(a) : ηBa (λh(a)) = λa

h′(a) : ηBa (λh(a)′) = λa
(168)

Thus, OML(〈H, η〉) is a homomorphism ϕ : L → M given by ϕ(a) = ρBa (a) as
above.

We now want to show that SP(ϕ) = 〈H, η〉. First, consider ϕ̃, and let B be any
element ofB(L). We want to show that ϕ̃(B) = H(B). First, let a ∈ L and consider
the four-element Boolean subalgebra Ba = {0, a, a′, 1}. Recall that H(Ba) has four
elements which we call {0, h(a), h′(a), 1}, and note that either ϕ(a) = h(a) and
ϕ(a′) = h(a)′, or ϕ(a) = h(a)′ and ϕ(a′) = h(a). In either case,

ϕ̃(Ba) = {ϕ(x) | x ∈ Ba} = {0, h(a), h(a)′, 1} = H(Ba). (169)

Now, let B be an arbitrary Boolean subalgebra of L . Let ϕ(a) be any element in
ϕ̃(B), where a is some element of B. Then, ϕ(a) ∈ ϕ̃(Ba) = H(Ba). As Ba ⊆ B,
then H(Ba) ⊆ H(B), meaning ϕ(a) ∈ H(B) and thus ϕ̃(B) ⊆ H(B).

Conversely, let h ∈ H(B). Then Bh = {0, h, h′, 1} ⊆ H(B), implying that

H−1(Bh) ⊆ H−1(H(B)) = B. (170)

H−1(Bh) is a four-element Boolean subalgebra of B because H is an order iso-
morphism, so because ϕ̃ and H are the same on four-element Boolean subalgebras
then

ϕ̃(H−1(Bh)) = H(H−1(Bh)) = Bh . (171)
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Thus h ∈ Bh is equal to some element ϕ(a) in

ϕ̃(H−1(Bh)) = {ϕ(a) | a ∈ H−1(Bh) ⊆ B}. (172)

As a is thus also an element of B, then h ∈ ϕ̃(B) implying H(B) ⊆ ϕ̃(B) and thus
H(B) = ϕ̃(B) for all B ∈ B(L), so ϕ̃ = H .

It only remains to show that ζϕ = η, i.e for all B ∈ B(L), ζφ,B = ηB . Recall ζϕ,B

and ηB are both isomorphisms from Σϕ̃(B) = ΣH(B) to ΣB . Fix λ ∈ Σϕ̃(B) = ΣH(B)

and fix a ∈ B; we want to show that ζϕ,B(λ)(a) = ηB(λ)(a).
As described in the proof of Theorem 3.16, component ζϕ,B acts on an element

λ ∈ ΣB by precomposing by ϕ|B :

ζϕ,B : Σϕ̃(B) → ΣB (173)

λ �→ λ ◦ ϕ|B (174)

Thus,
ζϕ,B(λ)(a) = λ(ϕ(a)). (175)

As η is a natural transformation, then as Ba is a Boolean algebra contained in B,
the following diagram commutes:

Σϕ̃(B)Σϕ̃(Ba)

ΣBΣBa

rϕ̃(B),ϕ̃(Ba)

rB,Ba

ηBηBa

In particular, this implies that

ηB(λ)(a) = ηB(λ)|Ba (a) = ηBa (λ|ϕ̃(Ba))(a). (176)

Recall:

ϕ(a) =
{
h(a) : ηBa (λh(a)) = λa ⇔ ηBa (λh(a))(a) = 1
h(a)′ : ηBa (λh(a)′) = λa ⇔ ηBa (λh(a))(a) = 0

(177)

Specifically, for any λ|ϕ̃(B) ∈ ΣH(B) = {λh(a), λh(a)′ }, whether λ|ϕ̃(B) = λh(a) or
λ|ϕ̃(B) = λh(a)′ , an exhaustive check shows

λ(ϕ(a)) = λ|ϕ̃(Ba)(ϕ(a)) = ηBa (λ|ϕ̃(B))(a). (178)

Combining this with Eqs. 175 and 176,
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ζϕ,B(λ)(a) = λ(ϕ(a)) = ηBa (λ|ϕ̃(B))(a) = ηB(λ)(a) (179)

Thus, ζϕ = η, meaning

SP(OML(〈H, η〉)) = 〈H, η〉. (180)

Theorem 3.21 There are bijections SP and OML between orthomodular lattice
isomorphismsϕ : L → M and spectral presheaf isomorphisms 〈H, η〉 : ΣM → Σ L .

Proof Theorems 3.19 and 3.20.

3.8 Interpretation of the Results so Far

Mathematical aspects. Theorem 3.18 is of some mathematical interest. While the
duality between Stone spaces and Boolean algebras has been well-known for many
years, we are not familiar with any attempts to generalise this duality to general ortho-
modular lattices. The spectral presheaf of an orthomodular lattice provides a new
notion of ‘dual space’ for an orthomodular lattice, given by a functor whose image
is, rather than a single Stone space, a collection of Stone spaces linked together into
a presheaf by continuous restriction maps. Theorem 3.18 implies that the assignment
of the spectral presheaf Σ L to an OML L (implicitly) preserves all the structure of
an orthomodular lattice, as one would require in a duality type situation.

In the case where the orthomodular lattice L is in fact a Boolean algebra, the
spectral presheaf does not quite reduce to the Stone space of the Boolean algebra,
as our construction of the spectral presheaf considers all Boolean subalgebras of
L while Stone duality does not. This is necessary to avoid certain no-go theorems
about extending classical dualities [30]. Yet, for a Boolean algebra B the poset of
contexts has a unique top element, which is B itself, and the component of the spectral
presheaf Σ B at B is the Stone space of B. In this sense, for Boolean algebras the
spectral presheaf is very close to the Stone space.

Theorem 3.18 shows that the spectral presheaf of an orthomodular lattice is a
complete invariant, hence determines the orthomodular lattice up to isomorphism
and vice versa. This is stronger than the corresponding result for von Neumann
algebras, where a spectral presheaf determines a von Neumann algebra only up to
Jordan ∗-isomorphism rather than up to isomorphism [13].

Relation with earlier results by Harding and Navara. In [31], Harding and
Navara prove that an isomorphism of context categories yields an isomorphism of
orthomodular lattices, though this isomorphism is only unique when the orthomod-
ular lattices have no maximal four-element Boolean subalgebras. We considered not
just the context category but rather a functor on the context category; an isomorphism
between spectral presheaves 〈H, η〉 consists of not only an isomorphism H between
context categories but also a natural isomorphism η. The additional data of η enables
the proof of Theorem 3.21, that there is a concrete bijection between orthomodular
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lattice isomorphisms and spectral presheaf isomorphisms. Additionally, Theorem
3.17 provides a way to construct an isomorphism of orthomodular lattices from an
isomorphism of their spectral presheaves by only considering four-element Boolean
subalgebras; it is precisely when considering maximal four-element Boolean subal-
gebras that the process employed by [31] fails to construct a unique isomorphism.

Quantum logic and physical interpretation. Many considerations in physics
can fundamentally be phrased in terms of propositions. Such propositions are of the
form “the physical quantity A has a value in the (Borel) set Δ ⊆ R”, short “A ε Δ”.
Of course, the truth value of such a proposition depends on the state of the system.1

In classical physics, a proposition such as “A ε Δ” is represented by a (Borel)
subset of the state space S of the system. If f A : S → R is the (Borel) function
representing the physical quantity A, then the subset f −1

A (Δ) of S contains all the
states for which A has a value in Δ: if s ∈ f −1

A (Δ), then f A(s) ∈ Δ. Hence, f −1
A (Δ)

represents the proposition “A ε Δ”. The Borel subsets of the state space S form a
σ -complete Boolean algebra.

For quantum theory, such a state space picture is lacking. Instead, one uses the
closed subspaces of Hilbert space as representatives of propositions. The closed
subspaces form a complete orthomodular lattice, and this is the motivation to also
consider more general orthomodular lattices as algebras modeling propositions in
quantum theory and quantum logic.

The spectral presheaf Σ L plays the role of a state space for the quantum system
described by an OML L , akin to the classical state spaceS . Our results so far show
that the spectral presheaf is a complete invariant of an OML, which implies that
instead of modeling quantum logic with the OML, one can model quantum logic
based on the spectral presheaf without losing any information. To do so concretely,
we will not just need the spectral presheaf Σ L (this is like having the state space
of a classical system only), but also a representation of the OML L , that is, of
the propositions, by suitable subsets of the quantum state space (this is like having
the algebra of Borel subsets of the form f −1

A (Δ)). The representation of the OML
L by subsets—technically, subobjects—of Σ L should generalise the well-known
Stone representation for Boolean algebras. For a concrete generalisation of the Stone
representation theorem to complete orthomodular lattices, seeSect. 4 and in particular
Theorem 4.19 below.

3.9 The Spectral Presheaf of a Complete OML Is a Complete
Invariant

We finally treat the case of complete orthomodular lattices (cOMLs). Note that the
isomorphism result of Theorem 3.18 doesn’t immediately apply to complete OMLs.

1In quantum theory, for most states a given proposition “A ε Δ” is neither true nor false, but can
only be assigned a probability, which is usually interpreted as the probability that when measuring
the physical quantity A in the given state, a measurement outcome in Δ is obtained.
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This is because the isomorphism between orthomodular lattices L andM constructed
from an isomorphism from L part to Mpart in the proof of Theorem 3.17 is not nec-
essarily a morphism of complete orthomodular lattices, that is, it may only preserve
finite meets and joins, not arbitrary meets and joins.

Luckily, the extra effort needed in proving the results for complete OMLs is very
moderate, and with a little care the proofs carry over virtually unchanged, with just
the additional ‘complete’ in the right places. For this reason, we will not give all the
details here.

Recall from Sect. 2.5 that the clopen subsets of the Stone space of a complete
Boolean algebra form a complete Boolean algebra, and that there is a duality between
complete Boolean algebras and Stonean spaces, which are extremely disconnected
compact Hausdorff spaces. The appropriate kind of morphisms between these spaces
are continuous open maps.

We first define the spectral presheaf of a complete OML:

Definition 3.22 Let L be a cOML, and letBc(L) be its context category consisting
of the complete Boolean subalgebras of L . The spectral presheaf Σ L of L is the
contravariant functor over Bc(L) given

(i) on objects: for all B ∈ Bc(L), let Σ L
B := Σ(B), the Stonean space of B,

(ii) on arrows: for all inclusions iB ′B : B ′ → B, let

Σ L(iB ′B) : Σ L
B −→ Σ L

B ′ (181)

λ �−→ λ|B ′ . (182)

If we consider the Stonean spaces Σ L
B , B ∈ Bc(L), with their topology (and not just

as mere sets), the restriction maps Σ L(iB ′B) are surjective, continuous, closed, and
open. In particular, they are open since the inclusion B ′ ↪→ B is amorphism of cBAs,
and the restrictionΣ L(iB ′B) is the dual map to this inclusion, so by Proposition 2.26,
Σ L(iB ′B) is a morphism in Stonean. Hence, the spectral presheaf Σ L of a cOML L
is an object in the category Presh(Stonean) of presheaves with values in Stonean
spaces.

Definition 3.23 Let L be a cOML, and letBc(L) be its context category. The Bohri-
fication L of L is the covariant functor over Bc(L) given

(i) on objects: for each B ∈ Bc(L), letL B := B, the complete Boolean algebra B
itself,

(ii) on arrows: for each inclusion arrow iB ′B , letL (iB ′B) : B ′ ↪→ B be the inclusion
homomorphism of cBAs.

The Bohrification L of a cOML L is an object in the category Copresh(cBA) of
copresheaves with values in complete Boolean algebras.

We consider the action of the functorsΣ andCL of the dual equivalence between
Copresh(cBA) and Presh(Stonean) on Bohrifications and spectral presheaves,
respectively. A brief check shows that they are just as for the general case of arbitrary
orthomodular lattices in Sect. 3.5:
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Σ(L ) = Σ L (183)

Σ(〈I, θ〉) = 〈I,Σ(θ)〉 (184)

CL(Σ L) = cl ◦ Σ L (185)

CL(〈ϕ̃, ζϕ〉) = 〈ϕ̃, ζ (−1)
ϕ 〉 (186)

The lemmas and theorems of Sects. 3.6 and 3.7 also have analogous versions for
the complete case:

Lemma 3.24 The map {BoB}B∈B c(L) : L → cl ◦ Σ L is a natural isomorphism.
That is, these two functors are isomorphic in the functor category cBAB c(L).

The natural isomorphism {BoB}B∈B c(L) will now simply be written in a slight abuse
of notation as Bo for the sake of simplicity.

Lemma 3.25 The morphism 〈I dB c(L), Bo〉 : L → cl ◦ Σ L is an isomorphism in
Copresh(cBA).

Theorem 3.26 Let L and M be complete orthomodular lattices, Σ L and ΣM their
spectral presheaves, and L and M their Bohrifications. Then there is an iso-
morphism ΣM → Σ L in Presh(Stonean) if and only if there is an isomorphism
L → M in Copresh(cBA), and these isomorphisms can be explicitly constructed
from each other.

If 〈H, η〉 is an isomorphism between the spectral presheaves of cOMLs L and M ,
then the corresponding isomorphism from L toM in Copresh(cBA) is:

ρ := 〈I dB (M), Bo
−1〉 ◦ 〈H, cl(η)〉 ◦ 〈I dB (L), Bo〉 = 〈H, (H∗Bo−1) ◦ cl(η) ◦ Bo〉.

In particular, each component of the natural isomorphism (H∗Bo−1) ◦ cl(η) ◦ B is
an isomorphism in cBA. This follows from Proposition 2.26, and in particular, Facts
2.27 and 2.28. That this isomorphism (renamed ρ in the proof of Theorem 3.17 as it
is above) preserves arbitrary meets and joins is essential for being able to construct
an isomorphism of cOMLs from an isomorphism of spectral presheaves in Theorem
3.28 below.

Theorem 3.27 Let L and M be complete orthomodular lattices. If ϕ : L → M
is an isomorphism in cOML, then there is an isomorphism 〈ϕ̃, ζϕ〉 : ΣM → Σ L

in Presh(Stonean), where the natural transformation ζϕ has components ζϕ,B =
Σ(ϕ|B) for all B inBc(L).

Theorem 3.28 Let L and M be complete orthomodular lattices. If there is an iso-
morphism 〈H, η〉 : ΣM → Σ L in Presh(Stonean), then there is an isomorphism
from L to M in cOML that can be constructed explicitly from 〈H, η〉.

The proof of this theorem for cOMLs is made possible by the fact that ρ is an iso-
morphism of complete Boolean algebras and thus induces an isomorphism of partial
complete orthomodular lattices, which in turn determines a (unique) isomorphism of
cOMLs. Summing up, we have:
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Theorem 3.29 Two complete orthomodular lattices L and M are isomorphic in
cOML if and only if their spectral presheaves Σ L and ΣM are isomorphic in
Presh(Stonean).

4 Representing a Complete Orthomodular Lattice

The goal of this section is to find a ‘representation’ of a complete orthomodular lattice
by clopen subobjects of its spectral presheaf, in analogy to the Stone representation
of a Boolean algebra by clopen subsets of its Stone space.

In Sect. 4.1, we define and describe the clopen subobjects of the spectral presheaf
of a complete orthomodular lattice, and in Sect. 4.2 we show that they form a com-
plete bi-Heyting algebra. In Sect. 4.3, we define a map called ‘daseinisation’ from
a complete orthomodular lattice to the clopen subobjects of its spectral presheaf. If
we interpret the elements of the cOML as propositions about (the values of phys-
ical quantities of) a quantum system, then this map can be seen as a ‘translation’
of the quantum propositions into clopen subobjects of a generalised phase space. In
Sects. 4.5 and 4.6, we use the adjoint of the daseinisation map to relate the lattice
structure of the clopen subobjects of the spectral presheaf to the lattice structure of
the original orthomodular lattice.

4.1 Clopen Subobjects of the Spectral Presheaf

For the remainder of this section, we assume L is a complete orthomodular lattice
and Σ L is its spectral presheaf.

Definition 4.1 Let F : C → Set be a functor. A functor G : C → Set is a subfunc-
tor of F if for all C ∈ Ob(C ), GC ⊆ FC and for all a : C → D in Arr(C ), G(a) is
the restriction of F(a) to domain GC and codomain GD .

Note that this implies G(a)(GC) ⊆ GD .

Definition 4.2 A subobject of Σ L is a subfunctor S : Bc(L)op → Set of Σ L .

This is the same definition of a subobject ofΣ L as in the topos sense. That is, recalling
the definition of a subobject in a topos, subfunctors of Σ L correspond precisely to
monic arrows with codomain Σ L in the functor category SetB (L)op (see e.g. [23]).

Definition 4.3 A subobject S of Σ L is clopen if for all B ∈ Bc(L), the component
SB is a clopen subset of Σ L

B . The set of clopen subobjects of Σ L will be denoted
Subcl Σ L .

There is an obvious partial order on Subcl Σ L : let S and T be clopen subobjects
in Subcl Σ L . Then define
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S ≤ T :⇐⇒ ∀B ∈ Bc(L) : SB ⊆ T B .

With respect to this partial order, all meets and joins exist. Let (Si )i∈I ⊆ Subcl Σ L

be an arbitrary family of clopen subobjects. Their meet resp. join is given by

∀B ∈ Bc(L) :
(∧

i∈I
Si

)
B

= int
⋂
i∈I

Si;B, (187)

(∨
i∈I

Si

)
B

= cls
⋃
i∈I

Si;B, (188)

where Si;B denotes the component of Si at B. The interior resp. closure are taken
with respect to the Stone topology. Since the Stone spaces of the complete Boolean
(sub)algebras are Stonean, i.e. extremely disconnected, we obtain clopen subsets at
each stage B ∈ Bc(L), and the meet and the join of clopen subobjects are clopen
subobjects again as required.

Hence, Subcl Σ L is a complete lattice. It is also distributive, since meets and joins
are defined stagewise, at each B ∈ Bc(L) separately. At B ∈ Bc(L), the meet and
the join are the meet and join of clopen subsets of the Stonean spaceΣ L

B of B, which
form a complete Boolean algebra (which of course is distributive). It is easy to show
that in Subcl Σ L , finite meets distribute over arbitrary joins and finite joins distribute
over arbitrary meets.

4.2 The Clopen Subobjects Form a Complete Bi-Heyting
Algebra

It was shown in [12] that Subcl Σ L is a complete bi-Heyting algebra. For general
information on bi-Heyting algebras, see [32]. For convenience of the reader, we
briefly recall the definitions and main results.

Definition 4.4 A Heyting algebra is a bounded lattice H such that for all elements
a, b ∈ H , there is a greatest element x ∈ H such that a ∧ x ≤ b. Such an element
x is called the relative pseudocomplement of a with respect to b or the Heyting
implication from a to b and is denoted a ⇒ b. The pseudocomplement of a, also
called the Heyting negation of a, is the element ¬a := (a ⇒ 0).

In the above definition, the element¬a is called a pseudocomplement of a because
a ∧ ¬a = 0 but it is not necessarily true that a ∨ ¬a = 1.

Definition 4.5 A Heyting algebra is complete if it is complete as a lattice.

In a complete Heyting algebra, finite meets distribute over arbitrary joins [32].
One can also define the dual notion of a co-Heyting algebra, also called a Brouwer

algebra.
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Definition 4.6 A co-Heyting algebra (or Brouwer algebra) is a bounded lattice H
such that for all elements a, b ∈ H , there is a least element x ∈ H such that a ≤
b ∨ x . Such an element x is called the co-Heyting implication from a to b, and is
denoted a ⇐ b. The co-Heyting negation of a is the element ∼ a := (1 ⇐ a).

Dually to the negation in a Heyting algebra, the co-Heyting negation satisfies a∨ ∼
a = 1 but it might not necessarily be true that a∧ ∼ a = 0.

Definition 4.7 A co-Heyting algebra is complete if it is complete as a lattice.

In a complete co-Heyting algebra, finite joins distribute over arbitrary meets [32].

Definition 4.8 A bi-Heyting algebra is a bounded lattice that is both a Heyting
algebra and a co-Heyting algebra. A bi-Heyting algebra is complete if it is complete
as a lattice.

A bi-Heyting algebra is distributive, but generalises a Boolean algebra by splitting
up the notion of complementation into two separate notions, Heyting negation and
co-Heyting negation. Heyting negation is intuitionistic, satisfying a ∧ ¬a = 0 but
not necessarily a ∨ ¬a = 1; logically, this means that the law of excluded middle
need not hold. The co-Heyting negation is paraconsistent, satisfying a∨ ∼ a = 1 but
not necessarily a∧ ∼ a = 0; logically, this means that the law of noncontradiction
need not hold.

Proposition 4.9 Subcl Σ L is a complete bi-Heyting algebra.

Proof We already saw that Subcl Σ L is a complete distributive lattice. It remains to
show that there are both a Heyting and a co-Heyting structure on Subcl Σ .

The map

S ∧ (−) : Subcl Σ L −→ Subcl Σ
L (189)

T �−→ S ∧ T (190)

is monotone and preserves arbitrary joins. Hence, by Proposition 2.30, this map has
an upper adjoint which is denoted S → (−) and is given by:

S ⇒ (−) : Subcl Σ L −→ Subcl Σ
L (191)

T �−→ (S ⇒ T ) :=
∨

{R ∈ Subcl Σ
L | S ∧ R ≤ T } (192)

Additionally, by Proposition 2.31, this map satisfies

S ∧ (S ⇒ T ) ≤ T . (193)

Themap S ⇒ (−) : Subcl Σ L → Subcl Σ L gives awell-definedHeyting implication
in the complete distributive lattice Subcl Σ L , with S varying over Subcl Σ L . Thus,
Subcl Σ L is a Heyting algebra. It is complete as Subcl Σ L is a complete lattice. The
Heyting negation of this algebra will be denoted ¬, and is given by
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¬ : Subcl Σ L −→ Subcl Σ
L (194)

S �−→ ¬S := (S ⇒ 0). (195)

Here 0 is the clopen subobject of Σ L with 0B = ∅ for all B ∈ Bc(L), the bottom
element of Subcl Σ L .

Analogously, the following monotone map preserves arbitrary meets:

S ∨ (−) : Subcl Σ L −→ Subcl Σ
L (196)

T �−→ S ∨ T (197)

Thus, by Proposition 2.30, it has a lower adjoint which we will call (−) ⇐ S given
by:

(−) ⇐ S : Subcl Σ L −→ Subcl Σ
L (198)

T �−→ (T ⇐ S) :=
∧

{R ∈ Subcl Σ
L | T ≤ S ∨ R} (199)

By Proposition 2.31, this map satisfies

T ≤ S ∨ (T ⇐ S) (200)

It is clear by the definition of this map and Eq.200 that this gives a co-Heyting impli-
cation for Subcl Σ L (where S varies over Subcl Σ L ), demonstrating that Subcl Σ L

is a complete co-Heyting algebra and thus a complete bi-Heyting algebra. The co-
Heyting negation is given by

∼ : Subcl Σ L −→ Subcl Σ
L (201)

S �−→ ∼ S := (Σ L ⇐ S). (202)

4.3 Daseinisation as Representation of a Complete OML

In this subsection we define a map from a complete orthomodular lattice L to the
complete bi-Heyting algebra Subcl Σ L , called the daseinisation map. This can be
interpreted as an approximation map, which for each element a of L ‘brings into
existence’ an approximation of a as a subspace of each of the Stonean spaces ΣB

for B ∈ Bc(L) (hence the name). Daseinisation was first defined in a quantum the-
ory context in [4] and discussed in detail in [11, 33] for the projection lattice of a
von Neumann algebra. Here, we give a streamlined presentation and generalise to
arbitrary complete OMLs.

Let L be a complete orthomodular lattice, let a ∈ L , and let B ∈ Bc(L) be a
complete Boolean subalgebra of L , not necessarily containing a. Then, we define
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δoB(a) :=
∧

{b ∈ B | b ≥ a}, (203)

the smallest element of B that is greater than or equal to a. If a ∈ B, then δoB(a) =
a. Note that the superscript of o denotes that this is outer daseinisation, that is,
approximating elementa in B fromabove. It is precisely at this step that completeness
of orthomodular lattice L is required to define daseinisation; we need to know that
the infinite meet in the definition of δoB(a) exists.

Note that the inclusion map

B ↪→ L (204)

a �→ a (205)

is a morphism of complete OMLs and hence preserves all meets in particular, so it
has a lower adjoint, which is precisely

δoB : L −→ B (206)

a �−→ δoB(a). (207)

By Stone duality, we have an isomorphism between the complete Boolean algebra
B and the clopen subobjects of its Stone space ΣB , which is Stonean because B is
complete. From Sect. 2.3, this isomorphism is given by

BoB : B −→ cl(ΣB) = cl(Σ L
B) (208)

b �−→ {λ ∈ Σ L
B | λ(b) = 1} (209)

Recall cl is the functor which maps a Stone space to its Boolean algebra of clopen
subsets. Here, BoB is an isomorphism of complete Boolean algebras. In particular,
the element δoB(a) of B corresponds to the clopen subset of Σ L

B given by:

δoB(a) := BoB(δoB(a)) = {λ ∈ Σ L
B | λ(δoB(a)) = 1}. (210)

(The reason for using the notation with underlining will become clear shortly.)
Suppose that B ′ ⊆ B inBc(L). Clearly, it holds that δoB(a) ≤ δoB ′(a). Then,

λ ∈ δoB(a) ⇔ λ(δoB(a)) = 1 (211)

⇒ λ(δoB ′(a)) = 1 (212)

⇔ λ|B ′(δoB ′(a)) = 1 (213)

⇔ λ|B ′ ∈ δoB ′(a) (214)

We conjecture that this result can be strengthened to show that λ ∈ δoB(a) if and only
if λ|B ′ ∈ δoB ′(a), but such a result is not necessary for our purposes so we do not
pursue this line of investigation. Note that this result implies that for every inclusion
arrow iB ′,B in Bc(L), the restriction of Σ L(iB ′,B) = rB,B ′ to domain δoB(a) ⊆ Σ L

B
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has codomain contained in δoB ′(a) ⊆ Σ L
B ′ . This means that the functor fromBc(L)

to Set which sends B to δoB(a) is a valid subfunctor of Σ L ; we will call this functor
δo(a). Clearly this functor

δo(a) := (
δoB(a)

)
B∈B c(L)

(215)

is thus also a subobject of the spectral presheaf. It is a clopen subobject because for
each B ∈ Bc(L), the subset δoB(a) of ΣB is clopen.

We are now ready to define the daseinisation map for complete orthomodular
lattice L and discuss its properties.

Definition 4.10 The map

δo : L −→ Subcl Σ
L (216)

a �−→ δo(a) (217)

from the complete orthomodular lattice L to the complete bi-Heyting algebra
Subcl Σ L is called outer daseinisation, or more simply daseinisation.

The daseinisation map can be seen as a process by which an element a in the
complete orthomodular lattice L is approximated in each classical context B and
subsequently each Stone space ΣB , ultimately yielding a clopen subobject of Σ L .
Returning to the notion of an orthomodular lattice as a quantum logicwhose elements
are propositions, for each classical context B the daseinisation process first associates
to proposition a the strongest proposition within B that must be true if proposition
a is true, which above we called δoB(a). The next step of daseinisation associates to
each of these strongest propositions the collection of local valuations (elements of
the Stone space of B, i.e., Boolean algebra homomorphisms from B to {0, 1}) for
which the proposition holds, which we called δoB(a). These sets of local valuations
are clopen and are linked together by the restrictionmaps to create a clopen subobject
δo(a). This analysis shows that the daseinisation process associates to each quantum
proposition a subobject of the spectral presheaf of the complete orthomodular lattice
to which it belongs, just as a classical proposition corresponds to a subset of the state
space of the classical system.

Lemma 4.11 The daseinisation map δo : L → Subcl Σ L has the following proper-
ties:

1. δo(0) = 0, δo(1) = Σ L ,
2. δo is monotone, that is, a ≤ b in L implies δo(a) ≤ δo(b) in Subcl Σ L ,
3. δo is injective, but not surjective,
4. δo preserves all joins.

Proof (1) is obvious form the definition of δo; for all B ∈ Bc(L), δoB(0) = 0 and
δoB(0) = ∅. Similarly, δoB(1) = 1 and δoB(1) = ΣB = Σ L

B .
(2) also follows directly from the definition of δo. If a ≤ b, then δoB(a) ≤ δoB(b)

and δoB(a) ⊆ δoB(b) for all B ∈ Bc(L), meaning that δo(a) ≤ δo(b) in Subcl Σ L .
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For (3), let a and b be distinct elements of L . Then,

∧
B∈B c(L)

δoB(a) = a 
= b =
∧

B∈B c(L)

δoB(b) (218)

This implies that there must be some B ∈ Bc(L) such that δoB(a) 
= δoB(b). As BoB
is a complete Boolean algebra isomorphism, it follows for this B that

δoB(a) = BoB(δoB(a)) 
= BoB(δoB(a)) = δoB(b) (219)

As δo(a) and δo(b) differ at this component, then they are not the same subobject of
Σ L . Thus, δo is injective. On the other hand, δo clearly is not surjective, since not
every clopen subobject of Σ L is of the form δo(a) for some a ∈ L .

For (4), note that joins are colimits, which are calculated stagewise, at each B ∈
Bc(L) separately. We saw that for each B, the map δoB : L → B, a �→ δoB(a), is the
lower adjoint of the inclusion map B ↪→ L , so it preserves all colimits. The map cl
that takes δoB(a) to δoB(a) is an isomorphism of complete Boolean algebras, so it
preserves all joins.

Stone duality provides a representation of every complete Boolean algebra B by
a concrete complete Boolean algebra, viz. the algebra of clopen subsets of the Stone
space ΣB ,

B −→ cl(ΣB). (220)

In analogy, and as a generalisation, daseinisation can be interpreted as providing
a ‘representation’ of every complete orthomodular lattice L by a concrete algebra of
clopen subobjects of a generalised Stone space, viz. the spectral presheaf Σ L ,

L −→ Subcl Σ
L . (221)

We saw thatΣ L is a complete invariant of L (Theorem3.18) and generalises the Stone
space ΣB of a complete Boolean algebra B in a straightforward manner. Of course,
the algebra Subcl Σ L inwhichwe are ‘representing’ the cOML L is not a cOML itself,
but is a complete bi-Heyting algebra. The representation provided by δo preserves top
and bottom element, the order and all joins. Moreover, the representation is faithful,
since δo is an injective map (Lemma 4.11).

In Sect. 4.5, we will show that daseinisation has an adjoint, which will then
allow us to regain the cOML L from the complete bi-Heyting algebra Subcl Σ L in
(Sect. 4.6), further strengthening the analogy with Stone representation. Bur first, we
will give some physical interpretation of the results so far.
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4.4 Some Physical Interpretation

The representation δo : L → Σ L of a complete orthomodular lattice L is structurally
similar to the Stone representation of a Boolean algebra, and the interpretation of the
spectral presheaf as a state space for the quantum system is vindicated.

Yet, the fact that we map from L into a complete bi-Heyting algebra (and not into
another complete OML) may seem to be a drawback at first sight. We will give some
brief arguments why, on the contrary, the bi-Heyting algebra picture provides many
advantages compared to standard quantum logic [15, 16]. Somemore discussion can
be found in [4, 11, 12].

Distributivity and existence of a material implication. One key problem of
standard quantum logic is the lack of a material implication. In a bi-Heyting algebra,
the Heyting implication, ⇒, plays the role of a material implication and hence is
given as part of the structure. The existence of the Heyting implication depends on
the distributivity of the underlying lattice (see the argument after Eq. (189)). The
fact that the lattice in which we represent propositions about our quantum system
is distributive has further advantages. The behaviour of meets and joins has a clear
interpretation, and situations such as the ‘quantum breakfast’ do not pose any inter-
pretational issues.2

Availability of higher-order logic. By daseinisation δo : L → Σ L we do not just
map into a bi-Heyting algebra, but this algebra is given by the (clopen) subobjects
of a presheaf, which is an object in the presheaf topos SetB (L)op . The topos comes
equipped with an internal higher-order intuitionistic logic [20, 21, 23], which can
now be employed for quantum theory. This is largely a task for the future.

Superposition without linearity. One characteristic feature of quantum theory
is the existence of superposition. In a given (vector) state |ψ〉, the disjunction of two
propositions P, Q can be true while neither of the propositions is true. For example,
if p, q are one-dimensional subspaces that represent the propositions P, Q and the
one-dimensional subspaceC |ψ〉 lies in the plane spanned by p and q (without being
equal to either p or q), then the state |ψ〉makes the proposition (P or Q) true without
making P true or Q true. We see that superposition relates to the behaviour of joins,
given by spans of subspaces of a linear space. Interestingly, our representation L →
Σ L preserves all joins and hence preserves that structural aspect of orthomodular
lattices which comes from superposition. This is true despite the fact that different
fromHilbert space the spectral presheaf, which is the underlying (generalised) space,
is not a linear space.

Good interpretation of all conjunctions. Every quantum system has incompat-
ible physical quantities that cannot be measured simultaneously. In fact, a context is
usually understood to be a subset of physical quantities that can bemeasured simulta-
neously. Accordingly, certain propositions of the form “A ε Δ and B ε Γ ” about the

2For those not familiar with this example: if you go to the quantum hotel and they offer you eggs
and (bacon or sausage), you cannot expect to get (eggs and bacon) or (eggs and sausage) due to
nondistributivity of ‘and’ and ‘or’. As a formula, e ∧ (b ∨ s) 
= (e ∧ s) ∨ (e ∧ s) in general in an
orthomodular lattice.



58 S. Cannon and A. Döring

values of incompatible physical quantities should be meaningless, since there is no
possible experiment that could measure A and B simultaneously. In an orthomodular
lattice, any pair of elements has a meet, so there are many meets that have no good
physical interpretation.

In our bi-Heyting algebra Subcl Σ L , all meets exist as well, but nonetheless we
avoid the interpretational problem described above: meets in Subcl Σ L are taken
stagewise, in each context separately. (Here, a context is a collection of compatible
propositions, forming a Boolean algebra.) If we start from two incompatible proposi-
tions, we first apply a process of coarse-graining. Each proposition is approximated
by a weaker proposition in every context (see Eq. (203)). The meet is then taken
only between compatible propositions, each of which is a weakening of the original
proposition. For example, if we consider a context B that contains an element p
that represents the proposition “A ε Δ”, then δoB(p) = p, so the ‘approximation’ to
p within the context B is p itself, as expected. If q is another element of the OML
that represents the (incompatible) proposition “B ε Γ ”, then q is not contained in the
context B, so δoB(q) � q, and the approximation of q within B represents a prop-
erly weaker proposition than the original one. The meet at B is the meet p ∧ δoB(q),
and analogously for all other contexts, including those contexts B̃ that contain q
(where p has to be properly approximated). In this way, we avoid taking any meets
of incompatible elements.

Additional paraconsistent fragment of the logic. Apart from the Heyting alge-
bra aspect, which provides an intuitionistic logic for every quantum system, there is
also a co-Heyting algebra aspect. Logically, this represents a paraconsistent logic.
Some properties of the Heyting and co-Heyting structure are discussed in [12]. A
bi-Heyting algebra can be seen as a fairly modest generalisation of a Boolean alge-
bra. The concept of negation becomes split into a Heyting negation (pseudocom-
plement) for which the law of the excluded middle does not hold (i.e., a ∧ ¬a = 0,
but a ∨ ¬a ≤ 1), and a co-Heyting negation, for which the law of non-contradiction
does not hold (i.e., a∨ ∼ a = 1, but a∧ ∼ a ≥ 0). The latter property is a direct
consequence of coarse-graining and is not problematic interpretationally.

Summing up, our representation δo : L → Σ L translates from standard quantum
logic to a new, distributive form of logic for quantum systems that has many good
interpretational properties. Daseinisation ‘creates’ distributivity and splits negation
into two concepts, relating to the Heyting and the co-Heyting fragment, respectively.

In the following subsections, we will show that daseinisation has an adjoint that
can be used to map back from the complete bi-Heyting algebra Subcl Σ L to the
complete OML L . This gives an even closer link between our new form of quantum
logic and standard quantum logic formulated in OMLs.
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4.5 The Adjoint of Daseinisation

δo is a join-preserving map between two complete lattices, so by Proposition 2.30,
δo has a meet-preserving upper adjoint ε : Subcl Σ L → L . This map ε is defined by:

ε : Subcl Σ L −→ L (222)

S �−→
∨

{a ∈ L | δo(a) ≤ S}. (223)

The following lemma, adapted from an unpublished result by Carmen Constantin,
provides more insight into this map ε.

Lemma 4.12 Let L be a complete orthomodular lattice, with spectral presheaf Σ L .
The upper adjoint ε of δo is given by

ε : Subcl Σ L → L (224)

S �→
∧

B∈B c(L)

Bo−1
B (SB) (225)

Proof Suppose that a is some lower bound for the set {Bo−1
B (SB) | B ∈ Bc(L)}.

That is, for each B ∈ Bc(L),

a ≤ Bo−1
B (SB). (226)

As Bo−1
B (SB) is an element of B that is greater than or equal to a and δoB(a) is the

least element of B that is greater than or equal to a, then

a ≤ Bo−1
B (SB) (227)

⇔ δoB(a) ≤ Bo−1
B (SB) (228)

⇔ BoB(δoB(a)) ⊆ BoB(Bo−1
B (SB)) (229)

⇔ δoB(a) ⊆ SB (230)

This exactly characterises the lower bounds a of the set {Bo−1
B (SB) | B ∈ Bc(L)}.

That is,

{a ∈ L | a ≤ Bo−1
B (SB) ∀ B ∈ Bc(L)} = {a ∈ L | δoB(a) ⊆ SB ∀ B ∈ Bc(L)}

(231)

= {a ∈ L | δo(a) ≤ S}. (232)

In a complete lattice, joins can be written in terms of meets. That is,
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∧
B∈B c(L)

Bo−1
B (SB) =

∨
{a ∈ L | a ≤ Bo−1

B (SB) ∀ B ∈ Bc(L)} (233)

=
∨

{a ∈ L | δo(a) ≤ S} (234)

= ε(S). (235)

The previous lemma implies the following result, which is stronger than could be
expected for an arbitrary Galois connection:

Lemma 4.13 ε ◦ δo = idL .

Proof Let a ∈ L . Then,

(ε ◦ δo)(a) = ε(δo(a)) =
∧

B∈B c(L)

Bo−1
B (δoB(a)) (236)

=
∧

B∈B c(L)

Bo−1
B (BoB(δoB(a))) (237)

=
∧

B∈B c(L)

δoB(a) (238)

= a. (239)

From the general properties of a Galois connection, it also follows that

δo ◦ ε ≤ idSubcl Σ L . (240)

Lemma 4.14 The map ε : Subcl Σ L → L has the following properties:

1. ε(0) = 0, ε(Σ L) = 1,
2. ε is monotone,
3. ε is surjective, but not injective,
4. ε preserves all meets.

Proof (1) and (2) are obvious. For (3), note that if a ∈ L , then a = (ε ◦ δo)(a) by
Lemma 4.13, so a is in the image of ε.

(4) holds since ε is an upper adjoint, which preserves all limits, which are meets
here.

4.6 Regaining a cOML from the Algebra of Clopen
Subobjects

It is clear that a cOML L and the complete bi-Heyting algebra Subcl Σ L cannot
be isomorphic as lattices in general, because L is not necessarily distributive but
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Subcl Σ L is. Additionally, Subcl Σ L contains significantly more elements in gen-
eral than L . However, we will show that by forming certain equivalence classes
within Subcl Σ L , we obtain a complete OML that is isomorphic to L . Of course,
Lemma 4.13 already gives a clear hint that it is possible to reconstruct L from
Subcl Σ L , and we will make this explicit now.

We can use the map ε to define an equivalence relation on Subcl Σ L :

Definition 4.15 For S, T in Subcl Σ L , define S ∼ T if and only if ε(S) = ε(T ).

This is clearly a well-defined equivalence relation. We will write [S] for the equiva-
lence class of S. Let

E := {[S] | S ∈ Subcl Σ
L
}

(241)

be the set of equivalence classes. We observe right away that E is a partially ordered
set in a canonical manner: define

[S] ≤ [T ] :⇔ ε(S) ≤ ε(T ). (242)

Then [∅] is the bottom element and [Σ L ] is the top element.

Lemma 4.16 Let [S] ∈ E. Then [(δo ◦ ε)(S)] = [S] and (δo ◦ ε)(S) is the smallest
representative of [S].
Proof By Proposition 2.31, we have ε(δo ◦ ε)(S) = ε(S), so [(δo ◦ ε)(S)] = [S].
Moreover, if T is a representative of [S], then ε(T ) = ε(S) and since δo ◦ ε ≤
idSubcl Σ L ,

T ≥ (δo ◦ ε)(T ) = (δo ◦ ε)(S). (243)

Lemma 4.17 There is a bijective set map from E to the set underlying the complete
orthomodular lattice L, given by

g : E −→ L (244)

[S] �−→ ε(S) (245)

Proof Clearly g is well defined, as if [S] = [T ] then g([S]) = ε(S) = ε(T ) =
g([T ]) by definition. Consider the function

f : L → E (246)

a �→ [δo(a)] (247)

We will now show that f is an inverse to g, meaning E and L are isomorphic as sets.
First, let a ∈ L . Then, by Lemma 4.13,

(g ◦ f )(a) = g
([δo(a)]) = ε

(
δo(a)

) = a. (248)
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Now, let S ∈ Subcl Σ L . Then,

( f ◦ g)
([S]) = f

(
ε(S)

) = [
δo

(
ε(S)

)] = [S], (249)

where we used Lemma 4.16 in the last step. Thus, as both compositions of f and g
are the identity, then g : E → L is a set bijection, and f = g−1.

We can now use g (and g−1) to equip E with the structure of a complete OML
canonically: define the order by

[S] ≤ [T ] :⇔ g([S]) ≤ g([T ]). (250)

Since g([S]) ≤ g([T ]) ⇔ ε(S) ≤ ε(T ), this is exactly the order we had defined on
E before. Since g is a bijection (and an order isomorphism, as we now know), all
meets and joins in E with respect to this order exist and correspond to those in L by
construction. Moreover, following Eva [34], one defines an orthocomplementation
on E by

′ : E −→ E (251)

[S] �−→ [S]′ := g−1(g([S])⊥) = [δo(ε(S)⊥)]. (252)

This makes E into a cOML that is isomorphic to L . The maps g and g−1 are isomor-
phisms of cOMLs.

We want to relate the lattice structure on E = Subcl Σ L/ ∼ more directly to the
lattice structure on the bi-Heyting algebra Subcl Σ L of clopen subsets. The meets in
E can be written in terms of the meets in Subcl Σ L as follows:

Lemma 4.18 For all families
([Si ])i∈I of elements of E, where Si ∈ Subcl Σ L ,

∧
i∈I

[Si ] =
[∧
i∈I

Si

]
. (253)

Proof We have

∧
i∈I

[Si ] = g−1(
∧
i∈I

g([Si ])) = [δo(
∧
i∈I

ε(Si ))] = [δo(ε(
∧
i∈I

Si )] = [
∧
i∈I

Si ], (254)

where we applied Lemma 4.16 in the last step.

As in any complete lattice, the joins in E can be written in terms of the meets.
For all families

([Si ])i∈I of elements of E , where Si ∈ Subcl Σ L ,

∨
i∈I

[Si ] :=
∧

{[T ] | [Si ] ≤ [T ] ∀ i ∈ I }. (255)
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Note that in general,

∨
i∈I

[Si ] 
=
[∨
i∈I

Si

]
. (256)

Summing up, we have the following generalisation of the Stone representation
theorem to complete orthomodular lattices:

Theorem 4.19 For every complete orthomodular lattice L, there exists a map

δo : L −→ Subcl Σ
L (257)

a �−→ δo(a) (258)

called daseinisation into the complete bi-Heyting algebra of clopen subobjects of the
spectral presheaf Σ L of L. This map is injective, preserves top and bottom elements,
the order and all joins.

The adjoint of δo is a map

ε : Subcl Σ L −→ L (259)

S �−→
∧

B∈B c(L)

Bo−1
B (SB) (260)

taking clopen subobjects to elements of the cOML L. The map ε is surjective, pre-
serves top and bottom elements, the order and all meets. The quotient E = Subcl Σ L/

∼, where S ∼ T if and only if ε(S) = ε(T ), is canonically isomorphic to L as a com-
plete orthomodular lattice.

5 Conclusion

We conclude with a list of some open problems:

• How does the complement in E = Subcl Σ L/ ∼, given by [S]′ = [δo(ε(S)⊥)],
relate to the Heyting and co-Heyting negation in Subcl Σ L?

• Can the representation suggested in Sect. 4 be generalised from complete OMLs
to all OMLs?

• Is there a characterisation of those posets that can show up as context categories
of orthomodular lattices?

• How can we employ the logic of the presheaf topos SetB (L)op to discuss higher-
order aspects of the new logic for quantum systems?

• How does the work presented here relate to Quantum Set Theory and OML-valued
models?3

3On this topic, there is some ongoing work with Masanao Ozawa and Benjamin Eva.
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In a more general perspective, one can ask which kind of nondistributive or non-
commutative structures allow us to associate a spectral presheaf with them and prove
duality type or (partial) representation results? A necessary precondition seems to
be that the nondistributive or noncommutative structure under consideration has
distributive or commutative parts which each have a dual space given by one of
the classical dualities. For example, it is conceivable that compact Lie groups are
amenable to methods similar to those developed in this article. A context in a com-
pact Lie groupwould be a Lie-commuting compact subgroup. By Pontryagin duality,
we obtain dual spaces that can be fit together into a spectral presheaf, and one can
consider the question if this is a complete invariant of the compact Lie group. As a
more direct generalisation of the algebras considered in this article, one could use
the duality between spatial frames and sober spaces as a starting point. We hope to
come back to these problems in the future.
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