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Abstract Biofilm is a multicellular lifestyle for bacteria to survive in adverse envi-
ronmental conditions. Biofilms withstand antibiotics, immune defenses, disinfec-
tants, nutritional changes and high temperatures. The present chapter reviews 
information of biofilm and also provide insights on how biofilms are able to tolerate 
antibiotics and evade immune system.

Keywords Biofilm · Antibiotic resistance · Immune evasion

 Introduction

Microorganisms thrive in nature by existing either as free living individuals (plank-
tonic mode) or as community known as biofilm. It was assumed that the standard 
mode of growth for some bacterial species is formation of biofilms whereas the 
planktonic growth is an in vitro work of art [1]. The term biofilm was coined by 
William J. Costerton in 1978 to describe the ‘surface-attached microbial agglom-
erations’ [2]. The alternative description available according to Donlan and 
Costerton [3] is ….” communities of microorganisms attached to a surface, produc-
ing extracellular polymeric substances (EPS) and exhibiting an alternate phenotype 
when  compared with corresponding planktonic cells….”. Biofilm is made up of 
water, bacterial cells, dead cells, and EPS [4]. EPS (referred as matrix) is 90% of the 
biofilm and EPS matrix consists of exopolysaccharides, DNA, proteins and other 
macromolecules [5]. The composition of the bacteria is different in the biofilm’s. 
Bacteria form a biofilm either by recruiting the same bacterial species or by recruit-
ing other bacterial species. If the bacterium recruits the same bacterial species then 
the biofilm formed is known as monospecies biofilm. Whereas, if the bacterium 
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recruits the other bacterial species then the biofilm formed is known as polymicro-
bial biofilms (Fig.  1). Some available examples for polymicrobial biofilms are 
Pseudomonas aeruginosa mixed with Staphylococcus aureus [6]; Prevotella mixed 
with S. aureus [7]; and Escherichia coli mixed with Bacteroides fragilis [8]. 
Polymicrobial biofilms increase the rate of infection and survival of bacteria and 
thereby becomes recalcitrant [9]. P. aeruginosa and S. aureus biofilms [6]; and 
Prevotella and S. aureus biofilms [7] increased the infection rates of pathogens in a 
rat and mouse models respectively. E. coli with B. fragilis increased abscess forma-
tion in a mouse model [8].

Stoodley et al. [10] proposed a model to demonstrate how a bacterium like P. 
aeruginosa forms biofilm. The development of a biofilm (Fig. 2) includes the fol-
lowing five steps –

 1. The first step includes initial or reversible adherence of bacterial cell to a surface 
in the host. This initial adherence of the bacterium to the surface is influenced by 
the factors like specific bacterial surface molecules (secreted adhesins and extra-
cellular adhesive appendages), motility and chemotaxis. The forces acting or 
involved between bacterial cells and the surface of attachment are hydrophobic 
or electrostatic interactions.

 2. The second step includes multiplication of the bacteria forming microcolonies. 
The microcolonies in the biofilm grow up both horizontally and vertically in 
size. The bacterial cells generate EPS on all sides of the microcolonies resulting 
in irreversible adhesion.

 3. The third step includes development leading to formation of an early structure 
like matrix for biofilm.

 4. The fourth step includes maturation of matrix leading to formation of biofilm. 
The mature biofilm is a either a “thick and mushroom-like or tower-like 

Fig. 1 Bacterial biofilm formed by the (a) same bacterial species (monospecies biofilm), (b) other 
bacterial species polymicrobial biofilm)
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 structures”. The 3-dimensional structures filled with cells in groups as the num-
ber of bacteria increase. These structures form ducts between the groups allow-
ing transport of water and nutrients; and removal of waste.

 5. The fifth step includes dispersal of cells from the matrix of biofilm. Thereby 
biofilms display crucial disbanding mechanisms and release cells which are cir-
culated to further sites. Fluctuation in oxygen, nutrient availability, other stress- 
generating situations, and toxic products are the factors persuading dispersal of 
biofilm.

Generally, biofilm is formed on medical devices; or in the tissue of the host; or 
on fresh fruits and vegetables; or on agricultural products used for food consump-
tion (Tables 1, 2, and 3). Biofilm generally provides a strong platform for interaction 

Table 1 Biofilms related to 
devices

S. No Devices Reference

1 Orthopedic alloplastic devices [11, 12]
2 Indwelling urinary catheters or 

urethral stents
[13, 14]

3 Intravenous catheters [15]
4 Vascular prostheses [16]
5 Cardiac pacemakers and 

prosthetic heart valves
[13, 17, 18]

6 Endotracheal tubes [19]
7 Cerebrospinal fluid shunts [20]
8 Peritoneal dialysis catheters [21]
9 Biliary tract stents [22]
10 Intrauterine devices [23, 24]
11 Contact lenses [25]
12 Tissue fillers [26, 27]
13 Dentures [28]

Fig. 2 The sequence of events involved in formation of a biofilm (a) surface/substrate for the 
formation of a biofilm, (b) bacterial cells adhering to the surface, (c) bacterial cells generating EPS 
resulting in irreversible adhesion, (d) development leading to formation of an early structure like 
matrix for biofilm, (e) maturation of matrix leading to formation of biofilm and dispersal of cells 
from the matrix of biofilm
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and communication among the individuals present in the colony and also withstand 
antibiotics, immune defenses, disinfectants, nutritional changes, high temperatures 
etc., In this section, a detailed discussion on how biofilms tolerate antibiotics and 
evade immune system are given below.

 Antibiotics Resistance

Though modification of the antibiotic molecule, reducing drug permeability, and 
modification of target binding sites are the known mechanisms for antibiotic resis-
tance; formation of biofilm is another mechanism for antibiotic resistance. Biofilms 
when exposed to antibiotics show several phenotypic changes and alteration in sig-
naling pathways. Changes in biofilm structure, cell morphology, growth rate, induc-
tion of extracellular DNA (e-DNA) and bacterial membrane vesicles (BMVs) are 
the phenotypic changes reported when exposed to antibiotic. The signaling mecha-
nisms like Cyclic dimeric guanosine monophosphate (c-di-GMP) signaling, oxida-
tive stress response, quorum sensing, SOS response and starvation stress response 
involved in the biofilm. These signaling mechanisms are altered when exposed to 
antibiotics (Fig. 3).

Table 2 Biofilms related to tissues

S. No Disease Pathogen Tissue Reference

1 Cystic fibrosis P. aeruginosa Lungs [29]
2 Chronic obstructive 

pulmonary diseases
P. aeruginosa Lungs [30]

3 Tuberculosis Mycobacterium tuberculosis Lungs [31]
4 Chronic wound 

infections
Invasive infectious agents like 
Staphylococcus aureus

Tissue with 
wounds

[32]

5 Chronic otitis media S. pneumoniae, Haemophilus 
influenzae, Moraxella catarrhalis, 
and S. aureus

Ear [33]

6 Chronic sinusitis Viral or bacterial infection Nasal 
passages 
(sinuses)

[34]

Table 3 Biofilms on fresh fruits, vegetables or agricultural products used for food consumption

S. No Pathogen Fruit/vegetable Reference

1 S. enterica serovar Saphra Cantaloupe melons [35, 36]
2 E. coli Apples [37–39]
3 E. coli O157:H7 Lettuce and spinach [40]
4 Shigella sonnei Fresh parsley [40]
5 Shigella boydii Bean salad [41]
6 Shigella Parsley plants [40]
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Alterations in bacterial cell morphology were reported in Klebsiella pneumonia, 
E. coli, and Streptococcus mutans when exposed to sub-lethal concentration of anti-
biotics and other compounds. K. pneumonia when exposed to carbapenem, imipe-
nem, meropenem and doripenem; morphological alterations of K. pneumonia cell 
was observed. Round cells of K. pneumonia when exposed to carbapenem modified 
there size and shape through RpoS-dependent regulation [42]. When K. pneumonia 
was exposed to imipenem for 24 h significant cell shortening was observed, whereas 
significant cell lengthening was observed when K. pneumonia was exposed to 
meropenem and doripenem. E. coli when exposed to piperacillin or a combination 
of piperacillin and tazobactam, changed its morphology to filamentous form [43, 
44]. S. mutans when exposed to xanthorrhizol (extract of Curcuma xanthorrhiza), 
changed  its  surface and contour of cell wall and membrane [45]. Thus, bacterial 
cells when exposed to antibiotics alter the shape with a possible connection to anti-
biotic response.

Fig. 3 Phenotypic changes 
and alteration in signaling 
pathways in a biofilm 
providing resistance to 
antibiotics
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The change in the growth rate of cells in a biofilm when exposed to antibiotic is 
another notable feature. Cells in the biofilm can typically be classified as surface 
layer cells, middle layer cells and deepest layer cells (Fig. 4). Cells present at the 
surface, middle, and deepest of the biofilm are metabolically active, non-growing 
but alive, and dormant respectively. Cell surface cells of the biofilm are sensitive to 
antimicrobials, whereas middle layer cells acquire tolerance to some agents, and 
inner layer cells are tolerant to antimicrobial agents. The lowered metabolic activi-
ties of the middle layer cells; and zero metabolic activities in the inner cell layers of 
the biofilm are responsible for the resistance to antibiotics. Thus, biofilms when 
exposed to antibiotics exhibit reduced growth leading to antibiotics resistance.

eDNA is known for formation, sustaining and maintenance of biofilm [46–48]. 
The sources of eDNA can be external to the biofilm or can be one of the cells lysed 
in the polymicrobial species biofilm. This eDNA via horizontal gene transfer is 
absorbed by other competent cells of the biofilm leading to antibiotic resistance 
[49]. Further, eDNA binds to antibiotics [50, 51], or activates genes concerned with 
resistance leading to antibiotic resistance. Thus, role of eDNA in antibiotic resis-
tance by various mechanisms is a fact.

BMVs have multiple roles like guarding the microbial cells from antibiotic 
stress, promoting biofilm formation; facilitating adherence; material delivery; 
retaining integrity of the cell membrane; and competing for growth factors. BMVs 
provide resistance to antibiotics such as polymyxin B, colistin, and melittin [52, 53]. 
In an experiment with P. aeruginosa biofilm, drug-binding proteins were identified 
in the BMVs; and this signifys a likely drug-sequestering consequence by content 
in BMVs [54, 55]. In another study, BMVs of S. aureus carrying protein lactamase 
showed resistance to ampicillin [56]. The other possible role of BMVs is acting as 
an interspecies communication system to transfer DNA, proteins, RNA, and toxins 
[57]. Another role of BMVs is to promote biofilm formation, where addition of 
BMV to Helicobacter planktonic culture initiated the formation of 
Helicobacter  biofilm. Thus, vesicles allow microbial cells in the biofilms to thrive 
against antibiotics in addition to other roles.

Starvation of the middle and inner layer cells of the biofilm is known and biofilm 
induces response to this starvation. These starvation responses are known to protect 

Fig. 4 Surface layer cells, 
middle layer cells and 
deepest layer cells of the 
biofilm
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bacterial biofilm when exposed to antibiotics [58, 59]. Nguyen et al. [60] reported 
antibiotic resistance when nutrients are limited to biofilms and bacteria. The plau-
sible explanation is that starvation response signal like RelA-SpoT mediates 
decrease in prooxidants and increase in antioxidants to protect biofilm from antibi-
otic. Thus, starvation responses have the ability to defend the biofilm from 
antibiotics.

SOS responses generated by bacterial cells in the biofilm were known to provide 
tolerance to antibiotics. DNA damaging agents or antibiotics increase the mutation 
rate leading to a “hypermutator phenotype”. Hypermutators have an advantage in 
colonizing the host as well as in exhibiting virulence [61]. Hypermutator pheno-
types also hinder recombination and generate SOS response. SOS response acti-
vates DNA repair and facilitates recombination, and as a result DNA repair mutants 
can acquire antibiotic resistance genes [62]. In P. aeruginosa MMR deficient muta-
tors were to able adjust as a biofilm community, whereas planktonic cells were not 
able to adjust. Fluoroquinolones and ciprofloxacin induced SOS response in patho-
gens resulting in bacterial persistence [63, 64]. Though, the clear connection 
between SOS response and antibiotic resistance is not established; the above evi-
dences are in favor of SOS response and antibiotic resistance.

Oxidative stress responses generated by bacterial cells in the biofilm were known 
to provide tolerance to antibiotics. Oxidative stress induces double-strand breaks in 
bacterial DNA and as consequence bacteria activates the DNA repair mechanism. 
The DNA repair mechanism facilitates recombination allowing the mutants to 
acquire antibiotic resistance genes [62]. Boles and Singh [65] revealed that oxida-
tive stress induce mutations in the bacteria cells of biofilm leading to variants. And 
identified that activation of DNA repair have a tendency to increase antibiotic resis-
tance in biofilms against gentamicin [65, 66]. Thus, oxidative stress responses gen-
erated by bacterial cells in the biofilm provide antibiotic resistance.

c-di-GMP signaling by bacterial cells in the biofilm bestows tolerance to antibi-
otics. c-di-GMP is the secondary messenger involved in regulating the formation of 
biofilm and persister cell [67]. Hoffman et al. [68] proved that signaling of c-di- 
GMP in E. coli and P. aeruginosa improved biofilm mass in the presence of antibi-
otic tobramycin. Thus, c-di-GMP signaling improves tolerance to antibiotics.

Quorum sensing (QS) facilitates antibiotics resistance to the bacterial cells in the 
biofilm [69]. QS signaling provided resistance in P. aeruginosa for antibiotics 
ceftazidime and colistin. LasR mutants of P. aeruginosa acquired beta-lactamase 
activity and showed resistance to ceftazidime. QS in P. aeruginosa is regulated and 
colistin-tolerant cells migrate to the upper layer of the biofilm using “type IV pili- 
dependent motility” [70]. This allows the biofilm to grow in size and helps the 
pathogen to persist even in the presence of antibiotics. Thus, QS signaling also have 
an important role in contributing resistance to antibiotics.
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 Immune Defenses

Biofilms use a number of strategies to withstand host defense mechanisms. 
Literature reports key strategies used by biofilms to evade host immune system. The 
strategies are (1) leukocytes penetration into the biofilm is limited, (2) QS increases 
resistance to leukocytes, (3) leukocytes adeptness to engulf biofilm decreases, (4) 
activity of leukocyte is suppressed, (5) genetic switches of biofilms, [71] (6) dys-
functioning or destroying macrophages, and (7) biofilm shields (Fig. 5). In this sec-
tion we discuss in detail the immune evading mechanisms used by biofilms of S. 
aureus and P. aeruginosa.

Mechanisms used by biofilms of S. aureus to evade immune system are evading 
recognition of TLR2 and TLR9 [72]; skewing the immune response; dysfunctioning 
of macrophage; and impaired phagocytosis of leukocytes [73]. Though, leukocytes 
penetrate into biofilm they were not able to kill bacteria in biofilm due to impaired 
phagocytosis of leukocytes [73]. Although, macrophages were able to engulf imma-
ture or disrupted biofilm of S. aureus [72]; macrophages were not capable of engulf 
a mature biofilm. At the same time dysfunctioning of macrophages is due to release 
of products by biofilm. Therefore, the above mechanisms are used by S. aureus to 
evade the host immune system.

The alternative mechanisms used by biofilms to evade immune system are by 
developing protective layers around biofilms. P. aeruginosa biofilms to evade 
immune system have protective layers like exopolysaccharide alginate and rhamno-
lipids. The exopolysaccharide alginate in P. aeruginosa biofilms shields bacteria 
from leukocyte phagocytosis, whereas rhamnolipids form a “biofilm shield” and 

Fig. 5 Immunoevasion strategies used by biofilms to withstand host defense mechanisms
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prevent the bactericidal activity of polymorphonuclear leukocytes (PMNs) [74]. 
Thus, biofilm shields prevent immune action against P. aeruginosa and protect it 
from host immunity.

 Conclusion

Bacteria live in communities to provide a platform for interaction and communica-
tion among the individuals and also to withstand antibiotics, disinfectants, high 
temperatures, immune defenses, nutritional changes etc. Changes in biofilm struc-
ture, cell morphology, growth rate, induction of e-DNA, BMVs; and altered signal-
ling mechanisms like c-di-GMP signaling, oxidative stress response, quorum 
sensing, SOS response and starvation stress response provide resistance to the bio-
film. Limited leukocytes penetration into the biofilm, increased resistance to leuko-
cytes, decreased leukocytes adeptness to engulf biofilm, suppression of leukocyte 
activity, genetic switches of biofilms, dysfunctioning or destroying macrophages, 
and biofilm shields form the important strategies of the biofilm to evade host 
immune system.
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